WorldWideScience

Sample records for surface soil drying

  1. Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model

    Science.gov (United States)

    Shellito, Peter J.; Small, Eric E.; Livneh, Ben

    2018-03-01

    Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.

  2. Wet–dry cycles impact DOM retention in subsurface soils

    Directory of Open Access Journals (Sweden)

    Y. Olshansky

    2018-02-01

    Full Text Available Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet–dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet–dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet–dry treatment before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment. Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR and near-edge X-ray absorption fine structure (NEXAFS spectroscopic analyses revealed that wet–dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet–dry cycles in affecting sorption reactions of DOM to a complex soil

  3. Wet-dry cycles impact DOM retention in subsurface soils

    Science.gov (United States)

    Olshansky, Yaniv; Root, Robert A.; Chorover, Jon

    2018-02-01

    Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM) with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet-dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet-dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw) horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps) with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet-dry treatment) before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment). Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses revealed that wet-dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM) data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet-dry cycles in affecting sorption reactions of DOM to a complex soil matrix. In the soil

  4. Effect of wetting-drying cycles on soil desiccation cracking behaviour

    Directory of Open Access Journals (Sweden)

    Tang Chao-Sheng

    2016-01-01

    Full Text Available Better understanding the desiccation cracking process is essential in analysing drought effects on soil hydraulic and mechanical properties through consideration of the atmosphere-ground interaction. Laboratory tests were conducted to investigate the consequence of wetting-drying cycles on the initiation and propagation characteristics of desiccation cracks on soil surface. Initially saturated slurry specimens were prepared and subjected to five subsequent wetting-drying cycles. Image processing technique was employed to quantitatively analyze the morphology characteristics of crack patterns formed during each drying path. The results show that the desiccation cracking behaviour of soil is significantly affected by the wetting-drying cycles. Before the third wetting-drying cycle is reached, the surface crack ratio and the average crack width increases while the average clod area decreases with increasing the number of wetting-drying cycles. The number of intersections and crack segments per unit area reaches the peak values after the second wetting-drying cycle. After the third wetting-drying cycle is reached, the effect of increasing wetting-drying cycles on crack patterns is insignificant. Moreover, it is observed that the applied wetting-drying cycles are accompanied by a continual reconstruction of soil structure. The initial homogenous slurry structure is completely replaced with aggregated structure after the third cycles, and a significant increase in the inter-aggregate porosity can be observed.

  5. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning.

    Science.gov (United States)

    Huang, Rong; Lan, Muling; Liu, Jiang; Gao, Ming

    2017-12-01

    Agriculture wastes returning to soil is one of common ways to reuse crop straws in China. The returned straws are expected to improve the fertility and structural stability of soil during the degradation of straw it selves. The in situ effect of different straw (wheat, rice, maize, rape, and broad bean) applications for soil aggregate stability and soil organic carbon (SOC) distribution were studied at both dry land soil and paddy soil in this study. Wet sieving procedures were used to separate soil aggregate sizes. Aggregate stability indicators including mean weight diameter, geometric mean diameter, mean weight of specific surface area, and the fractal dimension were used to evaluate soil aggregate stability after the incubation of straws returning. Meanwhile, the variation and distribution of SOC in different-sized aggregates were further studied. Results showed that the application of straws, especially rape straw at dry land soil and rice straw at paddy soil, increased the fractions of macro-aggregate (> 0.25 mm) and micro-aggregate (0.25-0.053 mm). Suggesting the nutrients released from straw degradation promotes the growing of soil aggregates directly and indirectly. The application of different straws increased the SOC content at both soils and the SOC mainly distributed at  0.25 and 0.25-0.053 mm aggregates with dry land soil. Rape straw in dry land and rice straw in paddy field could stabilize soil aggregates and increasing SOC contents best.

  6. An experimental study on mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Li, J. G.; Gerzabek, M. H.; Mueck, K.

    1994-01-01

    Radionuclide contaminated soil adhered to plant surfaces can contribute to human ingestion dose. To determine this contribution, a method of 46 Sc neutron activation analysis was established and tested, by which a detection limit of 0.05 mg soil per g dry plant biomass can be obtained. In the field and greenhouse experiment the mass loading of soil on ryegrass (Lolium perenne L.) and broadbean (Vicia faba L.) was investigated and the contribution from rainsplash and wind erosion were evaluated separately. Soil retained on plant surfaces in field conditions in Seibersdorf/Austria was 5.77 ± 1.44 mg soil per g dry plant for ryegrass and 9.51 ± 0.73 mg soil per g dry plant for broadbean. Estimates of contribution from rainsplash and wind erosion to soil contamination of plants during the experimental period are 68 % and 32 % for broadbean 47 % and 53 % for ryegrass respectively. Mass loading results from field studies indicate that soil adhesion on plant surfaces can contribute up to 23 % of plant 137 Cs contamination, the transfer factors modified by mass loading decline differently, depending on 137 Cs concentration of the soil and the soil mass adhered to plant surfaces. (author)

  7. An experimental study on mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Li, J.; Gerzabek, M.H.; Mueck, K.

    1994-03-01

    Radionuclide contaminated soil adhered to plant surfaces can contribute to human ingestion dose. To determine this contribution, a method of 46 Sc neutron activation analysis was established and tested, by which a detection limit of 0.05 mg soil per g dry plant biomass can be obtained. In the field and greenhouse experiment the mass loading of soil on ryegrass (Lolium perenne L.) and broad bean (Vicia faba L.) was investigated and the contribution from rainsplash and wind erosion were evaluated separately. Soil retained on plant surfaces in field conditions in Seibersdorf/Austria was 5.77 ± 1.44 mg soil per g dry plant for ryegrass and 9.51 ± 0.73 mg soil per g dry plant for broad bean. Estimates of contribution from rainsplash and wind erosion to soil contamination of plant during the experimental period are 68 % and 32 % for broadbean, 47 % and 53 % for ryegrass, respectively. Mass loading results from field studies indicate that soil adhesion on plant surfaces can contribute up to 23 % of plant 137 Cs contamination, the transfer factors modified by mass loading decline differently, depending on 137 Cs concentration of the soil and the soil mass adhered to plant surfaces. (authors)

  8. Mineralogy of Antarctica Dry Valley Soils: Implications for Pedogenic Processes on Mars

    Science.gov (United States)

    Quinn, J. E.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; Zent, A. P.; Archer, P. D., Jr.

    2010-01-01

    The Antarctic Dry Valleys (ADVs) located in the Transantarctic Mountains are the coldest and driest locations on Earth. The mean annual air temperature is -20 C or less and the ADVs receive 100mm or less of precipitation annually in the form of snow. The cold and dry climate in the ADVs is one of the best terrestrial analogs for the climatic conditions on Mars [2]. The soils in the ADVs have been categorized into three soil moisture zones: subxerous, xerous and ultraxerous. The subxerous zone is a coastal region in which soils have ice-cemented permafrost relatively close to the surface. Moisture is available in relatively large amounts and soil temperatures are above freezing throughout the soil profile (above ice permafrost) in summer months. The xerous zone, the most widespread of the three zones, is an inland region with a climate midway between the subxerous and ultraxerous. The soils from this zone have dry permafrost at moderate depths (30-75cm) but have sufficient water in the upper soil horizons to allow leaching of soluble materials. The ultraxerous zone is a high elevation zone, where both temperature and precipitation amounts are very low resulting in dry permafrost throughout the soil profile. The three moisture regime regions are similar to the three microclimatic zones (coastal thaw, inland mixed, stable upland) defined by Marchant and Head.

  9. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China.

    Directory of Open Access Journals (Sweden)

    Wei Wei

    Full Text Available The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.

  10. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China

    Science.gov (United States)

    Wei, Wei; Yu, Yun; Chen, Liding

    2015-01-01

    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes. PMID:26207757

  11. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China.

    Science.gov (United States)

    Wei, Wei; Yu, Yun; Chen, Liding

    2015-01-01

    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.

  12. Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland

    OpenAIRE

    Schimel, JP; Wetterstedt, JAM; Holden, PA; Trumbore, SE

    2011-01-01

    We measured the 14 C and 13 C signatures of CO 2 respired from surface and deep soils released through multiple dry/rewetting cycles in laboratory incubations. The C respired from surface soils included components fixed before and after the 1960s. However, that respired from deep soils was derived from organic matter with a mean turnover time estimated in the range of 650-850 years. This reinforces previous research suggesting that a substantial amount of deep soil C is chemically labile b...

  13. The soil-water characteristic curve at low soil-water contents: Relationships with soil specific surface area and texture

    DEFF Research Database (Denmark)

    Resurreccion, A C; Møldrup, Per; Tuller, M

    2011-01-01

    dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were...

  14. Nocturnal soil CO2 uptake and its relationship to sub-surface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland

    Science.gov (United States)

    Despite their prevalence, little attention has been given to quantifying aridland soil and ecosystem carbon fluxes over prolonged, annually occurring dry periods. We measured surface soil respiration (Rsoil), volumetric soil moisture and temperature in inter- and under-canopy soils, sub-surface soi...

  15. Differences on nitrogen availability in a soil amended with fresh, composted and thermally-dried sewage sludge.

    Science.gov (United States)

    Tarrasón, D; Ojeda, G; Ortiz, O; Alcañiz, J M

    2008-01-01

    Anaerobically-digested sludge called fresh sludge (F), composted sludge (C) and thermally-drying sludge (T), all from the same batch, were applied to the surface of a calcareous Udic Calciustept with loamy texture. Dosage equivalent was 10 t ha(-1) of dry matter. The concentration of mineral nitrogen (ammonium and nitrate) in the soil was measured in order to estimate the effects of the post-treatments to which the different kinds of sewage sludge are subjected in relation to the availability of N in the surface layer of the soil. The most significant differences in NH(4)-N and NO(3)-N concentrations due to the transformation of the organic matter were observed during the first three weeks following soil amendment. Thermally-dried and composted sludge initially displayed higher concentrations of ammonium and nitrate in soil. Five months after the amendment, soil applied with fresh sludge showed the highest concentrations of NH(4)-N and NO(3)-N (6.1 and 36.6 mg kg(-1), respectively). It is clear that the processes of composting and thermal-drying influence the bioavailability of nitrogen from the different types of sewage sludge.

  16. Surface fixation of dried blood by glutaraldehyde and peracetic acid.

    Science.gov (United States)

    Kampf, G; Bloss, R; Martiny, H

    2004-06-01

    The difficulties of successful prion inactivation by chemical agents has led to changes in recommendations regarding the reprocessing of instruments including flexible endoscopes. One of the changes is the preference for peracetic acid instead of glutaraldehyde in order to avoid fixation of organic material, but the surface fixation by various active agents has not been fully investigated. We used a standardized amount of dried blood soil on metal carriers (on average 22 mg). One part of the carriers was exposed to different disinfectants (four based on peracetic acid, three based on glutaraldehyde, two based on quaternary ammonium compounds (QAC), one based on QAC and amines, one based on phenols and one cleaning agent) and air dried. The difference compared with the non-exposed soiled carrier was taken as the measure of blood removal by exposure to the disinfectants. In addition the other part of the carriers was exposed to a cleaning agent and air dried. The cleaning agent itself was capable of removing more than 99% of the dried blood and served as a control for non-fixation. The rate of fixation of dried blood was calculated as the ratio of the weight of residual soil on 'soiled, disinfected and cleaned' carriers and on 'soiled and disinfected' carriers. All experiments were repeated eight times. Blood removal varied between 90.3% +/- 1.5% (phenol-based disinfectant) and peracetic acid. No other preparations showed a potential for blood fixation (peracetic acid, and support the evidence that effective cleaning should precede the chemical disinfection. Copyright 2004 The Hospital Infection Society

  17. Global observation-based diagnosis of soil moisture control on land surface flux partition

    Science.gov (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  18. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    Science.gov (United States)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  19. Do we know how plants sense a drying soil?

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2004-01-01

    Full Text Available The reduction of crop growth and yield in dry areas is largely due to stomatal closure in response to dry soil, which decreases photosynthesis. However, the mechanism that causes stomatal closure in a drying soil is a controversial issue. Experienced and respected plant physiologists around the world have different views about the primary sensor of soil water shortage in plants. The goal of this review is to present a chronological synthesis about the evidence of the possible candidates for the mechanism by which plants sense a drying soil. Hydraulic signals in the leaves as the mechanism that causes stomatal closure dominated the view on how plants sense a drying soil during the 70?s and the early 80?s. In the middle 80?s, studies suggested that stomatal conductance is better correlated with soil and root water status than with leaf water status. Thus, chemical signals produced in the roots dominated the view on how plants sense a drying soil during the late 80?s and early 90?s. During the second half of the 90?s, however, studies provided evidence that hydraulic signals in the leaves are still better candidates for the mechanism by which plants sense a drying soil. After more than 60 years of studies in plant-water relations, the question raised in the title still has no unanimous answer. This controversial issue is a good research rationale for the current generation of plant physiologists.

  20. Dynamics of soil water evaporation during soil drying: laboratory experiment and numerical analysis.

    Science.gov (United States)

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3.

  1. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  2. Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    Directory of Open Access Journals (Sweden)

    M.I. Choudhary

    1998-06-01

    Full Text Available Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4 soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions.

  3. Measurements of dry-deposition rates on various earth surfaces by 212Pb

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.

    2004-01-01

    Dry deposition rates of 212 Pb on a coniferous forest (Japanese cedar) and a broad-leaf forest (Pasania edulis) have been measured. Those on various kinds of grass fields, various states on artificial surface such as water, paper, and standing paper have been also measured. The dry deposition rates depend on the characteristics of depositing particles and the conditions of deposited surfaces. Dry deposition rates on the forest of Japanese cedar are highest because of the complex and adhesive surface of the leaves. Those on various grass fields are roughly depend on the logarithm of the height of their grasses. The total deposition rates of 7 Be do not depend on the densities or heights of the grasses. 7 Be may be not kept on their leaves or surface soil for a long time. The dry deposition rates of on artificial surface, e.g. paper and water surfaces make clear the mechanism on dry deposition, and suggest that more chances of collision and more adhesive of the surface are important for the dry deposition. About 90% of all deposition on the artificial paper grass was attached on the standing paper. On water surface, 60% of the rate of paper grass was attached, but only about 20% were attached on a dry paper plate. The aerosol particles are deposited by collision with the surface, therefore the deposition velocity depends on the chance of collision and the characteristics of the surface. Therefore the dry deposition rates on forests are larger and those of coniferous forest are largest. (author)

  4. Design of dry sand soil stratified sampler

    Science.gov (United States)

    Li, Erkang; Chen, Wei; Feng, Xiao; Liao, Hongbo; Liang, Xiaodong

    2018-04-01

    This paper presents a design of a stratified sampler for dry sand soil, which can be used for stratified sampling of loose sand under certain conditions. Our group designed the mechanical structure of a portable, single - person, dry sandy soil stratified sampler. We have set up a mathematical model for the sampler. It lays the foundation for further development of design research.

  5. Predicting the water-drop energy required to breakdown dry soil aggregates

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.; Bazzoffi, P.

    1995-04-01

    The raindrop energy required to breakdown dry soil aggregates is an index of structural stability which has been found very useful in modelling soil erosion process and in evaluating the suitability of tillage implements for different soils. The aim of this research was to develop and validate a model for predicting the specific water-drop energy required to breakdown aggregates (D) as influenced by soil properties. Air-dry aggregates (2-4 mm in diameter), collected from 15 surface (0-20 cm) soils in north central Italy were used for this study. The actual and natural log-transformed D values were regressed on the soil properties. Clay content, wilting point moisture content (WP) and percent water-stable aggregates (WSA) > 2.0 mm were good predictors of D. Empirical models developed from either clay content or WP predicted D in 70% of the test soils whereas the model developed from WSA > 2.0 mm predicted D in 90% of the test soils. The correlation coefficients (r) between measured and predicted D were 0.961, 0.963 and 0.997 respectively, for models developed from clay, WP and WSA > 2.0 mm. The validity of these models need to be tested on other soils with a wider variation in properties than those used to developed the models. (author). 42 refs, 5 tabs

  6. Control of Eolian soil erosion from waste site surface barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1994-11-01

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results

  7. Dynamics of Soil Water Evaporation during Soil Drying: Laboratory Experiment and Numerical Analysis

    Science.gov (United States)

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. PMID:24489492

  8. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-12-01

    This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM) model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF) over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%), this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage) induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased) climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.

  9. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    Science.gov (United States)

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  10. Modelling Water Flow through Paddy Soils under Alternate Wetting and Drying Irrigation Practice

    Science.gov (United States)

    Shekhar, S.; Mailapalli, D. R.; Das, B. S.; Raghuwanshi, N. S.

    2017-12-01

    Alternate wetting and drying (AWD) irrigation practice in paddy cultivation requires an optimum soil moisture stress (OSMS) level at which irrigation water savings can be maximized without compromising the yield reduction. Determining OSMS experimentally is challenging and only possible with appropriate modeling tools. In this study, field experiments on paddy were conducted in thirty non-weighing type lysimeters during dry seasons of 2016 and 2017. Ten plots were irrigated using continuous flooding (CF) and the rest were irrigated with AWD practice at 40mb and 75mb soil moisture stress levels. Depth of ponding and soil suction at 10, 40 and 70 cm from the soil surface were measured daily from all lysimeter plots. The measured field data were used in calibration and validation of Hydrus-1D model and simulated the water flow for both AWD and CF plots. The Hydrus-1D is being used to estimate OSMS for AWD practice and compared the seasonal irrigation water input and deep percolation losses with CF practice.

  11. Dry soil diurnal quasi-periodic oscillations in soil 222Rn concentrations

    International Nuclear Information System (INIS)

    Tommasone Pascale, F.; De Francesco, S.; Carbone, P.; Cuoco, E.; Tedesco, D.

    2014-01-01

    222 Rn concentrations have been monitored during the dry season in August 2009 and August 2010, in a reworked alluvial-pyroclastic soil of the Pietramelara Plain, in Southern Italy, with the aim of determining the role of atmospheric factors in producing the quasi-periodic oscillations in soil 222 Rn concentrations reported in the literature. In this study we present the results of a detailed analysis and matching of soil 222 Rn concentrations, meteorological and solar parameters where the observed oscillations feature a characteristic behavior with second order build-up and depletion limbs, separated by a daily maximum and minimum. All these features are clearly shown to be tied to sunrise and sunset timings and environmental radiative flux regimes. Furthermore, a significant, and previously unreported, second order correlation (r 2  = 0.73) between daily maximum hourly global radiation and the daily range of soil 222 Rn concentrations has been detected, allowing estimates of the amplitude of these oscillations to be made from estimated or measured solar radiation data. The correlation has been found to be valid even in the presence of persistent patchy daytime cloudiness. In this case a daytime prolongation of the night-time build up stage and an attenuation or even suppression of daytime depletion is observed (a previously unreported effect). Neither soil cracking, nor precipitation, both suggested in some studies as causative factors for these oscillations, during the dry season appear to be necessary in explaining their occurrence. We also report the results of an artificial shading experiment, conducted in August 2009, that further support this conclusion. As soil 222 Rn concentrations during the dry season show a characteristic daily cycle, radon monitoring in soils under these conditions necessarily has to be gauged to the timings of the daily maximum and minimum, as well as to the eventual occurrence of cloudiness and to its related effects, in order to

  12. Role of Biotic and Abiotic Processes on Soil CO2 Dynamics in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Risk, D. A.; Macintyre, C. M.; Lee, C.; Cary, C.; Shanhun, F.; Almond, P. C.

    2016-12-01

    In the harsh conditions of the Antarctic Dry Valleys, microbial activity has been recorded via measurements of soil carbon dioxide (CO2) concentration and surface efflux. However, high temporal resolution studies in the Dry Valleys have also shown that abiotic solubility-driven processes can strongly influence (and perhaps even dominate) the CO2 dynamics in these low flux environments and suggests that biological activity may be lower than previously thought. In this study, we aim to improve our understanding of CO2 dynamics (biotic and abiotic) in Antarctic Dry Valley soils using long-term automated measurements of soil CO2 surface flux and soil profile concentration at several sites, often at sub-diel frequency. We hypothesize that soil CO2 variations are driven primarily by environmental factors affecting CO2 solubility in soil solution, mainly temperature, and that these processes may even overprint biologic production in representative Dry Valley soils. Monitoring of all sites revealed only one likely biotic CO2 production event, lasting three weeks during the Austral summer and reaching fluxes of 0.4 µmol/m2/s. Under more typical low flux conditions (sampling campaigns. Subsurface CO2 monitoring and a lab-controlled Antarctic soil simulation experiment confirmed that abiotic processes are capable of dominating soil CO2 variability. Diel temperature cycles crossing the freezing boundary revealed a dual abiotic cycle of solubility cycling and gas exclusion from ice formation observed only by high temporal frequency measurements (30 min). This work demonstrates a need for a numerical model to partition the dynamic abiotic processes underlying any biotic CO2 production in order to understand potential climate-change induced increases in microbial productivity in terrestrial Antarctica.

  13. Distribution of technetium-99 in surface soils

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2000-01-01

    Technetium-99 ( 99 Tc) is an important fission product which has been widely distributed in the environment as a result of fallout from nuclear weapons testing. In order to improve our understanding of the behavior of 99 Tc in the environment, it is essential that we obtain more reliable information on the levels, distribution and fate of 99 Tc in the environment. In this study, the concentration of global fallout 99 Tc, in several surface soil samples (0 - 20 cm) collected in Japan, were determined by ICP-MS (inductively coupled plasma mass spectroscopy). The range of 99 Tc in rice paddy field, upland field and other soils determined in this study were 0.006 - 0.11, 0.004 - 0.008 and 0.007 - 0.02 Bq kg -1 dry, respectively. 137 Cs was used as a comparative indicator for the source of 99 Tc, because the fission yields from 235 U and 239 Pu were about the same (ca. 6%) for the two isotopes, and the behavior and distribution of 137 Cs in the environment is reasonably well understood. The 137 Cs contents in rice paddy field, upland field and other soils range between 1.7 - 28, 1.4 - 9.2 and -1 dry, respectively. The activity ratios of 99 Tc/ 137 Cs in all soil samples were (0.6 - 5.9) x 10 -3 . Most of the measured ratios were one order of magnitude higher than the theoretical one obtained from fission. However, this ratio in soil, presumably depends on not only both the characteristic of radionuclides and the soil, but also on their contents after deposition to the earth's surface. (author)

  14. Design of dry barriers for containment of contaminants in unsaturated soils

    International Nuclear Information System (INIS)

    Morris, C.E.; Thomson, B.M.; Stormont, J.C.

    1997-01-01

    A dry barrier is a region of very dry conditions in unsaturated soil that prevents vertical migration of water created by circulating dry air through the formation. Dry soil creates a barrier to vertical water movement by decreasing the soil's hydraulic conductivity, a concept also used in capillary barriers. A dry barrier may be a viable method for providing containment of a contaminant plume in a setting with a thick unsaturated zone and dry climate. The principal factors which determine the feasibility of a dry barrier include: (1) an and environment, (2) thick vadose zone, and (3) the ability to circulate air through the vadose zone. This study investigated the technical and economic considerations associated with creating a dry barrier to provide containment of a hypothetical 1 ha aqueous contaminant plume. The concept appears to be competitive with other interim containment methods such as ground freezing

  15. Contrasted response of colloidal, organic and inorganic dissolved phosphorus forms during rewetting of dried riparian soils

    Science.gov (United States)

    Gu, Sen; Gruau, Gérard; Malique, François; Dupas, Rémi; Gascuel-Odoux, Chantal; Petitjean, Patrice; Bouhnik-Le Coz, Martine

    2017-04-01

    Riparian vegetated buffer strip (RVBS) are currently used to protect surface waters from phosphorus (P) emissions because of their ability to retain P-enriched soil particles. However, this protection role may be counterbalanced by the development in these zones of conditions able to trigger the release of highly mobile dissolved or colloidal P forms. Rewetting after drying is one of these conditions. So far, the potential sources of P mobilized during rewetting after drying are not clearly identified, nor are clearly identified the chemical nature of the released dissolved P species, or the role of the soil P speciation on these forms. In this study, two riparian soils (G and K) showing contrasting soil P speciation (65% of inorganic P species in soil G, as against 70% of organic P) were submitted to three successive dry/wet cycles in the laboratory. Conventional colorimetric determination of P concentrations combined with ultrafiltration, and measurements of iron (Fe) and aluminum (Al) and dissolved organic carbon (DOC) contents using ICP-MS and TOC analyzers, respectively, were used to study the response of the different P forms to rewetting after drying and also their release kinetics during soil leaching. For both soils, marked P release peaks were observed at the beginning of each wet cycles, with the organic-rich K soils giving, however, larger peaks than the inorganic one (G soil). For both soils also, concentrations in molybdate reactive P (MRP) remained quite constant throughout each leaching episode, contrary to the molybdate unreactive P (MUP) concentrations which were high immediately after rewetting and then decreased rapidly during leaching. A speciation change was observed from the beginning to the end of all leaching cycles. Colloidal P was found to be a major fraction of the total P immediately after rewetting (up to 50-70%) and then decreased to the end of each wet cycle where most of the eluted P was true dissolved inorganic P. Colloidal

  16. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  17. Pysical Properties of Soil with Addition of Sewage Dried with Heated Edible Oil

    OpenAIRE

    大坪, 政美; 中司, 敬; 中園, 修三; 中園, 英司; 徳留, 斉将

    2000-01-01

    The present study investigates the water holding capacity, density, permeability, and swelling properties of the soil samples mixed with the sewage that was dried with heated edible oil. For comparison similar experiments were conducted for the soil samples mixed with sun-dried sewage and sewage compost. The water holding capacity was higher for the soil samples with oil-dried and sun-dried sewage addition than for those with sewage-compost addition. For statically compacted soil samples, wit...

  18. Bioindicator demonstrates high persistence of sulfentrazone in dry soil

    Directory of Open Access Journals (Sweden)

    Renato Coradello Lourenço

    2015-09-01

    Full Text Available In sugarcane crop areas, the application of preemergence herbicides with long residual effect in the soil has been frequently necessary. The herbicide persistence in the soil must be high especially because of applications during the dry season of the year, after sugarcane harvest. This study aimed at estimating the sulfentrazone persistence and dissipation in dry soil using bioindicator. Five experiments were carried out, divided into two phases. In the first phase, three dose-response curves were adjusted to select the best bioindicator to be adopted in the second phase. Niger was adopted due to its lower sensibility to sulfentrazone. In the second phase, a new dose-response curve was carried out, with six doses of sulfentrazone, in order to standardize the bioindicator sensibility to sulfentrazone. At the end, another experiment with six periods of sulfentrazone persistence in dry clay soil was developed. Persistence periods were: 182, 154, 125, 98 and 30 days. The bioindicator was seeded at the application day in treated plots and control. In this experiment, the sulfentrazone dose applied was 800 g ha-1. Niger was considered a good species to estimate the sulfentrazone persistence in dry soil. The sulfentrazone phytotoxic activity was identified up to 182 days after application, and its average dissipation rate was 2.15 g ha-1 day-1, with half-life higher than 182 days.

  19. Drying shrinkage problems in high PI subgrade soils.

    Science.gov (United States)

    2014-01-01

    The main objective of this study was to investigate the longitudinal cracking in pavements due to drying : shrinkage of high PI subgrade soils. The study involved laboartory soil testing and modeling. The : shrinkage cracks usually occur within the v...

  20. Tunneling behavior of the formosan subterranean termite (isoptera: rhinotermitadae) in dry soil

    Science.gov (United States)

    This study examines the effect of dry soil on tunnel construction by the Formosan subterranean termite, Cptotermes formosanus. Termites did not construct tunnels in dry soil in any of the treatments. Termites only constructed tunnels in moist areas in treatments where the soil was partially moistene...

  1. Effect of drying on the desorption of diuron and terbuthylazine from natural soils

    Energy Technology Data Exchange (ETDEWEB)

    Lennartz, Bernd [Institute for Land Use, Rostock University, Justus-von-Liebig-Weg 6, D-18051 Rostock (Germany)]. E-mail: bernd.lennartz@uni-rostock.de; Louchart, Xavier [Laboratory on Interactions between Soils, Agrosystems and Hydrosystems (LISAH), National Institute for Agricultural Research (INRA), 2 place Viala, 34060 Montpellier Cedex 1 (France)

    2007-03-15

    This work was initiated to study the effects of climate induced soil water status variations which can reach extreme values under natural conditions on the sorption process of hydrophobic organic compounds. Based on the classical slurry batch methodology an approach is developed that allows the fast and careful complete drying of soil suspensions (microwave technique). Classical adsorption experiments were followed by three desorption steps with and without drying cycles. Drying and re-wetting enhanced the sorption-desorption hysteresis and Freundlich adsorption coefficients increased from 5.9 to 16 and 5.2 to 21 over three drying cycles for diuron and terbuthylazine respectively. Assuming the validity of a dual stage adsorption process, model evaluation suggests that drying is as a shrinking-like process leading to conformational changes of the dominant sorbent (soil organic matter) which restrict the intra-micro-particle diffusion. Rewetting only leads to a partial recovery of the diffusional pore space. - Drying of soil samples increased the binding of herbicidal compounds which is interpreted as a reduction of diffusional mass transfer into and out of the soil organic matter.

  2. Effect of drying on the desorption of diuron and terbuthylazine from natural soils

    International Nuclear Information System (INIS)

    Lennartz, Bernd; Louchart, Xavier

    2007-01-01

    This work was initiated to study the effects of climate induced soil water status variations which can reach extreme values under natural conditions on the sorption process of hydrophobic organic compounds. Based on the classical slurry batch methodology an approach is developed that allows the fast and careful complete drying of soil suspensions (microwave technique). Classical adsorption experiments were followed by three desorption steps with and without drying cycles. Drying and re-wetting enhanced the sorption-desorption hysteresis and Freundlich adsorption coefficients increased from 5.9 to 16 and 5.2 to 21 over three drying cycles for diuron and terbuthylazine respectively. Assuming the validity of a dual stage adsorption process, model evaluation suggests that drying is as a shrinking-like process leading to conformational changes of the dominant sorbent (soil organic matter) which restrict the intra-micro-particle diffusion. Rewetting only leads to a partial recovery of the diffusional pore space. - Drying of soil samples increased the binding of herbicidal compounds which is interpreted as a reduction of diffusional mass transfer into and out of the soil organic matter

  3. Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Jensen, Christian Richardt; Liu, Fulai

    2017-01-01

    signaling that regulates stomatal aperture. PRI induced soil DRW cycles and more soil water dynamics in the root zone enhance soil nutrient mineralization process and thus increase the bioavailability of soil nutrients, resulting in improved nitrogen (N) and phosphorus (P) uptake, in which soil microbial...... processes play a key role. Studies investigating how soil DRW cycles and water dynamics under PRI on nutrient transport in soil solution, soil microbe mediated P transformation, interactions between phytohormones and nutrient uptake, root morphological and architectural traits for nutrient acquisition......Abstract Repeated soil drying and rewetting (DRW) cycles occur in rainfed and irrigated agriculture. The intensity and frequency of DRW cycles regulate both microbial physiology and soil physical processes, hereby affecting the mineralization and immobilization of soil nutrients...

  4. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    Science.gov (United States)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  5. Effects of near surface soil moisture profiles during evaporation on far-field ground-penetrating radar data: A numerical study

    KAUST Repository

    Moghadas, Davood

    2013-01-01

    We theoretically investigated the effect of vapor flow on the drying front that develops in soils when water evaporates from the soil surface and on GPR data. The results suggest the integration of the full-wave GPR model with a coupled water, vapor, and heat flow model to accurately estimate the soil hydraulic properties. We investigated the Effects of a drying front that emerges below an evaporating soil surface on the far-field ground-penetrating radar (GPR) data. First, we performed an analysis of the width of the drying front in soils with 12 different textures by using an analytical model. Then, we numerically simulated vertical soil moisture profiles that develop during evaporation for the soil textures. We performed the simulations using a Richards flow model that considers only liquid water flow and a model that considers coupled water, vapor, and heat flows. The GPR signals were then generated from the simulated soil water content profiles taking into account the frequency dependency of apparent electrical conductivity and dielectric permittivity. The analytical approach indicated that the width of the drying front at the end of Stage I of the evaporation was larger in silty soils than in other soil textures and smaller in sandy soils. We also demonstrated that the analytical estimate of the width of the drying front can be considered as a proxy for the impact that a drying front could have on far-field GPR data. The numerical simulations led to the conclusion that vapor transport in soil resulted in S-shaped soil moisture profiles, which clearly influenced the GPR data. As a result, vapor flow needs to be considered when GPR data are interpreted in a coupled inversion approach. Moreover, the impact of vapor flow on the GPR data was larger for silty than for sandy soils. These Effects on the GPR data provide promising perspectives regarding the use of radars for evaporation monitoring. © Soil Science Society of America 5585 Guilford Rd., Madison, WI

  6. Dry Eye Management: Targeting the Ocular Surface Microenvironment

    Science.gov (United States)

    Zhang, Xiaobo; Jeyalatha M, Vimalin; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo

    2017-01-01

    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment. PMID:28661456

  7. Dry Eye Management: Targeting the Ocular Surface Microenvironment.

    Science.gov (United States)

    Zhang, Xiaobo; M, Vimalin Jeyalatha; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo; Li, Wei

    2017-06-29

    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment.

  8. Soil sample moisture content as a function of time during oven drying for gamma-ray spectroscopic measurements

    International Nuclear Information System (INIS)

    Benke, R.R.; Kearfott, K.J.

    1999-01-01

    In routine gamma-ray spectroscopic analysis of collected soil samples, procedure often calls to remove soil moisture by oven drying overnight at a temperature of 100 deg. C . Oven drying not only minimizes the gamma-ray self-attenuation of soil samples due to the absence of water during the gamma-ray spectroscopic analysis, but also allows for a straightforward calculation of the specific activity of radionuclides in soil, historically based on the sample dry weight. Because radon exhalation is strongly dependent on moisture , knowledge of the oven-drying time dependence of the soil moisture content, combined with radon exhalation measurements during oven drying and at room temperature for varying soil moisture contents, would allow conclusions to be made on how the oven-drying radon exhalation rate depends on soil moisture content. Determinations of the oven-drying radon exhalation from soil samples allow corrections to be made for the immediate laboratory gamma-ray spectroscopy of radionuclides in the natural uranium decay chain. This paper presents the results of soil moisture content measurements during oven drying and suggests useful empirical fits to the moisture data

  9. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-06-01

    The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  10. Spray washing, absorbent cornstarch powder, and dry time to reduce bacterial numbers on soiled transport cage flooring

    Science.gov (United States)

    Broiler transport cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Allowing feces to dry is an effective but slow and logistically impractical means to kill Campylobacter in soiled transport cages. ...

  11. Soil water retention curves of remoulded clay on drying and wetting paths

    International Nuclear Information System (INIS)

    Zhang Xiwei; Zhang Jian

    2010-01-01

    The present research focuses on the laboratory measurement of the Soil Water Retention Curve (SWRC), that expresses the relationship between water content (gravimetric or volumetric) or degree of saturation and soil suction. The SWRC plays an important role in an unsaturated soil mechanics framework and is required for the numerical modelling of any process of flow and transport in unsaturated soil problems, already as a part of constitutive model of unsaturated soil. Six remoulded London Clay samples were performed SWRC testing on the drying and wetting path, meanwhile measurement the volume change. The effect of initial water content and various drying/wetting paths were considered in the tests. The results of SWRC show that hysteretic characteristic in boundary drying/wetting curve, the water holding capacity was increased due to the increase of the initial water content. The shape of the SWRC strongly depended on the volume change. (authors)

  12. Negative soil moisture-precipitation feedback in dry and wet regions.

    Science.gov (United States)

    Yang, Lingbin; Sun, Guoqing; Zhi, Lu; Zhao, Jianjun

    2018-03-05

    Soil moisture-precipitation (SM-P) feedback significantly influences the terrestrial water and energy cycles. However, the sign of the feedback and the associated physical mechanism have been debated, leaving a research gap regarding global water and climate changes. Based on Koster's framework, we estimate SM-P feedback using satellite remote sensing and ground observation data sets. Methodologically, the sign of the feedback is identified by the correlation between monthly soil moisture and next-month precipitation. The physical mechanism is investigated through coupling precipitation and soil moisture (P-SM), soil moisture ad evapotranspiration (SM-E) and evapotranspiration and precipitation (E-P) correlations. Our results demonstrate that although positive SM-P feedback is predominant over land, non-negligible negative feedback occurs in dry and wet regions. Specifically, 43.75% and 40.16% of the negative feedback occurs in the arid and humid climate zones. Physically, negative SM-P feedback depends on the SM-E correlation. In dry regions, evapotranspiration change is soil moisture limited. In wet regions, evapotranspiration change is energy limited. We conclude that the complex SM-E correlation results in negative SM-P feedback in dry and wet regions, and the cause varies based on the environmental and climatic conditions.

  13. Associations between soil variables and vegetation structure and composition of Caribbean dry forests

    Science.gov (United States)

    Elvia M. Melendez-Ackerman; Julissa Rojas-Sandoval; Danny S. Fernandez; Grizelle Gonzalez; Hana Lopez; Jose Sustache; Mariely Morales; Miguel Garcia-Bermudez; Susan Aragon

    2016-01-01

    Soil–vegetation associations have been understudied in tropical dry forests when compared to the amount of extant research on this issue in tropical wet forests. Recent studies assert that vegetation in tropical dry forests is highly heterogeneous and that soil variability may be a contributing factor. In this study, we evaluated the relationship between soil variables...

  14. Conceptual Modeling of the Influence of Wetting and Drying Cycles on Soil Aggregation and Stabilization

    Science.gov (United States)

    Albalasmeh, A. A.; Ghezzehei, T.

    2011-12-01

    Soil structure directly determines important soil physical properties including porosity, hydraulic conductivity, water retention, and mechanical strength and indirectly influences most biological and chemical processes that occur in and around soil. The interaction of environmental and biotic agents influences the physical condition of the soil, particularly through soil structural evolution. Wetting and drying cycles are important environmental processes known to enhance aggregation, while clay minerals, sesquioxides and soil organic matter (SOM) are the soil solids most involved in soil structural development. We hypothesize that drying of capillary water transports suspended and/or dissolved cementing agents toward inter-particle contacts and eventually deposits part of the colloidal mass forming inter-particle bonds. Here, we will show the role of wetting and drying cycles on soil aggregation and stabilization and how these cycles transport and deposit organic cementing agents at the inter-particle contact. We will present results of the effect of particle size, number of wetting and drying cycles, viscosity, molecule length and concentration of suspended and/or dissolved cementing agents on soil aggregation and stabilization.

  15. Increases in soil water content after the mortality of non-native trees in oceanic island forest ecosystems are due to reduced water loss during dry periods.

    Science.gov (United States)

    Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki

    2016-03-01

    The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Soil macrofauna (invertebrates of Kazakhstanian Stipa lessingiana dry steppe

    Directory of Open Access Journals (Sweden)

    Bragina Tatyana М.

    2016-12-01

    Full Text Available Stipa lessingiana steppes used to be prevalent on the dry Trans-Ural denudation plains, particularly, on the Sub-Ural and the Turgay Plateau. But, most of them have been lost because they were plowed up during the Virgin Land campaign in the second part of 20th century. This paper presents a detailed study of the faunistic composition and the structure of soil-dwelling invertebrate communities (macrofauna of a temperate-dry bunch feather grass steppe in the Turgai Plateau (Northern-Turgai physical-geographical province of steppe Kazakhstan, Kostanay Oblast. The study site is located in the territory of the Naurzum State Nature Reserve, a part of the UNESCO World Heritage site “Saryarka Steppe and Lakes of Northern Kazakhstan”, where remnants of Virgin S. lessingiana steppes have been preserved to the present day. This region is the driest and most continental in climate of all the dry steppes of Kazakhstan. The total abundance and biomass of soil invertebrate communities in the investigated site were lower than in the northern and western steppe areas. Soil invertebrates are among the major components that determine the functioning of terrestrial natural ecosystems.

  17. Influence of temperature and soil drying on respiration of individual roots in citrus: integrating greenhouse observations into a predictive model for the field

    NARCIS (Netherlands)

    Bryla, D.R.; Bouma, T.J.; Hartmond, U.; Eissenstat, D.M.

    2001-01-01

    In citrus, the majority of fine roots are distributed near the soil surface - a region where conditions are frequently dry and temperatures fluctuate considerably. To develop a better understanding of the relationship between changes in soil conditions and a plant's below-ground respiratory costs,

  18. Role of wetting and drying cycles in formation and growth of soil aggregates

    Science.gov (United States)

    Ghezzehei, T. A.; Lopez, J. P.

    2009-12-01

    Soil structure directly determines important soil physical properties including porosity, hydraulic conductivity, water retention, and mechanical strength and indirectly influences most biological and chemical processes that occur in and around soil. In response to the various processes that occur within it, soil structure evolves continuously at multiple spatial and temporal scales. We hypothesize that the rhythm of the evolution is controlled by wetting and drying cycles. Here, we will present a mathematical description of the role of wetting and drying cycles in the formation and stabilization of soil aggregates with emphasis on two important roles of wetting and drying cycles: (1) transport and deposition of organic and inorganic cementing agents at the most effective locations, (2) chemical and physical alteration of cementing agents during desiccation and the resultant semi-permanent bonding (or bond hardening). Our results demonstrate that size and strength of aggregates are determined by particle size, degree of dryness, number of wetting-drying cycles, as well as concentration and solubility of dissolved and/or colloidal cementing agents. These results are in general agreement with experimental observations obtained from the literature.

  19. Effect of surface roughness on drying speed of drying lamellas in ...

    African Journals Online (AJOL)

    Lamellas, which are defined as top layers of multilayer parquet and favourable to wood veneer can be dried in jet ventilated automatic veneer roller dryer due to short drying period. The objective of this study is to determine the effect of surface roughness on the drying speed of the veneer roller dryer. Quercus spp.

  20. Soil structure restoration by wet/dry cycles assessed by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.F. [Univ. of Sao Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, Sao Paulo (Brazil)

    2005-07-01

    Some studies have shown that soil structures can be restored through the sequence of wetting and drying cycles. These cycles causes changes in the soil pore system, which is very important to agriculture, because directly affect plant growth by root penetration, retention and movement of water and gases. The aim of this study was to follow by gamma-ray computed tomography (CT) the effect of soil wetting/drying process on the soil structure repairing of samples collected in cylinders. A first-generation tomograph with an {sup 241}Am source and a 7.62 x 7.62 cm NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube was employed. Image analysis and tomographic unit profiles show that CT can provide an insight to sample structure restoration, which helps to have a better comprehension of soil physical hydraulic phenomena. (author)

  1. Soil structure restoration by wet/dry cycles assessed by computed tomography

    International Nuclear Information System (INIS)

    Pires, L.F.

    2005-01-01

    Some studies have shown that soil structures can be restored through the sequence of wetting and drying cycles. These cycles causes changes in the soil pore system, which is very important to agriculture, because directly affect plant growth by root penetration, retention and movement of water and gases. The aim of this study was to follow by gamma-ray computed tomography (CT) the effect of soil wetting/drying process on the soil structure repairing of samples collected in cylinders. A first-generation tomograph with an 241 Am source and a 7.62 x 7.62 cm NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube was employed. Image analysis and tomographic unit profiles show that CT can provide an insight to sample structure restoration, which helps to have a better comprehension of soil physical hydraulic phenomena. (author)

  2. Mercury fluxes from air/surface interfaces in paddy field and dry land

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jinshan [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China); Wang Dingyong, E-mail: dywang@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)] [Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716 (China); Liu Xiao; Zhang Yutong [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)

    2011-02-15

    Research highlights: {yields} It was found that agricultural fields are important local atmospheric Hg sources in the region. {yields} The Hg emissions from dry cornfield were higher than those from the flooded rice paddy, higher mercury emissions in the warm season than the cold season, and during daytime than at night. {yields} Mercury evasion is strongly related to solar radiation which is important in the emission of Hg at both sites. - Abstract: In order to provide insight into the characteristics of Hg exchange in soil/water-air surface from cropland (including paddy field and dry land), Hg fluxes were measured in Chengjiang. Mercury fluxes were measured using the dynamic flux chamber method, coupled with a Lumex (registered) multifunctional Hg analyzer RA-915{sup +} (Lumex Ltd., Russia). The Hg fluxes from paddy field and dry land were alternatively measured every 30 min. Data were collected for 24-48 h once per month for 5 months. Mercury fluxes in both fields were synchronously measured under the same conditions to compare Hg emissions between paddy field and dry land over diurnal and seasonal periods and find out what factors affect Hg emission on each surface. These results indicated that air Hg concentrations at the monitoring site was double the value observed at the global background sites in Europe and North America. The Hg release fluxes were 46.5 {+-} 22.8 ng m{sup -2} h{sup -1} in the warm season, 15.5 {+-} 18.8 ng m{sup -2} h{sup -1} in the cold season for dry land, and 23.8 {+-} 15.6 ng m{sup -2} h{sup -1} in the warm season, 6.3 {+-} 11.9 ng m{sup -2} h{sup -1} in the cold season for paddy field. Solar radiation is important in the emission of Hg over both sites. Hg exchange at the soil/air and water/air interfaces showed temporal variations. The amount of Hg emission from dry land was higher than that from the paddy field, and the emission in daytime was higher than that at night. Moreover, Hg emissions from land covered by crops, was lower

  3. Do drying and rewetting cycles modulate effects of sulfadiazine spiked manure in soil?

    Science.gov (United States)

    Jechalke, Sven; Radl, Viviane; Schloter, Michael; Heuer, Holger; Smalla, Kornelia

    2016-05-01

    Naturally occurring drying-rewetting events in soil have been shown to affect the dissipation of veterinary antibiotics entering soil by manure fertilization. However, knowledge of effects on the soil microbial community structure and resistome is scarce. Here, consequences of drying-rewetting cycles on effects of sulfadiazine (SDZ) in soil planted with Dactylis glomerata L. were investigated in microcosms. Manure containing SDZ or not was applied to the pregrown grass and incubated for 56 days in a climate chamber. Water was either added daily or reduced during two drying events of 7 days, each followed by a recovery phase. Total community DNA was analyzed to reveal the effects on the bacterial community structure and on the abundance of sul1, sul2, intI1 ,intI2, qacE+qacEΔ1, traN and korB genes relative to 16S rRNA genes. 16S rRNA gene-based DGGE fingerprints indicated that drying-rewetting cycles modulated the effects of SDZ on the bacterial community structure in the soil. Furthermore, the SDZ treatment increased the relative abundance of sulfonamide resistance and integrase genes compared to the control. However, this increase was not different between moisture regimes, indicating that drying-rewetting had only a negligible effect on the selection of the resistome by SDZ in the manured soil. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Soil aggregate formation: the role of wetting-drying cycles in the genesis of interparticle bonding

    Science.gov (United States)

    Albalasmeh, Ammar; Ghezzehei, Teamrat

    2013-04-01

    Soil structure influences many soil properties including aeration, water retention, drainage, bulk density, and resistance to erosion and indirectly influences most biological and chemical processes that occur in and around soil. In nature, soil is continually exposed to wetting (e.g., rainfall and diffusive flow) and drying (e.g., evaporation, diffusive flow and plant uptake). These natural wetting and drying cycles of soils are physical events that profoundly affect the development of soil structure, aggregate stability, carbon (C) flux and mineralization. We hypothesize that drying of capillary water transports suspended and/or dissolved cementing agents toward inter-particle contacts and eventually deposits part of the colloidal mass forming inter-particle bonds. Here, we will show the role of wetting and drying cycles on soil aggregation and stabilization and how these cycles transport and deposit organic cementing agents at the inter-particle contact. We found that aggregates of sand and silt particles can be formed by subjecting loose particles to wetting-drying cycles in the presence of dilute solutions of organic matter that mimic root or microbial exudates. Moreover, majority of the organic matter was deposited in the contact region between the sand particles, where the water accumulates during drying. The model predictions and aggregate stability measurements are supported by scanning electron micrographs that clearly show the process of aggregate formation.

  5. Effect of drying on the desorption of diuron and terbuthylazine from natural soils.

    Science.gov (United States)

    Lennartz, Bernd; Louchart, Xavier

    2007-03-01

    This work was initiated to study the effects of climate induced soil water status variations which can reach extreme values under natural conditions on the sorption process of hydrophobic organic compounds. Based on the classical slurry batch methodology an approach is developed that allows the fast and careful complete drying of soil suspensions (microwave technique). Classical adsorption experiments were followed by three desorption steps with and without drying cycles. Drying and re-wetting enhanced the sorption-desorption hysteresis and Freundlich adsorption coefficients increased from 5.9 to 16 and 5.2 to 21 over three drying cycles for diuron and terbuthylazine respectively. Assuming the validity of a dual stage adsorption process, model evaluation suggests that drying is as a shrinking-like process leading to conformational changes of the dominant sorbent (soil organic matter) which restrict the intra-micro-particle diffusion. Rewetting only leads to a partial recovery of the diffusional pore space.

  6. Effects of different management regimes on soil erosion and surface runoff in semi-arid to sub-humid rangelands

    NARCIS (Netherlands)

    Oudenhoven, van A.P.E.; Veerkamp, C.J.; Alkemade, Rob; Leemans, Rik

    2015-01-01

    Over one billion people's livelihoods depend on dry rangelands through livestock grazing and agriculture. Livestock grazing and other management activities can cause soil erosion, increase surface runoff and reduce water availability. We studied the effects of different management regimes on soil

  7. Resource Limitations on Soil Microbial Activity in an Antarctic Dry Valley

    DEFF Research Database (Denmark)

    Sparrow, Asley; Gregorich, Ed; Hopkins, David

    2011-01-01

    Although Antarctic dry valley soils function under some of the harshest environmental conditions on the planet, there is significant biological activity concentrated in small areas in the landscape. These productive areas serve as a source of C and N in organic matter redistributed...... to the surrounding biologically impoverished soils. We conducted a 3-yr replicated field experiment involving soil amendment with C and N in simple (glucose and NH4Cl) and complex (glycine and lacustrine detritus) forms to evaluate the resource limitations on soil microbial activity in an Antarctic dry valley....... The respiratory response for all substrates was slow, with a significant but weak response to NH4Cl, followed by a more widespread response to all substrates after 2 yr and in laboratory incubations conducted 3 yr after substrate addition. This response suggests that the soil microbial community is N limited and...

  8. Earth System Models Underestimate Soil Carbon Diagnostic Times in Dry and Cold Regions.

    Science.gov (United States)

    Jing, W.; Xia, J.; Zhou, X.; Huang, K.; Huang, Y.; Jian, Z.; Jiang, L.; Xu, X.; Liang, J.; Wang, Y. P.; Luo, Y.

    2017-12-01

    Soils contain the largest organic carbon (C) reservoir in the Earth's surface and strongly modulate the terrestrial feedback to climate change. Large uncertainty exists in current Earth system models (ESMs) in simulating soil organic C (SOC) dynamics, calling for a systematic diagnosis on their performance based on observations. Here, we built a global database of SOC diagnostic time (i.e.,turnover times; τsoil) measured at 320 sites with four different approaches. We found that the estimated τsoil was comparable among approaches of 14C dating () (median with 25 and 75 percentiles), 13C shifts due to vegetation change () and the ratio of stock over flux (), but was shortest from laboratory incubation studies (). The state-of-the-art ESMs underestimated the τsoil in most biomes, even by >10 and >5 folds in cold and dry regions, respectively. Moreover,we identified clear negative dependences of τsoil on temperature and precipitation in both of the observational and modeling results. Compared with Community Land Model (version 4), the incorporation of soil vertical profile (CLM4.5) could substantially extend the τsoil of SOC. Our findings suggest the accuracy of climate-C cycle feedback in current ESMs could be enhanced by an improved understanding of SOC dynamics under the limited hydrothermal conditions.

  9. Research on the Effects of Drying Temperature on Nitrogen Detection of Different Soil Types by Near Infrared Sensors.

    Science.gov (United States)

    Nie, Pengcheng; Dong, Tao; He, Yong; Xiao, Shupei

    2018-01-29

    Soil is a complicated system whose components and mechanisms are complex and difficult to be fully excavated and comprehended. Nitrogen is the key parameter supporting plant growth and development, and is the material basis of plant growth as well. An accurate grasp of soil nitrogen information is the premise of scientific fertilization in precision agriculture, where near infrared sensors are widely used for rapid detection of nutrients in soil. However, soil texture, soil moisture content and drying temperature all affect soil nitrogen detection using near infrared sensors. In order to investigate the effects of drying temperature on the nitrogen detection in black soil, loess and calcium soil, three kinds of soils were detected by near infrared sensors after 25 °C placement (ambient temperature), 50 °C drying (medium temperature), 80 °C drying (medium-high temperature) and 95 °C drying (high temperature). The successive projections algorithm based on multiple linear regression (SPA-MLR), partial least squares (PLS) and competitive adaptive reweighted squares (CARS) were used to model and analyze the spectral information of different soil types. The predictive abilities were assessed using the prediction correlation coefficients (R P ), the root mean squared error of prediction (RMSEP), and the residual predictive deviation (RPD). The results showed that the loess (R P = 0.9721, RMSEP = 0.067 g/kg, RPD = 4.34) and calcium soil (R P = 0.9588, RMSEP = 0.094 g/kg, RPD = 3.89) obtained the best prediction accuracy after 95 °C drying. The detection results of black soil (R P = 0.9486, RMSEP = 0.22 g/kg, RPD = 2.82) after 80 °C drying were the optimum. In conclusion, drying temperature does have an obvious influence on the detection of soil nitrogen by near infrared sensors, and the suitable drying temperature for different soil types was of great significance in enhancing the detection accuracy.

  10. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    Science.gov (United States)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  11. Modeling seasonal surface temperature variations in secondary tropical dry forests

    Science.gov (United States)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  12. Effects of near surface soil moisture profiles during evaporation on far-field ground-penetrating radar data: A numerical study

    KAUST Repository

    Moghadas, Davood; Jadoon, Khan; Vanderborght, Jan P.; Lambot, Sé bastien; Vereecken, Harry

    2013-01-01

    We theoretically investigated the effect of vapor flow on the drying front that develops in soils when water evaporates from the soil surface and on GPR data. The results suggest the integration of the full-wave GPR model with a coupled water, vapor

  13. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  14. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    DEFF Research Database (Denmark)

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.

    2013-01-01

    The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon...... and nitrogen in glucose and ammonium chloride, respectively, on the soil microbial community in a field experiment lasting three years in the Garwood Valley. In the control treatment, the total ELFA concentration was small by comparison with temperate soils, but very large when expressed relative to the soil...... organic carbon concentration, indicating efficient conversion of soil organic carbon into microbial biomass and rapid turnover of soil organic carbon. The ELFA concentrations increased significantly in response to carbon additions, indicating that carbon supply was the main constraint to microbial...

  15. Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves.

    Science.gov (United States)

    Chen, Lin; Dodd, Ian C; Davies, William J; Wilkinson, Sally

    2013-10-01

    The mechanism of age-induced decreased stomatal sensitivity to abscisic acid (ABA) and soil drying has been explored here. Older, fully expanded leaves partly lost their ability to close stomata in response to foliar ABA sprays, and soil drying which stimulated endogenous ABA production, while young fully expanded leaves closed their stomata more fully. However, ABA- or soil drying-induced stomatal closure of older leaves was partly restored by pretreating plants with 1-methylcyclopropene (1-MCP), which can antagonize ethylene receptors, or by inoculating soil around the roots with the rhizobacterium Variovorax paradoxus 5C-2, which contains 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase. ACC (the immediate biosynthetic precursor of ethylene) sprays revealed higher sensitivity of stomata to ethylene in older leaves than younger leaves, despite no differences in endogenous ACC concentrations or ethylene emission. Taken together, these results indicate that the relative insensitivity of stomatal closure to ABA and soil drying in older leaves is likely due to altered stomatal sensitivity to ethylene, rather than ethylene production. To our knowledge, this is the first study to mechanistically explain diminished stomatal responses to soil moisture deficit in older leaves, and the associated reduction in leaf water-use efficiency. © 2013 John Wiley & Sons Ltd.

  16. Experimental and theoretical analysis of cracking in drying soils

    OpenAIRE

    Lakshmikantha, M.R.

    2009-01-01

    The thesis focuses on the experimental and theoretical aspects of the process of cracking in drying soils. The results and conclusions were drawn from an exhaustive experimental campaign characterised by innovative multidisciplinary aspects incorporating Fracture Mechanics and classical Soil mechanics, aided with image analysis techniques. A detailed study of the previous works on the topic showed the absence of large scale fully monitored laboratory tests, while the existing studies were per...

  17. Aerosol Particles from Dried Salt-Lakes and Saline Soils Carried on Dust Storms over Beijing

    Directory of Open Access Journals (Sweden)

    Xingying Zhang

    2009-01-01

    Full Text Available Characteristics of individual particles from a super dust storm (DS on 20 March 2002, and those of non dust storm aero sols for Beijing (NDS and Duolun (DL (a desert area are determined using a variety of methods. In China, typically the source of aero sols in dust storms is thought to be deserts with alumino silicates being the main constituent particles; how ever, this does not reflect a complete analysis with our evidence indicating potential alternate dust sources along the storm's trans port path. Individual particle anal y sis of aero sols collected from a super dust storm on 20 March 2002 in Beijing shows that among all the 14 elements measured, only S and Cl have re mark able positive correlation. 82.5% of all particles measured contained both S and Cl, and the relative mass per cent age of S and Cl in these particles is much higher than the average of all particles. 62.0% of all particles contained S, Cl, and Na, in which the concentration of Na is 1.4 times higher than average. PMF (Positive Matrix Factorization anal y sis indicates that NaCl and Na2SO4 are major components of these particles with S and Cl showing significant positive correlation. More over, SO4 2- and Cl- also show significant positive correlation in bulk aero sol analysis. XPS (X-ray Pho to electron Spectros copy analysis of the surface of aero sols demonstrates that concentrations of Na and S on particles from the dust storm are higher than those from non-dust storm particles in Beijing and also for particles from. It is very likely that particles enriched with S, Cl, and Na is from the surface soils of dried salt-lakes and saline soils enriched with chloride and sulfate. This evidence demonstrates that be sides deserts, surface soils from dry salt-lakes and saline soils of arid and semi-arid areas are also sources of particulates in dust storms over Beijing.

  18. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation.

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D

    2012-10-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5-100 mg dry soil cm(-2)), temperature (20-40°C), and soil moisture content (2-40%) over periods up to 16d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D.

    2012-01-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5 to 100 mg dry soil/cm2), temperature (20 °C to 40 °C), and soil moisture content (2% to 40%) over periods up to 16 d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. PMID:22704210

  20. Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content

    DEFF Research Database (Denmark)

    Chen, Chong; Hu, Kelin; Arthur, Emmanuel

    2014-01-01

    Accurate information on the dry end (matric potential less than −1500 kPa) of soil water retention curves (SWRCs) is crucial for studying water vapor transport and evaporation in soils. The objectives of this study were to assess the potential of the Oswin model for describing the water adsorption...... curves of soils and to predict SWRCs at the dry end using the hygroscopic water content at a relative humidity of 50% (θRH50). The Oswin model yielded satisfactory fits to dry-end SWRCs for soils dominated by both 2:1 and 1:1 clay minerals. Compared with the Oswin model, the Campbell and Shiozawa model...... for soils dominated by 2:1 and 1:1 clays, respectively. Comparison of the Oswin model combined with the Kelvin equation, with water potential estimated from θRH50 (Oswin-KRH50), CS model combined with the Arthur equation (CS-A), and CS-K model, with water potential obtained from θRH50 (CS-KRH50) indicated...

  1. Extrapolating effects of conservation tillage on yield, soil moisture and dry spell mitigation using simulation modelling

    Science.gov (United States)

    Mkoga, Z. J.; Tumbo, S. D.; Kihupi, N.; Semoka, J.

    /ha) ( P < 0.05). Results also indicated a probability of 0.5 of getting higher yield in conservation than in conventional tillage practice. The conservation tillage treatment had the ability to even-out the acute and long intra-seasonal dry spells. For example a 36-days agricultural dry spell which occurred between 85th and 130th day after planting in the 1989/1990 season (in the CT treatment) was mitigated to zero days in the RR treatment by maintaining soil moisture above the critical point. Critical soil moisture for maize was measured at 0.55 of maximum soil moisture that can be depleted crop (0.55 D). It is concluded that conservation tillage practice where ripping and surface crop residues is used is much more effective in mitigating dry spells and increase productivity in a seasonal rainfall range of between 460 and 770 mm. It is recommended that farmers in the area adopt that type of conservation tillage because rainfall was in this range (460-770 mm) in 12 out of the past 24 years, indicating possibility of yield losses once in every 2 years.

  2. Non-isothermal processes during the drying of bare soil: Model Development and Validation

    Science.gov (United States)

    Sleep, B.; Talebi, A.; O'Carrol, D. M.

    2017-12-01

    Several coupled liquid water, water vapor, and heat transfer models have been developed either to study non-isothermal processes in the subsurface immediately below the ground surface, or to predict the evaporative flux from the ground surface. Equilibrium phase change between water and gas phases is typically assumed in these models. Recently, a few studies have questioned this assumption and proposed a coupled model considering kinetic phase change. However, none of these models were validated against real field data. In this study, a non-isothermal coupled model incorporating kinetic phase change was developed and examined against the measured data from a green roof test module. The model also incorporated a new surface boundary condition for water vapor transport at the ground surface. The measured field data included soil moisture content and temperature at different depths up to the depth of 15 cm below the ground surface. Lysimeter data were collected to determine the evaporation rates. Short and long wave radiation, wind velocity, air ambient temperature and relative humidity were measured and used as model input. Field data were collected for a period of three months during the warm seasons in south eastern Canada. The model was calibrated using one drying period and then several other drying periods were simulated. In general, the model underestimated the evaporation rates in the early stage of the drying period, however, the cumulative evaporation was in good agreement with the field data. The model predicted the trends in temperature and moisture content at the different depths in the green roof module. The simulated temperature was lower than the measured temperature for most of the simulation time with the maximum difference of 5 ° C. The simulated moisture content changes had the same temporal trend as the lysimeter data for the events simulated.

  3. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    Science.gov (United States)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  4. Dynamics of Soil Water Evaporation during Soil Drying in the Presence of a Shallow Water Table: Laboratory Experiment and Numerical Analysis

    Science.gov (United States)

    Han, J.; Lin, J.; Liu, P.; Li, W.

    2017-12-01

    Evaporation from a porous medium plays a key role in hydrological, agricultural, environmental, and engineering applications. Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. Although the magnitude of condensation zone was much smaller than that for the evaporation zone, the importance of the contribution of condensation zone to soil water dynamics should not be underestimated. Results from our experiment and numerical simulation show that this condensation process resulted in an unexpected and apparent water content increase in the middle of vadose zone profile.

  5. Morphological, sediment and soil chemical characteristics of dry tropical shallow reservoirs in the Southern Mexican Highlands

    Directory of Open Access Journals (Sweden)

    José Luis ARREDONDO-FIGUEROA

    2011-02-01

    Full Text Available The morphometry, sediment and soil chemical characteristics of eleven dry tropical shallow reservoirs situated in Southern Mexican Highlands were studied. The reservoirs are located at 1104 to 1183 meters above sea level in a sedimentary area. Seventeen morphometric and eight sediment and soil chemical parameters were measured. The results of the morphometric parameters showed that these reservoirs presented a soft and roughness bottom, with an ellipsoid form and a concave depression that permit the mix up of water and sediments, causing turbidity and broken thermal gradients; their slight slopes allowed the colonization of submerged macrophyte and halophyte plants and improved the incidence of sunlight on water surface increasing evaporation and primary productivity. Dry tropical shallow reservoirs have fluctuations in area, and volume according to the amount of rainfall, the effect of evaporation, temperature, lost volume for irrigation, and other causes. The sand-clay was the most important sediment texture and their values fluctuated with the flooded periods. The concentration-dilution cycle showed a direct relationship in the percentage of organic matter in the soil as well as with pH, soil nitrogen and phosphorus. El Tilzate, El Candelero and El Movil were related by the shore development and high concentrations of organic matter and nitrogen in the soil. Finally, we emphasize the importance of this study, in relation to possible future changes in morphometrical parameters as a consequence of human impact.

  6. Dry cooling systems with plastic surfaces

    International Nuclear Information System (INIS)

    Roma, Carlo; Leonelli, Vincenzo

    1975-01-01

    Research and experiments made on dry cooling systems with plastic surfaces are described. The demonstration program planned in Italy for a 100Gcal/h dry cooling system is exposed, and an installation intended for a large 1300Mwe nuclear power station is described with reference to the assembly (exploitation and maintenance included). The performance and economic data relating to this installation are also exposed [fr

  7. Impacts of Soil Moisture on Typical Frontal Rainstorm in Yangtze River Basin

    Directory of Open Access Journals (Sweden)

    Jinzhong Min

    2016-03-01

    Full Text Available By using a coupled land surface-atmosphere model with initial conditions of varying resolution and ensembles of systematically changed soil moisture, convective-scale simulations of a typical frontal rainstorm in the Yangtze River Basin are collected to investigate: (1 effects of different datasets on the simulated frontal mesoscale convective systems (MCSs; (2 possible linkages between soil moisture, planetary boundary layer (PBL, MCSs and precipitation in this modeled rainstorm. Firstly, initial soil moisture differences can affect the PBL, MCSs and precipitation of this frontal rainstorm. Specially, for a 90 mm precipitation forecast, the Threat score (TS can increase 6.61% by using the Global Land Data Assimilation System (GLDAS soil moisture. Secondly, sensitivity experiment results show that the near-surface thermodynamic conditions are more sensitive to dry soil than wet due to the initial moist surface; atmosphere conditions have suppressed the relations between soil and atmosphere; and decreased precipitation can be found over both wet and dry surfaces. Generally, a positive feedback between soil moisture and the near-surface thermodynamic conditions is identified, while the relations between soil moisture and precipitation are quite complicated. This relationship shows a daytime mixing of warm surface soil over dry surfaces and a daytime evaporation of adequate moisture over wet surfaces. The large-scale forcing can affect these relations and finally cause decreased precipitation over both wet and dry surfaces.

  8. Surface biosolids application: effects on infiltration, erosion, and soil organic carbon in Chihuahuan Desert grasslands and shrublands.

    Science.gov (United States)

    Moffet, C A; Zartman, R E; Wester, D B; Sosebee, R E

    2005-01-01

    Land application of biosolids is a beneficial-use practice whose ecological effects depend in part on hydrological effects. Biosolids were surface-applied to square 0.5-m2 plots at four rates (0, 7, 34, and 90 dry Mg ha(-1)) on each of three soil-cover combinations in Chihuahuan Desert grassland and shrubland. Infiltration and erosion were measured during two seasons for three biosolids post-application ages. Infiltration was measured during eight periods of a 30-min simulated rain. Biosolids application affected infiltration rate, cumulative infiltration, and erosion. Infiltration increased with increasing biosolids application rate. Application of biosolids at 90 dry Mg ha(-1) increased steady-state infiltration rate by 1.9 to 7.9 cm h(-1). Most of the measured differences in runoff among biosolids application rates were too large to be the result of interception losses and/or increased hydraulic gradient due to increased roughness. Soil erosion was reduced by the application of biosolids; however, the extent of reduction in erosion depended on the initial erodibility of the site. Typically, the greatest marginal reductions in erosion were achieved at the lower biosolids application rates (7 and 34 dry Mg ha(-1)); the difference in erosion between 34 and 90 dry Mg ha(-1) biosolids application rates was not significant. Surface application of biosolids has important hydrological consequences on runoff and soil erosion in desert grasslands that depend on the rate of biosolids applied, and the site and biosolids characteristics.

  9. Physically plausible prescription of land surface model soil moisture

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  10. Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Ayres, Edward; Nkem, Johnson N; Wall, Diana H; Adams, Byron J; Barrett, J E; Broos, Emma J; Parsons, Andrew N; Powers, Laura E; Simmons, Breana L; Virginia, Ross A

    2008-12-01

    Antarctic ecosystems are often considered nearly pristine because levels of anthropogenic disturbance are extremely low there. Nevertheless, over recent decades there has been a rapid increase in the number of people, researchers and tourists, visiting Antarctica. We evaluated, over 10 years, the direct impact of foot traffic on the abundance of soil animals and soil properties in Taylor Valley within the McMurdo Dry Valleys region of Antarctica. We compared soils from minimally disturbed areas with soils from nearby paths that received intermediate and high levels of human foot traffic (i.e., up to approximately 80 passes per year). The nematodes Scottnema lindsayae and Eudorylaimus sp. were the most commonly found animal species, whereas rotifers and tardigrades were found only occasionally. On the highly trampled footpaths, abundance of S. lindsayae and Eudorylaimus sp. was up to 52 and 76% lower, respectively, than in untrampled areas. Moreover, reduction in S. lindsayae abundance was more pronounced after 10 years than 2 years and in the surface soil than in the deeper soil, presumably because of the longer period of disturbance and the greater level of physical disturbance experienced by the surface soil. The ratio of living to dead Eudorylaimus sp. also declined with increased trampling intensity, which is indicative of increased mortality or reduced fecundity. At one site there was evidence that high levels of trampling reduced soil CO(2) fluxes, which is related to total biological activity in the soil. Our results show that even low levels of human traffic can significantly affect soil biota in this ecosystem and may alter ecosystem processes, such as carbon cycling. Consequently, management and conservation plans for Antarctic soils should consider the high sensitivity of soil fauna to physical disturbance as human presence in this ecosystem increases.

  11. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    Science.gov (United States)

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  12. Can differences in root responses to soil drying and compaction explain differences in performance of trees growing on landfill sites?

    Science.gov (United States)

    Liang, Jiansheng; Zhang, Jianhua; Chan, Gilbert Y. S.; Wong, M. H.

    1999-07-01

    Two tropical woody species, Acacia confusa Merrill and Litsea glutinosa (Lour.) C.B. Robinson, were grown under controlled conditions in PVC pipes filled with John Innes No. 2 soil. To investigate root distribution, physiological characteristics and hydraulic conductivity, four soil treatments were imposed-well-watered and noncompacted (control), well-watered and compacted; unwatered and noncompacted, and unwatered and compacted. In L. glutinosa, rooting depth and root elongation were severely restricted when soil bulk density increased from around 1.12 to 1.62 g cm(-3), whereas soil compaction had little effect on these parameters in A. confusa. As soil drying progressed, root water potential and osmotic potential declined more slowly in L. glutinosa than in A. confusa. Both the soil drying and compaction treatments significantly stimulated the accumulation of root abscisic acid (ABA) in both species. Soil drying damaged the root cell membrane of A. confusa, but had little influence on the root cell membrane of L. glutinosa. Soil drying had a greater effect on root hydraulic conductivity (L(p)) in L. glutinosa than in A. confusa, whereas the effect of soil compaction on L(p) was less in L. glutinosa than in A. confusa. Soil drying enhanced the effects of soil compaction on root L(p). We conclude that soil drying and compaction have large species-specific effects on the distribution, growth and physiology of roots. The relationships of these root properties to the species' ability to tolerate unfavorable soil conditions were examined.

  13. Polychlorinated biphenyls in surface soil in urban and background areas of Mongolia

    International Nuclear Information System (INIS)

    Mamontova, Elena A.; Mamontov, Alexander A.; Tarasova, Eugenia N.; Kuzmin, Mikhail I.; Ganchimeg, Darmaa; Khomutova, Marina Yu.; Gombosuren, Odontuya; Ganjuurjav, Erdenebayasgalan

    2013-01-01

    Polychlorinated biphenyls (PCBs) were measured in soil in some industrial towns (Ulaanbaatar, Suhbaatar, Erdenet, Darhan, Tsetserleg, Hovd, Ulaangom, Altay, Bayanhongor, Arvayheer, Saynshand, Choybalsan) and in background and rural areas of Mongolia. The average sum of all investigated PCB congeners in soil of Mongolia comes to 7.4 ng/g dry weight (DW) and varies from 0.53 ng/g DW till 114 ng/g DW. PCB levels in soil from towns are significantly higher than those in soil from background and rural areas. The PCB homological composition in soil sampled in highly-PCB-polluted sites is similar to the PCB homological pattern in Sovol and Aroclor 1254. Significant correlation between soil organic carbon and low chlorinated PCB both for towns and background sites was found. Significant differences in PCB means in soil in different natural zones were found. -- Highlights: •First study to measure PCBs in surface soil sampled throughout Mongolia. •The PCB patterns in polluted soil were similar to those in Sovol or Aroclor 1254. •Significant differences in PCB means in soil in different natural zones were found. -- Polychlorinated biphenyls were measured in soils throughout Mongolia

  14. Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    W. Korres

    2010-05-01

    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes that are affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable test site that are located within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm was measured in an approx. 50×50 m grid during 14 and 17 measurement campaigns (May 2007 to November 2008 in both test sites. To analyse the spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to link the patterns to related factors and processes. For the grassland test site, the analysis resulted in one significant spatial structure (first EOF, which explained 57.5% of the spatial variability connected to soil properties and topography. The statistical weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable test site, the analysis resulted in two significant spatial structures, the first EOF, which explained 38.4% of the spatial variability, and showed a highly significant correlation to soil properties, namely soil texture and soil stone content. The second EOF, which explained 28.3% of the spatial variability, is linked to differences in land management. The soil moisture in the arable test site varied more strongly during dry and wet periods at locations with low porosity. The method applied is capable of identifying the dominant parameters controlling spatio-temporal patterns of

  15. Soil water repellency in north-eastern Greece with adverse effects of drying on the persistence

    NARCIS (Netherlands)

    Ziogas, A.K.; Dekker, L.W.; Oostindie, K.; Ritsema, C.J.

    2005-01-01

    Many soils may be water repellent to some degree, challenging the common perception that soil water repellency is only an interesting aberration. When dry, water repellent soils resist or retard water infiltration into the soil matrix. Soil water repellency often leads to the development of unstable

  16. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water film...... thickness at a given soil-water matric potential ( 10, the estimated SA from the dry soil-water retention was in good agreement with the SA measured using ethylene glycol monoethyl ether (SA_EGME). A strong relationship between the ratio...

  17. Excessive Afforestation and Soil Drying on China's Loess Plateau

    Science.gov (United States)

    Zhang, Shuilei; Yang, Dawen; Yang, Yuting; Piao, Shilong; Yang, Hanbo; Lei, Huimin; Fu, Bojie

    2018-03-01

    Afforestation and deforestation as human disturbances to vegetation have profound impacts on ecohydrological processes influencing both water and carbon cycles and ecosystem sustainability. Since 1999, large-scale revegetation activities such as "Grain-to-Green Program" have been implemented across China's Loess Plateau. However, negative ecohydrological consequences, including streamflow decline and soil drying have emerged. Here we estimate the equilibrium vegetation cover over the Loess Plateau based on an ecohydrological model and assess the water balance under the equilibrium and actual vegetation cover over the past decade. Results show that the current vegetation cover (0.48 on average) has already exceeded the climate-defined equilibrium vegetation cover (0.43 on average) in many parts of the Loess Plateau, especially in the middle-to-east regions. This indicates a widespread overplanting, which is found to primarily responsible for soil drying in the area. Additionally, both the equilibrium vegetation cover and soil moisture tend to decrease under future (i.e., 2011-2050) climate scenarios due to declined atmospheric water supply (i.e., precipitation) and increased atmospheric water demand (i.e., potential evapotranspiration). Our findings suggest that further revegetation on the Loess Plateau should be applied with caution. To maintain a sustainable ecohydrological environment in the region, a revegetation threshold is urgently needed to guide future revegetation activities.

  18. Effect of Adding Sugarcane Bagasse and Filter Cake and Wetting and Drying Cycles on Pre-Compaction Stress of Soil

    Directory of Open Access Journals (Sweden)

    Z Nemati

    2018-03-01

    replications. A composite disturbed sample of topsoil (0–200 mm deep of a silty clay loam soil was collected from Isfahan province (32 31.530 N; 51 49.40E in center of Iran. The mean annual precipitation and temperature of the region are about 160 mm and 16 C, respectively. Sugarcane residues (bagasse and filter cake were obtained from the sugarcane fields in Ahvaz, Khuzestan province (Iran. The samples were air-dried and passed through a 2-mm sieve. Soil treated by bagasse and filter cake in different rates was poured and knocked lightly into cylinders with diameter and height of 25 and 8 cm, respectively. Large air-dry disturbed soil samples were prepared and some of them were exposed to five wetting and drying cycles. Finally, the soil surface was covered by a plastic sheet and was left overnight in the laboratory (for 24 hours to enable the moisture to equilibrate. The loading tests were performed the next day. The pre-compaction stress was determined by plate sinkage test (PST. The loading test for PST was performed using CBR apparatus. The compression for PST was continuous at the same constant displacement rate of the CBR (i.e. 1 mm min-1. Determination of the σpc was done using Casagrande’s graphical estimation procedure (Casagrande, 1936 in a program written in MatLab software. Results and Discussion The results showed that σpc was significantly decreased by adding residues to the soil at both water contents, and with/without wetting and drying process. For untreated treatments (control, the σpc decreased with increasing water content. Although σpc decreased with adding the residues to the soil, however, the effect of residue types and percentages and soil water content on σpc was not significant for the soil samples treated with residues. Conclusions In order to prevent re-compaction of the soil and improve its structure, it is suggested that traffic control system with permanent routes for the movement of machinery to be used in sugar cane plantations and

  19. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    Science.gov (United States)

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment. © 2015 John Wiley & Sons Ltd.

  20. Resistance of surface-dried virus to common disinfection procedures

    NARCIS (Netherlands)

    Terpstra, F. G.; van den Blink, A. E.; Bos, L. M.; Boots, A. G. C.; Brinkhuis, F. H. M.; Gijsen, E.; van Remmerden, Y.; Schuitemaker, H.; van 't Wout, A. B.

    2007-01-01

    It is believed that surface-dried viruses can remain infectious and may therefore pose a threat to public health. To help address this issue, we studied 0.1 N NaOH and 0.1% hypochlorite for their capacity to inactivate surface-dried lipid-enveloped (LE) [human immunodeficiency virus (HIV), bovine

  1. Drying shrinkage problems in high-plastic clay soils in Oklahoma.

    Science.gov (United States)

    2013-08-01

    Longitudinal cracking in pavements due to drying shrinkage of high-plastic subgrade soils has been a major : problem in Oklahoma. Annual maintenance to seal and repair these distress problems costs significant amount of : money to the state. The long...

  2. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area.

    Science.gov (United States)

    Bozlaker, Ayse; Odabasi, Mustafa; Muezzinoglu, Aysen

    2008-12-01

    Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.

  3. Green ambrosia for Soil- Dry Cow Dung Powder: Rhexistasy to Biostasy

    Science.gov (United States)

    Bagla, Hemlata; Barot, Nisha

    2013-04-01

    "Greener ambrosia for Soil - Dry cow dung powder: Rhexistasy to Biostasy" Pedosphere, the soil with its biotic and abiotic component, is produced by lithosphere`s interactions with atmosphere, hydrosphere and biosphere. The theory of Biorhexistasy proposed by pedologist H. Erhart [1], describes two crucial climatic phases of soil i.e. Biostasy, period of soil formation and Rhexistasy, periods of soil erosion. Humus, the organic matter in soil, permits better aeration, enhances the absorption and releases nutrients, and makes the soil less susceptible to leaching and erosion [2], thus the agent of soil`s vitality. Mismanagement of soil, leads to the degradation of millions of acres of land through erosion, compaction, salinization and acidification. Among these threats salinity is a major abiotic stress reducing the yield of wide variety of crops all over the world [3]. It is been proved that Humic Acid (HA) treatment can ameliorate the deleterious effects of salt stress by increasing root growth, altering mineral uptake, and decreasing membrane damage, thus inducing salt tolerance in plants [4]. HA can be inexpensively incorporated into soils via different biowastes. Dry cow dung powder (DCP), is naturally available bio-organic, complex, polymorphic humified fecal matter, enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as HA, Fulvic Acid (FA) etc [5]. The microbial consortium enables DCP with considerable potentials for biodegradation and biotransformation of even saline soil and further contributes to many biogeochemical processes, boosting humus content of soil. Due to unambiguous biological, microbiological as well as chemical inert properties of DCP, it has been successfully utilized as a fertilizer and soil conditioner since ages in India, one of the leading agrarian countries of the world. Thus we summarize that DCP is one of the best contenders for the biostasy and desaliner of soil, aptly, soil`s

  4. Study on distribution and behavior of long-lived radionuclides in surface soil environment

    International Nuclear Information System (INIS)

    Morita, Shigemitsu; Watanabe, Hitoshi; Katagiri, Hiromi; Akatsu, Yasuo; Ishiguro, Hideharu

    1996-01-01

    Technetium-99 ( 99 Tc) and Neptunium-237 ( 237 Np) are important radionuclides for environmental assessment around nuclear fuel cycle facilities, because these have long-lives and relatively high mobility in the environment. Therefore, we have been studied the determination, distribution and behavior of such long-lived radionuclides in surface soil environment. A new analytical technique using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was applied to the determination of long-lived radionuclides in environmental samples. The determination method consists of dry ashing, anion exchange and solvent extraction to eliminate the interfering elements and ICP-MS measurement. The sensitivity of this method was 10 to 100,000 times higher, and the counting time was 300 to 100,000 times shorter than the conventional radioanalytical methods. The soil samples were collected at nine points and core soil sample was collected by an electric core sampler at one point. The core soil sample was divided into eight layers. The depth profiles showed that more than 90% of 99 Tc and 237 Np were retained in the surface layer up to 10cm in depth which contained much amount of organic materials. The results suggest that content of organic materials in soil is related to adsorption of 99 Tc and 237 Np onto soil. (author)

  5. Nitrogen isotope ratios in surface and sub-surface soil horizons

    International Nuclear Information System (INIS)

    Rennie, D.A.; Paul, E.A.

    1975-01-01

    Nitrogen isotope analysis of surface soils and soil-derived nitrate for selected chernozemic and luvisolic soils showed mean delta 15 N values of 11.7 and 11.3, respectively. Isotope enrichment of the total N reached a maximum in the lower B horizon. Sub-soil parent material samples from the one deep profile included in the study indicated a delta 15 N value (NO 3 -N) of 1/3 that of the Ap horizon, at a depth of 180 cm. The delta 15 N of sub-surface soil horizons containing residual fertilizer N were low (-2.2) compared to the surface horizon (9.9). The data reported from this preliminary survey suggest that the natural variations in 15 N abundance between different soils and horizons of the same soil reflect the cumulative effects of soil genesis and soil management. More detailed knowledge and understanding of biological and other processes which control N isotope concentrations in these soils must be obtained before the data reported can be interpreted. (author)

  6. GEMAS: Colours of dry and moist agricultural soil samples of Europe

    Science.gov (United States)

    Klug, Martin; Fabian, Karl; Reimann, Clemens

    2016-04-01

    High resolution HDR colour images of all Ap samples from the GEMAS survey were acquired using a GeoTek Linescan camera. Three measurements of dry and wet samples with increasing exposure time and increasing illumination settings produced a set of colour images at 50μm resolution. Automated image processing was used to calibrate the six images per sample with respect to the synchronously measured X-Rite colorchecker chart. The calibrated images were then fit to Munsell soil colours that were measured in the same way. The results provide overview maps of dry and moist European soil colours. Because colour is closely linked to iron mineralogy, carbonate, silicate and organic carbon content the results can be correlated to magnetic, mineralogical, and geochemical properties. In combination with the full GEMAS chemical and physical measurements, this yields a valuable data set for calibration and interpretation of visible satellite colour data with respect to chemical composition and geological background, soil moisture, and soil degradation. This data set will help to develop new methods for world-wide characterization and monitoring of agricultural soils which is essential for quantifying geologic and human impact on the critical zone environment. It furthermore enables the scientific community and governmental authorities to monitor consequences of climatic change, to plan and administrate economic and ecological land use, and to use the data set for forensic applications.

  7. Quantification of Gaseous Elemental Mercury Dry Deposition to Environmental Surfaces using Mercury Stable Isotopes in a Controlled Environment

    Science.gov (United States)

    Rutter, A. P.; Schauer, J. J.; Shafer, M. M.; Olson, M.; Robinson, M.; Vanderveer, P.; Creswell, J. E.; Parman, A.; Mallek, J.; Gorski, P.

    2009-12-01

    Andrew P. Rutter (1) * *, James J, Schauer (1,2) *, Martin M. Shafer(1,2), Michael R. Olson (1), Michael Robinson (1), Peter Vanderveer (3), Joel Creswell (1), Justin L. Mallek (1), Andrew M. Parman (1) (1) Environmental Chemistry and Technology Program, 660 N. Park St, Madison, WI 53705. (2) Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718. (3) Biotron, University of Wisconsin - Madison, 2115 Observatory Drive, Madison, WI 53706 * Correspond author(jjschauer@wisc.edu) * *Presenting author (aprutter@wisc.edu) Abstract Gaseous elemental mercury (GEM) is the predominant component of atmospheric mercury outside of arctic depletion events, and locations where anthropogenic point sources are not influencing atmospheric concentrations. GEM constitutes greater than 99% of the mercury mass in most rural and remote locations. While dry and wet deposition of atmospheric mercury is thought to be dominated by oxidized mercury (a.k.a. reactive mercury), only small GEM uptake to environmental surfaces could impact the input of mercury to terrestrial and aquatic ecosystems. Dry deposition and subsequent re-emission of gaseous elemental mercury is a pathway from the atmosphere that remains only partially understood from a mechanistic perspective. In order to properly model GEM dry deposition and re-emission an understanding of its dependence on irradiance, temperature, and relative humidity must be measured and parameterized for a broad spectrum of environmental surfaces colocated with surrogate deposition surfaces used to make field based dry deposition measurements. Measurements of isotopically enriched GEM dry deposition were made with a variety of environmental surfaces in a controlled environment room at the University of Wisconsin Biotron. The experimental set up allowed dry deposition components which are not easily separated in the field to be decoupled. We were able to isolate surface transfer processes from variabilities caused by

  8. Influence of Disturbance on Soil Respiration in Biologically Crusted Soil during the Dry Season

    Directory of Open Access Journals (Sweden)

    Wei Feng

    2013-01-01

    Full Text Available Soil respiration (Rs is a major pathway for carbon cycling and is a complex process involving abiotic and biotic factors. Biological soil crusts (BSCs are a key biotic component of desert ecosystems worldwide. In desert ecosystems, soils are protected from surface disturbance by BSCs, but it is unknown whether Rs is affected by disturbance of this crust layer. We measured Rs in three types of disturbed and undisturbed crusted soils (algae, lichen, and moss, as well as bare land from April to August, 2010, in Mu Us desert, northwest China. Rs was similar among undisturbed soils but increased significantly in disturbed moss and algae crusted soils. The variation of Rs in undisturbed and disturbed soil was related to soil bulk density. Disturbance also led to changes in soil organic carbon and fine particles contents, including declines of 60–70% in surface soil C and N, relative to predisturbance values. Once BSCs were disturbed, Q10 increased. Our findings indicate that a loss of BSCs cover will lead to greater soil C loss through respiration. Given these results, understanding the disturbance sensitivity impact on Rs could be helpful to modify soil management practices which promote carbon sequestration.

  9. The emission of nitrous oxide upon wetting a rice soil following a dry season fallow

    Science.gov (United States)

    Byrnes, B. H.; Holt, L. S.; Austin, E. R.

    1993-12-01

    A greenhouse experiment was conducted to measure nitrous oxide (N2O) emissions from a soil, which had been planted to flooded transplanted rice, as it was rewetted to simulate the end of a dry season fallow period. The pots of soil had been cropped to transplanted rice with two commonly used nitrogen (N) fertilizer treatments and a control, and the soil had been puddled before transplanting. Large amounts of nitrate N accumulated in the soils during the dry season fallow, and the N fertilizers applied to the previous crop had little effect on nitrate accumulation. There was little N2O emission during the nitrification period. With water additions meant to simulate rainfall events at the beginning of a wet season, the soil redox dropped slightly, and large amounts of N2O began to be emitted. Large emissions began 5 days after each of the two simulated rainy season watering events and stopped abruptly at soil saturation, even though considerable amounts of nitrate still remained in the soil after saturation. Total measured emissions amounted to 6 to 7 kg N2O-N ha-1 for the period. Although these measurements were made in a system which may have favored nitrate accumulation, they are the first known measurements of N2O made from a rice soil as it is wetted. Nitrous oxide emitted from the flooding of rice soils that have accumulated nitrate during a dry season fallow may be a major source of N2O additions to the atmosphere.

  10. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    Science.gov (United States)

    Bauskar, Aditi; Mack, Wendy J; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A; Kolar, Grant R; Gleave, Martin E; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C; Wilson, Mark R; Fini, M Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  11. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    Directory of Open Access Journals (Sweden)

    Aditi Bauskar

    Full Text Available Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  12. The Use of a Geographic Information System and Remote Sensing Technology for Monitoring Land Use and Soil Carbon Change in the Subtropical Dry Forest Life Zone of Puerto Rico

    Science.gov (United States)

    Velez-Rodriguez, Linda L. (Principal Investigator)

    1996-01-01

    Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.

  13. Coordinating Chemical and Mineralogical Analyses of Antarctic Dry Valley Sediments as Potential Analogs for Mars

    Science.gov (United States)

    Patel, S. N.; Bishop, J. L.; Englert, P.; Gibson, E. K.

    2015-01-01

    The Antarctic Dry Valleys (ADV) provide a unique terrestrial analog for Martian surface processes as they are extremely cold and dry sedimentary environments. The surface geology and the chemical composition of the Dry Valleys that are similar to Mars suggest the possible presence of these soil-formation processes on Mars. The soils and sediments from Wright Valley, Antarctica were investigated in this study to examine mineralogical and chemical changes along the surface layer in this region and as a function of depth. Surface samples collected near Prospect Mesa and Don Juan Pond of the ADV were analyzed using visible/near-infrared (VNIR) and mid-IR reflectance spectroscopy and major and trace element abundances.

  14. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil

  15. Spatial prediction of near surface soil water retention functions using hydrogeophysics

    Science.gov (United States)

    Gibson, J. P.; Franz, T. E.

    2017-12-01

    The hydrological community often turns to widely available spatial datasets such as SSURGO to characterize the spatial variability of soil across a landscape of interest. This has served as a reasonable first approximation when lacking localized soil data. However, previous work has shown that information loss within land surface models primarily stems from parameterization. Localized soil sampling is both expensive and time intense, and thus a need exists in connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with larger spatial datasets. In this work, we utilize 2 geophysical techniques; cosmic ray neutron probe and electromagnetic induction, to identify temporally stable soil moisture patterns. This is achieved by measuring numerous times over a range of wet to dry field conditions in order to apply an empirical orthogonal function. We then present measured water retention functions of shallow cores extracted within each temporally stable zone. Lastly, we use soil moisture patterns as a covariate to predict soil hydraulic properties in areas without measurement and validate using a leave-one-out cross validation analysis. Using these approaches to better constrain soil hydraulic property variability, we speculate that further research can better estimate hydrologic fluxes in areas of interest.

  16. Quantitative assessment of pedodiversity and soil erosion within a karst sinkhole in the dry steppe subzone

    Science.gov (United States)

    Smirnova, M. A.; Gennadiev, A. N.

    2017-08-01

    A detailed study of the soil cover of a sinkhole (300 m2) in the dry steppe landscape of the Bogdinsk-Baskunchak Natural Reserve in Astrakhan oblast has been performed, and the factors of its differentiation have been analyzed. The indices of pedodiversity have been calculated and compared for karst sinkholes in the dry steppe and northern taiga landscapes. Quantitative parameters of the lateral migration of solid soil substances on the slopes of the sinkhole have been determined. The rate of soil erosion decreases from the slope of southern aspect to the slopes of western, northern, and eastern aspects. On the average, it is estimated at 0.4 mm/yr. The average rate of accumulation of solid substances on the lower parts of the slopes and in the bottom of the sinkhole reaches 0.74 mm/yr. A comparative analysis of the soil properties attests to their dependence on the particular position of a given soil within the sinkhole. Downward the slopes of the sinkhole, full-profile brown arid soils (Cambic Calcisols) are replaced by sierozem-like soils (Haplic Calcisols), light-humus poorly developed soils (Luvisols), lithozems (Leptosols), and stratified soils (stratozems, or Colluvic Regosols). The soils within the upper ring-shape soil microzone are more diverse and contrasting with respect to their morphological, physical, chemical, and physicochemical properties. The degree of soil contrasts decreases down the slopes of the sinkhole towards its bottom. The studied sinkhole is characterized by considerable pedodiversity. Quantitative parameters of pedodiversity for the sinkhole in the dry steppe zone are higher than those form the sinkholes in the northern taiga zone.

  17. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  18. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    Science.gov (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  19. Roles of Arbuscular Mycorrhizal Fungi and Soil Abiotic Conditions in the Establishment of a Dry Grassland Community.

    Directory of Open Access Journals (Sweden)

    Jana Knappová

    Full Text Available The importance of soil biota in the composition of mature plant communities is commonly acknowledged. In contrast, the role of soil biota in the early establishment of new plant communities and their relative importance for soil abiotic conditions are still poorly understood.The aim of this study was to understand the effects of soil origin and soil fungal communities on the composition of a newly established dry grassland plant community. We used soil from two different origins (dry grassland and abandoned field with different pH and nutrient and mineral content. Grassland microcosms were established by sowing seeds of 54 species of dry grassland plants into the studied soils. To suppress soil fungi, half of the pots were regularly treated with fungicide. In this way, we studied the independent and combined effects of soil origin and soil community on the establishment of dry grassland communities.The effect of suppressing the soil fungal community on the richness and composition of the plant communities was much stronger than the effect of soil origin. Contrary to our expectations, the effects of these two factors were largely additive, indicating the same degree of importance of soil fungal communities in the establishment of species-rich plant communities in the soils from both origins. The negative effect of suppressing soil fungi on species richness, however, occurred later in the soil from the abandoned field than in the soil from the grassland. This result likely occurred because the negative effects of the suppression of fungi in the field soil were caused mainly by changes in plant community composition and increased competition. In contrast, in the grassland soil, the absence of soil fungi was limiting for plants already at the early stages of their establishment, i.e., in the phases of germination and early recruitment. While fungicide affects not only arbuscular mycorrhizal fungi but also other biota, our data indicate that changes

  20. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    Bhattarai, Nishan; Wagle, Pradeep; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-11-01

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass (Panicum virgatum L.) has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI; 0 = extremely wet or no water stress condition and 1 = extremely dry or no transpiration) was utilized to estimate CWSI in rain-fed switchgrass using Landsat-derived evapotranspiration (ET) from five remote sensing based single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and Operational Simplified Surface Energy Balance (SSEBop). CWSI estimates from the five SEB models and a simple regression model that used normalized difference vegetation index (NDVI), near-surface temperature difference, and measured soil moisture (SM) as covariates were compared with those derived from eddy covariance measured ET (CWSIEC) for the 32 Landsat image acquisition dates during the 2011 (dry) and 2013 (wet) growing seasons. Results indicate that most SEB models can predict CWSI reasonably well. For example, the root mean square error (RMSE) ranged from 0.14 (SEBAL) to 0.29 (SSEBop) and the coefficient of determination (R2) ranged from 0.25 (SSEBop) to 0.72 (SEBAL), justifying the added complexity in CWSI modeling as compared to results from the simple regression model (R2 = 0.55, RMSE = 0.16). All SEB models underestimated CWSI in the dry year but the estimates from SEBAL and S-SEBI were within 7% of the mean CWSIEC and explained over 60% of variations in CWSIEC. In the wet year, S-SEBI mostly overestimated CWSI (around 28%), while estimates from METRIC, SEBAL, SEBS, and SSEBop were within 8% of the mean CWSIEC. Overall, SEBAL was the most robust model under all conditions followed by METRIC, whose performance was slightly worse and better than SEBAL in dry and wet years

  1. Effects of crust and cracks on simulated catchment discharge and soil loss

    NARCIS (Netherlands)

    Stolte, J.; Ritsema, C.J.; Roo, de A.P.J.

    1997-01-01

    Sealing, crusting and cracking of crusts of the soil surface has been observed in many parts of the world in areas with sandy, silty and loamy soils. Sealing and crust formation occurs under the influence of rain storm and drying weather. With prolonged drying, surface crusts might crack, leading to

  2. The Effect of Drying-Wetting Cycle’s Repetition to the Characteristic of Natural and Stabilization Residual Soils Jawa Timur - Indonesia

    Science.gov (United States)

    Muntaha, M.

    2017-11-01

    Indonesia, which located in tropical region, continuously undergoes wetting and drying cycles due to the changeable seasons. An important role in activating the clay minerals on tropical residual soils is the main factor that affects the static and dynamic properties, such as: volume change, soil suction and dynamic modulus. The purpose of this paper is to evaluate the effect of drying-wetting cycles repetition on volume change, soil suction and mechanical characteristics of natural and stabilization of residual soils from Jawa Timur - Indonesia. The natural undisturbed and stabilized residual soil sample was naturally and gradually dried up with air to 25%, 50%, 75%, and 100 % of the initial water content. The wetting processes were carried out with the gradual increment water content of 25 %(wsat - wi), 50 %(wsat - wi), 75 %(wsat - wi), up to 100 %(wsat - wi). The Direct Shear test is used to measure the mechanic properties, and Whatman filter paper No. 42 is used to measure the soil suction. The drying-wetting processes were carried out for 1, 2, 4, and 6 cycles. The laboratory test results showed that, the void ratio decreased, the unit weight, cohesion and the internal friction angle were increasing due to stabilization. Drying-wetting cycle repetition reduces void ratio, negative pore-water pressure, cohesion and internal friction angle of natural and stabilized soils. Briefly, the decreased of mechanical soil properties was proven from the physical properties change observation.

  3. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico

    Science.gov (United States)

    Davidson, Eric A.; Vitousek, Peter M.; Riley, Ralph; Matson, Pamela A.; Garcia-Mendez, Georgina; Maass, J. M.

    1991-01-01

    Soil emissions of NO were measured at the Chamela Biological Station, Mexico, using soil covers and a field apparatus of NO detection based on CrO3 conversion of NO to NO2 and detection of NO2 by chemiluminescence with Luminol. Mean NO fluxes from forest soils ranged from 0.14 to 0.52 ng NO-N/sq cm/hr during the dry season and from 0.73 to 1.27 ng NO-N/sq cm/hr during the wet season. A fertilized floodplain pasture exhibited higher fluxes, but an unfertilized upland pasture, which represents the fastest growing land use in the region, had flux rates similar to the forest sites. Wetting experiments at the end of the dry season caused large pulses of NO flux, equaling 10 percent to 20 percent of the estimated annual NO emissions of 0.5-1.0 kg N/ha from the forest sites. Absence of a forest canopy during the dry season and the first wet season rain probably results in substantial NO(x) export from the forest system that may be important to regional atmospheric chemical processes. Wetting experiments during the wet season and a natural rain event had little or no stimulatory effect on NO flux rates.

  4. Nanoparticle motion on the surface of drying droplets

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2018-03-01

    Advances in solution-based printing and surface patterning techniques for additive manufacturing demand a clear understanding of particle dynamics in drying colloidal droplets and its relationship with deposit structure. Although the evaporation-driven deposition has been studied thoroughly for the particles dispersed in the bulk of the droplet, few investigations have focused on the particles strongly adsorbed to the droplet surface. We modeled the assembly and deposition of the surface-active particles in a drying sessile droplet with a pinned contact line by the multiphase lattice Boltzmann-Brownian dynamics method. The particle trajectory and its area density profile characterize the assembly dynamics and deposition pattern development during evaporation. While the bulk-dispersed particles continuously move to the contact line, forming the typical "coffee-ring" deposit, the interface-bound particles migrate first toward the apex and then to the contact line as the droplet dries out. To understand this unexpected behavior, we resolve the droplet velocity field both in the bulk and within the interfacial region. The simulation results agree well with the analytical solution for the Stokes flow inside an evaporating droplet. At different stages of evaporation, our study reveals that the competition between the tangential surface flow and the downward motion of the evaporating liquid-vapor interface governs the dynamics of the interface-bound particles. In particular, the interface displacement contributes to the particle motion toward the droplet apex in a short phase, while the outward advective flow prevails at the late stage of drying and carries the particles to the contact line. The final deposit of the surface-adsorbed particles exhibits a density enhancement at the center, in addition to a coffee ring. Despite its small influence on the final deposit in the present study, the distinct dynamics of surface-active particles due to the interfacial confinement

  5. The influence of time on the magnetic properties of late Quaternary periglacial and alluvial surface and buried soils along the Delaware River, USA

    Directory of Open Access Journals (Sweden)

    Gary E Stinchcomb

    2014-08-01

    Full Text Available Magnetic susceptibility of soils has been used as a proxy for rainfall, but other factors can contribute to magnetic enhancement in soils. Here we explore influence of century- to millennial-scale duration of soil formation on periglacial and alluvial soil magnetic properties by assessing three terraces with surface and buried soils ranging in exposure ages from <0.01 to ~16 kyrs along the Delaware River in northeastern USA. The A and B soil horizons have higher Xlf, Ms, and S-ratios compared to parent material, and these values increase in a non-linear fashion with increasing duration of soil formation. Magnetic remanence measurements show a mixed low- and high-coercivity mineral assemblage likely consisting of goethite, hematite and maghemite that contributes to the magnetic enhancement of the soil. Room-temperature and low-temperature field-cooled and zero field-cooled remanence curves confirm the presence of goethite and magnetite and show an increase in magnetization with increasing soil age. These data suggest that as the Delaware alluvial soils weather, the concentration of secondary ferrimagnetic minerals increase in the A and B soil horizons. We then compared the time-dependent Xlf from several age-constrained buried alluvial soils with known climate data for the region during the Quaternary. Contradictory to most studies that suggest a link between increases in magnetic susceptibility and high moisture, increased magnetic enhancement of Delaware alluvial soils coincides with dry climate intervals. Early Holocene enhanced soil Xlf (9.5 – 8.5 ka corresponds with a well-documented cool-dry climate episode. This relationship is probably related to less frequent flooding during dry intervals allowing more time for low-coercive pedogenic magnetic minerals to form and accumulate, which resulted in increased Xlf. Middle Holocene enhanced Xlf (6.1 – 4.3 ka corresponds with a transitional wet/dry phase and a previously documented incision

  6. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    Science.gov (United States)

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-05

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.

  7. Effect of flaming on wild mustard (Sinapis arvensis L. soil seed bank, soil micro organisms and physicochemical characteristics

    Directory of Open Access Journals (Sweden)

    H. Salimi

    2016-05-01

    Full Text Available In order to study the effect of flaming on seed viability of Sinapis arvensis L., changes in microorganisms population and physicochemical characteristics of soil after canola (Brassica napus L. harvesting, an experiment was carried out based on randomized complete block design with four replications and eight treatments at Karaj Research Center, Iran, during 2005- 2006. After harvesting canola at the end of spring, wild mustard seeds were distributed evenly on the surface of the soil. In some plots, canola stubbles were left on the ground and in some plots canola stubbles were taken off. Under this condition, the following treatments were applied: Flaming under wet and dry soil condition, burning stubbles under wet and dry soil condition. In other plots canola stubbles were taken off the plots and then flaming was applied under wet and dry soil conditions. Check plots did not receive any treatment. Results indicated that all treatments reduced seed viability, and the highest loss in seedling density occurred in the flaming treatment on dry-soil. Flaming did not have any serious affect on soil microorganisms or on its other physiochemical aspects, however dry-soil treatments proved the safest.

  8. Microbial community composition of transiently wetted Antarctic Dry Valley soils.

    Science.gov (United States)

    Niederberger, Thomas D; Sohm, Jill A; Gunderson, Troy E; Parker, Alexander E; Tirindelli, Joëlle; Capone, Douglas G; Carpenter, Edward J; Cary, Stephen C

    2015-01-01

    During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm(3) for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

  9. Persistent Soil Seed Banks for Natural Rehabilitation of Dry Tropical Forests in Northern Ethiopia

    OpenAIRE

    Gebrehiwot, K.; Heyn, M.; Reubens, B.; Hermy, M.; Muys, B.

    2007-01-01

    Dry tropical forests are threatened world-wide by conversion to grazing land, secondary forest, savannah or arable land. In Ethiopia, natural dry forest cover has been decreasing at an alarming rate over the last decennia and has reached a critical level. Efforts like the rehabilitation of dry forests to curb this ecological degradation, need a stronger scientific basis than currently available. The aim of the present research was to test the hypothesis whether soil seed banks can contribute ...

  10. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions

    International Nuclear Information System (INIS)

    Yamanaka, T.; Takeda, A.; Sugita, F.

    1997-01-01

    A physically based (i.e., nonempirical) representation of surface-moisture availability is proposed, and its applicability is investigated. This method is based on the surface-resistance approaches, and it uses the depth of evaporating surface rather than the water content of the surface soil as the determining factor of surface-moisture availability. A simple energy-balance model including this representation is developed and tested against wind tunnel experiments under various atmospheric conditions. This model can estimate not only the latent heat flux but also the depth of the evaporating surface simultaneously by solving the inverse problem of energy balance at both the soil surface and the evaporating surface. It was found that the depth of the evaporating surface and the latent heat flux estimated by the model agreed well with those observed. The agreements were commonly found out under different atmospheric conditions. The only limitation of this representation is that it is not valid under conditions of drastic change in the radiation input, owing to the influence of transient phase transition of water in the dry surface layer. The main advantage of the approach proposed is that it can determine the surface moisture availability on the basis of the basic properties of soils instead of empirical fitting, although further investigations on its practical use are needed

  11. Neutron probe measurement of soil water content close to soil surface

    International Nuclear Information System (INIS)

    Faleiros, M.C.; Ravelo S, A.; Souza, M.D. de

    1993-01-01

    The problem of neutron probe soil water content measurements close to soil surface is analysed from the spatial variability and also from the slow neutron loss to the atmosphere points of view. Results obtained on a dark red latosol of the county of Piracicaba, SP, indicate the possibility of precisely measuring the neutron sphere of influence when different media are used on soil surface. (author). 7 refs, 5 figs, 1 tab

  12. Impact of drying-rewetting events on the response of soil microbial functions to dairyfibre and Miscanthus biochars

    Science.gov (United States)

    Bonnett, Sam; Vink, Stefanie; Baker, Kate; Saghir, Muhammad; Hornung, Andreas

    2014-05-01

    dissolution of alkaline minerals, high ash content (Lehmann et al. 2011) and solubility of DOC. Biochar treatments buffered changes in pH caused by drying and flooding but resulted in an increase in DOC. Biochar in general stabilised glucosidase activity whilst Miscanthus biochar stimulated chitinase and phosphatase activity that may have been due to adsorption of either enzyme or substrate as observed by Bailey et al. (2011). Surprisingly, alkaline phosphatase activity was not stimulated by the rise in pH in the diaryfibre treatment and was lower than the control along with the other hydrolase enzymes suggesting that deprotonation of soil phenols at higher pH inhibited activity via the enzyme-latch mechanism that in peatlands explains low rates of decomposition (Freeman et al., 2001; Sinsabaugh et al. 2010). This was supported by observation of higher phenol oxidase activity within the dairyfibre treatment that increased in response to greater availability of substrate and/or increases in pH. All biochars inhibited the production of N2O that was stimulated by the supply of labile carbon from SIR, suggesting that biochar decreased C-substrate availability through adsorption at its surface (Clough and Condron, 2010). Overall, this study has shown that specific feedstocks may be used to produce biochars to control microbial functions in soil such as inhibiting hydrolase enzymes for carbon sequestration as occurs naturally in peatlands or suppress the production of the potent greenhouse gas N2O. References Bailey, V., Fansler, S.J., Smith, J.L. Bolton, H. (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology and Biochemistry 43, 296-301. Clough, T. and Condron, L. (2010) Biochar and the nitrogen cycle: introduction. Journal of Environmental Quality, 39,1218-1223. Freeman, C., Ostle, N. and Kang, H. (2001) An enzymic 'latch' on a global carbon store. Nature 409, 149. Lehmann, J and Joseph, S (2009

  13. Relative Efficacy of On-Farm Weeds as Soil-Amendement for Managing Dry Root Rot of Clusterbean in an Arid Environment

    Directory of Open Access Journals (Sweden)

    R. Mawar

    2006-12-01

    Full Text Available The effectiveness of certain on-farm weeds as soil amendments was ascertained against Macrophomina phaseolina, a soil-borne pathogen causing dry root rot of crops grown under rainfed conditions in arid regions. Population changes in M. phaseolina were determined in soils amended separately with residues (1%, w:w of Aerva persica, Celosia argentea, Corchorus depressus, Euphorbia hirta, Heliotropium subulatum and Polycarpaea corymbosa, for a period of 90 days. Significant reductions by 90.4–100% in the population of M. phaseolina were achieved with all the weed residues except P. corymbosa. Celosia and Euphorbia residues completely eradicated viable propagules of M. phaseolina. A strong increase (44–61% in the population of antagonistic actinomycetes was also found in soil amended with Corchorus and Euphorbia. In field tests, soil amended (50 g m2 with Euphorbia, Aerva and Celosia residues significantly reduced dry root rot incidence on clusterbean and also reduced M. phaseolina propagules in the soil. However, dry root rot incidence in Polycarpaea-amended soil (5.8–24.6% was not significantly different from that in non-amended soil (4.3–25.3% in both years of the experiment. P. corymbosa also increased the number of propagules of M. phaseolina in the soil. The results demonstrate that dry root rot of rainfed-cultivated annual crops in arid land can be managed with certain weeds as a soil amendment.

  14. Soil moisture prediction to support management in semiarid wetlands during drying episodes

    NARCIS (Netherlands)

    Aguilera, Héctor; Moreno, Luis; Wesseling, Jan G.; Jiménez-Hernández, María E.; Castaño, Silvino

    2016-01-01

    Wetlands supported by groundwater in semiarid regions are extremely vulnerable to the impacts of droughts, particularly anthropized systems. During drying periods, soil water content arises as the controlling factor for environmental and ecological disturbances such as the spread of invasive

  15. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.

    2010-01-01

    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought

  16. Influence of cracking clays on satellite estimated and model simulated soil moisture

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2010-06-01

    Full Text Available Vertisols are clay soils that are common in the monsoonal and dry warm regions of the world. One of the characteristics of these soil types is to form deep cracks during periods of extended dry, resulting in significant variation of the soil and hydrologic properties. Understanding the influence of these varying soil properties on the hydrological behavior of the system is of considerable interest, particularly in the retrieval or simulation of soil moisture. In this study we compare surface soil moisture (θ in m3 m−3 retrievals from AMSR-E using the VUA-NASA (Vrije Universiteit Amsterdam in collaboration with NASA algorithm with simulations from the Community Land Model (CLM over vertisol regions of mainland Australia. For the three-year period examined here (2003–2005, both products display reasonable agreement during wet periods. During dry periods however, AMSR-E retrieved near surface soil moisture falls below values for surrounding non-clay soils, while CLM simulations are higher. CLM θ are also higher than AMSR-E and their difference keeps increasing throughout these dry periods. To identify the possible causes for these discrepancies, the impacts of land use, topography, soil properties and surface temperature used in the AMSR-E algorithm, together with vegetation density and rainfall patterns, were investigated. However these do not explain the observed θ responses. Qualitative analysis of the retrieval model suggests that the most likely reason for the low AMSR-E θ is the increase in soil porosity and surface roughness resulting from cracking of the soil. To quantitatively identify the role of each factor, more in situ measurements of soil properties that can represent different stages of cracking need to be collected. CLM does not simulate the behavior of cracking soils, including the additional loss of moisture from the soil continuum during drying and the infiltration into cracks during rainfall events

  17. Soil structural behaviour of flooded soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to: identify factors determining of the structural behaviour of flooded soils, as compared to those acting in upland soils; analyse the influence of reductive processes on aggregate stabilising agents; discuss mechanisms of structural deterioration and recovery during the flooding-drying cycle, on the basis of a case study: cattle trampling effects in the flooding Pampa of Argentina. Flooded soils, now known as Hydric soils, are characteristic of wetlands and irrigated fields cropped to rice (paddy soils). In them, water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year. Hydric soils belong to different taxa of the FAO-UNESCO Soil Map (2000). Fluvisols, Planosols and Gleysols are widespread distributed in the globe. The generation of redoximorphic features is due to different causes in each of them. Fluvisols are covered part of the year by surface water from river overflows; Planosols are soils having an impervious Bt horizon, supporting perched water during short periods; and Gleysols are soils affected by stagnant water tables during long periods

  18. The global distribution and dynamics of surface soil moisture

    Science.gov (United States)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  19. Behavior of two phenyl urea herbicides in clayey soils and effect of alternating dry-wet conditions on their availability.

    Science.gov (United States)

    Haouari, Jamila; Dahchour, Abdelmalek; Peña-Heras, Arancha; Louchard, Xzavier; Lennartz, Berndt; Alaoui, Mohamed Elbelghiti; Satrallah, Ahmad

    2006-01-01

    Adsorption and mobility of linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and diuron (3-(3,4-dichlorophenyl)-1, 1-dimethylurea) were studied in clayey soils from the Gharb area (Morocco). Soils A and B were planted with sun flower (Helianthus annuus) while soil C was planted with sugar cane (Saccharum offcinarum). Adsorption was studied for linuron in soils A and B, while mobility was studied only in soil B. Adsorption data were found to fit the Freundlich equation with correlation coefficients r2 > 0.9. Freundlich coefficients (Kf, nf) were in agreement with L and S isotherm types for soils A and B, respectively. Values of Koc (195 and 102) indicate moderate adsorption. Desorption isotherms for linuron showed hysteresis for both soils. The pesticide would be more bound to soil A (H = 8.44) than to soil B (H = 4.01). The effect of alternating wet and dry conditions was tested for soils A and B. Results showed that retention would increase in soil subject to an additional wet and dry cycle. In the case of diuron isotherm was of type L in soil C. Desorption was noticeable at high concentrations and tended to decrease when concentrations diminished. Mobility of linuron was tested in polyvinyle chloride (PVC) columns, which received different treatments before their percolation. The pesticide was more mobile in a previously saturated column. In columns subject to a drying step after saturation with water, linuron mobility was greatly reduced.

  20. Effect of N, P and K Humates on Dry Matter of Zea mays and Soil

    African Journals Online (AJOL)

    Sharjeel Ahmad

    may only be applicable to similar acid soils. The outcome of this study may contribute to the improvement of urea N use efficiency as well as reducing environmental pollution. Key words: Humic acids, fulvic acids, triple superphosphate, muriate of potash, soil exchangeable ammonium, available nitrate, Zea mays, dry matter.

  1. Chemistry and Mineralogy of Antarctica Dry Valley Soils: Implications for Mars

    Science.gov (United States)

    Quinn, J. E.; Golden, D. C.; Graff, T. G.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; hide

    2011-01-01

    The Antarctic Dry Valleys (ADV) comprise the largest ice-free region of Antarctica. Precipitation almost always occurs as snow, relative humidity is frequently low, and mean annual temperatures are about -20 C. The ADV soils have previously been categorized into three soil moisture regimes: subxerous, xerous and ultraxerous, based on elevation and climate influences. The subxerous regime is predominately a coastal zone soil, and has the highest average temperature and precipitation, while the ultraxerous regime occurs at high elevation (>1000 m) and have very low temperature and precipitation. The amounts and types of salts present in the soils vary between regions. The nature, origin and significance of salts in the ADV have been previously investigated. Substantial work has focused on soil formation in the ADVs, however, little work has focused on the mineralogy of secondary alteration phases. The dominant weathering process in the ADV region is physical weathering, however, chemical weathering has been well documented. The objective of this study was to characterize the chemistry and mineralogy, including the alteration mineralogy, of soils from two sites, a subxerous soil in Taylor Valley, and an ultraxerous soil in University Valley. The style of aqueous alteration in the ADVs may have implications for pedogenic processes on Mars.

  2. Exchange of soil moisture between patches of wild-olive and pasture sustains evapotranspiration of a Mediterranean ecosystem in both wet and dry seasons

    Science.gov (United States)

    Curreli, M.; Montaldo, N.; Oren, R.

    2017-12-01

    Partitioning evapotranspiration in water-limited environments, such as Mediterranean ecosystems, could give information on vegetation and hydraulic dynamics. Indeed, in such ecosystems, trees may survive prolonged droughts by uptake of water by dimorphic root system: deep roots and shallower lateral roots, extending beyond the crown into inter-trees grassy areas. The water exchange between under canopy areas and treeless patches plays a crucial role on sustaining tree and grass physiological performance during droughts. The study has been performed at the Orroli site, Sardinia (Italy). The landscape is covered by patchy vegetation: wild olives trees in clumps and herbaceous species, drying to bare soil in summer. The climate is characterized by long droughts from May to October and rain events concentrated in the autumn and winter, whit a mean yearly rain of about 700 mm. A 10 m micrometeorological tower equipped with eddy-covariance system has been used for measuring water and energy surface fluxes, as well as key state variables (e.g. temperature, radiations, humidity and wind velocity). Soil moisture was measured with five soil water reflectometers (two below the olive canopy and three in the pasture). To estimate plant water use in the context of soil water dynamic, 33 Granier-type thermal dissipation probes were installed 40 cm aboveground, in representative trees over the eddy covariance footprint. Early analyses show that wild olive continue to transpire even as the soil dries and the pasture desiccates. This reveled hydraulic redistribution system through the plant and the soil, and allows to quantify the reliance of the system on horizontally and vertically differentiated soil compartments. Results shows that during light hours, until transpiration decreases in midday, shallow roots uptake deplete the shallow water content. As transpiration decreases, hydraulically redistributed water provides for both transpiration of wild olives and recharge of shallow

  3. Effect of drying-wetting cycles on leaching behavior of cement solidified lead-contaminated soil.

    Science.gov (United States)

    Li, Jiang-Shan; Xue, Qiang; Wang, Ping; Li, Zhen-Ze; Liu, Lei

    2014-12-01

    Lead contaminated soil was treated by different concentration of ordinary Portland cement (OPC). Solidified cylindrical samples were dried at 40°C in oven for 48 h subsequent to 24h of immersing in different solution for one drying-wetting. 10 cycles were conducted on specimens. The changes in mass loss of specimens, as well as leaching concentration and pH of filtered leachates were studied after each cycle. Results indicated that drying-wetting cycles could accelerate the leaching and deterioration of solidified specimens. The cumulative leached lead with acetic acid (pH=2.88) in this study was 109, 83 and 71 mg respectively for solidified specimens of cement-to-dry soil (C/Sd) ratios 0.2, 0.3 and 0.4, compared to 37, 30, and 25mg for a semi-dynamic leaching test. With the increase of cycle times, the cumulative mass loss of specimens increased linearly, but pH of filtered leachates decreased. The leachability and deterioration of solidified specimens increased with acidity of solution. Increases of C/Sd clearly reduced the leachability and deterioration behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Surface decontamination using dry ice snow

    International Nuclear Information System (INIS)

    Ryu, Jungdong; Park, Kwangheon; Lee, Bumsik; Kim Yangeun

    1999-01-01

    An adjustable nozzle for controlling the size of dry ice snow was developed. The converging/diverging nozzle can control the size of snows from sub-microns to 10 micron size. Using the nozzle, a surface decontamination device was made. The removal mechanisms of surface contaminants are mechanical impact, partial dissolving and evaporation process, and viscous flow. A heat supply system is added for the prevention of surface ice layer formation. The cleaning power is slightly dependent on the size of snow. Small snows are the better in viscous flow cleaning, while large snows are slightly better in dissolving and sublimation process. Human oils like fingerprints on glass were easy to remove. Decontamination ability was tested using a contaminated pump-housing surface. About 40 to 80% of radioactivity was removed. This device is effective in surface-decontamination of any electrical devices like detector, controllers which cannot be cleaned in aqueous solution. (author)

  5. Experimental study on soluble chemical transfer to surface runoff from soil.

    Science.gov (United States)

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  6. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    Science.gov (United States)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting

  7. Effect of dry land transformation and quality of water use for crop irrigation on the soil bacterial community in the Mezquital Valley, Mexico

    Science.gov (United States)

    Lüneberg, Kathia; Schneider, Dominik; Daniel, Rolf; Siebe, Christina

    2017-04-01

    Soil bacteria are important determinants of soil fertility and ecosystem services as they participate in all biogeochemical cycles. Until now the comprehension of compositional and functional response that bacterial communities have to land use change and management, specifically in dry land its limited. Dry lands cover 40% of the world's land surface and its crop production supports one third of the global population. In this regions soil moisture is limited constraining farming to the rainy season or oblige to irrigate, as fresh water resources become scarce, to maintain productivity, treated or untreated wastewater for field irrigation is used. In this study the transformation of semiarid shrubland to agriculture under different land systems regarding quantity and quality of water use for crop irrigation on bacterial communities was investigated. The land systems included maize rain-fed plantations and irrigation systems with freshwater, untreated wastewater stored in a dam and untreated wastewater during dry and rainy season. Bacterial community structure and function was heavily affected by land use system and soil properties, whereas seasonality had a slighter effect. A soil moisture, nutrient and contaminant-content increasing gradient among the land use systems, going from rain fed plantation over fresh water, dam wastewater to untreated wastewater irrigated plantations was detected, this gradient diminished the abundance of Actinobacteria and Cyanobacteria, but enhanced the one from Bacteroidetes and Proteobacteria. Discernible clustering of the dry land soil communities coincides with the moisture, nutrient and contaminant gradient, being shrubland soil communities closer to the rain-fed's system and farer to the one from untreated wastewater irrigated soil. Soil moisture together with sodium content and pH were the strongest drivers of the community structure. Seasonality promoted shifts in the composition of soil bacteria under irrigation with

  8. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling.

    Science.gov (United States)

    Chen, Tingting; Xu, Yunji; Wang, Jingchao; Wang, Zhiqin; Yang, Jianchang; Zhang, Jianhua

    2013-05-01

    This study tested the hypothesis that the interaction between polyamines and ethylene may mediate the effects of soil drying on grain filling of rice (Oryza sativa L.). Two rice cultivars were pot grown. Three treatments, well-watered, moderate soil drying (MD), and severe soil drying (SD), were imposed from 8 d post-anthesis until maturity. The endosperm cell division rate, grain-filling rate, and grain weight of earlier flowering superior spikelets showed no significant differences among the three treatments. However, those of the later flowering inferior spikelets were significantly increased under MD and significantly reduced under SD when compared with those which were well watered. The two cultivars showed the same tendencies. MD increased the contents of free spermidine (Spd) and free spermine (Spm), the activities of S-adenosyl-L-methionine decarboxylase and Spd synthase, and expression levels of polyamine synthesis genes, and decreased the ethylene evolution rate, the contents of 1-aminocylopropane-1-carboxylic acid (ACC) and hydrogen peroxide, the activities of ACC synthase, ACC oxidase, and polyamine oxidase, and the expression levels of ethylene synthesis genes in inferior spikelets. SD exhibited the opposite effects. Application of Spd, Spm, or an inhibitor of ethylene synthesis to rice panicles significantly reduced ethylene and ACC levels, but significantly increased Spd and Spm contents, grain-filling rate, and grain weight of inferior spikelets. The results were reversed when ACC or an inhibitor of Spd and Spm synthesis was applied. The results suggest that a potential metabolic interaction between polyamines and ethylene biosynthesis responds to soil drying and mediates the grain filling of inferior spikelets in rice.

  9. Blast load effects research in dry and wet soil

    CSIR Research Space (South Africa)

    Ahmed, R

    2014-09-01

    Full Text Available stream_source_info Ahmed_2014_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 904 Content-Encoding UTF-8 stream_name Ahmed_2014_ABSTRACT.pdf.txt Content-Type text/plain; charset=UTF-8 South African Ballistics... Organisation Conference, Zebra Country Lodge, Gauteng, South Africa, 29 September – 1 October 2014 BLAST LOAD EFFECTS RESEARCH IN DRY AND WET SOIL R Ahmed and ME Miyambo Landward Sciences, Defence Peace Safety and Security, CSIR, PO Box 395, Pretoria...

  10. Relationships between Hg Air-surface exchange, Soil Moisture and Precipitation at a Background Vegetated Site in South-Eastern Australia.

    Science.gov (United States)

    Macsween, K.; Edwards, G. C.

    2017-12-01

    Despite many decades of research, the controlling mechanisms of mercury (Hg) air-surface exhange are still poorly understood. Particularly in Australian ecosystems where there are few anthropogenic inputs. A clear understanding of these mechanisms is vital for accurate representation in the global Hg models, particularly regarding re-emission. Water is known to have a considerable influence on Hg exchange within a terrestrial ecosystem. Precipitation has been found to cause spikes is Hg emissions during the initial stages of rain event. While, Soil moisture content is known to enhance fluxes between 15 and 30% Volumetric soil water (VSW), above which fluxes become suppressed. Few field experiments exist to verify these dominantly laboratory or controlled experiments. Here we present work looking at Hg fluxes over an 8-month period at a vegetated background site. The aim of this study is to identify how changes to precipitation intensity and duration, coupled with variable soil moisture content may influence Hg flux across seasons. As well as the influence of other meteorological variables. Experimentation was undertaken using aerodynamic gradient micrometeorological flux method, avoiding disruption to the surface, soil moisture probes and rain gauge measurements to monitor alterations to substrate conditions. Meteorological and air chemistry variables were also measured concurrently throughout the duration of the study. During the study period, South-Eastern Australia experienced several intense east coast low storm systems during the Autumn and Spring months and an unusually dry winter. VSW rarely reached above 30% even following the intense rainfall experienced during the east coast lows. The generally dry conditions throughout winter resulted in an initial spike in Hg emissions when rainfall occurred. Fluxes decreased shortly after the rain began but remained slightly elevated. Given the reduced net radiation and cooler temperatures experienced during the winter

  11. The impact of atomization on the surface composition of spray-dried milk droplets.

    Science.gov (United States)

    Foerster, Martin; Gengenbach, Thomas; Woo, Meng Wai; Selomulya, Cordelia

    2016-04-01

    The dominant presence of fat at the surface of spray-dried milk powders has been widely reported in the literature and described as resulting in unfavourable powder properties. The mechanism(s) causing this phenomenon are yet to be clearly identified. A systematic investigation of the component distribution in atomized droplets and spray-dried particles consisting of model milk systems with different fat contents demonstrated that atomization strongly influences the final surface composition. Cryogenic flash-freezing of uniform droplets from a microfluidic jet nozzle directly after atomization helped to distinguish the influence of the atomization stage from the drying stage. It was confirmed that the overrepresentation of fat on the surface is independent of the atomization technique, including a pressure-swirl single-fluid spray nozzle and a pilot-scale rotary disk spray dryer commonly used in industry. It is proposed that during the atomization stage a disintegration mechanism along the oil-water interface of the fat globules causes the surface predominance of fat. X-ray photoelectron spectroscopic measurements detected the outermost fat layer and some adjacent protein present on both atomized droplets and spray-dried particles. Confocal laser scanning microscopy gave a qualitative insight into the protein and fat distribution throughout the cross-sections, and confirmed the presence of a fat film along the particle surface. The film remained on the surface in the subsequent drying stage, while protein accumulated underneath, driven by diffusion. The results demonstrated that atomization induces component segregation and fat-rich surfaces in spray-dried milk powders, and thus these cannot be prevented by adjusting the spray drying conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Research on Wetting-Drying Cycles’ Effect on the Physical and Mechanical Properties of Expansive Soil Improved by OTAC-KCl

    Directory of Open Access Journals (Sweden)

    Bao-tian Wang

    2015-01-01

    Full Text Available Expansive soil experiences periodic swelling and shrinkage during the alternate wet and dry environments, which will result in severe damage to the slope stability. In this study, a promising modifier OTAC-KCl is introduced, which has a good diffusivity and is soluble in water or other solvents easily. Firstly, a reasonable combination of ameliorant 0.3% STAC and 3% KCl is chosen referring to the free swell test. Then, the best curing period, 14 days, is gotten from UCS tests. The effect of wetting and drying cycles on engineering properties of expansive soil improved by OTAC-KCl admixtures after 14-day curing is also studied accordingly. Both treated and untreated expansive soil samples are prepared for the cyclic wetting-drying tests which mainly include cyclic swelling potential and cyclic strength tests. Experimental results show that the swelling potential of expansive soil samples stabilized with OTAC-KCl is suppressed efficiently, and the untreated soil specimens will collapse when immersed in water while the treated specimens keep in good conditions. Moreover, expansive soil samples modified with 0.3% OTAC + 3% KCl show enough durability on the swelling ability, shear strength, and unconfined compressive strength, which means, that both the physical and the mechanical properties of stabilized expansive soil have been improved effectively.

  13. Improved representations of coupled soil-canopy processes in the CABLE land surface model (Subversion revision 3432)

    Science.gov (United States)

    Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.; Harman, Ian N.

    2016-09-01

    CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil-canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil-air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.

  14. A new dry-surface biofilm model: An essential tool for efficacy testing of hospital surface decontamination procedures.

    Science.gov (United States)

    Almatroudi, Ahmad; Hu, Honghua; Deva, Anand; Gosbell, Iain B; Jacombs, Anita; Jensen, Slade O; Whiteley, Greg; Glasbey, Trevor; Vickery, Karen

    2015-10-01

    The environment has been shown to be a source of pathogens causing infections in hospitalised patients. Incorporation of pathogens into biofilms, contaminating dry hospital surfaces, prolongs their survival and renders them tolerant to normal hospital cleaning and disinfection procedures. Currently there is no standard method for testing efficacy of detergents and disinfectants against biofilm formed on dry surfaces. The aim of this study was to develop a reproducible method of producing Staphylococcus aureus biofilm with properties similar to those of biofilm obtained from dry hospital clinical surfaces, for use in efficacy testing of decontamination products. The properties (composition, architecture) of model biofilm and biofilm obtained from clinical dry surfaces within an intensive care unit were compared. The CDC Biofilm Reactor was adapted to create a dry surface biofilm model. S. aureus ATCC 25923 was grown on polycarbonate coupons. Alternating cycles of dehydration and hydration in tryptone soy broth (TSB) were performed over 12 days. Number of biofilm bacteria attached to individual coupons was determined by plate culture and the coefficient of variation (CV%) calculated. The DNA, glycoconjugates and protein content of the biofilm were determined by analysing biofilm stained with SYTO 60, Alexa-488-labelled Aleuria aurantia lectin and SyproOrange respectively using Image J and Imaris software. Biofilm architecture was analysed using live/dead staining and confocal microscopy (CM) and scanning electron microscopy (SEM). Model biofilm was compared to naturally formed biofilm containing S. aureus on dry clinical surfaces. The CDC Biofilm reactor reproducibly formed a multi-layered, biofilm containing about 10(7) CFU/coupon embedded in thick extracellular polymeric substances. Within run CV was 9.5% and the between run CV was 10.1%. Protein was the principal component of both the in vitro model biofilm and the biofilms found on clinical surfaces. Continued

  15. Effects of composite surface coating and pre-drying on the properties of kabanosy dry sausage.

    Science.gov (United States)

    Tyburcy, Andrzej; Kozyra, Daniel

    2010-10-01

    Coating of dry sausages with renewable materials could be an alternative to vacuum packaging. In this study kabanosy dry sausage was coated with a composite emulsion and stored for 7 or 15 days at 4-6 degrees C. Effects of different emulsion formulas (0.5 or 1% w/w of kappa-carrageenan and 5 or 10% w/w of glycerol) and pre-drying of coated sausages (at 50 degrees C for 1.5h) were investigated. Carrageenan concentration had a significant effect (Pemulsion adsorbed on the sausage surface but little influence on the barrier properties of the coatings. At both glycerol concentration levels, coatings had no visible cracks and were easily removed from the sausage surface after 7 and 15 days of storage. The colour values of coatings (L*, a*, and b*) changed along with the decreasing water activity during storage. Pre-drying of coated sausages reduced peeled product weight loss after storage. The financial analysis showed that among coatings tested the best proved to be the emulsion containing (w/w): 5% glycerol, 5% gelatin, 0.5% carrageenan, 20% lard, 20% beeswax, and 50% water. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  16. Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs

    Science.gov (United States)

    Brahana, J.V.; Hollyday, E.F.

    1988-01-01

    In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.

  17. Zeolite Formation and Weathering Processes in Dry Valleys of Antartica: Martian Analogs

    Science.gov (United States)

    Gibson, E. K., Jr.; Wentworth, S. J.; McKay, D. S.; Socki, R. A.

    2004-01-01

    Terrestrial weathering processes in cold-desert climates such as the Dry Valleys of Antarctica may provide an excellent analog to chemical weathering and diagenesis of soils on Mars. Detailed studies of soil development and the chemical and mineralogical alterations occurring within soil columns in Wright Valley, Antarctica show incredible complexity in the upper meter of soil. Previous workers noted the ice-free Dry Valleys are the best terrestrial approximations to contemporary Mars. Images returned from the Pathfinder and Spirit landers show similarities to surfaces observed within the Dry Valleys. Similarities to Mars that exist in these valleys are: mean temperatures always below freezing (-20 C), no rainfall, sparse snowfall-rapidly removed by sublimation, desiccating winds, diurnal freeze-thaw cycles (even during daylight hours), low humidity, oxidative environment, relatively high solar radiation and low magnetic fields . The Dry Valley soils contain irregular distributions and low abundances of soil microorganisms that are somewhat unusual on Earth. Physical processes-such as sand abrasion-are dominant mechanisms of rock weathering in Antarctica. However, chemical weathering is also an important process even in such extreme climates. For example, ionic migration occurs even in frozen soils along liquid films on individual soil particles. It has also been shown that water with liquid-like properties is present in soils at temperatures on the order of approx.-80 C and it has been observed that the percentage of oxidized iron increases with increasing soil age and enrichments in oxidized iron occurs toward the surface. The presence of evaporates is evident and appear similar to "evaporite sites" within the Pathfinder and Spirit sites. Evaporites indicate ionic migration and chemical activity even in the permanently frozen zone. The presence of evaporates indicates that chemical weathering of rocks and possibly soils has been active. Authogenic zeolites have

  18. Nitrous oxide emissions from sugarcane straw left on the soil surface in Brazil

    Science.gov (United States)

    Galdos, M. V.; Cerri, C. E.; Carvalho, J. L.; Cerri, C. C.

    2012-12-01

    In Brazil, the largest exporter of ethanol from sugarcane in the world, burning the dry leaves and tops in order to facilitate the harvest and transportation of the stalks is still a common practice. Burning plant residues causes emissions of greenhouse gases (GHGs) such as CO2, CH4 and N2O, besides the release of charcoal particles into the atmosphere. Due to a combination of pressure from changes in the public opinion and economical reasons, in Brazil sugarcane harvest is changing from a burned into an unburned system. Since manual harvest of sugarcane without burning is not economically feasible, mechanical harvesters have been developed that can take the stalk and leave the residues on the field, forming a mulch, in a system called green cane management. It is expected that 80% of the cane harvested in the main producing regions in Brazil will be harvested without burning by 2014. The conversion from burning sugarcane to green management of sugarcane will have impacts on the biogeochemical cycling of carbon and nitrogen in the plant soil system. The green cane management results in the deposition of large amounts of plant litter on the soil surface after harvest, ranging from 10 to 20 tons per hectare, which impact the whole production process of sugarcane, influencing yields, fertilizer management and application, soil erosion, soil organic matter dynamics as well as greenhouse gas emissions (CO2, N2O, CH4). From a GHG perspective, the conservation of sugarcane residues prevents emissions from the burning process, may promote carbon sequestration in soils and releases nitrogen during the decomposition process replacing the need for, and GHG emissions from, fossil fuel based nitrogen fertilizer sources. Measurements of soil C and N stocks and associated greenhouse gas emissions from the burned and unburned sugarcane systems and in the sugarcane expansion areas are still scarce. Therefore, the main objective of this work was to quantify the nitrous oxide

  19. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    Science.gov (United States)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented

  20. Spectral Assessment of Soil Properties: Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat

    Science.gov (United States)

    2017-08-01

    Soil Properties Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat En gi ne er R es ea rc h an d D...ERDC 6.2 GRE ARTEMIS STO-R DRTSPORE ERDC TR-17-9 August 2017 Spectral Assessment of Soil Properties Standoff Quantification of Soil Organic...Matter Content in Surface Mineral Soils and Alaskan Peat Stacey L. Jarvis, Karen L. Foley, Robert M. Jones, Stephen D. Newman, and Robyn A. Barbato

  1. In situ determination of soil carbon pool by inelastic neutron scattering: Comparison with dry combustion

    International Nuclear Information System (INIS)

    Wielopolski, L.; Mitra, S.; Chatterjee, A.; Lal, R.

    2011-01-01

    There is a well-documented need for new in situ technologies for elemental analysis of soil, particularly for carbon (C), that overcome the limitations of the currently established chemical method by dry combustion (DC). In this work, we evaluated the concordance between the new INS (inelastic neutron scattering) technology and the DC method. The comparisons were carried out in the high C content (30-40%) organic soils of Willard, Ohio (4 sites), in natural forest in Willard, Ohio (1 site), and in a watershed pasture, with an ∼ 10 o slope, in Coshocton, Ohio (5 sites). In addition to these stationary measurements, the organic soil and the pasture were continuously scanned with the inelastic neutron scattering (INS) system to obtain the transects mean C value. Both types of measurements, INS and DC, registered a decline in the surface density of C along transects in the watershed and in the organic soil. Similarly, both recorded a drop in C in the organic soil of about 0.16%. In the pastureland, declines in C levels of 0.08% and 0.10% were observed, respectively, by DC and INS. Combining the results from the three sites yielded a very satisfactory correlation between the INS- and DC-responses, with a regression coefficient, r 2 , value of about 0.99. This suggests the possibility of establishing a universal regression line for various soil types. In addition, we demonstrated the ability of INS to measure the mean value over transect. In organic soil the mean value of an INS scan agreed, ∼ 0.5%, with the mean values of the DC analysis, whereas large discrepancy between these two was recorded in the pastureland. Overall, the various trends observed in C measurements by INS concurred with those determined by the DC method, so enhancing the confidence in the new INS technology.

  2. Impact of Surface Soil Moisture Variations on Radar Altimetry Echoes at Ku and Ka Bands in Semi-Arid Areas

    Directory of Open Access Journals (Sweden)

    Christophe Fatras

    2018-04-01

    Full Text Available Radar altimetry provides information on the topography of the Earth surface. It is commonly used for the monitoring not only sea surface height but also ice sheets topography and inland water levels. The radar altimetry backscattering coefficient, which depends on surface roughness and water content, can be related to surface properties such as surface soil moisture content. In this study, the influence of surface soil moisture on the radar altimetry echo and backscattering coefficient is analyzed over semi-arid areas. A semi-empirical model of the soil’s complex dielectric permittivity that takes into account that small-scale roughness and large-scale topography was developed to simulate the radar echoes. It was validated using waveforms acquired at Ku and Ka-bands by ENVISAT RA-2 and SARAL AltiKa respectively over several sites in Mali. Correlation coefficients ranging from 0.66 to 0.94 at Ku-band and from 0.27 to 0.96 at Ka-band were found. The increase in surface soil moisture from 0.02 to 0.4 (i.e., the typical range of variations in semi-arid areas increase the backscattering from 10 to 15 dB between the core of the dry and the maximum of the rainy seasons.

  3. Soil surface roughness decay in contrasting climates, tillage types and management systems

    Science.gov (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  4. Tear Osmolarity and Correlation With Ocular Surface Parameters in Patients With Dry Eye.

    Science.gov (United States)

    Mathews, Priya M; Karakus, Sezen; Agrawal, Devika; Hindman, Holly B; Ramulu, Pradeep Y; Akpek, Esen K

    2017-11-01

    To analyze the distribution of tear film osmolarity in patients with dry eye and its association with other ocular surface parameters. Tear osmolarity and other quantitative dry eye parameters were obtained from patients with 1) clinically significant dry eye (significant symptoms and ocular surface staining, n = 131), 2) symptoms-only dry eye (significant symptoms but no significant ocular surface staining, n = 52), and 3) controls (no significant symptoms or staining, n = 42). Tear osmolarity varied significantly across groups (P = 0.01), with patients with clinically significant dry eye having the highest tear osmolarity (312.0 ± 16.9 mOsm/L), control patients having the lowest tear osmolarity (305.6 ± 9.7 mOsm/L), and patients with symptoms-only dry eye falling in between (307.4 ± 5.6 mOsm/L). Patients with clinically significant dry eye also tended to have a greater intereye difference in osmolarity (12.0 ± 13.4) than did the individuals with symptoms-only dry eye (9.1 ± 12.4) and controls (9.0 ± 7.4) (P = 0.06). In multivariable regression models, higher tear osmolarity was associated with higher Ocular Surface Disease Index, discomfort subscore (P = 0.02), and higher corneal and conjunctival staining scores (P eye tear osmolarity was not correlated with the corresponding tear film breakup time or Schirmer test (P > 0.05 for both). Individuals with symptomatic dry eye that is not yet clinically significant seem to have higher and more variable osmolarity measurements than controls, potentially indicating that changes in osmolarity precede clinical findings.

  5. The Effects of Organic Manures, Soil Cover and Drying Temperature on Some Growth and Phytochemical Characteristics of Calendula officinalis

    Directory of Open Access Journals (Sweden)

    Lamia Vojodi Mehrabani

    2017-01-01

    Full Text Available Two separate experiments were conducted to evaluate the effects of some pre and post -harvest treatments on growth characteristics of Calendula officinalis. The first experiment as RCBD with three replication studied the effects of organic fertilizers as vermicompost, cow and poultry manure with control plus soil cover (plastic white and black. Organic manure application +mulch had positive effects on flower fresh weight. The greatest amount for chlorophyll b content was recorded in vermicompost + black plastic cover. In the second experiment, the effects of nutrition with organic manure +soil cover and post-harvest flower drying temperature (natural drying in shade condition and oven drying at 40 and 60 0C as a factorial based on RCBD were evaluated. The highest methanolic extract amount and total anthocyanin content were recorded with vermicompost + black cover + natural drying. For essential oil content and carotenoids gross amount poultry manure + black cover and drying at 60 0C was the preferred treatments. The highest recorded data for total flavonoids was traced in vermicompot and cow manure with white cover at natural drying condition. For total phenolics content, cow manure + black cover at 40 0C used for drying was selected as the treatment of choice. Also, vermicompost+ black mulch and natural drying were nice treatment combinations for the highest total phenolics content. In total, all the treatment applied i.e. organic manures, soil covers and drying methods at varying levels and combinations had suitable effectiveness on the growth characteristics and phytochemicals content of Calendula officinalis.

  6. Dry deposition on urban surfaces

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    In order to facilitate developing a model for deposition in urban areas, beryllium-7, created by cosmic radiation and fall-out cesium-137, have been used as tracers in measurements designed to find the dry deposition velocity on building surfaces. A literature review has revealed that very little work has been done on deposition in urban areas; therefore, a major effort on meausring the deposition parameter is needed to construct reliable models in this field. Deposition velocities in the range from 0.001-0.04 cm/s have been found. (author)

  7. A noncontact laser system for measuring soil surface topography

    International Nuclear Information System (INIS)

    Huang, C.; White, I.; Thwaite, E.G.; Bendeli, A.

    1988-01-01

    Soil surface topography profoundly influences runoff hydrodynamics, soil erosion, and surface retention of water. Here we describe an optical noncontact system for measuring soil surface topography. Soil elevation is measured by projecting a laser beam onto the surface and detecting the position of the interception point. The optical axis of the detection system is oriented at a small angle to the incident beam. A low-power HeNe (Helium-Neon) laser is used as the laser source, a photodiode array is used as the laser image detector and an ordinary 35-mm single lens reflex camera provides the optical system to focus the laser image onto the diode array. A wide spectrum of measurement ranges (R) and resolutions are selectable, from 1 mm to 1 m. These are determined by the laser-camera distance and angle, the focal length of the lens, and the sensing length of the diode array and the number of elements (N) contained in the array. The resolution of the system is approximately R/2N. We show for the system used here that this resolution is approximately 0.2%. In the configuration selected, elevation changes of 0.16 mm could be detected over a surface elevation range of 87 mm. The sampling rate of the system is 1000 Hz, which permits soil surfaces to be measured at speeds of up to 1 m s −1 with measurements taken at 1-mm spacing. Measurements of individual raindrop impacts on the soil and of soil surfaces before and after rain show the versatility of the laser surface profiler, which has applications in studies of erosion processes, surface storage and soil trafficability

  8. Soil Water Retention and Relative Permeability for Conditions from Oven-Dry to Full Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.

    2011-11-04

    Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to the capillary force only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which the water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified measurements. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but underestimate the conductivity. The extended models match the retention and conductivity measurements well.

  9. Assessment of gamma radiation levels and natural radioactivity in soils along a subtropical river basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Dekun; Yu, Tao [Third Institute of Oceanography, Xiamen (China). Lab. of Marine Isotopic Technology and Environmental Risk Assessment

    2017-07-01

    The activities of natural radionuclides in the environment can be used to assess radiological effects. Monitoring the radiation level in soils is important for public health. It also has important geochemical implications as most of the sediment eroded from river basins is from soil. Therefore, we carried out a soil sampling campaign along a subtropical river basin in southeastern China (Jiulong River). Surface and depth profile soils were collected, and the natural radionuclide activities were measured. The activities of the natural radionuclides {sup 238}U, {sup 232}Th, and {sup 40}K in the surface soils varied from 31.6 to 132.1 Bq kg-dry{sup -1}, 37.8 to 174.0 Bq kg-dry{sup -1}, and 52.3 to 596.2 Bq kg-dry{sup -1}, with average values of 56.7±30.3 Bq kg-dry{sup -1}, 86.7±41.3 Bq kg-dry{sup -1}, and 352.8±190.6 Bq kg-dry{sup -1}, respectively. The absorbed gamma dose in air and the annual effective dose equivalent (AEDE) in surface soils along the river basin were both higher than the world average. In the depth profiles, excess {sup 210}Pb ({sup 210}Pbex) decreased with depth and significant correlation between {sup 210}Pbex and TOC was observed, suggesting that they are affected by similar processes (leaching and sorption).

  10. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  11. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    Directory of Open Access Journals (Sweden)

    Sandeep Pulla

    Full Text Available We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2 soil spatial variability in a seasonally dry tropical forest (SDTF in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm, rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH, and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(--N nor NH4(+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  12. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  13. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    Science.gov (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Operational assimilation of ASCAT surface soil wetness at the Met Office

    Directory of Open Access Journals (Sweden)

    I. Dharssi

    2011-08-01

    Full Text Available Currently, no extensive, near real time, global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness from the Advanced Scatterometer (ASCAT on the meteorological operational (MetOp satellite contain good quality information about surface soil moisture. This study describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010.

  15. Sporulation and Germination patterns - hedging a bet on long term microbial survivability in dry soil

    Science.gov (United States)

    Claes, N.; Or, D.

    2012-04-01

    Soil hosts unparalleled diversity of microbial life that is constantly challenged by the vagaries of fluctuating ambient conditions. Desiccation stresses play a key role not only by directly affecting individual bacterial cells, but also by shaping diffusion pathways and cell dispersion. The gradual thinning and fragmentation of the aqueous environment during drying have led to different survival mechanisms including dormancy and sporulation, resulting in a highly resistive state capable of surviving extreme and prolonged environmental stresses until conditions improve in the future. Our aim is to investigate how temporal changes in hydration status shape microbial communities over time, based on simple survival strategy rules for each individual bacterium. The two survival strategies considered are dormancy and sporulation. Dormancy is the state in which bacterial cells significantly reduce their metabolism with minor morphological adaptations. The required energy and time for attaining this state are low relative to sporulation costs. Sporulation involves several morphological and biochemical changes that result in a resistive capsule that endures extreme stresses over long periods of time. The working hypothesis is that different micro-ecological conditions and community compositions would result from temporal patterns and magnitude of desiccation stresses. An Individual Based Model (IBM) considering habitats on rough soil surfaces and local effects of micro-hydrological conditions on dispersion and nutrient diffusion would enable systematic study of emerging communities over extended periods. Different population compositions are expected to emerge based on low and high frequency, duration and amplitudes of wetting-drying cycles reflecting relative success or failure of survival strategy.

  16. Quantifying the changes of soil surface microroughness due to rainfall impact on a smooth surface

    Directory of Open Access Journals (Sweden)

    B. K. B. Abban

    2017-09-01

    Full Text Available This study examines the rainfall-induced change in soil microroughness of a bare smooth soil surface in an agricultural field. The majority of soil microroughness studies have focused on surface roughness on the order of ∼ 5–50 mm and have reported a decay of soil surface roughness with rainfall. However, there is quantitative evidence from a few studies suggesting that surfaces with microroughness less than 5 mm may undergo an increase in roughness when subject to rainfall action. The focus herein is on initial microroughness length scales on the order of 2 mm, a low roughness condition observed seasonally in some landscapes under bare conditions and chosen to systematically examine the increasing roughness phenomenon. Three rainfall intensities of 30, 60, and 75 mm h−1 are applied to a smoothened bed surface in a field plot via a rainfall simulator. Soil surface microroughness is recorded via a surface-profile laser scanner. Several indices are utilized to quantify the soil surface microroughness, namely the random roughness (RR index, the crossover length, the variance scale from the Markov–Gaussian model, and the limiting difference. Findings show a consistent increase in roughness under the action of rainfall, with an overall agreement between all indices in terms of trend and magnitude. Although this study is limited to a narrow range of rainfall and soil conditions, the results suggest that the outcome of the interaction between rainfall and a soil surface can be different for smooth and rough surfaces and thus warrant the need for a better understanding of this interaction.

  17. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  18. Soil and surface layer type affect non-rainfall water inputs

    Science.gov (United States)

    Agam, Nurit; Berliner, Pedro; Jiang, Anxia

    2017-04-01

    Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted

  19. Effects of Rainfall-Induced Topsoil Structure Changes on Root-Zone Moisture Regime during the Dry Period

    Science.gov (United States)

    Wang, Feng; Chen, Jiazhou; Lin, Lirong

    2018-01-01

    Rainfall erosion and subsequent intermittent drought are serious barriers for agricultural production in the subtropical red soil region of China. Although it is widely recognized that rainfall-induced soil structure degradation reduced soil water storage and water-holding capacity, the effects of variation of the rainfall-induced topsoil structure on the subsequent soil water regime during the dry period is still rarely considered. The objective of this study was to ascertain the way of rainfall-induced topsoil structure changes on the subsequent soil water regime during the dry period. In a three-year-long experiment, six practices (CK, only crop; SM, straw mulching; PAM, polyacrylamide surface application; B, contour Bahia-grass strip; SPAM, straw mulching and polyacrylamide surface application; and BPAM, contour Bahia-grass strip and polyacrylamide surface application) were conducted at an 8° farmland with planting summer maize resulting in different topsoil structure and root-zone moisture, to establish and reveal the quantitatively relationship between the factors of topsoil structure and soil drought. Rainfall erosion significantly increased the soil crust coverage, and decreased the WSA 0.25, 0-30 mm soil porosity and mean pore size. There was no significant difference during the raining stage of root-zone water storage between CK and other practices. An index of soil drought intensity ( I) and degree ( D) was established using soil water loss rate and soil drought severity. The larger value of I means a higher rate of water loss. The larger value of D means more severe drought. During the dry period, I and D were significantly higher in CK than in other practices. I and D had significantly positively correlation with the crust size and crust coverage, and negatively with WSA 0.25, 15-30 mm soil porosity and mean pore size. Among of soil structure factors, the soil porosity had the largest effect on I and D. The rainfall-induced topsoil structure changes

  20. Impact of Optimized Land Surface Parameters on the Land-Atmosphere Coupling in WRF Simulations of Dry and Wet Extremes

    Science.gov (United States)

    Kumar, S.; Santanello, J. A.; Peters-Lidard, C. D.; Harrison, K.

    2011-12-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty module in NASA's Land Information System (LIS-OPT), whereby parameter sets are calibrated in the Noah land surface model and classified according to the land cover and soil type mapping of the observations and the full domain. The impact of the calibrated parameters on the a) spinup of land surface states used as initial conditions, and b) heat and moisture fluxes of the coupled (LIS-WRF) simulations are then assessed in terms of ambient weather, PBL budgets, and precipitation along with L-A coupling diagnostics. In addition, the sensitivity of this approach to the period of calibration (dry, wet, normal) is investigated. Finally, tradeoffs of computational tractability and scientific validity (e.g.,. relating to the representation of the spatial dependence of parameters) and the feasibility of calibrating to multiple observational datasets are also discussed.

  1. Numerical modeling studies on the alternately pulsed infiltration and subsequent evaporation of water in a dry high desert alluvial soil

    International Nuclear Information System (INIS)

    Cawlfield, D.E.; Lindstrom, F.T.; Weaver, H.

    1993-01-01

    The concept of no liquid-phase migration of low-level radionuclides is extremely important for the U.S. Department of Energy, Nevada Operations Office (USDOE/NV) Low-Level Radioactive Waste Management Sites (RWMS) in Areas 3 and 5 of the Nevada Test Site (NTS). Each site location is situated in an area known for its dry conditions. A series of computer modeling problems were set up to study the effects of pulsing the desert surface with large amounts of water, followed by intense evaporative conditions. The pulsed-water scenarios were run using an in-house model, named open-quotes ODRECHB,close quotes which is briefly described. ODRECHB is particularly adapted to model the dry desert alluvium and extreme evaporative conditions found at NTS. Comparable results were obtained using the well known Battelle NW code open-quotes UNSAT-H 2.0,close quotes by Fayer and Jones. The realistic-to-overly conservative water applications to a bare soil surface did not cause water to infiltrate below ten meters. The results are shown on the accompanying video tape

  2. Estimation of Surface Soil Moisture from Thermal Infrared Remote Sensing Using an Improved Trapezoid Method

    Directory of Open Access Journals (Sweden)

    Yuting Yang

    2015-06-01

    Full Text Available Surface soil moisture (SM plays a fundamental role in energy and water partitioning in the soil–plant–atmosphere continuum. A reliable and operational algorithm is much needed to retrieve regional surface SM at high spatial and temporal resolutions. Here, we provide an operational framework of estimating surface SM at fine spatial resolutions (using visible/thermal infrared images and concurrent meteorological data based on a trapezoidal space defined by remotely sensed vegetation cover (Fc and land surface temperature (LST. Theoretical solutions of the wet and dry edges were derived to achieve a more accurate and effective determination of the Fc/LST space. Subjectivity and uncertainty arising from visual examination of extreme boundaries can consequently be largely reduced. In addition, theoretical derivation of the extreme boundaries allows a per-pixel determination of the VI/LST space such that the assumption of uniform atmospheric forcing over the entire domain is no longer required. The developed approach was tested at the Tibetan Plateau Soil Moisture/Temperature Monitoring Network (SMTMN site in central Tibet, China, from August 2010 to August 2011 using Moderate Resolution Imaging Spectroradiometer (MODIS Terra images. Results indicate that the developed trapezoid model reproduced the spatial and temporal patterns of observed surface SM reasonably well, with showing a root-mean-square error of 0.06 m3·m−3 at the site level and 0.03 m3·m−3 at the regional scale. In addition, a case study on 2 September 2010 highlighted the importance of the theoretically calculated wet and dry edges, as they can effectively obviate subjectivity and uncertainties in determining the Fc/LST space arising from visual interpretation of satellite images. Compared with Land Surface Models (LSMs in Global Land Data Assimilation System-1, the remote sensing-based trapezoid approach gave generally better surface SM estimates, whereas the LSMs showed

  3. Light Gray Surface-Gleyed Loamy Sandy Soils of the Northern Part of Tambov Plain: Agroecology, Properties, and Diagnostics

    Science.gov (United States)

    Zaidel'man, F. R.; Stepantsova, L. V.; Nikiforova, A. S.; Krasin, V. N.; Dautokov, I. M.; Krasina, T. V.

    2018-04-01

    Light gray soils of Tambov oblast mainly develop from sandy and loamy sandy parent materials; these are the least studied soils in this region. Despite their coarse texture, these soils are subjected to surface waterlogging. They are stronger affected by the agrogenic degradation in comparison with chernozems and dark gray soils. Morphology, major elements of water regime, physical properties, and productivity of loamy sandy light gray soils with different degrees of gleyzation have been studied in the northern part of Tambov Plain in order to substantiate the appropriate methods of their management. The texture of these soils changes at the depth of 70-100 cm. The upper part is enriched in silt particles (16-30%); in the lower part, the sand content reaches 80-85%. In the nongleyed variants, middle-profile horizons contain thin iron-cemented lamellae (pseudofibers); in surface-gleyed variants, iron nodules are present in the humus horizon. The removal of clay from the humus horizon and its accumulation at the lithological contact and in pseudofibers promote surface subsidence and formation of microlows in the years with moderate and intense winter precipitation. The low range of active moisture favors desiccation of the upper horizons to the wilting point in dry years. The yield of cereal crops reaches 3.5-4.5 t/ha in the years with high and moderate summer precipitation on nongleyed and slightly gleyed light gray soils and decreases by 20-50% on strongly gleyed light gray soils. On light gray soils without irrigation, crop yields are unstable, and productivity of pastures is low. High yields of cereals and vegetables can be obtained on irrigated soils. In this case, local drainage measures should be applied to microlows; liming can be recommended to improve soil productivity.

  4. Dry and Semi-Dry Tropical Cyclones

    Science.gov (United States)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  5. Influence of Surface Biosolids Application on Infiltration

    Directory of Open Access Journals (Sweden)

    Richard E. Zartman

    2012-01-01

    Full Text Available Biosolids from waste water treatment facilities applied to soils not only add plant nutrients, but also increase infiltration and decrease runoff and erosion. Wet biosolids from New York, NY, were surface applied at 0 to 90 Mg ha−1 dry weight to soils near El Paso, Tex. Simulated rainfall intensities of 16.4 cm hr−1 for 30 minutes applied to 0.5 m2 soil plots yielded initial infiltration rates of ~16 cm hr−1 for all plots. Biosolids applications extended the duration of the initially high infiltration rates. After 30 minutes, infiltration rates for bare soil were 3 cm hr−1 without and 10 cm hr−1 with 90 Mg biosolids ha−1. Applied biosolids, plant litter, surface gravel, and plant base contributed surface cover, which absorbed raindrop energy and reduced erosion. Biosolids increased cumulative infiltration on the vegetated, wet soils more than for the dry or bare soils. Biosolids increased cumulative infiltration from 2 to 6 cm on a bare gravelly soil and from 9.3 to 10.6 cm on a vegetated soil.

  6. The effects of climate changes on soil methane oxidation in a dry Arctic tundra

    Science.gov (United States)

    D'Imperio, Ludovica

    2014-05-01

    The effects of climate changes on soil methane oxidation in a dry Arctic tundra. Ludovica D'Imperio1, Anders Michelsen1, Christian J. Jørgensen1, Bo Elberling1 1Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark At Northern latitudes climatic changes are predicted to be most pronounced resulting in increasing active layer depth and changes in growing season length, vegetation cover and nutrient cycling. As a consequence of increased temperature, large stocks of carbon stored in the permafrost-affected soils could become available for microbial transformations and under anoxic conditions result in increasing methane production affecting net methane (CH4) budget. Arctic tundra soils also serves as an important sink of atmospheric CH4 by microbial oxidation under aerobic conditions. While several process studies have documented the mechanisms behind both production and emissions of CH4 in arctic ecosystems, an important knowledge gap exists with respect to the in situ dynamics of microbial-driven uptake of CH4 in arctic dry lands which may be enhanced as a consequence of global warming and thereby counterbalancing CH4 emissions from Arctic wetlands. In-situ methane measurements were made in a dry Arctic tundra in Disko Island, Western Greenland, during the summer 2013 to assess the role of seasonal and inter-annual variations in temperatures and snow cover. The experimental set-up included snow fences installed in 2012, allowed investigations of the emissions of GHGs from soil under increased winter snow deposition and ambient field conditions. The soil fluxes of CH4 and CO2 were measured using closed chambers in manipulated plots with increased summer temperatures and shrub removal with or without increased winter precipitation. At the control plots, the averaged seasonal CH4 oxidation rates ranged between -0.05 mg CH4 m-2 hr-1 (end of August) and -0.32 mg CH4 m-2 hr-1 (end of June). In the

  7. Polyacrylamide molecular weight and phosphogypsum effects on infiltration and erosion in semi-arid soils

    Science.gov (United States)

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  8. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects on soil, leaf and fruit element concentrations of organic (compost, straw mulch and hand weeding) and integrated (inorganic fertilisers and herbicide usage; IP) soil surface management practices in the tree rows, in combination with weed covers, cover crops and straw mulch in the work rows, were investigated in a ...

  9. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.

    Science.gov (United States)

    Garcia, L; Bedos, C; Génermont, S; Braud, I; Cellier, P

    2011-09-01

    Ammonia and pesticide volatilization in the field is a surface phenomenon involving physical and chemical processes that depend on the soil surface temperature and water content. The water transfer, heat transfer and energy budget sub models of volatilization models are adapted from the most commonly accepted formalisms and parameterizations. They are less detailed than the dedicated models describing water and heat transfers and surface status. The aim of this work was to assess the ability of one of the available mechanistic volatilization models, Volt'Air, to accurately describe the pedo-climatic conditions of a soil surface at the required time and space resolution. The assessment involves: (i) a sensitivity analysis, (ii) an evaluation of Volt'Air outputs in the light of outputs from a reference Soil-Vegetation-Atmosphere Transfer model (SiSPAT) and three experimental datasets, and (iii) the study of three tests based on modifications of SiSPAT to establish the potential impact of the simplifying assumptions used in Volt'Air. The analysis confirmed that a 5 mm surface layer was well suited, and that Volt'Air surface temperature correlated well with the experimental measurements as well as with SiSPAT outputs. In terms of liquid water transfers, Volt'Air was overall consistent with SiSPAT, with discrepancies only during major rainfall events and dry weather conditions. The tests enabled us to identify the main source of the discrepancies between Volt'Air and SiSPAT: the lack of gaseous water transfer description in Volt'Air. They also helped to explain why neither Volt'Air nor SiSPAT was able to represent lower values of surface water content: current classical water retention and hydraulic conductivity models are not yet adapted to cases of very dry conditions. Given the outcomes of this study, we discuss to what extent the volatilization models can be improved and the questions they pose for current research in water transfer modeling and parameterization

  10. Overcoming soil compaction in surface mine reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Sweigard, R.J. (University of Kentucky, Lexington, KY (USA). Dept. of Mining Engineering)

    1991-01-01

    Rubber-tyred soil reconstruction equipment causes compaction of soil and means surface mine operators cannot satisfy crop yield standards defined by the Surface Mining Control and Reclamation Act. Soil compaction can be overcome by either modifying the reconstruction process or alleviating the problem, for example by deep tillage, once it occurs. The Dept. of Mining Engineering at the Institute of Mining and Minerals Research is conducting a laboratory investigation into a method of injecting low density porous organic material into a bin containing soil at the same time as the soil is ripped. This should prevent voids collapsing when subjected to forces from farm equipment and natural sources. Soil analyses are performed before and after the injection. Ripping and injection with ground pecan shells had a residual effect on nuclear bulk density compared to the initially compacted case and also showed an improvement in hydraulic conductivity. Work is in progress on modifying the system to handle other injection material and should lead on to field tests on a prototype involving both soil analysis and crop yield determination. 1 fig.

  11. Overcoming soil compaction in surface mine reclamation

    International Nuclear Information System (INIS)

    Sweigard, R.J.

    1991-01-01

    Rubber-tyred soil reconstruction equipment causes compaction of soil and means surface mine operators cannot satisfy crop yield standards defined by the Surface Mining Control and Reclamation Act. Soil compaction can be overcome by either modifying the reconstruction process or alleviating the problem, for example by deep tillage, once it occurs. The Dept. of Mining Engineering at the Institute of Mining and Minerals Research is conducting a laboratory investigation into a method of injecting low density porous organic material into a bin containing soil at the same time as the soil is ripped. This should prevent voids collapsing when subjected to forces from farm equipment and natural sources. Soil analyses are performed before and after the injection. Ripping and injection with ground pecan shells had a residual effect on nuclear bulk density compared to the initially compacted case and also showed an improvement in hydraulic conductivity. Work is in progress on modifying the system to handle other injection material and should lead on to field tests on a prototype involving both soil analysis and crop yield determination. 1 fig

  12. Estimation of bare soil surface temperature from air temperature and ...

    African Journals Online (AJOL)

    Soil surface temperature has critical influence on climate, agricultural and hydrological activities since it serves as a good indicator of the energy budget of the earth's surface. Two empirical models for estimating soil surface temperature from air temperature and soil depth temperature were developed. The coefficient of ...

  13. Crusting susceptibility in some allic Colombian soils

    International Nuclear Information System (INIS)

    Arias, Dora M; Madero E E; Amezquita E

    2001-01-01

    Many lab methods were used: dry and water soil aggregates stability, instability index and erosion index and their results were related with soil characteristics like texture, Fe and Al oxides and organic matter. Soil samples collected within 0-2.5 and 2.5-5 cm of the soil surface came from terrains with many kinds of both forest and savanna intervened systems. Those results were analyzed like a completely randomized designed. It was found that significative changes in oxides content could increase soil-crusting susceptibility unless soil humus was up to was up to 4%. In this sense, pastures or its rotation with rice and leguminous offer a best alternative for intervening these natural systems. Intensive land husbandry or monocultures with low stubble soil incorporation caused an increase in physical instability at the top of soil. Dry soil stability test and instability index were most adequate for these soils

  14. USDA soil classification system dictates site surface management

    International Nuclear Information System (INIS)

    Bowmer, W.J.

    1985-01-01

    Success or failure of site surface management practices greatly affects long-term site stability. The US Department of Agriculture (USDA) soil classification system best documents those parameters which control the success of installed practices for managing both erosion and surface drainage. The USDA system concentrates on soil characteristics in the upper three meters of the surface that support the associated flora both physically and physiologically. The USDA soil survey first identifies soil series based on detailed characteristics that are related to production potential. Using the production potential, land use capability classes are developed. Capability classes reveal the highest and best agronomic use for the site. Lower number classes are considered arable while higher number classes are best suited for grazing agriculture. Application of ecological principles based on the USDA soil survey reveals the current state of the site relative to its ecological potential. To assure success, site management practices must be chosen that are compatible with both production capability and current state of the site

  15. Distributions of 137Cs and 90Sr in the soil of Uljin, South Korea

    International Nuclear Information System (INIS)

    Song, Ji Yeon; Kim, Wan; Maeng, Seong Jin; Lee, Sang Hoon

    2016-01-01

    For the purpose of baseline data collection and enhancement of environmental monitoring the distribution studies of 137 Cs and 90 Sr in the soil of Uljin province was performed and the relation between surface soil activities and soil properties (pH, TOC and median of the surface soil) was analyzed. For 14 spots within 10 km from the NPP surface soil samples were collected and soils for depth profile were sampled for 3 spots in April 2011. Using γ-ray spectrometry with HPGe detector, the concentrations of 137 Cs were determined and the concentrations of 90 Sr were measured by counting β-activity of 90 Y (in equilibrium with 90 Sr) in a gas flow proportional counter. The concentration ranges of 137 Cs and 90 Sr were <0.479-39.6 Bq (kg-dry)-1 (avg. 7.51 Bq·(kg-dry)-1) and 0.209-1.85 Bq·(kg-dry)-1 (avg. 0.74 Bq·(kg-dry)-1) which were similar to the reported values from other regions in Korea. The activity ratio of 137 Cs to 90 Sr in surface soils was around 9.67, which is much bigger than the initial value of 1.75 for worldwide fallouts because of faster downward movement of 90 Sr after fall-out than that of 137 Cs. For depth profile studies soils were collected down to 40 cm depth for the locations of Deokgu, Hujeong and Maehwa. The 137 Cs concentration distribution of the first two showed maximum values at top soils and decreased rapidly in exponential manner, while 90 Sr showed two local maximum values for soils near top and about 30 cm depth. Through linear fittings between the 137 Cs and 90 Sr concentrations of surface soil and pH, TOC and median of the surface soil, the only probable relationship obtained was between 137 Cs and TOC (determination coefficient R2=0.6). The concentration ranges of 137 Cs and 90 Sr in Uljin were similar to the reported values from other regions in Korea. The only probable relationship obtained between activities and soil properties was between 137 Cs and TOC

  16. Western US high June 2015 temperatures and their relation to global warming and soil moisture

    Science.gov (United States)

    Philip, Sjoukje Y.; Kew, Sarah F.; Hauser, Mathias; Guillod, Benoit P.; Teuling, Adriaan J.; Whan, Kirien; Uhe, Peter; Oldenborgh, Geert Jan van

    2018-04-01

    The Western US states Washington (WA), Oregon (OR) and California (CA) experienced extremely high temperatures in June 2015. The temperature anomalies were so extreme that they cannot be explained with global warming alone. We investigate the hypothesis that soil moisture played an important role as well. We use a land surface model and a large ensemble from the weather@home modelling effort to investigate the coupling between soil moisture and temperature in a warming world. Both models show that May was anomalously dry, satisfying a prerequisite for the extreme heat wave, and they indicate that WA and OR are in a wet-to-dry transitional soil moisture regime. We use two different land surface-atmosphere coupling metrics to show that there was strong coupling between temperature, latent heat flux and the effect of soil moisture deficits on the energy balance in June 2015 in WA and OR. June temperature anomalies conditioned on wet/dry conditions show that both the mean and extreme temperatures become hotter for dry soils, especially in WA and OR. Fitting a Gaussian model to temperatures using soil moisture as a covariate shows that the June 2015 temperature values fit well in the extrapolated empirical temperature/drought lines. The high temperature anomalies in WA and OR are thus to be expected, given the dry soil moisture conditions and that those regions are in the transition from a wet to a dry regime. CA is already in the dry regime and therefore the necessity of taking soil moisture into account is of lower importance.

  17. Temporal variations in near surface soil moisture at two contrasting sites in the Wye catchment and their control on storm streamflow generation

    Science.gov (United States)

    Roberts, G.; Crane, S. B.

    Near surface soil moisture measurements were recorded at hourly intervals at two contrasting sites within the Cyff sub-catchment using a prototype capacitance probe system. In a mire area within a valley bottom, over the twelve month recording period, very little change in moisture content occurred. At the other site, a well drained area on a steeply sloping hillside, major variations occurred with significant soil moisture deficits being generated during a particularly dry summer. Soil moisture on the slope responded rapidly to rainfall inputs during wet periods, with little response during particularly dry periods. A number of rainfall events was analysed to determine whether changes in soil moisture could be used to characterise storm hydrographs for the Cyff and the Gwy, two sub-catchments being composed of differing percentages of mire area and steep slopes. It was found that percentage runoff for the Cyff was correlated with antecedent soil moisture on the slope, though the agreements for peak flow and lag time were poorer. For the Gwy, poor agreements were obtained for all three hydrograph characteristics. A simple formulation, based on storm rainfall and antecedent soil moisture deficits in the slope and mire areas, gave good agreement with storm streamflow volumes.

  18. Temporal variations in near surface soil moisture at two contrasting sites in the Wye catchment and their control on storm streamflow generation

    Directory of Open Access Journals (Sweden)

    G. Roberts

    1997-01-01

    Full Text Available Near surface soil moisture measurements were recorded at hourly intervals at two contrasting sites within the Cyff sub-catchment using a prototype capacitance probe system. In a mire area within a valley bottom, over the twelve month recording period, very little change in moisture content occurred. At the other site, a well drained area on a steeply sloping hillside, major variations occurred with significant soil moisture deficits being generated during a particularly dry summer. Soil moisture on the slope responded rapidly to rainfall inputs during wet periods, with little response during particularly dry periods. A number of rainfall events was analysed to determine whether changes in soil moisture could be used to characterise storm hydrographs for the Cyff and the Gwy, two sub-catchments being composed of differing percentages of mire area and steep slopes. It was found that percentage runoff for the Cyff was correlated with antecedent soil moisture on the slope, though the agreements for peak flow and lag time were poorer. For the Gwy, poor agreements were obtained for all three hydrograph characteristics. A simple formulation, based on storm rainfall and antecedent soil moisture deficits in the slope and mire areas, gave good agreement with storm streamflow volumes.

  19. Surface coal mine land reclamation using a dry flue gas desulfurization product: Short-term and long-term water responses.

    Science.gov (United States)

    Chen, Liming; Stehouwer, Richard; Tong, Xiaogang; Kost, Dave; Bigham, Jerry M; Dick, Warren A

    2015-09-01

    Abandoned coal-mined lands are a worldwide concern due to their potential negative environmental impacts, including erosion and development of acid mine drainage. A field study investigated the use of a dry flue gas desulfurization product for reclamation of abandoned coal mined land in USA. Treatments included flue gas desulfurization product at a rate of 280 Mg ha(-1) (FGD), FGD at the same rate plus 112 Mg ha(-1) yard waste compost (FGD/C), and conventional reclamation that included 20 cm of re-soil material plus 157 Mg ha(-1) of agricultural limestone (SOIL). A grass-legume sward was planted after treatment applications. Chemical properties of surface runoff and tile water (collected from a depth of 1.2m below the ground surface) were measured over both short-term (1-4 yr) and long-term (14-20 yr) periods following reclamation. The pH of surface runoff water was increased from approximately 3, and then sustained at 7 or higher by all treatments for up to 20 yr, and the pH of tile flow water was also increased and sustained above 5 for 20 yr. Compared with SOIL, concentrations of Ca, S and B in surface runoff and tile flow water were generally increased by the treatments with FGD product in both short- and long-term measurements and concentrations of the trace elements were generally not statistically increased in surface runoff and tile flow water over the 20-yr period. However, concentrations of As, Ba, Cr and Hg were occasionally elevated. These results suggest the use of FGD product for remediating acidic surface coal mined sites can provide effective, long-term reclamation. Copyright © 2015. Published by Elsevier Ltd.

  20. Do Reductions in Dry Season Transpiration Allow Shallow Soil Water Uptake to Persist in a Tropical Lower Montane Cloud Forest?

    Science.gov (United States)

    Munoz Villers, L. E.; Holwerda, F.; Alvarado-Barrientos, M. S.; Goldsmith, G. R.; Geissert Kientz, D. R.; González Martínez, T. M.; Dawson, T. E.

    2016-12-01

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF water cycling remain poorly understood. To investigate the plant functional response to reduced water availability, we conducted a study during the mid to late dry season (2014) in the lower limit (1,325 m asl) of the TMCF belt (1200-2500 m asl) in central Veracruz, Mexico. The temporal variation of transpiration rates of dominant upper canopy and mid-story tree species, depth of water uptake, as well as tree water sources were examined using micrometeorological, sapflow and soil moisture measurements, in combination with data on stable isotope (δ18O and δ2H) composition of rain, tree xylem, soil (bulk and low suction-lysimeter) and stream water. The sapflow data suggest that crown conductances decreased as temperature and vapor pressure deficit increased, and soil moisture decreased from the mid to late dry season. Across all samplings (January 21, April 12 and 26), upper canopy species (Quercus spp.) showed more depleted (negative) isotope values compared to mid-story trees (Carpinus tropicalis). Overall, we found that the evaporated soil water pool was the main source for the trees. Furthermore, our MixSIAR Bayesian mixing model results showed that the depth of tree water uptake changed over the course of the dry season. Unexpectedly, a shift in water uptake from deeper (60-120 cm depth) to shallower soil water (0-30 cm) sources was observed, coinciding with the decreases in transpiration rates towards the end of the dry season. A larger reduction in deep soil water contributions was observed for upper canopy trees (from 70±14 to 22±15%) than for mid-story species (from 10±13 to 7±10%). The use of shallow soil water by trees during the dry season seems consistent with the greater root biomass and higher macronutrient concentrations found in the first 10 cm of the soil profiles. These findings are an

  1. Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of Phragmites australis under different drying-rewetting cycles.

    Science.gov (United States)

    Liang, Jin-Feng; An, Jing; Gao, Jun-Qin; Zhang, Xiao-Ya; Yu, Fei-Hai

    2018-01-01

    The frequency of soil drying-rewetting cycles is predicted to increase under future global climate change, and arbuscular mycorrhizal fungi (AMF) are symbiotic with most plants. However, it remains unknown how AMF affect plant growth under different frequencies of soil drying-rewetting cycles. We subjected a clonal wetland plant Phragmites australis to three frequencies of drying-rewetting cycles (1, 2, or 4 cycles), two nutrient treatments (with or without), and two AMF treatments (with or without) for 64 days. AMF promoted the growth of P. australis, especially in the 2 cycles of the drying-rewetting treatment. AMF had a significant positive effect on leaf mass and number of ramets in the 2 cycles of the drying-rewetting treatment with nutrient addition. In the 2 cycles of drying-rewetting treatment without nutrient addition, AMF increased leaf area and decreased belowground to aboveground biomass ratio. These results indicate that AMF may assist P. australis in coping with medium frequency of drying-rewetting cycles, and provide theoretical guidance for predicting how wetland plants respond to future global climate change.

  2. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng; Shin, Hosung; Santamarina, Carlos

    2015-01-01

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  3. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng

    2015-12-14

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  4. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments

    NARCIS (Netherlands)

    Zhao, Longshan; Hou, Rui; Wu, Faqi; Keesstra, Saskia

    2018-01-01

    Agriculture has a large effect on the properties of the soil and with that on soil hydrology. The partitioning of rainfall into infiltration and runoff is relevant to understand runoff generation, infiltration and soil erosion. Tillage manages soil surface properties and generates soil surface

  5. Characterization of Several Paddy Soil Types in Bogor, West Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Kurniati

    2016-01-01

    Full Text Available Paddy soil has different morphology and pedogenic characteristics compared to dry land, due to the influence of inundation during several months in a year. Puddling and drying that occurs in turns (redox cycle in paddy soil can lead to the formation of concretions or rusty Fe and Mn. The main purpose of this study was to understand the changing of the morphological and chemical properties as a result of changing of the dry land to paddy soil. Besides, the study also aimed to understand plow pan layer formation in Podsolic, Latosol, Regosol, and Andosol soil type. Results showed that content of soil density (bulk density of dry land ranged from 0.5 to 1.0, while paddy soil is 0.8 to 1.0 (g cm-3. Bulk density values in all four types of soils increased after the changing. Observation also demonstrated that severity levels of paddy soil is higher than dry land, especially in the second and third soil layers or under the surface of soils. Acidity of dry land was likely to be higher than paddy soil. There were no significant differences in nutrient such as C-organic, P and N. Meanwhile, using dithionite as solvent, paddy soil has higher Fe, Mn, and Al content than that of dry land, and remain the same when extracted with pyrophosphate and oxalate. From the four types of soil observed,the paddy soil showed formation of plow pan layer. This was shown by the soil severity level higher than the topsoil or other layers. Paddy soil had unique properties due to redox reaction, thereby providing soil discoloration i.e darker due to high solubility of Fe, Mn, and Al.

  6. WATER RETENTION OPTION OF DRAINAGE SYSTEM FOR DRY SEASON CORN CULTIVATION AT TIDAL LOWLAND AREA

    Directory of Open Access Journals (Sweden)

    Bakri

    2015-10-01

    Full Text Available Farming constraint at tidal lowland area is about water management related to the nature of excessive water during wet season and insufficient water during dry season. This field research objectives was to find out the corn crop cultivation in August 2014 which entered dry season. The installation of subsurface drainage that previously had functioned as water discharge was converted into water retention. The research results showed that corn had grown well during peak dry season period (October in which water table was at –50 cm below soil surface, whereas water table depth was dropped to –70 cm below soil surface in land without subsurface drainage. This condition implied that installation of subsurface drainage at dry season had function as water retention, not as water discharge. Therefore, network function was inverted from water discharge into water retention. It had impact on the development of optimum water surface that flow in capillary mode to fulfill the crop’s water requirement. Corn production obtained was 6.4 t ha-1. This condition was very promising though still below the maximum national production. The applications of subsurface drainage was still not optimum due to the supply of water from the main system was not the same because of the soil physical properties diversity and topography differences.

  7. Development and evaluation of the MTVDI for soil moisture monitoring

    Science.gov (United States)

    Zhu, Wenbin; Lv, Aifeng; Jia, Shaofeng; Sun, Liang

    2017-06-01

    Several parameterization schemes have been developed to retrieve the soil moisture information involved in the remotely sensed surface temperature-vegetation index (Ts - VI) space. However, most of them are performed with the constraint of the dry edge of the Ts - VI space to define the maximum water stressed conditions. In view of the subjectivity and uncertainty involved in the determination of the dry edge, a new index termed as the Modified Temperature-Vegetation Dryness Index (MTVDI) was developed in this paper to reduce the reliance of the parameterization scheme on the dry edge. In the parameterization scheme of MTVDI, isopleth lines of soil moisture involved in the feature space were retrieved by the temperature-vegetation index method, and only the maximum surface temperature of bare soil (Tsmax) was indispensable in the definition of maximum water stressed conditions. For evaluation purpose, the MTVDI was demonstrated in the Southern Great Plains region of the U.S. and was compared with two other traditional soil moisture indexes developed under the constraint of dry edge. The comparison confirmed the effectivity of the MTVDI in monitoring the spatial pattern and seasonal variation of soil moisture. Our analyses also suggest that Tsmax, the only parameter needed in the definition of maximum water stressed conditions, can be retrieved directly from the parameterization scheme itself. Therefore, the retrieval of MTVDI can be performed independent of the dry edge, which is a significant improvement to the traditional parameterization schemes of soil moisture from the Ts - VI feature space.

  8. Influence of diesel contamination in soil on growth and dry matter partitioning of Lactuca sativa and Ipomoea batatas.

    Science.gov (United States)

    Fatokun, Kayode; Zharare, Godfrey Elijah

    2015-09-01

    Phytotoxic effect of diesel contaminated soil was investigated on growth and dry matter partitioning in Lactuca sativa and Ipomoea batatas in greenhouse pot experiment at two concentration range (0-30 ml and 0-6 ml diesel kg(-1) soil) for 14 weeks. The results indicated thatwhole plant biomass, stem length, root length, number of leaves and leaf chlorophyll in two plants were negatively correlated with increasing diesel concentrations. The critical concentration of diesel associated with 10% decrease in plant growth was 0.33 ml for lettuce and 1.50 ml for sweet potato. Thus, growth of lettuce in diesel contaminated soil was more sensitive than sweet potato. The pattern of dry matter partitioning between root and shoot in both plants were similar. In 0-6 ml diesel contamination range, allocation of dry matter to shoot system was favoured resulting in high shoot: root ratio of 4.54 and 12.91 for lettuce and sweet potato respectively. However, in 0-30 ml diesel contamination range, allocation of dry matter to root was favoured, which may have been an adaptive mechanism in which the root system was used for storage in addition to increasing the capacity for foraging for mineral nutrients and water. Although lettuce accumulated more metals in its tissue than sweet potato, the tissue mineral nutrients in both species did not vary to great extent. The critical diesel concentration for toxicity suggested that the cause of mortality and poor growth of sweet potato and lettuce grown in diesel contaminated soil was due to presence of hydrocarbons in diesel.

  9. Using Artificial Soil and Dry-Column Flash Chromatography to Simulate Organic Substance Leaching Process: A Colorful Environmental Chemistry Experiment

    Science.gov (United States)

    de Avellar, Isa G. J.; Cotta, Tais A. P. G.; Neder, Amarilis de V. Finageiv

    2012-01-01

    Soil is an important and complex environmental compartment and soil contamination contributes to the pollution of aquifers and other water basins. A simple and low-cost experiment is described in which the mobility of three organic compounds in an artificial soil is examined using dry-column flash chromatography. The compounds were applied on top…

  10. Influence of soil surface structure on simulated infiltration and subsequent evaporation

    International Nuclear Information System (INIS)

    Verplancke, H.; Hartmann, R.; Boodt, M. de

    1983-01-01

    A laboratory rainfall and evaporation experiment was conducted to study the effectiveness of the soil surface structure on infiltration and subsequent evaporation. The stability of the surface layer was improved through the application of synthetic additives such as bituminous emulsion and a prepolymer of polyurea (Uresol). The soil column where the soil surface was treated with a bituminous emulsion shows a decrease in depth of wetting owing to the water repellency of that additive, and consequently an increased runoff. However, the application of Uresol to the surface layer improved the infiltration. The main reason for these differences is that in the untreated soils there is a greater clogging of macropores originating from aggregate breakdown under raindrop impact in the top layer. The evaporation experiment started after all columns were wetted to a similar soil-water content and was carried out in a controlled environmental tunnel. Soil-water content profiles were established during evaporation by means of a fully automatic γ-ray scanner. It appears that in both treatments the cumulative evaporation was less than in the untreated soil. This was due to the effect of an aggregated and stabilized surface layer. Under a treated soil surface the evaporation remains constant during the whole experiment. However, under an untreated soil surface different evaporation stages were recorded. From these experiments the impression is gained that the effect of aggregating the soil surface is an increase of the saturated hydraulic conductivity under conditions near saturation. On the other hand, a finely structured layer exhibits a greater hydraulic conductivity during evaporation in the lower soil-water potential range than a coarsely aggregated layer. So it may be concluded that, to obtain the maximum benefit from the available water - optimal water conservation - much attention must be given to the aggregation of the top soil and its stability. (author)

  11. Surface topography and contact mechanics of dry and wet human skin

    Directory of Open Access Journals (Sweden)

    Alexander E. Kovalev

    2014-08-01

    Full Text Available The surface topography of the human wrist skin is studied by using optical and atomic force microscopy (AFM methods. By using these techniques the surface roughness power spectrum is obtained. The Persson contact mechanics theory is used to calculate the contact area for different magnifications, for the dry and wet skin. The measured friction coefficient between a glass ball and dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 13 MPa and σf ≈ 5 MPa, respectively, act in the area of real contact during sliding. These frictional shear stresses are typical for sliding on surfaces of elastic bodies. The big increase in friction, which has been observed for glass sliding on wet skin as the skin dries up, can be explained as result of the increase in the contact area arising from the attraction of capillary bridges. Finally, we demonstrated that the real contact area can be properly defined only when a combination of both AFM and optical methods is used for power spectrum calculation.

  12. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Ahmadi, Seyed Hamid; Lærke, Poul Erik

    2008-01-01

    Experiments were conducted in lysimeters with sandy soil under an automatic rain-out shelter to study the effects of subsurface drip irrigation treatments, full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD), on nitrogen (N) dynamics in the soil-plant system of potatoes...

  13. Aspergillus and Penicillium (Eurotiales: Trichocomaceae) in soils of the Brazilian tropical dry forest: diversity in an area of environmental preservation.

    Science.gov (United States)

    Barbosa, Renan do Nascimento; Bezerra, Jadson Diogo Pereira; Costa, Phelipe Manoel Oller; de Lima-Júnior, Nelson Correia; Alves de Souza Galvão, Ivana Roberta Gomes; Alves dos Santos-Júnior, Anthony; Fernandes, Maria José; de Souza-Motta, Cristina Maria; Oliveira, Neiva Tinti

    2016-03-01

    Soil is a complex biological system that plays a key role for plants and animals, especially in dry forests such as the Caatinga. Fungi from soils, such as Aspergillus and Penicillium, can be used as bioindica- tors for biodiversity conservation. The aim of this study was to isolate and identify species of Aspergillus and Penicillium in soil, from the municipalities of Tupanatinga and Ibimirim, with dry forests, in the Catimbau National Park. Five collections were performed in each area during the drought season of 2012, totaling 25 soil samples per area. Fungi were isolated by suspending soil samples in sterile distilled water and plating on Sabouraud Agar media plus Chloramphenicol and Rose Bengal, and Glycerol Dicloran Agar. Isolates were identified by morphological taxonomy in the Culture Collection Laboratory and confirmed by sequencing of the Internal Transcribed Spacer of rDNA. A total of 42 species were identified, of which 22 belong to the genus Aspergillus and 20 to Penicillium. Penicillium isolates showed uniform distribution from the collecting area in Tupanatinga, and the evenness indices found were 0.92 and 0.88 in Tupanatinga and Ibimirim, respectively. Among isolates of Aspergillus evenness, the value found in Tupanatinga (0.85) was very close to that found in Ibimirim (0.86). High diversity and low dominance of fungi in soil samples was observed. These results con- tributed to the estimation of fungal diversity in dry environments of the Caatinga, where diversity is decreasing in soils that have undergone disturbance.

  14. Soil Response to Global Change: Soil Process Domains and Pedogenic Thresholds (Invited)

    Science.gov (United States)

    Chadwick, O.; Kramer, M. G.; Chorover, J.

    2013-12-01

    The capacity of soil to withstand perturbations, whether driven by climate, land use change, or spread of invasive species, depends on its chemical composition and physical state. The dynamic interplay between stable, well buffered soil process domains and thresholds in soil state and function is a strong determinant of soil response to forcing from global change. In terrestrial ecosystems, edaphic responses are often mediated by availability of water and its flux into and through soils. Water influences soil processes in several ways: it supports biological production, hence proton-donor, electron-donor and complexing-ligand production; it determines the advective removal of dissolution products, and it can promote anoxia that leads microorganisms to utilize alternative electron acceptors. As a consequence climate patterns strongly influence global distribution of soil, although within region variability is governed by other factors such as landscape age, parent material and human land use. By contrast, soil properties can vary greatly among climate regions, variation which is guided by the functioning of a suite of chemical processes that tend to maintain chemical status quo. This soil 'buffering' involves acid-base reactions as minerals weather and oxidation-reduction reactions that are driven by microbial respiration. At the planetary scale, soil pH provides a reasonable indicator of process domains and varies from about 3.5 to10, globally, although most soils lie between about 4.5 and 8.5. Those that are above 7.5 are strongly buffered by the carbonate system, those that are characterized by neutral pH (7.5-6) are buffered by release of non-hydrolyzing cations from primary minerals and colloid surfaces, and those that are buffered by hydrolytic aluminum on colloidal surfaces. Alkali and alkaline (with the exception of limestone parent material) soils are usually associated with arid and semiarid conditions, neutral pH soils with young soils in both dry and wet

  15. Wet-dry seasonal and vertical geochemical variations in soil water and their driving forces under different land covers in southwest China karst

    Science.gov (United States)

    Wang, Peng; Hu, Bill X.; Wu, Chuanhao; Xu, Kai

    2017-04-01

    Karst aquifers supply drinking water for 25% of the world's population, and they are, however, vulnerable to climate change. Bimonthly hydrochemical data in karst soil water samples from July 2010 to July 2011 were obtained to reveal the seasonal and vertical geochemical variations in soil water under five vegetation types in Qingmuguan, a small karst catchment in southwest China. Soil water chemistry was dominated by Ca2+, HCO3-, and SO42- because of the dissolution of limestone, dolomite, and gypsum minerals in the strata. The predominant hydrochemical types in soil water were Ca2+-HCO3-, Ca2+-SO42-, and mixed Ca2+-HCO3-SO42-. Ca2+ and HCO3- concentrations ranked in the following order: shrub land > dry land > afforestation farmland > bamboo land > grassland. In warm and wet seasons, the main ion concentrations in soil water from grasslands were low. Na+, K+, Ca2+, Mg2+, HCO3-, SO42-, and Cl- concentrations in soil water from other lands were high. An opposite trend was observed in cold and dry seasons. Marked seasonal variations were observed in Ca2+, HCO3-, and NO3- in soil water from dry land. The main ion concentrations in soil water from bamboo lands decreased as soil depth increased. By contrast, the chemistry of soil water from other lands increased as soil depth increased. Their ions were accumulated in depth. A consistent high and low variation between the main ions in soil water and the contents of carbonate and CO2 was found in the soil. Hydrochemical changes in soil water were regulated by the effects of dilution and soil CO2.

  16. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  17. Determination of zinc nutrient in the soil using isotope technique

    International Nuclear Information System (INIS)

    Suwadji, E.

    1975-01-01

    In this experiment the availability of soil Zn nutrient in various soil conditions (dry and submerged), and the efficiency of the application of Zn fertilizer in rice nutrition were measured in glasshouse using isotope dilution technique. The amount of soil Zn nutrient available to plants can be expressed in 'E' and 'L' values. Submerged conditions generally showed an increase in the 'E' and 'L' value compared to dry conditions. Mixed treatment with ZnSO 4 fertilizer is more efficient for Zn absorption than surface treatment. (author)

  18. Impact of Soil Moisture Assimilation on Land Surface Model Spin-Up and Coupled LandAtmosphere Prediction

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Lawston, P.

    2016-01-01

    Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASAs Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land-atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS-WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spin-up can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux- PBL-ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.

  19. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and

  20. Fourier and granulometry methods on 3D images of soil surfaces for evaluating soil aggregate size distribution

    DEFF Research Database (Denmark)

    Jensen, T.; Green, O.; Munkholm, Lars Juhl

    2016-01-01

    The goal of this research is to present and compare two methods for evaluating soil aggregate size distribution based on high resolution 3D images of the soil surface. The methods for analyzing the images are discrete Fourier transform and granulometry. The results of these methods correlate...... with a measured weight distribution of the soil aggregates. The results have shown that it is possible to distinguish between the cultivated and the uncultivated soil surface. A sensor system suitable for capturing in-situ high resolution 3D images of the soil surface is also described. This sensor system...

  1. Acceleration of peat drying by intensifying the heat and mass transfer; Turpeen kuivumisen nopeuttaminen laemmoen- ja aineensiirtoa tehostamalla

    Energy Technology Data Exchange (ETDEWEB)

    Hillebrand, K.

    1996-12-31

    The efficiency of peat production can be increased by intensifying peat drying. To intensify drying one has to know the effects of the different factors affecting the heat and mass transfer in the drying layer and in the soil. The objective of the study is to increase the degree of utilization of solar energy in drying of peat from the present level of 30% to 40% of the total incoming solar energy. In this way it is possible to reduce the peat production costs about 10%. A numerical drying model has been developed which describes the transfer of liquid water, water vapor and heat in the drying layer and in the soil. In addition, the interaction between the atmosphere and the drying layer, as well as the rainfall interception by the layer, infiltration, evaporation, and drainage have been taking into account. Daily input requirements include global solar radiation, air temperature and relative humidity, wind speed and precipitation. In addition to the weather data one has to know the characteristics of the drying layer and the soil. The numerical drying model was also used to study the effect of soil frost on peat drying and the possibilities to hinder the frost formation. Producing peat on the field which is still partly frozen, the drying of peat takes 10 - 25% longer time than under normal conditions, which means 5 - 25 hours longer drying period. By forming a porous, insulating layer on the top of the soil surface, one can hinder the frost formation significantly. Raising the groundwater level prevents, however, only a little the frost formation in peat soil

  2. Parameter estimation of a two-horizon soil profile by combining crop canopy and surface soil moisture observations using GLUE

    Science.gov (United States)

    Sreelash, K.; Sekhar, M.; Ruiz, L.; Tomer, S. K.; Guérif, M.; Buis, S.; Durand, P.; Gascuel-Odoux, C.

    2012-08-01

    SummaryEstimation of soil parameters by inverse modeling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise when heterogeneous layered soils are considered. The objective of this study was to explore the potential of combining observations on surface soil moisture and crop variables - leaf area index (LAI) and above-ground biomass for estimating soil parameters (water holding capacity and soil depth) in a two-layered soil system using inversion of the crop model STICS. This was performed using GLUE method on a synthetic data set on varying soil types and on a data set from a field experiment carried out in two maize plots in South India. The main results were (i) combination of surface soil moisture and above-ground biomass provided consistently good estimates with small uncertainity of soil properties for the two soil layers, for a wide range of soil paramater values, both in the synthetic and the field experiment, (ii) above-ground biomass was found to give relatively better estimates and lower uncertainty than LAI when combined with surface soil moisture, especially for estimation of soil depth, (iii) surface soil moisture data, either alone or combined with crop variables, provided a very good estimate of the water holding capacity of the upper soil layer with very small uncertainty whereas using the surface soil moisture alone gave very poor estimates of the soil properties of the deeper layer, and (iv) using crop variables alone (else above-ground biomass or LAI) provided reasonable estimates of the deeper layer properties depending on the soil type but provided poor estimates of the first layer properties. The robustness of combining observations of the surface soil moisture and the above-ground biomass for estimating two layer soil properties, which was demonstrated using both synthetic and field experiments in this study, needs now to

  3. Soil methane and CO2 fluxes in rainforest and rubber plantations

    Science.gov (United States)

    Lang, Rong; Blagodatsky, Sergey; Goldberg, Stefanie; Xu, Jianchu

    2017-04-01

    Expansion of rubber plantations in South-East Asia has been a land use transformation trend leading to losses of natural forest cover in the region. Besides impact on ecosystem carbon stocks, this conversion influences the dynamics of greenhouse gas fluxes from soil driven by microbial activity, which has been insufficiently studied. Aimed to understand how land use change affects the soil CO2 and CH4 fluxes, we measured surface gas fluxes, gas concentration gradient, and 13C signature in CH4 and soil organic matter in profiles in a transect in Xishuangbanna, including a rainforest site and three rubber plantation sites with age gradient. Gas fluxes were measured by static chamber method and open chamber respiration system. Soil gases were sampled from installed gas samplers at 5, 10, 30, and 75cm depth at representative time in dry and rainy season. The soil CO2 flux was comparable in rainforest and old rubber plantations, while young rubber plantation had the lowest rate. Total carbon content in the surface soil well explained the difference of soil CO2 flux between sites. All sites were CH4 sinks in dry season and uptake decreased in the order of rainforest, old rubber plantations and young rubber plantation. From dry season to rainy season, CH4 consumption decreased with increasing CH4 concentration in the soil profile at all depths. The enrichment of methane by 13CH4 shifted towards to lowerδ13C, being the evidence of enhanced CH4 production process while net surface methane flux reflected the consumption in wet condition. Increment of CH4 concentration in the profile from dry to rainy season was higher in old rubber plantation compared to rainforest, while the shifting of δ13CH4 was larger in rainforest than rubber sites. Turnover rates of soil CO2 and CH4 suggested that the 0-5 cm surface soil was the most active layer for gaseous carbon exchange. δ13C in soil organic matter and soil moisture increased from rainforest, young rubber plantation to old

  4. The use of 36Cl diffusion to asses changes in pore geometry of allophane soils resulting from drying

    International Nuclear Information System (INIS)

    Holder, G.D.

    1984-01-01

    The apparent diffusion coefficient of 36 Cl is used to assess pore geometric changes in allophane soil resulting from drying. The diffusion method is based on the boundary condition of a planar source diffusing into an infinite medium. The extent of structural changes accompanying drying was indicated by changes in slope of a plot between geometric and interaction factors versus volumetric moisture content. Structural change was least for freeze drying to be followed by a larger but equal change for air and oven drying. (M.A.C.) [pt

  5. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil.

    Science.gov (United States)

    Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian

    2017-06-01

    Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO 2 and N 2 O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO 2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N 2 O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

  6. A missing piece of the puzzle in climate change hotspots: Near-surface turbulent interactions controlling ET-soil moisture coupling in semiarid areas

    Science.gov (United States)

    Haghighi, Erfan; Gianotti, Daniel J.; Rigden, Angela J.; Salvucci, Guido D.; Kirchner, James W.; Entekhabi, Dara

    2017-04-01

    Being located in the transitional zone between dry and wet climate areas, semiarid ecosystems (and their associated ecohydrological processes) play a critical role in controlling climate change and global warming. Land evapotranspiration (ET), which is a central process in the climate system and a nexus of the water, energy and carbon cycles, typically accounts for up to 95% of the water budget in semiarid areas. Thus, the manner in which ET is partitioned into soil evaporation and plant transpiration in these settings is of practical importance for water and carbon cycling and their feedbacks to the climate system. ET (and its partitioning) in these regions is primarily controlled by surface soil moisture which varies episodically under stochastic precipitation inputs. Important as the ET-soil moisture relationship is, it remains empirical, and physical mechanisms governing its nature and dynamics are underexplored. Thus, the objective of this study is twofold: (1) to provide observational evidence for the influence of surface cover conditions on ET-soil moisture coupling in semiarid regions using soil moisture data from NASA's SMAP satellite mission combined with independent observationally based ET estimates, and (2) to develop a relatively simple mechanistic modeling platform improving our physical understanding of interactions between micro and macroscale processes controlling ET and its partitioning in partially vegetated areas. To this end, we invoked concepts from recent progress in mechanistic modeling of turbulent energy flux exchange in bluff-rough regions, and developed a physically based ET model that explicitly accounts for how vegetation-induced turbulence in the near-surface region influences soil drying and thus ET rates and dynamics. Model predictions revealed nonlinearities in the strength of the ET-soil moisture relationship (i.e., ∂ET/∂θ) as vegetation cover fraction increases, accounted for by the nonlinearity of surface

  7. Impacts of soil incorporation of pre-incubated silica-rich rice residue on soil biogeochemistry and greenhouse gas fluxes under flooding and drying.

    Science.gov (United States)

    Gutekunst, Madison Y; Vargas, Rodrigo; Seyfferth, Angelia L

    2017-09-01

    Incorporation of silica-rich rice husk residue into flooded paddy soil decreases arsenic uptake by rice. However, the impact of this practice on soil greenhouse gas (GHG) emissions and elemental cycling is unresolved particularly as amended soils experience recurrent flooding and drying cycles. We evaluated the impact of pre-incubated silica-rich rice residue incorporation to soils on pore water chemistry and soil GHG fluxes (i.e., CO 2 , CH 4 , N 2 O) over a flooding and drying cycle typical of flooded rice cultivation. Soils pre-incubated with rice husk had 4-fold higher pore water Si than control and 2-fold higher than soils pre-incubated with rice straw, whereas the pore water As and Fe concentrations in soils amended with pre-incubated straw and husk were unexpectedly similar (maximum ~0.85μM and ~450μM levels, respectively). Pre-incubation of residues did not affect Si but did affect the pore water levels of As and Fe compared to previous studies using fresh residues where straw amended soils had higher As and Fe in pore water. The global warming potential (GWP) of soil GHG emissions decreased in the order straw (612±76g CO 2 -eqm -2 )>husk (367±42gCO 2 -eqm -2 )>ashed husk=ashed straw (251±26 and 278±28gCO 2 -eqm -2 )>control (186±23gCO 2 -eqm -2 ). The GWP increase due to pre-incubated straw amendment was due to: a) larger N 2 O fluxes during re-flooding; b) smaller contributions from larger CH 4 fluxes during flooded periods; and c) higher CH 4 and CO 2 fluxes at the onset of drainage. In contrast, the GWP of the husk amendment was dominated by CO 2 and CH 4 emissions during flooded and drainage periods, while ashed amendments increased CO 2 emissions particularly during drainage. This experiment shows that ashed residues and husk addition minimizes GWP of flooded soils and enhances pore water Si compared to straw addition even after pre-incubation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A new top boundary condition for modeling surface diffusive exchange of a generic volatile tracer: theoretical analysis and application to soil evaporation

    Directory of Open Access Journals (Sweden)

    J. Y. Tang

    2013-02-01

    Full Text Available We describe a new top boundary condition (TBC for representing the air–soil diffusive exchange of a generic volatile tracer. This new TBC (1 accounts for the multi-phase flow of a generic tracer; (2 accounts for effects of soil temperature, pH, solubility, sorption, and desorption processes; (3 enables a smooth transition between wet and dry soil conditions; (4 is compatible with the conductance formulation for modeling air–water volatile tracer exchange; and (5 is applicable to site, regional, and global land models.

    Based on the new TBC, we developed new formulations for bare-soil resistance and corresponding soil evaporation efficiency. The new soil resistance is predicted as the reciprocal of the harmonic sum of two resistances: (1 gaseous and aqueous molecular diffusion and (2 liquid mass flow resulting from the hydraulic pressure gradient between the soil surface and center of the topsoil control volume. We compared the predicted soil evaporation efficiency with those from several field and laboratory soil evaporation measurements and found good agreement with the typically observed two-stage soil evaporation curves. Comparison with the soil evaporation efficiency equation of Lee and Pielke (1992; hereafter LP92 indicates that their equation can overestimate soil evaporation when the atmospheric resistance is low and underestimate soil evaporation when the soil is dry. Using a synthetic inversion experiment, we demonstrated that using inverted soil resistance data from field measurements to derive empirical soil resistance formulations resulted in large uncertainty because (1 the inverted soil resistance data are always severely impacted by measurement error and (2 the derived empirical equation is very sensitive to the number of data points and the assumed functional form of the resistance.

    We expect the application of our new TBC in land models will provide a consistent representation for the diffusive tracer

  9. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  10. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica.

    Science.gov (United States)

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda

    2016-11-01

    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.

  11. Nitrate retention capacity of milldam-impacted legacy sediments and relict A horizon soils

    Science.gov (United States)

    Weitzman, Julie N.; Kaye, Jason P.

    2017-05-01

    While eutrophication is often attributed to contemporary nutrient pollution, there is growing evidence that past practices, like the accumulation of legacy sediment behind historic milldams, are also important. Given their prevalence, there is a critical need to understand how N flows through, and is retained in, legacy sediments to improve predictions and management of N transport from uplands to streams in the context of climatic variability and land-use change. Our goal was to determine how nitrate (NO3-) is cycled through the soil of a legacy-sediment-strewn stream before and after soil drying. We extracted 10.16 cm radius intact soil columns that extended 30 cm into each of the three significant soil horizons at Big Spring Run (BSR) in Lancaster, Pennsylvania: surface legacy sediment characterized by a newly developing mineral A horizon soil, mid-layer legacy sediment consisting of mineral B horizon soil and a dark, organic-rich, buried relict A horizon soil. Columns were first preincubated at field capacity and then isotopically labeled nitrate (15NO3-) was added and allowed to drain to estimate retention. The columns were then air-dried and subsequently rewet with N-free water and allowed to drain to quantify the drought-induced loss of 15NO3- from the different horizons. We found the highest initial 15N retention in the mid-layer legacy sediment (17 ± 4 %) and buried relict A soil (14 ± 3 %) horizons, with significantly lower retention in the surface legacy sediment (6 ± 1 %) horizon. As expected, rewetting dry soil resulted in 15N losses in all horizons, with the greatest losses in the buried relict A horizon soil, followed by the mid-layer legacy sediment and surface legacy sediment horizons. The 15N remaining in the soil following the post-drought leaching was highest in the mid-layer legacy sediment, intermediate in the surface legacy sediment, and lowest in the buried relict A horizon soil. Fluctuations in the water table at BSR which affect

  12. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands.

    Science.gov (United States)

    Stern, M E; Beuerman, R W; Fox, R I; Gao, J; Mircheff, A K; Pflugfelder, S C

    1998-11-01

    Most dry-eye symptoms result from an abnormal, nonlubricative ocular surface that increases shear forces under the eyelids and diminishes the ability of the ocular surface to respond to environmental challenges. This ocular-surface dysfunction may result from immunocompromise due to systemic autoimmune disease or may occur locally from a decrease in systemic androgen support to the lacrimal gland as seen in aging, most frequently in the menopausal female. Components of the ocular surface (cornea, conjunctiva, accessory lacrimal glands, and meibomian glands), the main lacrimal gland, and interconnecting innervation act as a functional unit. When one portion is compromised, normal lacrimal support of the ocular surface is impaired. Resulting immune-based inflammation can lead to lacrimal gland and neural dysfunction. This progression yields the OS symptoms associated with dry eye. Restoration of lacrimal function involves resolution of lymphocytic activation and inflammation. This has been demonstrated in the MRL/lpr mouse using systemic androgens or cyclosporine and in the dry-eye dog using topical cyclosporine. The efficacy of cyclosporine may be due to its immunomodulatory and antiinflammatory (phosphatase inhibitory capability) functions on the ocular surface, resulting in a normalization of nerve traffic. Although the etiologies of dry eye are varied, common to all ocular-surface disease is an underlying cytokine/receptor-mediated inflammatory process. By treating this process, it may be possible to normalize the ocular surface/lacrimal neural reflex and facilitate ocular surface healing.

  13. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    Science.gov (United States)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  14. Modelling desiccation cracking in a homogenous soil clay layer: comparison between different hypotheses on constitutive behaviour

    Directory of Open Access Journals (Sweden)

    Jommi Cristina

    2016-01-01

    Full Text Available Desiccation cracks are usually thought to start from the surface of an evaporating soil layer, and the available simplified models for crack initiation and propagation are based on this hypothesis. On the contrary, experimental results on a Dutch river clay showed that cracks in an evaporating soil layer may start and propagate below the surface, confirming earlier findings by other researchers. A simple one-dimensional model was set up to analyse the consequences of different hypotheses about the material behaviour on the crack onset in a homogenous soil layer undergoing surface drying. The results of the model show that dependence of the material behaviour on the rate of water content change is a necessary requirement for cracks to initiate below the surface. The conclusion suggests that, to properly understand cracking in an evaporating soil layer, an intrinsic time scale for the mechanical response must be accounted for, among all the other factors which were previously highlighted by other researchers. The key factor to predict crack onset below the surface is the dependence of the drying branch of the water retention curve of the compressible soil on the rate of drying, which would be justified by a rate dependent fabric evolution.

  15. X-Ray Amorphous Phases in Antarctica Dry Valley Soils: Insight into Aqueous Alteration Processes on Mars?

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.; Rampe, E. B.; Golden, D. C.; Quinn, J. E.

    2015-01-01

    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 weight percentage) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater, Mars. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 weight percentage in the upper horizon to as high as 15 weight percentage in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soils had lower X-ray amorphous contents of about 5 weight percentage in the lowest horizon. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials

  16. Copper pollution decreases the resistance of soil microbial community to subsequent dry-rewetting disturbance.

    Science.gov (United States)

    Li, Jing; Wang, Jun-Tao; Hu, Hang-Wei; Ma, Yi-Bing; Zhang, Li-Mei; He, Ji-Zheng

    2016-01-01

    Dry-rewetting (DW) disturbance frequently occurs in soils due to rainfall and irrigation, and the frequency of DW cycles might exert significant influences on soil microbial communities and their mediated functions. However, how microorganisms respond to DW alternations in soils with a history of heavy metal pollution remains largely unknown. Here, soil laboratory microcosms were constructed to explore the impacts of ten DW cycles on the soil microbial communities in two contrasting soils (fluvo-aquic soil and red soil) under three copper concentrations (zero, medium and high). Results showed that the fluctuations of substrate induced respiration (SIR) decreased with repeated cycles of DW alternation. Furthermore, the resistance values of substrate induced respiration (RS-SIR) were highest in non-copper-stressed (zero) soils. Structural equation model (SEM) analysis ascertained that the shifts of bacterial communities determined the changes of RS-SIR in both soils. The rate of bacterial community variance was significantly lower in non-copper-stressed soil compared to the other two copper-stressed (medium and high) soils, which might lead to the higher RS-SIR in the fluvo-aquic soil. As for the red soil, the substantial increase of the dominant group WPS-2 after DW disturbance might result in the low RS-SIR in the high copper-stressed soil. Moreover, in both soils, the bacterial diversity was highest in non-copper-stressed soils. Our results revealed that initial copper stress could decrease the resistance of soil microbial community structure and function to subsequent DW disturbance. Copyright © 2015. Published by Elsevier B.V.

  17. [Concentrations and Component Profiles PAHs in Surface Soils and Wheat Grains from the Cornfields Close to the Steel Smelting Industry in Handan, Hebei Province].

    Science.gov (United States)

    Wu, Di; Wang, Yi-long; Liu, Wei-jian; Chen, Yuan-chen; Fu, Xiao-fang; Tao, Shu; Liu, Wen-xin

    2016-02-15

    In this study, paired surface soil and mature wheat grain samples were collected in the cornfields near the large Handan Steel Manufacturer; and the total concentrations and compositional profiles of the parent PAHs were measured, then the spatial distribution characteristics and correlation with total organic carbon fractions in soil were determined. Accordingly, a preliminary source identification was performed, and the association between PAHs in surface soil and wheat grain was briefly discussed. The median concentration of total PAHs in surface soils from the cornfields of Handan was 398.9 ng x g(-1) (ranged from 123.4 ng x g(-1) to 1626.4 ng x g(-1), where around 18% and 10% of all the studied soil samples were over the corresponding quality criteria for total PAHs and B [a] P in soils, respectively. The MMW and HMW species were the main components in the compositional profiles of surface soils. Based on the specific isomeric ratios of PAHs species, coal/biomass combustion and transportation fuel (tail gas) were the dominant mixed sources for the local PAHs emission. The fractions of surface soil TOC had significant positive correlations with the total PAHs and also with the individual components with different rings. In addition, the median concentration of total PAHs in wheat grains collected in the cornfields near the Handan Steel Manufacture was 27.0 ng x g(-1) (ranged from 19.0-34.0 ng x g(-1)). The levels in wheat grains were not high, and lower than the related hygienic standards of food proposed by EU and China. The LMW and MMW PAHs with 2 to 4 rings occupied a larger proportion, more than 84% of the total PAHs, which was largely different from the component profiles in surface soils. This situation suggested that the local sources of PAHs in wheat grains may originate not only from surface soil via root absorption and internal transportation, but also from ambient air through dry and wet deposition on the leaf surface (stoma).

  18. The Effect of Compost and the Ripe Fruit Waste of Fig on some Physical Properties of Surface Soil

    Directory of Open Access Journals (Sweden)

    zahra dianat maharluei

    2017-02-01

    Full Text Available Introduction: In arid and semi-arid soils, low organic matter is one of the barriers to achieving optimal performance. The soils with more organic matter have a better structure and are more resistant to erosive factors such as water and wind. Soil organic matter has a particular importance and has significant impact on the stability of soil aggregates, the extension of plant root system, carbon and water cycles and soil resistance to erosion. This substance acts as a cementing agent and plays an important role in soil flocculation and formation of resistant aggregates.Also, the addition of organic matter to the soil increases soil porosity and decreases soil bulk density. Materials and Methods: In this research, the effect of the two types of organic matter (compost and the ripe fruit waste of fig on some soil physical properties was studied. A factorial experiment based on completely randomized design, including the four levels of compost and the ripe fruit waste of fig (0, 1, 2 and 4 by weight % and three soil types (loamy sand, loam and silty clay loam with three replications was carried out. The soil samples were collected from the three territories of Fars Province: loamy sand soil from Shiraz, loamy soil from Maharlu and Silty clay loam soil from Zarghan area. The soil samples were air dried and passed through a 2 mm sieve. The physical properties including the bulk density, particle density, porosity, moisture content and soil crust strength was measured. In this research, the soil texture by hydrometer method, Electrical conductivity of the soil saturated paste extract by electrical conductivity meter, saturated paste pH by pH meter, seedling emergence test, soil crust strength by a pocket penetrometer (HUMBOLDT MFG.CO. bulk density by cylindrical sample and particle density by pycnometer method were measured. The fig fruit treatments were prepared by thoroughly mixing the dried powder of ripe fig fruit passed through a 2 mm sieve (with

  19. Soil contamination of plant surfaces from grazing and rainfall interactions

    International Nuclear Information System (INIS)

    Hinton, T.G.; Stoll, J.M.; Tobler, L.

    1995-01-01

    Contaminants often attach to soil particles, and their subsequent environmental transport is largely determined by processes that govern soil movement. We examined the influence of grazing intensity on soil contamination of pastures. Four different grazing densities of sheep were tested against an ungrazed control plot. Scandium concentrations were determined by neutron activation analysis and was used as a tracer of soil adhesion on vegetation. Soil loadings ( g soil kg -1 dry plant) increased 60% when grazing intensity was increased by a factor of four (p 0.003). Rain and wind removed soil from vegetation in the ungrazed control plots, but when grazing sheep were present, an increase in rain from 0.3 to 9.7 mm caused a 130% increase in soil contamination. Multiple regression was used to develop an equation that predicts soil loadings as a function of grazing density, rainfall and wind speed (p = 0.0001, r 2 = 0.78). The model predicts that if grazing management were to be used as a tool to reduce contaminant intake from inadvertent consumption of resuspended soil by grazing animals, grazing densities would have to be reduced 2.5 times to reduce soil loadings by 50%. (author)

  20. Characteristics of organic soil in black spruce forests: Implications for the application of land surface and ecosystem models in cold regions

    Science.gov (United States)

    Yi, S.; Manies, K.; Harden, J.; McGuire, A.D.

    2009-01-01

    Soil organic layers (OL) play an important role in landatmosphere exchanges of water, energy and carbon in cold environments. The proper implementation of OL in land surface and ecosystem models is important for predicting dynamic responses to climate warming. Based on the analysis of OL samples of black spruce (Picea mariana), we recommend that implementation of OL for cold regions modeling: (1) use three general organic horizon types (live, fibrous, and amorphous) to represent vertical soil heterogeneity; (2) implement dynamics of OL over the course of disturbance, as there are significant differences of OL thickness between young and mature stands; and (3) use two broad drainage classes to characterize spatial heterogeneity, as there are significant differences in OL thickness between dry and wet sites. Implementation of these suggestions into models has the potential to substantially improve how OL dynamics influence variability in surface temperature and soil moisture in cold regions. Copyright 2009 by the American Geophys.ical Union.

  1. Dried gamma-irradiated sewage solids use on calcareous soils: crop yields and heavy metals uptake

    International Nuclear Information System (INIS)

    McCaslin, B.D.; Sivinski, J.S.

    1980-01-01

    The fertilizer values of gamma-irradiated digested sewage solids (RDSS) and gamma-irradiated undigested sewage solids (RUSS) have been examined on calcareous soils. Previously published data from Sandia Laboratories have shown that approximately 1 mega-rad of gamma-irradiation effectively destroys pathogenic bacteria, parasites and plant seeds in dried sewage solids. Greenhouse experiments directly comparing gamma-irradiated and non-irradiated undigested and digested dried sewage solids as fertilizers indicate little or no effect of 1 mega-rad gamma radiation treatment on plant yield or plant-nutrient uptake and demonstrated considerable benefit from using sewage solids on calcareous soils. Plant response to undigested sewage solids was considerably greater than to digested sewage solids when applied at levels that were isonitrogenous. The calcareous soils in New Mexico typically range in pH from 7.5 to 9.0, limiting the plant-availability of many elements, especially heavy metals. Soils irrigated with sewage-effluent for 40 years demonstrated beneficial use of supplied plant-nutrients with no apparent increase in plant-uptake of heavy metals. RDSS applied to a calcareous soil low in plant-available iron increased plant growth in the greenhouse considerably more than treatments with equal amounts of nitrogen, phosphorus and iron applied as common fertilizer materials. Plant tissue concentrations of Fe, Zn, Mn and Cu showed that RDSS was a good source of these nutrients. Results also indicated that the total soluble salt concentration of the RDSS was the factor most limiting plant growth. Chromium, Cd, Ni and Pd plant-tissue concentrations were apparently not increased by RDSS treatments. (Auth.)

  2. Mineralisation of low concentrations of organic compounds and microbial biomass in surface and vadose zone soils from the Swan Coastal Plain, Western Australia

    International Nuclear Information System (INIS)

    Franzmann, P. D.; Zappia, L. R.; Patterson, B. M.; Rayner, J.L.; Davis, G. B.

    1998-01-01

    Mineralisation rates for ring-labelled 14 C-atrazine, benzene, and toluene were determined for a number of Swan Coastal Plain soils which had not been previously in contact with these contaminants. Microbial biomass was estimated by phospholipid techniques in soil samples from the same sites. Mineralisation rates for the volatile aromatic hydrocarbons in the thin (up to 30 cm) surface soils (23.4-42.6 μmol/kg . day when fitted to zeroth-order rate kinetics) were appreciably faster than the mineralisation rates measured in soils collected from a depth of 1 m (0.11-3.0 μmol/kg per day). The pesticide atrazine was degraded slowly, with degradation rates in surface soils ranging from 1.22x10 -3 to 2.78x10 -4 μmol/kg . day, and those in soils at 1 m ranging from 5. 13x10 -4 to 3.1610 -4 μmol/kg per day. When mineralisation data were fitted to first-order kinetics then half-lives for atrazine mineralisation ranged from about 1 year in surface soils to 3.1-5.1 years in soils at 1 m. These rates were comparable to atrazine mineralisation rates measured in soils that had not been previously in contact with atrazine, as reported by others. The extent of mineralisation of the organic compounds v. time generally fitted better to zeroth-order kinetics than to first-order kinetics. Confidence in the determination of the mineralisation rate at slow rates of mineralisation was low (r 2 as low as 0.2 in plots of the extent of mineralisation v. time in zeroth-order and first-order plots for samples that showed slow mineralisation). Biomass, expressed as stationary phase Escherichia coli equivalents (SPEE), ranged from 1.4 x10 7 to 1x2x10 8 SPEE/g dry weight for surface soils, and from 8.6x10 5 to 7.3x10 6 SPEE/g dry weight for soils at 1 m. The phospholipids extracted from surface soils tended to contain higher proportions of unsaturated and hydroxy fatty acids than soils at 1 m, which contained higher relative concentrations of branched fatty acids, which is consistent with the

  3. Meteorological and Land Surface Properties Impacting Sea Breeze Extent and Aerosol Distribution in a Dry Environment

    Science.gov (United States)

    Igel, Adele L.; van den Heever, Susan C.; Johnson, Jill S.

    2018-01-01

    The properties of sea breeze circulations are influenced by a variety of meteorological and geophysical factors that interact with one another. These circulations can redistribute aerosol particles and pollution and therefore can play an important role in local air quality, as well as impact remote sensing. In this study, we select 11 factors that have the potential to impact either the sea breeze circulation properties and/or the spatial distribution of aerosols. Simulations are run to identify which of the 11 factors have the largest influence on the sea breeze properties and aerosol concentrations and to subsequently understand the mean response of these variables to the selected factors. All simulations are designed to be representative of conditions in coastal sub tropical environments and are thus relatively dry, as such they do not support deep convection associated with the sea breeze front. For this dry sea breeze regime, we find that the background wind speed was the most influential factor for the sea breeze propagation, with the soil saturation fraction also being important. For the spatial aerosol distribution, the most important factors were the soil moisture, sea-air temperature difference, and the initial boundary layer height. The importance of these factors seems to be strongly tied to the development of the surface-based mixed layer both ahead of and behind the sea breeze front. This study highlights potential avenues for further research regarding sea breeze dynamics and the impact of sea breeze circulations on pollution dispersion and remote sensing algorithms.

  4. Preliminary Effects of Oral Uridine on the Ocular Surface in Dry Eye Patients

    OpenAIRE

    Chang, Ki Cheol; Oh, Joo Youn; In, Youn Seok; Kim, Mee Kum; Shin, Ki Cheul; Wee, Won Ryang; Lee, Jin Hak; Park, Myung Gyu

    2009-01-01

    We designed a randomized, double blinded, 3-months controlled prospective clinical study to investigate effects of oral uridine on the ocular surface in dry eye patients. Twenty-seven patients who diagnosed as dry eye with lower than 5 mm of wetting in the Schirmer strip, with corneal epithelial erosion and who completely followed-up till 3 months were enrolled. Corneal-conjunctival fluorescein staining, non-anesthetic Schirmer test, impression cytology, and Ocular Surface Disease Index (OSDI...

  5. Copper in Surface Soil of Veles Region, Macedonia

    International Nuclear Information System (INIS)

    Panchevski, Zlatko; Stafilov, Trajche; Frontasyeva, Marina V.

    2006-01-01

    For the first time a systematic study of copper distribution in surface soil over of the Veles region, known for its lead and zinc industrial activity, was undertaken. A total of 201 soil samples were collected according to a dense net (0.5 km) in urban and less dense net (1 km) in rural areas. Copper was determined by flame atomic absorption spectrometry (FAAS) using microwave digestion technique with two different types of solvents: aqua regia (HCI and HNO 3 )and the mixture of strong acids (HNO 3 , HCI, and HF). So far the same soil samples were subjected to reactor non-destructive multi-element instrumental neutron activation analysis (INAA), it served as a reference analytical technique for bulk copper determination. The results obtained by two methods of FAAS and INAA are discussed. GIS technology was applied to reveal the areas most affected by copper contamination. It was found that the content of copper in soil samples around the lead and zinc smelter plant is the highest and reaches 1800 mg/kg. Copper content in surface soil all around the town of Veles exceeds maximum permissible level for urban surface soil. Elevated copper content in some rural areas of the Veles region most likely could be explained through using copper containing fungicides for agricultural needs. (Author)

  6. Theory of evapotranspiration. 2. Soil and intercepted water evaporation

    OpenAIRE

    Budagovskyi, Anatolij Ivanovič; Novák, Viliam

    2011-01-01

    Evaporation of water from the soil is described and quantified. Formation of the soil dry surface layer is quantitatively described, as a process resulting from the difference between the evaporation and upward soil water flux to the soil evaporating level. The results of evaporation analysis are generalized even for the case of water evaporation from the soil under canopy and interaction between evaporation rate and canopy transpiration is accounted for. Relationships describing evapotranspi...

  7. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil.

    Science.gov (United States)

    Blazewicz, Steven J; Schwartz, Egbert; Firestone, Mary K

    2014-05-01

    The rapid increase in microbial activity that occurs when a dry soil is rewetted has been well documented and is of great interest due to implications of changing precipitation patterns on soil C dynamics. Several studies have shown minor net changes in microbial population diversity or abundance following wet-up, but the gross population dynamics of bacteria and fungi resulting from soil wet-up are virtually unknown. Here we applied DNA stable isotope probing with H218O coupled with quantitative PCR to characterize new growth, survival, and mortality of bacteria and fungi following the rewetting of a seasonally dried California annual grassland soil. Microbial activity, as determined by CO2 production, increased significantly within three hours of wet-up, yet new growth was not detected until after three hours, suggesting a pulse of nongrowth activity immediately following wet-up, likely due to osmo-regulation and resuscitation from dormancy in response to the rapid change in water potential. Total microbial abundance revealed little change throughout the seven-day post-wet incubation, but there was substantial turnover of both bacterial and fungal populations (49% and 52%, respectively). New growth was linear between 24 and 168 hours for both bacteria and fungi, with average growth rates of 2.3 x 10(8) bacterial 16S rRNA gene copies x [g dry mass](-1) x h(-1) and 4.3 x 10(7) fungal ITS copies x [g dry mass](-1) x h(-1). While bacteria and fungi differed in their mortality and survival characteristics during the seven-day incubation, mortality that occurred within the first three hours was similar, with 25% and 27% of bacterial and fungal gene copies disappearing from the pre-wet community, respectively. The rapid disappearance of gene copies indicates that cell death, occurring either during the extreme dry down period (preceding five months) or during the rapid change in water potential due to wet-up, generates a significant pool of available C that likely

  8. Variation in root activity with season and soil moisture in coconut

    International Nuclear Information System (INIS)

    Venugopal, Vandana; Balachandran, P.V.

    2007-01-01

    An experiment was conducted at the College of Horticulture, Vellanikkara to study the effect of season and soil moisture regime on the physiological activity of roots in coconut. The experiment has been laid out in CRD with two replications at two different depths (20 and 75 cm) and moisture regimes (irrigated and rain fed) round the year. The 32 P uptake was higher during wet season as compared to dry season in monocrop of coconut. The absorption was more from the surface layers during wet season and roots explored deeper soil layers during dry season. Irrigation in general improved absorption of 32 P in coconut and resulted in higher uptake from the surface soil compared to that under rainfed condition. (author)

  9. [Influence of Different Straws Returning with Landfill on Soil Microbial Community Structure Under Dry and Water Farming].

    Science.gov (United States)

    Lan, Mu-ling; Gao, Ming

    2015-11-01

    Based on rice, wheat, corn straw and rape, broad bean green stalk as the research object, using phospholipid fatty acid (PLFA) method, combining principal component analysis method to study the soil microbial quantity, distribution of flora, community structure characteristics under dry and water farming as two different cultivated land use types. The PLFA analysis results showed that: under dry farming, total PLFA quantity ranged 8.35-25.15 nmol x g(-1), showed rape > broad bean > corn > rice > wheat, rape and broad bean significantly increased total PLFA quantity by 1.18 and 1.08 times compared to the treatment without straw; PLFA quantity of bacterial flora in treatments with straws was higher than that without straw, and fungal biomass was significantly increased, so was the species richness of microbial community. Under water faming, the treatments of different straws returning with landfill have improved the PLFA quantity of total soil microbial and flora comparing with the treatment without straw, fungi significantly increased, and species richness of microbial communities value also increased significantly. Total PLFA quantity ranged 4.04-22.19 nmol x g(-1), showed rice > corn > wheat > broad bean > rape, which in rape and broad bean treatments were lower than the treatment without straw; fungal PLFA amount in 5 kinds of straw except broad bean treatment was significantly higher than that of the treatment without straw, bacteria and total PLFA quantity in broad bean processing were significantly lower than those of other treatments, actinomycetes, G+, G- had no significant difference between all treatments; rice, wheat, corn, rape could significantly increase the soil microbial species richness index and dominance index under water faming. The results of principal component analysis showed that broad bean green stalk had the greatest impact on the microbial community structure in the dry soil, rape green stalk and wheat straw had the biggest influence on

  10. Deposition Assessment Of Anthropogenic Airborne 210Po And 210Pb In The Mosses And Surface Soil At The Vicinity Of A Coal-Fired Power Plant

    International Nuclear Information System (INIS)

    Zal U'yun Wan Mahmood; Nita Salina Abu Bakar; Abdul Kadir Ishak

    2014-01-01

    Anthropogenic airborne depositions of 210 Po and 210 Pb in the mosses and surface soil collected at the vicinity of a coal-fired power plant were assessed. The purpose of the study was to determine activity concentrations of 210 Po, 210 Pb and its activity ratio ( 210 Po/ 210 Pb). Other purposes were to determine their concentration factor (CF) in relation to track the potential source of those radionuclides and to identify most suitable moss species as a biological indicator for atmospheric deposition contaminants. In this study, different species of mosses Leucobryum aduncum, Campylopus serratus, Syrrhopodon ciliates and Vesicularia montagnei were collected in May 2011 at the area around 30 km radius from Tanjung Bin coal-fired power plant located in Pontian, Johor. The activity concentrations of 210 Po 210 Pb and 210 Po/ 210 Pb in mosses were in the range of 76.81 ± 4.94 - 251.33 ± 16.33 Bqkg -1 dry wt., 54.37 ± 3.38 - 164.63 ± 11.64 Bqkg -1 dry wt. and 1.10 - 2.00, respectively. Meanwhile the ranges for those radionuclides in the surface soil were 33.53 ± 2.10 - 183.93 ± 12.01 Bqkg -1 dry wt., 17.92 ± 1.18 - 298.60 ± 23.70 Bqkg -1 dry wt. and 1.57 - 2.44, respectively. Corresponding high ability of Leucobryum aduncum to accumulate more 210 Po and 210 Pb, wide geographical distribution, most abundant and high CF, therefore, the findings can be concluded this species was the most suitable as a biological indicator for atmospheric deposition contaminants such as 210 Po and 210 Pb. Furthermore, it is clear the accumulation of 210 Po and 210 Pb in mosses might be supplied from various sources of atmospheric deposition such as coal-fired power plant operation, industrial, agriculture and fertilizer activities, burned fuel fossil and forest; and other potential sources. Meanwhile, the main source of 210 Po and 210 Pb in surface soil is supplied from the in situ decay of radon and radium. (author)

  11. Surface soil contamination standards

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1979-01-01

    The purpose of this document is to define surface soil contamination limits for radioactive materials below which posting, restrictions and environmental controls are not necessary in order to protect personnel and the environment. The standards can also be used to determine if solid waste or other material is contaminated relative to disposal requirements. The derivation of the standards is given

  12. Effect of the Machined Surfaces of AISI 4337 Steel to Cutting Conditions on Dry Machining Lathe

    Science.gov (United States)

    Rahim, Robbi; Napid, Suhardi; Hasibuan, Abdurrozzaq; Rahmah Sibuea, Siti; Yusmartato, Y.

    2018-04-01

    The objective of the research is to obtain a cutting condition which has a good chance of realizing dry machining concept on AISI 4337 steel material by studying surface roughness, microstructure and hardness of machining surface. The data generated from the experiment were then processed and analyzed using the standard Taguchi method L9 (34) orthogonal array. Testing of dry and wet machining used surface test and micro hardness test for each of 27 test specimens. The machining results of the experiments showed that average surface roughness (Raavg) was obtained at optimum cutting conditions when VB 0.1 μm, 0.3 μm and 0.6 μm respectively 1.467 μm, 2.133 μm and 2,800 μm fo r dry machining while which was carried out by wet machining the results obtained were 1,833 μm, 2,667 μm and 3,000 μm. It can be concluded that dry machining provides better surface quality of machinery results than wet machining. Therefore, dry machining is a good choice that may be realized in the manufacturing and automotive industries.

  13. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    Science.gov (United States)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  14. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    Science.gov (United States)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  15. Recent field studies of dry deposition to surfaces in plant canopies

    International Nuclear Information System (INIS)

    Lindberg, S.E.; Lovett, G.M.; Bondietti, E.A.; Davidson, C.I.

    1984-01-01

    A variety of field techniques were used to assess the dry deposition of sulfur. In a deciduous forest canopy in eastern Tennessee, inert petri plates and adjacent chestnut oak leaves showed similar SO 4 -2 deposition velocities of about 0.1 cm s -1 . In the same forest, statistical analysis of throughfall yielded a deposition velocity of 0.48 cm s -1 for total sulfur (SO 4 -2 plus SO 2 ). The throughfall technique appears useful for scaling individual surface measurements to larger spatial and temporal scales. On a grassy field in Illinois, flat Teflon plates, petri dishes, and dustfall buckets were exposed side by side. Measured sulfate deposition increased with increasing rim height on the collection surface, and deposition velocities ranged from 0.14 to 0.70 cm s -1 . Much of the deposition to these surfaces can be attributed to large-particle SO 4 -2 . Dry season (summer) deposition velocities of 7 Be in California were found to be similar to dry deposition velocities of 212 Pb in Tennessee, ranging from 0.18 to 0.35 cm s -1 . These natural radionuclides attach to submicron aerosols in the atmosphere and may be useful tracers of submicron SO 4 -2 deposition. 9 references, 5 figures, 4 tables

  16. Case control study of dry eye and related ocular surface abnormalities in Ibadan, Nigeria.

    Science.gov (United States)

    Bekibele, C O; Baiyeroju, A M; Ajaiyeoba, A; Akang, E E U; Ajayi, B G K

    2010-02-01

    Tear instability is associated with symptoms of ocular discomfort and irritation. Many patients with dry eyes remain untreated due to improper diagnoses. To identify symptoms and surface abnormalities associated with dry eyes. One hundred and fifty-six eyes of 78 subjects attending the Eye Clinic of the University College Hospital Ibadan were screened for dry eyes/tear instability using rose Bengal stain (graded 0-9), tear break-up time (TBUT), Schirmer's 1 tests, tear meniscus height and a standardised symptoms questionnaire. Grades 4-9 rose Bengal staining were considered as positive dry eye and were compared with grades 0-3 staining eyes as negative controls. Mean tear meniscus height, Schirmer's test and TBUT were lower among cases than their corresponding control eyes. The difference between the mean Schirmer's test values of cases and their controls were statistically significant (P = 0.00 for right eyes and P = 0.002 for left eyes). Rose Bengal grades were inversely correlated with the mean Schirmer's values (Pearson correlation -0.429, P = 0.05 for right eyes and -0.335, P = 0.03 for left eyes) and TBUT (Pearson correlation -0.316, P = 0.05 for right eyes and -0.212, P = 0.06 for left eyes). About 95.8% of the cases were symptomatic, as opposed to 70.4% of the controls (P = 0.01, Fisher's exact test) and 95.8% of dry right eyes compared to 61.1% of their controls had ocular surface abnormalities (P = 0.001), while 89.5% of dry left eyes compared to 62.7% of controls had surface abnormalities (P = 0.07). A close relationship exists between ocular irritation symptoms, surface abnormalities and functional evidence of tear instability. Such patients should be treated empirically or screened for dry eyes.

  17. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar

    2011-06-01

    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  18. Quantifying the Effect of Soil Water Repellency on Infiltration Parameters Using a Dry Sand

    Science.gov (United States)

    Shillito, R.; Berli, M.; Ghezzehei, T. A.; Kaminski, E.

    2017-12-01

    Water infiltration into less than perfectly wettable soils has usually been considered an exceptional case—in fact, it may be the rule. Infiltration into soils exhibiting some degree of water repellency has important implications in agricultural irrigation, post-fire runoff, golf course and landscape management, and spill and contaminant mitigation. Beginning from fundamental principles, we developed a physically-based model to quantify the effect of water repellency on infiltration parameters. Experimentally, we used a dry silica sand and treated it to achieve various known degrees of water repellency. The model was verified using data gathered from multiple upward infiltration (wicking) experiments using the treated sand. The model also allowed us to explore the effect of initial soil moisture conditions on infiltration into water-repellent soils, and the physical interpretation of the simple water drop penetration time test. These results provide a fundamental step in the physically-based understanding of how water infiltrates into a less than perfectly wettable porous media.

  19. Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography

    Science.gov (United States)

    Yucheng Peng; Douglas J. Gardner; Yousoo Han; Zhiyong Cai; Mandla A. Tshabalala

    2013-01-01

    Research and development of the renewable nanomaterial cellulose nanofibrils (CNFs) has received considerable attention. The effect of drying on the surface energy of CNFs was investigated. Samples of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC) were each subjected to four separate drying methods: air-drying, freeze-drying, spray-drying, and...

  20. Disruption rates for one vulnerable soil in Organ Pipe Cactus National Monument, Arizona, USA

    Science.gov (United States)

    Webb, Robert H.; Esque, Todd C.; Nussear, Kenneth E.; Sturm, Mark

    2013-01-01

    Rates of soil disruption from hikers and vehicle traffic are poorly known, particularly for arid landscapes. We conducted an experiment in Organ Pipe Cactus National Monument (ORPI) in western Arizona, USA, on an air-dry very fine sandy loam that is considered to be vulnerable to disruption. We created variable-pass tracks using hikers, an all-terrain vehicle (ATV), and a four-wheel drive vehicle (4WD) and measured changes in cross-track topography, penetration depth, and bulk density. Hikers (one pass = 5 hikers) increased bulk density and altered penetration depth but caused minimal surface disruption up to 100 passes; a minimum of 10 passes were required to overcome surface strength of this dry soil. Both ATV and 4WD traffic significantly disrupted the soil with one pass, creating deep ruts with increasing passes that rendered the 4WD trail impassable after 20 passes. Despite considerable soil loosening (dilation), bulk density increased in the vehicle trails, and lateral displacement created berms of loosened soil. This soil type, when dry, can sustain up to 10 passes of hikers but only one vehicle pass before significant soil disruption occurs; greater disruption is expected when soils are wet. Bulk density increased logarithmically with applied pressure from hikers, ATV, and 4WD.

  1. Distributions of {sup 137}Cs and {sup 90}Sr in the soil of Uljin, South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ji Yeon; Kim, Wan; Maeng, Seong Jin; Lee, Sang Hoon [Kyungpook National University, Daegu (Korea, Republic of)

    2016-05-15

    For the purpose of baseline data collection and enhancement of environmental monitoring the distribution studies of {sup 137}Cs and {sup 90}Sr in the soil of Uljin province was performed and the relation between surface soil activities and soil properties (pH, TOC and median of the surface soil) was analyzed. For 14 spots within 10 km from the NPP surface soil samples were collected and soils for depth profile were sampled for 3 spots in April 2011. Using γ-ray spectrometry with HPGe detector, the concentrations of {sup 137}Cs were determined and the concentrations of {sup 90}Sr were measured by counting β-activity of {sup 90}Y (in equilibrium with {sup 90}Sr) in a gas flow proportional counter. The concentration ranges of {sup 137}Cs and {sup 90}Sr were <0.479-39.6 Bq (kg-dry)-1 (avg. 7.51 Bq·(kg-dry)-1) and 0.209-1.85 Bq·(kg-dry)-1 (avg. 0.74 Bq·(kg-dry)-1) which were similar to the reported values from other regions in Korea. The activity ratio of {sup 137}Cs to {sup 90}Sr in surface soils was around 9.67, which is much bigger than the initial value of 1.75 for worldwide fallouts because of faster downward movement of {sup 90}Sr after fall-out than that of {sup 137}Cs. For depth profile studies soils were collected down to 40 cm depth for the locations of Deokgu, Hujeong and Maehwa. The {sup 137}Cs concentration distribution of the first two showed maximum values at top soils and decreased rapidly in exponential manner, while {sup 90}Sr showed two local maximum values for soils near top and about 30 cm depth. Through linear fittings between the {sup 137}Cs and {sup 90}Sr concentrations of surface soil and pH, TOC and median of the surface soil, the only probable relationship obtained was between {sup 137}Cs and TOC (determination coefficient R2=0.6). The concentration ranges of {sup 137}Cs and {sup 90}Sr in Uljin were similar to the reported values from other regions in Korea. The only probable relationship obtained between activities and soil properties

  2. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  3. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda

    International Nuclear Information System (INIS)

    Nabulo, Grace; Oryem-Origa, Hannington; Diamond, Miriam

    2006-01-01

    The relationship between traffic density and trace metal concentrations in roadside soils, surface films, and a selected vegetable weed, Amaranthus dubius Mart. Ex Thell., was determined in 11 farming sites along major highways around Kampala City in Uganda. Surface soil, atmospherically deposited surface films on windows, and leaves of Amaranthus dubius were sampled at known distances from the roads and analyzed for lead (Pb), zinc (Zn), and cadmium (Cd) using flame atomic absorption spectrophotometry. Atmospherically deposited trace metal particulates were sampled using window glass as an inert, passive collector. Total trace metal concentrations in soils ranged from 30.0±2.3 to 64.6±11.7 mg/kg Pb, 78.4±18.4 to 265.6±63.2 mg/kg Zn, and 0.8±0.13 to 1.40±0.16 mg/kg Cd. Total trace metal levels in soil decreased rapidly with distance from the road. Total Pb decreased with distance up to 30 m from the road, where it reached a background soil concentration of 28 mg/kg dry weight. The study found background values of 50 and 1.4 mg/kg for Zn and Cd in roadside soils, respectively. Similarly, Pb concentration in Amaranthus dubius leaves decreased with increasing distance from the road edge. The dominant pathway for Pb contamination was from atmospheric deposition, which was consistent with Pb concentrations in surface films. The mean Pb concentrations in leaves of roadside crops were higher than those in their respective roots, with the highest leaf-to-root ratio observed in the Brassica oleraceae acephala group. The lowest Pb and Zn concentrations were found in the fruit compared to the leaves of the same crops. Leaves of roadside vegetables were therefore considered a potential source of heavy metal contamination to farmers and consumers in urban areas. It is recommended that leafy vegetables should be grown 30 m from roads in high-traffic, urban areas

  4. Alternate wetting and drying decreases methylmercury in flooded rice (Oryza sativa) systems

    Science.gov (United States)

    Tanner, K. Christy; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Fleck, Jacob; Linquist, Bruce A.

    2018-01-01

    In flooded soils, including those found in rice (Oryza sativa L.) fields, microbes convert inorganic Hg to more toxic methylmercury (MeHg). Methylmercury is accumulated in rice grain, potentially affecting health. Methylmercury in rice field surface water can bioaccumulate in wildlife. We evaluated how introducing aerobic periods into an otherwise continuously flooded rice growing season affects MeHg dynamics. Conventional continuously flooded (CF) rice field water management was compared with alternate wetting and drying, where irrigation was stopped twice during the growing season, allowing soil to dry to 35% volumetric moisture content, at which point plots were reflooded (AWD-35). Methylmercury studies began at harvest in Year 3 and throughout Year 4 of a 4-yr replicated field experiment. Bulk soil, water, and plant samples were analyzed for MeHg and total Hg (THg), and iron (Fe) speciation was measured in soil samples. Rice grain yield over 4 yr did not differ between treatments. Soil chemistry responded quickly to AWD-35 dry-downs, showing significant oxidation of Fe(II) accompanied by a significant reduction of MeHg concentration (76% reduction at harvest) compared with CF. Surface water MeHg decreased by 68 and 39% in the growing and fallow seasons, respectively, suggesting that the effects of AWD-35 management can last through to the fallow season. The AWD-35 treatment reduced rice grain MeHg and THg by 60 and 32%, respectively. These results suggest that the more aerobic conditions caused by AWD-35 limited the activity of Hg(II)-methylating microbes and may be an effective way to reduce MeHg concentrations in rice ecosystems.

  5. Goblet cells contribute to ocular surface immune tolerance—implications for dry eye disease

    NARCIS (Netherlands)

    Barbosa, Flavia L.; Xiao, Yangyan; Bian, Fang; Coursey, Terry G.; Ko, Byung Yi; Clevers, Hans; de Paiva, Cintia S.; Pflugfelder, Stephen C.

    2017-01-01

    Conjunctival goblet cell (GC) loss in dry eye is associated with ocular surface inflammation. This study investigated if conjunctival GCs contribute to ocular surface immune tolerance. Antigens applied to the ocular surface, imaged by confocal microscopy, passed into the conjunctival stroma through

  6. Goblet Cells Contribute to Ocular Surface Immune Tolerance-Implications for Dry Eye Disease

    NARCIS (Netherlands)

    Barbosa, Flavia L; Xiao, Yangyan; Bian, Fang; Coursey, Terry G; Ko, Byung Yi; Clevers, Hans; de Paiva, Cintia S; Pflugfelder, Stephen C

    2017-01-01

    Conjunctival goblet cell (GC) loss in dry eye is associated with ocular surface inflammation. This study investigated if conjunctival GCs contribute to ocular surface immune tolerance. Antigens applied to the ocular surface, imaged by confocal microscopy, passed into the conjunctival stroma through

  7. Assessing soil water repellency of a sandy field with visible near infrared spectroscopy

    DEFF Research Database (Denmark)

    Knadel, Maria; Masis Melendez, Federico; de Jonge, Lis Wollesen

    2016-01-01

    . A lower prediction error of the WR model for soils dried at 105°C (1.93 mN m–1) than at 60°C (2.52 mN m–1) can be explained by a lower range of WR values for the soils dried at 105°C. Moreover, a higher temperature reduced the number of absorption bands related to OM, indicating a degradation......Soil water repellency (WR) is a widespread phenomenon caused by aggregated organic matter (OM) and layers of hydrophobic organic substances coating the surface of soil particles. These substances have a very low surface free energy, reducing a soil’s water attraction. There is focus on WR due...... to its effects on germination, root growth, liquid–vapour dynamics, surface erosion and leaching of chemicals through fingered flow paths. However, common techniques for measuring WR are time-consuming and expensive. Meanwhile, it is well established that visible near infrared (vis-NIR) spectroscopy...

  8. Soil and gas and radon entry potentials for substructure surfaces

    International Nuclear Information System (INIS)

    Harrison, J.; Sextro, R.G.

    1990-01-01

    This paper reports on measurement techniques and parameters that describe the potential for areas of a building substructure to have high soil gas and radon entry rates which have been developed. Flows and pressures measured at test holes in substructure surfaces while the substructure was intentionally depressurized were used in a highly simplified electrical circuit to model the substructure/soil network. Data from four New Jersey houses indicate that the soil was a factor of two to six times more resistant to soil gas flow than substructure surfaces, concrete slab floors, including perimeter gaps, cracks, and other penetrations, were approximately five times more resistant to soil gas movement than hollow block walls, and radon entry potentials were highest for slab floors. These indices of entry potential may be useful for characterizing the relative leakiness of below-grade substructure surfaces and for determining the selection and placement of radon control systems

  9. Influence of prevailing disturbances on soil biology and biochemistry of montane habitats at Nanda Devi Biosphere Reserve, India during wet and dry seasons

    DEFF Research Database (Denmark)

    Singh, S.K.; Singh, Anoop; Rai, J.P.N.

    2011-01-01

    The impact of prevailing disturbances in montane habitats of Nanda Devi Biosphere Reserve (NDBR) was studied on soil microbial population, biomass, soil respiration and enzyme activities during wet and dry seasons. The physico-chemical characteristics of soils exhibited conspicuous variation in t...

  10. Recovery Time After a Late-Dry Season Fire: the Effect on Fluxes, Surface Properties and Vegetation Green-Up.

    Science.gov (United States)

    Saha, M. V.; D'Odorico, P.; Scanlon, T. M.

    2014-12-01

    Large regions of Africa burn on an annual basis. These fires damage vegetation, change surface albedo and modify the hydrologic cycle. Quantifying the magnitude and persistence of these changes is key in understanding the complex ways in which fire affects ecosystem functioning at smaller scales and will inform ongoing modeling efforts. We report the results of a field study in a semi-arid savanna in northern Botswana during the transition from dry to wet season (Oct-Dec) in 2012 and 2013. The goals of this study were to: (1) characterize the multifaceted effect that late dry-season fires have on fluxes and radiative surface processes during green-up, and (2) describe the timescales over which these variables recover to non-burnt levels. Our study synthesizes a suite of data, including flux tower measurements, vegetation sampling, time-lapse photography and concurrent remotely sensed variables over plots with variable burn patterns. Albedo decreased immediately after fire, converging on unburned values 10 days post-burn. The magnitude and direction of this response was comparable to the albedo change elicited by strong rainfall events. Soil temperature and soil heat flux were not significantly modified by fire. Carbon fluxes showed no discernible difference from an unburned control site immediately after fire. There was a small burst in ecosystem respiration at immediately following the first post-fire rainfall event, returning to baseline values after 3 days. Persistent CO2 release, which we attribute to soil respiration, occurred for 10 days after successive strong wetting events, confirming the centrality of available moisture in determining ecosystem function. Fire delayed the green-up in some plots, but this effect was variable and short-lived. One month after fire there was no evidence of a difference in ground observations of greenness between burnt and control plots or plots that differed in their time of burning. We attribute the relatively ephemeral

  11. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area...

  12. Effect of soil surface management on radiocesium concentrations in apple orchard and fruit

    International Nuclear Information System (INIS)

    Kusaba, Shinnosuke; Matsuoka, Kaori; Abe, Kazuhiro

    2016-01-01

    We investigated the effect of soil surface management on radiocesium accumulation in an apple orchard in Fukushima Prefecture over 4 years after Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant accident in mid-March 2011. Different types of soil surface management such as clean cultivation, intertillage management, intertillage with bark compost application, sod culture, and zeolite application were employed. The radiocesium concentrations in soil were higher in the surface layer (0–5 cm) than in the other layers. The radiocesium concentration in the surface layer soil with sod culture in 2014 increased non-significantly compared with that observed in 2011. The radiocesium concentration in the mid-layer soil (5–15 cm) managed with intertillage was higher than that in soil managed using other types of management. The radiocesium amount in the organic matter on the soil surface was the highest in sod culture, and was significantly lower in the management with intertillage. The radiocesium concentration in fruit decreased exponentially during the 4 years in each types of soil surface management. The decrease in radiocesium concentration showed similar trends with each type of soil surface management, even if the concentration in each soil layer varied according to the management applied. Furthermore, intertillage with bark compost application did not affect the radiocesium concentration in fruit. These results suggest that the soil surface management type that affected the radiocesium distribution in the soil or the compost application with conventional practice did not affect its concentration in fruit of apple trees for at least 4 years since the nuclear power plant accident, at a radiocesium deposition level similar to that recorded in Fukushima City. (author)

  13. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Directory of Open Access Journals (Sweden)

    G. Li

    2016-08-01

    Full Text Available Gaseous formaldehyde (HCHO is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs. Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of  ∼  10 to 40 ppbv. For the determination of uptake coefficients (γ, we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity  =  0 %, an initial γ of (1.1 ± 0.05  ×  10−4 is determined, which gradually drops to (5.5 ± 0.4  ×  10−5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition at the atmosphere–soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  14. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  15. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  16. Cassava Sun Drying Performance on Various Surfaces and Drying ...

    African Journals Online (AJOL)

    Traditional processing methods that include ... The traditional sun drying method is very inefficient as the product can take 2-. 3 days to dry. .... using a digital balance (Ohaus Corporation type). The same applied .... preservation and marketing.

  17. Sorption of a nonionic surfactant Tween 80 by minerals and soils

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Soyoung, E-mail: soyoung@pusan.ac.kr; Jeong, Hoon Young, E-mail: hjeong@pusan.ac.kr

    2015-03-02

    Highlights: • Tween 80 sorption varies significantly among soil minerals. • Sorption mechanisms and atomic compositions explain to mineral-specific sorption. • Clay minerals and SOM in soils are the key contributors to Tween 80 sorption. • Hysteresis suggests the potential difficulty in removing residual surfactants. - Abstract: Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina–water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclase < vermiculite < kaolinite. This results from the relative reactivity among surface sites: ≡NaOH, ≡CaOH << ≡SiOH < ≡AlOH. Experiments using dry- and wet-sieved soils reveal that fine-grained clay minerals, difficult to separate by dry-sieving, contribute significantly to Tween 80 sorption. The greater sorption by untreated soils than H{sub 2}O{sub 2}-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization.

  18. Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability

    Science.gov (United States)

    Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.

    2009-01-01

    In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.

  19. Mechanical Energy Propagation and Backscattering in Nominally Dry Soil: Imaging Buried Land Mines

    Science.gov (United States)

    Sen, Surajit

    2003-04-01

    The imaging of shallow buried objects in a complex medium, e.g., nominally dry sand, is an outstanding challenge. Such imaging is of relevance in connection with the detection and subsequent imaging of buried non-metallic anti-personnel land mines and in other applications. It has been shown that gentle mechanical impulses and low frequency sound waves with frequencies roughly between 150-350 Hz or so can penetrate distances of up to a foot in sand. Hence, such signals can potentially be useful in the detection and perhaps in the imaging of shallow buried objects. It is presently unclear whether high frequency signals can be effectively used to image shallow buried objects. Impulses can typically penetrate larger distances into sand and soil. Both impulses and continuous sound waves can be used for imaging shallow buried objects. The talk shall briefly review the state-of-the-art in low frequency sound propagation in soil and shall discuss the current understanding of impulse propagation and backscattering in nominally dry sand beds. It will be argued that impulse based imaging may have the potential to be a simple and fast way to detect and image small non-metallic mines. Research supported by the National Science Foundation Grant No. NSF-CMS 0070055.

  20. Long-range alpha detection applied to soil surface monitoring

    International Nuclear Information System (INIS)

    Caress, R.W.; Allander, K.S.; Bounds, J.A.; Catlett, M.M.; MacArthur, D.W.; Rutherford, D.A.

    1992-01-01

    The long-range alpha detection (LRAD) technique depends on the detection of ion pairs generated by alpha particles losing energy in air rather than on detection of the alpha particles themselves. Typical alpha particles generated by uranium will travel less than 3 cm in air. In contrast, the ions have been successfully detected many inches or feet away from the contamination. Since LRAD detection systems are sensitive to all ions simultaneously, large LRAD soil surface monitors (SSMS) can be used to collect all of the ions from a large sample. The LRAD SSMs are designed around the fan-less LRAD detector. In this case a five-sided box with an open bottom is placed on the soil surface. Ions generated by alpha decays on the soil surface are collected on a charged copper plate within the box. These ions create a small current from the plate to ground which is monitored with a sensitive electrometer. The current measured is proportional to the number of ions in the box, which is, in turn, proportional to the amount of alpha contamination on the surface of the soil. This report includes the design and construction of a 1-m by 1-m SSM as well as the results of a study at Fernald, OH, as part of the Uranium in Soils Integrated Demonstration

  1. Experimental evidence of lateral flow in unsaturated homogeneous isotropic sloping soil due to rainfall

    Science.gov (United States)

    Sinai, G.; Dirksen, C.

    2006-12-01

    This paper describes laboratory experimental evidence for lateral flow in the top layer of unsaturated sloping soil due to rainfall. Water was applied uniformly on horizontal and V-shaped surfaces of fine sand, at rates about 100 times smaller than the saturated hydraulic conductivity. Flow regimes near the surface and in the soil bulk were studied by using dyes. Streamlines and streak lines and wetting fronts were visually studied and photographed through a vertical glass wall. Near wetting fronts the flow direction was always perpendicular to the fronts owing to dominant matrix potential gradients. Thus, during early wetting of dry sloping sand, the flow direction is directed upslope. Far above a wetting front the flow was vertical due to the dominance of gravity. Downslope flow was observed during decreasing rainfall and dry periods. The lateral movement was largest near the soil surface and decayed with soil depth. Unstable downslope lateral flow close to the soil surface was attributed to non-Darcian flow due to variable temporal and spatial raindrop distributions. The experiments verify the theory that predicts unsaturated downslope lateral flow in sloping soil due to rainfall dynamics only, without apparent soil texture difference or anisotropy. This phenomenon could have significant implications for hillside hydrology, desert agriculture, irrigation management, etc., as well as for the basic mechanisms of surface runoff and erosion.

  2. Drought and Winter Drying (Pest Alert)

    Science.gov (United States)

    USDA Forest Service

    Drought and winter drying have periodically caused major damage to trees. Drought reduces the amount of water available in the soil. In the case of winter drying, the water may be in the soil, but freezing of the soil makes the water unavailable to the tree. In both cases, more water is lost through transpiration than is available to the plant. Symptoms of drought and...

  3. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. The consecutive dry days to trigger rainfall over West Africa

    Science.gov (United States)

    Lee, J. H.

    2018-01-01

    In order to resolve contradictions in addressing a soil moisture-precipitation feedback mechanism over West Africa and to clarify the impact of antecedent soil moisture on subsequent rainfall evolution, we first validated various data sets (SMOS satellite soil moisture observations, NOAH land surface model, TRMM rainfall, CMORPH rainfall and HadGEM climate models) with the Analyses Multidisciplinaires de la Mousson Africaine (AMMA) field campaign data. Based on this analysis, it was suggested that biases of data sets might cause contradictions in studying mechanisms. Thus, by taking into account uncertainties in data, it was found that the approach of consecutive dry days (i.e. a relative comparison of time-series) showed consistency across various data sets, while the direct comparison approach for soil moisture state and rainfall did not. Thus, it was discussed that it may be difficult to directly relate rain with soil moisture as the absolute value, however, it may be reasonable to compare a temporal progress of the variables. Based upon the results consistently showing a positive relationship between the consecutive dry days and rainfall, this study supports a negative feedback often neglected by climate model structure. This approach is less sensitive to interpretation errors arising from systematic errors in data sets, as this measures a temporal gradient of soil moisture state.

  5. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces: Hydromechanically controlled system

    Science.gov (United States)

    Tanner, J. A.; Stubbs, S. M.; Smith, E. G.

    1981-01-01

    The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The landing-gear strut was replaced by a dynamometer. During maximum braking, average braking behavior indexes based upon brake pressure, brake torque, and drag-force friction coefficient developed by the antiskid system were generally higher on dry surfaces than on wet surfaces. The three braking behavior indexes gave similar results but should not be used interchangeably as a measure of the braking of this antiskid sytem. During the transition from a dry to a flooded surface under heavy braking, the wheel entered into a deep skid but the antiskid system reacted quickly by reducing brake pressure and performed normally during the remainder of the run on the flooded surface. The brake-pressure recovery following transition from a flooded to a dry surface was shown to be a function of the antiskid modulating orifice.

  6. How internal drainage affects evaporation dynamics from soil surfaces ?

    Science.gov (United States)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  7. Land application of mine water causes minimal uranium loss offsite in the wet-dry tropics: Ranger Uranium Mine, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Mumtaz, Saqib; Streten, Claire; Parry, David L.; McGuinness, Keith A.; Lu, Ping; Gibb, Karen S.

    2015-01-01

    Ranger Uranium Mine (RUM) is situated in the wet-dry tropics of Northern Australia. Land application (irrigation) of stockpile (ore and waste) runoff water to natural woodland on the mine lease is a key part of water management at the mine. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium (U) and other metals concentrations. Knowledge of seasonal and temporal changes in soil U and physicochemical parameters at RUM LAAs is important to develop suitable management and rehabilitation strategies. Therefore, soil samples were collected from low, medium, high and very high U sites at RUM LAAs for two consecutive years and the effect of time and season on soil physicochemical parameters particularly U and other major solutes applied in irrigation water was measured. Concentrations of some of the solutes applied in the irrigation water such as sulphur (S), iron (Fe) and calcium (Ca) showed significant seasonal and temporal changes. Soil S, Fe and Ca concentration decreased from year 1 to year 2 and from dry to wet seasons during both years. Soil U followed the same pattern except that we recorded an increase in soil U concentrations at most of the RUM LAAs after year 2 wet season compared to year 2 dry season. Thus, these sites did not show a considerable decrease in soil U concentration from year 1 to year 2. Sites which contained elevated U after wet season 2 also had higher moisture content which suggests that pooling of U containing rainwater at these sites may be responsible for elevated U. Thus, U may be redistributed within RUM LAAs due to surface water movement. The study also suggested that a decrease in U concentrations in LAA soils at very high U (>900 mg kg"−"1) sites is most likely due to transport of particulate matter bound U by surface runoff and U may not be lost from the surface soil due to vertical movement through the soil profile. Uranium attached to particulate matter may reduce its potential for

  8. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    Science.gov (United States)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  9. Effects of Near Soil Surface Characteristics on the Soil Detachment Process in a Chronological Series of Vegetation Restoration

    Science.gov (United States)

    Wang, Bing

    2017-04-01

    The effects of near soil surface characteristics on the soil detachment process might be different at different stages of vegetation restoration. This study was performed to investigate the effects of the near soil surface factors of plant litter, biological soil crusts (BSCs), dead roots and live roots on the soil detachment process by overland flow at different stages of restoration. Soil samples (1 m long, 0.1 m wide, and 0.05 m high) under four treatment conditions were collected from 1-yr-old and 24-yr-old natural grasslands and subjected to flow scouring under five different shear stresses ranging from 5.3 to 14.6 Pa. The results indicated that the effects of near soil surface characteristics on soil detachment were substantial during the process of vegetation restoration. The total reduction in the soil detachment capacity of the 1-yr-old grassland was 98.1%, and of this total, 7.9%, 30.0% and 60.2% was attributed to the litter, BSCs and plant roots, respectively. In the 24-yr-old grassland, the soil detachment capacity decreased by 99.0%, of which 13.2%, 23.5% and 62.3% was caused by the litter, BSCs and plant roots, respectively. Combined with the previously published data of a 7-yr-old grassland, the influence of plant litter on soil detachment was demonstrated to increase with restoration time, but soil detachment was also affected by the litter type and composition. The role of BSCs was greater than that of plant litter in reducing soil detachment during the early stages of vegetation recovery. However, its contribution weakened with time since restoration. The influence of plant roots accounted for at least half or up to two-thirds of the total near soil surface factors, of which more than 72.6% was attributed to the physical binding effects of the roots. The chemical bonding effect of the roots increased with time since restoration and was greater than the effect of the litter on soil detachment in the late stages of vegetation restoration. The

  10. Diversity and production of Ethiopian dry woodlands explained by climate- and soil- stress gradients

    NARCIS (Netherlands)

    Eshete, A.; Sterck, F.J.; Bongers, F.

    2011-01-01

    Dry woodlands cover about 14% of the total African land surface and represent about 25% of the natural vegetation. They are characterized by a seasonal climate, with a dry season of 4–7 months. Large parts of these ecosystems are degrading due to grazing, fire or exploitation by people. We studied

  11. Linking soil type and rainfall characteristics towards estimation of surface evaporative capacitance

    Science.gov (United States)

    Or, D.; Bickel, S.; Lehmann, P.

    2017-12-01

    Separation of evapotranspiration (ET) to evaporation (E) and transpiration (T) components for attribution of surface fluxes or for assessment of isotope fractionation in groundwater remains a challenge. Regional estimates of soil evaporation often rely on plant-based (Penman-Monteith) ET estimates where is E is obtained as a residual or a fraction of potential evaporation. We propose a novel method for estimating E from soil-specific properties, regional rainfall characteristics and considering concurrent internal drainage that shelters soil water from evaporation. A soil-dependent evaporative characteristic length defines a depth below which soil water cannot be pulled to the surface by capillarity; this depth determines the maximal soil evaporative capacitance (SEC). The SEC is recharged by rainfall and subsequently emptied by competition between drainage and surface evaporation (considering canopy interception evaporation). We show that E is strongly dependent on rainfall characteristics (mean annual, number of storms) and soil textural type, with up to 50% of rainfall lost to evaporation in loamy soil. The SEC concept applied to different soil types and climatic regions offers direct bounds on regional surface evaporation independent of plant-based parameterization or energy balance calculations.

  12. Migration of radionuclides in sub-surface soil

    International Nuclear Information System (INIS)

    Bachhuber, H.; Bunzl, K.; Dietl, F.; Kretner, R.; Schimmack, W.; Schultz, W.

    1981-08-01

    The object of the investigations was to draw the most realistic conclusions about the spreading rate of the radionuclides Sr, I, Cs and Ce in a model accident contaminating the earth surface for various subsurface soils taken from the environment of the Gorleben salt done. The retardation factors were hence determined for these radionuclides in columntests in undisturbed soil samples and the distribution coefficients determined in disturbed soil samples by shaking tests (batch method). The following mobility series can be given very globally for the examined soil profiles where especially columnar-results had been used: Ranker (Trebel) J > Sr > Ce > Cs, Podsol (Gorleben) J > Cs > Sr > Ce, Braunerde (Bruenkendorf) J approx. >= Sr > Ce approx. >= Cs. Arable Soils: Podsol (Gorleben) J > Sr > Cs > Ce, Parabraunerde (Eschweiler) J > Sr > Ce approx. >= Cs. (orig./HP) [de

  13. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    Science.gov (United States)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  14. Soil surface CO2 fluxes and the carbon budget of a grassland

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  15. The Effect of Ocular Surface Regularity on Contrast Sensitivity and Straylight in Dry Eye

    OpenAIRE

    Koh, Shizuka; Maeda, Naoyuki; Ikeda, Chikako; Asonuma, Sanae; Ogawa, Mai; Hiraoka, Takahiro; Oshika, Tetsuro; Nishida, Kohji

    2017-01-01

    Purpose: To investigate the association between visual function and ocular surface regularity in dry eye.Methods: We enrolled 52 eyes of 52 dry eye patients (34 dry eyes with superficial punctate keratopathy [SPK] in the central corneal region [central SPK] and 18 dry eyes without central SPK) and 20 eyes of 20 normal control subjects. All eyes had a best-corrected distance visual acuity better than 20/20. We measured two indices of contrast sensitivity function under photopic conditions: con...

  16. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models

    Science.gov (United States)

    Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.

    2018-05-01

    Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.

  17. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    Science.gov (United States)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  18. Competition between trees and grasses for both soil water and mineral nitrogen in dry savannas.

    Science.gov (United States)

    Donzelli, D; De Michele, C; Scholes, R J

    2013-09-07

    The co-existence of trees and grasses in savannas in general can be the result of processes involving competition for resources (e.g. water and nutrients) or differential response to disturbances such as fire, animals and human activities; or a combination of both broad mechanisms. In moist savannas, the tree-grass coexistence is mainly attributed to of disturbances, while in dry savannas, limiting resources are considered the principal mechanism of co-existence. Virtually all theoretical explorations of tree-grass dynamics in dry savannas consider only competition for soil water. Here we investigate whether coexistence could result from a balanced competition for two resources, namely soil water and mineral nitrogen. We introduce a simple dynamical resource-competition model for trees and grasses. We consider two alternative hypotheses: (1) trees are the superior competitors for nitrogen while grasses are superior competitors for water, and (2) vice-versa. We study the model properties under the two hypotheses and test each hypothesis against data from 132 dry savannas in Africa using Kendall's test of independence. We find that Hypothesis 1 gets much more support than Hypothesis 2, and more support than the null hypothesis that neither is operative. We further consider gradients of rainfall and nitrogen availability and find that the Hypothesis 1 model reproduces the observed patterns in nature. We do not consider our results to definitively show that tree-grass coexistence in dry savannas is due to balanced competition for water and nitrogen, but show that this mechanism is a possibility, which cannot be a priori excluded and should thus be considered along with the more traditional explanations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Role of water repellency in aggregate stability of cultivated soils under simulated raindrop impact

    Science.gov (United States)

    Kořenková, Lucia; Matúš, Peter

    2015-07-01

    Soil aggregate stability (AS) is an important indicator of soil physical quality. For the purpose of this research it was hypothesized that particular properties such as water repellency (WR) influence soil aggregation and AS. Directly after sampling, WR was detected for three soils, after a week of air-drying two of these soils still showed some resistance to penetration by a water drop placed on the surface (WDPT test). The study examines AS of air-dried texturally different aggregates of size 0.25-0.5 mm taken from surface layers (5-15 cm depth) of six agriculturally used soils. The procedure involves exposure of soil aggregates to direct impact of water drops. Results showed that soil AS increases in order: cutanic Luvisol (siltic) Chernozem < calcic mollic Fluvisol < mollic grumic Vertisol (pellic) < mollic Fluvisol (calcaric) < gleyic Fluvisol (eutric). Gradual increase in AS can be explained by the increase in soil organic matter content and its hydrophobic properties. Although WR has been most commonly observed in soils under forests and grass cover, the results confirmed that cultivated soils may also create water-stable aggregates, especially in the case when their organic matter induces WR under particular moisture conditions.

  20. Drying/rewetting cycles of the soil under alternate partial root-zone drying irrigation reduce carbon and nitrogen retention in the soil-plant systems of potato

    DEFF Research Database (Denmark)

    Sun, Yanqi; Yan, Fei; Liu, Fulai

    2013-01-01

    for five weeks. For each N rate, the PRD and DI plants received a same amount of water, which allowed re-filling one half of the PRD pots close to full water holding capacity. The results showed that plant dry biomass, plant water use, and water use efficiency were increased with increasing N...... retention in the soil–plant systems of potato. Potato plants were grown in 20 L split-root pots with three N-fertilization rates, viz., 1.4 (N1), 2.5 (N2), and 4 (N3) g N pot−1 soil, respectively. At tuber initiation and earlier tuber bulking stages, the plants were subjected to PRD and DI treatment...

  1. Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Kent [Central Missouri State Univ., Warrensburg, MO (United States)

    2004-12-01

    This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

  2. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    Energy Technology Data Exchange (ETDEWEB)

    Pragadish, N.; Kumar, M. Pradeep [Anna University, Chennai (China)

    2015-04-15

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T{sub ON}), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  3. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    International Nuclear Information System (INIS)

    Pragadish, N.; Kumar, M. Pradeep

    2015-01-01

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T ON ), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  4. Distribution of 137Cs in the Surface Soil of Serpong Nuclear Site

    International Nuclear Information System (INIS)

    Lubis, E.

    2011-01-01

    The distribution of 137 Cs in the surface soil layer of Serpong Nuclear Site (SNS) was investigated by field sampling. The Objectives of the investigation is finding the profile of 137 Cs distribution in the surface soil and the T f value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the 137 Cs activity in surface soil of SNS is 0.80 ± 0.29 Bq/kg, much lower than in the Antarctic. The contribution value of 137 Cs from the operation of G.A. Siwabessy Reactor until now is undetectable. The T f of 137 Cs from surface soil to Panisetum Purpureum, Setaria Spha Celata and Imperata Cylindrica grasses were 0.71 ± 0.14, 0.84 ± 0.27 and 0.81 ± 0.11 respectively. The results show that value of the transfer factor of 137 Cs varies between cultivated and uncultivated soil and also with the soils with thick humus. (author)

  5. Distribution of 137Cs In the Surface Soil of Serpong Nuclear Site

    Directory of Open Access Journals (Sweden)

    E. Lubis

    2011-08-01

    Full Text Available The distribution of 137Cs in the surface soil layer of Serpong Nuclear Site (SNS was investigated by field sampling. The Objectives of the investigation is finding the profile of 137Cs distribution in the surface soil and the Tf value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the 137Cs activity in surface soil of SNS is 0.80 ± 0,29 Bq/kg, much lower than in the Antarctic. The contribution value of 137Cs from the operation of G.A.Siwabessy Reactor until now is undetectable. The Tf of 137Cs from surface soil to Panisetum Purpureum, Setaria Spha Celata and Imperata Cylindrica grasses were 0.71 ± 0.14, 0.84 ± 0.27 and 0.81 ± 0.11 respectively. The results show that value of the transfer factor of 137Cs varies between cultivated and uncultivated soil and also with the soils with thick humus

  6. Impact of spatially correlated pore-scale heterogeneity on drying porous media

    Science.gov (United States)

    Borgman, Oshri; Fantinel, Paolo; Lühder, Wieland; Goehring, Lucas; Holtzman, Ran

    2017-07-01

    We study the effect of spatially-correlated heterogeneity on isothermal drying of porous media. We combine a minimal pore-scale model with microfluidic experiments with the same pore geometry. Our simulated drying behavior compares favorably with experiments, considering the large sensitivity of the emergent behavior to the uncertainty associated with even small manufacturing errors. We show that increasing the correlation length in particle sizes promotes preferential drying of clusters of large pores, prolonging liquid connectivity and surface wetness and thus higher drying rates for longer periods. Our findings improve our quantitative understanding of how pore-scale heterogeneity impacts drying, which plays a role in a wide range of processes ranging from fuel cells to curing of paints and cements to global budgets of energy, water and solutes in soils.

  7. Spatial prediction of near surface soil water retention functions using hydrogeophysics and empirical orthogonal functions

    Science.gov (United States)

    Gibson, Justin; Franz, Trenton E.

    2018-06-01

    The hydrological community often turns to widely available spatial datasets such as the NRCS Soil Survey Geographic database (SSURGO) to characterize the spatial variability of soil properties. When used to spatially characterize and parameterize watershed models, this has served as a reasonable first approximation when lacking localized or incomplete soil data. Within agriculture, soil data has been left relatively coarse when compared to numerous other data sources measured. This is because localized soil sampling is both expensive and time intense, thus a need exists in better connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, non-invasive, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with spatially exhaustive datasets. In this work, we utilize two common near surface geophysical methods, cosmic-ray neutron probe and electromagnetic induction, to identify temporally stable spatial patterns of measured geophysical properties in three 65 ha agricultural fields in western Nebraska. This is achieved by repeat geophysical observations of the same study area across a range of wet to dry field conditions in order to evaluate with an empirical orthogonal function. Shallow cores were then extracted within each identified zone and water retention functions were generated in the laboratory. Using EOF patterns as a covariate, we quantify the predictive skill of estimating soil hydraulic properties in areas without measurement using a bootstrap validation analysis. Results indicate that sampling locations informed via repeat hydrogeophysical surveys, required only five cores to reduce the cross-validation root mean squared error by an average of 64% as compared to soil parameters predicted by a commonly used benchmark, SSURGO and ROSETTA. The reduction to five strategically located samples within the 65 ha fields reduces sampling efforts by up to ∼90% as compared to

  8. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays

    Science.gov (United States)

    2013-01-01

    Background Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. Results We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5′-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. Conclusions Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different

  9. A radiosity-based model to compute the radiation transfer of soil surface

    Science.gov (United States)

    Zhao, Feng; Li, Yuguang

    2011-11-01

    A good understanding of interactions of electromagnetic radiation with soil surface is important for a further improvement of remote sensing methods. In this paper, a radiosity-based analytical model for soil Directional Reflectance Factor's (DRF) distributions was developed and evaluated. The model was specifically dedicated to the study of radiation transfer for the soil surface under tillage practices. The soil was abstracted as two dimensional U-shaped or V-shaped geometric structures with periodic macroscopic variations. The roughness of the simulated surfaces was expressed as a ratio of the height to the width for the U and V-shaped structures. The assumption was made that the shadowing of soil surface, simulated by U or V-shaped grooves, has a greater influence on the soil reflectance distribution than the scattering properties of basic soil particles of silt and clay. Another assumption was that the soil is a perfectly diffuse reflector at a microscopic level, which is a prerequisite for the application of the radiosity method. This radiosity-based analytical model was evaluated by a forward Monte Carlo ray-tracing model under the same structural scenes and identical spectral parameters. The statistics of these two models' BRF fitting results for several soil structures under the same conditions showed the good agreements. By using the model, the physical mechanism of the soil bidirectional reflectance pattern was revealed.

  10. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  11. Nitrate retention capacity of milldam-impacted legacy sediments and relict A horizon soils

    Directory of Open Access Journals (Sweden)

    J. N. Weitzman

    2017-05-01

    Full Text Available While eutrophication is often attributed to contemporary nutrient pollution, there is growing evidence that past practices, like the accumulation of legacy sediment behind historic milldams, are also important. Given their prevalence, there is a critical need to understand how N flows through, and is retained in, legacy sediments to improve predictions and management of N transport from uplands to streams in the context of climatic variability and land-use change. Our goal was to determine how nitrate (NO3− is cycled through the soil of a legacy-sediment-strewn stream before and after soil drying. We extracted 10.16 cm radius intact soil columns that extended 30 cm into each of the three significant soil horizons at Big Spring Run (BSR in Lancaster, Pennsylvania: surface legacy sediment characterized by a newly developing mineral A horizon soil, mid-layer legacy sediment consisting of mineral B horizon soil and a dark, organic-rich, buried relict A horizon soil. Columns were first preincubated at field capacity and then isotopically labeled nitrate (15NO3− was added and allowed to drain to estimate retention. The columns were then air-dried and subsequently rewet with N-free water and allowed to drain to quantify the drought-induced loss of 15NO3− from the different horizons. We found the highest initial 15N retention in the mid-layer legacy sediment (17 ± 4 % and buried relict A soil (14 ± 3 % horizons, with significantly lower retention in the surface legacy sediment (6 ± 1 % horizon. As expected, rewetting dry soil resulted in 15N losses in all horizons, with the greatest losses in the buried relict A horizon soil, followed by the mid-layer legacy sediment and surface legacy sediment horizons. The 15N remaining in the soil following the post-drought leaching was highest in the mid-layer legacy sediment, intermediate in the surface legacy sediment, and lowest in the buried relict A horizon soil. Fluctuations

  12. HEAT TREATMENTS OF HIGH TEMPERATURE DRIED NORWAY SPRUCE BOARDS: SACCHARIDES AND FURFURALS IN SAPWOOD SURFACES

    Directory of Open Access Journals (Sweden)

    Olov Karlsson,

    2012-02-01

    Full Text Available Carbohydrates that migrate to wood surfaces in sapwood during drying might influence properties such as mould susceptibility and colour. Sugars on the surface of Norway spruce boards during various heat treatments were studied. Samples (350mmx125mmx25mm were double-stacked, facing sapwood-side outwards, and dried at 110oC to a target moisture content (MC of 40%. Dried sub-samples (80 mm x 125 mm x 25 mm were stacked in a similar way and further heated at 110oC and at 130oC for 12, 24, and 36 hours, respectively. Glucose, fructose, and sucrose as well as 5-hydroxymethylfurfural (HMF and furfural in the sapwood surface layer of treated wood were analysed using HPLC (RI- and UV-detectors. Carbohydrates degraded to a lower extent at 110oC than at 130oC. Furfural and to a larger extent HMF increased with treatment period and temperature. Heat treatment led to a decrease in lightness and hue of the sapwood surface of sub-samples, while chroma increased somewhat. Furthermore, considerably faster degradation (within a few minutes of the carbohydrates on the surface of the dried spruce boards was observed when single sub-samples were conductively hot pressed at 200oC. Treatment period and initial MC influenced the presence of the carbohydrates in wood surface as well as colour change (Eab of the hot pressed sub-samples.

  13. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...... of the physical and chemical processes which dictate the quantity (and direction) of atmosphere-surface fluxes of trace chemicals to (and above) water surfaces with particular emphasis on the role of particles. Dry deposition (transfer to the surface in the absence of precipitation) of particles is determined...... efforts to simulate and measure fluxes close to the coastline. These arise in part from the complexity of atmospheric flow in this region where energy and chemical fluxes are highly inhomogeneous in space and time and thermally generated atmospheric circulations are commonplace. (C) 2000 Elsevier Science...

  14. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.

    Science.gov (United States)

    Campo, Julio; Merino, Agustín

    2016-05-01

    The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source-sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly - about 10% - from stands with 1240 mm yr(-1) to those with 642 mm yr(-1), while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long-term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained. © 2016 John Wiley & Sons Ltd.

  15. Phenomenological study of aerosol dry deposition in urban area: surface properties, turbulence and local meteorology influences

    International Nuclear Information System (INIS)

    Roupsard, P.

    2013-01-01

    Aerosol dry deposition is not much known for urban areas due to the lack of data. Knowledge on this phenomenon is necessary to understand pollutant fluxes in cities and to estimate inhabitant exposition to ionizing radiation of radioactive aerosols. A data providing could enable to enhance dry deposition models for these areas. An original experimental approach is performed to study submicron aerosol dry deposition on urban surfaces. Wind tunnel coupled to in situ experiments give results to study different physical phenomenon governing dry deposition. Dry deposition velocities are measured using aerosol tracers. These data are associated to turbulent and meteorological measured conditions. This database permits to classify the principal physical phenomenon for each experiment type. Finally, different phenomenon must be considered for chronic and acute exposition of urban surfaces to atmospheric particles. (author)

  16. A longer climate memory carried by soil freeze–thaw processes in Siberia

    International Nuclear Information System (INIS)

    Matsumura, Shinji; Yamazaki, Koji

    2012-01-01

    The climate memory of a land surface generally persists for only a few months, but analysis of surface meteorological data revealed a longer-term climate memory carried by soil freeze–thaw processes in Siberia. Surface temperature variability during the snowmelt season corresponds reasonably well with that in the summer of the following year, when most stations show a secondary autocorrelation peak. The surface temperature memory is thought to be stored as variations in the amount of snowmelt water held in the soil, and through soil freezing, which emerges as latent heat variations in the near-surface atmosphere during soil thawing approximately one year later. The ground conditions are dry in the longer-term climate memory regions, such as eastern Siberia, where less snow cover (higher surface air temperature) in spring results in less snowmelt water or lower soil moisture in the summer. Consequently, through soil freezing, it will require less latent heat to thaw in the summer of the following year, resulting in higher surface air temperature. In addition to soil moisture and snow cover, soil freeze–thaw processes can also act as agents of climate memory in the near-surface atmosphere. (letter)

  17. Estimation of surface roughness in a semiarid region from C-band ERS-1 synthetic aperture radar data

    Directory of Open Access Journals (Sweden)

    E. E. Sano

    1999-12-01

    Full Text Available In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1 synthetic aperture radar (SAR data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80, while the wet season SAR data have somewhat higher secondary variation (R² = 0.59. This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.

  18. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different .... elevation of 1300 m above sea level), located at the southeastern fringe of ... cipitation is the only source of soil water replenish- ment. ...... 2001 Effects of nutrients and shade on tree-grass inter- actions in an ...

  19. Short-term dynamics of culturable bacteria in a soil amended with biotransformed dry olive residue.

    Science.gov (United States)

    Siles, J A; Pascual, J; González-Menéndez, V; Sampedro, I; García-Romera, I; Bills, G F

    2014-03-01

    Dry olive residue (DOR) transformation by wood decomposing basidiomycetes (e.g. Coriolopsis floccosa) is a possible strategy for eliminating the liabilities related to the use of olive oil industry waste as an organic soil amendment. The effects of organic fertilization with DOR on the culturable soil microbiota are largely unknown. Therefore, the objectives of this study were to measure the short-term effects of DOR and C. floccosa-transformed DOR on the culturable bacterial soil community, while at the same time documenting the bacterial diversity of an agronomic soil in the southeastern Iberian Peninsula. The control soil was compared with the same soil treated with DOR and with C. floccosa-transformed DOR for 0, 30 and 60 days. Impact was measured from total viable cells and CFU counts, as well as the isolation and characterization of 900 strains by fatty acid methyl ester profiles and 16S rRNA partial sequencing. The bacterial diversity was distributed between Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria, Bacilli, Sphingobacteria and Cytophagia. Analysis of the treatments and controls demonstrated that soil amendment with untransformed DOR produced important changes in bacterial density and diversity. However, when C. floccosa-transformed DOR was applied, bacterial proliferation was observed but bacterial diversity was less affected, and the distribution of microorganisms was more similar to the unamended soil. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Measuring Soil Moisture in Skeletal Soils Using a COSMOS Rover

    Science.gov (United States)

    Medina, C.; Neely, H.; Desilets, D.; Mohanty, B.; Moore, G. W.

    2017-12-01

    The presence of coarse fragments directly influences the volumetric water content of the soil. Current surface soil moisture sensors often do not account for the presence of coarse fragments, and little research has been done to calibrate these sensors under such conditions. The cosmic-ray soil moisture observation system (COSMOS) rover is a passive, non-invasive surface soil moisture sensor with a footprint greater than 100 m. Despite its potential, the COSMOS rover has yet to be validated in skeletal soils. The goal of this study was to validate measurements of surface soil moisture as taken by a COSMOS rover on a Texas skeletal soil. Data was collected for two soils, a Marfla clay loam and Chinati-Boracho-Berrend association, in West Texas. Three levels of data were collected: 1) COSMOS surveys at three different soil moistures, 2) electrical conductivity surveys within those COSMOS surveys, and 3) ground-truth measurements. Surveys with the COSMOS rover covered an 8000-h area and were taken both after large rain events (>2") and a long dry period. Within the COSMOS surveys, the EM38-MK2 was used to estimate the spatial distribution of coarse fragments in the soil around two COSMOS points. Ground truth measurements included coarse fragment mass and volume, bulk density, and water content at 3 locations within each EM38 survey. Ground-truth measurements were weighted using EM38 data, and COSMOS measurements were validated by their distance from the samples. There was a decrease in water content as the percent volume of coarse fragment increased. COSMOS estimations responded to both changes in coarse fragment percent volume and the ground-truth volumetric water content. Further research will focus on creating digital soil maps using landform data and water content estimations from the COSMOS rover.

  1. Adaptive transgenerational plasticity in an annual plant: grandparental and parental drought stress enhance performance of seedlings in dry soil.

    Science.gov (United States)

    Herman, Jacob J; Sultan, Sonia E; Horgan-Kobelski, Tim; Riggs, Charlotte

    2012-07-01

    Stressful parental (usually maternal) environments can dramatically influence expression of traits in offspring, in some cases resulting in phenotypes that are adaptive to the inducing stress. The ecological and evolutionary impact of such transgenerational plasticity depends on both its persistence across generations and its adaptive value. Few studies have examined both aspects of transgenerational plasticity within a given system. Here we report the results of a growth-chamber study of adaptive transgenerational plasticity across two generations, using the widespread annual plant Polygonum persicaria as a naturally evolved model system. We grew five inbred Polygonum genetic lines in controlled dry vs. moist soil environments for two generations in a fully factorial design, producing replicate individuals of each genetic line with all permutations of grandparental and parental environment. We then measured the effects of these two-generational stress histories on traits critical for functioning in dry soil, in a third (grandchild) generation of seedling offspring raised in the dry treatment. Both grandparental and parental moisture environment significantly influenced seedling development: seedlings of drought-stressed grandparents or parents produced longer root systems that extended deeper and faster into dry soil compared with seedlings of the same genetic lines whose grandparents and/or parents had been amply watered. Offspring of stressed individuals also grew to a greater biomass than offspring of nonstressed parents and grandparents. Importantly, the effects of drought were cumulative over the course of two generations: when both grandparents and parents were drought-stressed, offspring had the greatest provisioning, germinated earliest, and developed into the largest seedlings with the most extensive root systems. Along with these functionally appropriate developmental effects, seedlings produced after two previous drought-stressed generations had

  2. Soil surface CO2 fluxes on the Konza Prairie

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, Shoshi B.

    1990-01-01

    The utilization of a soil chamber to measure fluxes of soil-surface CO2 fluxes is described in terms of equipment, analytical methods, and estimate quality. A soil chamber attached to a gas-exchange system measures the fluxes every 5-15 min, and the data are compared to measurements of the CO2 fluxes from the canopy and from the soil + canopy. The soil chamber yields good measurements when operated in a closed system that is ported to the free atmosphere, and the CO2 flux is found to have a diurnal component.

  3. Effect of Management Practices on Soil Microstructure and Surface Microrelief

    Directory of Open Access Journals (Sweden)

    R. Garcia Moreno

    2012-01-01

    Full Text Available Soil surface roughness (SSR and porosity were evaluated from soils located in two farms belonging to the Plant Breeding Institute of the University of Sidney. The sites differ in their soil management practices; the first site (PBI was strip-tilled during early fall (May 2010, and the second site (JBP was under power harrowed tillage at the end of July 2010. Both sites were sampled in mid-August. At each location, SSR was measured for three 1 m2 subplots using shadow analysis. To evaluate porosity and aggregation, soil samples were scanned using X-ray computed tomography with 5 μm resolution. The results show a strong negative correlation between SSR and porosity, 20.13% SSR and 41.38% porosity at PBI versus 42.00% SSR and 18.35% porosity at JBP. However, soil images show that when soil surface roughness is higher due to conservation and soil management practices, the processes of macroaggregation and structural porosity are enhanced. Further research must be conducted on SSR and porosity in different types of soils, as they provide complementary information on the evaluation of soil erosion susceptibility.

  4. Global characterization of surface soil moisture drydowns

    Science.gov (United States)

    McColl, Kaighin A.; Wang, Wei; Peng, Bin; Akbar, Ruzbeh; Short Gianotti, Daniel J.; Lu, Hui; Pan, Ming; Entekhabi, Dara

    2017-04-01

    Loss terms in the land water budget (including drainage, runoff, and evapotranspiration) are encoded in the shape of soil moisture "drydowns": the soil moisture time series directly following a precipitation event, during which the infiltration input is zero. The rate at which drydowns occur—here characterized by the exponential decay time scale τ—is directly related to the shape of the loss function and is a key characteristic of global weather and climate models. In this study, we use 1 year of surface soil moisture observations from NASA's Soil Moisture Active Passive mission to characterize τ globally. Consistent with physical reasoning, the observations show that τ is lower in regions with sandier soils, and in regions that are more arid. To our knowledge, these are the first global estimates of τ—based on observations alone—at scales relevant to weather and climate models.

  5. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  6. From soaking wet to bone dry

    DEFF Research Database (Denmark)

    Båstrup-Spohr, Lars; Sand-Jensen, Kaj; Nicolajsen, Sascha Veggerby

    2015-01-01

    A hydrological gradient from pond to dry limestone pavements on the Island of Öland, South Sweden. Methods Plant community composition and six morpho-physiogical plant traits were measured along a pronounced gradient in water supply and soil depth. The strength of filtering was quantified using a trait...... and resistance to water loss on drying. For individual traits, the strength of filtering waxes and wanes along the gradient. This strongly suggests that the mechanism, through which species are filtered into communities, acts through different traits as environmental conditions change along the gradient......, and most traits are strongly filtered only in parts of the gradient (e.g. root porosity in wet soils and water loss on drying on thin dry soils). Evidence for congruence between trait dispersion indices and the CATS model was established, underpinning the importance to plant community assembly...

  7. Trophic structure and feeding rates of forest soil invertebrate populations

    Energy Technology Data Exchange (ETDEWEB)

    McBrayer, J F; Reichle, D E

    1971-01-01

    Trophic level relationships of a soil invertebrate community were determined using the transient behavior of cesium-137 in experimental soil microcosms. Feeding rates were estimated from radionuclide mass balance equations using radiocesium uptake coefficients, equilibrium concentrations of /sup 137/Cs in consumers, and /sup 137/Cs composition of food bases. The fungivore trophic level included Scatopsidae larvae (Diptera), Enchytraeida (Annelida), Entomobryidae and Onychiuridae (Collembola), Rhodacaridae (Mesostigmata), and Oribatulidae, Camasiidae, Carabodidae, and Cymbaeremaeidae (Oribatei). Approximately 60% of the total faunal biomass occurred in the fungivore trophic level. Fungivores averaged 7.0 +/- 2.4% dry body weight ingested per day. Cecidomyiidae larvae (Diptera), Diplopoda, Isotomidae (Collembola), Uropodina, and Phthiracaridae (Oribatei) were determined to be surface-feeding saprophages. Subsurface-feeding saprophages included Symphyla, Cillibidae (Uropidina), and Palaeacaridae and Epilohmannidae (Oribatei). Surface-feeding saprophages averaged 1.0 +/- 0.4% dry body weight ingested per day. Feeding rates were not calculated for saprophages feeding within the mineral soil horizon. Predators included Dolichopodidae larvae (Diptera), gamasine mites, and the Scutacaridae and other prostigmatid mites. Predators averaged 2.5 +/- 1.0% dry body weight ingested per day. 15 references, 3 figures, 3 tables.

  8. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil

    International Nuclear Information System (INIS)

    Li, G.; Huang, W.; Zhang, X.; Lerner, D.N.

    2000-01-01

    Soil at a site near Zibo City, China, is polluted with hydrocarbons at concentrations up to 200 g kg -1 dry soil. Samples contained 10 7 microbial cells g -1 dry soil, and the concentration of aerobic degradation bacteria is 10 7 cells g -1 dry soil. The most active species were Xanthomonas, Bacillus and Hyphomicrobium. The nitrogen and phosphorus contents of the polluted soil are typically 0.1 %, and are sufficient to sustain natural or enhanced biodegradation. The BAC (Biological Activated Carbon) system was used to enrich indigenous microbes to enhance bioremediation rates in the laboratory. The BAC used the large surface area and sorption characteristics to fix bacteria and media, and effectively culture and enrich the microbes. Effluent from the BAC system contained up to 4 x 10 11 cells ml -1 , and was introduced to the contaminated soil to enhance biodegradation. The results indicated that the natural biodegradation rate of the petroleum hydrocarbons is lower than the BAC enhanced bioremediation rate, 1.7% as opposed to 42% in 32 days. (Author)

  10. Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany

    International Nuclear Information System (INIS)

    Norra, Stefan; Lanka-Panditha, Mahesh; Kramar, Utz; Stueben, Doris

    2006-01-01

    This study presents a combined geochemical and mineralogical survey of urban surface soils. Many studies on urban soils are restricted to purely chemical surveys in order to investigate soil pollution caused by anthropogenic activities such as traffic, heating, industrial processing, waste disposal and many more. In environmental studies, chemical elements are often distinguished as lithogenic and anthropogenic elements. As a novel contribution to those studies, the authors combined the analysis of a broad set of chemical elements with the analysis of the main mineralogical phases. The semi-quantification of mineralogical phases supported the assignment of groups of chemical elements to lithogenic or anthropogenic origin. Minerals are important sinks for toxic elements. Thus, knowledge about their distribution in soils is crucial for the assessment of the environmental hazards due to pollution of urban soils. In Pforzheim, surface soils (0-5 cm depth) from various land use types (forest, agriculture, urban green space, settlement areas of various site densities) overlying different geological units (clastic and chemical sediments) were investigated. Urban surface soils of Pforzheim reflect to a considerable degree the mineral and chemical composition of parent rocks. Irrespective of the parent rocks, elevated concentrations of heavy metals (Zn, Cu, Pb, Sn, Ag) were found in soils throughout the whole inner urban settlement area of Pforzheim indicating pollution. These pollutants will tend to accumulate in inner urban surface soils according to the available adsorption capacity, which is normally higher in soils overlying limestone than in soils overlying sandstone. However, inner urban surface soils overlying sandstone show elevated concentrations of carbonates, phyllo-silicates and Fe and elevated pH values compared with forest soils overlying sandstone. Thus, in comparison to forest soils overlying sandstones, inner urban soils overlying sandstone affected by

  11. Tensile bond strength of hydroxyethyl methacrylate dentin bonding agent on dentin surface at various drying techniques

    Directory of Open Access Journals (Sweden)

    Kun Ismiyatin

    2010-06-01

    Full Text Available Background: There are several dentin surface drying techniques to provide a perfect resin penetration on dentin. There are two techniques which will be compared in this study. The first technique was by rubbing dentin surface gently using cotton pellet twice, this technique is called blot dry technique. The second technique is by air blowing dentin surface for one second and continued by rubbing dentin surface gently using moist cotton. Purpose: This experiment was aimed to examine the best dentin surface drying techniques after 37% phosphoric acid etching to obtain the optimum tensile bond strength between hydroxyethyl methacrylate (HEMA and dentin surface. Method: Bovine teeth was prepared flat to obtain the dentin surface and than was etched using 37% phosphoric acid for 15 seconds. After etching the dentin was cleaned using 20 cc plain water and dried with blot dry techniques (group I, or dried with air blow for one second (group II, or dried with air blow for one second, and continued with rubbing gently using moist cotton pellet (group III, and without any drying as control group (group IV. After these drying, the dentin surfaces were applied with resin dentin bonding agent and put into plunger facing the composite mould. The antagonist plunger was filled with composite resin. After 24 hours, therefore bond strength was measured using Autograph. Result: Data obtained was analyzed using One-Way ANOVA with 95% confidence level and continued with LSD test on p≤0.05. The result showed that the highest tensile bond strength was on group I, while the lowest on group IV. Group II and IV, III and IV, II and III did not show signigicant difference (p>0.05. Conclusion: Dentin surface drying techniques through gentle rubbing using cotton pellet twice (blot dry technique gave the greatest tensile bond strength.Latar belakang masalah: Tehnik pengeringan permukaan dentin agar resin dapat penetrasi dengan sempurna adalah dengan cara pengusapan secara

  12. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, A [Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, 1040 Vienna (Austria); Balzter, H [Department of Geography, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); George, C, E-mail: ab@ipf.tuwien.ac.a [Earth Observation, Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford OX10 8BB (United Kingdom)

    2009-10-15

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km{sup 2} under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  13. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    International Nuclear Information System (INIS)

    Bartsch, A; Balzter, H; George, C

    2009-01-01

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km 2 under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  14. Effects of warming and drying of soils on the ectomycorrhizal community of a mixed Pinus contorta/Picea engelmannii stand in Yellowstone Park

    Science.gov (United States)

    Cullings, Kenneth; Finley, S. K.; Parker, V. T.; Makhija, S.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Restriction Fragment Length Polymorphisms (RFLPs) analyses were used to determine patterns of change in ectomycorrhizal community structure response to seasonal warming and drying of soils. Soil cores (42 total, 21 from cold and wet soil in early June, and 21 from dry, warm soil in late August) were collected from replicate blocks in a mixed-conifer forest stand in Yellowstone. Results indicated no significant differences in species richness (2.62 species/core, SE 0.2 in June; 3.25, SE 0.2 in August), however there was a significant effect on ectomycorrhizal infection (P<0.05), mean number of EM tips/core was significantly lower in June (185.8, SE 34) than in August (337 SE 78). Data indicated no difference in overall EM fungal species composition, however among system dominants, two species (Cortinarius 9 and Cortinarius 10) were more abundant in August than in June (P<0.02). The remaining dominant fungal species exhibited no differences in relative abundance. Results are discussed in relation to soil fertility and composition.

  15. Dry flue gas desulfurization by-product application effects on plant uptake and soil storage changes in a managed grassland.

    Science.gov (United States)

    Burgess-Conforti, Jason R; Brye, Kristofor R; Miller, David M; Pollock, Erik D; Wood, Lisa S

    2018-02-01

    Environmental regulations mandate that sulfur dioxide (SO 2 ) be removed from the flue gases of coal-fired power plants, which results in the generation of flue gas desulfurization (FGD) by-products. These FGD by-products may be a viable soil amendment, but the large amounts of trace elements contained in FGD by-products are potentially concerning. The objective of this study was to evaluate the effects of land application of a high-Ca dry FGD (DFGD) by-product on trace elements in aboveground biomass and soil. A high-Ca DFGD by-product was applied once at a rate of 9 Mg ha -1 on May 18, 2015 to small plots with mixed-grass vegetation. Soil and biomass were sampled prior to application and several times thereafter. Aboveground dry matter and tissue As, Co, Cr, Hg, Se, U, and V concentrations increased (P  0.05) from pre-application levels or the unamended control within 3 to 6 months of application. Soil pH in the amended treatment 6 months after application was greater (P by-product application compared to the unamended control. High-Ca DFGD by-products appear to be useful as a soil amendment, but cause at least a temporary increase in tissue concentrations of trace elements, which may be problematic for animal grazing situations.

  16. Generalized drying curves in conductive/convective paper drying

    Directory of Open Access Journals (Sweden)

    O.C. Motta Lima

    2000-12-01

    Full Text Available This work presents a study related to conductive/convective drying of paper (cellulose sheets over heated surfaces, under natural and forced air conditions. The experimental apparatus consists in a metallic box heated by a thermostatic bath containing an upper surface on which the paper samples (about 1 mm thick are placed. The system is submitted to ambient air under two different conditions: natural convection and forced convection provide by an adjustable blower. The influence of initial paper moisture content, drying (heated surface temperature and air velocity on drying curves behavior is observed under different drying conditions. Hence, these influence is studied through the proposal of generalized drying curves. Those curves are analyzed individually for each air condition exposed above and for both together. A set of equations to fit them is proposed and discussed.

  17. Roles of Arbuscular Mycorrhizal Fungi and Soil Abiotic Conditions in the Establishment of a Dry Grassland Community

    Czech Academy of Sciences Publication Activity Database

    Knappová, Jana; Pánková, Hana; Münzbergová, Zuzana

    2016-01-01

    Roč. 11, č. 7 (2016), s. 1-24 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA15-11635S Institutional support: RVO:67985939 Keywords : AMF * dry grassland commnunity * soil abiotic conditions Subject RIV: EF - Botanics Impact factor: 2.806, year: 2016

  18. Model-based surface soil moisture (SSM) retrieval algorithm using multi-temporal RISAT-1 C-band SAR data

    Science.gov (United States)

    Pandey, Dharmendra K.; Maity, Saroj; Bhattacharya, Bimal; Misra, Arundhati

    2016-05-01

    Accurate measurement of surface soil moisture of bare and vegetation covered soil over agricultural field and monitoring the changes in surface soil moisture is vital for estimation for managing and mitigating risk to agricultural crop, which requires information and knowledge to assess risk potential and implement risk reduction strategies and deliver essential responses. The empirical and semi-empirical model-based soil moisture inversion approach developed in the past are either sensor or region specific, vegetation type specific or have limited validity range, and have limited scope to explain physical scattering processes. Hence, there is need for more robust, physical polarimetric radar backscatter model-based retrieval methods, which are sensor and location independent and have wide range of validity over soil properties. In the present study, Integral Equation Model (IEM) and Vector Radiative Transfer (VRT) model were used to simulate averaged backscatter coefficients in various soil moisture (dry, moist and wet soil), soil roughness (smooth to very rough) and crop conditions (low to high vegetation water contents) over selected regions of Gujarat state of India and the results were compared with multi-temporal Radar Imaging Satellite-1 (RISAT-1) C-band Synthetic Aperture Radar (SAR) data in σ°HH and σ°HV polarizations, in sync with on field measured soil and crop conditions. High correlations were observed between RISAT-1 HH and HV with model simulated σ°HH & σ°HV based on field measured soil with the coefficient of determination R2 varying from 0.84 to 0.77 and RMSE varying from 0.94 dB to 2.1 dB for bare soil. Whereas in case of winter wheat crop, coefficient of determination R2 varying from 0.84 to 0.79 and RMSE varying from 0.87 dB to 1.34 dB, corresponding to with vegetation water content values up to 3.4 kg/m2. Artificial Neural Network (ANN) methods were adopted for model-based soil moisture inversion. The training datasets for the NNs were

  19. Management of Surface Drying Temperature to Increase Antioxidant Capacity of Thyme Leaf Extracts (Thymus vulgaris L.)

    OpenAIRE

    RODRIGUEZ CORTINA, JADER; Melo, E.C.; Mulet Pons, Antonio; Bon Corbín, José

    2014-01-01

    [EN] Thyme leaves are an important source of essential oils with antioxidant activity; these compounds are located in trichomes on the leaf surface. The drying conditions affect not only the drying time but also the antioxidant activity. In the literature, a drying temperature of 70 ºC appears to be the best for drying thyme leaves according to their antioxidant capacity. Considering drying periods at different temperature also could be quality beneficial. From these considerations, the goal ...

  20. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    Science.gov (United States)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  1. An earth system model for evaluation of dry deposition

    Energy Technology Data Exchange (ETDEWEB)

    Arritt, R.W. [Iowa State Univ., Ames, IA (United States)

    1994-12-31

    A coupled model of atmosphere, soil, and vegetation showed that interactions among the various components can have important effects on dry deposition of SO{sub 2}. In particular, dry soil (near or below the wilting point) leads to an increase of stomatal resistance and a decrease in deposition. Once the soil moisture is at least twice the wilting point, the model results indicate that additional moisture has little effect on the accumulated daytime dry deposition.

  2. Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus

    International Nuclear Information System (INIS)

    Tzortzis, Michalis; Tsertos, Haralabos

    2004-01-01

    A comprehensive study was conducted to determine thorium, uranium and potassium elemental concentrations in surface soils throughout the accessible area of Cyprus using high-resolution γ-ray spectrometry. A total of 115 soil samples was collected from all over the bedrock surface of the island based on the different lithological units of the study area. The soil samples were air-dried, sieved through a fine mesh, sealed in 1000-ml plastic Marinelli beakers, and measured in the laboratory in terms of their gamma radioactivity for a counting time of 18 h each. From the measured γ-ray spectra, elemental concentrations were determined for thorium (range from 2.5x10 -3 to 9.8 μg g -1 ), uranium (from 8.1x10 -4 to 3.2 μg g -1 ) and potassium (from 1.3x10 -4 to 1.9%). The arithmetic mean values (A.M.±S.D.) calculated from all samples are: (1.2±1.7) μg g -1 , (0.6±0.7) μg g -1 and (0.4±0.3)%, for thorium, uranium and potassium, respectively, which are by a factor of three-six lower than the world average values of 7.4 μg g -1 (Th), 2.8 μg g -1 (U) and 1.3% (K) derived from all data available worldwide. The best-fitting relation between the concentrations of Th and K versus U and also of K versus Th, is essentially of linear type with a correlation coefficient of 0.93, 0.84 and 0.90, respectively. The Th/U, K/U and K/Th ratios (slopes) extracted are equal to 2.0, 2.8x10 3 and 1.4x10 3 , respectively

  3. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands

    Czech Academy of Sciences Publication Activity Database

    Palpurina, S.; Wagner, V.; von Wehrden, H.; Hájek, M.; Horsák, M.; Brinkert, A.; Hölzel, N.; Wesche, K.; Kamp, J.; Hájková, Petra; Danihelka, Jiří; Lustyk, P.; Merunková, K.; Preislerová, Z.; Kočí, M.; Kubešová, S.; Cherosov, M. M.; Ermakov, N.; German, D.; Gogoleva, P. A.; Lashchinsky, N.; Martynenko, V. B.; Chytrý, M.

    2017-01-01

    Roč. 26, č. 4 (2017), s. 425-434 ISSN 1466-822X Institutional support: RVO:67985939 Keywords : diversity-environment relationship * dry grassland * precipitation * soil pH Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 6.045, year: 2016

  4. Isotopic study of water evaporation in a clayey soil, experimentation and modelling

    International Nuclear Information System (INIS)

    Mathieu, R.; Bariac, T.

    1995-01-01

    The isotopic theory of soil water evaporation in steady-state was applied to the quantification of shallow water table discharge rates in arid and semi-arid climates. This approach is limited by the time needed by the soil to reach the steady state after the last significant rain event. The 1D numerical model ''Moise'', proposed here, was developed for the simulation of the vertical profiles of water and stable isotope contents in a drying soil for any initial profile and atmospheric condition. Six non-perturbed soil columns of 1.1 m length were taken from Barogo, Burkina Faso and were saturated in the laboratory by infiltration and free drainage of pounding water and then allowed to evaporate freely. The columns were then sequentially sampled after 11, 42, 92, 162 and 253 days of drying for 18 O and 2 H isotopic analyses. 18 O profiles show an exponential shape during the first drying stage with a maximum isotopic enrichment at the surface. During the second drying stage, the penetration of very depleted atmospheric vapor tends to lower the isotopic content at the surface. The water and isotopic content were simulated with the Moise model. The model satisfactory reproduces the hydrodynamic evolution and the qualitative evolution of soil water isotopic content, but it largely overestimates the overall enrichment. It is thus plausible that a fraction of the soil water may keep its own isotopic composition with restricted exchanges with the surrounding mobile water and vapor, while a mobile phase can be affected by the isotopic enrichment. (J.S.). 27 refs., 6 figs., 3 tabs

  5. Land application of mine water causes minimal uranium loss offsite in the wet-dry tropics: Ranger Uranium Mine, Northern Territory, Australia.

    Science.gov (United States)

    Mumtaz, Saqib; Streten, Claire; Parry, David L; McGuinness, Keith A; Lu, Ping; Gibb, Karen S

    2015-11-01

    Ranger Uranium Mine (RUM) is situated in the wet-dry tropics of Northern Australia. Land application (irrigation) of stockpile (ore and waste) runoff water to natural woodland on the mine lease is a key part of water management at the mine. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium (U) and other metals concentrations. Knowledge of seasonal and temporal changes in soil U and physicochemical parameters at RUM LAAs is important to develop suitable management and rehabilitation strategies. Therefore, soil samples were collected from low, medium, high and very high U sites at RUM LAAs for two consecutive years and the effect of time and season on soil physicochemical parameters particularly U and other major solutes applied in irrigation water was measured. Concentrations of some of the solutes applied in the irrigation water such as sulphur (S), iron (Fe) and calcium (Ca) showed significant seasonal and temporal changes. Soil S, Fe and Ca concentration decreased from year 1 to year 2 and from dry to wet seasons during both years. Soil U followed the same pattern except that we recorded an increase in soil U concentrations at most of the RUM LAAs after year 2 wet season compared to year 2 dry season. Thus, these sites did not show a considerable decrease in soil U concentration from year 1 to year 2. Sites which contained elevated U after wet season 2 also had higher moisture content which suggests that pooling of U containing rainwater at these sites may be responsible for elevated U. Thus, U may be redistributed within RUM LAAs due to surface water movement. The study also suggested that a decrease in U concentrations in LAA soils at very high U (>900 mg kg(-1)) sites is most likely due to transport of particulate matter bound U by surface runoff and U may not be lost from the surface soil due to vertical movement through the soil profile. Uranium attached to particulate matter may reduce its potential for environmental

  6. Leaf area development, dry weight accumulation and solar energy conversion efficiencies of Phaseolus vulgaris L. under different soil moisture levels near Nairobi, Kenya

    NARCIS (Netherlands)

    Muniafu, M.M.; Macharia, J.N.M.; Stigter, C.J.; Coulson, G.L.

    1999-01-01

    Leaf area development, dry weight accumulation and solar energy conversion efficiencies of Phaseolus vulgaris L. cv GLP-2 under two soil moisture levels in two contrasting seasons near Nairobi, Kenya were investigated. The experiment confirms that dry weights and yields of Phaseolus vulgaris are

  7. Water retention of repellent and subcritical repellent soils: New insights from model and experimental investigations

    Science.gov (United States)

    Czachor, H.; Doerr, S. H.; Lichner, L.

    2010-01-01

    SummarySoil organic matter can modify the surface properties of the soil mineral phase by changing the surface tension of the mineral surfaces. This modifies the soil's solid-water contact angle, which in turn would be expected to affect its water retention curve (SWRC). Here we model the impact of differences in the soil pore-water contact angle on capillarity in non-cylindrical pores by accounting for their complex pore geometry. Key outcomes from the model include that (i) available methods for measuring the Young's wetting angle on soil samples are insufficient in representing the wetting angle in the soil pore space, (ii) the wetting branch of water retention curves is strongly affected by the soil pore-water contact angle, as manifest in the wetting behavior of water repellent soils, (iii) effects for the drying branch are minimal, indicating that both wettable and water repellent soils should behave similarly, and (vi) water retention is a feature not of only wettable soils, but also soils that are in a water repellent state. These results are tested experimentally by determining drying and wetting branches for (a) 'model soil' (quartz sands with four hydrophobization levels) and (b) five field soil samples with contrasting wettability, which were used with and without the removal of the soil organic matter. The experimental results support the theoretical predictions and indicate that small changes in wetting angle can cause switches between wettable and water repellent soil behavior. This may explain the common observation that relatively small changes in soil water content can cause substantial changes in soil wettability.

  8. Land application uses for dry flue gas desulfurization by-products: Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  9. Dry deposition on smooth and rough urban surfaces

    International Nuclear Information System (INIS)

    Roed, J.

    1987-01-01

    Following the Chernobyl accident, dry deposition velocities on smooth surfaces indoors and outdoors have been measured in Denmark. Internal wall surfaces gave deposition velocities of 0.0008-0.0009 cm/s for 131I and 0.0001-0.0002 cm/s for 134Cs and 103Ru. Internal floor surfaces gave higher values for the deposition velocities: for 131I, 0.002 cm/s and for 134Cs and 103Ru, 0.0005-0.0013 cm/s. The deposition velocities on vertical and horizontal external surfaces were nearly equal. Those for 131I were found as 0.02-0.03 cm/s and for 137Cs as 0.001-0.002 cm/s. On external rough surfaces such as grass and corrugated roof material the deposition velocities for 134Cs and 103Ru were 0.03-0.05 cm/s. For iodine, however, deposition velocities were higher for clipped grass (2 cm/s) than for roof material (0.2-0.4 cm/s). The results show that internal deposition velocities are considerably lower than those on external smooth surfaces, and that the deposition velocities on rough surfaces are an order of magnitude higher than on smooth surfaces. It was also shown that the deposition velocities of iodine are considerably higher than those of cesium and ruthenium. This work was supported by EEC Radiation Protection Programme No B16-107-DK and by NKA, The Nordic Liaison Committee for Atomic Energy. (author)

  10. Impact of post-infiltration soil aeration at different growth stages of sub-surface trickle-irrigated tomato plants

    Science.gov (United States)

    Li, Yuan; Jia, Zong-xia; Niu, Wen-Quan; Wang, Jing-wei

    2016-07-01

    Sensitivity to low rhizosphere soil aeration may change over time and therefore plant response may also depend on different growth stages of a crop. This study quantified effects of soil aeration during 5 different periods, on growth and yield of trickle-irrigated potted single tomato plants. Irrigation levels were 0.6 to 0.7 (low level) or 0.7 to 0.8 (high level) of total water holding capacity of the pots. Soil was aerated by injecting 2.5 l of air into each pot through the drip tubing immediately after irrigation. Fresh fruit yield, above ground plant dry weight, plant height, and leaf area index response to these treatments were measured. For all these 4 response variables, means of post-infiltration aeration between 58 to 85 days after sowing were 13.4, 43.5, 13.7, and 37.7% higher than those for the non-aerated pots, respectively. The results indicated that: post-infiltration soil aeration can positively impact the yield and growth of sub-surface trickle-irrigated potted tomato plants; positive effects on plant growth can be obtained with aeration during the whole growth period or with aeration for partial periods; positive growth effects of partial periods of aeration appears to persist and result in yield benefit.

  11. Dry deposition of submicron atmospheric aerosol over water surfaces in motion

    International Nuclear Information System (INIS)

    Nevenick, Calec

    2013-01-01

    Whether by chronic or accidental releases, the impact of a nuclear installation on the environment mainly depends on atmospheric transfers; and as the accidents at Chernobyl and Fukushima show, affect the contamination of surfaces and impacts in the medium and long-term on the environment and the population. In this context, this work focuses on the characterization and modeling of dry deposition of submicron aerosols on liquid surfaces in motion such as rivers. Unlike wet deposition which is conditioned by washout and rainout (rain and clouds), dry deposition is a phenomenon that depends entirely on the characteristics of aerosols, receiving surfaces, and air flow. In practice, the evaluation of dry deposition is based on the estimation of flux modeling as the product of particle concentration and deposition velocity which can vary over several orders of magnitude depending on the receiving surfaces (forest, snow, urban, grassland...). This topic is motivated by the virtual non-existence of studies on the mechanisms of dry deposition on continental water systems such as rivers; and respect for submicron aerosols. They have the lowest deposition efficiencies and filtration and the longer residence time in the atmosphere. In addition, they are potentially the most dangerous to living beings because they can penetrate deeper into the airway. Due to the lack of data on the dry deposition of submicron aerosols on a liquid surface in motion, the approach was based on two axes: 1) the acquisition of experimental deposition velocities and 2) the analysis and interpretation of results through modeling. The experiments were performed with uranine aerosols released into the IOA wind tunnel (Interface Ocean Atmosphere) of the Institute for Research on Non Equilibrium Phenomena which is configured to study the coupling between the air flow and water. These experiments have given many dry deposition velocities for different configurations characterized according to wind

  12. Dry deposition of submicron atmospheric aerosol over water surfaces in motion

    International Nuclear Information System (INIS)

    Calec, Nevenick

    2013-01-01

    Whether by chronic or accidental releases, the impact of a nuclear installation on the environment mainly depends on atmospheric transfers; and as the accidents at Chernobyl and Fukushima show, affect the contamination of surfaces and impacts in the medium and long-term on the environment and the population. In this context, this work focuses on the characterization and modeling of dry deposition of submicron aerosols on liquid surfaces in motion such as rivers. Unlike wet deposition which is conditioned by washout and rainout (rain and clouds), dry deposition is a phenomenon that depends entirely on the characteristics of aerosols, receiving surfaces, and air flow. In practice, the evaluation of dry deposition is based on the estimation of flux modeling as the product of particle concentration and deposition velocity which can vary over several orders of magnitude depending on the receiving surfaces (forest, snow, urban, grassland..). This topic is motivated by the virtual non-existence of studies on the mechanisms of dry deposition on continental water systems such as rivers; and respect for submicron aerosols. They have the lowest deposition efficiencies and filtration and the longer residence time in the atmosphere. In addition, they are potentially the most dangerous to living beings because they can penetrate deeper into the airway. Due to the lack of data on the dry deposition of submicron aerosols on a liquid surface in motion, the approach was based on two axes: 1) the acquisition of experimental deposition velocities and 2) the analysis and interpretation of results through modeling. The experiments were performed with uranine aerosols released into the IOA wind tunnel (Interface Ocean Atmosphere) of the Institute for Research on Non Equilibrium Phenomena which is configured to study the coupling between the air flow and water. These experiments have given many dry deposition velocities for different configurations characterized according to wind

  13. Investigation of near dry EDM compared with wet and dry EDM processes

    International Nuclear Information System (INIS)

    Gholipoor, Ahad; Baseri, Hamid; Shabgard, Mohammad Reza

    2015-01-01

    Material removal rate (MRR), tool wear ratio (TWR) and surface roughness (SR) obtained by near-dry EDM process were compared with wet and dry EDM at three levels of discharge energy in drilling of SPK steel. Surface integrity machined by this process was studied and compared with wet and dry EDM processes, by scanning electron microscopy (SEM). The results showed that at high level of discharge energy, wet EDM has the most MRR, TWR and SR, and dry EDM has the least MRR, TWR and SR, while at low discharge energy levels, near-dry EDM process has the most MRR and the least SR. SEM micrographs showed that the quality of surface obtained by near-dry EDM process is better than others and the machined surfaces by near-dry EDM process have lower micro-cracks and craters, relatively.

  14. Investigation of near dry EDM compared with wet and dry EDM processes

    Energy Technology Data Exchange (ETDEWEB)

    Gholipoor, Ahad [Islamic Azad University of Tabriz, Tabriz (Iran, Islamic Republic of); Baseri, Hamid [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shabgard, Mohammad Reza [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-05-15

    Material removal rate (MRR), tool wear ratio (TWR) and surface roughness (SR) obtained by near-dry EDM process were compared with wet and dry EDM at three levels of discharge energy in drilling of SPK steel. Surface integrity machined by this process was studied and compared with wet and dry EDM processes, by scanning electron microscopy (SEM). The results showed that at high level of discharge energy, wet EDM has the most MRR, TWR and SR, and dry EDM has the least MRR, TWR and SR, while at low discharge energy levels, near-dry EDM process has the most MRR and the least SR. SEM micrographs showed that the quality of surface obtained by near-dry EDM process is better than others and the machined surfaces by near-dry EDM process have lower micro-cracks and craters, relatively.

  15. STUDY OF A SOIL WITH SWELLING AND SHRINKING PHENOMENA

    Directory of Open Access Journals (Sweden)

    G. Rogobete

    2012-12-01

    Full Text Available Vertisols are deep clayey soils, with more than 45 % clay, dominated by clay minerals, such as smectites, that expand upon wetting and shrink upon drying. The most important physical characteristics of Vertisols are a low hydraulic conductivity and stickiness when wet and high flow of water through the cracks when dry. They become very hard when dry and in all the time are difficult to work. During the rainy season, the cracks disappear and the soil becomes sticky and plastic with a very slippery surface which makes Vertisols in – trafficable when wet. Water movement in soil that change volume with water content is not well understood and management of swelling soil remains problematic. Swelling or shrinking result in vertical displacement of the wet soil, which involves gravitational work and contributes to an overburden component to the total potential of the soil water. Many swelling soil crack and the network of cracks provides pathways for rapid flow of water which prejudice application of theory based on Darcian flow. One – dimensional flow of water in a swelling system requires material balance equation for both the aqueous and solid phases. The analytical data offers some values particle – size distribution, compression, swelling degree and pressure, plasticity index, elastic modulus, triaxial shear, angle of shear and load carrying capacity in order to realize a foundation study for some constructions.

  16. Collective impacts of soil moisture and orography on deep convective thunderstorms

    Science.gov (United States)

    Imamovic, Adel; Schlemmer, Linda; Schär, Christoph

    2017-04-01

    Thunderstorm activity in many land regions peaks in summer, when surface heat fluxes and the atmospheric moisture content reach an annual maximum. Studies using satellite and ground-based observations have shown that the timing and vigor of summer thunderstorms are influenced by the presence of triggering mechanisms such as soil-moisture heterogeneity or orography. In the current process-based study we aim to dissect the combined impact of soil-moisture and orography on moist convection by using convection-resolving climate simulations with idealized landsurface and orographic conditions. First we systematically investigate the sensitivity of moist convection in absence of orography to a mesoscale soil-moisture anomaly, i.e. a region with drier or moister soil. Consistent with previous studies, a high sensitivity of total rain to soil-moisture anomalies over flat terrain is found. The total rain in the presence of a dry soil-moisture anomaly increases linearly if the soil-moisture anomaly is dried: an anomaly that is 50 % dryer than the reference case with a homogeneous soil-moisture distribution produces up to 40 % more rain. The amplitude of this negative response to the dry soil-moisture anomaly cannot be reproduced by either drying or moistening the soil in the whole domain, even when using unrealistic soil-moisture values. A moist soil anomaly showed little impact on total rain. The triggering effects of the soil-moisture anomalies can be reproduced by an isolated mountain of 250 m height. In order to test to what extent the impact of the soil-moisture anomaly and the mountain are additive, the soil-moisture perturbation method is applied to soil-moisture over the isolated mountain. A 250 m high mountain with drier (moister) soil than its surrounding is found to enhance (suppress) rain amounts. However, the sensitivity of rain amount to the soil-moisture anomaly decreases with the mountain height: A 500 m high mountain is already sufficient to eliminate the

  17. Distribution of 137Cs in the Surface Soil of Serpong Nuclear Site

    OpenAIRE

    Lubis, E

    2011-01-01

    The distribution of 137Cs in the surface soil layer of Serpong Nuclear Site (SNS) was investigated by field sampling. The Objectives of the investigation is finding the profile of 137Cs distribution in the surface soil and the Tf value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the 137Cs activity in surface soil of SNS is 0.80 ± 0,29 Bq/kg, much lower than in the Antarctic. The contribution value of 137Cs from the operatio...

  18. Performance evaluation for different sensing surface of BICELLs bio-transducers for dry eye biomarkers

    Science.gov (United States)

    Laguna, M. F.; Holgado, M.; Santamaría, B.; López, A.; Maigler, M.; Lavín, A.; de Vicente, J.; Soria, J.; Suarez, T.; Bardina, C.; Jara, M.; Sanza, F. J.; Casquel, R.; Otón, A.; Riesgo, T.

    2015-03-01

    Biophotonic Sensing Cells (BICELLs) are demonstrated to be an efficient technology for label-free biosensing and in concrete for evaluating dry eye diseases. The main advantage of BICELLs is its capability to be used by dropping directly a tear into the sensing surface without the need of complex microfluidics systems. Among this advantage, compact Point of Care read-out device is employed with the capability of evaluating different types of BICELLs packaged on Biochip-Kits that can be fabricated by using different sensing surfaces material. In this paper, we evaluate the performance of the combination of three sensing surface materials: (3-Glycidyloxypropyl) trimethoxysilane (GPTMS), SU-8 resist and Nitrocellulose (NC) for two different biomarkers relevant for dry eye diseases: PRDX-5 and ANXA-11.

  19. Emulsion type dry cleaning system

    International Nuclear Information System (INIS)

    Kohanawa, Osamu; Matsumoto, Hiroyo.

    1988-01-01

    Protective clothing against radioactive contamination used in the radiation controlled areas of nuclear plants has been washed by the same wet washing as used for underwear washing, but recently dry cleaning is getting used in place of wet washing, which generates a large quantity of laundry drain. However, it was required to use wet washing once every five to ten dry cleanings for washing protective clothing, because conventional dry cleaning is less effective in removing water-soluble soils. Therefore, in order to eliminate wet washing, and to decrease the quantity of laundry drains, the emulsion type dry cleaning system capable of removing both oil-soluble and water-soluble soils at a time has been developed. The results of developmental experiments and actual application are presented in this paper. (author)

  20. Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Fairall, C.W.; Larsen, Søren Ejling

    1984-01-01

    A model of downward aerosol panicle flux characterized by dry deposition velocity, Vd, due to Slinn and Slinn (1980) is generalized to the case of nonzero surface concentration (absorbing surface with a surface source). A more general expression for the flux at some reference height is developed ...... produced as droplets at the surface and ‘continental’ background aerosols brought into the boundary layer at the top by entrainment and gravitational settling. Estimates of Si are provided....

  1. Prediction of the soil water retention curve for structured soil from saturation to oven-dryness

    DEFF Research Database (Denmark)

    Karup, Dan; Møldrup, Per; Tuller, Markus

    2017-01-01

    . Independently measured SWRCs for 171 undisturbed soil samples with organic matter contents that ranged from 3 to 14% were used for model validation. The results indicate that consideration of the silt and organic matter fractions, in addition to the clay fraction, improved predictions for the dry-end SWRC......The soil water retention curve (SWRC) is the most fundamental soil hydraulic function required for modelling soil–plant–atmospheric water flow and transport processes. The SWRC is intimately linked to the distribution of the size of pores, the composition of the solid phase and the soil specific...... surface area. Detailed measurement of the SWRC is impractical in many cases because of the excessively long equilibration times inherent to most standard methods, especially for fine textured soil. Consequently, it is more efficient to predict the SWRCbased on easy-to-measure basic soil properties...

  2. Temporal observations of surface soil moisture using a passive microwave sensor

    International Nuclear Information System (INIS)

    Jackson, T.J.; O'Neill, P.

    1987-01-01

    A series of 10 aircraft flights was conducted over agricultural fields to evaluate relationships between observed surface soil moisture and soil moisture predicted using passive microwave sensor observations. An a priori approach was used to predict values of surface soil moisture for three types of fields: tilled corn, no-till corn with soybean stubble, and idle fields with corn stubble. Acceptable predictions were obtained for the tilled corn fields, while poor results were obtained for the others. The source of error is suspected to be the density and orientation of the surface stubble layer; however, further research is needed to verify this explanation. Temporal comparisons between observed, microwave predicted, and soil water-simulated moisture values showed similar patterns for tilled well-drained fields. Divergences between the observed and simulated measurements were apparent on poorly drained fields. This result may be of value in locating and mapping hydrologic contributing areas

  3. Effects of artificial soil surface management on changes of ...

    African Journals Online (AJOL)

    Studies of size distribution, stability of the aggregates, and other soil properties are very important due to their influence on tilth, water infiltration, and nutrient dynamics and more importantly on accelerated erosion but are affected by soil surface management. Both chemical e.g. pH, organic carbon, (OC), exchangeable ...

  4. The Effect of Shoe Sole Tread Groove Depth on the Gait Parameters during Walking on Dry and Slippery Surface

    Directory of Open Access Journals (Sweden)

    M Ziaei

    2012-12-01

    Full Text Available Background: Prevention of slipping accidents requires provision of adequate friction through the use of suitable combinations of footwear and underfoot surfaces. Shoe sole tread groove is one of the important factors on friction coefficient during walking. Objective: To measure the effect of different shoe sole tread groove depths and different surfaces on the required quotient of friction (Q, heel strike velocity and occurrence time of ground reaction forces (GRF in stance phase during walking on slippery and dry surfaces. Methods: In this semi-experimental study, 22 healthy men were studied under different conditions. The studied independent variables were shoe groove depths (included 1, 2.5 and 5 mm and type of walking surface (dry and slippery. Biomechanical gait analysis was carried out with 396 single steps. Data were collected by motion analysis system and two force platform. Results: The occurrence time of GRF was significantly faster on dry surface than slippery surface (p<0.01. Q was significantly lower on slippery surface and with groove depths of 1 and 2.5 mm. The highest value of Q was observed with the deepest groove depth of 5 mm. Heel strike velocity did not differ significantly in the 6 conditions tested. Conclusion: Tread groove depth is a significant factor affecting the Q at the shoes-surface interface on dry and slippery floors. It seems that deeper groove is more appropriate for maintaining the stability during walking. The walking surface affects the occurrence time of GRF; the force components occur sooner on the dry than slippery surface.

  5. Thermal and Hydrologic Signatures of Soil Controls on Evaporation: A Combined Energy and Water Balance Approach with Implications for Remote Sensing of Evaporation

    Science.gov (United States)

    Salvucci, Guido D.

    2000-01-01

    The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or 'time to drying' (t(sub d)) is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage I drying (as water is removed from storage), and then become more or less constant during soil limited, or 'stage II' drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.

  6. Changing spatial patterns of evapotranspiration and deep drainage in response to the interactions among impervious surface arrangement, soil characteristics, and weather on a residential parcel.

    Science.gov (United States)

    Voter, C. B.; Steven, L. I.

    2015-12-01

    The introduction impervious surfaces in urban areas is a key driver of hydrologic change. It is now well understood that the amount of "effective" impervious area directly connected to the storm sewer network is a better indicator of hydrologic behavior than the total amount of impervious area. Most studies in urban hydrology have focused on the relationship between impervious connectivity and stormwater runoff or other surface water flows, with the result that the effect on subsurface flow is not as well understood. In the field, we observe differences in soil moisture availability that are dependent on proximity to impervious features and significant from a root water uptake perspective, which indicates that parcel-scale subsurface and plant water fluxes may also be sensitive to fine-scaled heterogeneity in impervious surface arrangement and connectivity. We use ParFlow with CLM, a watershed model with fully integrated variably-saturated subsurface flow, overland flow, and land-surface processes, to explore the extent to which soil moisture, evapotranspiration, and deep drainage vary under various impervious surface arrangement and soil condition scenarios, as well as under a range of precipitation regimes. We investigate the effect of several impervious surface and soil characteristics, including general lot layout, downspout disconnect, and direction of driveway/sidewalk slope, and soil compaction. We show that that some impervious connectivity schemes transfer more water from impervious areas to pervious ones and promote localized recharge by developing well-defined, fast-moving wetting fronts that are able to penetrate the root zone. Enhanced infiltration is translated more directly to recharge in normal to wet years but partitioned more often to transpiration in dry years, leading to a nonlinear relationship among precipitation, runoff and recharge.

  7. Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying.

    Science.gov (United States)

    Chen, He; Chen, Shiwei; Li, Chuanna; Shu, Guowei

    2015-01-01

    The individual and interactive effects of skimmed milk powder, lactose, and sodium ascorbate on the number of viable cells and freeze-drying survival for vacuum freeze-dried powder formulation of Lactobacillus bulgaricus were studied by response surface methodology, and the optimal compound lyoprotectant formulations were gained. It is shown that skim milk powder, lactose, and sodium ascorbate had a significant impact on variables and survival of cultures after freeze-drying. Also, their protective abilities could be enhanced significantly when using them as a mixture of 28% w/v skim milk, 24% w/v lactose, and 4.8% w/v sodium ascorbate. The optimal freeze-drying survival rate and the number of viable cells of Lactobacillus bulgaricus were observed to be (64.41±0.02)% and (3.22±0.02)×10(11) colony-forming units (CFU)/g using the optimal compound protectants, which were very close to the expected values 64.47% and 3.28×10(11) CFU/g.

  8. Seasonal dynamics of CO2 efflux in soils amended with composted and thermally-dried sludge as affected by soil tillage systems in a semi-arid agroecosystem

    Science.gov (United States)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro; López-de-Sa, Esther G.; Polo, Alfredo

    2014-05-01

    In semi-arid agricultural soils, seasonal dynamic of soil CO2 efflux (SCE) is highly variable. Based on soil respiration measurements the effects of different management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) was investigated in a long-term field experiment (28 years) conducted on a sandy-loam soil at the experimental station 'La Higueruela' (40o 03'N, 4o 24'W). Both organic amendments were applied at a rate of 30 Mg ha-1 prior to tillage practices. Unamended soils were used as control for each tillage system. SCE was moderate in late spring (2.2-11.8 μmol CO2 m-2 s-1) when amendments were applied and tillage was performed, markedly decreased in summer (0.4-3.2 μmol CO2 m-2 s-1), following a moderate increase in autumn (3.4-14.1 μmol CO2 m-2 s-1), rising sharply in October (5.6-39.8 μmol CO2 m-2 s-1 ). In winter, SCE was low (0.6-6.5 μmol CO2 m-2 s-1). In general, SCE was greater in chisel and moldboard tilled soils, and in CS and particularly TSS-amended soils, due to the addition of labile C with these amendments, meanwhile no-tillage soils exhibited smaller increases in C efflux throughout the seasons. Soil temperature controlled the seasonal variations of SCE. In summer, when drought occurs, a general decrease of SCE was observed due to a deficit in soil water content. After drought period SCE jumped to high values in response to rain events ('Birch effect') that changed soil moisture conditions. Soil drying in summer and rewetting in autumn may promotes some changes on the structure of soil microbial community, affecting associated metabolic processes, and enhancing a rapid mineralization of water-soluble organic C compounds and/or dead microbial biomass that acts as an energy source for soil microorganisms. To assess the effects of tillage and amendments on SCE, Q10 values were calculated. Data were grouped into three groups according to soil moisture (0

  9. Distribution of {sup 137}Cs in the Surface Soil of Serpong Nuclear Site

    Energy Technology Data Exchange (ETDEWEB)

    Lubis, E., E-mail: erlub@batan.go.id [Center for Radioactive Waste Technology, National Nuclear Energy Agency, Serpong (Indonesia)

    2011-08-15

    The distribution of {sup 137}Cs in the surface soil layer of Serpong Nuclear Site (SNS) was investigated by field sampling. The Objectives of the investigation is finding the profile of {sup 137}Cs distribution in the surface soil and the T{sub f} value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the {sup 137}Cs activity in surface soil of SNS is 0.80 {+-} 0.29 Bq/kg, much lower than in the Antarctic. The contribution value of {sup 137}Cs from the operation of G.A. Siwabessy Reactor until now is undetectable. The T{sub f} of {sup 137}Cs from surface soil to Panisetum Purpureum, Setaria Spha Celata and Imperata Cylindrica grasses were 0.71 {+-} 0.14, 0.84 {+-} 0.27 and 0.81 {+-} 0.11 respectively. The results show that value of the transfer factor of {sup 137}Cs varies between cultivated and uncultivated soil and also with the soils with thick humus. (author)

  10. Measured and modeled dry deposition velocities over the ESCOMPTE area

    Science.gov (United States)

    Michou, M.; Laville, P.; Serça, D.; Fotiadi, A.; Bouchou, P.; Peuch, V.-H.

    2005-03-01

    Measurements of the dry deposition velocity of ozone have been made by the eddy correlation method during ESCOMPTE (Etude sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions). The strong local variability of natural ecosystems was sampled over several weeks in May, June and July 2001 for four sites with varying surface characteristics. The sites included a maize field, a Mediterranean forest, a Mediterranean shrub-land, and an almost bare soil. Measurements of nitrogen oxide deposition fluxes by the relaxed eddy correlation method have also been carried out at the same bare soil site. An evaluation of the deposition velocities computed by the surface module of the multi-scale Chemistry and Transport Model MOCAGE is presented. This module relies on a resistance approach, with a detailed treatment of the stomatal contribution to the surface resistance. Simulations at the finest model horizontal resolution (around 10 km) are compared to observations. If the seasonal variations are in agreement with the literature, comparisons between raw model outputs and observations, at the different measurement sites and for the specific observing periods, are contrasted. As the simulated meteorology at the scale of 10 km nicely captures the observed situations, the default set of surface characteristics (averaged at the resolution of a grid cell) appears to be one of the main reasons for the discrepancies found with observations. For each case, sensitivity studies have been performed in order to see the impact of adjusting the surface characteristics to the observed ones, when available. Generally, a correct agreement with the observations of deposition velocities is obtained. This advocates for a sub-grid scale representation of surface characteristics for the simulation of dry deposition velocities over such a complex area. Two other aspects appear in the discussion. Firstly, the strong influence of the soil water content to the plant

  11. Photometric properties of Mars soils analogs

    Science.gov (United States)

    Pommerol, A.; Thomas, N.; Jost, B.; Beck, P.; Okubo, C.; McEwen, A.S.

    2013-01-01

    We have measured the bidirectional reflectance of analogs of dry, wet, and frozen Martian soils over a wide range of phase angles in the visible spectral range. All samples were produced from two geologic samples: the standard JSC Mars-1 soil simulant and Hawaiian basaltic sand. In a first step, experiments were conducted with the dry samples to investigate the effects of surface texture. Comparisons with results independently obtained by different teams with similar samples showed a satisfying reproducibility of the photometric measurements as well as a noticeable influence of surface textures resulting from different sample preparation procedures. In a second step, water was introduced to produce wet and frozen samples and their photometry investigated. Optical microscope images of the samples provided information about their microtexture. Liquid water, even in relatively low amount, resulted in the disappearance of the backscattering peak and the appearance of a forward-scattering peak whose intensity increases with the amount of water. Specular reflections only appeared when water was present in an amount large enough to allow water to form a film at the surface of the sample. Icy samples showed a wide variability of photometric properties depending on the physical properties of the water ice. We discuss the implications of these measurements in terms of the expected photometric behavior of the Martian surface, from equatorial to circum-polar regions. In particular, we propose some simple photometric criteria to improve the identification of wet and/or icy soils from multiple observations under different geometries.

  12. Predictions of soil-water potentials in the north-western Sonoran Desert

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.R.; Nobel, P.S.

    1986-03-01

    A simple computer model was developed to predict soil-water potential at a Sonoran Desert site. The variability of precipitation there, coupled with the low water-holding capacity of the sandy soil, result in large temporal and spatial variations in soil-water potential. Predicted soil-water potentials for depths of 5, 10 and 20 cm were in close agreement with measured values as the soil dried after an application of water. Predicted values at a depth of 10 cm, the mean rooting depth of Agave deserti and other succulents common at the study site, also agreed with soil-water potentials measured in the field throughout 1 year. Both soil-water potential and evaporation from the soil surface were very sensitive to simulated changes in the hydraulic conductivity of the soil. The annual duration of soil moisture adequate for succulents was dependent on the rainfall as well as on the spacing and amount of individual rainfalls. The portion of annual precipitation evaporated from the soil surface varied from 73% in a dry year (77 mm precipitation) to 59% in a wet year (597 mm). Besides using the actual precipitation events, simulations were performed using the figures for total monthly precipitation. Based on the average number of rainfalls for a particular month, the rainfall was distributed throughout the month in the model. Predictions using both daily and monthly inputs were in close agreement, especially for the number of days during a year when the soil-water potential was sufficient for water absorption by the succulent plants (above -0.5 MPa).

  13. Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil

    Science.gov (United States)

    Eugene S. Takle; William J. Massman; James R. Brandle; R. A. Schmidt; Xinhua Zhou; Irina V. Litvina; Rick Garcia; Geoffrey Doyle; Charles W. Rice

    2004-01-01

    We report measurements at 2Hz of pressure fluctuations at and beneath the soil in an agricultural field with dry soil and no vegetation. The objective of our study was to examine the possible role of pressure fluctuations produced by fluctuations in ambient wind on the efflux of CO2 at the soil surface.We observed that pressure fluctuations penetrate to 50 cm in the...

  14. Distribution coefficient Kd in surface soils collected in Aomori prefecture

    International Nuclear Information System (INIS)

    Tsukada, Hirofumi; Hasegawa, Hidenao; Hisamatsu, Shun'ichi; Inaba, Jiro

    2000-01-01

    Soil-solution distribution coefficients (Kds), which are the ratio of an element concentration in a soil solid phase to that in a solution phase, for 32 elements in Andosols, Wet Andosols and Gleyed Andosols collected throughout Aomori Prefecture were determined. A dried soil sample was mixed with a 10-fold amount of pure water in a PPCO centrifuge tube, and then gently shaken for 24 h. The Kd values were obtained by measurement of element concentrations in solid and solution phases (batch method). The Kd values in this work were up to three orders of magnitude higher than the IAEA reported values, and their 95% confidence intervals were within two orders of magnitude. Most Kd values of elements were decreasing with increasing electrical conductivity of the solution phase. The Kd of Ca had a good correlation with that of Sr. However, the correlation between the Kds of K and Cs was not good. The Kd values were also determined by another method. The soil solutions were separated from the fresh soil samples by means of high speed centrifuging. The Kd values were calculated from the element concentration in solid phase and soil solution (centrifugation method). The Kd values obtained by the centrifugation method agreed within one order of magnitude with those by the batch method, and both variation patterns in elements correlated well. (author)

  15. Functional ecology of an Antarctic Dry Valley

    Science.gov (United States)

    Chan, Yuki; Van Nostrand, Joy D.; Zhou, Jizhong; Pointing, Stephen B.

    2013-01-01

    The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution. PMID:23671121

  16. Development of soil water regime under spruce stands

    Directory of Open Access Journals (Sweden)

    Tužinský Ladislav

    2017-06-01

    Full Text Available The aim of this paper is to analyse the water regime of soils under spruce ecosystems in relation to long-lasting humid and drought periods in the growing seasons 1991-2013. The dominant interval humidity in observing growing seasons is semiuvidic interval with soil moisture between hydro-limits maximal capillary capacity (MCC and point of diminished availability (PDA. Gravitationally seepage concentrated from accumulated winter season, water from melting snow and existing atmospheric precipitation occurs in the soil only at the beginning of the growing season. The supplies of soil water are significantly decreasing in the warm climate and precipitant deficient days. The greatest danger from drought threatens Norway spruce during the summer months and it depends on the duration of dry days, water supply at the beginning of the dry days, air temperature and the intensity of evapotranspiration. In the surface layers of the soil, with the maximum occurrence of active roots, the water in semiarid interval area between hydro-limits PDA and wilting point (WP decreases during the summer months. In the culminating phase occurs the drying to moisture state with capillary stationary and the insufficient supply of available water for the plants. Physiological weakening of Norway spruce caused by set of outlay components of the water balance is partially reduced by delivering of water by capillary action from deeper horizons. In extremely dry periods, soil moisture is decreasing also throughout the soil profile (0-100 cm into the bottom third of the variation margin hydro-limits MCC-PDA in the category of capillary less moving and for plants of low supply of usable water (60-90 mm. The issue of deteriorated health state of spruce ecosystems is considered to be actual. Changes and developments of hydropedological conditions which interfere the mountain forests represent the increasing danger of the drought for the spruce.

  17. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    Science.gov (United States)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  18. Impacts of Local Soil Moisture Anomalies on the Atmospheric Circulation and on Remote Surface Meteorological Fields During Boreal Summer: A Comprehensive Analysis over North America

    Science.gov (United States)

    Koster, Randal D.; Chang, Yehui; Wang, Hailan; Schubert, Siegfried D.

    2016-01-01

    We perform a series of stationary wave model (SWM) experiments in which the boreal summer atmosphere is forced, over a number of locations in the continental U.S., with an idealized diabatic heating anomaly that mimics the atmospheric heating associated with a dry land surface. For localized heating within a large portion of the continental interior, regardless of the specific location of this heating, the spatial pattern of the forced atmospheric circulation anomaly (in terms of 250-mb eddy streamfunction) is largely the same: a high anomaly forms over west central North America and a low anomaly forms to the east. In supplemental atmospheric general circulation model (AGCM) experiments, we find similar results; imposing soil moisture dryness in the AGCM in different locations within the US interior tends to produce the aforementioned pattern, along with an associated near-surface warming and precipitation deficit in the center of the continent. The SWM-based and AGCM-based patterns generally agree with composites generated using reanalysis and precipitation gauge data. The AGCM experiments also suggest that dry anomalies imposed in the lower Mississippi Valley have remote surface impacts of particularly large spatial extent, and a region along the eastern half of the US-Canada border is particularly sensitive to dry anomalies in a number of remote areas. Overall, the SWM and AGCM experiments support the idea of a positive feedback loop operating over the continent: dry surface conditions in many interior locations lead to changes in atmospheric circulation that act to enhance further the overall dryness of the continental interior.

  19. Effects of land use change and seasonality of precipitation on soil nitrogen in a dry tropical forest area in the Western Llanos of Venezuela.

    Science.gov (United States)

    González-Pedraza, Ana Francisca; Dezzeo, Nelda

    2014-01-01

    We evaluated changes of different soil nitrogen forms (total N, available ammonium and nitrate, total N in microbial biomass, and soil N mineralization) after conversion of semideciduous dry tropical forest in 5- and 18-year-old pastures (YP and OP, resp.) in the western Llanos of Venezuela. This evaluation was made at early rainy season, at end rainy season, and during dry season. With few exceptions, no significant differences were detected in the total N in the three study sites. Compared to forest soils, YP showed ammonium losses from 4.2 to 62.9% and nitrate losses from 20.0 to 77.8%, depending on the season of the year. In OP, the ammonium content increased from 50.0 to 69.0% at the end of the rainy season and decreased during the dry season between 25.0 and 55.5%, whereas the nitrate content increased significantly at early rainy season. The net mineralization and the potentially mineralizable N were significantly higher (P forest and YP, which would indicate a better quality of the substrate in OP for mineralization. The mineralization rate constant was higher in YP than in forest and OP. This could be associated with a reduced capacity of these soils to preserve the available nitrogen.

  20. Soil developments in polar deserts: Implications for exobiology and future Mars missions

    Science.gov (United States)

    Gibson, Everett K., Jr.

    1989-01-01

    Chemical alterations, weathering, and diagenesis of soil profiles from the dry valleys of Antarctica were studied as analogs of regolith development for the Martian regolith. Chemical weathering processes play an important part in soil development within the dry valleys of Antarctica. A suite of core samples were studied which were taken within the valley floors in addition to samples taken in the vicinity of evaporite and brine ponds. Analysis of water soluable cations and anions from core samples were performed along with petrographic analysis of selected samples. It was shown that ionic transport processes operate primarily above the permafrost zone. Abundances of the water soluable ions reflect the nature of secondary minerals produced by evaporation and weathering. Chloride, calcium, and sodium abundances for soils from the cores within the North and South Forks of Wright Valley, reflect the secondary mineralogy of the soil columns. Calculations for Na, Ca, and Cl abundances reflect the appearance of halite and antarcticite. In areas where excess Ca is present, X-ray diffraction studies show the presence of gypsum. It is well known that the Martian surface conditions may be favorable for chemical weathering. Primary silicates would be expected to be reactive with any ground water. It seems likely that Martian subsurface water is available to assist in the weathering of the primary minerals. Such weathering could result in the formation of clays, sulfates, carbonates, hydrates, halides, and zeolites. The dry valley cores have shown that they maybe excellent analogs to weathering processes on the near-surface of Mars. Since movement of water within the near-surface region clearly results in chemical weathering, leaching, and salt formation in the dry valleys, similar processes are probably operating within the Martian regolith.

  1. A New Empirical Model for Radar Scattering from Bare Soil Surfaces

    Directory of Open Access Journals (Sweden)

    Nicolas Baghdadi

    2016-11-01

    Full Text Available The objective of this paper is to propose a new semi-empirical radar backscattering model for bare soil surfaces based on the Dubois model. A wide dataset of backscattering coefficients extracted from synthetic aperture radar (SAR images and in situ soil surface parameter measurements (moisture content and roughness is used. The retrieval of soil parameters from SAR images remains challenging because the available backscattering models have limited performances. Existing models, physical, semi-empirical, or empirical, do not allow for a reliable estimate of soil surface geophysical parameters for all surface conditions. The proposed model, developed in HH, HV, and VV polarizations, uses a formulation of radar signals based on physical principles that are validated in numerous studies. Never before has a backscattering model been built and validated on such an important dataset as the one proposed in this study. It contains a wide range of incidence angles (18°–57° and radar wavelengths (L, C, X, well distributed, geographically, for regions with different climate conditions (humid, semi-arid, and arid sites, and involving many SAR sensors. The results show that the new model shows a very good performance for different radar wavelengths (L, C, X, incidence angles, and polarizations (RMSE of about 2 dB. This model is easy to invert and could provide a way to improve the retrieval of soil parameters.

  2. Occurrence of Cronobacter spp. in Dried Foods, Fresh Vegetables and Soil.

    Science.gov (United States)

    Ueda, Shigeko

    2017-01-01

     The present study surveyed the occurrence of Cronobacter spp. in dried foods including milk powder, spices and herbs and others, and fresh vegetables commercially available in markets, and ground soil materials for the agriculture. Cronobacter spp. were isolated from 15% of 33 spice and herb samples and 3% of 36 taste foods, and these were C. turicensis, C. malonaticus, C. sakazakii and C. dubliensis. Cronobacter spp. from fresh vegetables were detected in 12% of field vegetables and 13% of hydroponic vegetables. C. turicensis was prevalent in field vegetables, and C. malonaticus was in hydroponic ones. And, Cronobacter spp. in shredded vegetables were detected from 44% of 9 samples, and these were C. dubliensis, C. turicensis and C. sakazakii. Also, Cronobacter spp. in soil from rice field, vegetable field and sandpits were predominantly C. sakazakii and C. malonaticus.

  3. Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer.

    Science.gov (United States)

    Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad

    2018-06-01

    The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.

  4. Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management.

    Science.gov (United States)

    Han, Xiao-Qing; Xiao, Xi-Yuan; Guo, Zhao-Hui; Xie, Ye-Hua; Zhu, Hui-Wen; Peng, Chi; Liang, Yu-Qin

    2018-05-03

    Agricultural soils contaminated with cadmium (Cd) pose a risk to receiving surface water via drainage or runoff. A 90-day laboratory incubation experiment was conducted to investigate the release characteristics and transformation of Cd from contaminated paddy soil amended with agrochemical (NPK fertilizer) and lime (L) under water management regimes of continuous flooding (F) and drying-wetting cycles (DW). The result showed that the dissolved Cd concentrations in overlying water of the fertilizer treatment under flooding (NPK+F) and drying-wetting (NPK+DW) reached up to 81.0 μg/L and 276 μg/L, and were much higher than that from the corresponding controls without NPK fertilizer addition at the end of experiment. The Cd concentration showed significantly negative correlation with overlying water pH, but positive correlation with soil redox potential and concentrations of dissolved total nitrogen, sulfate and manganese in overlying water (P < 0.05), indicating that drying-wetting cycles and N fertilizer addition may enhance soil Cd release. The Cd concentrations in overlying water from all treatments except NPK+L+F treatment exceeded the Cd threshold limit of Chinese Environmental Quality Standards for Surface Water (10 μg/L Grade V) and poses potential risk to surface water quality. Meanwhile, the proportion of Cd in the acid-soluble fraction from all incubated soil except NPK+L+F treatment increased compared to before incubation. The results indicated that continuous flooding was a reasonable water management candidate coupled with lime addition for immobilizing soil Cd. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Adaptive Surface Modeling of Soil Properties in Complex Landforms

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-06-01

    Full Text Available Abstract: Spatial discontinuity often causes poor accuracy when a single model is used for the surface modeling of soil properties in complex geomorphic areas. Here we present a method for adaptive surface modeling of combined secondary variables to improve prediction accuracy during the interpolation of soil properties (ASM-SP. Using various secondary variables and multiple base interpolation models, ASM-SP was used to interpolate soil K+ in a typical complex geomorphic area (Qinghai Lake Basin, China. Five methods, including inverse distance weighting (IDW, ordinary kriging (OK, and OK combined with different secondary variables (e.g., OK-Landuse, OK-Geology, and OK-Soil, were used to validate the proposed method. The mean error (ME, mean absolute error (MAE, root mean square error (RMSE, mean relative error (MRE, and accuracy (AC were used as evaluation indicators. Results showed that: (1 The OK interpolation result is spatially smooth and has a weak bull's-eye effect, and the IDW has a stronger ‘bull’s-eye’ effect, relatively. They both have obvious deficiencies in depicting spatial variability of soil K+. (2 The methods incorporating combinations of different secondary variables (e.g., ASM-SP, OK-Landuse, OK-Geology, and OK-Soil were associated with lower estimation bias. Compared with IDW, OK, OK-Landuse, OK-Geology, and OK-Soil, the accuracy of ASM-SP increased by 13.63%, 10.85%, 9.98%, 8.32%, and 7.66%, respectively. Furthermore, ASM-SP was more stable, with lower MEs, MAEs, RMSEs, and MREs. (3 ASM-SP presents more details than others in the abrupt boundary, which can render the result consistent with the true secondary variables. In conclusion, ASM-SP can not only consider the nonlinear relationship between secondary variables and soil properties, but can also adaptively combine the advantages of multiple models, which contributes to making the spatial interpolation of soil K+ more reasonable.

  6. Uptake of gaseous formaldehyde onto soil surfaces: a coated-wall flow tube study

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Meusel, Hannah; Kuhn, Uwe; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2015-04-01

    Gaseous formaldehyde (HCHO) is an important intermediate molecule and source of HO2 radicals. However, discrepancies exist between model simulated and observed HCHO concentrations, suggesting missing sources or sinks in the HCHO budget. Multiphase processes on the surface of soil and airborne soil-derived particles have been suggested as an important mechanism for the production/removal of atmospheric trace gases and aerosols. In this work, the uptake of gaseous HCHO on soil surfaces were investigated through coated-wall flow tube experiments with HCHO concentration ranging from 10 to 40 ppbv. The results show that the adsorption of HCHO occurred on soil surfaces, and the uptake coefficient dropped gradually (i.e., by a factor of 5 after 1 hour) as the reactive surface sites were consumed. The HCHO uptake coefficient was found to be affected by the relative humidity (RH), decreasing from (2.4 ± 0.5) × 10-4 at 0% RH to (3.0 ± 0.08) × 10-5 at 70% RH, due to competition of water molecule absorption on the soil surface. A release of HCHO from reacted soil was also detected by applying zero air, suggesting the nature of reversible physical absorption and the existence of an equilibrium at the soil-gas interface. It implies that soil could be either a source or a sink for HCHO, depending on the ambient HCHO concentration. We also develop a Matlab program to calculate the uptake coefficient under laminar flow conditions based on the Cooney-Kim-Davis method.

  7. Patterns and possible mechanisms of soil CO2 uptake in sandy soil.

    Science.gov (United States)

    Fa, Ke-Yu; Zhang, Yu-Qing; Wu, Bin; Qin, Shu-Gao; Liu, Zhen; She, Wei-Wei

    2016-02-15

    It has been reported that soils in drylands can absorb CO2, although the patterns and mechanisms of such a process remain under debate. To address this, we investigated the relationships between soil CO2 flux and meteorological factors and soil properties in Northwest China to reveal the reasons for "anomalous" soil CO2 flux in a desert ecosystem. Soil CO2 flux increased significantly and exponentially with surficial turbulence at the diel scale under dry conditions (Psoil CO2 flux demonstrated remarkable negative correlation with soil air pressure (Psoil water content was insufficient to dissolve the absorbed CO2 in dry conditions, but was sufficient in wet conditions. The concentration of soil HCO3(-) in the morning was higher than in the evening in dry conditions, but this pattern was reversed in wet conditions. These results imply that CO2 outgassing induced by turbulence, expansion of soil air, CO2 effusion from soil water, and carbonate precipitation during daytime can explain the abiotic diurnal CO2 release. Moreover, CO2 pumping from the atmosphere into the soil, caused mainly by carbonate dissolution, can account for nocturnal CO2 absorption in dry conditions. The abiotic soil CO2 flux pattern (CO2 absorption throughout the diel cycle) in wet conditions can be attributed to downward mass flow of soil CO2 and intensified soil air shrinkage, CO2 dissolving in soil water, and carbonate dissolution. These results provide a basis for determining the location of abiotic fixed carbon within soils in desert ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Evaluating sensitivity of unsaturated soil properties

    International Nuclear Information System (INIS)

    Abdel-Rahman, R.O.; El-Kamash, A.M.; Nagy, M.E.; Khalill, M.Y.

    2005-01-01

    The assessment of near surface disposal performance relay on numerical models of groundwater flow and contaminant transport. These models use the unsaturated soil properties as input parameters, which are subject to uncertainty due to measurements errors and the spatial variability in the subsurface environment. To ascertain how much the output of the model will depend on the unsaturated soil properties the parametric sensitivity analysis is used. In this paper, a parametric sensitivity analysis of the Van Genuchten moisture retention characteristic (VGMRC) model will be presented and conducted to evaluate the relative importance of the unsaturated soil properties under different pressure head values that represent various dry and wet conditions. (author)

  9. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    Science.gov (United States)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  10. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    International Nuclear Information System (INIS)

    Liu, Yang; Ren, Li; Wang, Yingjun

    2014-01-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair

  11. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang, Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2014-05-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair.

  12. Future drying of the southern Amazon and central Brazil

    Science.gov (United States)

    Yoon, J.; Zeng, N.; Cook, B.

    2008-12-01

    Recent climate modeling suggests that the Amazon rainforest could exhibit considerable dieback under future climate change, a prediction that has raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable. However, the periphery, notably the southern edge, is in danger of drying out, driven by two main processes. First, a decline in precipitation of 24% in the southern Amazon lengthens the dry season and reduces soil moisture, despite of an increase in precipitation during the wet season, due to the nonlinear response in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season precipitation: (1) a stronger north-south tropical Atlantic sea surface temperature gradient; (2) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure. Secondly, evaporation will increase due to the general warming, thus also reducing soil moisture. As a consequence, the median of the models projects a reduction of vegetation by 20%, and enhanced fire carbon flux by 10-15% in the southern Amazon, central Brazil, and parts of the Andean Mountains. Because the southern Amazon is also under intense human influence, the double pressure of deforestation and climate change may subject the region to dramatic changes in the 21st century.

  13. The dependence of maize (Zea mays hybrids yielding potential on the water amounts reaching the soil surface

    Directory of Open Access Journals (Sweden)

    Kresović Branka

    2013-01-01

    Full Text Available The aim of the present study was to observe the response of maize hybrids under rainfed and irrigation conditions of the soil in order to establish the dependence of yielding potential on the water amounts reaching the soil surface during the growing season. The four-replicate trail was set up according to the randomised complete-block design on chernozem. Pre-watering soil moisture was approximately 70% of field water capacity, and soil moisture was established thermogravimetrically. During the five-year studies, the following differences in yields could be as follows: 12.68 t ha-1 (ZP 341; 12.76 t ha-1 (ZP 434; 13.17 t ha-1 (ZP 578; 14.03 t ha-1 (ZP 684 and 13.75 t ha-1 (ZP 704 under conditions of 440 mm, 440 mm, 424 mm, 457 mm and 466 mm of water, respectively. The hybrid ZP 341, i.e. ZP 578 expressed the highest, i.e. the lowest tolerance in dry relative seasons, respectively. The reduction of the water amount for every 10 mm decreased the yield by 119.4 kg ha-1 (ZP 341, 156.7 kg ha-1 (ZP 434, 172.3 kg ha-1 (ZP 578, 148.9 kg ha-1 (ZP 684 and 151.1 kg ha-1 (ZP 704. [Projekat Ministarstva nauke Republike Srbije, br. TR 31037

  14. The theory of the interaction of atmospheric aerosol with underlying surface

    International Nuclear Information System (INIS)

    Buikov, M.V.

    1993-01-01

    The interaction of wind with underlying surfaces through resuspension makes a great contribution to the total amount of atmospheric aerosols. The dry deposition process results in cleaning of the atmosphere and contamination of near-surface air layers of soil and vegetation. This paper examines the theory leading to an exact solution of the problem of turbulent transportation of pollution taking into account resuspension and dry-deposition. This may be useful for the interpretation of observational data and for the improvement of calculation methods to describe aerosol exchange at surfaces in air. (author)

  15. Facile Dry Surface Cleaning of Graphene by UV Treatment

    Science.gov (United States)

    Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk

    2018-05-01

    Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

  16. Biological Soil Crusts: Webs of Life in the Desert

    Science.gov (United States)

    Belnap, Jayne

    2001-01-01

    Although the soil surface may look like dirt to you, it is full of living organisms that are a vital part of desert ecosystems. This veneer of life is called a biological soil crust. These crusts are found throughout the world, from hot deserts to polar regions. Crusts generally cover all soil spaces not occupied by green plants. In many areas, they comprise over 70% of the living ground cover and are key in reducing erosion, increasing water retention, and increasing soil fertility. In most dry regions, these crusts are dominated by cyanobacteria (previously called blue-green algae), which are one of the oldest known life forms. Communities of soil crusts also include lichens, mosses, microfungi, bacteria, and green algae. These living organisms and their by-products create a continuous crust on the soil surface. The general color, surface appearance, and amount of coverage of these crusts vary depending on climate and disturbance patterns. Immature crusts are generally flat and the color of the soil, which makes them difficult to distinguish from bare ground. Mature crusts, in contrast, are usually bumpy and dark-colored due to the presence of lichens, mosses, and high densities of cyanobacteria and other organisms.

  17. Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment.

    Directory of Open Access Journals (Sweden)

    José A Siles

    Full Text Available The Mediterranean basin has been identified as a biodiversity hotspot, about whose soil microbial diversity little is known. Intensive land use and aggressive management practices are degrading the soil, with a consequent loss of fertility. The use of organic amendments such as dry olive residue (DOR, a waste produced by a two-phase olive-oil extraction system, has been proposed as an effective way to improve soil properties. However, before its application to soil, DOR needs a pre-treatment, such as by a ligninolytic fungal transformation, e.g. Coriolopsis floccosa. The present study aimed to describe the bacterial and fungal diversity in a Mediterranean soil and to assess the impact of raw DOR (DOR and C. floccosa-transformed DOR (CORDOR on function and phylogeny of soil microbial communities after 0, 30 and 60 days. Pyrosequencing of the 16S rRNA gene demonstrated that bacterial diversity was dominated by the phyla Proteobacteria, Acidobacteria, and Actinobacteria, while 28S-rRNA gene data revealed that Ascomycota and Basidiomycota accounted for the majority of phyla in the fungal community. A Biolog EcoPlate experiment showed that DOR and CORDOR amendments decreased functional diversity and altered microbial functional structures. These changes in soil functionality occurred in parallel with those in phylogenetic bacterial and fungal community structures. Some bacterial and fungal groups increased while others decreased depending on the relative abundance of beneficial and toxic substances incorporated with each amendment. In general, DOR was observed to be more disruptive than CORDOR.

  18. Organic matter composition of soil macropore surfaces under different agricultural management practices

    Science.gov (United States)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  19. Potassium efficiency of different crops grown on a sandy soil under controlled conditions

    International Nuclear Information System (INIS)

    El Dessougi, H. I.; Claassen, N.; Steingrobe, B.

    2010-01-01

    The objective of this work was to study K efficiency of different crops and determine the plant parameters affecting it. The study was carried out using 14 different crops and cultivars grown on a sandy soil rich in humus, with two potassium fertilisation levels under controlled conditions. The studied crops showed different K efficiency reflected in different dry matter yield production in unfertilised relative to fertilised treatments. All crops had , at low K supply, less than optimum K concentration in dry matter, indicating that the soil K concentration did not meet the K requirement of the plants, Thus, the ability to produce high dry matter yield indicated superior adaptability to K deficiency. The efficiency mechanisms employed by the different crops were low shoot growth rate and/or high root length-shoot weigh ratio and a high uptake rate per unit root, i.e. the influx, or low internal K requirement. Crops with high influx had higher calculated concentration gradients, since they caused further decrease of the concentration at the root surface. As such, they were able to create steeper concentration gradients between bulk soil solution and root surface. This resulted in higher diffusive flux to the roots.(Author)

  20. Stabilizing lead bullets in shooting range soil by phosphate-based surface coating

    Directory of Open Access Journals (Sweden)

    Bin Hua

    2016-08-01

    Full Text Available Soil lead (Pb is well known as a threat to human health and ecosystem. Although relatively insoluble, lead bullets in shooting range soil can be readily released into soluble forms through natural weathering processes and thus pose significant human and environmental risks. In this study, laboratory experiments were conducted to investigate if the Pb bullets in shooting range soil can be stabilized through surface coating of phosphate-based materials. Results indicated that FePO4 or AlPO4 coatings, insoluble metal phosphates, have been successfully formed on the surface of the Pb bullets. The EPA Toxicity Characteristic Leaching Procedure (TCLP test showed that FePO4 or AlPO4 surface coating would effectively reduce the Pb solubility or leachability of the bullets. The surface coating under pH of <5.5 for 7 days could achieve 92–100% reduction, with 85–98% by FePO4 coating and 77–98% by AlPO4 coating as compared with the non-coating. Leachable Pb concentration in the contaminated shooting range soil was reduced by 85–98% or 77–98% as a result of the FePO4 or AlPO4 solution treatment. This study demonstrated that the FePO4 or AlPO4–based surface coating on lead bullets can effectively inhibit the Pb weathering and significantly reduce the Pb release from soil through in situ chemical stabilization, which could be potentially applicable as a cost-effective and environmental-sound technology for the remediation of Pb-contaminated shooting range soil.

  1. Mitigation of dimethazone residues in soil and runoff water from agricultural field.

    Science.gov (United States)

    Antonious, George F

    2011-01-01

    Dimethazone, also known as clomazone [2-[(2-chlorophenyl) methyl]- 4,4-dimethyl-3-isoxaolidinone] is a pre-emergent nonionic herbicide commonly used in agriculture. A field study was conducted on a silty-loam soil of 10 % slope to monitor off-site movement and persistence of dimethazone in soil under three management practices. Eighteen plots of 22 x 3.7 m each were separated using stainless steel metal borders and the soil in six plots was mixed with municipal sewage sludge (MSS) and yard waste (YW) compost (MSS+YW) at 15 t acre⁻¹ on dry weight basis, six plots were mixed with MSS at 15 t acre⁻¹, and six unamended plots (NM) were used for comparison purposes. The objectives of this investigation were to: (i) monitor the dissipation and half-life (T₁/₂) of dimethazone in soil under three management practices; (ii) determine the concentration of dimethazone residues in runoff and infiltration water following natural rainfall events; and (iii) assess the impact of soil amendments on the transport of NO₃, NH₄, and P into surface and subsurface water. Gas chromatography/mass spectrometery (GC/MS) analyses of soil extracts indicated the presence of ion fragments at m/z 125 and 204 that can be used for identification of dimethazone residues. Intitial deposits of dimethazone varied from 1.3 μg g⁻¹ dry native soil to 3.2 and 11.8 μg g⁻¹ dry soil in MSS and MSS+YW amended soil, respectively. Decline of dimethazone residues in the top 15 cm native soil and soil incorporated with amendments revealed half-life (T₁/₂) values of 18.8, 25.1, and 43.0 days in MSS+YW, MSS, and NM treatments, respectively. Addition of MSS+YW mix and MSS alone to native soil increased water infiltration, lowering surface runoff water volume and dimethazone residues in runoff following natural rainfall events.

  2. ENZYME ACTIVITIES OF PADDY SOILS AND RELATIONSHIPS WITH THE SOIL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Rıdvan KIZILKAYA

    1998-03-01

    Full Text Available This study was carried out to determine the effect of soil properties on enzyme activities of paddy soils, the sample of which were taken from Üçpınar, Harız, Doğancı, Kaygusuz, Emenli, Sarıköy and Gelemenağarı villages where rice cultivation is an intensive agricultural system. In this study, soil properties having effects on urease, phosphatase, ß-glucosidase and catalase enzyme activities were setforth. Urease enzyme activities of soil samples varied from 24.12 to 39.03 mg N 100 g dry soil -1 . Significant correlations were determined between urease enzyme activities and organic matter (r = 0.89**, extractable Mn (r = 0.74**, exchangable K (r = 0.73** and total P content of soil (r = 0.81*. Acid phosphatase enzyme activity varied between 3.00-17.44 mg phenol 100 g dry soil -1 , alkaline phosphatase enzyme activity between 12.00-25.53 mg phenol 100 g dry soil-1 . Exchangable Mg (r = 0.71* and extractable Cu (r = 0.74* were found to have positive effect on acid phosphatase enzyme activity and pH (r = 0.73*, exchangable Ca (r = 0.74*, exchangable Mg (r = 0.71*, exchangable total basic cations (r = 0.79* and extractable Cu (r = 0.70* had positive effects on alkaline phosphatase enzyme activity, whereas total P (r = - 0.84** affected the activity negatively. ß-glucosidase enzyme activity was measured to vary between 1.12-3.64 mg salingen 100 g dry soil -1 . It was also observed that extractable Zn content of soil samples (r = - 0.97** had negative effect on ß-glucosidase activity, wheras total exchangable acidic cations (r = 0.70* affected the activity positively. Catalase enzyme activities of soils changed between 5.25 - 9.00 mg O2 5 g dry soil -1 . Significant correlations were found between catalase activities and fraction of soils and extractable Fe content. Positive correlations, however, were determined between catalase activities and clay fraction (r = 0.82* and salt content (r = 0.83** of samples.

  3. Groundwater contamination by chlorinated hydrocarbons in the soil vapour phase - risk assessment at a former dry cleaner site

    Energy Technology Data Exchange (ETDEWEB)

    Danzer, J. [Boden-und-Grundwasser GbR, Sonthofen (Germany)

    2002-07-01

    Chlorinated hydrocarbons, e.g. Perchloroethene (PCE) were commonly used for dry cleaning purposes among other ones. Since they have a significant toxic potential they impose a serious risk to groundwater quality. Due to their physico-chemical properties - particularly high volatility and medium to high water solubility - and their low biodegradation potential they are highly mobile within the unsaturated soil (vapour phase) as well as within the groundwater. This poster (paper) presents data and calculations of a consultant's ''virtual every day'' work in order to assess the risk of groundwater contamination at a former dry cleaner site. (orig.)

  4. Novel evaporation experiment to determine soil hydraulic properties

    Directory of Open Access Journals (Sweden)

    K. Schneider

    2006-01-01

    Full Text Available A novel experimental approach to determine soil hydraulic material properties for the dry and very dry range is presented. Evaporation from the surface of a soil column is controlled by a constant flux of preconditioned air and the resulting vapour flux is measured by infrared absorption spectroscopy. The data are inverted under the assumptions that (i the simultaneous movement of water in the liquid and vapour is represented by Richards' equation with an effective hydraulic conductivity and that (ii the coupling between the soil and the well-mixed atmosphere can be modelled by a boundary layer with a constant transfer resistance. The optimised model fits the data exceptionally well. Remaining deviations during the initial phase of an experiment are thought to be well-understood and are attributed to the onset of the heat flow through the column which compensates the latent heat of evaporation.

  5. Effects of contact cap dimension on dry adhesion of bioinspired mushroom-shaped surfaces

    Science.gov (United States)

    Wang, Yue; Shao, Jinyou; Ding, Yucheng; Li, Xiangming; Tian, Hongmiao; Hu, Hong

    2015-03-01

    Dry adhesion observed in small creatures, such as spiders, insects, and geckos, has many great advantages such as repeatability and strong adhesiveness. In order to mimic these unique performances, fibrillar surface with a mushroom shaped end has drawn lots of attentions because of its advantage in efficiently enhancing adhesion compared with other sphere or simple flat ends. Here, in order to study the effects of contact cap dimension on adhesion strength, patterned surfaces of mushroom-shaped micropillars with differing cap diameters are fabricated based on the conventional photolithography and molding. The normal adhesion strength of these dry adhesives with varying cap diameters is measured with home-built equipment. The strength increases with the rise of cap diameter, and interestingly it becomes strongest when the mushroom caps join together.

  6. Soil moisture effects during bioventing in fuel-contaminated arid soils

    International Nuclear Information System (INIS)

    Zwick, T.C.; Leeson, A.; Hinchee, R.E.; Hoeppel, R.E.; Bowling, L.

    1995-01-01

    This study evaluated the effects of soil moisture addition on microbial activity during bioventing of dry, sandy soils at the Marine Corps Air Ground Combat Center (MCAGCC), Twentynine Palms, California. Soils at the site have been contaminated to a depth of approximately 80 ft (24 m) with gasoline, JP-5 jet fuel, and diesel fuel. Based on the low soil moisture measured at the site (2 to 3% by weight), it was determined that soil moisture may be limiting biodegradation. To evaluate the effect that moisture addition had on microbial activity under field conditions, a subsurface drip irrigation system was installed above the fuel hydrocarbon plume. Irrigation water was obtained from two monitoring wells on the site, where groundwater was approximately 192 ft (59 m) below ground surface. Advancement of the wetting front was monitored. In situ respiration rates increased significantly after moisture addition. The results of this study provide evidence for the potential applicability of moisture addition in conjunction with bioventing for site remediation in arid environments. Further work is planned to investigate optimization of moisture addition

  7. Water storage change estimation from in situ shrinkage measurements of clay soils

    Directory of Open Access Journals (Sweden)

    B. te Brake

    2013-05-01

    Full Text Available The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil by CS616 sensors. In a long dry period, the assumption of constant isotropic shrinkage proved invalid and a soil moisture dependant geometry factor was applied. The relative overestimation made by assuming constant isotropic shrinkage in the linear (basic shrinkage phase was 26.4% (17.5 mm for the actively shrinking layer between 0 and 60 cm. Aggregate-scale water storage and volume change revealed a linear relation for layers ≥ 30 cm depth. The range of basic shrinkage in the bulk soil was limited by delayed drying of deep soil layers, and maximum water loss in the structural shrinkage phase was 40% of total water loss in the 0–60 cm layer, and over 60% in deeper layers. In the dry period, fitted slopes of the ΔV–ΔW relationship ranged from 0.41 to 0.56 (EC-5 and 0.42 to 0.55 (CS616. Under a dynamic drying and wetting regime, slopes ranged from 0.21 to 0.38 (EC-5 and 0.22 to 0.36 (CS616. Alternating shrinkage and incomplete swelling resulted in limited volume change relative to water storage change. The slope of the ΔV–ΔW relationship depended on the drying regime, measurement scale and combined effect of different soil layers. Therefore, solely relying on surface level elevation changes to infer soil water storage changes will lead to large underestimations. Recent and future developments might provide a basis for application of shrinkage relations to field situations, but in situ observations will be required to do so.

  8. Effect of moisture content and dry unit weight on the resilient modulus of subgrade soils predicted by cone penetration test.

    Science.gov (United States)

    2002-06-01

    The objective of this study was to investigate the effect of moisture content and dry unit weight on the resilient characteristics of subgrade soil predicted by the cone penetration test. An experimental program was conducted in which cone penetratio...

  9. Scale Dependence of Land Atmosphere Interactions in Wet and Dry Regions as Simulated with NU-WRF over the Southwestern and Southeast US

    Science.gov (United States)

    Zhou, Yaping; Wu, Di; Lau, K.- M.; Tao, Wei-Kuo

    2016-01-01

    Large-scale forcing and land-atmosphere interactions on precipitation are investigated with NASA-Unified WRF (NU-WRF) simulations during fast transitions of ENSO phases from spring to early summer of 2010 and 2011. The model is found to capture major precipitation episodes in the 3-month simulations without resorting to nudging. However, the mean intensity of the simulated precipitation is underestimated by 46% and 57% compared with the observations in dry and wet regions in the southwestern and south-central United States, respectively. Sensitivity studies show that large-scale atmospheric forcing plays a major role in producing regional precipitation. A methodology to account for moisture contributions to individual precipitation events, as well as total precipitation, is presented under the same moisture budget framework. The analysis shows that the relative contributions of local evaporation and large-scale moisture convergence depend on the dry/wet regions and are a function of temporal and spatial scales. While the ratio of local and large-scale moisture contributions vary with domain size and weather system, evaporation provides a major moisture source in the dry region and during light rain events, which leads to greater sensitivity to soil moisture in the dry region and during light rain events. The feedback of land surface processes to large-scale forcing is well simulated, as indicated by changes in atmospheric circulation and moisture convergence. Overall, the results reveal an asymmetrical response of precipitation events to soil moisture, with higher sensitivity under dry than wet conditions. Drier soil moisture tends to suppress further existing below-normal precipitation conditions via a positive soil moisture-land surface flux feedback that could worsen drought conditions in the southwestern United States.

  10. Effects of surface soil loss in South Eastern Nigeria: I. crop ...

    African Journals Online (AJOL)

    The widespread incidence of soil erosion in the tropics has been identified, though few studies have dealt with specific problems of decline in crop productivity associated with soil loss. An understanding of the influence of surface soil loss on crop yield is necessary in order to find out their effects on performance of crops.

  11. Modeling relationship between runoff and soil properties in dry-farming lands, NW Iran

    OpenAIRE

    Vaezi, A. R.; Bahrami, H. A.; Sadeghi, S. H. R.; Mahdian, M. H.

    2010-01-01

    The process of transformation of rainfall into runoff over a catchment is very complex and exhibits both temporal and spatial variability. However, in a semi-arid area this variability is mainly controlled by the physical and chemical properties of the soil surface. Developing an accurate and easily-used model that can appropriately determine the runoff generation value is of strong demand. In this study a simple, an empirically based model developed to explore effect of soil properties on ru...

  12. Upscaling of Surface Soil Moisture Using a Deep Learning Model with VIIRS RDR

    Directory of Open Access Journals (Sweden)

    Dongying Zhang

    2017-04-01

    Full Text Available In current upscaling of in situ surface soil moisture practices, commonly used novel statistical or machine learning-based regression models combined with remote sensing data show some advantages in accurately capturing the satellite footprint scale of specific local or regional surface soil moisture. However, the performance of most models is largely determined by the size of the training data and the limited generalization ability to accomplish correlation extraction in regression models, which are unsuitable for larger scale practices. In this paper, a deep learning model was proposed to estimate soil moisture on a national scale. The deep learning model has the advantage of representing nonlinearities and modeling complex relationships from large-scale data. To illustrate the deep learning model for soil moisture estimation, the croplands of China were selected as the study area, and four years of Visible Infrared Imaging Radiometer Suite (VIIRS raw data records (RDR were used as input parameters, then the models were trained and soil moisture estimates were obtained. Results demonstrate that the estimated models captured the complex relationship between the remote sensing variables and in situ surface soil moisture with an adjusted coefficient of determination of R ¯ 2 = 0.9875 and a root mean square error (RMSE of 0.0084 in China. These results were more accurate than the Soil Moisture Active Passive (SMAP active radar soil moisture products and the Global Land data assimilation system (GLDAS 0–10 cm depth soil moisture data. Our study suggests that deep learning model have potential for operational applications of upscaling in situ surface soil moisture data at the national scale.

  13. Sliding-surface-liquefaction of sand-dry ice mixture and submarine landslides

    Science.gov (United States)

    Fukuoka, H.; Tsukui, A.

    2010-12-01

    In the historic records of off-shore mega-earthquakes along the subduction zone offshore Japan, there are a lot of witnesses about large-scale burning of flammable gas possibly ejected from sea floor. This gas was supposed to be the dissolved methane hydrates (MH), which have been found in the soundings of IODP and other oceanology projects. Since the vast distribution of the BSR in the continental margins, a lot of papers have been published which pointed out the possibilities of that gasification of those hydrates could have triggered gigantic submarine landslides. Global warming or large earthquake or magma intrusion may trigger extremely deep gigantic landslides in continental margins that which could cause catastrophic tsunami. However, recent triaxial compression tests on artificially prepared sand-MH-mixture samples revealed that the they have slightly higher strength than the ones of only sands and MH’s endothermal characteristics may resist against accelerating shear and large-displacement landslides as well. While, the stress-controlled undrained ring shear apparatuses have been developed by Sassa and Fukuoka at Disaster Prevention Research Institute, Kyoto University to reproduce subaerial landslides induced by earthquakes and rainfalls. Using the apparatuses, they found localized liquefaction phenomenon along the deep saturated potential sliding surface due to excess pore pressure generation during the grain crushing induced bulk volume change. This phenomenon was named as “sliding surface liquefaction.” Similar sudden large pore pressure generation was observed in pore pressure control test simulating rain-induced landslides. In this paper, authors examined the shear behavior of the dry sand-dry ice mixture under constant normal stress and shear speed control tests using the latest ring shear apparatus. Sample was mixture of silica sands and dry-ice pellets (frozen carbon-dioxide). Those mixtures are often used for studying the mechanism of the

  14. Impact of oral vitamin D supplementation on the ocular surface in people with dry eye and/or low serum vitamin D.

    Science.gov (United States)

    Yang, Chih-Huang; Albietz, Julie; Harkin, Damien G; Kimlin, Michael G; Schmid, Katrina L

    2018-02-01

    To determine the possible association between serum vitamin D levels and dry eye symptoms, and the impact of an oral vitamin D supplement. Three linked studies were performed. (i) 29 older adult participants, (ii) 29 dry eyed participants, and (iii) 2-month vitamin D supplementation for 32 dry eyed/low serum vitamin D levelled participants. All participants were assessed by the Ocular Surface Diseases Index (OSDI) to determine dry eye symptoms, and the phenol red thread test (PRT) and/or Schirmer's tear test, tear meniscus height, non-invasive tear break up time, grading ocular surface redness and fluorescein staining of the cornea to detect the tear quality and ocular surface conditions. Blood samples were collected for serum vitamin D analysis and interleukin-6 (IL-6) levels. Among older adult participants, vitamin D levels were negatively correlated with dry eye symptoms, the severity of dry eye, and associated with tired eye symptom. Vitamin D levels of people with dry eye diagnosis were not correlated with OSDI scores and IL-6 levels; while IL-6 levels showed correlation with tear production. In supplement study, vitamin D levels increased by 29mol/l, while dry eye symptoms and grading of corneal staining appeared significant reductions. No significant changes in IL-6 levels. Low vitamin D levels (dry eye symptoms in older individuals but not those diagnosed with dry eye. Vitamin D supplement increased the vitamin D levels, and improved dry eye symptoms, the tear quality and ocular surface conditions. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  15. Negentropy Generation and Fractality in the Dry Friction of Polished Surfaces

    Directory of Open Access Journals (Sweden)

    Mordecai Segall

    2010-03-01

    Full Text Available We consider the Robin Hood model of dry friction to study entropy transfer during sliding. For the polished surface (steady state we study the probability distribution of slips and find an exponential behavior for all the physically relevant asperity interaction-distance thresholds. In addition, we characterize the time evolution of the sample by its spatial fractal dimension and by its entropy content. Starting from an unpolished surface, the entropy decreases during the Robin Hood process, until it reaches a plateau; thereafter the system fluctuates above the critical height. This validates the notion that friction increases information in the neighborhood of the contacting surface at the expense of losing information in remote regions. We explain the practical relevance of these results for engineering surface processing such as honing.

  16. Speciated particle dry deposition to the sea surface: Results from ASEPS '97

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.; Geernaert, L.L.S.

    1999-01-01

    on Precipitation Scavenging and Atmosphere-Surface Exchange Processes. AMS, Richland, Washington, USA, 12pp.) model to calculate size-segregated dry deposition of particle inorganic nitrogen compounds to the western Baltic during the late Spring of 1997 based on data collected as part of the Air-Sea Exchange...

  17. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Department of Biology, Western University, London, ON N6A 5B7 (Canada)

    2015-04-15

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with {sup 14}C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants.

  18. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    International Nuclear Information System (INIS)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Lapen, David R.; Topp, Edward

    2015-01-01

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with 14 C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants

  19. The Soil Moisture Dependence of TRMM Microwave Imager Rainfall Estimates

    Science.gov (United States)

    Seyyedi, H.; Anagnostou, E. N.

    2011-12-01

    This study presents an in-depth analysis of the dependence of overland rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) on the soil moisture conditions at the land surface. TMI retrievals are verified against rainfall fields derived from a high resolution rain-gauge network (MESONET) covering Oklahoma. Soil moisture (SOM) patterns are extracted based on recorded data from 2000-2007 with 30 minutes temporal resolution. The area is divided into wet and dry regions based on normalized SOM (Nsom) values. Statistical comparison between two groups is conducted based on recorded ground station measurements and the corresponding passive microwave retrievals from TMI overpasses at the respective MESONET station location and time. The zero order error statistics show that the Probability of Detection (POD) for the wet regions (higher Nsom values) is higher than the dry regions. The Falls Alarm Ratio (FAR) and volumetric FAR is lower for the wet regions. The volumetric missed rain for the wet region is lower than dry region. Analysis of the MESONET-to-TMI ratio values shows that TMI tends to overestimate for surface rainfall intensities less than 12 (mm/h), however the magnitude of the overestimation over the wet regions is lower than the dry regions.

  20. Preliminary effects of oral uridine on the ocular surface in dry eye patients.

    Science.gov (United States)

    Chang, Ki Cheol; Oh, Joo Youn; In, Youn Seok; Kim, Mee Kum; Shin, Ki Cheul; Wee, Won Ryang; Lee, Jin Hak; Park, Myung Gyu

    2009-08-01

    We designed a randomized, double blinded, 3-months controlled prospective clinical study to investigate effects of oral uridine on the ocular surface in dry eye patients. Twenty-seven patients who diagnosed as dry eye with lower than 5 mm of wetting in the Schirmer strip, with corneal epithelial erosion and who completely followed-up till 3 months were enrolled. Corneal-conjunctival fluorescein staining, non-anesthetic Schirmer test, impression cytology, and Ocular Surface Disease Index (OSDI) were evaluated in the experimental and placebo groups at the baseline, 1 and 3 months after start of medication in a double blinded manner. Fluorescein stain score of the cornea was markedly decreased in oral uridine group compared to the placebo group at 3 months after medication (P=0.032, Mann-Whitney U test). The Schirmer wetting score for the oral uridine group was significantly increased (P=0.001, Wilcoxon signed rank test) at 3 months and its difference between two groups was statistically significant (P=0.030, Mann-Whitney U test). OSDI scores were significantly decreased at 1 and 3 months in treatment group. Oral uridine is effective in treatment of dry eyes.

  1. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Science.gov (United States)

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  2. Foliar loading and metabolic assimilation of dry deposited nitric acid air pollutants by trees

    Science.gov (United States)

    Pamela E. Padgett; Hillary Cook; Andrzej Bytnerowicz; Robert L. Heath

    2009-01-01

    Dry deposition of nitric acid vapor (HNO(3)) is a major contributor to eutrophication of natural ecosystems. Although soil fertilization by nitrogen deposition is considered to be the primary pathway for changes in plant nutrient status and shifts in ecological structure, the aerial portion of plants offer many times the surface area in which to...

  3. Is climate change intensifying the drying-trend in the Caribbean?

    Science.gov (United States)

    Herrera, D. A.; Ault, T.; Fasullo, J.; Carrillo, C. M.

    2017-12-01

    Since 1950, the Caribbean (11ºN-25ºN; 85ºW-60ºW) has seen a significant drying trend characterized by several recent droughts, some of them contemporaneous with El Niño events. Moreover, the most recent drought from 2013 to 2016 was both the most severe and widespread event since at least 1950, and was associated with high temperatures, likely driven in part by climate change. This work examines the role of increased evaporative demand resulting from warmer temperatures on the drying trend observed in the Caribbean since 1950, using observations and model simulations. Large-scale dynamics associated with drought are also analyzed using sea surface temperature, geopotential height, wind, and precipitation anomalies, as well as radiative fluxes anomalies. Furthermore, land surface model soil moisture and high-resolution self-calibrated Palmer Drought Severity Index (scPDSI) datasets are used to quantify drought severity at local scales. The anthropogenic contribution to drought severity is estimated as the difference between the scPDSI calculated using linearly-detrended temperatures, and the scPDSI computed with the observed trend, with unadjusted precipitation, net radiation, and wind speed. Soil moisture anomalies driven by climate change are derived by comparing a large ensemble of forced simulations against a pre-industrial control. The resulting analysis indicates that anthropogenic forcing has intensified the drying trend in the Caribbean by -0.4 scPDSI-units over 60 years, and has increased the dry-land area by 10%. These findings are consistent with observed potential evapotranspiration (PET) anomalies, which are 30% higher than PET-anomalies estimated using detrended temperatures. These results suggest that climate change is already increasing the risk of drought in the Caribbean by enhancing the atmospheric demand of moisture through temperature, and provide insights into the role of climate change in future drought risk in the region.

  4. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  5. Change in dry matter and nutritive composition of Brachiaria humidicola grown in Ban Thon soil series

    Directory of Open Access Journals (Sweden)

    Jeerasak Chobtang

    2008-11-01

    Full Text Available This experiment was conducted to determine the change in dry matter and nutritive composition of Humidicola grass (Brachiaria humidicola grown in Ban Thon soil series (infertility soil as a function of growth age. One rai (0.16 ha of two-year-old pasture of fertilised Humidicola grass was uniformly cut and the regrowth samples were collected every twenty days. The samples were subjected to analysis for dry matter content and nutritive composition, i.e. crude protein, ash, calcium, phosphorus, neutral detergent fibre, acid detergent fibre, and acid detergent lignin. The results showed that while the yields of available forage and leaves increased curvilinearly (quadratic, p<0.05, the stem yield increased linearly (p<0.05 over sampling dates. The highest biomass accumulation rate was numerically observed between 40-60 days of regrowth. The concentrations of crude protein, ash, calcium and phosphorus decreased curvilinearly (quadratic, p<0.05 with advancing maturity and reached the lowest flat after 60 days of regrowth. The cell wall components, i.e. NDF, ADF and ADL, increased over the experimental period and reached the highest plateau at 40 days of regrowth. It was concluded that Humidicola grass should be grazed or preserved at the regrowth age of not over 60 days to maximise the utilisation of the grass.

  6. Soils of wet valleys in the Larsemann Hills and Vestfold Hills oases (Princess Elizabeth Land, East Antarctica)

    Science.gov (United States)

    Mergelov, N. S.

    2014-09-01

    The properties and spatial distribution of soils and soil-like bodies in valleys of the coastal Larsemann Hills and Vestfold Hills oases—poorly investigated in terms of the soil areas of East Antarctica—are discussed. In contrast to Dry Valleys—large continental oases of Western Antarctica—the studied territory is characterized by the presence of temporarily waterlogged sites in the valleys. It is argued that the deficit of water rather than the low temperature is the major limiting factor for the development of living organisms and the pedogenesis on loose substrates. The moisture gradients in the surface soil horizons explain the spatial distribution of the different soils and biotic complexes within the studied valleys. Despite the permanent water-logging of the deep suprapermafrost horizons of most of the soils in the valleys, no gley features have been identified in them. The soils of the wet valleys in the Larsemann Hills oasis do not contain carbonates. They have a slightly acid or neutral reaction. The organic carbon and nitrogen contents are mainly controlled by the amount of living and dead biomass rather than by the humic substances proper. The larger part of the biomass is concentrated inside the mineral soil matrix rather than on the soil surface. The stresses caused by surface drying, strong winds, and ultraviolet radiation prevent the development of organisms on the surface of the soil and necessitate the search for shelter within the soil fine earth material (endoedaphic niche) or under the gravelly pavement (hypolithic niche). In the absence of higher plants, humified products of their decomposition, and rainwater that can wash the soil profile and upon the low content of silt and clay particles in the soil material, "classical" soil horizons are not developed. The most distinct (and, often, the only diagnosed) products of pedogenesis in these soils are represented by organomineral films on the surface of mineral particles.

  7. Playa Soil Moisture and Evaporation Dynamics During the MATERHORN Field Program

    Science.gov (United States)

    Hang, Chaoxun; Nadeau, Daniel F.; Jensen, Derek D.; Hoch, Sebastian W.; Pardyjak, Eric R.

    2016-06-01

    We present an analysis of field data collected over a desert playa in western Utah, USA in May 2013, the most synoptically active month of the year, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. The results show that decreasing surface albedo, decreasing Bowen ratio and increasing net radiation with increasing soil moisture sustained a powerful positive feedback mechanism promoting large evaporation rates immediately following rain events. Additionally, it was found that, while nocturnal evaporation was negligible during dry periods, it was quite significant (up to 30 % of the daily cumulative flux) during nights following rain events. Our results further show that the highest spatial variability in surface soil moisture is found under dry conditions. Finally, we report strong spatial heterogeneities in evaporation rates following a rain event. The cumulative evaporation for the different sampling sites over a five-day period varied from ≈ 0.1 to ≈ 6.6 mm. Overall, this study allows us to better understand the mechanisms underlying soil moisture dynamics of desert playas as well as evaporation following occasional rain events.

  8. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    Science.gov (United States)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  9. Novel Approach for the Remediation of Radioactive Cesium Contaminated Soil with nano-Fe/Ca/CaO Dispersion Mixture in Dry Condition

    Directory of Open Access Journals (Sweden)

    Mallampati S. R.

    2013-04-01

    Full Text Available Present study, first time we developed a nano-Fe/Ca/CaO dispersion mixture based remediation and volume reduction method of real radioactive cesium contaminated soils. After soil samples treated with 10wt% of nano-Fe/Ca/CaO dispersion mixtures, emitting radiation intensity was reduced from 4.00 μSv/h to 0.95 μSv/h in non-magnetic fraction soils. While, after treatment, about 30wt% magnetic and 70wt% nonmagnetic fraction soils were separated, and it’s condensed radioactive cesium concentration was about 80% and 20%, respectively. By this way, cesium contaminated soil volume can be reduced. These preliminary results appear to be very promising and the simple mixing with the addition of nano-Fe/Ca/CaO may be considered potentially applicable for the remediation and separation of radioactive Cs contaminated soil in dry conditions.

  10. Soil Hydrological Attributes of an Integrated Crop-Livestock Agroecosystem: Increased Adaptation through Resistance to Soil Change

    International Nuclear Information System (INIS)

    Liebig, M.A; Tanaka, D.L; Kronberg, S.L; Karn, J.F; Scholljegerdes, E.J

    2011-01-01

    Integrated crop-livestock systems have been purported to have significant agronomic and environmental benefits compared to specialized, single-enterprise production systems. However, concerns exist regarding the effect of livestock in integrated systems to cause soil compaction, thereby decreasing infiltration of water into soil. Such concerns are compounded by projections of more frequent high-intensity rainfall events from anticipated climate change, which would act to increase surface runoff and soil erosion. A study was conducted to evaluate the effects of residue management, frequency of hoof traffic, season, and production system (e.g., integrated annual cropping versus perennial grass) on infiltration rates from 2001 through 2008 in central North Dakota, USA. Imposed treatments had no effect on infiltration rate at three, six, and nine years after study establishment, implying that agricultural producers should not be concerned with inhibited infiltration in integrated annual cropping systems, where winter grazing is used. The use of no-till management, coupled with annual freeze/thaw and wet/dry cycles, likely conferred an inherent resistance to change in near-surface soil properties affecting soil hydrological attributes. Accordingly, caution should be exercised in applying these results to other regions or management systems.

  11. OPTIMIZATION OF MICROWAVE AND AIR DRYING CONDITIONS OF QUINCE (CYDONIA OBLONGA, MILLER USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cem Baltacioglu

    2015-03-01

    Full Text Available Effects of slice thickness of quince (Cydonia oblonga Miller , microwave incident power and air drying temperature on antioxidant activity and total phenolic content of quince were investigated during drying in microwave and air drying. Optimum conditions were found to be: i for microwave drying, 285 W and 4.14 mm thick (maximum antioxidant activity and 285 W and 6.85 mm thick (maximum total phenolic content, and ii for air drying, 75 ºC and 1.2 mm thick (both maximum antioxidant activity and total phenolic content. Drying conditions were optimized by using the response surface methodology. 13 experiments were carried out considering incident microwave powers from 285 to 795 W, air temperature from 46 to 74 ºC and slice thickness from 1.2 to 6.8 mm.

  12. Soil surface protection by Biocrusts: effects of functional groups on textural properties

    Science.gov (United States)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián

    2015-04-01

    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  13. Effects of meteorological models on the solution of the surface energy balance and soil temperature variations in bare soils

    Science.gov (United States)

    Saito, Hirotaka; Šimůnek, Jiri

    2009-07-01

    SummaryA complete evaluation of the soil thermal regime can be obtained by evaluating the movement of liquid water, water vapor, and thermal energy in the subsurface. Such an evaluation requires the simultaneous solution of the system of equations for the surface water and energy balance, and subsurface heat transport and water flow. When only daily climatic data is available, one needs not only to estimate diurnal cycles of climatic data, but to calculate the continuous values of various components in the energy balance equation, using different parameterization methods. The objective of this study is to quantify the impact of the choice of different estimation and parameterization methods, referred together to as meteorological models in this paper, on soil temperature predictions in bare soils. A variety of widely accepted meteorological models were tested on the dataset collected at a proposed low-level radioactive-waste disposal site in the Chihuahua Desert in West Texas. As the soil surface was kept bare during the study, no vegetation effects were evaluated. A coupled liquid water, water vapor, and heat transport model, implemented in the HYDRUS-1D program, was used to simulate diurnal and seasonal soil temperature changes in the engineered cover installed at the site. The modified version of HYDRUS provides a flexible means for using various types of information and different models to evaluate surface mass and energy balance. Different meteorological models were compared in terms of their prediction errors for soil temperatures at seven observation depths. The results obtained indicate that although many available meteorological models can be used to solve the energy balance equation at the soil-atmosphere interface in coupled water, vapor, and heat transport models, their impact on overall simulation results varies. For example, using daily average climatic data led to greater prediction errors, while relatively simple meteorological models may

  14. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang

    2015-06-01

    We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.

  15. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were ... mate source of energy for all physical and bio- logical processes ... May) account for major thunderstorm activity in the state and winter ...

  16. Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China

    Directory of Open Access Journals (Sweden)

    Yinhong Hu

    2018-02-01

    Full Text Available The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete, permeable pavement (bricks with round holes, shrub coverage (Buxus megistophylla Levl., lawns (Festuca elata Keng ex E. Alexeev, and roadside trees (Sophora japonica Linn. in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC, and soil moisture content (SMC. The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and

  17. Monitoring Multidecadal satellite earth observation of soil moisture products through land surface reanalysis

    NARCIS (Netherlands)

    Albergel, C.; Dorigo, W.; Balsamo, G.; Sabatar, J; de Rosnay, P.; Isaksen, I; Brocca, L; de Jeu, R.A.M.; Wagner, W.

    2013-01-01

    Soil moisture from ERA-Land, a revised version of the land surface components of the European Centre for Medium-Range Weather Forecasts Interim reanalysis (ERA-Interim), is used to monitor at a global scale the consistency of a new microwave based multi-satellite surface soil moisture date set

  18. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    Science.gov (United States)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  19. Enhancement of convective drying by application of airborne ultrasound - a response surface approach.

    Science.gov (United States)

    Beck, Svenja M; Sabarez, Henry; Gaukel, Volker; Knoerzer, Kai

    2014-11-01

    Drying is one of the oldest and most commonly used processes in the food manufacturing industry. The conventional way of drying is by forced convection at elevated temperatures. However, this process step often requires a very long treatment time, is highly energy consuming and detrimental to the product quality. Therefore, an investigation of whether the drying time and temperature can be reduced with the assistance of an airborne ultrasound intervention is of interest. Previous studies have shown that contact ultrasound can accelerate the drying process. It is assumed that mechanical vibrations, creating micro channels in the food matrix or keeping these channels from collapsing upon drying, are responsible for the faster water removal. In food samples, due to their natural origin, drying is also influenced by fluctuations in tissue structure, varying between different trials. For this reason, a model food system with thermo-physical properties and composition (water, cellulose, starch, fructose) similar to those of plant-based foods has been used in this study. The main objective was, therefore, to investigate the influence of airborne ultrasound conditions on the drying behaviour of the model food. The impact of airborne ultrasound at various power levels, drying temperature, relative humidity of the drying air, and the air speed was analysed. To examine possible interactions between these parameters, the experiments were designed with a Response Surface Method using Minitab 16 Statistical Software (Minitab Inc., State College, PA, USA). In addition, a first attempt at improving the process conditions and performance for better suitability and applicability in industrial scale processing was undertaken by non-continuous/intermittent sonication. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Influence of hydraulic hysteresis on the mechanical behavior of unsaturated soils and interfaces

    Science.gov (United States)

    Khoury, Charbel N.

    Unsaturated soils are commonly widespread around the world, especially at shallow depths from the surface. The mechanical behavior of this near surface soil is influenced by the seasonal variations such as rainfall or drought, which in turn may have a detrimental effect on many structures (e.g. retaining walls, shallow foundations, mechanically stabilized earth walls, soil slopes, and pavements) in contact with it. Thus, in order to better understand this behavior, it is crucial to study the complex relationship between soil moisture content and matric suction (a stress state variable defined as pore air pressure minus pore water pressure) known as the Soil Water Characteristic Curve (SWCC). In addition, the influence of hydraulic hysteresis on the behavior of unsaturated soils, soil-structure interaction (i.e. rough and smooth steel interfaces, soil-geotextile interfaces) and pavement subgrade (depicted herein mainly by resilient modulus, Mr) was also studied. To this end, suction-controlled direct shear tests were performed on soils, rough and smooth steel interfaces and geotextile interface under drying (D) and wetting after drying (DW). The shearing behavior is examined in terms of the two stress state variables, matric suction and net normal stress. Results along the D and DW paths indicated that peak shear strength increased with suction and net normal stress; while in general, the post peak shear strength was not influenced by suction for rough interfaces and no consistent trend was observed for soils and soil-geotextiles interfaces. Contrary to saturated soils, results during shearing at higher suction values (i.e. 25 kPa and above) showed a decrease in water content eventhough the sample exhibited dilation. A behavior postulated to be related to disruption of menisci and/or non-uniformity of pore size which results in an increase in localized pore water pressures. Interestingly, wetting after drying (DW) test results showed higher peak and post peak shear

  1. The role of fire on soil mounds and surface roughness in the Mojave Desert

    Science.gov (United States)

    Soulard, Christopher E.; Esque, Todd C.; Bedford, David R.; Bond, Sandra

    2013-01-01

    A fundamental question in arid land management centers on understanding the long-term effects of fire on desert ecosystems. To assess the effects of fire on surface topography, soil roughness, and vegetation, we used terrestrial (ground-based) LiDAR to quantify the differences between burned and unburned surfaces by creating a series of high-resolution vegetation structure and bare-earth surface models for six sample plots in the Grand Canyon-Parashant National Monument, Arizona. We find that 11 years following prescribed burns, mound volumes, plant heights, and soil-surface roughness were significantly lower on burned relative to unburned plots. Results also suggest a linkage between vegetation and soil mounds, either through accretion or erosion mechanisms such as wind and/or water erosion. The biogeomorphic implications of fire-induced changes are significant. Reduced plant cover and altered soil surfaces from fire likely influence seed residence times, inhibit seed germination and plant establishment, and affect other ecohydrological processes.

  2. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    Science.gov (United States)

    Peng, Yan; Yang, Wanqin; Li, Jun; Wang, Bin; Zhang, Chuan; Yue, Kai; Wu, Fuzhong

    2015-01-01

    Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm) was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana) and oak (Quercus baronii) in ecotone; cypress (Cupressus chengiana) and clovershrub (Campylotropis macrocarpa) in dry valley; and fir (Abies faxoniana) and birch (Betula albosinensis) in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8%) was observed in the ecotone, and the lowest contribution (0.4%-25.8%) was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter decomposition and

  3. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    Directory of Open Access Journals (Sweden)

    Yan Peng

    Full Text Available Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana and oak (Quercus baronii in ecotone; cypress (Cupressus chengiana and clovershrub (Campylotropis macrocarpa in dry valley; and fir (Abies faxoniana and birch (Betula albosinensis in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8% was observed in the ecotone, and the lowest contribution (0.4%-25.8% was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter

  4. Low Hysteresis Carbon Nanotube Transistors Constructed via a General Dry-Laminating Encapsulation Method on Diverse Surfaces.

    Science.gov (United States)

    Yang, Yi; Wang, Zhongwu; Xu, Zeyang; Wu, Kunjie; Yu, Xiaoqin; Chen, Xiaosong; Meng, Yancheng; Li, Hongwei; Qiu, Song; Jin, Hehua; Li, Liqiang; Li, Qingwen

    2017-04-26

    Electrical hysteresis in carbon nanotube thin-film transistor (CNTTFT) due to surface adsorption of H 2 O/O 2 is a severe obstacle for practical applications. The conventional encapsulation methods based on vacuum-deposited inorganic materials or wet-coated organic materials have some limitations. In this work, we develop a general and highly efficient dry-laminating encapsulation method to reduce the hysteresis of CNTTFTs, which may simultaneously realize the construction and encapsulation of CNTTFT. Furthermore, by virtue of dry procedure and wide compatibility of PMMA, this method is suitable for the construction of CNTTFT on diverse surface including both inorganic and organic dielectric materials. Significantly, the dry-encapsulated CNTTFT exhibits very low or even negligible hysteresis with good repeatability and air stability, which is greatly superior to the nonencapsulated and wet-encapsulated CNTTFT with spin-coated PMMA. The dry-laminating encapsulation strategy, a kind of technological innovation, resolves a significant problem of CNTTFT and therefore will be promising in facile transferring and packaging the CNT films for high-performance optoelectronic devices.

  5. Closing the scale gap between land surface parameterizations and GCMs with a new scheme, SiB3-Bins: SOIL MOISTURE SCALE GAP

    International Nuclear Information System (INIS)

    Baker, I. T.; Sellers, P. J.; Denning, A. S.; Medina, I.; Kraus, P.

    2017-01-01

    The interaction of land with the atmosphere is sensitive to soil moisture (W). Evapotranspiration (ET) reacts to soil moisture in a nonlinear way, f(W), as soils dry from saturation to wilt point. This nonlinear behavior and the fact that soil moisture varies on scales as small as 1–10 m in nature, while numerical general circulation models (GCMs) have grid cell sizes on the order of 1 to 100s of kilometers, makes the calculation of grid cell-average ET problematic. It is impractical to simulate the land in GCMs on the small scales seen in nature, so techniques have been developed to represent subgrid scale heterogeneity, including: (1) statistical-dynamical representations of grid subelements of varying wetness, (2) relaxation of f(W), (3) moderating f(W) with approximations of catchment hydrology, (4) “tiling” the landscape into vegetation types, and (5) hyperresolution. Here we present an alternative method for representing subgrid variability in W, one proven in a conceptual framework where landscape-scale W is represented as a series of “Bins” of increasing wetness from dry to saturated. The grid cell-level f(W) is defined by the integral of the fractional area of the wetness bins and the value of f(W) associated with each. This approach accounts for the spatiotemporal dynamics of W. We implemented this approach in the SiB3 land surface parameterization and then evaluated its performance against a control, which assumes a horizontally uniform field of W. We demonstrate that the Bins method, with a physical basis, attenuates unrealistic jumps in model state and ET seen in the control runs.

  6. Nitrogen cycling in a flooded-soil ecosystem planted to rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Reddy, K.R.

    1982-01-01

    15 N studies of various aspects of the nitrogen cycle in a flooded rice ecosystem on Crowley silt loam soil in Louisiana were reviewed to construct a mass balance model of the nitrogen cycle for this system. Nitrogen transformations modeled included 1) net ammonification (0.22 mg NH 4+ -N kg dry soil - 1 day - 1 ). 2) net nitrification (207 mg NO 3- -N kg dry soil - 1 day - 1 ). 3) denitrification (0.37 mg N kg dry soil - 1 day - 1 ), and 4) biological N 2 fixation (0.16 mg N kg dry soil - 1 day - 1 ). Nitrogen inputs included 1) application of fertilizers, 2) incorporation of crop residues, 3) biological N 2 fixation, and 4) deposition. Nitrogen outputs included 1) crop removal, 2) gaseous losses from NH 3 volatilization and simultaneous occurrence of nitrification-denitrification, and 3) leaching and runoff. Mass balance calculations indicated that 33% of the available inorganic nitrogen was recovered by rice, and the remaining nitrogen was lost from the system. Losses of N due to ammonia volatilization were minimal because fertilizer-N was incorporated into the soil. A significant portion of inorganic-N was lost by ammonium diffusion from the anaerobic layer to the aerobic layer in response to a concentration gradient and subsequent nitrification in the aerobic layer followed by nitrate diffusion into the anaerobic layer and denitrification into gaseous end products. Leaching and surface runoff losses were minimal. (orig.)

  7. Activity Concentration for Surface Soil Samples Collected from Arrant, Qena, Egypt

    International Nuclear Information System (INIS)

    Harb, S.; Salahel Din, K.; Abbady, A.; Moustafa, M.

    2010-01-01

    Soil samples were collected from four regions from Armant area. Qena, Upper Egypt for measure their natural radioactivity concentrations due to Ra-226, Th-232 and K-40 radionuclides. Thirty-Four surface soil samples were analyzed by using low-level gamma-spectrometric analysis. The average activity concentration for Ra-226 in (Bq/kg) in the collected soil samples were found to be 27.3 ±3.2, 11.4±1.09, 10.6±1.2, and 11.4±1.02 while the average value for Th-232 were 15.1±1.4, 11.1±0.77, 10.8 ± 0.72 and 11.1 ± 0.8 (Bq/kg) for soil samples from North, South, West and East. The corresponding average values for K-40 were 521.4±16.8, 463±14.8, 488.9±15.6 and 344.5±10.7 (Bq/kg), respectively. Based on radionuclides concentration in surface soil samples the radiological effects can be assessed

  8. Determination of bare soil and its seasonal variation using image analysis

    International Nuclear Information System (INIS)

    Pulido Fernandez, M.; Lavado Contador, J. F.; Schnabel, S.; Gomez Gutierrez, A.

    2009-01-01

    Bare soil is of outstanding interest as an indicator of land degradation because it is strongly related with water erosion, particularly in low-vegetated areas as those typical of the Mediterranean rangelands. In areas with high livestock densities, erosion can ultimately get to a partial or total soil loss, particularly at the beginning of the rainy season, when the surface cover is reduce after the dry summer period. Therefore, it is necessary to develop accurate methods allowing the quantification of soil exposed areas and their temporal dynamics. The main goal of this work is the determination of bare soil surface using aerial orthophotomaps and the analysis of the changes resulting from the analysis and classification of images corresponding to two contrasting seasons (summer and spring). (Author) 6 refs.

  9. Effect of the grain size of the soil on the measured activity and variation in activity in surface and subsurface soil samples

    International Nuclear Information System (INIS)

    Sulaiti, H.A.; Rega, P.H.; Bradley, D.; Dahan, N.A.; Mugren, K.A.; Dosari, M.A.

    2014-01-01

    Correlation between grain size and activity concentrations of soils and concentrations of various radionuclides in surface and subsurface soils has been measured for samples taken in the State of Qatar by gamma-spectroscopy using a high purity germanium detector. From the obtained gamma-ray spectra, the activity concentrations of the 238U (226Ra) and /sup 232/ Th (/sup 228/ Ac) natural decay series, the long-lived naturally occurring radionuclide 40 K and the fission product radionuclide 137CS have been determined. Gamma dose rate, radium equivalent, radiation hazard index and annual effective dose rates have also been estimated from these data. In order to observe the effect of grain size on the radioactivity of soil, three grain sizes were used i.e., smaller than 0.5 mm; smaller than 1 mm and greater than 0.5 mm; and smaller than 2 mm and greater than 1 mm. The weighted activity concentrations of the 238U series nuclides in 0.5-2 mm grain size of sample numbers was found to vary from 2.5:f:0.2 to 28.5+-0.5 Bq/kg, whereas, the weighted activity concentration of 4 degree K varied from 21+-4 to 188+-10 Bq/kg. The weighted activity concentrations of 238U series and 4 degree K have been found to be higher in the finest grain size. However, for the 232Th series, the activity concentrations in the 1-2 mm grain size of one sample were found to be higher than in the 0.5-1 mm grain size. In the study of surface and subsurface soil samples, the activity concentration levels of 238 U series have been found to range from 15.9+-0.3 to 24.1+-0.9 Bq/kg, in the surface soil samples (0-5 cm) and 14.5+-0.3 to 23.6+-0.5 Bq/kg in the subsurface soil samples (5-25 cm). The activity concentrations of 232Th series have been found to lie in the range 5.7+-0.2 to 13.7+-0.5 Bq/kg, in the surface soil samples (0-5 cm)and 4.1+-0.2 to 15.6+-0.3 Bq/kg in the subsurface soil samples (5-25 cm). The activity concentrations of 4 degree K were in the range 150+-8 to 290+-17 Bq/kg, in the surface

  10. Remote Sensing of Surface Soil Moisture using Semi-Concurrent Radar and Radiometer Observations

    Science.gov (United States)

    Li, L.; Ouellette, J. D.; Colliander, A.; Cosh, M. H.; Caldwell, T. G.; Walker, J. P.

    2017-12-01

    Radar backscatter and radiometer brightness temperature both have well-documented sensitivity to surface soil moisture, particularly in the microwave regime. While radiometer-derived soil moisture retrievals have been shown to be stable and accurate, they are only available at coarse spatial resolutions on the order of tens of kilometers. Backscatter from Synthetic Aperture Radar (SAR) is similarly sensitive to soil moisture but can yield higher spatial resolutions, with pixel sizes about an order of magnitude smaller. Soil moisture retrieval from radar backscatter is more difficult, however, due to the combined sensitivity of radar scattering to surface roughness, vegetation structure, and soil moisture. The algorithm uses a time-series of SAR data to retrieval soil moisture information, constraining the SAR-derived soil moisture estimates with radiometer observations. This effectively combines the high spatial resolution offered by SAR with the precision offered by passive radiometry. The algorithm is a change detection approach which maps changes in the radar backscatter to changes in surface soil moisture. This new algorithm differs from existing retrieval techniques in that it does not require ancillary vegetation information, but assumes vegetation and surface roughness are stable between pairs of consecutive radar overpasses. Furthermore, this method does not require a radar scattering model for the vegetation canopy, nor the use of a training data set. The algorithm works over a long time series, and is constrained by hard bounds which are defined using a coarse-resolution radiometer soil moisture product. The presentation will include soil moisture retrievals from Soil Moisture Active/Passive (SMAP) SAR data. Two sets of optimization bounds will constrain the radar change detection algorithm: one defined by SMAP radiometer retrievals and one defined by WindSat radiometer retrievals. Retrieved soil moisture values will be presented on a world map and will

  11. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    DEFF Research Database (Denmark)

    Edmondson, Jill L; Stott, Iain; Davies, Zoe G

    2016-01-01

    months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees...... in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce...

  12. Effect of processing history on the surface interfacial properties of budesonide in carrier-based dry-powder inhalers.

    Science.gov (United States)

    Shur, Jagdeep; Pitchayajittipong, Chonladda; Rogueda, Philippe; Price, Robert

    2013-08-01

    Influence of air-jet micronization, post-micronization conditioning and storage on the surface properties of budesonide in dry-powder inhaler formulations was investigated. Crystalline budesonide was air jet-micronized and conditioned using organic vapor. Particle engineering was also used to fabricate respirable particles of budesonide. Surface imaging by atomic force microscopy suggested that micronized material possessed process-induced surface disorder, which relaxed upon conditioning with organic vapor. Particle engineered material was devoid of such surface disorder. Surface interfacial properties of all batches were different and correlated to in vitro fine particle delivery. The surface properties and in vitro performance of the conditioned material changed upon storage of the budesonide at 44% relative humidity and 25°C, while the micronized and particle-engineered material remained stable. These data suggest that processing conditions of budesonide affected the surface properties of the material, which was demonstrated to have direct affect on dry-powder inhaler formulation performance.

  13. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications

    International Nuclear Information System (INIS)

    Feng, Ying; Chen, Ke

    2015-01-01

    We report a dry transfer method that can tranfer chemical vapor deposition (CVD) grown graphene onto liquid-sensitive surfaces. The graphene grown on copper (Cu) foil substrate was first transferred onto a freestanding 4 μm thick sputtered Cu film using the conventional wet transfer process, followed by a dry transfer process onto the target surface using a polydimethylsiloxane stamp. The dry-transferred graphene has similar properties to traditional wet-transferred graphene, characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and electrical transport measurements. It has a sheet resistance of 1.6 ∼ 3.4 kΩ/□, hole density of (4.1 ∼ 5.3) × 10 12 cm −2 , and hole mobility of 460 ∼ 760 cm 2 V −1 s −1 without doping at room temperature. The results suggest that large-scale CVD-grown graphene can be transferred with good quality and without contaminating the target surface by any liquid. Mg/MgO/graphene tunnel junctions were fabricated using this transfer method. The junctions show good tunneling characteristics, which demonstrates the transfer technique can also be used to fabricate graphene devices on liquid-sensitive surfaces. (paper)

  14. Relation between soil temperature and biophysical parameters in Indian mustard seeds

    Science.gov (United States)

    Adak, T.; Chakravarty, N. V. K.

    2013-12-01

    Temporal changes in surface soil temperature were studied in winter crop. Significant changes in bare and cropped soil temperature were revealed. Air temperature showed a statistically positive and strong relationship (R2 = 0.79** to 0.92**) with the soil temperature both at morning and afternoon hours. Linear regression analysis indicated that each unit increase in ambient temperature would lead to increase in minimum and maximum soil temperatures by 1.04 and 1.02 degree, respectively. Statistically positive correlation was revealed among biophysical variables with the cumulative surface soil temperature. Linear and non-linear regression analysis indicated 62-69, 72-86 and 72-80% variation in Leaf area index, dry matter production and heat use efficiency in Indian mustard crop as a function of soil degree days. Below 60% variation in yield in Indian mustard was revealed as a function of soil temperature. In contrast, non-significant relationship between oil content and soil temperature was found, which suggests that oil accumulation in oilseed crops was not affected significantly by the soil temperature as an independent variable.

  15. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    Science.gov (United States)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  16. Soil water storage and groundwater behaviour in a catenary sequence beneath forest in central Amazonia: I. Comparisons between plateau, slope and valley floor

    Directory of Open Access Journals (Sweden)

    M. G. Hodnett

    1997-01-01

    Full Text Available Soil water storage was monitored in three landscape elements in the forest (plateau, slope and valley floor over a 3 year period to identify differences in sub-surface hydrological response. Under the plateau and slope, the changes of storage were very similar and there was no indication of surface runoff on the slope. The mean maximum seasonal storage change was 156 mm in the 2 m profile but it was clear that, in the dry season, the forest was able to take up water from below 3.6 m. Soil water availability was low. Soil water storage changes in the valley were dominated by the behaviour of a shallow water table which, in normal years, varied between 0.1 m below the surface at the end of the wet season and 0.8 m at the end of the dry season. Soil water storage changes were small because root uptake was largely replenished by groundwater flow towards the stream. The groundwater behaviour is controlled mainly by the deep drainage from beneath the plateau and slope areas. The groundwater gradient beneath the slope indicated that recharge beneath the plateau and slope commences only after the soil water deficits from the previous dry season have been replenished. Following a wet season with little recharge, the water table fell, ceasing to influence the valley soil water storage, and the stream dried up. The plateau and slope, a zone of very high porosity between 0.4 and 1.1 m, underlain by a less conductive layer, is a probable route for interflow during, and for a few hours after, heavy and prolonged rainfall.

  17. [Optimization of vacuum belt drying process of Gardeniae Fructus in Reduning injection by Box-Behnken design-response surface methodology].

    Science.gov (United States)

    Huang, Dao-sheng; Shi, Wei; Han, Lei; Sun, Ke; Chen, Guang-bo; Wu Jian-xiong; Xu, Gui-hong; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    To optimize the belt drying process conditions optimization of Gardeniae Fructus extract from Reduning injection by Box-Behnken design-response surface methodology, on the basis of single factor experiment, a three-factor and three-level Box-Behnken experimental design was employed to optimize the drying technology of Gardeniae Fructus extract from Reduning injection. With drying temperature, drying time, feeding speed as independent variables and the content of geniposide as dependent variable, the experimental data were fitted to a second order polynomial equation, establishing the mathematical relationship between the content of geniposide and respective variables. With the experimental data analyzed by Design-Expert 8. 0. 6, the optimal drying parameter was as follows: the drying temperature was 98.5 degrees C , the drying time was 89 min, the feeding speed was 99.8 r x min(-1). Three verification experiments were taked under this technology and the measured average content of geniposide was 564. 108 mg x g(-1), which was close to the model prediction: 563. 307 mg x g(-1). According to the verification test, the Gardeniae Fructus belt drying process is steady and feasible. So single factor experiments combined with response surface method (RSM) could be used to optimize the drying technology of Reduning injection Gardenia extract.

  18. Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil

    KAUST Repository

    Amazirh, Abdelhakim

    2018-04-24

    Radar data have been used to retrieve and monitor the surface soil moisture (SM) changes in various conditions. However, the calibration of radar models whether empirically or physically-based, is still subject to large uncertainties especially at high-spatial resolution. To help calibrate radar-based retrieval approaches to supervising SM at high resolution, this paper presents an innovative synergistic method combining Sentinel-1 (S1) microwave and Landsat-7/8 (L7/8) thermal data. First, the S1 backscatter coefficient was normalized by its maximum and minimum values obtained during 2015–2016 agriculture season. Second, the normalized S1 backscatter coefficient was calibrated from reference points provided by a thermal-derived SM proxy named soil evaporative efficiency (SEE, defined as the ratio of actual to potential soil evaporation). SEE was estimated as the radiometric soil temperature normalized by its minimum and maximum values reached in a water-saturated and dry soil, respectively. We estimated both soil temperature endmembers by using a soil energy balance model forced by available meteorological forcing. The proposed approach was evaluated against in situ SM measurements collected over three bare soil fields in a semi-arid region in Morocco and we compared it against a classical approach based on radar data only. The two polarizations VV (vertical transmit and receive) and VH (vertical transmit and horizontal receive) of the S1 data available over the area are tested to analyse the sensitivity of radar signal to SM at high incidence angles (39°–43°). We found that the VV polarization was better correlated to SM than the VH polarization with a determination coefficient of 0.47 and 0.28, respectively. By combining S1 (VV) and L7/8 data, we reduced the root mean square difference between satellite and in situ SM to 0.03 m3 m−3, which is far smaller than 0.16 m3 m−3 when using S1 (VV) only.

  19. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    Science.gov (United States)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  20. Estimation of Surface Soil Moisture in Irrigated Lands by Assimilation of Landsat Vegetation Indices, Surface Energy Balance Products, and Relevance Vector Machines

    Directory of Open Access Journals (Sweden)

    Alfonso F. Torres-Rua

    2016-04-01

    Full Text Available Spatial surface soil moisture can be an important indicator of crop conditions on farmland, but its continuous estimation remains challenging due to coarse spatial and temporal resolution of existing remotely-sensed products. Furthermore, while preceding research on soil moisture using remote sensing (surface energy balance, weather parameters, and vegetation indices has demonstrated a relationship between these factors and soil moisture, practical continuous spatial quantification of the latter is still unavailable for use in water and agricultural management. In this study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection from potential predictors that include vegetation indices and energy balance products derived from satellite (Landsat imagery and weather data as identified in scientific literature. This methodology employs a statistical learning machine called a Relevance Vector Machine (RVM to identify and relate the potential predictors to soil moisture by means of stratified cross-validation and forward variable selection. Surface soil moisture measurements from irrigated agricultural fields in Central Utah in the 2012 irrigation season were used, along with weather data, Landsat vegetation indices, and energy balance products. The methodology, data collection, processing, and estimation accuracy are presented and discussed.

  1. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bonten, Luc T.C., E-mail: luc.bonten@wur.nl [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Groenenberg, Jan E. [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Meesenburg, Henning [Northwest German Forest Research Station, Abt. Umweltkontrolle, Sachgebiet Intensives Umweltmonitoring, Goettingen (Germany); Vries, Wim de [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2011-10-15

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: > Surface complexation models can be well applied in field studies. > Soil chemistry under a forest site is adequately modelled using generic parameters. > The model is easily extended with extra elements within the existing framework. > Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  2. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Bonten, Luc T.C.; Groenenberg, Jan E.; Meesenburg, Henning; Vries, Wim de

    2011-01-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  3. Implementing a physical soil water flow model with minimal soil characteristics and added value offered by surface soil moisture measurements assimilation.

    Science.gov (United States)

    Chanzy, André

    2010-05-01

    climatic data. The strategy takes profit of all work made on soil texture as a proxi of soil hydraulic through pedotransfer functions. It also takes into account the constraints in soil moisture variations after important precipitation events. Performances on soil moisture are assessed by considering both the soil moisture accuracy and the ability of detecting a soil moisture threshold. o The added value of soil moisture measurements. The aim is to evaluate to which extent we can improve soil moisture simulations by assimilating a few soil moisture measurements made in the surface layer (ploughed layers). We focus on such a layer since moisture can be derived from remote sensing observations or by using in situ sensors (capacitance sensor, TDR) with minimal effort. The validity of such measurements to represent the soil moisture at the field scale is analysed. It is shown that relative variations in soil moisture are much easier to obtain than an absolute characterisation of the soil moisture measurements. We evaluate the value of assimilating surface measurement in the TEC model and how we can deal with a measurement of relative soil moisture variations (in order to prevent a tedious calibration process). Again the performances of the approach are evaluated with the soil moisture accuracy and the ability of detecting a soil moisture threshold.

  4. Cell surface damage and morphological changes in Oenococcus oeni after freeze-drying and incubation in synthetic wine.

    Science.gov (United States)

    Bravo-Ferrada, Bárbara Mercedes; Gonçalves, Sónia; Semorile, Liliana; Santos, Nuno C; Brizuela, Natalia; Elizabeth Tymczyszyn, E; Hollmann, Axel

    2018-04-28

    The aim of the present study was to evaluate the effects of freeze-drying in the presence of trehalose as a cryoprotectant, followed by incubation in synthetic wine, on surface damage, viability and l-malic acid consumption of the oenological strain Oenococcus oeni UNQOe 73.2. After freeze-drying, no significant differences were observed in the number of viable cells (for both acclimated and non-acclimated cultures) respect to the fresh culture. In contrast, loss of viability was observed after wine incubation for 24 h, being acclimated freeze-dried cells the best conditions for this. After the preservation process, small changes in cell morphology were observed by Atomic Force Microscopy (AFM). The Zeta potential and AFM showed that 24 h of wine incubation was enough to induce several cell surface modifications. Plate count data allowed us to establish that surface damage is an important factor for loss of viability, regardless of the acclimation treatment. Although the number of surviving O. oeni cells decreased dramatically after incubation in synthetic wine for 15 days, the consumption of l-malic acid was higher than 70%, with freeze-dried cells showing a better performance than fresh cultures. These results demonstrate that O. oeni freeze-dried cultures could be applied to direct wine inoculation, to conduct malolactic fermentation, maintaining its technological properties and reducing the time and costs of the winemaking process. Copyright © 2018. Published by Elsevier Inc.

  5. Ocular surface temperature in patients with evaporative and aqueous-deficient dry eyes: a thermographic approach.

    Science.gov (United States)

    Matteoli, S; Favuzza, E; Mazzantini, L; Aragona, P; Cappelli, S; Corvi, A; Mencucci, R

    2017-07-26

    In recent decades infrared thermography (IRT) has facilitated accurate quantitative measurements of the ocular surface temperature (OST), applying a non-invasive procedure. The objective of this work was to develop a procedure based on IRT, which allows characterizing of the cooling of the ocular surface of patients suffering from dry eye syndrome, and distinguishing among patients suffering from aqueous deficient dry eye (ADDE) and evaporative dry eyes (EDE). All patients examined (34 females and 4 males, 23-84 years) were divided into two groups according to their Schirmer I result (⩽ 7 mm for ADDE and  >  7 mm for EDE), and the OST was recorded for 7 s at 30 Hz. For each acquisition, the temperatures of the central cornea (CC) as well as those of both temporal and nasal canthi were investigated. Findings showed that the maximum temperature variation (up to 0.75  ±  0.29 °C) was at the CC for both groups. Furthermore, patients suffering from EDE tended to have a higher initial OST than those with ADDE, explained by the greater quantity of the tear film, evenly distributed over the entire ocular surface, keeping the OST higher initially. Results also showed that EDE patients had an average cooling rate higher than those suffering from ADDE, confirming the excessive evaporation of the tear film. Ocular thermography paves the way to become an effective tool for differentiating between the two different etiologies of dry eye syndrome.

  6. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Science.gov (United States)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  7. The Effect of Tear Supplementation on Ocular Surface Sensations during the Interblink Interval in Patients with Dry Eye.

    Directory of Open Access Journals (Sweden)

    Lóránt Dienes

    Full Text Available To investigate the characteristics of ocular surface sensations and corneal sensitivity during the interblink interval before and after tear supplementation in dry eye patients.Twenty subjects (41.88±14.37 years with dry eye symptoms were included in the dry eye group. Fourteen subjects (39.13±11.27 years without any clinical signs and/or symptoms of dry eye were included in the control group. Tear film dynamics was assessed by non-invasive tear film breakup time (NI-BUT in parallel with continuous recordings of ocular sensations during forced blinking. Corneal sensitivity to selective stimulation of corneal mechano-, cold and chemical receptors was assessed using a gas esthesiometer. All the measurements were made before and 5 min after saline and hydroxypropyl-guar (HP-guar drops.In dry eye patients the intensity of irritation increased rapidly after the last blink during forced blinking, while in controls there was no alteration in the intensity during the first 10 sec followed by an exponential increase. Irritation scores were significantly higher in dry eye patients throughout the entire interblink interval compared to controls (p0.05.Ocular surface irritation responses due to tear film drying are considerably increased in dry eye patients compared to normal subjects. Although tear supplementation improves the protective tear film layer, and thus reduce unpleasant sensory responses, the rapid rise in discomfort is still maintained and might be responsible for the remaining complaints of dry eye patients despite the treatment.

  8. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China

    International Nuclear Information System (INIS)

    Zuo, Q.; Duan, Y.H.; Yang, Y.; Wang, X.J.; Tao, S.

    2007-01-01

    Principal component analysis and multiple linear regression were applied to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soils of Tianjin, China based on the measured PAH concentrations of 188 surface soil samples. Four principal components were identified representing coal combustion, petroleum, coke oven plus biomass burning, and chemical industry discharge, respectively. The contributions of major sources were quantified as 41% from coal, 20% from petroleum, and 39% from coking and biomass, which are compatible with PAH emissions estimated based on fuel consumption and emission factors. When the study area was divided into three zones with distinctive differences in soil PAH concentration and profile, different source features were unveiled. For the industrialized Tanggu-Hangu zone, the major contributors were coking (43%), coal (37%) and vehicle exhaust (20%). In rural area, however, in addition to the three main sources, biomass burning was also important (13%). In urban-suburban zone, incineration accounted for one fourth of the total. - PAHs in surface soil of Tianjin were apportioned and coal combustion, vehicle exhaust, coke production, and biomass burning were found to be the major sources

  9. Lead concentrations and risk exposure assessment in surface soils ...

    African Journals Online (AJOL)

    Lead concentrations and risk exposure assessment in surface soils at residential lands previously used for auto-mechanic and auto-welding activities in Port Harcourt, Nigeria. ... Journal of Applied Sciences and Environmental Management.

  10. Dry deposition to vegetated surfaces: parametric dependencies

    International Nuclear Information System (INIS)

    Underwood, B.Y.

    1987-12-01

    The dry deposition velocity of airborne pollutants to vegetated surfaces depends on the physico-chemical form of the pollutant, on meteorological conditions (windspeed, atmospheric stability) and on characteristics of the surface cover. This report examines these dependencies, drawing on experimental data and on information from theoretical analyses. A canopy model is outlined which uses first-order closure of the equations for turbulent transport of momentum (or matter), with losses of momentum (or matter) to individual canopy elements parameterised in terms of the mean windspeed: the model has previously been tested against experimental data on an artificial 'grass' canopy. The model is used to elucidate the features of the dependence of deposition velocity on windspeed and on whether the pollutant is in gaseous or particulate form: in the former case, the dependence on the molecular diffusivity of the gas is shown; in the latter case, dependencies on particle diameter and density are deduced. The predictions are related to available measurements. Additional hypotheses are introduced to treat the influence of atmospheric stability on deposition, and the analysis is used to shed light on the somewhat confusing picture that has emerged from past experimental studies. In considering the dependence of deposition velocity on the structural properties of the vegetation, it is established that more parameters than the single one conventionally used -aerodynamic roughness length - are needed to characterise the surface cover. Some indications of the extent of variation in deposition velocity from one type of vegetation to another are elicited from the model. (author)

  11. Remote sensing of soil radionuclide fluxes in a tropical ecosystem

    International Nuclear Information System (INIS)

    Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

    1980-01-01

    We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant 137 Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose

  12. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30–70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below...

  13. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    OpenAIRE

    J. I. Nirmal Kumar,; Kanti Patel,; Rohit Bhoi Kumar

    2011-01-01

    Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (≥ 3.0 cm DBH); 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The fo...

  14. Regolith transport in the Dry Valleys of Antarctica

    Science.gov (United States)

    Putkonen, J.; Rosales, M.; Turpen, N.; Morgan, D.; Balco, G.; Donaldson, M.

    2007-01-01

    The stability of ground surface and preservation of landforms that record past events and environments is of great importance as the geologic and climatic history is evaluated in the Dry Valleys of Antarctica. Currently little is known about the regolith transport that tends to eradicate and confound this record and regolith transport is itself an environmental indicator. Based on analyses of repeat photographs, soil traps, and pebble transport distances, it was found that there is a large spatial variation in topographic diffusivities at least in the annual basis and that counter intuitively the highest topographic diffusivities are found in the alpine valleys that are located farther inland from the coast where the lowest topographic diffusivities were recorded. An average topographic diffusivity for the Dry Valleys was determined to be 10M-5–10-4 m2

  15. Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor

    Science.gov (United States)

    W. J. Massman; J. M. Frank

    2004-01-01

    Some fires can be beneficial to soils but, if a fire is sufficiently intense, soil can be irreversible altered. We measured soil temperatures and heat fluxes at several soil depths before, during, and after a controlled surface burn at Manitou Experimental Forest (southern Colorado, USA) to evaluate its effects on the soil's thermophysical properties (thermal...

  16. Microwave wood strand drying: energy consumption, VOC emission and drying quality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Du, G.; Zhang, Y. [Tennessee Univ., Knoxville, TN (United States). Dept. of Forestry, Wildlife and Fisheries

    2005-07-01

    The objective of this research was to develop microwave drying technology for wood strand drying for oriented strand board (OSB) manufacturing. The advantages of microwave drying included a reduction in the drying time of wood strands and a reduction in the release of volatile organic compounds (VOC) through a decrease in the thermal degradation of the wood material. Temperature and moisture content changes under different microwave drying conditions were investigated. The effects of microwave drying on VOC emissions were evaluated and analyzed using gas chromatography and mass spectrometry. Microwave power input and the mass of drying materials in the microwave oven were found to have a dominant effect on drying quality. Results indicated that an increase in microwave power input and a decrease in sample weights resulted in high drying temperatures, short drying times and a high drying rate. The effect of microwave drying on the strand surfaces was also investigated. Different strand geometries and initial moisture content resulted in varying warm-up curves, but did not influence final moisture content. VOC emissions were quantified by comparing alpha-pinene concentrations. The microwave drying resulted in lower VOC emissions compared with conventional drying methods. It was concluded that the microwave drying technique provided faster strand drying and reduced energy consumption by up to 50 per cent. In addition, the surface wettability of wood strands dried with microwaves was better than with an industrial rotary drum drier. 12 refs., 3 tabs., 5 figs.

  17. Inactivation of Escherichia coli O157:H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying.

    Science.gov (United States)

    Bang, Jihyun; Hong, Ayoung; Kim, Hoikyung; Beuchat, Larry R; Rhee, Min Suk; Kim, Younghoon; Ryu, Jee-Hoon

    2014-11-17

    We investigated the efficacy of sequential treatments of aqueous chlorine and chlorine dioxide and drying in killing Escherichia coli O157:H7 in biofilms formed on stainless steel, glass, plastic, and wooden surfaces. Cells attached to and formed a biofilm on wooden surfaces at significantly (P ≤ 0.05) higher levels compared with other surface types. The lethal activities of sodium hypochlorite (NaOCl) and aqueous chlorine dioxide (ClO₂) against E. coli O157:H7 in a biofilm on various food-contact surfaces were compared. Chlorine dioxide generally showed greater lethal activity than NaOCl against E. coli O157:H7 in a biofilm on the same type of surface. The resistance of E. coli O157:H7 to both sanitizers increased in the order of wood>plastic>glass>stainless steel. The synergistic lethal effects of sequential ClO₂ and drying treatments on E. coli O157:H7 in a biofilm on wooden surfaces were evaluated. When wooden surfaces harboring E. coli O157:H7 biofilm were treated with ClO₂ (200 μg/ml, 10 min), rinsed with water, and subsequently dried at 43% relative humidity and 22 °C, the number of E. coli O157:H7 on the surface decreased by an additional 6.4 CFU/coupon within 6 h of drying. However, when the wooden surface was treated with water or NaOCl and dried under the same conditions, the pathogen decreased by only 0.4 or 1.0 log CFU/coupon, respectively, after 12 h of drying. This indicates that ClO₂ treatment of food-contact surfaces results in residual lethality to E. coli O157:H7 during the drying process. These observations will be useful when selecting an appropriate type of food-contact surfaces, determining a proper sanitizer for decontamination, and designing an effective sanitization program to eliminate E. coli O157:H7 on food-contact surfaces in food processing, distribution, and preparation environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Two Solutions of Soil Moisture Sensing with RFID for Landslide Monitoring

    Directory of Open Access Journals (Sweden)

    Sérgio Francisco Pichorim

    2018-02-01

    Full Text Available Two solutions for UHF RFID tags for soil moisture sensing were designed and are described in this paper. In the first, two conventional tags (standard transponders are employed: one, placed close to the soil surface, is the sensor tag, while the other, separated from the soil, is the reference for system calibration. By transmission power ramps, the tag’s turn-on power levels are measured and correlated with soil condition (dry or wet. In the second solution, the SL900A chip, which supports up to two external sensors and an internal temperature sensor, is used. An interdigital capacitive sensor was connected to the transponder chip and used for soil moisture measurement. In a novel design for an UHF RFID tag the sensor is placed below the soil surface, while the transponder and antenna are above the soil to improve communication. Both solutions are evaluated practically and results show the presence of water in soil can be remotely detected allowing for their application in landslide monitoring.

  19. Developing Soil Moisture Profiles Utilizing Remotely Sensed MW and TIR Based SM Estimates Through Principle of Maximum Entropy

    Science.gov (United States)

    Mishra, V.; Cruise, J. F.; Mecikalski, J. R.

    2015-12-01

    Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field

  20. Theoretical study of soil water balance and process of soil moisture evaporation

    Directory of Open Access Journals (Sweden)

    Yu. A. Savel'ev

    2017-01-01

    Full Text Available Nearly a half of all grain production in the Russian Federation is grown in dry regions. But crop production efficiency there depends on amount of moisture, available to plants. However deficit of soil moisture is caused not only by a lack of an atmospheric precipitation, but also inefficient water saving: losses reach 70 percent. With respect thereto it is important to reveal the factors influencing intensity of soil moisture evaporation and to develop methods of decrease in unproductive moisture losses due to evaporation. The authors researched soil water balance theoretically and determined the functional dependences of moisture loss on evaporation. Intensity of moisture evaporation depends on physicomechanical characteristics of the soil, a consistence of its surface and weather conditions. To decrease losses of moisture for evaporation it is necessary, first, to improve quality of crumbling of the soil and therefore to reduce the evaporating surface of the soil. Secondly - to create the protective mulching layer which will allow to enhance albedo of the soil and to reduce its temperature that together will reduce unproductive evaporative water losses and will increase its inflow in case of condensation from air vapors. The most widespread types of soil cultivation are considered: disk plowing and stubble mulch plowing. Agricultural background «no tillage» was chosen as a control. Subsoil mulching tillage has an essential advantage in a storage of soil moisture. So, storage of soil moisture after a disking and in control (without tillage decreased respectively by 24.9 and 19.8 mm while at the mulching tillage this indicator revised down by only 15.6 mm. The mulching layer has lower heat conductivity that provides decrease in unproductive evaporative water losses.

  1. The Effects of Different Tillage Methods on Available Soil Potassium Measured by Various Extractors in a Soil with High Specific Surface Area

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2016-02-01

    Full Text Available Introduction: The effects of any tillage method on soil properties, depends on location (soil, water and air and the number of (years their implementation. Soil compaction reduces yield through increased soil mechanical resistance against root growth and lower water and nutrient use efficiency (Gamda et al. 18 & Ishagh et al 23. Soil surface and sub surface compaction both reduce yield due to limited root growth and plant potassium uptake (Doulan et al. 14. Sabt et al. (50 reported that in the study area, which the lands are mostly illite clay (high specific surface area with sufficient nitrogen, soil potassium is the most important limiting factor for the growth of wheat.Considering the point that loess soils in Golestan Province have a high specific surface area,they can provide potassium for plants to produce crop, but for a higher production, potassium fertilizers should be used. Previous studies indicated that production of wheat is limited due to potassium deficiency (4, 49, 54 and 57. In these soils with a high specific surface area, the speed of movement of potassium from the soil solution is low, and doing solimits wheat yield.In loess soils containing high illite and high specific surface area (eg, soilsin the series of Rahmat Abad of Gorgan, ammonium acetate measured potassium on exchange and solution surfaces, which is highly correlated with grain yield (54 . There is a high correlation between grain yield with overload of potassium and Na TPB extraction (57. The aim of this study was to absorb potassium (limiting factor for plant growth with different tillage systemsat different depths. International recommendations towards reducing the depth and intensity of tillage (from minimum tillage to no-tillage in order to reduce erosion and oxidation of organic substances plays an important role in determining the amount of greenhouse gases. If potassium absorption does not reduceafter reducing tillage intensity,low or no-tillage methods

  2. Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields.

    Science.gov (United States)

    Uga, Yusaku; Hanzawa, Eiko; Nagai, Shinsei; Sasaki, Kazuhiro; Yano, Masahiro; Sato, Tadashi

    2012-01-01

    Specific Indonesian lowland rice (Oryza sativa L.) cultivars elongate thick primary roots on the soil surface of paddy fields. To clarify the genetic factors controlling soil-surface rooting, we performed quantitative trait locus (QTL) analyses using 124 recombinant inbred lines (RILs) derived from a cross between Gemdjah Beton, an Indonesian lowland rice cultivar with soil-surface roots, and Sasanishiki, a Japanese lowland rice cultivar without soil-surface roots. These cultivars and the RILs were tested for soil-surface rooting in a paddy field. We identified four regions of chromosomes 3, 4, 6, and 7 that were associated with soil-surface rooting in the field. Among them, one major QTL was located on the long arm of chromosome 7. This QTL explained 32.5-53.6% of the total phenotypic variance across three field evaluations. To perform fine mapping of this QTL, we measured the basal root growth angle of crown roots at the seedling stage in seven BC(2)F(3) recombinant lines grown in small cups in a greenhouse. The QTL was mapped between markers RM21941 and RM21976, which delimit an 812-kb interval in the reference cultivar Nipponbare. We have designated this QTL qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1).

  3. Selection of soil hydraulic properties in a land surface model using remotely-sensed soil moisture and surface temperature

    Science.gov (United States)

    Shellito, P. J.; Small, E. E.; Gutmann, E. D.

    2013-12-01

    Synoptic-scale weather is heavily influenced by latent and sensible heating from the land surface. The partitioning of available energy between these two fluxes as well as the distribution of moisture throughout the soil column is controlled by a unique set of soil hydraulic properties (SHPs) at every location. Weather prediction systems, which use coupled land surface and atmospheric models in their forecasts, must therefore be parameterized with estimates of SHPs. Currently, land surface models (LSMs) obtain SHP values by assuming a correlation exists between SHPs and the soil type, which the USDA maps in 12 classes. This method is spurious because texture is only one control of many that affects SHPs. Alternatively, SHPs can be obtained by calibrating them within the framework of an LSM. Because remotely-sensed data have the potential for continent-wide application, there is a critical need to understand their specific role in calibration efforts and the extent to which such calibrated SHPs can improve model simulations. This study focuses on SHP calibration with soil moisture content (SMC) and land surface temperature (Ts), data that are available from the SMOS and MODIS satellite missions, respectively. The scientific goals of this study are: (1) What is the model performance tradeoff between weighting SMC and Ts differently during the calibration process? (2) What can the tradeoff between calibration using in-situ and remotely-sensed SMC reveal about SHP scaling? (3) How are these relationships influenced by climatic regime and vegetation type? (4) To what extent can calibrated SHPs improve model performance over that of texture-based SHPs? Model calibrations are carried out within the framework of the Noah LSM using the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm in five different climatic regimes. At each site, a five-dimensional parameter space of SHPs is searched to find the location that minimizes the difference between observed and

  4. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    Lara, Evelise G.; Oliveira, Arno Heeren de

    2015-01-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226 Ra, 232 Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226 Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232 Th and U content. The soil permeability is 5.0 x 10 -12 , which is considered average. The 226 Ra (22.2 ± 0.3 Bq.m -3 ); U content (73.4 ± 3.6 Bq.kg -1 ) and 232 Th content (55.3 ± 4.0 Bq.kg -1 ) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg -1 ) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m -3 ) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m -3 ). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  5. Latest Apple Drying Technologies: A Review

    OpenAIRE

    ÖZDEMİR, Yasin; SAYIN, Emir Olcay; KURULTAY, Şefik

    2009-01-01

    Drying is known as one of the oldest preservation methods and can be applicable to many fruits. Sun drying of apple has been known from ancient times. However, this technique is weather-dependent and has contamination problems such as dust, soil, sand particles and insects. Hot air drying of apples has low energy efficiency and requires longer drying period. The desire to eliminate these problems, prevent quality loss, and achieve fast and effective thermal processing has resulted in an incre...

  6. Experimental determination of surface heat transfer coefficient in a dry ice-ethanol cooling bath using a numerical approach.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.

  7. Inflammatory Response to Lipopolysaccharide on the Ocular Surface in a Murine Dry Eye Model.

    Science.gov (United States)

    Simmons, Ken T; Xiao, Yangyan; Pflugfelder, Stephen C; de Paiva, Cintia S

    2016-05-01

    Toll-like receptor 4 (TLR4) alerts cells to the presence of bacteria by initiating an inflammatory response. We hypothesize that disruption of the ocular surface barrier in dry eye enhances TLR4 signaling. This study determined whether dry eye enhances expression of inflammatory mediators in response to topically applied TLR4 ligand. A single dose of lipopolysaccharide (LPS) or vehicle (endotoxin-free water) was applied to the cornea of nonstressed (NS) mice or mice subjected to 5 days of desiccating stress (DS). After 4 hours, corneal epithelium and conjunctiva were extracted to analyze expression of inflammatory mediators via PCR. Protein expression was confirmed by immunobead assay and immunostaining. Topically applied LPS increased expression of inflammatory mediators IL-1β, CXCL10, IL-12a, and IFN-γ in the conjunctiva, and IL-1β and CXCL10 in the cornea of NS mice compared to that in untreated controls. LPS in DS mice produced 3-fold increased expression of IL-1β in cornea and 2-fold increased expression in IL-12a in conjunctiva compared to that in LPS-treated control mice. LPS increased expression of inflammatory cytokines on the ocular surface. This expression was further increased in dry eye, which suggests that epithelial barrier disruption enhances exposure of LPS to TLR4+ cells and that the inflammatory response to endotoxin-producing commensal or pathogenic bacteria may be more severe in dry eye disease.

  8. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface

    International Nuclear Information System (INIS)

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-01-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3–5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. - Highlights: • Radon exhalation rate from the soil surface area of 32 cm"2 can be measured at level of 10 mBq/(m"2s) at the uncertainty ≤30%. • The method has a metrological justification. • No need to consider climate conditions, soil properties and conditions, mechanism and rate of radon transport in the soil.

  9. Changes on sewage sludge stability after greenhouse drying

    Science.gov (United States)

    Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gómez, I.; Navarro-Pedreño, J.

    2009-04-01

    The progressive implementation of the Urban Waste Water Treatment Directive 91/271/EEC in all the European member states is increasing the quantities of sewage sludge requiring disposal. Sludge application onto cultivated soils as organic fertilizers allows the recycling of nutrients. The application of only dehydrated sludges has generated many problems including unpleasant odours and difficult management (regarding transport and application) related to their high water content. One way to overcome these problems, in a cheap and clean way, is the drying of sludges using the energy of the sun under greenhouse conditions. This drying may affect sludge chemical characteristics including organic matter stability and nitrogen availability, parameters which have to be controlled for the proper management of dry sludge application onto soils. For this reason, the main aim of this work was to study the impact of greenhouse drying of different sewage sludges on their organic matter stability and nitrogen availability, assessed by biochemical fractionation and mineralization assays. Three sewage sludges were sampled before (dehydrated sludges) and after greenhouse drying (dried sludges). The analyses consisted of: humidity, organic matter, mineral and organic N contents, N and C mineralization during 91-day laboratory incubations in controlled conditions, and biochemical fractionation using the Van Soest procedure. Greenhouse drying decreased the water content from 70-80% to 10% and also the odours, both of which will improve the management of the final product from the perspective of application and transport. We also found that drying reduced the organic matter content of the sludges but not the biodegradability of the remaining carbon. Organic N mineralization occurred during greenhouse drying, explaining why mineral N content tended to increase and the potential mineralization of organic nitrogen decreased after greenhouse drying. The biochemical stability did not

  10. Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2017-09-01

    Full Text Available This work aims to estimate soil moisture and vegetation height from Global Navigation Satellite System (GNSS Signal to Noise Ratio (SNR data using direct and reflected signals by the land surface surrounding a ground-based antenna. Observations are collected from a rainfed wheat field in southwestern France. Surface soil moisture is retrieved based on SNR phases estimated by the Least Square Estimation method, assuming the relative antenna height is constant. It is found that vegetation growth breaks up the constant relative antenna height assumption. A vegetation-height retrieval algorithm is proposed using the SNR-dominant period (the peak period in the average power spectrum derived from a wavelet analysis of SNR. Soil moisture and vegetation height are retrieved at different time periods (before and after vegetation's significant growth in March. The retrievals are compared with two independent reference data sets: in situ observations of soil moisture and vegetation height, and numerical simulations of soil moisture, vegetation height and above-ground dry biomass from the ISBA (interactions between soil, biosphere and atmosphere land surface model. Results show that changes in soil moisture mainly affect the multipath phase of the SNR data (assuming the relative antenna height is constant with little change in the dominant period of the SNR data, whereas changes in vegetation height are more likely to modulate the SNR-dominant period. Surface volumetric soil moisture can be estimated (R2  =  0.74, RMSE  =  0.009 m3 m−3 when the wheat is smaller than one wavelength (∼ 19 cm. The quality of the estimates markedly decreases when the vegetation height increases. This is because the reflected GNSS signal is less affected by the soil. When vegetation replaces soil as the dominant reflecting surface, a wavelet analysis provides an accurate estimation of the wheat crop height (R2  =  0.98, RMSE  =  6

  11. The solonetzic process in surface soils and buried paleosols and its reflection in the mineralogical soil memory

    Science.gov (United States)

    Chizhikova, N. P.; Kovda, I. V.; Borisov, A. V.; Shishlina, N. I.

    2009-10-01

    The development of the solonetzic process in paleosols buried under kurgans and in the modern surface soils has been studied on the basis of the analysis of the clay (memory“ of the solid-phase soil components. The mineralogical characteristics show that the solonetzic process in the modern background soil is more developed. The mineralogical approach allows us to reveal the long-term changes in the soil status; it is less useful for studying the effect of short-term bioclimatic fluctuations. In the latter case, more labile soil characteristics should be used. The mineralogical method, combined with other methods, becomes more informative upon the study of soil chronosequences. Our studies have shown that the data on the clay minerals in the buried paleosols may contain specific information useful for paleoreconstructions that is not provided by other methods.

  12. Evaporation From Soil Containers With Irregular Shapes

    Science.gov (United States)

    Assouline, Shmuel; Narkis, Kfir

    2017-11-01

    Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.

  13. Analysis of radiocaesium in the Lebanese soil one decade after the Chernobyl accident.

    Science.gov (United States)

    El Samad, O; Zahraman, K; Baydoun, R; Nasreddine, M

    2007-01-01

    Fallout from the Chernobyl reactor accident due to the transport of a radioactive cloud over Lebanon in the beginning of May 1986 was studied 12 years after the accident for determining the level of (137)Cs concentration in soil. Gamma spectroscopy measurements were performed by using coaxial high sensitivity HPGe detectors. More than 90 soil samples were collected from points uniformly distributed throughout the land of Lebanon in order to evaluate their radioactivity. The data obtained showed a relatively high (137)Cs activity per surface area contamination, up to 6545Bqm(-2) in the top soil layer 0-3cm. The average activity of (137)Cs in the top soil layer 0-3cm in depth was 59.7Bqkg(-1) dry soil ranging from 15 to 119Bqkg(-1) dry soil. The horizontal variability was found to be about 45% between the sampling sites. The depth distribution of total (137)Cs activity in soil showed an exponential decrease. Estimation of the annual effective dose due to external radiation from (137)Cs contaminated soil for selected sites gave values ranging from 19.3 to 91.6 micro Svy(-1).

  14. EFFECT OF SOIL TILLAGE AND PLANT RESIDUE ON SURFACE ROUGHNESS OF AN OXISOL UNDER SIMULATED RAIN

    Directory of Open Access Journals (Sweden)

    Elói Panachuki

    2015-02-01

    Full Text Available Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols. In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT, conventional tillage (CT, and minimum tillage (MT with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.. Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.

  15. Water repellency of clay, sand and organic soils in Finland

    Directory of Open Access Journals (Sweden)

    K. RASA

    2008-12-01

    Full Text Available Water repellency (WR delays soil wetting process, increases preferential flow and may give rise to surface runoff and consequent erosion. WR is commonly recognized in the soils of warm and temperate climates. To explore the occurrence of WR in soils in Finland, soil R index was studied on 12 sites of different soil types. The effects of soil management practice, vegetation age, soil moisture and drying temperature on WR were studied by a mini-infiltrometer with samples from depths of 0-5 and 5-10 cm. All studied sites exhibited WR (R index >1.95 at the time of sampling. WR increased as follows: sand (R = 1.8-5.0 < clay (R = 2.4-10.3 < organic (R = 7.9-undefined. At clay and sand, WR was generally higher at the soil surface and at the older sites (14 yr., where organic matter is accumulated. Below 41 vol. % water content these mineral soils were water repellent whereas organic soil exhibited WR even at saturation. These results show that soil WR also reduces water infiltration at the prevalent field moisture regime in the soils of boreal climate. The ageing of vegetation increases WR and on the other hand, cultivation reduces or hinders the development of WR.;

  16. Classification of Surface and Deep Soil Samples Using Linear Discriminant Analysis

    International Nuclear Information System (INIS)

    Wasim, M.; Ali, M.; Daud, M.

    2015-01-01

    A statistical analysis was made of the activity concentrations measured in surface and deep soil samples for natural and anthropogenic gamma-emitting radionuclides. Soil samples were obtained from 48 different locations in Gilgit, Pakistan covering about 50 km/sup 2/ areas at an average altitude of 1550 m above sea level. From each location two samples were collected: one from the top soil (2-6 cm) and another from a depth of 6-10 cm. Four radionuclides including /sup 226/Ra, /sup 232/Th, /sup 40/K and /sup 137/Cs were quantified. The data was analyzed using t-test to find out activity concentration difference between the surface and depth samples. At the surface, the median activity concentrations were 23.7, 29.1, 4.6 and 115 Bq kg/sup -1/ for 226Ra, 232Th, 137Cs and 40K respectively. For the same radionuclides, the activity concentrations were respectively 25.5, 26.2, 2.9 and 191 Bq kg/sup -1/ for the depth samples. Principal component analysis (PCA) was applied to explore patterns within the data. A positive significant correlation was observed between the radionuclides /sup 226/Ra and /sup 232/Th. The data from PCA was further utilized in linear discriminant analysis (LDA) for the classification of surface and depth samples. LDA classified surface and depth samples with good predictability. (author)

  17. Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech

    2016-09-01

    Full Text Available Physical and chemical properties of Arctic soils and especially the properties of surface horizons of the soils are very important because they are responsible for the rate and character of plant colonization, development of vegetation cover, and influence the rate and depth of thawing of soils and development of active layer of permafrost during summer. The main aim of the present study is to determine and explain the spatial diversity of selected physical and chemical properties of surface horizons of Arctic soils from the non-glaciated Fuglebekken catchment located in the Hornsund area (SW Spitsbergen by means of geostatistical approach. Results indicate that soil surface horizons in the Fuglebekken catchment are characterized by highly variable physical and chemical properties due to a heterogeneous parent material (marine sediments, moraine, rock debris, tundra vegetation types, and non-uniform influence of seabirds. Soils experiencing the strongest influence of seabird guano have a lower pH than other soils. Soils developed on the lateral moraine of the Hansbreen glacier have the highest pH due to the presence of carbonates in the parent material and a lack or presence of a poorly developed and discontinuous A horizon. The soil surface horizons along the coast of the Hornsund exhibit the highest content of the sand fraction and SiO2. The surface of soils occurring at the foot of the slope of Ariekammen Ridge is characterized by the highest content of silt and clay fractions as well as Al2O3, Fe2O3, and K2O. Soils in the central part of the Fuglebekken catchment are depleted in CaO, MgO, and Na2O in comparison with soils in the other sampling sites, which indicates the highest rate of leaching in this part of the catchment.

  18. Presence or absence of ocular surface inflammation directs clinical and therapeutic management of dry eye.

    Science.gov (United States)

    Sambursky, Robert

    2016-01-01

    The presence of clinically significant inflammation has been confirmed in the tears of 40%-65% of patients with symptoms of dry eye. Ocular surface inflammation may lead to tear film instability, epithelial cell irregularities, and permeability, resulting in chronic symptomatic pain and fluctuating vision as well as negative surgical outcomes. A retrospective single center medical chart review of 100 patients was conducted. All patients were tested with the InflammaDry test to determine if patients exhibited elevated levels of matrix metalloproteinase 9 (MMP-9). InflammaDry-positive patients were started on a combination of cyclosporine 0.05% twice daily, 2,000-4,000 mg oral omega-3 fatty acids, and frequent artificial tear replacement. InflammaDry-negative patients were started on 2,000-4,000 mg of oral omega-3 fatty acids and frequent artificial tear replacement. Each patient was retested at ~90 days. A symptom questionnaire was performed at the initial visit and at 90 days. 60% of the patients with dry eye symptoms tested positive for elevated MMP-9 at the initial visit. 78% of all patients returned for follow-up at ~90 days including 80% (48/60) of the previously InflammaDry-positive patients and 75% (30/40) of the previously InflammaDry-negative patients. A follow-up symptom questionnaire reported at least 75% symptomatic improvement in 65% (31/48) of the originally InflammaDry-positive patients and in 70% (21/30) of the initially InflammaDry-negative patients. Symptomatic improvement of at least 50% was reported in 85% (41/48) of previously InflammaDry-positive patients and 86% (26/30) of previously InflammaDry-negative patients. Following treatment, 54% (26/48) of previously InflammaDry-positive patients converted to a negative InflammaDry result. Identifying which symptomatic dry eye patients have underlying inflammation may predict patient responses to treatment and influence clinical management strategies.

  19. Carbon balance of rewetted and drained peat soils used for biomass production: A mesocosm study

    DEFF Research Database (Denmark)

    Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka

    2016-01-01

    of lower CO2 emissions without losing agricultural land. The present study quantified the carbon balance (CO2, CH4 and harvested biomass C) of rewetted and drained peat soils under intensively managed reed canary grass (RCG) cultivation. Mesocosms were maintained at five different ground water levels (GWL......), i.e., 0, 10, 20 cm below the soil surface, representing rewetted peat soils, and 30 and 40 cm below the soil surface, representing drained peat soils. Net ecosystem exchange (NEE) of CO2 and CH4 emissions were measured during the growing period of RCG (May to September) using transparent and opaque...... closed chamber methods. The average dry biomass yield was significantly lower from rewetted peat soils (12 Mg ha−1) than drained peat soils (15 Mg ha−1). Also, CO2 fluxes of gross primary production (GPP) and ecosystem respiration (ER) from rewetted peat soils were significantly lower than drained peat...

  20. A Monte Carlo reflectance model for soil surfaces with three-dimensional structure

    Science.gov (United States)

    Cooper, K. D.; Smith, J. A.

    1985-01-01

    A Monte Carlo soil reflectance model has been developed to study the effect of macroscopic surface irregularities larger than the wavelength of incident flux. The model treats incoherent multiple scattering from Lambertian facets distributed on a periodic surface. Resulting bidirectional reflectance distribution functions are non-Lambertian and compare well with experimental trends reported in the literature. Examples showing the coupling of the Monte Carlo soil model to an adding bidirectional canopy of reflectance model are also given.