Sample records for surface soil drying

  1. Leaching heavy metals from the surface soil of reclaimed tidal flat by alternating seawater inundation and air drying. (United States)

    Guo, Shi-Hong; Liu, Zhen-Ling; Li, Qu-Sheng; Yang, Ping; Wang, Li-Li; He, Bao-Yan; Xu, Zhi-Min; Ye, Jin-Shao; Zeng, Eddy Y


    Leaching experiments were conducted in a greenhouse to simulate seawater leaching combined with alternating seawater inundation and air drying. We investigated the heavy metal release of soils caused by changes associated with seawater inundation/air drying cycles in the reclaimed soils. After the treatment, the contents of all heavy metals (Cd, Pb, Cr, and Cu), except Zn, in surface soil significantly decreased (P removal rates ranging from 10% to 51%. The amounts of the exchangeable, carbonate, reducible, and oxidizable fractions also significantly decreased (P heavy metals. Measurement of diffusive gradients in thin films indicated that seawater inundation significantly increased the re-mobility of heavy metals. During seawater inundation, iron oxide reduction induced the release of heavy metals in the reducible fraction. Decomposition of organic matter, and complexation with dissolved organic carbon decreased the amount of heavy metals in the oxidizable fraction. Furthermore, complexation of chloride ions and competition of cations during seawater inundation and/or leaching decreased the levels of heavy metals in the exchangeable fraction. By contrast, air drying significantly enhanced the concentration of heavy metals in the exchangeable fraction. Therefore, the removal of heavy metals in the exchangeable fraction can be enhanced during subsequent leaching with seawater.

  2. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents

    DEFF Research Database (Denmark)

    Resurreccion, Augustus C.; Møldrup, Per; Tuller, Markus;


    with ethylene glycol monoethyl ether (SA_EGME) only for organic soils with n > 10. A strong correlation between the ratio of the two surface area estimates and the Dexter number was observed and applied as an additional scaling function in the TO model to rescale the soil water retention curve at low water...... dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were...

  3. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China. (United States)

    Wei, Wei; Yu, Yun; Chen, Liding


    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.

  4. Using dry spell dynamics of land surface temperature to evaluate large-scale model representation of soil moisture control on evapotranspiration (United States)

    Taylor, Christopher M.; Harris, Philip P.; Gallego-Elvira, Belen; Folwell, Sonja S.


    The soil moisture control on the partition of land surface fluxes between sensible and latent heat is a key aspect of land surface models used within numerical weather prediction and climate models. As soils dry out, evapotranspiration (ET) decreases, and the excess energy is used to warm the atmosphere. Poor simulations of this dynamic process can affect predictions of mean, and in particular, extreme air temperatures, and can introduce substantial biases into projections of climate change at regional scales. The lack of reliable observations of fluxes and root zone soil moisture at spatial scales that atmospheric models use (typically from 1 to several hundred kilometres), coupled with spatial variability in vegetation and soil properties, makes it difficult to evaluate the flux partitioning at the model grid box scale. To overcome this problem, we have developed techniques to use Land Surface Temperature (LST) to evaluate models. As soils dry out, LST rises, so it can be used under certain circumstances as a proxy for the partition between sensible and latent heat. Moreover, long time series of reliable LST observations under clear skies are available globally at resolutions of the order of 1km. Models can exhibit large biases in seasonal mean LST for various reasons, including poor description of aerodynamic coupling, uncertainties in vegetation mapping, and errors in down-welling radiation. Rather than compare long-term average LST values with models, we focus on the dynamics of LST during dry spells, when negligible rain falls, and the soil moisture store is drying out. The rate of warming of the land surface, or, more precisely, its warming rate relative to the atmosphere, emphasises the impact of changes in soil moisture control on the surface energy balance. Here we show the application of this approach to model evaluation, with examples at continental and global scales. We can compare the behaviour of both fully-coupled land-atmosphere models, and land

  5. Dynamic effects of wet-dry cycles and crust formation on the saturated hydraulic conductivity of surface soils in the constructed Hühnerwasser ("Chicken Creek") catchment (United States)

    Hinz, Christoph; Schümberg, Sabine; Kubitz, Anita; Frank, Franzi; Cheng, Zhang; Nanu Frechen, Tobias; Pohle, Ina


    Highly disturbed soils and substrates used in land rehabilitation undergo rapid changes after the first wetting events which in turn can lead to ecosystem degradation. Such changes were detected during the early development of the constructed Hühnerwasser ("Chicken Creek") catchment in Lusatia, Germany. Surface substrates consisting of quaternary sandy sediments formed surface seals during the first rainfall events leading to reduced infiltration and substantially increased surface runoff. Subsequently biological soil crusts formed and stabilised the surface. The aim of this study is to investigate the factors that cause the hydraulic conductivity to decrease using undisturbed and disturbed soil samples. Based on the hypothesis that physical and biological crusts lower the hydraulic conductivity, the first set of experiments with undisturbed soil cores from the Hühnerwasser catchment were carried out to measure the saturated hydraulic conductivity using the constant head method. Measurements were done with intact cores and repeated after the surface crust was removed. As the quaternary glacial sediments tend to display hard setting behaviour, we further hypothesised that the mobilisation of fine particles within the cores lead to pore clogging and that wet-dry cycles will therefore decrease hydraulic conductivity. A second set of experiments using the same methodology consisted of five repeated measurements of hydraulic conductivity after each drying cycle. These measurements were done with undisturbed core samples as well as repacked cores in order to assess how dry packing affects the dynamics of the hydraulic conductivity somewhat similar to the situation during the first wetting after completion of the catchment construction. For all experiments, the temporal evolution of hydraulic conductivity was measured and the turbidity of the effluent was recorded. The results clearly demonstrated that the substrate is highly unstable. The first set of experiments

  6. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.


    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  7. Sustaining dry surfaces under water (United States)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.


    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  8. Mucilage exudation facilitates root water uptake in dry soils (United States)

    Ahmed, Mutez; Kroener, Eva; Holz, Maire; Zarebanadkouki, Mohsen; Carminati, Andrea


    the root in this soil was significantly reduced. The experiments demonstrated that mucilage increased the hydraulic conductance of the root-soil continuum and facilitated the extraction of water from dry soils. The increase in conductivity resulted from the higher water content of the soil near the roots. Mucilage has a lower surface tension than pure water and a higher viscosity, resulting in a slower penetration of mucilage into the soil. After mucilage was placed into the soil, it did not spread into the bulk soil, but it remained near the roots, maintaining the rhizosphere wetter and more conductive than the bulk soil. However, as mucilage dried, it turned water repellent and reduced the back flow of water from the root to soil. We hypothesize that mucilage exudation is a plant strategy to locally and temporally facilitate water uptake from dry soils. After drying, mucilage becomes water repellent and may limit the local uptake of water after irrigation. On the other hand, mucilage water repellency may as well be a strategy to reduce water loss from roots to dry soils.

  9. Microbial growth responses upon rewetting dry soil (United States)

    Meisner, Annelein; Rousk, Johannes; Bååth, Erland


    Increased rainfall and drought periods are expected to occur with current climate change, leading to fluctuations in soil moisture. Changes in soil moisture are known to affect carbon cycling. A pulse of carbon dioxide release (respiration) is often observed after rewetting a dry soil and a drying threshold is observed before this pulse emerges. Increased microbial activity is often assumed to be the cause for the pulse in respiration. Yet, the microbial growth responses that underlie this pulse are often not studied. The following questions will be addressed in this presentation. 1) Do fungal and bacterial growth explain the pulse in respiration upon rewetting a dry soil? 2) How does microbial growth respond to different drying intensities before rewetting? To answer the research questions, soils from Sweden, U.K. and Greenland were put in microcosms, air-dried for four days, a prolonged period or to different moisture content before rewetting. We measured soil respiration, fungal growth rates and/or bacterial growth rates at high temporal resolution during one week after rewetting. Our results suggest that the respiration pulse upon rewetting dry soil is not due to high microbial growth rates. During the first hours after rewetting, bacterial and fungal growth rates were low whereas the respiration rates were high. As such, there was a decoupling between the pulse in respiration and microbial growth rates. Two patterns of bacterial growth were observed upon rewetting the three different soils. In "pattern 1", bacteria started growing immediately in a linear pattern up to values similar as the moist control. In "pattern 2", bacteria started growing exponentially after a lag period of no growth with a second pulse of respiration occurring at the start of bacterial growth. Manipulating the drying intensity changed the patterns. Soils with "pattern 1" were changed to "pattern 2" when subjected to more extensive drying periods whereas soils with "pattern 2" were

  10. Cassava Sun Drying Performance on Various Surfaces and Drying ...

    African Journals Online (AJOL)

    a raw material in the production of starch, tapioca and snack foods ... The material was dried for 8 hours daily after which it was kept indoors overnight. The surface with .... statistical package (MS Office, 2007). .... preservation and marketing.

  11. Distributions of glycerol dialkyl glycerol tetraethers in surface soils of Qinghai-Tibetan Plateau: implications of GDGT-based proxies in cold and dry regions (United States)

    Ding, S.; Xu, Y.; Wang, Y.; He, Y.; Hou, J.; Chen, L.; He, J.-S.


    The methylation index of branched tetraethers (MBT) and cyclization ratio of branched tetraethers (CBT) based on the distribution of bacteria-derived branched glycerol dialkyl glycerol tetraethers (bGDGTs) are useful proxies for the reconstruction of continental paleotemperature and soil pH. Several calibrations of the MBT-CBT index have been proposed based on global and regional soils and lake sediments. However, little is known about the distribution and applicability of GDGTs proxies in the Qinghai-Tibet Plateau (QTP), a critical region of the global climate system. Here, we investigated 33 surface soils covering a large area of the QTP. Redundancy analysis showed that soil pH was the most important factor affecting GDGT distributions, followed by mean annual precipitation (MAP) and mean annual air temperature (MAT). The branched-isoprenoid tetraether (BIT) index, an indicator for estimation of soil organic matter in aquatic environments, varied from 0.48 to 1 and negatively correlated with soil pH (r2 = 0.38), suggesting that the BIT index should be used with caution in the QTP. A transfer function of the CBT index-soil pH was established to estimate paleo-soil pH in the QTP: pH = 8.33-1.43 × CBT (r2 = 0.80, RMSE = 0.27 pH unit). The local calibration of MBT-CBT index presented a weak, still significant correlation with MAT (r2 = 0.36) mainly owing to the additional influence of MAP (r2 = 0.50). Combining our data with previously reported GDGTs for Chinese soils resulted in a new calibration of MBT/CBT-MAT: MAT = 2.68+26.14 × MBT-3.37 × CBT (r2 = 0.73; RMSE = 4.2 °C, n = 164). The correlation coefficient and residual error of this new transfer function is comparable with global calibrations, suggesting that MBT-CBT paleotemperature proxy is still valid in the QTP.

  12. The inlfuence of soil drying- and tillage-induced penetration resistance on maize root growth in a clayey soil

    Institute of Scientific and Technical Information of China (English)

    LIN Li-rong; HE Yang-bo; CHEN Jia-zhou


    Soil drying may induce a number of stresses on crops. This paper investigated maize (Zea maysL.) root growth as affected by drought and soil penetration resistance (PR), which was caused by soil drying and tilage in a clayey red soil. Com-pared with conventional tilage (C) and deep tilage (D), soil compaction (P) and no-til (N) signiifcantly increased soil PR in the 0–15 cm layer. The PR increased dramaticaly as the soil drying increased, particularly in soil with a high bulk density. Increased soil PR reduced the maize root mass density distribution not only in the vertical proifle (0–20 cm) but also in the horizontal layer at the same distance (0–5, 5–10, 10–15 cm) from the maize plant. With an increase in soil PR in pots, the maize root length, root surface area and root volume signiifcantly decreased. Speciifcaly, the maize root length declined exponentialy from 309 to 64 cm per plant with an increase in soil PR from 491 to 3370 kPa; the roots almost stopped elon-gating when the soil PR was larger than 2200 kPa. It appeared that ifne roots (<2.5 mm in diameter) thickened when the soil PR increased, resulting in a larger average root diameter. The average root diameter increased linearly with soil PR, regardless of soil irrigation or drought. The results suggest that differences in soil PR caused by soil drying is most likely responsible for inconsistent root responses to water stress in different soils.

  13. Effect of wetting-drying cycles on soil desiccation cracking behaviour

    Directory of Open Access Journals (Sweden)

    Tang Chao-Sheng


    Full Text Available Better understanding the desiccation cracking process is essential in analysing drought effects on soil hydraulic and mechanical properties through consideration of the atmosphere-ground interaction. Laboratory tests were conducted to investigate the consequence of wetting-drying cycles on the initiation and propagation characteristics of desiccation cracks on soil surface. Initially saturated slurry specimens were prepared and subjected to five subsequent wetting-drying cycles. Image processing technique was employed to quantitatively analyze the morphology characteristics of crack patterns formed during each drying path. The results show that the desiccation cracking behaviour of soil is significantly affected by the wetting-drying cycles. Before the third wetting-drying cycle is reached, the surface crack ratio and the average crack width increases while the average clod area decreases with increasing the number of wetting-drying cycles. The number of intersections and crack segments per unit area reaches the peak values after the second wetting-drying cycle. After the third wetting-drying cycle is reached, the effect of increasing wetting-drying cycles on crack patterns is insignificant. Moreover, it is observed that the applied wetting-drying cycles are accompanied by a continual reconstruction of soil structure. The initial homogenous slurry structure is completely replaced with aggregated structure after the third cycles, and a significant increase in the inter-aggregate porosity can be observed.

  14. Do we know how plants sense a drying soil?

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto


    Full Text Available The reduction of crop growth and yield in dry areas is largely due to stomatal closure in response to dry soil, which decreases photosynthesis. However, the mechanism that causes stomatal closure in a drying soil is a controversial issue. Experienced and respected plant physiologists around the world have different views about the primary sensor of soil water shortage in plants. The goal of this review is to present a chronological synthesis about the evidence of the possible candidates for the mechanism by which plants sense a drying soil. Hydraulic signals in the leaves as the mechanism that causes stomatal closure dominated the view on how plants sense a drying soil during the 70?s and the early 80?s. In the middle 80?s, studies suggested that stomatal conductance is better correlated with soil and root water status than with leaf water status. Thus, chemical signals produced in the roots dominated the view on how plants sense a drying soil during the late 80?s and early 90?s. During the second half of the 90?s, however, studies provided evidence that hydraulic signals in the leaves are still better candidates for the mechanism by which plants sense a drying soil. After more than 60 years of studies in plant-water relations, the question raised in the title still has no unanimous answer. This controversial issue is a good research rationale for the current generation of plant physiologists.

  15. Effects of Soil and Air Drying Methods on Soil Plasticity of Different Cities of Pakistan

    Directory of Open Access Journals (Sweden)

    Aashan Ijaz


    Full Text Available Atterberg Limits were initially defined in 1911, by Albert Atterberg, a Swedish scientist. Their purposes are to classifying cohesive soils and determine engineering properties of soils. According to ASTM, all the soils tested by Atterberg limits should be oven dried, it is because drying the soils in different degree will alter their properties significantly. Some of the physical properties of soils will undergo changes that appear to be permanent. Therefore, the soil samples should be in natural or air-dried form. However, in reality, due to time constraint and other factors, many will run the tests by using soil samples that are prepared by oven drying method. They assumed that there is no difference between the results of two types of drying method. However, in reality, the properties of soil will be affected and thus give a misleading result. The objective of this study is to determine the effect of two drying methods, air-drying method and oven drying method, on the soil plasticity. Six soil samples from different cities were tested. These tests include sieve analysis, specific gravity test, hydrometer analysis, Plastic limit and liquid limit test. Conclusively, the oven drying method could not replace the air-drying method in soil preparation for both Atterberg limits tests.

  16. Machine Learning Assessments of Soil Drying (United States)

    Coopersmith, E. J.; Minsker, B. S.; Wenzel, C.; Gilmore, B. J.


    Agricultural activities require the use of heavy equipment and vehicles on unpaved farmlands. When soil conditions are wet, equipment can cause substantial damage, leaving deep ruts. In extreme cases, implements can sink and become mired, causing considerable delays and expense to extricate the equipment. Farm managers, who are often located remotely, cannot assess sites before allocating equipment, causing considerable difficulty in reliably assessing conditions of countless sites with any reliability and frequency. For example, farmers often trace serpentine paths of over one hundred miles each day to assess the overall status of various tracts of land spanning thirty, forty, or fifty miles in each direction. One means of assessing the moisture content of a field lies in the strategic positioning of remotely-monitored in situ sensors. Unfortunately, land owners are often reluctant to place sensors across their properties due to the significant monetary cost and complexity. This work aspires to overcome these limitations by modeling the process of wetting and drying statistically - remotely assessing field readiness using only information that is publically accessible. Such data includes Nexrad radar and state climate network sensors, as well as Twitter-based reports of field conditions for validation. Three algorithms, classification trees, k-nearest-neighbors, and boosted perceptrons are deployed to deliver statistical field readiness assessments of an agricultural site located in Urbana, IL. Two of the three algorithms performed with 92-94% accuracy, with the majority of misclassifications falling within the calculated margins of error. This demonstrates the feasibility of using a machine learning framework with only public data, knowledge of system memory from previous conditions, and statistical tools to assess "readiness" without the need for real-time, on-site physical observation. Future efforts will produce a workflow assimilating Nexrad, climate network

  17. Surface decontamination using dry ice snow

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jungdong; Park, Kwangheon [College of Mechnical and Industrial System Engineering, Kyunghee University, Yongin (Korea, Republic of); Lee, Bumsik; Kim Yangeun [Wolsung Nuclear Power Plants, KEPCO (Korea, Republic of)


    An adjustable nozzle for controlling the size of dry ice snow was developed. The converging/diverging nozzle can control the size of snows from sub-microns to 10 micron size. Using the nozzle, a surface decontamination device was made. The removal mechanisms of surface contaminants are mechanical impact, partial dissolving and evaporation process, and viscous flow. A heat supply system is added for the prevention of surface ice layer formation. The cleaning power is slightly dependent on the size of snow. Small snows are the better in viscous flow cleaning, while large snows are slightly better in dissolving and sublimation process. Human oils like fingerprints on glass were easy to remove. Decontamination ability was tested using a contaminated pump-housing surface. About 40 to 80% of radioactivity was removed. This device is effective in surface-decontamination of any electrical devices like detector, controllers which cannot be cleaned in aqueous solution. (author)

  18. Enhanced soil moisture drying in transitional regions under a warming climate (United States)

    Cheng, Shanjun; Huang, Jianping


    We analyzed global trends of soil moisture for the period 1948-2010 using the Global Land Data Assimilation System data set. Soil moisture was dominated by negative trends, with pronounced drying over East Asia and the Sahel. Spatial analysis according to climatic region revealed that the most obvious drying occurred over transitional regions between dry and wet climates. The noticeable drying first took place in the humid transitional regions and extended to the dry transitional regions, beginning in the 1980s. The variability of soil moisture was notably related to the changes in precipitation and temperature, but with different roles. For the global average, precipitation had a dominant effect on the variability of soil moisture at interannual to decadal time scales, but temperature was the main cause of the long-term trend of soil moisture on the whole. The enhanced soil drying in the transitional regions was primarily caused by global warming, which is illustrated by regression analysis and the land surface model.

  19. Some Chytridiomycota in soil recover from drying and high temperatures. (United States)

    Gleason, Frank H; Letcher, Peter M; McGee, Peter A


    Rhizophlyctis rosea was found in 44% of 59 soil samples from national parks, urban reserves and gardens, and agricultural lands of eastern New South Wales, Australia. As some of the soils are periodically dry and hot, we examined possible mechanisms that enable survival in stressful environments such as agricultural lands. Air-dried thalli of R. rosea in soil and pure cultures of R. rosea, two isolates of Allomyces anomalus, one isolate of Catenaria sp., one of Catenophlyctis sp. and one of Spizellomyces sp. recovered following incubation at 90 degrees C for two days. Powellomyces sp. recovered following incubation at 80 degrees. Sporangia of all seven fungi shrank during air-drying, and immediately returned to turgidity when rehydrated. Some sporangia of R. rosea released zoospores immediately upon rehydration. These data indicate that some Chytridiomycota have resistant structures that enable survival through periodic drying and high summer temperatures typical of soils used for cropping. Eleven Chytridiomycota isolated from soil did not survive either drying or heat. Neither habitat of the fungus nor morphological type correlated with the capacity to tolerate drying and heat.

  20. On the effectiveness of dry drainage in soil salinity control

    Institute of Scientific and Technical Information of China (English)

    WU JingWei; ZHAO LiRong; HUANG JieSheng; YANG JinZhong; VINCENT Bernard; BOUARFA Sami; VIDAL Alain


    Dry drainage is thought to be a potential approach to control soil salinity.This study took the Hetao Irrigation District as an example and evaluated the effectiveness of dry drainage by using remote sensing, a conceptual model and a field experiment.Archived remote sensing images from 1973-2006 were used to delineate the temporal and spatial change of soil salinity.The conceptual water and salt balance model was used to evaluate the role of dry drainage in removing excess salt from the irrigated land.The field experiment was performed to get field validation and give more accurate estimation.The results show that dry drainage did contribute to remove excess salt from the irrigated land and succeed in controlling soil salinity in the Hetao Irrigation can be taken as an alternative approach in (semi-)arid area where artificial drainage is not applicable.

  1. On the effectiveness of dry drainage in soil salinity control

    Institute of Scientific and Technical Information of China (English)

    VINCENT; Bernard; BOUARFA; Sami; VIDAL; Alain


    Dry drainage is thought to be a potential approach to control soil salinity. This study took the Hetao Irrigation District as an example and evaluated the effectiveness of dry drainage by using remote sensing, a conceptual model and a field experiment. Archived remote sensing images from 1973―2006 were used to delineate the temporal and spatial change of soil salinity. The conceptual water and salt balance model was used to evaluate the role of dry drainage in removing excess salt from the irrigated land. The field experiment was performed to get field validation and give more accurate estimation. The results show that dry drainage did contribute to remove excess salt from the irrigated land and succeed in controlling soil salinity in the Hetao Irrigation District. It can be taken as an alternative approach in (semi-)arid area where artificial drainage is not applicable.

  2. Global soil moisture dry-down analysis based on SMAP retrievals (United States)

    Wang, W.; Lu, H.; Peng, B.; Entekhabi, D.; Pan, M.; Mccoll, K. A.; Akbar, R.; Zhao, T.


    The rate at which soil moisture depletes following a precipitation event (the soil moisture dry-down) encodes information on several hydrological parameters, most prominently vertical drainage and evapotranspiration. The initial phase of the dry-down process is usually controlled by vertical drainage and soil hydraulic properties. The second phase is usually controlled by the evapotranspiration rate. Better insight into dry-down processes at global scales will enhance our understanding of soil moisture's role in the terrestrial water cycle. The launch of SMAP gives us unprecedented opportunities for studying dry-down processes globally. In this study, an algorithm for dry-down event detection was developed. Dry-down events are identified globally using one year of SMAP data from April 2015 to March 2016. Three sites spanning different climate zones, including Texas in the USA, southern China, and central Australia, were selected for testing and validation of the algorithm. Results in these sites show that the algorithm can efficiently identify dry-down events. The algorithm was then applied globally. The number of dry-down events, average dry-down duration, and average dry-down slope were estimated based on one year of SMAP data at each grid point. We relate the rate of the dry-down at each location to the time-history of precipitation, seasonal climate and the relative dominance of drainage and evaporation loss processes. The rate of dry-down under difference hydrologic and hydroclimatic regimes is proposed to be a rigorous test of how well land surface models capture and incorporate physical processes and land memory.

  3. Mineralogy of Antarctica Dry Valley Soils: Implications for Pedogenic Processes on Mars (United States)

    Quinn, J. E.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; Zent, A. P.; Archer, P. D., Jr.


    The Antarctic Dry Valleys (ADVs) located in the Transantarctic Mountains are the coldest and driest locations on Earth. The mean annual air temperature is -20 C or less and the ADVs receive 100mm or less of precipitation annually in the form of snow. The cold and dry climate in the ADVs is one of the best terrestrial analogs for the climatic conditions on Mars [2]. The soils in the ADVs have been categorized into three soil moisture zones: subxerous, xerous and ultraxerous. The subxerous zone is a coastal region in which soils have ice-cemented permafrost relatively close to the surface. Moisture is available in relatively large amounts and soil temperatures are above freezing throughout the soil profile (above ice permafrost) in summer months. The xerous zone, the most widespread of the three zones, is an inland region with a climate midway between the subxerous and ultraxerous. The soils from this zone have dry permafrost at moderate depths (30-75cm) but have sufficient water in the upper soil horizons to allow leaching of soluble materials. The ultraxerous zone is a high elevation zone, where both temperature and precipitation amounts are very low resulting in dry permafrost throughout the soil profile. The three moisture regime regions are similar to the three microclimatic zones (coastal thaw, inland mixed, stable upland) defined by Marchant and Head.

  4. Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Jensen, Christian Richardt; Liu, Fulai


    Abstract Repeated soil drying and rewetting (DRW) cycles occur in rainfed and irrigated agriculture. The intensity and frequency of DRW cycles regulate both microbial physiology and soil physical processes, hereby affecting the mineralization and immobilization of soil nutrients and their bioavai......Abstract Repeated soil drying and rewetting (DRW) cycles occur in rainfed and irrigated agriculture. The intensity and frequency of DRW cycles regulate both microbial physiology and soil physical processes, hereby affecting the mineralization and immobilization of soil nutrients...... and their bioavailability. Partial root-zone drying irrigation (PRI) irrigates half of the soil zone, while the other half is allowed to dry, and the two halves is alternately irrigated. PRI outweighs conventional deficit irrigation in further improving water use efficiency (WUE) by enhancing the root-to-shoot chemical......, and PRI-integrated fertigation are still lacking. In addition, the positive nutritional effect may be varied in terms of climatic conditions and intensity and frequency of precipitation or irrigation, and these merit further in-depth studies....

  5. Dynamics of soil water evaporation during soil drying: laboratory experiment and numerical analysis. (United States)

    Han, Jiangbo; Zhou, Zhifang


    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3.

  6. Effects of drying-wetting and freezing-thawing cycle on leachability of metallic elements in mine soils (United States)

    Bang, H.; Kim, J.; Hyun, S.


    Mine leachate derived from contaminated mine sites with metallic elements can pose serious risks on human society and environment. Only labile fraction of metallic elements in mine soils is subject to leaching and movement by rainfall. Lability of metallic element in soil is a function of bond strengths between metal and soil surfaces, which is influenced by environmental condition (e.g., rainfall intensity, duration, temperature, etc.) The purpose of this study was to elucidate the effects of various climate conditions on the leaching patterns and lability of metallic elements in mine soils. To do this, two mine soils were sampled from two abandoned mine sites located in Korea. Leaching test were conducted using batch decant-refill method. Various climatic conditions were employed in leaching test such as (1) oven drying (40oC) - wetting cycles, (2) air drying (20oC) - wetting cycle, and (3) freezing (-40oC) - thawing cycles. Duration of drying and freezing were varied from 4 days to 2 weeks. Concentration of metallic elements, pH, Eh and concentration of dissolved iron and sulfate in leachate from each leaching process was measured. To identify the changes of labile fraction in mine soils after each of drying or freezing period, sequential extraction procedure (five fraction) was used to compare labile fraction (i.e., F1 + F2) of metallic elements. The concentration of metallic elements in mine leachate was increased after drying and freezing procedure. The amounts of released metallic element from mine soils was changed depending on their drying or freezing period. In addition, labile fraction of metallic elements in soil was also changed after drying and freezing. The changes in labile fraction after drying and freezing might be due to the increased soil surface area by pore water volume expansion. Further study is therefore needed to evaluate the impact of altered physical properties of soils such as hydration of soil surface area and shrinking by drying and

  7. Divergent surface and total soil moisture projections under global warming (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.


    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  8. Microbial community composition of transiently wetted Antarctic Dry Valley soils

    Directory of Open Access Journals (Sweden)

    Thomas D. Neiderberger


    Full Text Available During the summer months, wet (hyporheic soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DV become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and to compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~ 5 µg/cm3 for chlorophyll a, respectively. Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

  9. Soil and landform interplay in the dry valley of Edson Hills, Ellsworth Mountains, continental Antarctica (United States)

    Delpupo, Caroline; Schaefer, Carlos Ernesto Gonçalves Reynaud; Roque, Mariane Batalha; de Faria, André Luiz Lopes; da Rosa, Katia Kellem; Thomazini, André; de Paula, Mayara Daher


    The main relief units from the dry valley of Edson Hills, Ellsworth Mountains, Antarctica (79°49‧12.4″/83°40‧16.1″), were assessed, emphasizing the analysis of soil and landform interplay. Soil morphological, physical, and chemical properties; salinity; surface boulder weathering (frequency and feature); classification; and weathering stages were analyzed. Three distinct landforms summarize the geomorphology of the dry valley of Edson Hills, Ellsworth Mountains: (i) periglacial features like slightly creeping debris-mantled slopes, steep debris-mantled slopes, patterned grounds, and thermokarst; (ii) glacial features like hummocky moraines, lateral moraines (supraglacial), lakes, kettle hole (proglacial), cirques infill (subglacial), horn, and arête (erosional glacial); and (iii) nonglacial features like scree slopes and talus deposits. All these glacial and periglacial features are related to the West Antarctica ice sheet variations. Soils in the dry valley of Edson Hills are pedologically poorly developed. However, the degree of development in soils associated with patterned ground and moraine systems is remarkable. All soils present desert pavement owing to the action of severe aeolian erosion. In addition, soils accumulate salts depending on the local drainage conditions. The most expressive soil classes among the studied soils were Typic Haploturbel and Typic Anhyorthel, especially because of: (i) a general trend of ice-cemented permafrost occurrence in lower portions of the landscape, particularly in the patterned ground area and in the hummocky moraine; and (ii) the presence of dry permafrost in higher positions of the landscape, in relief units such as in debris-mantled slopes and talus deposits. Thus, a close relationship among soil characteristics and landforms were observed in the dry valley of Edson Hills.

  10. Sorptivity and liquid infiltration into dry soil (United States)

    Culligan, Patricia J.; Ivanov, Vladimir; Germaine, John T.


    The sorptivity S quantifies the effect of capillarity on liquid movement in a porous material. For liquid infiltration into an initially dry material, S is a parameter that is contingent on both liquid and material properties as well as the maximum liquid content behind the infiltrating front, θm. Scaling analyses are used to derive a dimensionless, intrinsic sorptivity S∗ that is constant for different liquids, Miller-similar materials and different values of θm. The analyses confirm that S is dependent on β1/2, where β = cos ϕ is a measure of the wettability of the liquid. They also indicate a power law relationship between S and Se(av), the average liquid saturation behind the infiltrating front. Seventeen water and eleven Soltrol 220 horizontal infiltration experiments are reported in uniform, dry sand. Test results show that water is partially wetting in the sand. They also confirm that S∝Se(av)d, where d = 3.2 for the experimental conditions. The usefulness of a general, dimensionless Boltzmann variable is demonstrated to normalize infiltration profiles for the different liquids. An approximate method for sorptivity calculation is shown to provide an accurate estimate of S∗.

  11. Relationship soil-water-plant after the dry season in dry Mediterranean areas (United States)

    Hueso-González, P.; Jiménez-Donaire, V.; Ruiz-Sinoga, J. D.


    Preliminary studies have determined the existence of a pluviometric gradient around Mediterranean system, which varies from 240 to 1 100 mm mean annual rainfall. This gradient has an incidence in the physical, chemical and hydrological properties in soils with the same litology. Empiric results conclude that humid eco-geomorphological systems are controlled by biotic processes, whereas in arid eco-geomorphological systems, are abiotic factors which have more importance in soil degradation processes. The study area of the present work is located in Málaga (Andalusia, Spain), in the southern part of the Natural Park "Sierra Tejeda, Almijara y Alhama". There, the mean annual temperature is around 18 °C and the mean rainfall is 650 mm. Predominant vegetation corresponds to the termomediterranean serie Smilaci Mauritanicae-Querceto Rotundifoliae Sigmetum, typical of basic soils. The aim of this study is to analyse the immediate hydrological response of the soil under different vegetation covers, through the analysis of certain properties, all this, under subhumid ombrotipe. A random choice of ten representative plants has been done. These plants, with different sizes, were located in the same Southern slope. The soil samples were taken right beside the plant log, and also within a distance of 0.4 to 1 metre from them, depending on the plant size. The sampling was carried out between the end of the dry season and the beginning of the wet one, after a 20% of the mean annual rainfall had rained. The physical, chemical and hydrological analyzes -both in the field and the laboratory- were: exchange-base, total carbon, cation exchange capacity, soil infiltration capacity, salt content, hydrophobia, organic matter, soil organic carbon, total nitrogen, wetting profile in bared soil, wetting profile under vegetation cover (shrubland), and p.H. Literature reveals that rainfall affects significantly the edafogenetic factors, regarding the pluviometric gradient level. In the

  12. Changes in the properties of solonetzic soil complexes in the dry steppe zone under anthropogenic impacts (United States)

    Lyubimova, I. N.; Novikova, A. F.


    Long-term studies of changes in the properties of solonetzic soil complexes of the dry steppe zone under anthropogenic impacts (deep plowing, surface leveling, irrigation, and post-irrigation use) have been performed on the Privolzhskaya sand ridge and the Khvalyn and Ergeni plains. The natural morphology of solonetzic soils was strongly disturbed during their deep ameliorative plowing. At present, the soil cover consists of solonetzic agrozems (Sodic Protosalic Cambisols (Loamic, Aric, Protocalcic)), textural (clay-illuvial) calcareous agrozems (Eutric Cambisols (Loamic, Aric, Protocalcic)), agrosolonetzes (Endocalcaric Luvisols (Loamic, Aric, Cutanic, Protosodic), agrochestnut soils (Eutric Cambisols (Siltic, Aric)), and meadowchestnut soils (Haplic Kastanozems). No features attesting to the restoration of the initial profile of solonetzes have been found. The dynamics of soluble salts and exchangeable sodium differ in the agrosolonetzes and solonetzic agrozems. A rise in pH values takes place in the middle part of the soil profiles on the Khvalyn and Ergeni plains.

  13. Role of Soil Microstructure in Microbially-mediated Drying Resistance (United States)

    Cruz, B. C.; Shor, L. M.; Gage, D. J.


    The retention of soil moisture between rainfall or irrigation events is imperative to the productivity of terrestrial ecosystems. Amplified weather conditions are expected to result in widespread reduction in soil moisture. Extracellular polysaccharides (EPS) produced by soil bacteria have the ability to influence soil moisture by (i) retaining water directly within the hydrogel matrix, and (ii) promoting an aggregated soil structure. We have developed microfluidic devices that emulate realistic soil microstructures and enable direct observation of EPS production and drying resistance. The objective of this study was to compare moisture retention in emulated soil micromodels containing different soil microstructures. "Aggregated" devices contain a greater number of small (100 μm) pores, while "non-aggregated" devices contained more intermediate-sized (30-100 μm) pores. Particle-size distributions, similar to a sandy loam, were identical in both cases. Dilute suspensions of either of two strains of Sinorhizobium meliloti were introduced into replicate micromodels: one strain produced EPS ("EPS+") and the other did not produce EPS ("EPS-"). Loaded micromodels were equilibrated at saturated conditions, then dried at 83% RH for several days. Direct observation showed micro-scale patterns of air infiltration. The rate and extent of moisture loss was determined as a function of bacterial strain and microstructure aggregation state. Results showed devices loaded with EPS+ bacteria retained moisture longer than devices loaded with EPS- bacteria. Moisture retention by EPS+ bacteria was enhanced in aggregated versus non-aggregated microstructures. This work illustrates how moisture retention in soil is the result of microbial processes acting within pore-scale soil microstructures. Validated microfluidics-based approaches may help quantitatively link pore-scale phenomena to ecosystem function.

  14. Long Term Effects of Farming System on Soil Water Content and Dry Soil Layer in Deep Loess Proifle of Loess Tableland in China

    Institute of Scientific and Technical Information of China (English)

    CHENG Li-ping; LIU Wen-zhao


    Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep loess proifle, which is critical for maintaining the function of the“soil water pool”is rarely studied because deep proifle soil samples are dififcult to collect. In this study, four experimental plots were established in 2005 to represent different farming systems on the Changwu Tableland:fallow land, fertilized cropland, unfertilized cropland, and continuous alfalfa. The soil water content in the 15-m-deep loess proifles was monitored continuously from 2007 to 2012 with the neutron probe technique. The results showed that temporal variations in soil water proifles differed among the four farming systems. Under fallow land, the soil water content increased gradually over time, ifrst in the surface layers and later in the deep soil layers. In contrast, the soil water content decreased gradually under continuous alfalfa. The distributions of soil water in deep soil layers under both fertilized and unfertilized cropland were relatively stable over time. Thus farming system signiifcantly affected soil water content. Seven years after the start of the experiment, the soil water contents in the 15-m-deep proifles averaged 23.4%under fallow land, 20.3%under fertilized cropland, 21.6%under unfertilized cropland, and 16.0%under continuous alfalfa. Compared to measurements at the start of the experiment, both fallow land and unfertilized cropland increased soil water storage in the 15-m loess proifles. In contrast, continuous alfalfa reduced soil water storage. Fertilized cropland has no signiifcant effect on soil water storage. These results suggest that deep soil water can be replenished under the fallow and unfertilized farming systems. Dry soil layers (i.e., those which have soil water content less than the stable ifeld water capacity) in the subsoil

  15. Surface Reactivity in Tropical Highly Weathered Soils and Implications for Rational Soil Management

    Institute of Scientific and Technical Information of China (English)



    Highly weathered soils are distributed in the humid and wet-dry tropics, as well as in the humid subtropics. As a result of strong weathering, these soils are characterized by low activity clays, which develop variable surface charge and related specific properties. Surface reactions regarding base exchange and soil acidification, heavy metal sorption and mobility, and phosphorus sorption and availability of the tropical highly weathered soils are reviewed in this paper.Factors controlling surface reactivity towards cations and anions, including ion exchange and specific adsorption processes, are discussed with consideration on practical implications for rational management of these soils. Organic matter content and pH value are major basic factors that should be controlled through appropriate agricultural practices, in order to optimise favorable effects of colloid surface properties on soil fertility and environmental quality.

  16. Dry Eye Management: Targeting the Ocular Surface Microenvironment. (United States)

    Zhang, Xiaobo; M, Vimalin Jeyalatha; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo; Li, Wei


    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment.

  17. Dry Eye Management: Targeting the Ocular Surface Microenvironment (United States)

    Zhang, Xiaobo; Jeyalatha M, Vimalin; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo


    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment. PMID:28661456

  18. Soil Drying Effects on the Carbon Isotope Composition of Soil Respiration (United States)

    Phillips, C. L.; Nickerson, N.; Risk, D.; Kayler, Z. E.; Rugh, W.; Mix, A. C.; Bond, B. J.


    Stable isotopes are used widely as a tool for determining sources of carbon (C) fluxes in ecosystem C studies. Environmental factors that change over time, such as moisture, can create dynamic changes in the isotopic composition of C assimilated by plants, and offers a unique opportunity to distinguish fast- responding plant C from slower-responding soil C pools, which under steady-state conditions may be too similar isotopically to partition. Monitoring the isotopic composition of soil respiration over a period of changing moisture conditions is potentially a useful approach for characterizing plant contributions to soil respiration. But this partitioning hinges on the assumption that any change in the isotopic signature of soil respiration is solely due to recent photosynthetic discrimination, and that post-photosynthetic processes, such as microbial respiration, do not discriminate as moisture decreases. The purpose of the present study is to test the assumption that δ13CO2 from microbial respiration remains static as soil dries. We conducted a series of greenhouse experiments employing different techniques to isolate microbial respiration from root respiration. The first involves removing roots from soil, and showed that when roots are present, respiration from dry soil is enriched in 13C relative to moist soil, but when roots are absent, respiration is isotopically similar from moist and dry soils. This indicates that rhizospheric respiration changes isotopically with moisture whereas soil microbial respiration does not. In contrast, a second experiment in which soil columns without plants were monitored as they dried, showed respiration from very dry soil to be enriched by 8‰ relative to moist soil. However, simulations with an isotopologue-based soil gas diffusion model demonstrate that at least a portion of the apparent enrichment is due to non-steady state gas transport processes. Careful sampling methodologies which prevent or account for non

  19. Vapor Flow Resistance of Dry Soil Layer to Soil Water Evaporation in Arid Environment: An Overview

    Directory of Open Access Journals (Sweden)

    Xixi Wang


    Full Text Available Evaporation from bare sandy soils is the core component of the hydrologic cycle in arid environments, where vertical water movement dominates. Although extensive measurement and modeling studies have been conducted and reported in existing literature, the physics of dry soil and its function in evaporation is still a challenging topic with significant remaining issues. Thus, an overview of the previous findings will be very beneficial for identifying further research needs that aim to advance our understanding of the vapor flow resistance (VFR effect on soil water evaporation as influenced by characteristics of the dry soil layer (DSL and evaporation zone (EZ. In this regard, six measurement and four modeling studies were overviewed. The results of these overviewed studies, along with the others, affirm the conceptual dynamics of DSL and EZ during drying or wetting processes (but not both within dry sandy soils. The VFR effect tends to linearly increase with DSL thickness (δ when δ < 5 cm and is likely to increase as a logarithmic function of δ when δ ≥ 5 cm. The vaporization-condensation-movement (VCM dynamics in a DSL depend on soil textures: sandy soils can form a thick (10 to 20 cm DSL while sandy clay soils may or may not have a clear DSL; regardless, a DSL can function as a transient EZ, a vapor condensation zone, and/or a vapor transport medium. Based on the overview, further studies will need to generate long-term continuous field data, develop hydraulic functions for very dry soils, and establish an approach to quantify the dynamics and VFR effects of DSLs during wetting-drying cycles as well as take into account such effects  when using conventional (e.g., Penman-Monteith evaporation models.

  20. Spatial variability of soils in a seasonally dry tropical forest (United States)

    Pulla, Sandeep; Riotte, Jean; Suresh, Hebbalalu; Dattaraja, Handanakere; Sukumar, Raman


    Soil structures communities of plants and soil organisms in tropical forests. Understanding the controls of soil spatial variability can therefore potentially inform efforts towards forest restoration. We studied the relationship between soils and lithology, topography, vegetation and fire in a seasonally dry tropical forest in southern India. We extensively sampled soil (available nutrients, Al, pH, and moisture), rocks, relief, woody vegetation, and spatial variation in fire burn frequency in a permanent 50-ha plot. Lower elevation soils tended to be less moist and were depleted in several nutrients and clay. The availability of several nutrients was, in turn, linked to whole-rock chemical composition differences since some lithologies were associated with higher elevations, while the others tended to dominate lower elevations. We suggest that local-scale topography in this region has been shaped by the spatial distribution of lithologies, which differ in their susceptibility to weathering. Nitrogen availability was uncorrelated with the presence of trees belonging to Fabaceae, a family associated with N-fixing species. No effect of burning on soil parameters could be discerned at this scale.

  1. On the use of surface neutron-gamma gauges to estimate soil water content

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, T.T.; Cassaro, F.A.M.; Reichardt, K. E-mail:; Bacchi, O.O.S.; Oliveira, J.C.M.; Timm, L.C


    Surface neutron-gamma gauges are handy instruments to measure soil water contents and bulk densities of surface layers. Although available for some decades, their optimal use is still not well established. This study is a contribution to improve their use, mainly in relation to calibration, and of the effect of soil dry bulk density on soil water content measurements.

  2. Soil macrofauna (invertebrates of Kazakhstanian Stipa lessingiana dry steppe

    Directory of Open Access Journals (Sweden)

    Bragina Tatyana М.


    Full Text Available Stipa lessingiana steppes used to be prevalent on the dry Trans-Ural denudation plains, particularly, on the Sub-Ural and the Turgay Plateau. But, most of them have been lost because they were plowed up during the Virgin Land campaign in the second part of 20th century. This paper presents a detailed study of the faunistic composition and the structure of soil-dwelling invertebrate communities (macrofauna of a temperate-dry bunch feather grass steppe in the Turgai Plateau (Northern-Turgai physical-geographical province of steppe Kazakhstan, Kostanay Oblast. The study site is located in the territory of the Naurzum State Nature Reserve, a part of the UNESCO World Heritage site “Saryarka Steppe and Lakes of Northern Kazakhstan”, where remnants of Virgin S. lessingiana steppes have been preserved to the present day. This region is the driest and most continental in climate of all the dry steppes of Kazakhstan. The total abundance and biomass of soil invertebrate communities in the investigated site were lower than in the northern and western steppe areas. Soil invertebrates are among the major components that determine the functioning of terrestrial natural ecosystems.

  3. Soil Surface Sealing Effect on Soil Moisture at a Semiarid Hillslope: Implications for Remote Sensing Estimation

    Directory of Open Access Journals (Sweden)

    Shai Sela


    Full Text Available Robust estimation of soil moisture using microwave remote sensing depends on extensive ground sampling for calibration and validation of the data. Soil surface sealing is a frequent phenomenon in dry environments. It modulates soil moisture close to the soil surface and, thus, has the potential to affect the retrieval of soil moisture from microwave remote sensing and the validation of these data based on ground observations. We addressed this issue using a physically-based modeling approach that accounts explicitly for surface sealing at the hillslope scale. Simulated mean soil moisture at the respective layers corresponding to both the ground validation probe and the radar beam’s typical effective penetration depth were considered. A cyclic pattern was found in which, as compared to an unsealed profile, the seal layer intensifies the bias in validation during rainfall events and substantially reduces it during subsequent drying periods. The analysis of this cyclic pattern showed that, accounting for soil moisture dynamics at the soil surface, the optimal time for soil sampling following a rainfall event is a few hours in the case of an unsealed system and a few days in the case of a sealed one. Surface sealing was found to increase the temporal stability of soil moisture. In both sealed and unsealed systems, the greatest temporal stability was observed at positions with moderate slope inclination. Soil porosity was the best predictor of soil moisture temporal stability, indicating that prior knowledge regarding the soil texture distribution is crucial for the application of remote sensing validation schemes.

  4. Soil moisture sensor calibration for organic soil surface layers

    Directory of Open Access Journals (Sweden)

    S. Bircher


    Full Text Available This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology HOBE. For the Decagon 5TE sensor such a function is currently not reported in literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified: for the Decagon 5TE apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger non-linearity in the sensor response and signal saturation in the high level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankyl

  5. Soil moisture sensor calibration for organic soil surface layers (United States)

    Bircher, Simone; Andreasen, Mie; Vuollet, Johanna; Vehviläinen, Juho; Rautiainen, Kimmo; Jonard, François; Weihermüller, Lutz; Zakharova, Elena; Wigneron, Jean-Pierre; Kerr, Yann H.


    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finnish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology (HOBE). For the Decagon 5TE sensor such a function is currently not reported in the literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified. For the Decagon 5TE, apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large specific surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger nonlinearity in the sensor response and signal saturation in the high-level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here-proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and

  6. Biotoxicity of Mars soils: 1. Dry deposition of analog soils on microbial colonies and survival under Martian conditions (United States)

    Schuerger, Andrew C.; Golden, D. C.; Ming, Doug W.


    Six Mars analog soils were created to simulate a range of potentially biotoxic geochemistries relevant to the survival of terrestrial microorganisms on Mars, and included basalt-only (non-toxic control), salt, acidic, alkaline, aeolian, and perchlorate rich geochemistries. Experiments were designed to simulate the dry-deposition of Mars soils onto spacecraft surfaces during an active descent landing scenario with propellant engines. Six eubacteria were initially tested for tolerance to desiccation, and the spore-former Bacillus subtilis HA101 and non-spore former Enterococcus faecalis ATCC 29212 were identified to be strongly resistant (HA101) and moderately resistant (29212) to desiccation at 24 °C. Furthermore, tests with B. subtilis and E. faecalis demonstrated that at least 1 mm of Mars analog soil was required to fully attenuate the biocidal effects of a simulated Mars-normal equatorial UV flux. Biotoxicity experiments were conducted under simulated Martian conditions of 6.9 mbar, -10 °C, CO2-enriched anoxic atmosphere, and a simulated equatorial solar spectrum (200-1100 nm) with an optical depth of 0.1. For B. subtilis, the six analog soils were found, in general, to be of low biotoxicity with only the high salt and acidic soils exhibiting the capacity to inactivate a moderate number of spores (<1 log reductions) exposed 7 days to the soils under simulated Martian conditions. In contrast, the overall response of E. faecalis to the analog soils was more dramatic with between two and three orders of magnitude reductions in viable cells for most soils, and between six and seven orders of magnitude reductions observed for the high-salt soil. Results suggest that Mars soils are likely not to be overtly biotoxic to terrestrial microorganisms, and suggest that the soil geochemistries on Mars will not preclude the habitability of the Martian surface.

  7. Relationship Between Iron Oxides and Surface Charge Characteristics in Soils

    Institute of Scientific and Technical Information of China (English)



    The relationship between iron oxides and surface charge characteristics in variable charge soils (latosol and red earth) was studied in following three ways.(1)Remove free iron oxides (Fed) and amorphous iron oxides (Feo) from the soils with sodium dithionite and acid ammonium oxalate solution respectively.(2) Add 2% glucose (on the basis of air-dry soil weight) to soils and incubate under submerged condition to activate iron oxides,and then the mixtures are dehydrated and air-dried to age iron oxides.(3) Precipitate various crystalline forms of iron oxides onto kaolinite.The results showed that free iron oxides (Fed) were the chief carrier of variable positive charges.Of which crystalline iron oxides (Fed-Feo) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges,and did little influence on negative charges.Whereas the amorphous iron oxides (Feo),which presented mainly fas a coating with a large specific surface area,not only had positive charges,but also blocked the negative charge sites in soils.Submerged incubation activated iron oxides in the soils,and increased the amount of amorphous iron oxides and the degree of activation of iron oxide,which resulted in the increase of positive and negative charges of soils.Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide,and also led to the decrease of positive and negative charges.Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges.Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges.Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.

  8. Contrasted response of colloidal, organic and inorganic dissolved phosphorus forms during rewetting of dried riparian soils (United States)

    Gu, Sen; Gruau, Gérard; Malique, François; Dupas, Rémi; Gascuel-Odoux, Chantal; Petitjean, Patrice; Bouhnik-Le Coz, Martine


    Riparian vegetated buffer strip (RVBS) are currently used to protect surface waters from phosphorus (P) emissions because of their ability to retain P-enriched soil particles. However, this protection role may be counterbalanced by the development in these zones of conditions able to trigger the release of highly mobile dissolved or colloidal P forms. Rewetting after drying is one of these conditions. So far, the potential sources of P mobilized during rewetting after drying are not clearly identified, nor are clearly identified the chemical nature of the released dissolved P species, or the role of the soil P speciation on these forms. In this study, two riparian soils (G and K) showing contrasting soil P speciation (65% of inorganic P species in soil G, as against 70% of organic P) were submitted to three successive dry/wet cycles in the laboratory. Conventional colorimetric determination of P concentrations combined with ultrafiltration, and measurements of iron (Fe) and aluminum (Al) and dissolved organic carbon (DOC) contents using ICP-MS and TOC analyzers, respectively, were used to study the response of the different P forms to rewetting after drying and also their release kinetics during soil leaching. For both soils, marked P release peaks were observed at the beginning of each wet cycles, with the organic-rich K soils giving, however, larger peaks than the inorganic one (G soil). For both soils also, concentrations in molybdate reactive P (MRP) remained quite constant throughout each leaching episode, contrary to the molybdate unreactive P (MUP) concentrations which were high immediately after rewetting and then decreased rapidly during leaching. A speciation change was observed from the beginning to the end of all leaching cycles. Colloidal P was found to be a major fraction of the total P immediately after rewetting (up to 50-70%) and then decreased to the end of each wet cycle where most of the eluted P was true dissolved inorganic P. Colloidal

  9. Transcriptional response of nitrifying communities to wetting of dry soil. (United States)

    Placella, Sarah A; Firestone, Mary K


    The first rainfall following a severe dry period provides an abrupt water potential change that is both an acute physiological stress and a defined stimulus for the reawakening of soil microbial communities. We followed the responses of indigenous communities of ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and nitrite-oxidizing bacteria to the addition of water to laboratory incubations of soils taken from two California annual grasslands following a typically dry Mediterranean summer. By quantifying transcripts for a subunit of bacterial and archaeal ammonia monooxygenases (amoA) and a bacterial nitrite oxidoreductase (nxrA) in soil from 15 min to 72 h after water addition, we identified transcriptional response patterns for each of these three groups of nitrifiers. An increase in quantity of bacterial amoA transcripts was detectable within 1 h of wet-up and continued until the size of the ammonium pool began to decrease, reflecting a possible role of transcription in upregulation of nitrification after drought-induced stasis. In one soil, the pulse of amoA transcription lasted for less than 24 h, demonstrating the transience of transcriptional pools and the tight coupling of transcription to the local soil environment. Analysis of 16S rRNA using a high-density microarray suggested that nitrite-oxidizing Nitrobacter spp. respond in tandem with ammonia-oxidizing bacteria while nitrite-oxidizing Nitrospina spp. and Nitrospira bacteria may not. Archaeal ammonia oxidizers may respond slightly later than bacterial ammonia oxidizers but may maintain elevated transcription longer. Despite months of desiccation-induced inactivation, we found rapid transcriptional response by all three groups of soil nitrifiers.

  10. The microbiology of arable soil surfaces


    Jeffery, Simon


    Whilst much is known about the physics and erosion of soil surfaces on a millimetre scale, little is known about the associated microbiology, particularly in temperate arable systems. The vast majority of research regarding microbial interactions at soil surfaces has concerned microbiotic crusts. However, such surface crusts take many years to form and then only in relatively undisturbed soil systems. Arable soil surfaces are subject to relatively extreme environmental conditio...

  11. Dry heat effects on survival of indigenous soil particle microflora and particle viability studies of Kennedy Space Center soil (United States)

    Ruschmeyer, O. R.; Pflug, I. J.; Gove, R.; Heisserer, Y.


    Research efforts were concentrated on attempts to obtain data concerning the dry heat resistance of particle microflora in Kennedy Space Center soil samples. The in situ dry heat resistance profiles at selected temperatures for the aggregate microflora on soil particles of certain size ranges were determined. Viability profiles of older soil samples were compared with more recently stored soil samples. The effect of increased particle numbers on viability profiles after dry heat treatment was investigated. These soil particle viability data for various temperatures and times provide information on the soil microflora response to heat treatment and are useful in making selections for spacecraft sterilization cycles.

  12. Excessive afforestation and soil drying on China's Loess Plateau (United States)

    Zhang, Shulei; Yang, Dawen


    Afforestation and deforestation are human disturbances to vegetation, which have profound impacts on regional eco-hydrological processes, the water and carbon cycles, and consequently, ecosystem sustainability. Since 1999, large scale revegetation has been carried out across China's Loess Plateau following the "Grain-to-Green Program" implemented by the Chinese government. This revegetation, particularly with forest, has caused negative eco-hydrological consequences, including streamflow decline and soil drying. Here, we have used "ecosystem optimality theory" and satellite observations, to assess the water balance under the climate-defined optimal and actual vegetation cover during 1982-2010 and its responses to future climate change (2011-2050) over the Loess Plateau. Results show that the current vegetation cover (0.48 on average) has already exceeded the climate-defined optimal cover (0.43 on average) in the most recent decade, especially in the middle-to-east Loess Plateau, indicating that it is the widespread over-planting, which is primarily responsible for soil drying in the area. In addition, both the optimal vegetation cover and soil moisture tend to decrease under future climate scenarios. Our findings suggest that further revegetation on the Loess Plateau should be applied with caution. To maintain a sustainable eco-hydrological environment in the region, a revegetation threshold should be urgently set, to limit future planting.

  13. Effects of soil oven-drying on concentrations and speciation of trace metals and dissolved organic matter in soil solution extracts of sandy soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Groenenberg, J.E.


    Weak salt extracts can be used to assess the availability of trace metals for leaching and uptake by soil organisms and plants in soil. Before extraction, the International Organization for Standardization recommends to dry soils in an oven at a temperature of 40 °C. Effects of soil oven-drying on

  14. Effects of soil oven-drying on concentrations and speciation of trace metals and dissolved organic matter in soil solution extracts of sandy soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Groenenberg, J.E.


    Weak salt extracts can be used to assess the availability of trace metals for leaching and uptake by soil organisms and plants in soil. Before extraction, the International Organization for Standardization recommends to dry soils in an oven at a temperature of 40 °C. Effects of soil oven-drying on d

  15. Surface modeling of soil antibiotics. (United States)

    Shi, Wen-jiao; Yue, Tian-xiang; Du, Zheng-ping; Wang, Zong; Li, Xue-wen


    Large numbers of livestock and poultry feces are continuously applied into soils in intensive vegetable cultivation areas, and then some veterinary antibiotics are persistent existed in soils and cause health risk. For the spatial heterogeneity of antibiotic residues, developing a suitable technique to interpolate soil antibiotic residues is still a challenge. In this study, we developed an effective interpolator, high accuracy surface modeling (HASM) combined vegetable types, to predict the spatial patterns of soil antibiotics, using 100 surface soil samples collected from an intensive vegetable cultivation area located in east of China, and the fluoroquinolones (FQs), including ciprofloxacin (CFX), enrofloxacin (EFX) and norfloxacin (NFX), were analyzed as the target antibiotics. The results show that vegetable type is an effective factor to be combined to improve the interpolator performance. HASM achieves less mean absolute errors (MAEs) and root mean square errors (RMSEs) for total FQs (NFX+CFX+EFX), NFX, CFX and EFX than kriging with external drift (KED), stratified kriging (StK), ordinary kriging (OK) and inverse distance weighting (IDW). The MAE of HASM for FQs is 55.1 μg/kg, and the MAEs of KED, StK, OK and IDW are 99.0 μg/kg, 102.8 μg/kg, 106.3 μg/kg and 108.7 μg/kg, respectively. Further, RMSE simulated by HASM for FQs (CFX, EFX and NFX) are 106.2 μg/kg (88.6 μg/kg, 20.4 μg/kg and 39.2 μg/kg), and less 30% (27%, 22% and 36%), 33% (27%, 27% and 43%), 38% (34%, 23% and 41%) and 42% (32%, 35% and 51%) than the ones by KED, StK, OK and IDW, respectively. HASM also provides better maps with more details and more consistent maximum and minimum values of soil antibiotics compared with the measured data. The better performance can be concluded that HASM takes the vegetable type information as global approximate information, and takes local sampling data as its optimum control constraints.

  16. Soil water repellency in north-eastern Greece with adverse effects of drying on the persistence

    NARCIS (Netherlands)

    Ziogas, A.K.; Dekker, L.W.; Oostindie, K.; Ritsema, C.J.


    Many soils may be water repellent to some degree, challenging the common perception that soil water repellency is only an interesting aberration. When dry, water repellent soils resist or retard water infiltration into the soil matrix. Soil water repellency often leads to the development of unstable

  17. Soil water repellency in north-eastern Greece with adverse effects of drying on the persistence

    NARCIS (Netherlands)

    Ziogas, A.K.; Dekker, L.W.; Oostindie, K.; Ritsema, C.J.


    Many soils may be water repellent to some degree, challenging the common perception that soil water repellency is only an interesting aberration. When dry, water repellent soils resist or retard water infiltration into the soil matrix. Soil water repellency often leads to the development of unstable

  18. Air temperature evolution during dry spells and its relation to prevailing soil moisture regimes (United States)

    Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia I.


    The complex interplay between land and atmosphere makes accurate climate predictions very challenging, in particular with respect to extreme events. More detailed investigations of the underlying dynamics, such as the identification of the drivers regulating the energy exchange at the land surface and the quantification of fluxes between soil and atmosphere over different land types, are thus necessary. The recently started DROUGHT-HEAT project (funded by the European Research Council) aims to provide better understanding of the processes governing the land-atmosphere exchange. In the first phase of the project, different datasets and methods are used to investigate major drivers of land-atmosphere dynamics leading to droughts and heatwaves. In the second phase, these findings will be used for reducing uncertainties and biases in earth system models. Finally, the third part of the project will focus on the application of the previous findings and use them for the attribution of extreme events to land processes and possible mitigation through land geoengineering. One of the major questions in land-atmosphere exchange is the relationship between air temperature and soil moisture. Different studies show that especially during dry spells soil moisture has a strong impact on air temperature and the amplification of hot extremes. Whereas in dry and wet soil moisture regimes variations in latent heat flux during rain-free periods are expected to be small, this is not the case in transitional soil moisture regimes: Due to decreasing soil moisture content latent heat flux reduces with time, which causes in turn an increase in sensible heat flux and, subsequently, higher air temperatures. The investigation of air temperature evolution during dry spells can thus help to detect different soil moisture regimes and to provide insights on the effect of different soil moisture levels on air temperature. Here we assess the underlying relationships using different observational and

  19. Effect of wetting and drying on the bioavailability of organic compounds sequestered in soil

    Energy Technology Data Exchange (ETDEWEB)

    White, J.C.; Quinones-Rivera, A.; Alexander, M. [Cornell Univ., Ithaca, NY (United States)


    A study was conducted to determine whether cycles of wetting and drying alter the availability of organic compounds that have aged in soil. Subjecting soil to wetting-and drying cycles during periods of aging <60 d decreased the biodegradability, extractability, and uptake by earthworms of phenanthrene and reduced the extractability of di(2-ethylhexyl) phthalate (DEHP) sequestered in soil compared with soil aged at constant moisture. The mineralization of sequestered DEHP was greater in soil that was wet and dried during a 41-d period of aging than in soil incubated at constant moisture. Wetting and drying soil during periods of aging of 100 or more days had no effect on the biodegradability or assimilation by Eisenia foetida of sequestered phenanthrene and DEHP. Subjecting soil containing previously sequestered phenanthrene to one, three, or four wetting-and-drying cycles increased the biodegradability of the compound. The extractability of sequestered phenanthrene was greater in soil that was wet and dried once after aging than in soil maintained at constant moisture, but three wetting-and-drying cycles did not affect extractability. The biodegradability of sequestered DEHP was unaffected by wetting and drying. The authors suggest that wetting and drying may be useful in the remediation of contaminated soils.

  20. Influence of disturbance on soil respiration in biologically crusted soil during the dry season. (United States)

    Feng, Wei; Zhang, Yu-qing; Wu, Bin; Zha, Tian-shan; Jia, Xin; Qin, Shu-gao; Shao, Chen-xi; Liu, Jia-bin; Lai, Zong-rui; Fa, Ke-yu


    Soil respiration (Rs) is a major pathway for carbon cycling and is a complex process involving abiotic and biotic factors. Biological soil crusts (BSCs) are a key biotic component of desert ecosystems worldwide. In desert ecosystems, soils are protected from surface disturbance by BSCs, but it is unknown whether Rs is affected by disturbance of this crust layer. We measured Rs in three types of disturbed and undisturbed crusted soils (algae, lichen, and moss), as well as bare land from April to August, 2010, in Mu Us desert, northwest China. Rs was similar among undisturbed soils but increased significantly in disturbed moss and algae crusted soils. The variation of Rs in undisturbed and disturbed soil was related to soil bulk density. Disturbance also led to changes in soil organic carbon and fine particles contents, including declines of 60-70% in surface soil C and N, relative to predisturbance values. Once BSCs were disturbed, Q 10 increased. Our findings indicate that a loss of BSCs cover will lead to greater soil C loss through respiration. Given these results, understanding the disturbance sensitivity impact on Rs could be helpful to modify soil management practices which promote carbon sequestration.

  1. Influence of Disturbance on Soil Respiration in Biologically Crusted Soil during the Dry Season

    Directory of Open Access Journals (Sweden)

    Wei Feng


    Full Text Available Soil respiration (Rs is a major pathway for carbon cycling and is a complex process involving abiotic and biotic factors. Biological soil crusts (BSCs are a key biotic component of desert ecosystems worldwide. In desert ecosystems, soils are protected from surface disturbance by BSCs, but it is unknown whether Rs is affected by disturbance of this crust layer. We measured Rs in three types of disturbed and undisturbed crusted soils (algae, lichen, and moss, as well as bare land from April to August, 2010, in Mu Us desert, northwest China. Rs was similar among undisturbed soils but increased significantly in disturbed moss and algae crusted soils. The variation of Rs in undisturbed and disturbed soil was related to soil bulk density. Disturbance also led to changes in soil organic carbon and fine particles contents, including declines of 60–70% in surface soil C and N, relative to predisturbance values. Once BSCs were disturbed, Q10 increased. Our findings indicate that a loss of BSCs cover will lead to greater soil C loss through respiration. Given these results, understanding the disturbance sensitivity impact on Rs could be helpful to modify soil management practices which promote carbon sequestration.

  2. How do long dry spells affect soil moisture in different forest stands? (United States)

    Heidbüchel, Ingo; Güntner, Andreas; Blume, Theresa


    Soil moisture conditions under forests are subject to numerous influences that are directly linked to the tree species composition and age. On the one hand, there are characteristic traits of individual tree species such as the way they funnel intercepted water towards their stems or the way they use water from the soil at different depths and times. On the other hand, there is also the influence of inter- and intra-species competition which may considerably affect the water use behavior of the involved tree species. In order to get insights into these complex relationships we studied spatial and temporal soil moisture patterns under pure and mixed forest stands of beech and pine of different ages in the TERENO observatory in northeastern Germany. We also specifically compared soil moisture conditions in the close vicinity of tree stems with conditions at greater distance from the trees (>1.5 m). The dataset used here derives from 450 sensors measuring soil moisture for 2.5 years at six different soil depths (from 10 cm down to 200 cm). Inspecting the entire time series we found considerable differences between many of the locations (young vs. mature, pine vs. beech, mixed vs. pure). These differences became more or less pronounced during certain weather periods. In particular, we studied the effect of dry spells of different preconditions and length during the three summers 2014, 2015 and 2016. While 2014 was a relatively wet summer, 2015 was dry and warm. Generally speaking, the dry spell in the summer of 2015 led to a decrease in soil moisture differences between locations that was still observable in the following winter and even in the following summer. For example, in the summer of 2014 volumetric water content close to the soil surface under mature pine trees was almost 8% higher compared to beech trees, however, in the dry summer of 2015 this difference disappeared. Contrary to this observation, volumetric water content differences between young stands of

  3. Morphological, sediment and soil chemical characteristics of dry tropical shallow reservoirs in the Southern Mexican Highlands

    Directory of Open Access Journals (Sweden)



    Full Text Available The morphometry, sediment and soil chemical characteristics of eleven dry tropical shallow reservoirs situated in Southern Mexican Highlands were studied. The reservoirs are located at 1104 to 1183 meters above sea level in a sedimentary area. Seventeen morphometric and eight sediment and soil chemical parameters were measured. The results of the morphometric parameters showed that these reservoirs presented a soft and roughness bottom, with an ellipsoid form and a concave depression that permit the mix up of water and sediments, causing turbidity and broken thermal gradients; their slight slopes allowed the colonization of submerged macrophyte and halophyte plants and improved the incidence of sunlight on water surface increasing evaporation and primary productivity. Dry tropical shallow reservoirs have fluctuations in area, and volume according to the amount of rainfall, the effect of evaporation, temperature, lost volume for irrigation, and other causes. The sand-clay was the most important sediment texture and their values fluctuated with the flooded periods. The concentration-dilution cycle showed a direct relationship in the percentage of organic matter in the soil as well as with pH, soil nitrogen and phosphorus. El Tilzate, El Candelero and El Movil were related by the shore development and high concentrations of organic matter and nitrogen in the soil. Finally, we emphasize the importance of this study, in relation to possible future changes in morphometrical parameters as a consequence of human impact.

  4. Effects of Air-Drying on the Inorganic Phosphorus Forms in Soils

    Institute of Scientific and Technical Information of China (English)

    FENG Ke; TANG Yan; WANG Xiao-li; LU Hai-ming; ZHAO Hai-tao


    After 90 day's cultivation of five different plants (rye grass, lupin, buckwheat, rape and amaranth) in three soils (Yellow brown soil, Paddy soil and Red soil), fresh soil samples were collected and inorganic phosphorus (Pi) fractions were measured before and after air-drying. The results clearly indicated that the total Pi and their composition differed significantly among soil types. The air-drying process increased the total Pi in yellow brown soil and in paddy soil, while decreased that in red soil. The total Pi could vary to 70% of that before air-drying. The Pi forms in different soils changed to different extent after air-drying. As to yellow brown soil, Al-P decreased, while O-P and Ca-P increased; as to paddy soil, Al-P and Ca-P increased, while Fe-P and O-P remained; as to red soil, Al-P and Fe-P increased, Ca-P remained and O-P reduced obviously. Growth of different plants in soils had effects on Pi forms during the process of air-drying. Therefore, for chemical study of soil phosphorus, application of fresh soil samples can provide more reliable results.

  5. Coffee-stain growth dynamics on dry and wet surfaces

    CERN Document Server

    Boulogne, François; Stone, Howard A


    The drying of a drop containing particles often results in the accumulation of the particles at the contact line. In this work, we investigate the drying of an aqueous colloidal drop surrounded by a hydrogel that is also evaporating. We combine theoretical and experimental studies to understand how the surrounding vapor concentration affects the particle deposit during the constant radius evaporation mode. In addition to the common case of evaporation on an otherwise dry surface, we show that in a configuration where liquid is evaporating from a flat surface around the drop, the singularity of the evaporative flux at the contact line is suppressed and the drop evaporation is homogeneous. For both conditions, we derive the velocity field and we establish the temporal evolution of the number of particles accumulated at the contact line. We predict the growth dynamics of the stain and the drying timescales. Thus, dry and wet conditions are compared with experimental results and we highlight that only the dynamic...

  6. Modeling of electrohydrodynamic drying process using response surface methodology. (United States)

    Dalvand, Mohammad Jafar; Mohtasebi, Seyed Saeid; Rafiee, Shahin


    Energy consumption index is one of the most important criteria for judging about new, and emerging drying technologies. One of such novel and promising alternative of drying process is called electrohydrodynamic (EHD) drying. In this work, a solar energy was used to maintain required energy of EHD drying process. Moreover, response surface methodology (RSM) was used to build a predictive model in order to investigate the combined effects of independent variables such as applied voltage, field strength, number of discharge electrode (needle), and air velocity on moisture ratio, energy efficiency, and energy consumption as responses of EHD drying process. Three-levels and four-factor Box-Behnken design was employed to evaluate the effects of independent variables on system responses. A stepwise approach was followed to build up a model that can map the entire response surface. The interior relationships between parameters were well defined by RSM.

  7. Design of dry barriers for containment of contaminants in unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.E. [Univ. of Wollongong (Australia); Thomson, B.M.; Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)


    A dry barrier is a region of very dry conditions in unsaturated soil that prevents vertical migration of water created by circulating dry air through the formation. Dry soil creates a barrier to vertical water movement by decreasing the soil`s hydraulic conductivity, a concept also used in capillary barriers. A dry barrier may be a viable method for providing containment of a contaminant plume in a setting with a thick unsaturated zone and dry climate. The principal factors which determine the feasibility of a dry barrier include: (1) an and environment, (2) thick vadose zone, and (3) the ability to circulate air through the vadose zone. This study investigated the technical and economic considerations associated with creating a dry barrier to provide containment of a hypothetical 1 ha aqueous contaminant plume. The concept appears to be competitive with other interim containment methods such as ground freezing.

  8. Impact of varying storm intensity and extended dry periods on grassland soil moisture (United States)

    Hottenstein, John D.; Ponce-Campos, Guillermo E.; Moran, M. Susan


    Intra-annual precipitation patterns are expected to shift toward more intense storms and longer dry periods due to changes in climate within the next decades. Using MODIS satellite-derived plant growth data from 2000-2012, this study quantified the relationship between extreme precipitation patterns, annual soil moisture, and plant growth at nine grassland sites across the southern United States. Across all sites, total precipitation was strongly linked to surface soil moisture (at 5-cm depth), and in turn, soil moisture was strongly related to MODIS-based estimates of above-ground net primary production (ANPP). In fact, soil moisture was a better predictor of ANPP than was total precipitation. Results showed a fundamental difference in the response to altered precipitation patterns between mesic and semiarid grasslands. Soil moisture in mesic grasslands decreased with an increase of high-intensity storms, and semi-arid grassland soil moisture decreased with longer dry periods. This was explained in relation to general climate patterns in these two precipitation regimes. The soil moisture at mesic sites tends to reside closer to field capacity than soil moisture at semiarid sites. So, for semiarid sites, storm events of any size will impact soil moisture; whereas for mesic sites, high intensity storms result in greater runoff than low intensity storms, and less impact on soil moisture. In this field study, the length of consecutive dry days (CDD) had a significant impact on soil moisture only at semiarid sites. This was attributed to the fact that the variation in length of CDD was naturally low at mesic sites and not variable year-to-year, in contrast to the high variability of CDD at semiarid sites. For semiarid sites, long periods of CDD decreased the mean annual soil moisture regardless of the total precipitation throughout the year. Our decision to use soil moisture measured at 5-cm depth was largely based on the fact that the currently orbiting Soil Moisture

  9. The Eco-Hydrological Role of Physical Surface Sealing in Dry Environments (United States)

    Sela, Shai; Svoray, Tal; Assouline, Shmuel


    Soil surface sealing is a widespread natural process in dry environments occurring frequently in bare soil areas between vegetation patches. The low hydraulic conductivity that characterizes the seal layer reduces both infiltration and evaporation fluxes from the soil, and thus has the potential to affect local vegetation water availability and consequently transpiration rates. This effect is investigated here using two separate physically based models - a runoff model, and a root water uptake model. High resolution rainfall data is used to demonstrate the seal layer effect on runoff generation and vegetation water availability, while the seal layer effect on vegetation water uptake is studied using a long-term climatic dataset (44 years) from three dry sites presenting a climatic gradient in the Negev Desert, Israel. The Feddes water uptake parameters for the dominant shrub at the study site (Sarcopoterium spinosum) were acquired using an inverse calibration procedure using data from a lysimeter experiment. The results indicate that the presence of surface sealing increases significantly vegetation water availability through runoff generation. Following water infiltration, the shrub transpiration generally increases if the shrub is surrounded by a seal layer, but this effect can switch from positive to negative depending on initial soil water content, rainfall intensity, and the duration of the subsequent drying intervals. These factors have a marked effect on inter-annual variability of the seal layer effect on the shrub transpiration, which on average was found to be 26% higher under sealed conditions than in the case of unsealed soil surfaces. These results shed light on the importance of surface sealing on the eco-hydrology of dry environments and its contribution to the resilience of woody vegetation.

  10. Spray washing, absorbent cornstarch powder, and dry time to reduce bacterial numbers on soiled transport cage flooring (United States)

    Broiler transport cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Allowing feces to dry is an effective but slow and logistically impractical means to kill Campylobacter in soiled transport cages. ...

  11. Augmented dry cooling surface test program: analysis and experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Parry, H.L.; MacGowan, L.J.; Kreid, D.K.; Wiles, L.E.; Faletti, D.W.; Johnson, B.M.


    Experiments were performed to assess the operating characteristics and potential performance of water-augmented dry cooling systems. The work was aimed at evaluating a deluged air-cooled HOETERV plate fin heat exchanger surface proposed for integrated dry/wet cooling systems and using test results to guide the development of a predictive analytical model. In the process, all-dry performance data were obtained for the HOETERV surface as well as for two Curtiss-Wright chipped fin surfaces. The dry heat transfer data indicate that a slotted Curtiss-Wright surface slightly outperforms the HOETERV and nonslotted Curtiss-Wright surfaces based on heat rejection rate per unit of fan power. However, all three surfaces are so close in performance that other factors, such as surface cost and piping and mounting costs, will probably determine which surface is preferred at a given installation. Comparisons of deluged HOETERV performance with dry HOETERV and Curtiss-Wright performance under prototypic conditions have established that deluging can provide considerable heat rejection enhancement, particularly at low ITD and low air humidity. A deluged HOETERV core operating at a 115/sup 0/F primary fluid temperature in 105/sup 0/F air at 10% relative humidity can reject over 7 times as much heat as a dry HOETERV core operating under the same conditions at the same air-side pressure drop. Deluged tests were performed to evaluate the effect of airflow rate, deluge flow rate and core tilt angle on performance. Both increased airflow and increased deluge flow increase both heat rejection rate and required fan power. Optimal airflow rate will thus be determined for a given location by the competing costs of heat exchanger surface area versus fan operation. Changes in core tilt angle from vertical to 16/sup 0/ from vertical have a negligible effect on performance.

  12. Microstructured shape memory polymer surfaces with reversible dry adhesion. (United States)

    Eisenhaure, Jeffrey D; Xie, Tao; Varghese, Stephen; Kim, Seok


    We present a shape memory polymer (SMP) surface with repeatable, very strong (>18 atm), and extremely reversible (strong to weak adhesion ratio of >1 × 10(4)) dry adhesion to a glass substrate. This was achieved by exploiting bulk material properties of SMP and surface microstructuring. Its exceptional dry adhesive performance is attributed to the SMP's rigidity change in response to temperature and its capabilities of temporary shape locking and permanent shape recovery, which when combined with a microtip surface design enables time-independent control of contact area.

  13. Hydromechanical behavior of a quasi-saturated compacted soils on drying-wetting paths-experimental and numerical approaches

    Directory of Open Access Journals (Sweden)

    Andriantrehina Soanarivo Rinah


    Full Text Available This paper presents an experimental and numerical investigation funded by the French National Project “Terredurable”, which is devoted to the study of soils in quasi-saturated state. The experimental study is focused on the behavior of compacted soils on drying-wetting paths and the macroscopic effect of the drying path on shrinkage and cracking. Furthermore, a protocol for image analysis of crack in drying tests was developed. Two approaches are used for the measurement of surface strains and identification of the ultimate stress before the formation of the first crack, using VIC-2D software, and for the monitoring of crack evolution, using ImageJ software. The aim of the numerical approach is to reproduce the drying experiments with a finite difference code (FLAC 3D, in order to understand the stress conditions that can explain crack initiation, without modeling the crack formation itself.

  14. Drop splash on a smooth, dry surface (United States)

    Riboux, Guillaume; Gordillo, Jose Manuel; Korobkin, Alexander


    It is our purpose here to determine the conditions under which a drop of a given liquid with a known radius R impacting against a smooth impermeable surface at a velocity V, will either spread axisymmetrically onto the substrate or will create a splash, giving rise to usually undesired star-shaped patterns. In our experimental setup, drops are generated injecting low viscosity liquids falling under the action of gravity from a stainless steel hypodermic needle. The experimental observations using two high speed cameras operating simultaneously and placed perpendicularly to each other reveal that, initially, the drop deforms axisymmetrically, with A (T) the radius of the wetted area. For high enough values of the drop impact velocity, a thin sheet of liquid starts to be ejected from A (T) at a velocity Vjet > V for instants of time such that T >=Tc . If Vjet is above a certain threshold, which depends on the solid wetting properties as well as on the material properties of both the liquid and the atmospheric gas, the rim of the lamella dewets the solid to finally break into drops. Using Wagner's theory we demonstrate that A (T) =√{ 3 RVT } and our results also reveal that Tc We - 1 / 2 =(ρV2 R / σ) - 1 / 2 and Vjet We 1 / 4 .

  15. Modeling relationship between runoff and soil properties in dry-farming lands, NW Iran (United States)

    Vaezi, A. R.; Bahrami, H. A.; Sadeghi, S. H. R.; Mahdian, M. H.


    The process of transformation of rainfall into runoff over a catchment is very complex and exhibits both temporal and spatial variability. However, in a semi-arid area this variability is mainly controlled by the physical and chemical properties of the soil surface. Developing an accurate and easily-used model that can appropriately determine the runoff generation value is of strong demand. In this study a simple, an empirically based model developed to explore effect of soil properties on runoff generation. Thirty six dry-farming lands under follow conditions in a semi-arid agricultural zone in Hashtroud, NW Iran were considered to installation of runoff plots. Runoff volume was measured at down part of standard plots under natural rainfall events from March 2005 to March 2007. Results indicated that soils were mainly clay loam having 36.7% sand, 31.6% silt and 32.0% clay, and calcareous with about 13% lime. During a 2-year period, 41 natural rainfall events produced surface runoff at the plots. Runoff was negatively (R2=0.61, pfactors controlling runoff in soils of the semi-arid regions.

  16. Effects of Composted and Thermally Dried Sewage Sludges on Soil and Soil Humic Acid Properties

    Institute of Scientific and Technical Information of China (English)



    The effect of annual additions of composted sewage sludge (CS) and thermally dried sewage sludge (TS) at 80 t ha-1 on soil chemical properties was investigated for three years in a field experiment under semiarid conditions.Humie acids (HAs) isolated by conventional procedures from CS,TS,and unamended (SO) and sludge amended soils were analysed for elemental (C,H,N,S and O) and acidic functional groups (carboxylic and phenolic) and by ultraviolet-visible,Fourier transform infrared and fluorescence spectroscopies.With respect to CS,TS had similar pH and total P and K contents,larger dry matter,total organic C,total N.and C/N ratio and smaller ash content and electrical conductivity.Amendment with both CS and TS induced a number of modifications in soil properties,including an increase of pH,electrical conductivity,total organic C,total N,and available P.The CS-HA had greater O,total acidity,carboxyl,and phenolic OH group contents and smaller C and H contents than TS-HA.The CS-HA and TS-HA had larger N and S contents,smaller C,O and acidic functional group contents,and lower aromatic polycondensation and humification degrees than SO-HA.Amended soil-HAs showed C,H,N and S contents larger than SO-HA,suggesting that sludge HAs were partially incorporated into soil HAs.These effects were more evident with increasing number of sludge applications.

  17. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.


    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought resp

  18. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.


    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil co

  19. Soil heat flux and day time surface energy balance closure at astronomical observatory, Thiruvananthapuram, south Kerala

    Indian Academy of Sciences (India)

    M S Roxy; V B Sumithranand; G Renuka


    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, pre-monsoon, SW monsoon and NE monsoon seasons. The diurnal variation is characterized by a cross-over from negative to positive values at 0700 h, occurrence of maximum around noon and return to negative values in the late evening. The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat flux * is estimated in all seasons. Daytime surface energy balance at the surface on wet and dry seasons is investigated. The average Bowen’s ratio during the wet and dry seasons were 0.541 and 0.515, respectively indicating that considerable evaporation takes place at the surface. The separate energy balance components were examined and the mean surface energy balance closure was found to be 0.742 and 0.795 for wet and dry seasons, respectively. When a new method that accounts for both soil thermal conduction and soil thermal convection was adopted to calculate the surface heat flux, the energy balance closure was found to be improved. Thus on the land surface under study, the soil vertical water movement is significant.

  20. Modeling relationship between runoff and soil properties in dry-farming lands, NW Iran

    Directory of Open Access Journals (Sweden)

    A. R. Vaezi


    Full Text Available The process of transformation of rainfall into runoff over a catchment is very complex and exhibits both temporal and spatial variability. However, in a semi-arid area this variability is mainly controlled by the physical and chemical properties of the soil surface. Developing an accurate and easily-used model that can appropriately determine the runoff generation value is of strong demand. In this study a simple, an empirically based model developed to explore effect of soil properties on runoff generation. Thirty six dry-farming lands under follow conditions in a semi-arid agricultural zone in Hashtroud, NW Iran were considered to installation of runoff plots. Runoff volume was measured at down part of standard plots under natural rainfall events from March 2005 to March 2007. Results indicated that soils were mainly clay loam having 36.7% sand, 31.6% silt and 32.0% clay, and calcareous with about 13% lime. During a 2-year period, 41 natural rainfall events produced surface runoff at the plots. Runoff was negatively (R2=0.61, p<0.001 affected by soil permeability. Runoff also significantly correlated with sand, coarse sand, silt, organic matter, lime, and aggregate stability, while its relationship with very fine sand, clay, gravel and potassium was not significant. Regression analysis showed that runoff was considerably (p<0.001, R2=0.64 related to coarse sand, organic matter and lime. Lime like to coarse sand and organic matter positively correlated with soil permeability and consequently decreased runoff. This result revealed that, lime is one of the most important factors controlling runoff in soils of the semi-arid regions.

  1. Influence of temperature and soil drying on respiration of individual roots in citrus: integrating greenhouse observations into a predictive model for the field

    NARCIS (Netherlands)

    Bryla, D.R.; Bouma, T.J.; Hartmond, U.; Eissenstat, D.M.


    In citrus, the majority of fine roots are distributed near the soil surface - a region where conditions are frequently dry and temperatures fluctuate considerably. To develop a better understanding of the relationship between changes in soil conditions and a plant's below-ground respiratory costs,

  2. Predicting root zone soil moisture using surface data (United States)

    Manfreda, S.; Brocca, L.; Moramarco, T.; Melone, F.; Sheffield, J.; Fiorentino, M.


    In recent years, much effort has been given to monitoring of soil moisture from satellite remote sensing. These tools represent an extraordinary source of information for hydrological applications, but they only provide information on near-surface soil moisture. In the present work, we developed a new formulation for the estimation of the soil moisture in the root zone based on the measured value of soil moisture at the surface. The method derives from a simplified form of the soil water balance equation and for this reason all parameters adopted are physically consistent. The formulation provides a closed form of the relationship between the root zone soil moisture and the surface soil moisture with a limited number of parameters, such as: the ratio between the depth of the surface layer and the deeper layer, the water loss coefficient, and the field capacity. The method has been tested using modeled soil moisture obtained from the North American Land Data Assimilation System (NLDAS). The NLDAS is a multi-institution partnership aimed at developing a retrospective data set, using available atmospheric and land surface meteorological observations to compute the land surface hydrological budget. The NLDAS database was extremely useful for the scope of the present research since it provides simulated data over an extended area with different climatic and physical condition and moreover it provides soil moisture data averaged over different depths. In particular, we used values in the top 10 cm and 100 cm layers. One year of simulation was used to test the ability of the developed method to describe soil moisture fluctuation in the 100cm layer over the entire NLDAS domain. The method was adopted by calibrating one of its three parameters and defining the remaining two based on physical characteristics of the site (using the potential evapotranspiration and ratio between the first and the second soil layer depth). In general, the method performed better than

  3. Coffee-stain growth dynamics on dry and wet surfaces (United States)

    Boulogne, François; Ingremeau, François; Stone, Howard A.


    The drying of a drop containing particles often results in the accumulation of the particles at the contact line. In this work, we investigate the drying of an aqueous colloidal drop surrounded by a hydrogel that is also evaporating. We combine theoretical and experimental studies to understand how the surrounding vapor concentration affects the particle deposit during the constant radius evaporation mode. In addition to the common case of evaporation on an otherwise dry surface, we show that in a configuration where liquid is evaporating from a flat surface around the drop, the singularity of the evaporative flux at the contact line is suppressed and the drop evaporation is homogeneous. For both conditions, we derive the velocity field and we establish the temporal evolution of the number of particles accumulated at the contact line. We predict the growth dynamics of the stain and the drying timescales. Thus, dry and wet conditions are compared with experimental results and we highlight that only the dynamics is modified by the evaporation conditions, not the final accumulation at the contact line.

  4. Shallow Subsurface Soil Moisture Dynamics in the Root-Zone and Bulk Soil of Sparsely Vegetated Land Surfaces as Impacted by Near-Surface Atmospheric State (United States)

    Trautz, A.; Illangasekare, T. H.; Tilton, N.


    Soil moisture is a fundamental state variable that provides the water necessary for plant growth and evapotranspiration. Soil moisture has been extensively studied in the context of bare surface soils and root zones. Less attention has focused on the effects of sparse vegetation distributions, such as those typical of agricultural cropland and other natural surface environments, on soil moisture dynamics. The current study explores root zone, bulk soil, and near-surface atmosphere interactions in terms of soil moisture under different distributions of sparse vegetation using multi-scale laboratory experimentation and numerical simulation. This research is driven by the need to advance our fundamental understanding of soil moisture dynamics in the context of improving water conservation and next generation heat and mass transfer numerical models. Experimentation is performed in a two-dimensional 7.3 m long intermediate scale soil tank interfaced with a climate-controlled wind tunnel, both of which are outfitted with current sensor technologies for measuring atmospheric and soil variables. The soil tank is packed so that a sparsely vegetated soil is surrounded by bulk bare soil; the two regions are separated by porous membranes to isolate the root zone from the bulk soil. Results show that in the absence of vegetation, evaporation rates vary along the soil tank in response to longitudinal changes in humidity; soil dries fastest upstream where evaporation rates are highest. In the presence of vegetation, soil moisture in the bulk soil closest to a vegetated region decreases more rapidly than the bulk soil farther away. Evapotranspiration rates in this region are also higher than the bulk soil region. This study is the first step towards the development of more generalized models that account for non-uniformly distributed vegetation and land surfaces exhibiting micro-topology.

  5. Computer-Controlled Microwave Drying of Potentially Difficult Organic and Inorganic Soils (United States)


    known to have a saturated, surface dry water content of about 3 percent and then subjecting the material to microwave drying. The gravels were...surface dry water content) of some coarse aggregate of chert, limestone, basalt, and quartz. Clay, at the other extreme, can exist at water contents...excluding such oversize particles from microwave water content specimens. c. The saturated surface dry water content of many rock or gravel particles has an

  6. A study of soil formation rates using 10Be in the wet-dry tropics of northern Australia

    Directory of Open Access Journals (Sweden)

    Tims S.G.


    Full Text Available A catchment level study to obtain soil formation rates using beryllium-10 (10Be tracers has been undertaken in the Daly River Basin in the wet-dry tropics of northern Australia. Three soil cores have been collected to bedrock, with depths ranging from ~1-3.5 m. Due to agricultural practices, modern soil loss rates can be significantly higher than long-term soil formation rates, but establishing soil formation rates has proved to be a difficult problem. At long-term equilibrium, however, soil formation from the underlying rock is balanced by soil loss from the surface. This long-term rate at which soil is being lost can be determined using the cosmogenic tracer 10Be, created in spallation of atmospheric nitrogen and oxygen by cosmic rays. Since the annual fallout rate of 10Be is known, the complete 10Be inventory over the depth of the top soil can be used to establish the soil formation rates.

  7. Soil Specific Surface Area and Non-Singularity of Soil-Water Retention at Low Saturations

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per


    and Or (TO) and new single-parameter non-singularity (SPN) models; and evaluate estimates of SSA from water sorption, ethylene glycol monoethyl ether (EGME), and N2–BET methods. The AquaSorp successfully measured water sorption isotherms (∼140 data points) within a reasonably short time (1–3 d). The SPN......The dry end of the soil water characteristic (SWC) is important for modeling vapor flow dynamics and predicting soil properties such as specific surface area (SSA) and clay content (CL). Verification of new instrumentation for rapid measurement of the dry end of the SWC is relevant to avoid long...... model well described the distinct non-singularity between the adsorption and desorption branches, while the TO model captured the adsorption data reasonably well (model were...

  8. HONO fluxes from soil surfaces: an overview (United States)

    Wu, Dianming; Sörgel, Matthias; Tamm, Alexandra; Ruckteschler, Nina; Rodriguez-Caballero, Emilio; Cheng, Yafang; Pöschl, Ulrich; Weber, Bettina


    Gaseous nitrous acid (HONO) contributes up to 80% of atmospheric hydroxyl (OH) radicals and is also linked to health risks through reactions with tobacco smoke forming carcinogens. Field and modeling results suggested a large unknown HONO source in the troposphere during daytime. By measuring near ground HONO mixing ratio, up to 30% of HONO can be released from forest, rural and urban ground as well as snow surfaces. This source has been proposed to heterogeneous reactions of nitrogen dioxide (NO2) on humic acid surfaces or nitric acid photolysis. Laboratory studies showed that HONO emissions from bulk soil samples can reach 258 ng m-2 s-1 (in term of nitrogen), which corresponding to 1.1 × 1012 molecules cm-2 s-1and ˜ 100 times higher than most of the field studies, as measured by a dynamic chamber system. The potential mechanisms for soil HONO emissions include chemical equilibrium of acid-base reaction and gas-liquid partitioning between soil nitrite and HONO, but the positive correlation of HONO fluxes with pH (largest at neutral and slightly alkaline) points to the dominance of the formation process by ammonia-oxidizing bacteria (AOB). In general soil surface acidity, nitrite concentration and abundance of ammonia-oxidizing bacteria mainly regulate the HONO release from soil. A recent study showed that biological soil crusts in drylands can also emit large quantities of HONO and NO, corresponding to ˜20% of global nitrogen oxide emissions from soils under natural vegetation. Due to large concentrations of microorganisms in biological soil crusts, particularly high HONO and NO emissions were measured after wetting events. Considering large areas of arid and arable lands as well as peatlands, up to 70% of global soils are able to emitting HONO. However, the discrepancy between large soil HONO emissions measured in lab and low contributions of HONO flux from ground surfaces in field as well as the role of microorganisms should be further investigated.

  9. Effects of composite surface coating and pre-drying on the properties of kabanosy dry sausage. (United States)

    Tyburcy, Andrzej; Kozyra, Daniel


    Coating of dry sausages with renewable materials could be an alternative to vacuum packaging. In this study kabanosy dry sausage was coated with a composite emulsion and stored for 7 or 15 days at 4-6 degrees C. Effects of different emulsion formulas (0.5 or 1% w/w of kappa-carrageenan and 5 or 10% w/w of glycerol) and pre-drying of coated sausages (at 50 degrees C for 1.5h) were investigated. Carrageenan concentration had a significant effect (Pcoatings. At both glycerol concentration levels, coatings had no visible cracks and were easily removed from the sausage surface after 7 and 15 days of storage. The colour values of coatings (L*, a*, and b*) changed along with the decreasing water activity during storage. Pre-drying of coated sausages reduced peeled product weight loss after storage. The financial analysis showed that among coatings tested the best proved to be the emulsion containing (w/w): 5% glycerol, 5% gelatin, 0.5% carrageenan, 20% lard, 20% beeswax, and 50% water. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.


    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  11. A dry-surface coating method for visualization of separation (United States)

    Sadeh, W. Z.; Brauer, H. J.; Durgin, J. R.


    A simple and reasonably accurate dry-surface coating method for the visualization of the separation line on a bluff body is described. This method is not restricted to any particular Reynolds-number range and it supplies a clear permanent record of good photographic quality. Examination of this technique in visualizing the separation angle on a circular cylinder indicated that it is accurate within about + or - 4 percent.

  12. Hydrophobicity of soil colloids and heavy metal mobilization: effects of drying. (United States)

    Klitzke, Sondra; Lang, Friederike


    Drying of soil may increase the hydrophobicity of soil and affect the mobilization of colloids after re-wetting. Results of previous research suggest that colloid hydrophobicity is an important parameter in controlling the retention of colloids and colloid-associated substances in soils. We tested the hypothesis that air-drying of soil samples increases the hydrophobicity of water-dispersible colloids and whether air-drying affects the mobilization of colloid-associated heavy metals. We performed batch experiments with field-moist and air-dried (25 degrees C) soils from a former sewage farm (sandy loam), a municipal park (loamy sand), and a shooting range site (loamy sand with 25% C(org)). The filtered suspensions (<1.2 microm) were analyzed for concentrations of dissolved and colloidal organic C and heavy metals (Cu, Cd, Pb, Zn), average colloid size, zeta potential, and turbidity. The hydrophobicity of colloids was determined by their partitioning between a hydrophobic solid and a hydrophilic aqueous phase. Drying increased hydrophobicity of the solid phase but did not affect the hydrophobicity of the dispersed colloids. Drying decreased the amount of mobilized mineral and (organo-)mineral colloids in the sewage farm soils but increased the mobilization of organic colloids in the C-rich shooting range soil. Dried samples released less colloid-bound Cd and Zn than field-moist samples. Drying-induced mobilization of dissolved organic C caused a redistribution of Cu from the colloidal to the dissolved phase. We conclude that drying-induced colloid mobilization is not caused by a change in the physicochemical properties of the colloids. Therefore, it is likely that the mobilization of colloids in the field is caused by increasing shear forces or the disintegration of aggregates.

  13. Change in dry matter and nutritive composition of Brachiaria humidicola grown in Ban Thon soil series



    This experiment was conducted to determine the change in dry matter and nutritive composition of Humidicola grass (Brachiaria humidicola) grown in Ban Thon soil series (infertility soil) as a function of growth age. One rai (0.16 ha) of two-year-old pasture of fertilised Humidicola grass was uniformly cut and the regrowth samples were collected every twenty days. The samples were subjected to analysis for dry matter content and nutritive composition, i.e. crude protein, ash, calcium, phosphor...

  14. Quantification of hysteresis effects on a soil subjected to drying and wetting cycles (United States)

    Rafraf, Samia; Guellouz, Lamia; Guiras, Houda; Bouhlila, Rachida


    A quantitative description of soil hysteretic response during drying-wetting cycles is required to improve prediction of the soil water retention model. The objective of the study is to quantify the degree of hysteresis, which is helpful to evaluate the precision of soil water flow calculation. A new procedure to quantify the degree of hysteresis is presented. The Arya-Paris model allows assessment of hysteresis effects from initial drying curves, dynamic contact angles, degree of hysteresis value, and maximum difference value between drying and subsequent wetting curves. The experimental results show that the degree of hysteresis varies with the particle size, bulk density, void ratio, initial water content, and contact angle of the soil. The new findings can be very useful in modelling soil water flows.

  15. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process (United States)

    Lan, Shengjie; Li, Lijuan; Xu, Defang; Zhu, Donghai; Liu, Zhiqi; Nie, Feng


    In order to improve the compatibility between magnesium hydroxide (MH) and polymer matrix, the surface of MH was modified using vinyltriethoxysilane (VTES) by dry process and the interfacial interaction between MH and VTES was also studied. Zeta potential measurements implied that the MH particles had better dispersion and less aggregation after modification. Sedimentation tests showed that the surface of MH was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MH particles significantly improved in the organic phase. Scanning electronic microscopy (SEM), Transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that a thin layer had formed on the surface of the modified MH, but did not alter the material's crystalline phase. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and Thermogravimetric analysis (TGA) showed that the VTES molecules bound strongly to the surface of MH after modification. Chemical bonds (Sisbnd Osbnd Mg) formed by the reaction between Si-OC2H5 and hydroxyl group of MH, also there have physical adsorption effect in the interface simultaneously. A modification mechanism of VTES on the MH surface by dry process was proposed, which different from the modification mechanism by wet process.

  16. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    DEFF Research Database (Denmark)

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.;


    The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon a...

  17. Tomato yield responses to soil-incorporated dried distillers grains (United States)

    Dried distiller's grains (DDGs) are a coproduct of dry-grind corn ethanol production, most of which are used for animal feed, and are sold for under $150/metric ton. Developing higher-value uses for DDGs can increase the profitability of corn-based ethanol. Although DDGs applied directly to a pott...

  18. Drying/rewetting cycles of the soil under alternate partial root-zone drying irrigation reduce carbon and nitrogen retention in the soil-plant systems of potato

    DEFF Research Database (Denmark)

    Sun, Yanqi; Yan, Fei; Liu, Fulai


    Dry/wet cycles of soil may stimulate mineralization of soil organic carbon (C) and nitrogen (N) leading to increased N bioavailability to plants but potentially also increased C and N losses. We investigated the effects of partial root-zone drying (PRD) and deficit irrigation (DI) on C and N...... for five weeks. For each N rate, the PRD and DI plants received a same amount of water, which allowed re-filling one half of the PRD pots close to full water holding capacity. The results showed that plant dry biomass, plant water use, and water use efficiency were increased with increasing N....... However, owing to substantial decreases of C and N contents in the soil, the amounts of C and N retained in the soil–plant systems were lower in PRD than in DI. Although the C gain in the soil–plant systems of potato was positive due to production of plant biomass, the dry/wet cycles of the soil under...

  19. Taxonomic and Functional Diversity of Soil and Hypolithic Microbial Communities in Miers Valley, McMurdo Dry Valleys, Antarctica (United States)

    Wei, Sean T. S.; Lacap-Bugler, Donnabella C.; Lau, Maggie C. Y.; Caruso, Tancredi; Rao, Subramanya; de los Rios, Asunción; Archer, Stephen K.; Chiu, Jill M. Y.; Higgins, Colleen; Van Nostrand, Joy D.; Zhou, Jizhong; Hopkins, David W.; Pointing, Stephen B.


    The McMurdo Dry Valleys of Antarctica are an extreme polar desert. Mineral soils support subsurface microbial communities and translucent rocks support development of hypolithic communities on ventral surfaces in soil contact. Despite significant research attention, relatively little is known about taxonomic and functional diversity or their inter-relationships. Here we report a combined diversity and functional interrogation for soil and hypoliths of the Miers Valley in the McMurdo Dry Valleys of Antarctica. The study employed 16S rRNA fingerprinting and high throughput sequencing combined with the GeoChip functional microarray. The soil community was revealed as a highly diverse reservoir of bacterial diversity dominated by actinobacteria. Hypolithic communities were less diverse and dominated by cyanobacteria. Major differences in putative functionality were that soil communities displayed greater diversity in stress tolerance and recalcitrant substrate utilization pathways, whilst hypolithic communities supported greater diversity of nutrient limitation adaptation pathways. A relatively high level of functional redundancy in both soil and hypoliths may indicate adaptation of these communities to fluctuating environmental conditions. PMID:27812351

  20. Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica

    Directory of Open Access Journals (Sweden)

    Sean Wei


    Full Text Available The McMurdo Dry Valleys of Antarctica are an extreme polar desert. Mineral soils support subsurface microbial communities and translucent rocks support development of hypolithic communities on ventral surfaces in soil contact. Despite significant research attention relatively little is known about taxonomic and functional diversity or their inter-relationships. Here we report a combined diversity and functional interrogation for soil and hypoliths of the Miers Valley in the McMurdo Dry Valleys of Antarctica. The study employed 16S rRNA fingerprinting and high throughput sequencing combined with the GeoChip functional microarray. The soil community was revealed as a highly diverse reservoir of bacterial diversity dominated by actinobacteria. Hypolithic communities were less diverse and dominated by cyanobacteria. Major differences in putative functionality were that soil communities displayed greater diversity in stress tolerance and recalcitrant substrate utilization pathways, whilst hypolithic communities supported greater diversity of nutrient limitation adaptation pathways. A relatively high level of functional redundancy in both soil and hypoliths may indicate adaptation of these communities to fluctuating environmental conditions.

  1. Runoff and interrill erosion in sodic soils treated with dry PAM and phosphogypsum (United States)

    Seal formation at the soil surface during rainstorms reduces rain infiltration and leads to runoff and erosion. An increase in soil sodicity increases soil susceptibility to crusting, runoff, and erosion. Surface application of dissolved polyacrylamide (PAM) mixed with gypsum was found to be very ef...

  2. Optimization of surface integrity in dry hard turning using RSM

    Indian Academy of Sciences (India)

    Suha K Shihab; Zahid A Khan; Aas Mohammad; Arshad Noor Siddiquee


    This paper investigates the effect of different cutting parameters (cutting speed, feed rate, and depth of cut) on surface integrity defined in terms of surface roughness and microhardness in dry hard turning process. The workpiece material used was hardened alloy steel AISI 52100 and it was machined on a CNC lathe with coated carbide tool under different settings of cutting parameters. Three cutting parameters each at three levels were considered in the study. Central composite design (CCD) of experiment was used to collect experimental data for surface roughness and microhardness. Statistical analysis of variance (ANOVA) was performed to determine significance of the cutting parameters. The results were analysed using an effective procedure of response surface methodology (RSM) to determine optimal values of cutting parameters. Several diagnostic tests were also performed to check the validity of assumptions. The results indicated that feed rate is the dominant factor affecting the surface roughness whereas the cutting speed is found to be the dominant factor affecting the microhardness. Results also revealed that within the range investigated, good surface integrity is achieved when feed rate and depth of cut are near their low levels and cutting speed is at high level. Finally, the optimal cutting parameters and model equations to predict the surface roughness and microhardness are proposed.

  3. Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil. (United States)

    Bauerle, T L; Richards, J H; Smart, D R; Eissenstat, D M


    Redistribution of water within plants could mitigate drought stress of roots in zones of low soil moisture. Plant internal redistribution of water from regions of high soil moisture to roots in dry soil occurs during periods of low evaporative demand. Using minirhizotrons, we observed similar lifespans of roots in wet and dry soil for the grapevine 'Merlot' (Vitis vinifera) on the rootstock 101-14 Millardet de Gramanet (Vitis riparia x Vitis rupestris) in a Napa County, California vineyard. We hypothesized that hydraulic redistribution would prevent an appreciable reduction in root water potential and would contribute to prolonged root survivorship in dry soil zones. In a greenhouse study that tested this hypothesis, grapevine root systems were divided using split pots and were grown for 6 months. With thermocouple psychrometers, we measured water potentials of roots of the same plant in both wet and dry soil under three treatments: control (C), 24 h light + supplemental water (LW) and 24 h light only (L). Similar to the field results, roots in the dry side of split pots had similar survivorship as roots in the wet side of the split pots (P = 0.136) in the C treatment. In contrast, reduced root survivorship was directly associated with plants in which hydraulic redistribution was experimentally reduced by 24 h light. Dry-side roots of plants in the LW treatment lived half as long as the roots in the wet soil despite being provided with supplemental water (P < 0.0004). Additionally, pre-dawn water potentials of roots in dry soil under 24 h of illumination (L and LW) exhibited values nearly twice as negative as those of C plants (P = 0.034). Estimates of root membrane integrity using electrolyte leakage were consistent with patterns of root survivorship. Plants in which nocturnal hydraulic redistribution was reduced exhibited more than twice the amount of electrolyte leakage in dry roots compared to those in wet soil of the same plant. Our study demonstrates that

  4. Soil Geochemical Control Over Nematode Populations in Bull Pass, McMurdo Dry Valleys, Antarctica (United States)

    Poage, M. A.; Barrett, J. E.; Virginia, R. A.; Wall, D. H.


    The McMurdo Dry Valleys occupy the largest ice-free region of Antarctica and are characterized by climatic conditions among the most extreme on Earth. Despite the harsh environmental conditions, some soils of the dry valleys host simple low-diversity ecosystems dominated by microbes and several taxa of metazoans, predominantly nematodes. Distributions, abundance, and diversity of these biota appear to be related to the highly variable soil geochemistry (pH, conductivity, nitrate, sulfate, chloride) of the dry valleys. Bull Pass is a glacially carved valley within the dry valleys. An ancient lake margin near the valley floor creates a continuous gradient spanning the full range of geochemical parameters found across the entire McMurdo Dry Valleys system. This unique setting provides the opportunity to systematically investigate the soil geochemical control on local biodiversity and establish, on the spatial scale of hundreds of meters, correlations between nematode populations and individual geochemical parameters that have application at the regional scale. We measured soil geochemistry and nematode population data from a 1500-meter transect across this ancient lake margin. There were significant negative correlations between live nematode abundance and concentrations of soil nitrate, sulfate and chloride as well as total soil salinity, consistent with recent laboratory experiments showing strong salinity inhibition of nematode survival. A logistical regression analysis based on a compilation of published datasets from across the dry valleys was designed to calculate the probably of live nematode populations occurring given a particular soil chemistry, using the dataset from the Bull Pass transect as a case study to field-test the model. Small-scale chemical and biological gradients can provide insights on the distribution of soil biota at much larger regional scales.

  5. Simultaneous Preservation of Soil Structural Properties and Phospholipid Profiles: A Comparison of Three Drying Techniques

    Institute of Scientific and Technical Information of China (English)



    There is a need to simultaneously preserve evidence of interactions between the biological community and soil structural properties of a soil in as near an intact (natural) state as possible.Three dehydration techniques were implemented and assessed for their ability to minimise disruption of both biological and physical properties of the same arable soil sample.Dehydration techniques applied until samples were at constant weight were i) air-drying at 20℃ (AD); ii)-80℃ freeze for 24 h,followed by freeze-drying (-80FD); and iii) liquid nitrogen snap freeze,followed by freeze-drying(LNFD) and were compared to a moist control.Physical structure was determined and quantified in three dimensions using X-ray computed tomography and microbial phenotypic community composition was assessed using phospholipid fatty acid (PLFA) profiling.This study confirms that any form of dehydration,when preparing soil for simultaneous biological and physical analysis,will alter the soil physical properties,and cause some change in apparent community structure.Freeze-drying (both the LNFD and -80FD treatments) was found to minimise disruption (when compared to the moist control soil) to both the soil physical properties and the community structure and is a preferable technique to air-drying which markedly alters the size and character of the pore network,as well as the phenotypic profile.The LNFD was the preferred treatment over the -80FD treatment as samples show low variability between replicates and a fast turn-around time between samples.Therefore snap freezing in liquid nitrogen,followed by freeze drying is the most appropriate form of dehydration when two sets of data,both physical and biological,need to be preserved simultaneously from a soil core.

  6. Gamma ray computed tomography to evaluate wetting/drying soil structure changes

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Luiz F. [Center for Nuclear Energy in Agriculture, USP, Soil Physics, Av. Centenrio, 303, C.P. 96, C.E.P. 13.400-970 Piracicaba, SP (Brazil)]. E-mail:; Bacchi, Osny O.S. [Center for Nuclear Energy in Agriculture, USP, Soil Physics, Av. Centenrio, 303, C.P. 96, C.E.P. 13.400-970 Piracicaba, SP (Brazil); Reichardt, Klaus [Center for Nuclear Energy in Agriculture, USP, Soil Physics, Av. Centenrio, 303, C.P. 96, C.E.P. 13.400-970 Piracicaba, SP (Brazil)


    Wetting and drying (W-D) cycles can cause strong modifications of the structure of a soil, especially in pore distribution, which reflects the temporal and spatial distribution of soil water and, consequently, these processes can affect soil water and nutrient retention and movement. These alterations have important practical consequences when calculating soil water storages and matric potentials, widely used in irrigation management. The present paper has as objective to use gamma ray computed tomography (GCT) as a tool to investigate possible modifications in soil structure induced by W-D cycles and to analyze how these alterations can affect soil water retention. The GCT scanner used was a first generation system with a fixed source-detector arrangement, with a radioactive gamma ray source of {sup 241}Am. Soil samples were taken from profiles of three different soils characterized as Xanthic Ferralsol (Fx), Eutric Nitosol (Ne) and Rhodic Ferralsol (Fr). Eighteen samples (50 cm{sup 3}), six from each soil, were submitted to none (T{sub 0}), three (T{sub 1}) and nine (T{sub 2}) wetting/drying cycles. Based on image analysis it was possible to detect modifications in soil structure in all samples after wetting/drying cycles for all treatments. Tomographic unit profiles of the samples permitted to identify an increase on soil porosity with the increase in the number of wetting/drying cycles and it was also possible to quantify the average porosity values. The statistical test (Duncan test) indicates that there are significant differences between treatments for all samples at the 5% significance level.

  7. A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China (United States)

    Wang, Yunqiang; Shao, Ming'an; Shao, Hongbo


    SummarySerious soil desiccation, resulting from climatic conditions and poor land management, may lead to the formation of a dried soil layer (DSL), which can negatively affect ecological and hydrological processes. To mitigate these effects through management, it is necessary to understand property interactions within DSLs, compared with those in the whole soil profile, and DSL formation processes under different land uses. We investigated the relationships between soil water content (SWC) and plant root indices, and other soil properties, under various land uses in the Liudaogou watershed on the Loess Plateau, China. We also studied the development of DSLs as a function of the growth age of two vegetation types. Rate of formation and thickness of DSLs were dependent on vegetation type: DSLs formed after 2 years of alfalfa ( Medicago sativa) growth and 3 years of Caragana korshinskii growth; after 4 years of growth, DSLs under alfalfa were thicker than those under C. korshinskii, but after 31 years the DSL thickness under C. korshinskii (4.4 m) exceeded that formed under alfalfa (3 m). The more persistent DSLs occurred below a 100 cm thick upper soil layer that was seasonally dried and replenished by rainfall under both vegetation types. The degree of soil desiccation under natural vegetation was generally less than that under non-indigenous plant species, and was similarly less over a period of about 30 years for a natural plant succession sequence than for an artificial one. Thus, the use of natural vegetation succession management principles would possibly reduce soil desiccation during vegetative restoration. Densities of root length, weight, and surface area, and the average root diameter of soybean ( Glycine max), alfalfa, Stipa bubgeana, and C. korshinskii all decreased with increases in soil depths below 20 cm. Correlations between SWC and root indices, and various soil physical and chemical properties, were generally weaker within the DSL layers than

  8. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per;

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water film...... thickness at a given soil-water matric potential (low organic soils with n > 10, the estimated SA from the dry soil-water retention was in good agreement with the SA measured using ethylene glycol monoethyl ether (SA_EGME). A strong relationship between the ratio...

  9. Increases in soil water content after the mortality of non-native trees in oceanic island forest ecosystems are due to reduced water loss during dry periods. (United States)

    Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki


    The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods.

  10. Global observation-based diagnosis of soil moisture control on land surface flux partition (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.


    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  11. Physically plausible prescription of land surface model soil moisture (United States)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia


    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  12. Copper pollution decreases the resistance of soil microbial community to subsequent dry-rewetting disturbance. (United States)

    Li, Jing; Wang, Jun-Tao; Hu, Hang-Wei; Ma, Yi-Bing; Zhang, Li-Mei; He, Ji-Zheng


    Dry-rewetting (DW) disturbance frequently occurs in soils due to rainfall and irrigation, and the frequency of DW cycles might exert significant influences on soil microbial communities and their mediated functions. However, how microorganisms respond to DW alternations in soils with a history of heavy metal pollution remains largely unknown. Here, soil laboratory microcosms were constructed to explore the impacts of ten DW cycles on the soil microbial communities in two contrasting soils (fluvo-aquic soil and red soil) under three copper concentrations (zero, medium and high). Results showed that the fluctuations of substrate induced respiration (SIR) decreased with repeated cycles of DW alternation. Furthermore, the resistance values of substrate induced respiration (RS-SIR) were highest in non-copper-stressed (zero) soils. Structural equation model (SEM) analysis ascertained that the shifts of bacterial communities determined the changes of RS-SIR in both soils. The rate of bacterial community variance was significantly lower in non-copper-stressed soil compared to the other two copper-stressed (medium and high) soils, which might lead to the higher RS-SIR in the fluvo-aquic soil. As for the red soil, the substantial increase of the dominant group WPS-2 after DW disturbance might result in the low RS-SIR in the high copper-stressed soil. Moreover, in both soils, the bacterial diversity was highest in non-copper-stressed soils. Our results revealed that initial copper stress could decrease the resistance of soil microbial community structure and function to subsequent DW disturbance.

  13. Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content

    DEFF Research Database (Denmark)

    Chen, Chong; Hu, Kelin; Arthur, Emmanuel;


    curves of soils and to predict SWRCs at the dry end using the hygroscopic water content at a relative humidity of 50% (θRH50). The Oswin model yielded satisfactory fits to dry-end SWRCs for soils dominated by both 2:1 and 1:1 clay minerals. Compared with the Oswin model, the Campbell and Shiozawa model......Accurate information on the dry end (matric potential less than −1500 kPa) of soil water retention curves (SWRCs) is crucial for studying water vapor transport and evaporation in soils. The objectives of this study were to assess the potential of the Oswin model for describing the water adsorption...... combined with the Kelvin equation (CS-K) produced better fits to dry-end SWRCs of soils dominated by 2:1 clays but provided poor fits for soils dominated by 1:1 clays. The shape parameter α of the Oswin model was dependent on clay mineral type, and approximate values of 0.29 and 0.57 were obtained...

  14. Surface runoff, subsurface drainflow and soil erosion as affected by tillage in a clayey Finnish soil

    National Research Council Canada - National Science Library

    Turtola, Eila; Alakukku, Laura; Uusitalo, Risto; Kaseva, Antti


    Conservation tillage practices were tested against autumn mouldboard ploughing for differences in physical properties of soil, surface runoff, subsurface drainflow and soil erosion. The study (1991-2001...


    Institute of Scientific and Technical Information of China (English)

    XIONG Dong-hong; ZHOU Hong-yi; YANG Zhong; ZHANG Xin-bao


    The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus ofrevegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely dry and hot climate, severely degraded vegetation and the intense soil and water loss, there are extreme difficulties in vegetation restoration in this area and no great breakthrough has ever been achieved on studies of revegetation over the last several decades. Through over ten years' research conducted in the typical areas-the Yuanmou dry-hot valley, the authors found that the lithologic property is one of the crucial factors determining soil moisture conditions and vegetation types in the dry-hot valley, and the rainfall infiltration capability is also one of the key factors affecting the tree growth. Then the revegetation zoning based on different slopes was conducted and revegetation patterns for different zones were proposed.

  16. Uncertainties of seasonal surface climate predictions induced by soil moisture biases in the La Plata Basin (United States)

    Sorensson, Anna; Berbery, E. Hugo


    This work examines the evolution of soil moisture initialization biases and their effects on seasonal forecasts depending on the season and vegetation type for a regional model over the La Plata Basin in South America. WRF/Noah model simulations covering multiple cases during a two-year period are designed to emphasize the conceptual nature of the simulations at the expense of statistical significance of the results. Analysis of the surface climate shows that the seasonal predictive skill is higher when the model is initialized during the wet season and the initial soil moisture differences are small. Large soil moisture biases introduce large surface temperature biases, particularly for Savanna, Grassland and Cropland vegetation covers at any time of the year, thus introducing uncertainty in the surface climate. Regions with Evergreen Broadleaf Forest have roots that extend to the deep layer whose moisture content affects the surface temperature through changes in the partitioning of the surface fluxes. The uncertainties of monthly maximum temperature can reach several degrees during the dry season in cases when: (a) the soil is much wetter in the reanalysis than in the WRF/Noah equilibrium soil moisture, and (b) the memory of the initial value is long due to scarce rainfall and low temperatures. This study suggests that responses of the atmosphere to soil moisture initialization depend on how the initial wet and dry conditions are defined, stressing the need to take into account the characteristics of a particular region and season when defining soil moisture initialization experiments.

  17. Physical and ecological controllers of the microbial responses to drying and rewetting in soil (United States)

    Leizeaga, Ainara; Meisner, Annelein; Bååth, Erland; Rousk, Johannes


    Soil moisture is one of the most powerful factors that regulate microbial activity in soil. The variation of moisture leads to drying-rewetting (DRW) events which are known to induce enormous dynamics in soil biogeochemistry; however, the microbial underpinnings are mostly unknown. Rewetting a dry soil can result in two response patterns of bacterial growth. In the Type 1 response, bacteria start growing immediately after rewetting with rates that increase in a linear fashion to converge with those prior to the DRW within hours. This growth response coincides with respiration rates that peak immediately after rewetting to then exponentially decrease. In the Type 2 response, bacterial growth remains very low after rewetting during a lag period of up to 20 hours. Bacteria then increase their growth rates exponentially to much higher rates than those before the DRW event. This growth response coincides with respiration rates that increase to high rates immediately after rewetting that then remain elevated and sometimes even increase further in sync with the growth increase. Previous studies have shown that (i) extended drying (ii) starving before DRW and (iii) inhibitors combined with drought could change the bacterial response from Type 1 to Type 2. This suggested that the response of bacteria upon rewetting could be related to the harshness of the disturbance as experienced by the microbes. In the present study, we set out to study if reduced harshness could change a Type 2 response into a Type 1 response. We hypothesized that (1) a reduced physical harshness of drying and (2) induced tolerance to drying in microbial communities could change a Type 2 response into a Type 1 growth response upon rewetting. To address this, two experiments were performed. First, soils were partially dried to different water contents and bacterial response upon rewetting was measured. Second, soils were exposed to repeated DRW cycles (Type 2 to a Type 1. Even after a Type 1 response was

  18. Gas Transport Parameters for Landfill Final Cover Soil: Measurements and Model Modification by Dry Bulk Density (United States)

    Wickramarachchi, P. N.; Kawamoto, K.; Hamamoto, S.; Nagamori, M.; Moldrup, P.; Komatsu, T.


    Landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric methane (CH4). Until recently, landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest sources of anthropogenic CH4 emission, the final cover system should also be designed for minimizing the greenhouse gases migration into the atmosphere or the areas surrounding the landfill while securing the hydraulic performance. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil, few studies about gas transport characteristics of landfill cover soils have been done. However, recent soil-gas studies implied that the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size are key parameters to understand landfill gaseous performance. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport. In this study, the effects of compaction level and particle size fraction effects on ka and Dp for landfill final cover soil was investigated. The disturbed soil samples were taken from landfill final cover in Japan. A compaction tests were performed for the soil samples with two different size fractions (content , the soil samples were repacked into soil cores (i.d. 15-cm, length 12-cm, 2120 cm3) at two different compaction levels [(MP):2700 kN/m2 and (SP):600 kN/m2]. After the compaction tests, ka and Dp were measured and then samples were saturated and subsequently drained at different soil-water matric potential of 0.98, 2.94, 9.81, 1235 kPa and with air-dried and oven-dried conditions. Results showed that measured Dp and ka values for the coarser (content. Further, compaction effort was much significant

  19. Plutonium, (137)Cs and uranium isotopes in Mongolian surface soils. (United States)

    Hirose, K; Kikawada, Y; Igarashi, Y; Fujiwara, H; Jugder, D; Matsumoto, Y; Oi, T; Nomura, M


    Plutonium ((238)Pu and (239,240)Pu), (137)Cs and plutonium activity ratios ((238)Pu/(239,240)Pu) as did uranium isotope ratio ((235)U/(238)U) were measured in surface soil samples collected in southeast Mongolia. The (239,240)Pu and (137)Cs concentrations in Mongolian surface soils (surface soils (0.013-0.06) coincided with that of global fallout. The (235)U/(238)U atom ratios in the surface soil show the natural one. There was a good correlation between the (239,240)Pu and (137)Cs concentrations in the surface soils. We introduce the migration depth to have better understanding of migration behaviors of anthropogenic radionuclides in surface soil. We found a difference of the migration behavior between (239,240)Pu and (137)Cs from (137)Cs/(239,240)Pu - (137)Cs plots for the Mongolian and Tsukuba surface soils; plutonium in surface soil is migrated easier than (137)Cs.

  20. Effect of Drying on Heavy Metal Fraction Distribution in Rice Paddy Soil (United States)

    Qi, Yanbing; Huang, Biao; Darilek, Jeremy Landon


    An understanding of how redox conditions affect soil heavy metal fractions in rice paddies is important due to its implications for heavy metal mobility and plant uptake. Rice paddy soil samples routinely undergo oxidation prior to heavy metal analysis. Fraction distribution of Cu, Pb, Ni, and Cd from paddy soil with a wide pH range was investigated. Samples were both dried according to standard protocols and also preserved under anaerobic conditions through the sampling and analysis process and heavy metals were then sequentially extracted for the exchangeable and carbonate bound fraction (acid soluble fraction), iron and manganese oxide bound fraction (reducible fraction), organic bound fraction (oxidizable fraction), and residual fraction. Fractions were affected by redox conditions across all pH ranges. Drying decreased reducible fraction of all heavy metals. Curesidual fraction, Pboxidizable fraction, Cdresidual fraction, and Niresidual fraction increased by 25%, 33%, 35%, and >60%, respectively. Pbresidual fraction, Niacid soluble fraction, and Cdoxidizable fraction decreased 33%, 25%, and 15%, respectively. Drying paddy soil prior to heavy metal analysis overestimated Pb and underestimated Cu, Ni, and Cd. In future studies, samples should be stored after injecting N2 gas to maintain the redox potential of soil prior to heavy metal analysis, and investigate the correlation between heavy metal fraction distribution under field conditions and air-dried samples. PMID:24823670

  1. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.


    's oceans and seas is most significantly impacted by human activities. More than half of the world's population lives within 100 km of a coast and hence the overwhelming majority of anthropogenic fluxes to aquatic systems occur in the coastal zone. We discuss the particular challenges that arise from...... measurement requirements represent significant barriers to application to measurement of particle dry deposition fluxes although, as discussed, innovative solutions are now becoming available. In the final section, we examine meteorological controls on deposition to the coastal zone. This region of the world...... flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...

  2. Stretchable, adhesion-tunable dry adhesive by surface wrinkling. (United States)

    Jeong, Hoon Eui; Kwak, Moon Kyu; Suh, Kahp Y


    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (approximately 10.8 N/cm(2)) and shear adhesion (approximately 14.7 N/cm(2)) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of approximately 3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of approximately 0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment.

  3. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui


    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  4. Effects of drying temperature and surface characteristics of vegetable on the survival of salmonella. (United States)

    Hawaree, N; Chiewchan, N; Devahastin, S


    The heat resistance of Salmonella Anatum inoculated on the surface of a model vegetable as affected by hot-air drying temperature (50 to 70 degrees C) and surface characteristics was determined in this study. Cabbage was selected as a model vegetable to demonstrate the effect of topographical feature of vegetable surface on the Salmonella attachment ability. An image analysis technique was developed to monitor the change of cabbage surface during drying and the specific surface characteristics were described in terms of the roughness factor (R). It was found that the water activity of the vegetable decreased while R-value increased with longer drying time and higher drying temperature. However, the changes of both parameters during drying did not show a significant effect on the susceptibility of Salmonella attached on the cabbage surface. Drying temperature was found to be a major factor influencing the heat resistance of Salmonella during drying.

  5. Release of aged 14C-atrazine residues from soil facilitated by dry-wet cycles (United States)

    Jablonowski, N. D.; Yu, K.; Koeppchen, S.; Burauel, P.


    Intermittent dry-wet cycles may have an important effect on soil structure and aged pesticide residues release (1). A laboratory study was conducted to assess the maximum potential of water extractable aged atrazine residues influenced by soil drying and wetting. The used soil was obtained from an outdoor lysimeter (gleyic cambisol; Corg: 1.45%), containing environmentally aged (22 years) 14C-atrazine residues. For the experiment, soil from 0-10 cm depth was used since most residual 14C activity was previously found in this layer (2,3). Triplicate soil samples with a residual water content of approx. 8% were either dried (45° C) prior water addition or directly mixed with distilled water (soil+water: 1+2, w:w). The samples were shaken (150 rmp, 60 min, at 21° C), centrifuged (approx. 2000 g), and the supernatants were filtered. Water-extracted residual 14C activity was detected via liquid scintillation counter. The total water-extracted 14C activity (the amount of residual 14C activity in a sample equals 100%) was significantly higher (p

  6. Surface soil factors and soil characteristics in geo-physical milieu of Kebbi State Nigeria

    Directory of Open Access Journals (Sweden)

    Suleiman Usman


    Full Text Available Soil erodibility (K factor is the most important tool for estimation the erosion. The aim of this study Soil factors and surface soil characteristics are important components of agricultural environment. They support surface and subsurface soils to perform many functions to agriculture and economic human developments. Understanding these factors would aid to the recognition of the values that our soil and land offered to humanity. It is therefore, aim of this study to visualise and examine the soil factors and surface soil characteristics in Kebbi State Nigeria. An Integrated Surface Soil Approach (ISSA was used in the classification and description of soil environment in the study region. The factors constituted in the ISSA are important components of soil science that theories and practice(s noted to provide ideas on how soil environment functioned. The results indicate that the surface soil environments around Arewa, Argungu, Augie, Birnin Kebbi and Dandi are physically familiar with the following surface soil characteristics: bad-lands, blown-out-lands, cirque-lands, fertile-lands, gullied-lands, miscellaneous and rock-outcrops.The major soil factors observed hat played an important role in surface soil manipulations and soil formation are alluvial, colluvial, fluvial and lacustrine; ant, earthworms and termite; and various forms of surface relief supported by temperature, rainfall, relative humidity and wind. Overall, the surface soil environment of the region was describe according to their physical appearance into fadama clay soils, fadama clay-loam soils, dryland sandy soils, dryland sandy-loam soils, dryland stony soils and organic-mineral soils.

  7. Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture

    NARCIS (Netherlands)

    Dorigo, W.A.; Jeu, de R.A.M.; Chung, D.; Parinussa, R.M.; Liu, Y.; Wagner, W.; Fernandez-Prieto, D.


    [1] Global trends in a new multi-satellite surface soil moisture dataset were analyzed for the period 1988–2010. 27% of the area covered by the dataset showed significant trends (p = 0.05). Of these, 73% were negative and 27% positive. Subtle drying trends were found in the Southern US, central Sout

  8. Green ambrosia for Soil- Dry Cow Dung Powder: Rhexistasy to Biostasy (United States)

    Bagla, Hemlata; Barot, Nisha


    "Greener ambrosia for Soil - Dry cow dung powder: Rhexistasy to Biostasy" Pedosphere, the soil with its biotic and abiotic component, is produced by lithosphere`s interactions with atmosphere, hydrosphere and biosphere. The theory of Biorhexistasy proposed by pedologist H. Erhart [1], describes two crucial climatic phases of soil i.e. Biostasy, period of soil formation and Rhexistasy, periods of soil erosion. Humus, the organic matter in soil, permits better aeration, enhances the absorption and releases nutrients, and makes the soil less susceptible to leaching and erosion [2], thus the agent of soil`s vitality. Mismanagement of soil, leads to the degradation of millions of acres of land through erosion, compaction, salinization and acidification. Among these threats salinity is a major abiotic stress reducing the yield of wide variety of crops all over the world [3]. It is been proved that Humic Acid (HA) treatment can ameliorate the deleterious effects of salt stress by increasing root growth, altering mineral uptake, and decreasing membrane damage, thus inducing salt tolerance in plants [4]. HA can be inexpensively incorporated into soils via different biowastes. Dry cow dung powder (DCP), is naturally available bio-organic, complex, polymorphic humified fecal matter, enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as HA, Fulvic Acid (FA) etc [5]. The microbial consortium enables DCP with considerable potentials for biodegradation and biotransformation of even saline soil and further contributes to many biogeochemical processes, boosting humus content of soil. Due to unambiguous biological, microbiological as well as chemical inert properties of DCP, it has been successfully utilized as a fertilizer and soil conditioner since ages in India, one of the leading agrarian countries of the world. Thus we summarize that DCP is one of the best contenders for the biostasy and desaliner of soil, aptly, soil`s

  9. Preliminary Study on Biological Characteristics of Degraded Soil Ecosystems in Dry Hot Valley of the Jinsha River

    Institute of Scientific and Technical Information of China (English)


    Distribution characteristics of soil animals, microorganisms and enzymatic activity were studied in thedry red soil and Vertisol ecosystems with different degradation degrees in the Yuanmou dry hot valley of theJinsha River, China. Results showed that Hymenoptera, Araneae and Collembola were the dominant groupsof soil animals in the plots studied. The numbers of groups and individuals and density of soil animals in thedry red soil series were higher than those in the Vertisol series, and the numbers of individuals and density ofsoil animals decreased with the degree of soil degradation. Bacteria dominated microbiocoenosis not only inthe dry red soils but also in the Vertisols. Microbial numbers of the dry red soil series were higher than thoseof Vertisol series, and decreased with the degree of soil degradation. The activities of catalase, invertase,urease and alkaline phosphatase declined with the degradation degree and showed a significant decline withdepth in the profiles of both the dry red soils and the Vertisols, but activities of polyphenol oxidase andacid and neutral phosphatase showed the same tendencies only in the Vertisols. It was concluded that thecharacteristics of soil animals, microorganisms and enzymatic activity could be used as the bio-indicators toshow the degradation degree of the dry red soils and Vertisols. Correlation among these soil bio-indicatorswas highly significant.

  10. Microbial Biomass C,N and P in Disturbed Dry Tropical Forest Soils, India

    Institute of Scientific and Technical Information of China (English)



    Variations in microbial biomass C(MB-C),N(MB-N)and P(MB-P)along a gradient of different dominant vegetation covers(natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems)in dry tropical soils of Vindhyan Plateau,India were studied from January 2005 to December 2005.The water holding capacity,organic C,total N,total P and soil moisture content were comparatively higher in forest soils than in the savanna and grassland sites.Across different study sites the mean annual MB-C,MB-N and MB-P at 0-15 cm soil depth varied from 312.05 ± 4.22to 653.40 ± 3.17,32.16 ± 6.25 to 75.66 ± 7.21 and 18.94 ± 2.94 to 30.83 ± 23.08 μg g-1 dry soil,respectively.At all the investigated sites,the maximum MB-C,MB-N and MB-P occurred during the dry period(summer season)and the minimum in wet period(rainy season).In the present study,soil MB-C,MB-N and MB-P were higher at the forest sites compared to savanna and grassland sites.The differences in MB-C,MB-N and MB-P were significant(P mixed deciduous forest > savanna > grassland.The results suggested that deforestation and land use practices(conversion of forest into savanna and grassland)caused the alterations in soil properties,which as a consequence,led to reduction in soil nutrients and MB-C,MB-N and MB-P in the soil of disturbed sites(grassland and savanna)compared to undisturbed forest ecosystems.

  11. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France

    Directory of Open Access Journals (Sweden)

    C. Draper


    Full Text Available This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%, this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.

  12. Diversity and production of Ethiopian dry woodlands explained by climate- and soil- stress gradients

    NARCIS (Netherlands)

    Eshete, A.; Sterck, F.J.; Bongers, F.


    Dry woodlands cover about 14% of the total African land surface and represent about 25% of the natural vegetation. They are characterized by a seasonal climate, with a dry season of 4–7 months. Large parts of these ecosystems are degrading due to grazing, fire or exploitation by people. We studied s

  13. Soil moisture prediction to support management in semiarid wetlands during drying episodes

    NARCIS (Netherlands)

    Aguilera, Héctor; Moreno, Luis; Wesseling, Jan G.; Jiménez-Hernández, María E.; Castaño, Silvino


    Wetlands supported by groundwater in semiarid regions are extremely vulnerable to the impacts of droughts, particularly anthropized systems. During drying periods, soil water content arises as the controlling factor for environmental and ecological disturbances such as the spread of invasive plan

  14. Dry heat exposures of surface exposed and embedded Bacillus spores (United States)

    Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary technique used to reduce the microbial load of spacecraft and component parts. Often, manufacturing procedures require heating flight hardware to high temperatures for purposes other than planetary protection DHMR. The existing specifications, however, do not allow for additional planetary protection bioburden reduction credit if the hardware is exposed without controlled relative humidity. The intent of this study was to provide adequate data on the DHMR technique to support modification of four aspects of current requirements; expansion of acceptable time and temperature combinations used for spacecraft dry heat microbial reduction processes above 125° C, determining the effect that humidity has on spore lethality as a function of temperature, understanding the lethality for spores with exceptionally high thermal resistance and to investigate the extended exposure requirement for materials that might contain embedded microorganisms. Spores from two bacterial species were tested, B. atrophaeus ATCC 9372 and B. sp. ATCC 29669, under three conditions encompassing 5 temperature points. Embedded experiments utilized a silicone rubber polymer that is commonly used on robotic spacecraft, and surface exposed experiments were performed under both ambient and vacuum-controlled humidity conditions. The results obtained support the use of DHMR protocols that extend the maximum temperature range from 125° C to 170° C, with either controlled or ambient humidity. If implemented, this will give projects bioburden reduction credit for shorter treatments at extended temperatures, and allow spacecraft to be processed in more readily available and less expensive facilities that do not have humidity control, with significant cost and schedule benefits. The study also demonstrated that the required heating time for materials presumed to have embedded bioburden is conservative.

  15. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil. (United States)

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A


    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.

  16. Changes in Temperature and Fate of Soil Organic Matter in an Andisol due to Soil Surface Burning (United States)

    Obuchi, Atsuko; Nishimura, Taku; Mizoguchi, Masaru; Imoto, Hiromi; Miyazaki, Tsuyoshi

    This is a print of a camera-ready Japanese manuscript for the Transactions of JSIDRE. This will provide an example and directions for the layout and font size/style to be used. Please refer to this when preparing the headings, figures/table and text of your manuscript. The manuscript should be submitted on A4 size. Changes in temperature, soil moisture, and carbon and nitrogen contents were measured in Andisol under soil surface burning. Soil samples were packed into an unglazed cylinder of 15 cm inner diameter and 30 cm high. Charcoal was burned for 6 hours on the surface of the soil column. During the burning soil surface temperature rose to between 600-700°C. In initially wet soil, rise in soil temperature was retarded for a while at around 95-100°C. On the other hand, in initially dry Toyoura sand showed more rapid temperature increase without retardation. The temperature retardation in the wet soil could be caused by consumption of latent heat by vaporization of soil water. Rate of proceeding of the 100°C front was proportional to square root of the burning time. This indicates that higher the initial volumetric water content, shallower the depth affected by burning. Soil samples suffered temperature above 500°C still had total carbon and nitrogen contents of over 20 and 1 g kg-1, respectively, whereas the soil that was heated up to over 500°C by muffle furnace contained less than 0.4 and 0.1 g kg-1 of the carbon and nitrogen.

  17. Shakedown modeling of unsaturated expansive soils subjected to wetting and drying cycles

    Directory of Open Access Journals (Sweden)

    Nowamooz Hossein


    Full Text Available It is important to model the behavior of unsaturated expansive soils subjected to wetting and drying cycles because they alter significantly their hydro-mechanical behavior and therefore cause a huge differential settlement on shallow foundations of the structure. A simplified model based on the shakedown theory (Zarka method has been developed in this study for unsaturated expansive soils subjected to wetting and drying cycles. This method determines directly the stabilized limit state and consequently saves the calculation time. The parameters of the proposed shakedown-based model are calibrated by the suction-controlled oedometer tests obtained for an expansive soil compacted at loose and dense initial states, and then validated for the same soil compacted at intermediate initial state by comparing the model predictions with the experimental results. Finally, the finite element equations for the proposed shakedown model are developed and these equations are implemented in the finite element code CAST3M to carry out the full-scale calculations. A 2D geometry made up of the expansive soil compacted at the intermediate state is subjected to successive extremely dry and wet seasons for the different applied vertical loads. The results show the swelling plastic deformations for the lower vertical stresses and the shrinkage deformations for the higher vertical stresses.

  18. Modeling Soil Water in the Caatinga Tropical Dry Forest of Northeastern Brazil (United States)

    Wright, C.; Wilcox, B.; Souza, E.; Lima, J. R. D. S.; West, J. B.


    The Caatinga is a tropical dry forest unique to northeastern Brazil. It has a relatively high degree of endism and supports a population of about 20 million subsistence farmers. However, it is poorly understood, under-researched and often over-looked in regards to other Brazilian ecosystems. It is a highly perturbed system that suffers from deforestation, land use change, and may be threatened by climate change. How these perturbations affect hydrology is unknown, but may have implications for biodiversity and ecosystem services and resiliency. Therefore, understanding key hydrological processes is critical, particularly as related to deforestation. In this study, Hydrus 1D, which is based on van Genuchten parameters to describe the soil water curve and Richard's Equation to describe flow in the vadose zone, was used to model soil moisture in the Caatinga ecosystem. The aim was 1) to compare hydraulic characterization between a forested Caatinga site and a deforested pasture site, 2) to analyze inter-annual variability, and 3) to compare with observed soil moisture data. Hydraulic characterization included hydraulic conductivity, infiltration, water content and pressure head trends. Van Genuchten parameters were derived using the Beerkan method, which is based on soil texture, particle distribution, as well as in-situ small-scale infiltration experiments. Observational data included soil moisture and precipitation logged every half-hour from September 2013 to April 2014 to include the dry season and rainy season. It is expected that the forested Caatinga site will have a higher hydraulic conductivity as well as retain higher soil moisture values. These differences may be amplified during the dry season, as water resources become scarce. Deviations between modeled data and observed data will allow for further hypothesis to be proposed, especially those related to soil water repellency. Hence, these results may indicate difference in soil water dynamics between a

  19. Remote Sensing and Synchronous Land Surface Measurements of Soil Moisture and Soil Temperature in the Field (United States)

    Kolev, N. V.; Penev, K. P.; Kirkova, Y. M.; Krustanov, B. S.; Nazarsky, T. G.; Dimitrov, G. K.; Levchev, C. P.; Prodanov, H. I.; Kraleva, L. H.


    The paper presents the results of remote sensing and synchronous land surface measurements for estimation of soil (surface and profile) water content and soil temperature for different soil types in Bulgaria. The relationship between radiometric temperature and soil surface water content is shown. The research is illustrated by some results from aircraft and land surface measurements carried out over three test areas near Pleven, Sofia and Plovdiv, respectively, during the period 1988-1990.

  20. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests (United States)

    Waring, Bonnie G.; Powers, Jennifer S.


    Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO2) upon rewetting, the mechanisms underlying the so-called ‘Birch effect’ are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO2 pulses with two soil carbon models: a conventional model assuming first-order decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis-Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.

  1. Characterization of a halotolerant-psychroloterant bacterium from dry valley Antarctic soil. (United States)

    Miller, K J; Leschine, S B; Huguenin, R L


    The saline soils of the ice free dry valleys of Victoria Land, Antarctica may provide the closest analog on Earth to Martian conditions. We have initiated a study aimed at examining microbial adaptations to the harsh environment of these dry valley soils. In this report we describe the characterization of one bacterium, strain A4a, isolated from Taylor Valley soil. Strain A4a was an obligately aerobic, orange-pigmented, Gram-positive coccus that grew over wide ranges of both temperature (0 degrees C-40 degrees C) and sodium chloride concentration (0-2.0M). The optimal temperature for growth at all NaCl concentrations was 25 degrees C. Phospholipid composition and guanine plus cytosine content of the DNA of the isolate indicate a close relation to the genus Planococcus.

  2. Non-destructive image analysis of soil surface porosity and bulk density dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.F., E-mail: lfpires@uepg.b [Laboratory of Soil Physics and Environmental Sciences, State University of Ponta Grossa, UEPG, C.E.P. 84.030-900, Ponta Grossa, PR (Brazil); Cassaro, F.A.M. [Laboratory of Soil Physics and Environmental Sciences, State University of Ponta Grossa, UEPG, C.E.P. 84.030-900, Ponta Grossa, PR (Brazil); Bacchi, O.O.S.; Reichardt, K. [Laboratory of Soil Physics, Center for Nuclear Energy in Agriculture, USP/CENA, C.P. 96, C.E.P. 13.400-970, Piracicaba, SP (Brazil)


    A gamma-ray computed tomography (CT) scanner was used to evaluate changes in the structure of clayey soil samples with surface compaction submitted to wetting and drying (W-D) cycles. The obtained results indicate that W-D cycles promoted an increasing of about 10% in soil porosity with a decreasing of about 6% in soil bulk density of this compacted region. With the use of the CT it was also possible to define the thickness of the compacted region that in our case was of about 8.19 mm. This last information is very important, for instance, to estimate hydraulic parameters in infiltration models. Finally, CT analysis showed that the compacted region remained at the surface samples, even after the application of the W-D cycles. -- Research highlights: {yields} Gamma-ray tomography allowed non-destructive analysis of soil bulk density and porosity changes. {yields} Soil porosity increased about 10% with the wetting and drying cycles. {yields} Soil bulk density in the compacted region decreased about 6% with the wetting and drying cycles. {yields} Detailed bulk density and porosity analysis changes were obtained for layers of 1.17 mm.

  3. Soil development and sampling strategies for the returned Martian surface samples (United States)

    Gibson, Everett K.


    Sampling of the Martian surface materials should be based on the experience gained from the study of soils and rocks collected in cold, dry environments, i.e., dry valleys of Antarctica. Previous studies have suggested that some of our best terrestrial analogs of the Martian soils are represented by those found in the polar deserts of Antarctica. Special sampling considerations must be taken into account when obtaining these samples because they represent at least five distinct types of materials. Weathering of planetary regolith materials occurs from both chemical and physical interactions of the planet's surface materials with the atmosphere and, if present, the hydrosphere and biosphere along with extraplanetary objects which may produce the original surface materials and produce secondary materials that are product of equilibrium between the atmosphere and study weathering processes and regolith development occurring on Martian-like surfaces, simulation studies must be carried out in materials in the field.

  4. Extraction methods for recovery of volatile organic compounds from fortified dry soils

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, M.M.; Zimmerman, J.H. [Lockheed Martin Environmental Services, Las Vegas, NV (United States); Schumacher, B.A. [Environmental Protection Agency, Las Vegas, NV (United States)


    Recovery of 8 volatile organic compounds (VOCs) from dry soils, each fortified at 800 ng/g soil, was studied in relation to the extraction method and time of extraction. Extraction procedures studied on 2 desiccator-dried soils were modifications of EPA low- and high-level purge-and-trap extractions (SW-846 Method 5030A): treatment 1, unmodified low-level procedure; treatment 2, 18 h water presoak followed by low-level procedure; treatment 3, 24 h methanol extract at room temperature followed by high-level procedure; and treatment 4, 24 h methanol extract at 65{degrees}C followed by high-level procedure. VOC recoveries from replicate soil samples increased in the treatment order 1 through 4. With Charleston soil (8% clay and 3.8% organic carbon), highly significant differences (p {le} 0.001) in recoveries among treatments were observed for trichloroethene (TCE), tetrachloroethene (PCE), toluene, ethylbenzene, and o-xylene, with 2- to 3-fold increased recoveries between treatments 1 and 3. With Hayesville soil (32% clay and 0.2% organic carbon), significant improvements (p{le}0.05) in recoveries of toluene, ethylbenzene, o-oxylene, 1,1,1-trichloroethane, TCE, and PCE were observed for heated methanol (treatment 4) rather than water extraction (treatment 1), but the increases were less than 2-fold. 19 refs., 1 fig., 5 tabs.

  5. A Comprehensive Laboratory Study to Improve Ground Truth Calibration of Remotely Sensed Near-Surface Soil Moisture (United States)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Sheng, W.; Jones, S. B.


    Optical satellite and airborne remote sensing (RS) have been widely applied for characterization of large-scale surface soil moisture distributions. However, despite the excellent spatial resolution of RS data, the electromagnetic radiation within the optical bands (400-2500 nm) penetrates the soil profile only to a depth of a few millimeters; hence obtained moisture estimates are limited to the soil surface region. Furthermore, moisture sensor networks employed for ground truth calibration of RS observations commonly exhibit very limited spatial resolution, which consequently leads to significant discrepancies between RS and ground truth observations. To better understand the relationship between surface and near-surface soil moisture, we employed a benchtop hyperspectral line-scan imaging system to generate high resolution surface reflectance maps during evaporation from soil columns filled with source soils covering a wide textural range and instrumented with a novel time domain reflectometry (TDR) sensor array that allows monitoring of near surface moisture at 0.5-cm resolution. A recently developed physical model for surface soil moisture predictions from shortwave infrared reflectance was applied to estimate surface soil moisture from surface reflectance and to explore the relationship between surface and near-surface moisture distributions during soil drying. Preliminary results are very promising and their applicability for ground truth calibration of RS observations will be discussed.

  6. Short-term dynamics of culturable bacteria in a soil amended with biotransformed dry olive residue. (United States)

    Siles, J A; Pascual, J; González-Menéndez, V; Sampedro, I; García-Romera, I; Bills, G F


    Dry olive residue (DOR) transformation by wood decomposing basidiomycetes (e.g. Coriolopsis floccosa) is a possible strategy for eliminating the liabilities related to the use of olive oil industry waste as an organic soil amendment. The effects of organic fertilization with DOR on the culturable soil microbiota are largely unknown. Therefore, the objectives of this study were to measure the short-term effects of DOR and C. floccosa-transformed DOR on the culturable bacterial soil community, while at the same time documenting the bacterial diversity of an agronomic soil in the southeastern Iberian Peninsula. The control soil was compared with the same soil treated with DOR and with C. floccosa-transformed DOR for 0, 30 and 60 days. Impact was measured from total viable cells and CFU counts, as well as the isolation and characterization of 900 strains by fatty acid methyl ester profiles and 16S rRNA partial sequencing. The bacterial diversity was distributed between Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria, Bacilli, Sphingobacteria and Cytophagia. Analysis of the treatments and controls demonstrated that soil amendment with untransformed DOR produced important changes in bacterial density and diversity. However, when C. floccosa-transformed DOR was applied, bacterial proliferation was observed but bacterial diversity was less affected, and the distribution of microorganisms was more similar to the unamended soil.

  7. Relationship between Mineral Soil Surface Area and the Biological Degradation of Biosolids Added to Soil

    Directory of Open Access Journals (Sweden)

    Dongqi Wen


    Full Text Available Geochemical and biological processes that operate in the soil matrix and on the soil surface are important to the degradation of biosolids in soil. Due to the large surface area of soils it is assumed that the microbial ecology is associated with mineral soil surface area. The total mineral surface areas were determined for soils from eight different fields selected from a long term study (1972–2006 of annual biosolids application to 41 fields in central Illinois varying in size from 3.6 to 66 ha. The surface areas for the soils varied from 1 to 9 m2/g of soil. The biological degradation rates for the eight soils were determined using a biological degradation rate model (DRM and varied from 0.02 to 0.20/year−1. Regression analysis revealed that the degradation rate was positively associated with mineral soil surface area (1 m2/g produces 0.018 year−1 increase in the degradation rate. The annual soil sequestration rate was calculated to increase from 1% to 6% when the soil total surface area increased from 1 to 9 m2/g of soil. Therefore, land application of biosolids is an effective way to enhance carbon sequestration in soils and reduce greenhouse gas emissions.

  8. Using Artificial Soil and Dry-Column Flash Chromatography to Simulate Organic Substance Leaching Process: A Colorful Environmental Chemistry Experiment (United States)

    de Avellar, Isa G. J.; Cotta, Tais A. P. G.; Neder, Amarilis de V. Finageiv


    Soil is an important and complex environmental compartment and soil contamination contributes to the pollution of aquifers and other water basins. A simple and low-cost experiment is described in which the mobility of three organic compounds in an artificial soil is examined using dry-column flash chromatography. The compounds were applied on top…

  9. Impact of drying-rewetting events on the response of soil microbial functions to dairyfibre and Miscanthus biochars (United States)

    Bonnett, Sam; Vink, Stefanie; Baker, Kate; Saghir, Muhammad; Hornung, Andreas


    dissolution of alkaline minerals, high ash content (Lehmann et al. 2011) and solubility of DOC. Biochar treatments buffered changes in pH caused by drying and flooding but resulted in an increase in DOC. Biochar in general stabilised glucosidase activity whilst Miscanthus biochar stimulated chitinase and phosphatase activity that may have been due to adsorption of either enzyme or substrate as observed by Bailey et al. (2011). Surprisingly, alkaline phosphatase activity was not stimulated by the rise in pH in the diaryfibre treatment and was lower than the control along with the other hydrolase enzymes suggesting that deprotonation of soil phenols at higher pH inhibited activity via the enzyme-latch mechanism that in peatlands explains low rates of decomposition (Freeman et al., 2001; Sinsabaugh et al. 2010). This was supported by observation of higher phenol oxidase activity within the dairyfibre treatment that increased in response to greater availability of substrate and/or increases in pH. All biochars inhibited the production of N2O that was stimulated by the supply of labile carbon from SIR, suggesting that biochar decreased C-substrate availability through adsorption at its surface (Clough and Condron, 2010). Overall, this study has shown that specific feedstocks may be used to produce biochars to control microbial functions in soil such as inhibiting hydrolase enzymes for carbon sequestration as occurs naturally in peatlands or suppress the production of the potent greenhouse gas N2O. References Bailey, V., Fansler, S.J., Smith, J.L. Bolton, H. (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology and Biochemistry 43, 296-301. Clough, T. and Condron, L. (2010) Biochar and the nitrogen cycle: introduction. Journal of Environmental Quality, 39,1218-1223. Freeman, C., Ostle, N. and Kang, H. (2001) An enzymic 'latch' on a global carbon store. Nature 409, 149. Lehmann, J and Joseph, S (2009

  10. Inverse modeling of soil characteristics from surface soil moisture observations: potential and limitations

    Directory of Open Access Journals (Sweden)

    A. Loew


    Full Text Available Land surface models (LSM are widely used as scientific and operational tools to simulate mass and energy fluxes within the soil vegetation atmosphere continuum for numerous applications in meteorology, hydrology or for geobiochemistry studies. A reliable parameterization of these models is important to improve the simulation skills. Soil moisture is a key variable, linking the water and energy fluxes at the land surface. An appropriate parameterisation of soil hydraulic properties is crucial to obtain reliable simulation of soil water content from a LSM scheme. Parameter inversion techniques have been developed for that purpose to infer model parameters from soil moisture measurements at the local scale. On the other hand, remote sensing methods provide a unique opportunity to estimate surface soil moisture content at different spatial scales and with different temporal frequencies and accuracies. The present paper investigates the potential to use surface soil moisture information to infer soil hydraulic characteristics using uncertain observations. Different approaches to retrieve soil characteristics from surface soil moisture observations is evaluated and the impact on the accuracy of the model predictions is quantified. The results indicate that there is in general potential to improve land surface model parameterisations by assimilating surface soil moisture observations. However, a high accuracy in surface soil moisture estimates is required to obtain reliable estimates of soil characteristics.


    Directory of Open Access Journals (Sweden)

    Hamudu Rukangantambara


    Full Text Available Since 1980, wetland s in Rwanda have been considered as important areas for agriculture intensification through improving food security and incomes to the farmers. However, changes in the soil nutrient status due to repeatedly wetting and drying phenomena may considerably affect soil fertility status thus leading to low crop productivity of the wetlands. This has consequently created fear to the wetland users especially the local farmers, extension workers and agronomists. The comparative study was conducted to assess the effect of drained and irrigated phenomena at Mamba, Rwasave and Rugeramigozi marshlands on soil fertility change under rice growing. 24 samples were taken with 12 samples under drained and 12 under irrigated areas. The samples were collected randomly from top soil ( 0- 20 cm. The following parameters were quantified; soil pH( H 2O in soil water suspension with ratio 1:2.5; Al exchangeable( 1N Kcl, organic carbon( walkely and black method in Sumner method modified (1984, Total nitrogen kjeldahl (TNK in Bremner modified method, available phosphorus ( bray 1. Bases exchangeable with 1 N ammonium acetate following AAS and CEC and available Fe, Zn, Cu and Mn (DTDA diethylenetriaminepentaacetic acid. Data analyses were processed with GEN STAT version 3. The results showed that the fluctuation of wet and dry water have significantly affected soil fertility status at p= 0,05. The phosphorus and potassium are in the low levels of deficiency 2.32 ppm and 47.72 ppm in irrigated area while crop requirement nutrients are 20 ppm and 200 ppm respectively. And Al is in toxic level conditions, 27.5% in drained area while rice tolerance is 20%. Fe was 641.51 ppm in irrigated area while requirement narrowed to 300 ppm. As conclusion, the soil fertility is low and toxic which constitutes a limitation. The wetland soil in Rwanda should offer opportunities for paddy growing ( rice, etc, if soil fertility factors would be amended by lime for its

  12. DMS pulse and COS valley: the effect of simulated rainfall on sulfur gas exchange in dry soils of uncultivated marine terraces (United States)

    Whelan, M.; Khan, M. H.; Barnash, K.; Vollering, J.; Rhew, R.


    Atmospheric sulfur compounds regulate climate by affecting cloud dynamics and reducing the amount of solar radiation that reaches the Earth's surface. Quantifying the terrestrial-atmosphere exchanges of sulfur has been challenging as only some of the controlling factors are known. In general, oxic soils are observed to act as a sink of reduced sulfur compounds (RSCs), while anoxic soils tend to act a source. Changes in soil moisture are therefore expected to greatly influence the direction of net gas fluxes of RSCs. Here we report the effect of simulated rainfall on soil samples from uncultivated marine terraces near Santa Cruz, CA, U.S.A (37.0°N, 122°W). Soils were collected in the dry season of a Mediterranean-type climate and air dried before the analysis. The rate of production of dimethyl sulfide (DMS), a compound known to be produced by phytoplankton and bacteria, increased dramatically in the first hours after water addition, tapering off over a few days. A concurrent pulse in microbial respiration (as CO_2) was observed. Soils that experience lengthy dry periods, such as those from arid and Mediterranean climates, have been shown to exhibit increases of carbon mineralization after rain events due to a combination of released soil organic matter and increased microbial activity. Conversely, production of carbonyl sulfide (COS), the most abundant reduced sulfur compound in the atmosphere, decreased immediately upon wetting the soil, perhaps due to isolation of the soil atmosphere from the headspace by water. These simultaneous processes after the addition of water can transform a soil in the bulk oxic state into a net source of RSCs in a relatively short span of time.

  13. Gamma-ray computed tomography to characterize soil surface sealing

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.F.Luiz F. E-mail:; Macedo, Jose R. de; Souza, Manoel D. de; Bacchi, Osny O.S.; Reichardt, Klaus


    The application of sewage sludge as a fertilizer on soils may cause compacted surface layers (surface sealing), which can promote changes on soil physical properties. The objective of this work was to study the use of gamma-ray computed tomography, as a diagnostic tool for the evaluation of this sealing process through the measurement of soil bulk density distribution of the soil surface layer of samples subjected to sewage sludge application. Tomographic images were taken with a first generation tomograph with a resolution of 1 mm. The image analysis opened the possibility to obtain soil bulk density profiles and average soil bulk densities of the surface layer and to detect the presence of soil surface sealing. The sealing crust thickness was estimated to be in the range of 2-4 mm.

  14. GEMAS: Colours of dry and moist agricultural soil samples of Europe (United States)

    Klug, Martin; Fabian, Karl; Reimann, Clemens


    High resolution HDR colour images of all Ap samples from the GEMAS survey were acquired using a GeoTek Linescan camera. Three measurements of dry and wet samples with increasing exposure time and increasing illumination settings produced a set of colour images at 50μm resolution. Automated image processing was used to calibrate the six images per sample with respect to the synchronously measured X-Rite colorchecker chart. The calibrated images were then fit to Munsell soil colours that were measured in the same way. The results provide overview maps of dry and moist European soil colours. Because colour is closely linked to iron mineralogy, carbonate, silicate and organic carbon content the results can be correlated to magnetic, mineralogical, and geochemical properties. In combination with the full GEMAS chemical and physical measurements, this yields a valuable data set for calibration and interpretation of visible satellite colour data with respect to chemical composition and geological background, soil moisture, and soil degradation. This data set will help to develop new methods for world-wide characterization and monitoring of agricultural soils which is essential for quantifying geologic and human impact on the critical zone environment. It furthermore enables the scientific community and governmental authorities to monitor consequences of climatic change, to plan and administrate economic and ecological land use, and to use the data set for forensic applications.

  15. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. (United States)

    Querejeta, José Ignacio; Estrada-Medina, Héctor; Allen, Michael F; Jiménez-Osornio, Juan José


    The sources of water used by woody vegetation growing on karst soils in seasonally dry tropical regions are little known. In northern Yucatan (Mexico), trees withstand 4-6 months of annual drought in spite of the small water storage capacity of the shallow karst soil. We hypothesized that adult evergreen trees in Yucatan tap the aquifer for a reliable supply of water during the prolonged dry season. The naturally occurring concentration gradients in oxygen and hydrogen stable isotopes in soil, bedrock, groundwater and plant stem water were used to determine the sources of water used by native evergreen and drought-deciduous tree species. While the trees studied grew over a permanent water table (9-20 m depth), pit excavation showed that roots were largely restricted to the upper 2 m of the soil/bedrock profile. At the peak of the dry season, the delta(18)O signatures of potential water sources for the vegetation ranged from 4.1 +/- 1.1 per thousand in topsoil to -4.3 +/- 0.1 per thousand in groundwater. The delta(18)O values of tree stem water ranged from -2.8 +/- 0.3 per thousand in Talisia olivaeformis to 0.8 +/- 1 per thousand in Ficus cotinifolia, demonstrating vertical partitioning of soil/bedrock water among tree species. Stem water delta(18)O values were significantly different from that of groundwater for all the tree species investigated. Stem water samples plotted to the right of the meteoric water line, indicating utilization of water sources subject to evaporative isotopic enrichment. Foliar delta(13)C in adult trees varied widely among species, ranging from -25.3 +/- 0.3 per thousand in Enterolobium cyclocarpum to -28.7 +/- 0.4 per thousand in T. olivaeformis. Contrary to initial expectations, data indicate that native trees growing on shallow karst soils in northern Yucatan use little or no groundwater and depend mostly on water stored within the upper 2-3 m of the soil/bedrock profile. Water storage in subsurface soil-filled cavities and in the

  16. Soil surface sealing reverse or promote desertification? (United States)

    Assouline, Shmuel; Thompson, Sally; Chen, Li; Svoray, Tal; Sela, Shai; Katul, Gabriel


    Vegetation cover in dry regions is a key variable determining desertification. Bare soils exposed to rainfall by desertification can form physical crusts that reduce infiltration, exacerbating water stress on the remaining vegetation. Paradoxically, field studies show that crust removal is associated with plant mortality in desert systems, while artificial biological crusts can improve plant regeneration. Here, it is shown how physical crusts can act as either drivers of, or buffers against desertification depending on their environmental context. The behavior of crusts is first explored using a simplified theory for water movement on a uniform, partly vegetated slope subject to stationary hydrologic conditions. Numerical model runs supplemented with field data from a semiarid Long-Term Ecological Research (LTER) site are then applied to represent more realistic environmental conditions. When vegetation cover is significant, crusts can drive desertification, but this process is potentially self-limiting. For low vegetation cover, crusts mitigate against desertification by providing water subsidy to plant communities through a runoff-runon mechanism.

  17. Modeling evaporation processes in a saline soil from saturation to oven dry conditions

    Directory of Open Access Journals (Sweden)

    M. Gran


    Full Text Available Thermal, suction and osmotic gradients interact during evaporation from a salty soil. Vapor fluxes become the main water flow mechanism under very dry conditions. A coupled nonisothermal multiphase flow and a reactive transport model of a salty sand soil was developed to study such an intricate system. The model was calibrated with data from an evaporation experiment (volumetric water content, temperature and concentration. The retention curve and relative permeability functions were modified to simulate oven dry conditions. Experimental observations were satisfactorily reproduced, which suggests that the model can be used to assess the underlying processes. Results show that evaporation is controlled by heat, and limited by salinity and liquid and vapor fluxes. Below evaporation front vapor flows downwards controlled by temperature gradient and thus generates a dilution. Vapor diffusion and dilution are strongly influenced by heat boundary conditions. Gas diffusion plays a major role in the magnitude of vapor fluxes.

  18. Temporal stability of the apparent electrical conductivity measured in seasonally dry sandy soil (United States)

    Pedrera, Aura; Brevik, Eric C.; Giráldez, Juan V.; Vanderlinden, Karl


    Soil is spatially heterogeneous due to differences in parent material, climate, topography, time and management practices. The use of non-invasive and non-contact geophysical methods facilitates the exploration of natural landscapes or cropped areas. Electromagnetic induction (EMI) sensors which measure the soil apparent electrical conductivity (ECa) express soil spatial variability in terms of spatial soil ECa variability. In an agricultural context, knowledge and understanding of the soil spatial variability will allow us to delimit areas where precision agriculture techniques could be used to improve management practices. These practices enhance soil and water conservation, especially for sandy soils in Mediterranean climates where soils are dry for substantial periods of time. The first objective of this work was to apply principal component analysis (PCA) to see if a temporally stable component could be found. The second objective was to see if temporal stability information acquired from several ECa surveys could be used to better interpret results of a single survey in terms of relationships between ECa and soil water content (SWC). The experimental catchment, "La Manga", is located in SW Spain and covers 6.7 ha of a rainfed olive orchard. Soil profile samples were collected at 41 locations on a pseudo-regular grid. Samples were analyzed in the laboratory for soil texture, stone content, and bulk density (ρb). The catchment was sampled for gravimetric SWC at the 0-0.1 and 0.1-0.2 m depth intervals at the same 41 locations on 18 occasions. At the same 41 locations ECa was measured during 9 of the 18 SWC surveys using a DUALEM-21S EMI sensor. In addition, 7 field-wide ECa surveys were conducted. Soil ECa values were used to delimit three areas in the orchard, based on the spatial distribution of the first principal component (PC), which represented the spatial ECa pattern. Soil properties were studied within each area, and using analysis of variance

  19. Reconstruction of ploughed soil surface with 3D fractal interpolation

    NARCIS (Netherlands)

    Liu, Y.; Lu, Z.; Hoogmoed, W.B.; Li, X.


    By using a laser profiler, the roughness of ploughed soil surface was obtained. 3D fractal interpolation method was used to interpolate several kinds of reduced measured surface data which were reduced from the original measured ploughed soil surface elevation data in different reduction rates. Also

  20. Surface Chemical Properties of Colloids in Main Soils of China

    Institute of Scientific and Technical Information of China (English)



    Surface chemical properties of soil colloids are the important factor affecting soil fertility and genesis.To provide scientific basis for soil genetic classification,promotion of soil fertility and reasonable fertilizqation,the specific surface area and electric charge of soil colloids in relation to clay minerals and organic matter are further discussed on the basis of the results obtained from the studies on surface chemical properties of soil colloids in five main soils of China.Results from the studies show that the effect of clay minerals and organic matter on the surface chemical properties of soil colloids is very complicated because the siloxane surface,hydrated oxide surface and organic matter surface do not exist separately,but they are always mixed together and influenced each other.The understanding of the relationship among clay minerals,organic matter and surface chemical properties of soil colloids depends upon further study of the relevant disciplines of soil science,especially the study on the mechanisms of organo-mineral complexes.

  1. Microbial mediated soil structure formation under wetting and drying cycles along a climate gradient (arid to humid) on hillslopes in Chile (United States)

    Bernhard, Nadine; Moskwa, Lisa-Marie; Kühn, Peter; Mueller, Carsten W.; Wagner, Dirk; Scholten, Thomas


    It is well-known that the land surface resistance against erosion is largely controlled by the structure stability of the soil given by its inherent properties. Microbial activity plays a vital role in soil structure development, and thus affecting soil physical parameters. Accordingly the influence of biota shaping the earth's surface has been described through mechanisms such as mineral weathering, formation of ions and biofilms controlling land surface resistance against erosion. However the role of microorganisms for the development of soil stabilizing properties is still unclear and a precise quantitative understanding of the mechanisms under different climate conditions is widely missing. The objectives of our study are to examine to which extend microbiological processes control soil structure formation and stability and whether this is influenced by climate and topographic position. Soil samples were taken along a climate gradient and from different topographic positions of hillslopes in the Chilean Coastal Cordillera in austral autumn 2016. The variables of lithology, human disturbances and relief were held as far as possible constant whereas climate varies along the transect. We implemented 10 wet-dry cycles on air dried and sieved natural and sterile samples to enhance particle aggregation and increase structure stability. Throughout the entire experiment temperature is held constant at 20 °C to avoid changes in microbial activity. Samples are moistened and dried and each kept at the same respective pF-values for the same duration to add the same stress to each sample. Aggregate stability will be measured using wet sieving, ultrasonic dispersion and simulated rainfall. The results will be compared with on-site rainfall simulation experiments on hillslopes in the Chilean Coastal Cordillera to link laboratory results with natural field conditions. The experiment gives first insight into the aggregate formation process over time with and without

  2. Evaluation of the Various Drying Methods on Surface Hardness of Type IV Dental Stone (United States)

    Sudhakar, A; Srivatsa, G; Shetty, Rohit; Rajeswari, C L; Manvi, Supriya


    Background: Studies regarding the effect of various methods to increase the surface hardness of Type IV dental stone are not conclusive. Therefore, this study was carried out to evaluate the effect of air drying, micro oven drying and die hardener on surface hardness of Type IV dental stone. Materials and Methods: A standard metal die was fabricated; polyvinyl siloxane impression material was used to make the molds of metal die. A total of 120 specimens were obtained from two different die stones and were grouped as Group A (kalrock) and Group B (pearl stone), and were subjected to air drying for 24 h, micro oven drying and application of die hardener. These models were then subjected to surface hardness testing using the knoop hardness instrument. The obtained data were subjected to statistical analysis. Results: The hardness of Group A specimens was 64 ± 0.54 Knoop hardness number (KHN) after application of die hardener, 60.47 ± 0.41 KHN after 24 h air drying, 58.2 ± 0.88 after microwave oven drying and 24.6 ± 0.4 after 1 h air drying. The hardness of Group B specimens was 45.59 ± 0.63 KHN after application of die hardener, 40.2 ± 0.63 KHN after 24 h air drying, 38.28 ± 0.55 KHN after microwave oven drying and 19.91 ± 0.64 KHN after 1 h air drying. Conclusion: Group A showed better results than Group B at all times. Application of the die hardener showed highest hardness values followed in the order by 24 h air drying, microwave oven drying and 1 h air drying in both groups. The study showed that air drying the dies for 24 h followed by application of a single layer of the die hardener produced the best surface hardness and is recommended to be followed in practice. PMID:26124610

  3. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico (United States)

    Davidson, Eric A.; Vitousek, Peter M.; Riley, Ralph; Matson, Pamela A.; Garcia-Mendez, Georgina; Maass, J. M.


    Soil emissions of NO were measured at the Chamela Biological Station, Mexico, using soil covers and a field apparatus of NO detection based on CrO3 conversion of NO to NO2 and detection of NO2 by chemiluminescence with Luminol. Mean NO fluxes from forest soils ranged from 0.14 to 0.52 ng NO-N/sq cm/hr during the dry season and from 0.73 to 1.27 ng NO-N/sq cm/hr during the wet season. A fertilized floodplain pasture exhibited higher fluxes, but an unfertilized upland pasture, which represents the fastest growing land use in the region, had flux rates similar to the forest sites. Wetting experiments at the end of the dry season caused large pulses of NO flux, equaling 10 percent to 20 percent of the estimated annual NO emissions of 0.5-1.0 kg N/ha from the forest sites. Absence of a forest canopy during the dry season and the first wet season rain probably results in substantial NO(x) export from the forest system that may be important to regional atmospheric chemical processes. Wetting experiments during the wet season and a natural rain event had little or no stimulatory effect on NO flux rates.

  4. Modeling evaporation processes in a saline soil from saturation to oven dry conditions

    Directory of Open Access Journals (Sweden)

    M. Gran


    Full Text Available Thermal, suction and osmotic gradients interact during evaporation from a salty soil. Vapor fluxes become the main water flow mechanism under very dry conditions. A coupled nonisothermal multiphase flow and reactive transport model was developed to study mass and energy transfer mechanisms during an evaporation experiment from a sand column. Very dry and hot conditions, including the formation of a salt crust, necessitate the modification of the retention curve to represent oven dry conditions. Experimental observations (volumetric water content, temperature and concentration profiles were satisfactorily reproduced using mostly independently measured parameters, which suggests that the model can be used to assess the underlying processes. Results show that evaporation concentrates at a very narrow front and is controlled by heat flow, and limited by salinity and liquid and vapor fluxes. The front divides the soil into a dry and saline portion above and a moist and diluted portion below. Vapor diffusses not only upwards but also downwards from the evaporation front, as dictated by temperature gradients. Condensation of this downward flux causes dilution, so that salt concentration is minimum and lower than the initial one, just beneath the evaporation front. While this result is consistent with observations, it required adopting a vapor diffusion enhancement factor of 8.

  5. Regional Simulation of Soil Organic Carbon Dynamics for Dry Farmland in East China by Coupling a 1:500 000 Soil Database with the Century Model

    Institute of Scientific and Technical Information of China (English)

    WANG Shi-Hang; SHI Xue-Zheng; ZHAO Yong-Cun; D.C.WEINDORF; YU Dong-Sheng; XU Sheng-Xiang; TAN Man-Zhi; SUN Wei-Xia


    Changes in soil organic carbon (SOC) in agricultural soils influence soil quality and greenhouse gas concentrations in the atmosphere. Dry farmland covers more than 70% of the whole cropland area in China and plays an important role in mitigating carbon dioxide (CO2) emissions. In this study, 4 109 dry farmland soil polygons were extracted using spatial overlay analysis of the soil layer (1:500 000) and the land use layer (1:500 000) to support Century model simulations of SOC dynamics for dry farmland in Anhui Province, East China from 1980 to 2008. Considering two field-validation sites,the Century model performed relatively well in modeling SOC dynamics for dry farmland in the province. The simulated results showed that the area-weighted mean soil organic carbon density (SOCD) of dry farmland increased from 18.77 Mg C ha-1 in 1980 to 23.99 Mg C ha-1 in 2008 with an average sequestration rate of 0.18 Mg C ha-1 year-1. Approximately 94.9% of the total dry farmland area sequestered carbon while 5.1% had carbon lost. Over the past 29 years, the net SOC gain in dry farmland soils of the province was 19.37 Tg, with an average sequestration rate of 0.67 Tg C year-1 Augmentation of SOC was primarily due to increased consumption of nitrogen fertilizer and farmyard manure. Moreover,SOC dynamics were highly differentiated among dry farmland soil groups. The integration of the Century model with a fine-scale soil database approach could be conveniently utilized as a tool for the accurate simulation of SOC dynamics at the regional scale.

  6. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China. (United States)

    Liu, Guannan; Wang, Juan; Zhang, Erxi; Hou, Jing; Liu, Xinhui


    Heavy metal contamination of soils has been a long-standing environmental problem in many parts of the world, and poses enormous threats to ecosystem and human health. Speciation of heavy metals in soils is crucial to assessing environmental risks from contaminated soils. In this study, total concentrations and speciation of As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn were measured for agricultural soils near mines along the Diaojiang River in Guangxi Zhuang Autonomy Region, China. The sources of heavy metals in soils also were identified to assess their effect on speciation distribution of soil heavy metals. Furthermore, the speciation distribution of Cd and Zn, main soil heavy metal pollutants, in dry land and paddy soils were compared. Results showed that there were two severely polluted regions near mine area reaching alarming pollution level. As, Cd, Pb, and Zn were more affected by mining activities, showing very strong pollution level in soils. The mean percentage of exchangeable and carbonate fraction was highest and up to 46.8 % for Cd, indicating a high environmental risk. Greater bioavailable fractions of As, Cd, Cu, Mn, Pb, and Zn were found in soils heavily polluted by mining activities, whereas Cr and Ni as geogenic elements in the stable residual fraction. In addition, in the dry land soils, reducible fraction proportion of Cd was higher than that in the paddy soils, whereas exchangeable and carbonate fraction of Cd was lower than that in the paddy soils. Oxidizable fraction of Zn was higher in the paddy soils than that in the dry land soils. The results indicate that the sources of soil heavy metals and land types affect heavy metal speciation in the soil and are significant for environmental risk assessment of soil heavy metal pollutions.

  7. Analysis of surface soil moisture patterns in agricultural landscapes using empirical orthogonal functions

    Directory of Open Access Journals (Sweden)

    W. Korres


    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable land test site within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm has been measured in an approx. 50×50 m grid at 14 and 17 dates (May 2007 to November 2008 in both test sites. To analyse spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to connect the pattern to related factors and processes. For the grassland test site, the analysis results in one significant spatial structure (first EOF, which explains about 57.5% of the spatial variability connected to soil properties and topography. The weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable land test site, the analysis yields two significant spatial structures, the first EOF, explaining 38.4% of the spatial variability, shows a highly significant correlation to soil properties, namely soil texture. The second EOF, explaining 28.3% of the spatial variability, is connected to differences in land management. The soil moisture in the arable land test site varies more during dry and wet periods on locations with low porosity.

  8. Changes in structural stability with soil surface degradation. Consequences for soil erosion processes


    Darboux, Frédéric; Le Bissonnais, Yves


    Hydrological Science, section 39 - Soil Science Systems, section 23: Dryland hydrologySRef-ID: 1607-7962/gra/EGU06-A-07243; Erosion and sediment transport processes depend on the soil surface properties. Because of water flow and other processes (climate, agricultural practices, biological activity, etc.), the properties of the soil surface can undergo significant changes that affect erosion. As a consequence, understanding of the transport processes and improvement in soil erosion prediction...

  9. Long and Midterm Effect of Conservation Agriculture on Soil Properties in Dry Areas of Morocco

    Directory of Open Access Journals (Sweden)

    Malika Laghrour


    Full Text Available In Morocco, conservation agriculture, particularly no tillage systems, has become an alternative strategy to mitigate land degradation caused by conventional tillage in semiarid to arid regions. This paper is based on behaviour to tillage treatments of two Vertisols in Morocco. After 11 years of testing, soil organic matter content results showed a significant difference (P<0.05 only at soil surface (0–10 cm in favour of no tillage and a variation of 30% at this depth. The results obtained after 32 years of testing showed a significant soil profile difference (P<0.05, up to 40 cm under no tillage compared to conventional tillage, and a variation of 54% at 5–10 cm. For total nitrogen, there was no significant effect between no tillage and conventional tillage at the soil surface after 11 years unlike the result obtained after 32 years. There are no significant differences in bulk density between tillage treatments at soil surface for both sites. The measurement of soil structural stability showed a significant effect (P<0.05 for all three tests and for both sites. This means that no tillage helped Vertisols to resist different climatic constraints, preserving environmental soil quality.

  10. Influence of Rough Flow over Sea Surface on Dry Atmospheric Deposition Velocities

    Directory of Open Access Journals (Sweden)

    Yan Zhang


    Full Text Available A Meteorological model and a dry deposition module were used to estimate the effects of sea surface rough flow (SSRF over the sea surface on dry deposition velocities. The dry deposition turbulence resistance, Ra, and sub-layer resistance, Rb, decreased more than 10% and 5% due to SSRF, respectively. For example, for HNO3, the mean dry deposition velocities (Vd were 0.51 cm s-1 in January, 0.58 in April, 0.65 cm s-1 in July and 0.79 cm s-1 in October with only smooth flow over the sea surface. However, the SSRF increased the Vd of HNO3 by 5 - 20% in the east China seas. These results show that SSRF is an important factor in estimating surface roughness to further improve calculation of the dry deposition velocities over the ocean. Improvements in parameterization of sea roughness length will be a worthwhile effort in related future studies.

  11. The influence of soil type, vegetation cover and soil moisture on spin up behaviour of a land surface model in a monsoonal region (United States)

    Bhattacharya, Anwesha; Mandal, Manabottam


    Model spin-up is the process through which the model is adequately equilibrated to ensure balance between the mass fields and velocity fields. In this study, an offline one dimensional Noah land surface model is integrated recursively for three years to assess its spin-up behavior at different sites over the Indian Monsoon domain. Several numerical experiments are performed to investigate the impact of soil category, vegetation cover, initial soil moisture and subsequent dry or wet condition on model spin-up. These include simulations with the dominant soil and vegetation covers of this region, different initial soil moisture content (observed soil moisture; dry soil; moderately wet soil; saturated soil), simulations initialized at different rain conditions (no rain; infrequent rain; continuous rain) and different seasons (Winter, Spring, Summer/Pre-Monsoon, Monsoon and Autumn). It is seen that the spin-up behavior of the model depends on the soil type and vegetation cover with soil characteristics having the larger influence. Over India, the model has the longest spin-up in the case of simulations with loamy soil covered with mixed-shrub. It is noted that the model has a significantly longer spin-up when initialized with very low initial soil moisture content than with higher soil moisture content. It is also seen that in general, simulations initialized just before a continuous rainfall event have the least spin-up time. This observation is reinforced by the results from the simulations initialized in different seasons. It is seen that for monsoonal region, the model spin-up time is least for simulations initialized just before the Monsoon. Model initialized during the Monsoon rain episodes has a longer spin-up than that initialized in any other season. Furthermore, it is seen that the model has a shorter spin-up if it reaches the equilibrium state predominantly via drying process and could be as low as two months under quasi-equilibrium condition depending on

  12. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  13. The importance of soil drying and re-wetting in crop phytohormonal and nutritional responses to deficit irrigation. (United States)

    Dodd, Ian C; Puértolas, Jaime; Huber, Katrin; Pérez-Pérez, Juan Gabriel; Wright, Hannah R; Blackwell, Martin S A


    Soil drying and re-wetting (DRW) occurs at varying frequencies and intensities during crop production, and is deliberately used in water-saving irrigation techniques that aim to enhance crop water use efficiency. Soil drying not only limits root water uptake which can (but not always) perturb shoot water status, but also alters root synthesis of phytohormones and their transport to shoots to regulate leaf growth and gas exchange. Re-wetting the soil rapidly restores leaf water potential and leaf growth (minutes to hours), but gas exchange recovers more slowly (hours to days), probably mediated by sustained changes in root to shoot phytohormonal signalling. Partial rootzone drying (PRD) deliberately irrigates only part of the rootzone, while the remainder is allowed to dry. Alternating these wet and dry zones (thus re-wetting dry soil) substantially improves crop yields compared with maintaining fixed wet and dry zones or conventional deficit irrigation, and modifies phytohormonal (especially abscisic acid) signalling. Alternate wetting and drying (AWD) of rice can also improve yield compared with paddy culture, and is correlated with altered phytohormonal (including cytokinin) signalling. Both PRD and AWD can improve crop nutrition, and re-wetting dry soil provokes both physical and biological changes which affect soil nutrient availability. Whether this alters crop nutrient uptake depends on competition between plant and microbes for nutrients, with the rate of re-wetting determining microbial dynamics. Nevertheless, studies that examine the effects of soil DRW on both crop nutritional and phytohormonal responses are relatively rare; thus, determining the cause(s) of enhanced crop yields under AWD and PRD remains challenging. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email:

  14. Differences between soybean genotypes in physiological response to sequential soil drying and rewetting

    Institute of Scientific and Technical Information of China (English)

    Md; Mokter; Hossain; Xueyi; Liu; Xusheng; Qi; Hon-Ming; Lam; Jianhua; Zhang


    Soybean genotypes show diverse physiological responses to drought, but specific physiological traits that can be used to evaluate drought tolerance have not been identified. In the present study we investigated physiological traits of soybean genotypes under progressive soil drying and rewetting, using a treatment mimicking field conditions.After a preliminary study with eight soybean genotypes, two drought-tolerant genotypes and one susceptible genotype were grown in the greenhouse and subjected to water restriction. Leaf expansion rate, gas exchange, water relation parameters, total chlorophyll(Chl), proline contents of leaves, and root xylem p H were monitored in a time course, and plant growth and root traits were measured at the end of the stress cycle. Drought-tolerant genotypes maintained higher leaf expansion rate, net photosynthetic rate(Pn), Chl content,instantaneous water use efficiency(WUEi), % relative water content(RWC), water potential(ψw), and turgor potential(ψp) during progressive soil drying and subsequent rewetting than the susceptible genotypes. By contrast, stomatal conductance(gs) and transpiration rate(Tr)of tolerant genotypes declined faster owing to dehydration and recovered more sharply after rehydration than the same parameters in susceptible ones. Water stress caused a significant increase in leaf proline level and root xylem sap p H of both genotypes but tolerant genotypes recovered to pre-stress levels more quickly after rehydration. Tolerant genotypes also produced longer roots with higher dry mass than susceptible genotypes. We conclude that rapid perception and adjustment in response to soil drying and rewetting as well as the maintenance of relatively high Pn, %RWC, and root growth constitute the mechanisms by which drought-tolerant soybean genotypes cope with water stress.

  15. Numerical-analytical investigation into impact pipe driving in soil with dry friction. Part I: Nondeformable external medium

    CERN Document Server

    Aleksandrova, Nadezhda


    The study focuses on propagation of longitudinal waves in an elastic pipe partly embedded in a medium with dry friction. Mathematical formulation of the problem on the impact pipe driving into the soil is based on the model of longitudinal vibration of an elastic rod with taking into account lateral resistance. The lateral resistance of soil is described by the law of the contact dry friction. Numerical and analytical solutions to problems on longitudinal impulse loading of a pipe are compared.

  16. [Effects of mulching and fertilization on winter wheat field soil moisture in dry highland region of Loess Plateau]. (United States)

    Wang, Xiao-Feng; Tian, Xiao-Hong; Chen, Zi-Hui; Chen, Hui-Lin; Wang, Zhao-Hui


    A field experiment was conducted in a winter wheat field in Weibei dry highland region of Loess Plateau to study the effects of different mulching and fertilization treatments on soil moisture regime. The treatments were 1) no fertilization, 2) conventional fertilization, 3) recommended fertilization, 4) recommended fertilization + manure, 5) recommended fertilization + plastic mulch on soil ridges, 6) recommended fertilization + plastic mulch on soil ridges and straw mulch in furrows, and 7) recommended fertilization + straw mulch on entire plot. Soil moisture content was determined regularly with a neutron probe. Among the treatments, recommended fertilization plus plastic mulch on soil ridges and straw mulch in furrows in dry season (spring) resulted in the greatest increase of soil water storage and maintained the storage to the critical stage crops needed, followed by recommended fertilization plus plastic mulch on soil ridges. These two treatments could store more precipitation in field, and would benefit the development of rainfed agriculture in dry highland region of Loess Plateau. As for recommended fertilization plus manure, it had the least increase of soil water storage, with a difference of 48.2 mm to the recommended fertilization plus plastic mulch on soil ridges and straw mulch in furrows in dry season.

  17. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum]. (United States)

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong


    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  18. Nitrate Accumulation in Soil Profile of Dry Land Farming in Northwest China

    Institute of Scientific and Technical Information of China (English)

    FAN Jun; HAO Ming-De; SHAO Ming-An


    A long-term fertilizer experiment on dry land of the Loess Plateau, northwest China, has been conducted since 1984 to study the distribution and accumulation of NO3-N down to a depth of 400 cm in the profile of a coarse-textured dark loessial soil after continuous winter wheat cropping. Thirteen fertilizer treatments consisted of four levels of N and P applied alone or in combination. Annual N and P (P2O5) rates were 0,45, 90, 135 and 180 kg ha-1. After 15 successive cropping cycles, the soil samples were taken from each treatment for analysis of NO3-N concentration. The results showed that NO3-N distribution in the soil profile was quite different among the treatments. The application of fertilizer N alone resulted in higher NO3-N concentration in the soil profile than the combined application of N and P, showing that application of P could greatly reduce the NO3-N accumulation. With an annual application of 180 kg N ha-1 alone, a peak in NO3-N accumulation occurred at 140 cm soil depth, and the maximum NO3-N concentration in the soils was 67.92 mg kg-1. The amount of NO3-N accumulated in the soil profile decreased as the cumulative N uptake by the winter wheat increased. Application of a large amount of N resulted in lower N recoveries in winter wheat and greater NO3-N accumulation in soil profile. NO3-N did not enter underground water in the study region; therefore, there is no danger of underground water pollution. Amount of NO3-N accumulation can be predicted by an equation according to annual N and P rates based on the results of this experiment.

  19. Episodic soil succession on basaltic lava fields in a cool, dry environment (United States)

    Vaughan, K.L.; McDaniel, P.A.; Phillips, W.M.


    Holocene- to late Pleistocene-aged lava flows at Craters of the Moon National Monument and Preserve provide an ideal setting to examine the early stages of soil formation under cool, dry conditions. Transects were used to characterize the amount and nature of soil cover on across basaltic lava flows ranging in age from 2.1 to 18.4 ka. Results indicate that on flows soils (Folists in Soil Taxonomy) are the dominant soil type, providing an areal coverage of up to ∼25%. On flows ≥13.9 ka, deeper mineral soils including Entisols, Aridisols, and Mollisols become dominant and the areal extent increases to ≥95% on flows older than 18.4 ka. These data suggest there are two distinct pedogenic pathways associated with lava flows of the region. The first pathway is illustrated by the younger flows, where Folists dominate. In the absence of a major source of loess, relatively little mineral material accumulates and soils provide only minor coverage of the lava flows. Our results indicate that this pathway of soil development has not changed appreciably over the past ∼10 ka. The second pedogenic pathway is illustrated by the flows older than 13.9 ka. These flows have been subject to deposition of large quantities of loess during and after the last regional glaciation, resulting in almost complete coverage. Subsequent pedogenesis has given rise to Aridisols and Mollisols with calcic and cambic horizons and mollic epipedons. This research highlights the importance of regional climate change on the evolution of Craters of the Moon soilscapes.

  20. Photodegradation of antibiotics on soil surfaces: laboratory studies on sulfadiazine in an ozone-controlled environment. (United States)

    Wolters, André; Steffens, Markus


    Among the processes affecting transport and degradation of antibiotics released to the environment during application of manure and slurry to agricultural land, photochemical transformations are of particular interest. Drying-out of the top soil layer under field conditions enables sorption of surface-applied antibiotics to soil dust, thus facilitating direct, indirect, and sensitized photodegradation at the soil/atmosphere interface. For studying various photochemical transformation processes of sulfadiazine, a photovolatility chamber designed in accordance with the requirements of the USEPA Guideline and 161-3 was used. Application of 14C-labeled sulfadiazine enabled complete mass balances and allowed for investigating the impact of various surfaces (glass and soil dust) and environmental factors, i.e., irradiation and atmospheric ozone, on photodegradation and volatilization. Volatilization was shown to be a negligible process. Even after increasing the air temperature up to 35 degrees C only minor amounts of sulfadiazine and transformation products (0.01-0.28% of applied radioactivity) volatilized. Due to direct and indirect photodegradation, the highest extent of mineralization to 14CO2 (3.9%), the formation of degradation products and of nonextractable soil residues was measured in irradiated soil dust experiments using ozone concentrations of 200 ppb. However, even in the dark significant mineralization was observed when ozone was present, indicating ozone-controlled transformation of sulfadiazine to occur at the soil surface.

  1. Roles of Arbuscular Mycorrhizal Fungi and Soil Abiotic Conditions in the Establishment of a Dry Grassland Community.

    Directory of Open Access Journals (Sweden)

    Jana Knappová

    Full Text Available The importance of soil biota in the composition of mature plant communities is commonly acknowledged. In contrast, the role of soil biota in the early establishment of new plant communities and their relative importance for soil abiotic conditions are still poorly understood.The aim of this study was to understand the effects of soil origin and soil fungal communities on the composition of a newly established dry grassland plant community. We used soil from two different origins (dry grassland and abandoned field with different pH and nutrient and mineral content. Grassland microcosms were established by sowing seeds of 54 species of dry grassland plants into the studied soils. To suppress soil fungi, half of the pots were regularly treated with fungicide. In this way, we studied the independent and combined effects of soil origin and soil community on the establishment of dry grassland communities.The effect of suppressing the soil fungal community on the richness and composition of the plant communities was much stronger than the effect of soil origin. Contrary to our expectations, the effects of these two factors were largely additive, indicating the same degree of importance of soil fungal communities in the establishment of species-rich plant communities in the soils from both origins. The negative effect of suppressing soil fungi on species richness, however, occurred later in the soil from the abandoned field than in the soil from the grassland. This result likely occurred because the negative effects of the suppression of fungi in the field soil were caused mainly by changes in plant community composition and increased competition. In contrast, in the grassland soil, the absence of soil fungi was limiting for plants already at the early stages of their establishment, i.e., in the phases of germination and early recruitment. While fungicide affects not only arbuscular mycorrhizal fungi but also other biota, our data indicate that changes

  2. Optimisation of spray drying operating conditions of Morinda citrifolia L. fruit extract using response surface methodology



    A conventional solvent extract of Morinda citrifolia L. fruit was spray dried using adjuvant maltodextrin (5 wt.%). Spray drying was carried out according to the D-optimal design, and the independent variables selected were temperature and Mcore/Mwall. The spray drying process was optimised by using response surface methodology (RSM) for four different responses: moisture content (MC), DPPH scavenging activity, total phenolic content (TPC), and total flavonoid (TF). The effects of temperature...

  3. Growth, yield and yield components of dry bean as influenced by phosphorus in a tropical acid soil (United States)

    Phosphorus deficiency is one of the most yield limiting factors for dry bean (Phaseolus vulgaris) production in tropical acid soils. Dry beans are invariably grown as mono crops or as inter crops under the perennial tropical crops. Information is limited regarding the influence of phosphorus fertili...

  4. The global distribution and dynamics of surface soil moisture (United States)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara


    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  5. Aerosolization properties, surface composition and physical state of spray-dried protein powders. (United States)

    Bosquillon, Cynthia; Rouxhet, Paul G; Ahimou, François; Simon, Denis; Culot, Christine; Préat, Véronique; Vanbever, Rita


    Powder aerosols made of albumin, dipalmitoylphosphatidylcholine (DPPC) and a protein stabilizer (lactose, trehalose or mannitol) were prepared by spray-drying and analyzed for aerodynamic behavior, surface composition and physical state. The powders exited a Spinhaler inhaler as particle aggregates, the size of which depending on composition, spray-drying parameters and airflow rate. However, due to low bulk powder tap density (powders, respectively. Particle surface analysis by X-ray photoelectron spectroscopy (XPS) revealed a surface enrichment with DPPC relative to albumin for powders prepared under certain spray-drying conditions. DPPC self-organized in a gel phase in the particle and no sugar or mannitol crystals were detected by X-ray diffraction. Water sorption isotherms showed that albumin protected lactose from moisture-induced crystallization. In conclusion, a proper combination of composition and spray-drying parameters allowed to obtain dry powders with elevated fine particle fractions (FPFs) and a physical environment favorable to protein stability.

  6. Description of a field test involving cracking in a drying soil

    Directory of Open Access Journals (Sweden)

    Cordero Josbel


    Full Text Available The analysis of cracking in desiccating soils is a research topic that can be addressed by using concepts of Unsaturated Soil Mechanics. In this context, the use of physical models constitutes a promising tool to understand the mechanisms involved in this problem. In fact, previous works by the authors included the use of a laboratory environmental chamber controlling temperature and relative humidity. This paper, however, describes a field experiment consisting of a large container (3 m by 3 m and 0.5 m height with a soil mass undergoing desiccation in an open environment near Barcelona. The container is continuously weighed to monitor the water loss evolution (or water uptake in case of rain. Basic soil variables are monitored as well: suction, water content, temperature and heat flux at different points inside the soil mass. Environmental variables, including temperature, relative humidity and wind speed close to the soil surface are also recorded. The test started early in January 2015 and the paper presents the preliminary results corresponding to the first few months. Due to the weather regime, the soil has undergone desiccation and some single rainy events. Crack patterns change dramatically when applying suction cycles to the soil.

  7. Spatial Distribution and Pattern Persistence of Surface Soil Moisture and Temperature Over Prairie from Remote Sensing (United States)

    Chen, Daoyi; Engman, Edwin T.; Brutsaert, Wilfried


    Images remotely sensed aboard aircraft during FIFE, namely, PBMR (microwave) soil moisture and NS001 thermal infrared surface temperature, were mapped on the same coordinate system covering the 20 km x 20 km experimental site. For both kinds of image data, the frequency distributions were close to symmetric, and the area average compared reasonably well with the ground based measurements. For any image on any given day, the correlation between the remotely sensed values and collocated ground based measurements over the area was usually high in the case of NS001 surface temperature but low in the case of PBMR soil moisture. On the other hand, at any given flux station the correlation between the PBMR and gravimetric soil moisture over all available days was usually high. The correlation pixel by pixel between images of PBMR on different days was generally high. The preservation of the spatial patterns of soil moisture was also evaluated by considering the correlation station by station between ground-based soil moisture measurements on different days; no persistence of spatial pattern was apparent during wet periods, but a definite pattern gradually established itself toward the end of each drying episode. The spatial patterns of surface temperature revealed by NS001 were not preserved even within a single day. The cross-correlations among the two kinds of images and the vegetation index NDVI were normally poor. This suggests that different processes of vegetation growth, and of the near-surface soil water and energy budgets.

  8. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar


    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  9. Effect of dry land transformation and quality of water use for crop irrigation on the soil bacterial community in the Mezquital Valley, Mexico (United States)

    Lüneberg, Kathia; Schneider, Dominik; Daniel, Rolf; Siebe, Christina


    Soil bacteria are important determinants of soil fertility and ecosystem services as they participate in all biogeochemical cycles. Until now the comprehension of compositional and functional response that bacterial communities have to land use change and management, specifically in dry land its limited. Dry lands cover 40% of the world's land surface and its crop production supports one third of the global population. In this regions soil moisture is limited constraining farming to the rainy season or oblige to irrigate, as fresh water resources become scarce, to maintain productivity, treated or untreated wastewater for field irrigation is used. In this study the transformation of semiarid shrubland to agriculture under different land systems regarding quantity and quality of water use for crop irrigation on bacterial communities was investigated. The land systems included maize rain-fed plantations and irrigation systems with freshwater, untreated wastewater stored in a dam and untreated wastewater during dry and rainy season. Bacterial community structure and function was heavily affected by land use system and soil properties, whereas seasonality had a slighter effect. A soil moisture, nutrient and contaminant-content increasing gradient among the land use systems, going from rain fed plantation over fresh water, dam wastewater to untreated wastewater irrigated plantations was detected, this gradient diminished the abundance of Actinobacteria and Cyanobacteria, but enhanced the one from Bacteroidetes and Proteobacteria. Discernible clustering of the dry land soil communities coincides with the moisture, nutrient and contaminant gradient, being shrubland soil communities closer to the rain-fed's system and farer to the one from untreated wastewater irrigated soil. Soil moisture together with sodium content and pH were the strongest drivers of the community structure. Seasonality promoted shifts in the composition of soil bacteria under irrigation with

  10. Polycyclic aromatic hydrocarbons in urban street dust and surface soil: comparisons of concentration, profile, and source. (United States)

    Wang, De-Gao; Yang, Meng; Jia, Hong-Liang; Zhou, Lei; Li, Yi-Fan


    Street dust and surface soil samples in urban areas of Dalian, a coastal city in Liaoning Province, China, were collected and analyzed for 25 polycyclic aromatic hydrocarbons (PAHs). The concentrations, distribution, and sources of PAHs in dust and soil were determined. The concentrations of total PAHs in street dust ranged between 1890 and 17,070 ng/g (dry weight), with an average of 7460 ng/g, whereas the concentrations of total PAHs in surface soil varied greatly, from 650 to 28,900 ng/g, with a mean value of 6440 ng/g. Statistical paired t-test confirmed that total PAH concentrations have no significant difference between street dust and surface soil. Mean PAH concentrations in two type samples were much higher at industrial sites than at business/residential or garden sites. PAHs were dominated by higher molecular weight PAH (4- to 6-ring) homologues, which accounted for about 73% and 72% of total PAHs in street dust and surface soil, respectively. Principal component analysis was used in source apportionment of PAHs in dust and soil. Pyrogenic and petrogenic sources contributed 70% and 22.4% of total PAHs in street dusts, and fossil fuel (coal and petroleum) and biomass combustion accounted for 64.4% and 5.6% of total PAHs in pyrogenic sources, respectively. In surface soil, total PAHs were dominated by pyrogenic sources. The diagnostic ratios of benz[a]anthracene/chrysene confirmed that PAHs in street dust and surface soil of a Dalian urban zone might come mostly from the emission of local sources.

  11. Effect of soil pH and amendments with dried fodder rape on mycophagous soil animals and Rhizoctonia stem canker of potato

    NARCIS (Netherlands)

    Lootsma, M.; Scholte, K.


    Effects of adding dried rape material to the soil and of soil pH on the ability of mycophagous springtails and nematodes to suppress stem canker on potato, caused by Rhizoctonia solani, were investigated in growth chambers. A bioassay was used with the springtail Folsomia fimetaria and the nematode

  12. Effect of soil property on evaporation from bare soils (United States)

    Zhang, Chenming; Li, Ling; Lockington, David


    Quantifying the actual evaporation rate from bare soils remains a challenging task as it not only associates with the atmospheric demand and liquid water saturation on the soil surface, but also the properties of the soils (e.g., porosity, pore size distribution). A physically based analytical model was developed to describe the surface resistance varying with the liquid water saturation near the soil surface. This model considers the soil pore size distribution, hydraulic connection between the main water cluster and capillary water in the soil surface when the soil surface is wet and the thickness of the dry soil layer when the soil surface is dry. The surface resistance model was then integrated to a numerical model based on water balance, heat balance and surface energy balance equations. The integrated model was validated by simulating water and heat transport processes during six soil column drying experiments. The analysis indicates that the when soil surface is wet, the consideration of pore size distribution in the surface resistance model offers better estimation of transient evaporation among different soil types than the estimations given by empirically based surface resistance models. Under fixed atmospheric boundary condition and liquid water saturation, fine sand has greater evaporation rate than coarse sand as stronger capillary force devlivers more water from the main water cluster. When the soil surface becomes dry, the impact of soil property to evaporation becomes trivial as the thickness of the dry soil layer turns to be the key factor to determine the evaporation rate.

  13. Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment.

    Directory of Open Access Journals (Sweden)

    José A Siles

    Full Text Available The Mediterranean basin has been identified as a biodiversity hotspot, about whose soil microbial diversity little is known. Intensive land use and aggressive management practices are degrading the soil, with a consequent loss of fertility. The use of organic amendments such as dry olive residue (DOR, a waste produced by a two-phase olive-oil extraction system, has been proposed as an effective way to improve soil properties. However, before its application to soil, DOR needs a pre-treatment, such as by a ligninolytic fungal transformation, e.g. Coriolopsis floccosa. The present study aimed to describe the bacterial and fungal diversity in a Mediterranean soil and to assess the impact of raw DOR (DOR and C. floccosa-transformed DOR (CORDOR on function and phylogeny of soil microbial communities after 0, 30 and 60 days. Pyrosequencing of the 16S rRNA gene demonstrated that bacterial diversity was dominated by the phyla Proteobacteria, Acidobacteria, and Actinobacteria, while 28S-rRNA gene data revealed that Ascomycota and Basidiomycota accounted for the majority of phyla in the fungal community. A Biolog EcoPlate experiment showed that DOR and CORDOR amendments decreased functional diversity and altered microbial functional structures. These changes in soil functionality occurred in parallel with those in phylogenetic bacterial and fungal community structures. Some bacterial and fungal groups increased while others decreased depending on the relative abundance of beneficial and toxic substances incorporated with each amendment. In general, DOR was observed to be more disruptive than CORDOR.

  14. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    Directory of Open Access Journals (Sweden)

    C. Draper


    Full Text Available The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively. When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  15. Effect of Vegetation Patterns on SAR derived Surface Soil Moisture Distribution (United States)

    Koyama, C. N.; Schneider, K.


    conditions, are used to derive biomass information independently from the soil moisture retrieval. Nevertheless, the canopy still has an attenuation effect on the co-polarized backscattering, but this can be corrected by using the vegetation information obtained from the other SAR observables. For constant permittivity states of the soil surface the canopy can have a disturbing effect of up to 6dB. This is the same order of magnitude of dynamic range as observed for soil moisture values ranging from 10 - 40 Vol.-% over bare surfaces. The present study is focused on the Rur catchment (Germany) where the effect of different vegetation patterns on the spatial distribution of near-surface soil water content is investigated by comparison between ALOS PALSAR derived biomass and soil moisture maps. The findings show that the impact of vegetation on the near-surface moisture contents may vary considerably. For wet and intermediate soil conditions where enough water is available for transpiration it was observed that the near-surface moisture content tends to be higher on vegetated fields. This may be explained by the fact that the canopy hampers evaporations due to lack of air movement while the plants uptake water from deeper soil layers. However if the water supply is low the plant water consumption can also lead to accelerated drying of the soil surface. This was especially observed for cereal crops.

  16. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai;


    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... region-water retention curve increased with increasing biochar rates....

  17. Characterization of MASDs of surface soils in north China and its influence on estimating dust emission

    Institute of Scientific and Technical Information of China (English)

    MEI Fanmin; ZHANG Xiaoye; LU Huayu; SHEN Zhenxing; WANG Yaqiang


    The micro-aggregated size distribution (MASD) of surface soil is an important parameter for modelling dust emission. However,there is no dataset of MASDs of all surface soil types in north China.The MASDs are here presented,measured by dry sieving,for typical surface soil samples,including sandy soil,gravelly sand soil,gravelly loam soil,loam soil and silt loam soil,collected from sandy deserts,Gobi deserts,oases,farmlands in steppe regions and steppe areas in north China.The MASDs of various surface soil types exhibit a combination of several log-normal distributions of five separated sizes with mean mass median diameters (MMDs) of 90,210,390,600 and 980 цm,respectively,and mean standard deviations (SDs) of 1.25,1.40,1.25,1.35 and 1.25 respectively. The log-normal distributions correspond to very fine sand,fine sand,medium sand,coarse sand and very coarse sand population.On the basis of characterization of the retrieved MASDs of various surface soil types in north China,dust emission fluxes are modelled by a dust production model (DPM model).It is shown that dust emission has been significantly influenced by MASDs.Fine sand and very fine sand are always associated with the highest dust emission fluxes. Emission fluxes of the medium sand, gravelly sand soil,gravelly loam soil and loam soil are lower than those of very fine sand and fine sand,but larger than those of the coarse sand.The differences in dust emission fluxes vary among the different soil types from 101 to 103 цg·m-2·s-1.Dust emission fluxes from sandy deserts and farmlands covered with sand sheets in north China rang from 101 to 104 цg·m-2·s-1 while those from Gobi deserts,farmlands and steppes with gravelly desertification range from 101 to 102 цg·m-2· s-1.The modelled results indicate that deserts and farmlands with sand are the major dust sources in north China.

  18. How surface composition of high milk proteins powders is influenced by spray-drying temperature. (United States)

    Gaiani, C; Morand, M; Sanchez, C; Tehrany, E Arab; Jacquot, M; Schuck, P; Jeantet, R; Scher, J


    High milk proteins powders are common ingredients in many food products. The surface composition of these powders is expected to play an essential role during their storage, handling and/or final application. Therefore, an eventual control of the surface composition by modifying the spray-drying temperature could be very useful in the improvement of powder quality and the development of new applications. For this purpose, the influence of five spray-drying temperatures upon the surface composition of the powders was investigated by X-ray photoelectron spectroscopy. The major milk proteins were studied: native micellar casein and native whey, both more or less enriched in lactose. The results show a surface enrichment in lipids for all the powders and in proteins for many powders. Whatever the drying temperature, lipids and proteins are preferentially located near the surface whereas lactose is found in the core. This surface enrichment is also highly affected by the spray-drying temperature. More lipids, more proteins and less lactose are systematically observed at the surface of powders spray-dried at lower outlet air temperatures. The nature of proteins is also found essential; surface enrichment in lipids being much stronger for whey proteins containing powders than for casein containing powders. Additionally, we found a direct correlation between the lipids surface concentration and the wetting ability for the 25 powders studied.


    Directory of Open Access Journals (Sweden)

    Cem Baltacioglu


    Full Text Available Effects of slice thickness of quince (Cydonia oblonga Miller , microwave incident power and air drying temperature on antioxidant activity and total phenolic content of quince were investigated during drying in microwave and air drying. Optimum conditions were found to be: i for microwave drying, 285 W and 4.14 mm thick (maximum antioxidant activity and 285 W and 6.85 mm thick (maximum total phenolic content, and ii for air drying, 75 ºC and 1.2 mm thick (both maximum antioxidant activity and total phenolic content. Drying conditions were optimized by using the response surface methodology. 13 experiments were carried out considering incident microwave powers from 285 to 795 W, air temperature from 46 to 74 ºC and slice thickness from 1.2 to 6.8 mm.

  20. Determination of soil conservation effects on shadow price of soil quality in dry-farmed wheat in Iran (a case study). (United States)

    Hosseini, S S; Ghorbani, M; Ghahremanzadeh, M


    This study attempts to measure the effects of soil conservation practices on soil quality in dry-farmed wheat in Iran (Zanjan province) using a bio-economic production function. Because of the nature of data (panel data) and information used in this study, error components approach (REM method) was used for estimating the production functions. The results indicate that the shadow price increases with soil depth and its magnitude is greater 72% in average--in conserved soils compared to non-conserved ones. In fact the results support the effectiveness of soil conservation in improving physical, chemical and biochemical properties of soil which contributes to sustainable agriculture. Finally, soil conservation benefits were estimated to be about 29.98 dollar pre hectare. That may be use for extension, payment of green subsidy, investment and adoption of new technologies for soil conservation. In this way, it will increase the real value of farm and farmer's welfare.

  1. Occurrence of Cronobacter spp. in Dried Foods, Fresh Vegetables and Soil. (United States)

    Ueda, Shigeko


     The present study surveyed the occurrence of Cronobacter spp. in dried foods including milk powder, spices and herbs and others, and fresh vegetables commercially available in markets, and ground soil materials for the agriculture. Cronobacter spp. were isolated from 15% of 33 spice and herb samples and 3% of 36 taste foods, and these were C. turicensis, C. malonaticus, C. sakazakii and C. dubliensis. Cronobacter spp. from fresh vegetables were detected in 12% of field vegetables and 13% of hydroponic vegetables. C. turicensis was prevalent in field vegetables, and C. malonaticus was in hydroponic ones. And, Cronobacter spp. in shredded vegetables were detected from 44% of 9 samples, and these were C. dubliensis, C. turicensis and C. sakazakii. Also, Cronobacter spp. in soil from rice field, vegetable field and sandpits were predominantly C. sakazakii and C. malonaticus.

  2. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai


    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area...

  3. Topographical Parameter Characteristics of Dry Sliding Surfaces of Particle-Reinforced Aluminum Composites

    Institute of Scientific and Technical Information of China (English)

    陈跃; 上官宝; 张永振; 孙乐民; 铁喜顺; 夏跃虹


    Generally, friction and wear occur on the surface of the materials.It is necessary to investigate the dry sliding friction and wear behavior of surface.In this paper, 3-D topographical parameters were used to investigate the topographical characteristics of dry sliding surfaces for particle-reinforced aluminum composites on semi-metallic friction material.The experimental results indicate that the surface topography of the particle-reinforced aluminum composites can be divided into two types, the flaking-off pit type and the groove type.The composites whose surface topography is the flaking-off pit type possess superior heat conductivity and bearing area, lower wear rate, and higher friction coefficient than the groove type.Consequently, the flaking-off pit type surface topography is much better than the groove type for particle-reinforced aluminum composites on semi-metallic friction materials in dry sliding.

  4. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). (United States)

    Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir


    Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample.

  5. Organochlorine pesticides and polychlorinated biphenyls in surface soils of Novi Sad and bank sediment of the Danube River. (United States)

    Skrbic, Biljana; Cvejanov, Jelena; Durisic-Mladenovic, Natasa


    The contents of 16 organochlorine pesticides (OCPs) and six so-called indicator polychlorinated biphenyls (PCBs) were determined in the surface zone (0-5 cm) of soil and sediment samples, taken from different locations in the city of Novi Sad, capitol of Vojvodina Province (North of the Serbia) covering residential and commercial area, recreational and arable zone. The total organochlorine pesticides concentration in soil varied from 2.63 to 31.78 ng g(-1) dry weight, while the level in sediment was 10.35 ng g(-1) dry weight. Maximum content of identified individual organochlorine pesticide in soil samples was 10.40 ng g(-1) dry weight for p, p-DDE in the market garden and 6.31 ng g(-1) dry weight for p, p'-DDT in sediment of the Danube River, although their application is restricted in Serbia. Some of investigated PCBs were identified only in the soil samples from a park-school backyard in the city downtown (0.32 ng g(-1) dry weight) and market garden (0.22 ng g(-1) dry weight), and also in sediment sample from left bank of the Danube River (0.41 ng g(-1) dry weight). Data of the OCPs and PCBs present in this study were compared with the ones found for soils and river sediments throughout the world, and with limit values set by soil and sediment quality guidelines. Also, correlation between the levels of certain pesticides and soil characteristics (organic matter, pH and clay content) was investigated.

  6. Seismic Soil-Structure Interaction Analysis of a Consolidated Dry Storage Module for CANDU Spent Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Gon; Yoon, Jeong Hyoun; Cho, Chun Hyung; Lee, Heung Young [Korea Hydro and Nuclear Power Co., Ltd., Taejon (Korea, Republic of); Choi, Kyu Sup; Jeong, In Su; Kim, Jong Soo [KONES Co., Seoul (Korea, Republic of)


    The MACSTOR/KN-400 module has been developed as an effective alternative to the existing stand alone concrete canister for dry storage of CANDU spent fuel. The structure is a concrete monolith of 21.67 m long and 12.66 m wide and has a height equal to 7.518 m including the bottom slab. Inside of the concrete module are built 40 storage cylinders accommodating ten 60- bundle dry storage baskets, which are suspended from the top slab and eventually constrained at 10 cm above the bottom slab with horizontal seismic restraints. The main cooling process of the MACSTOR/KN-400 module is by air convection through air inlets and outlets. The civil design parameters, with respect to meteorological and seismic loads applied to the module are identical to those specified for the Wolsung CANDU 3 and 4 plants except for local geologic characteristics. As per USNRC SRP Section 3.7.2 and current US practices, Soil-Structure Interaction (SSI) effect shall be considered for all structures not supported by a rock or rock-like soil foundation materials. An SSI is a very complicated phenomenon of the structure coupled with the soil medium that is usually semi-infinite in extent and highly nonlinear in its behavior. And the effect of the SSI is noticeable especially for stiff and massive structures resting on relatively soft ground. Thus the SSI effect has to be considered in the seismic design of MACSTOR/KN-400 module resting on soil medium. The scope of the this paper is to carry out a seismic SSI analysis of the MACSTOR/KN-400 module, in order to show how much the SSI gives an effect on the structural responses by comparing with the fixed-base analysis.

  7. Reflectance anisotropy for characterising fine-scale changes in soil surface condition across different soil types (United States)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.


    Soils can experience rapid structural degradation in response to land cover changes, resulting in a reduction in soil productivity, an increased susceptibility to erosion and increased release of greenhouse gases. Soil surface roughness at the centimetre scale plays a fundamental role in affecting soil erosion and surface runoff pathways. A decline in surface roughness can also be used to infer soil degradation as soil aggregates are broken down through raindrop impact. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially-distributed information on soil surface condition. Remotely sensed data can provide a cost-effective means of monitoring changes in soil surface condition over broad spatial extents. Furthermore, a growing recognition into the importance of the directional reflectance domain has led to an increasing number of satellites with multiple view angle (MVA) capabilities (e.g. MISR, CHRIS on Proba). This is potentially useful for monitoring soil degradation and susceptibility to erosion because changes in soil surface roughness, associated with the breakdown of macro-aggregates, have a measurable effect on directional reflectance factors. Consequently, field and laboratory data are required for an empirical understanding of soil directional reflectance characteristics, underpinning subsequent model development. This study assessed the extent to which a hyperspectral MVA approach (350-2500 nm) could detect fine-scale changes in soil crusting states across five different soil types. A series of soil crusting states were produced for all five soil types, using an artificial rainfall simulator. The controlled conditions allowed the production of a series of stages in the soil crusting process; showing progressively declining surface roughness values. Each soil state was then spatially characterised, using a laboratory laser device at 2 mm sample spacing, over a 10 x 10 cm area. Laser data

  8. Short-term impact of dry olive mill residue addition to soil on the resident microbiota. (United States)

    Sampedro, Inmaculada; Giubilei, Mariangela; Cajthaml, Tomas; Federici, Ermanno; Federici, Federico; Petruccioli, Maurizio; D'annibale, Alessandro


    The short-term response of the resident soil bacterial and fungal communities to the addition of 5% (w/w) of either dry olive mill residue (DOR), DOR treated with Phlebia sp. (PTDOR) or DOR previously extracted with water (WEDOR) was investigated. As opposed to bacteria, the diversity of fungi increased upon the amendments as assessed by denaturing gradient gel electrophoresis of 18S rDNA. Over the first 30 days, phospholipid fatty acids analyses indicated a gradual decrease in the relative abundances of gram(+) bacteria (from 44.8% to 37.9%) and a concomitant increase of gram(-) bacteria (from 37.3% to 51.2%) in DOR-amended soil. A considerable increase in the fungal/bacterial ratio was observed after 7 days in DOR, WEDOR and PTDOR-amended soils with respect to the control (0.316, 0.165 and 0.265, respectively, vs. 0.011). The overall microbial activity was stimulated by the amendments as indicated by the higher activity levels of both dehydrogenase and fluorescein diacetate hydrolase. These results indicate that DOR at the application level examined is not toxic on soil microorganisms.

  9. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts (United States)

    Belnap, J.; Phillips, S.L.; Witwicki, D.L.; Miller, M.E.


    Biological soil crusts (BSCs) are an integral part of dryland ecosystems and often included in long-term ecological monitoring programs. Estimating moss and lichen cover is fairly easy and non-destructive, but documenting cyanobacterial level of development (LOD) is more difficult. It requires sample collection for laboratory analysis, which causes soil surface disturbance. Assessing soil surface stability also requires surface disturbance. Here we present a visual technique to assess cyanobacterial LOD and soil surface stability. We define six development levels of cyanobacterially dominated soils based on soil surface darkness. We sampled chlorophyll a concentrations (the most common way of assessing cyanobacterial biomass), exopolysaccharide concentrations, and soil surface aggregate stability from representative areas of each LOD class. We found that, in the laboratory and field, LOD classes were effective at predicting chlorophyll a soil concentrations (R2=68-81%), exopolysaccharide concentrations (R2=71%), and soil aggregate stability (R2=77%). We took representative photos of these classes to construct a field guide. We then tested the ability of field crews to distinguish these classes and found this technique was highly repeatable among observers. We also discuss how to adjust this index for the different types of BSCs found in various dryland regions.

  10. Effects of Savanna trees on soil nutrient limitation and carbon-sequestration potential in dry season (United States)

    Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov


    limitation and thus in C mineralization and sequestration. The effects on soil respiration are present, even under strong water scarcity. Therefore, the capability of a savanna ecosystem to act as a C sink during dry season is mainly (directly and indirectly) dependent on the spatial abundance of trees.

  11. Infiltration and Erosion in Soils Treated with Dry PAM of Two Molecular Weights and Phosphogypsum (United States)

    Soil surface application of dissolved linear polyacrylamide (PAM) of high molecular weight (MW) can mitigate seal formation, runoff and erosion, especially when added with a source of electrolytes (e.g., gypsum). Practical difficulties associated with PAM solution application prohibited commercial u...

  12. Soil Surface Structure: A key factor for the degree of soil water repellency (United States)

    Ahn, S.; Doerr, S. H.; Douglas, P.; Bryant, R.; Hamlett, C.; McHale, G.; Newton, M.; Shirtcliffe, N.


    Despite of considerable efforts, the degree of water repellency has not always been fully explained by chemical property of soil (termed hydrophobicity). That might be because the structure of a soil surface was not considered properly, which is another main factor determining the severity of soil water repellency. Surface structure has only recently been considered in soil science, whilst it has been paid attention for several decades in materials science due to its relevance to industrial applications. In this contribution, comparison of critical contact angles measured on different surface structures (made with glass beads, glass shards and beach sands) is presented and the effect of surface structure on manifestation of soil water repellency is discussed in terms of several different variables such as the individual particles shape, and areal and structural factors of the actual surface.

  13. Dry deposition of large, airborne particles onto a surrogate surface (United States)

    Kim, Eugene; Kalman, David; Larson, Timothy

    Simultaneous measurements of particle dry deposition flux and airborne number concentration in the open atmosphere were made using three different types of artificially generated particles in the size range 10-100 μm - perlite, diatomaceous earth and glass beads. A combination of gravimetric analysis, automated microscopy and sonic anemometry provided size-resolved estimates of both the inertial and gravitational components of the quasi-laminar layer particle deposition velocity, ( Vd) b, as a function of size. Eddy inertial deposition efficiency ( ηdI) was determined as a function of dimensionless eddy Stokes number (Stk e). In the range 3PNL-SA-6721, Pacific Northwest Laboratories, Richland, WA), used in several regulatory models, significantly under-predicted (up to seven times) ( Vd) b for large particles ( da>10 μm).

  14. Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    W. Korres


    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes that are affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable test site that are located within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm was measured in an approx. 50×50 m grid during 14 and 17 measurement campaigns (May 2007 to November 2008 in both test sites. To analyse the spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to link the patterns to related factors and processes. For the grassland test site, the analysis resulted in one significant spatial structure (first EOF, which explained 57.5% of the spatial variability connected to soil properties and topography. The statistical weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable test site, the analysis resulted in two significant spatial structures, the first EOF, which explained 38.4% of the spatial variability, and showed a highly significant correlation to soil properties, namely soil texture and soil stone content. The second EOF, which explained 28.3% of the spatial variability, is linked to differences in land management. The soil moisture in the arable test site varied more strongly during dry and wet periods at locations with low porosity. The method applied is capable of identifying the dominant parameters controlling spatio-temporal patterns of

  15. Effect of dry spells and soil cracking on runoff generation in a semiarid micro watershed under land use change (United States)

    dos Santos, Julio Cesar Neves; de Andrade, Eunice Maia; Guerreiro, Maria João Simas; Medeiros, Pedro Henrique Augusto; de Queiroz Palácio, Helba Araújo; de Araújo Neto, José Ribeiro


    Soil and water resources effective management and planning in a river basin rely on understanding of runoff generation processes, yield, and their relations to rainfall. This study analyzes the effects of antecedent soil moisture in an expansive soil and the influence of dry spells on soil cracking, runoff generation and yield in a semiarid tropical region in Brazil subject to land use change. Data were collected from 2009 to 2013 in a 2.8 ha watershed, totaling 179 natural rainfall events. In the first year of study (2009), the watershed maintained a typical dry tropical forest cover (arboreal-shrub Caatinga cover). Before the beginning of the second year of study, gamba grass (Andropogon gayanus Kunth) was cultivated after slash and burn of native vegetation. Gamba grass land use was maintained for the rest of the monitoring period. The occurrence of dry spells and the formation of cracks in the Vertisol soil were the most important factors controlling flow generation. Dry spells promoted crack formation in the expansive soil, which acted as preferential flow paths leading to high initial abstractions: average conditions for runoff to be generated included soil moisture content above 20%, rainfall above 70 mm, I30max above 60 mm h-1 and five continuous dry days at the most. The change of vegetation cover in the second year of study did not alter significantly the overall conditions for runoff initiation, showing similar cumulative flow vs. rainfall response, implying that soil conditions, such as humidity and cracks, best explain the flow generation process on the semiarid micro-scale watershed with Vertisol soil.

  16. Liquid Spills on Permeable Soil Surfaces: Experimental Confirmations

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Carver S.; Keller, Jason M.


    Predictive tools for assessing the quantity of a spill on a soil from the observed spreading area could contribute to improving remediation when it is necessary. On a permeable soil, the visible spill area only hints about the amount of liquid that might reside below the surface. An understanding of the physical phenomena involved with spill propagation on a soil surface is key to assessing the liquid amount possibly present beneath the surface. The objective of this study is an improved prediction capability for spill behavior.

  17. Change in dry matter and nutritive composition of Brachiaria humidicola grown in Ban Thon soil series

    Directory of Open Access Journals (Sweden)

    Jeerasak Chobtang


    Full Text Available This experiment was conducted to determine the change in dry matter and nutritive composition of Humidicola grass (Brachiaria humidicola grown in Ban Thon soil series (infertility soil as a function of growth age. One rai (0.16 ha of two-year-old pasture of fertilised Humidicola grass was uniformly cut and the regrowth samples were collected every twenty days. The samples were subjected to analysis for dry matter content and nutritive composition, i.e. crude protein, ash, calcium, phosphorus, neutral detergent fibre, acid detergent fibre, and acid detergent lignin. The results showed that while the yields of available forage and leaves increased curvilinearly (quadratic, p<0.05, the stem yield increased linearly (p<0.05 over sampling dates. The highest biomass accumulation rate was numerically observed between 40-60 days of regrowth. The concentrations of crude protein, ash, calcium and phosphorus decreased curvilinearly (quadratic, p<0.05 with advancing maturity and reached the lowest flat after 60 days of regrowth. The cell wall components, i.e. NDF, ADF and ADL, increased over the experimental period and reached the highest plateau at 40 days of regrowth. It was concluded that Humidicola grass should be grazed or preserved at the regrowth age of not over 60 days to maximise the utilisation of the grass.

  18. Effects of Soil Moisture on Dynamic Distribution of Dry Matter Between Winter Wheat Root and Shoot

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-yuan; LIU Xiao-ying; LUO Yuan-pei


    The dynamic relationship of dry matter accumulation and distribution between winter wheatroot and shoot was studied under different soil water conditions. The dry matter accumulation in root wasgreatly influenced by water stress, so as to the final root weight of the treatment with 40 % field moisturecapacity (FMC) was less than 1/4 of that of the treatment with 80 % FMC on average. Water stress duringthe 3-leaf stage to the tillering stage had the greatest influence on root, and the influence of water stressduring the jointing stage to the booting stage on shoot was greater than root. However, water stress duringthe tillering stage to the booting stage had a balanced effect on root and shoot, and the proportion of drymatter that distributed to root and shoot was almost the same after rewatering. Water recovery during thejointing stage to booting stage could promote R/S, but the increasing degree was related to the duration ofwater limitation. Soil water condition had the lowest effect on R/S during the flowering stage to the fillingstage and the maximal effect on R/S during the jointing stage to the heading stage, R/S of 40% FMCtreatment was 20.93 and 126.09 % higher than that of 60 % FMC and 80 % FMC treatments respectivelyat this period.

  19. The effect of heterogeneity and surface roughness on soil hydrophobicity (United States)

    Hallin, I.; Bryant, R.; Doerr, S. H.; Douglas, P.


    Soil water repellency, or hydrophobicity, can develop under both natural and anthropogenic conditions. Forest fires, vegetation decomposition, microbial activity and oil spills can all promote hydrophobic behaviour in surrounding soils. Hydrophobicity can stabilize soil organic matter pools and decrease evapotranspiration, but there are many negative impacts of hydrophobicity as well: increased erosion of topsoil, an increasingly scarce resource; increased runoff, which can lead to flooding; and decreased infiltration, which directly affects plant health. The degree of hydrophobicity expressed by soil can vary greatly within a small area, depending partly on the type and severity of the disturbance as well as on temporal factors such as water content and microbial activity. To date, many laboratory investigations into soil hydrophobicity have focused on smooth particle surfaces. As a result, our understanding of how hydrophobicity develops on rough surfaces of macro, micro and nano-particulates is limited; we are unable to predict with certainty how these soil particles will behave on contact with water. Surface chemistry is the main consideration when predicting hydrophobic behaviour of smooth solids, but for particles with rough surfaces, hydrophobicity is believed to develop as a combination of surface chemistry and topography. Topography may reflect both the arrangement (aggregation) of soil particles and the distribution of materials adsorbed on particulate surfaces. Patch-wise or complete coverage of rough soil particles by hydrophobic material may result in solid/water contact angles ≥150° , at which point the soil may be classified as super-hydrophobic. Here we present a critical review of the research to date on the effects of heterogeneity and surface roughness on soil hydrophobicity in which we discuss recent advances, current trends, and future research areas. References: Callies, M., Y. Chen, F. Marty, A. Pépin and D. Quéré. 2005. Microfabricated

  20. Oven rack having integral lubricious, dry porcelain surface

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, Jeffrey A; Mackiewicz-Ludtka, Gail; Sikka, Vinod K; Qu, Jun


    A lubricious glass-coated metal cooking article capable of withstanding repeated heating and cooling between room temperature and at least F. without chipping or cracking the glass coating, wherein the glass coating includes about 0.1 to about 20% by weight of a homogeneously distributed dry refractory lubricant material having a particle size less than about 200 .mu.m. The lubricant material is selected from the group consisting of carbon; graphite; boron nitride; cubic boron nitride; molybdenum (FV) sulfide; molybdenum sulfide; molybdenum (IV) selenide; molybdenum selenide, tungsten (IV) sulfide; tungsten disulfide; tungsten sulfide; silicon nitride (Si.sub.3N.sub.4); TiN; TiC; TiCN; TiO.sub.2; TiAlN; CrN; SiC; diamond-like carbon; tungsten carbide (WC); zirconium oxide (ZrO.sub.2); zirconium oxide and 0.1 to 40 weight % aluminum oxide; alumina-zirconia; antimony; antimony oxide; antimony trioxide; and mixtures thereof.

  1. Oven rack having integral lubricious, dry porcelain surface (United States)

    Ambrose, Jeffrey A; Mackiewicz-Ludtka, Gail; Sikka, Vinod K; Qu, Jun


    A lubricious glass-coated metal cooking article capable of withstanding repeated heating and cooling between room temperature and at least F. without chipping or cracking the glass coating, wherein the glass coating includes about 0.1 to about 20% by weight of a homogeneously distributed dry refractory lubricant material having a particle size less than about 200 .mu.m. The lubricant material is selected from the group consisting of carbon; graphite; boron nitride; cubic boron nitride; molybdenum (FV) sulfide; molybdenum sulfide; molybdenum (IV) selenide; molybdenum selenide, tungsten (IV) sulfide; tungsten disulfide; tungsten sulfide; silicon nitride (Si.sub.3N.sub.4); TiN; TiC; TiCN; TiO.sub.2; TiAlN; CrN; SiC; diamond-like carbon; tungsten carbide (WC); zirconium oxide (ZrO.sub.2); zirconium oxide and 0.1 to 40 weight % aluminum oxide; alumina-zirconia; antimony; antimony oxide; antimony trioxide; and mixtures thereof.

  2. The impact of atomization on the surface composition of spray-dried milk droplets. (United States)

    Foerster, Martin; Gengenbach, Thomas; Woo, Meng Wai; Selomulya, Cordelia


    The dominant presence of fat at the surface of spray-dried milk powders has been widely reported in the literature and described as resulting in unfavourable powder properties. The mechanism(s) causing this phenomenon are yet to be clearly identified. A systematic investigation of the component distribution in atomized droplets and spray-dried particles consisting of model milk systems with different fat contents demonstrated that atomization strongly influences the final surface composition. Cryogenic flash-freezing of uniform droplets from a microfluidic jet nozzle directly after atomization helped to distinguish the influence of the atomization stage from the drying stage. It was confirmed that the overrepresentation of fat on the surface is independent of the atomization technique, including a pressure-swirl single-fluid spray nozzle and a pilot-scale rotary disk spray dryer commonly used in industry. It is proposed that during the atomization stage a disintegration mechanism along the oil-water interface of the fat globules causes the surface predominance of fat. X-ray photoelectron spectroscopic measurements detected the outermost fat layer and some adjacent protein present on both atomized droplets and spray-dried particles. Confocal laser scanning microscopy gave a qualitative insight into the protein and fat distribution throughout the cross-sections, and confirmed the presence of a fat film along the particle surface. The film remained on the surface in the subsequent drying stage, while protein accumulated underneath, driven by diffusion. The results demonstrated that atomization induces component segregation and fat-rich surfaces in spray-dried milk powders, and thus these cannot be prevented by adjusting the spray drying conditions.

  3. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651. (United States)

    Jomaa, Walid; Songmene, Victor; Bocher, Philippe


    The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining.

  4. SMAP Level 4 Surface and Root Zone Soil Moisture (United States)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.; Kimball, J.; Koster, R.


    The SMAP Level 4 soil moisture (L4_SM) product provides global estimates of surface and root zone soil moisture, along with other land surface variables and their error estimates. These estimates are obtained through assimilation of SMAP brightness temperature observations into the Goddard Earth Observing System (GEOS-5) land surface model. The L4_SM product is provided at 9 km spatial and 3-hourly temporal resolution and with about 2.5 day latency. The soil moisture and temperature estimates in the L4_SM product are validated against in situ observations. The L4_SM product meets the required target uncertainty of 0.04 m(exp. 3)m(exp. -3), measured in terms of unbiased root-mean-square-error, for both surface and root zone soil moisture.

  5. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng


    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  6. Thresholds in soil response to water stress: intensity and duration of dry-wet cycles induce differential soil C and bacterial diversity dynamics (United States)

    Kaisermann, Aurore; Nunan, Naoise; Maron, Pierre-Alain; Terrat, Sébastien; Lata, Jean-Christophe


    After the wetting of dry soils, a CO2 flush (known as the 'Birch effect') is often observed. Although the Birch effect can often result in large CO2 fluxes, the process is not sufficiently well understood to predict its intensity. In particular, the impact of dry-wet cycles on microbial communities is poorly understood, as are the consequences of the possible changes for soil functioning. Using microcosm-based experiments, we investigated different climate change scenarios, such as drying periods of different durations (with co-variation of drying intensity and drought duration) and different rainfall intensities. The effects of four dry-wet cycles on the (i) immediate intensity of the Birch effect, (ii) rate of return to basal C mineralisation (functional resilience), (iii) total amount of CO2 released during a 5-month incubation and (iv) the dynamics of bacterial diversity were determined. Bacterial diversity was measured by pyrosequencing. The CO2 flush increased as a function of drying intensity, drought duration and wetting intensity but was not affected by the number of dry-wet cycles. However, the functional resilience was slower after the first dry-wet cycle than subsequent cycles, suggesting an adaptation of the microbial communities to water-stress. However, this was not associated with a higher stability of bacterial community since the pyrosequencing data showed that drying decreased bacterial diversity after each dry-wet cycle, but only if a threshold of minimal moisture is exceeded. These modifications were permanent over the long term and suggest that the communities were characterised by functional redundancy. Moderate droughts had no effect on overall CO2 emissions but severe droughts led to a lower loss of soil C due to the absence of mineralisation during the longer periods of desiccation that was not compensated by over-mineralisation during Birch effect. The study highlighted moisture threshold beyond which it can be observed a Birch effect and

  7. Metallurgical investigations of dry sliding surface layer in phosphorous iron/steel friction pairs

    Institute of Scientific and Technical Information of China (English)


    Surface layer behaviors of composition concentration and micro-hardness were inves-tigated on phosphorous cast irons after dry sliding. The experimental results indicate that thehardness and chemical composition unevenly distribute in the surface layer. The sliding conditionand microstructure of the pin specimen have greatly effects on the distributions.

  8. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica. (United States)

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda


    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.

  9. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange. (United States)

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M


    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment.

  10. Effect of Management Practices on Soil Microstructure and Surface Microrelief

    Directory of Open Access Journals (Sweden)

    R. Garcia Moreno


    Full Text Available Soil surface roughness (SSR and porosity were evaluated from soils located in two farms belonging to the Plant Breeding Institute of the University of Sidney. The sites differ in their soil management practices; the first site (PBI was strip-tilled during early fall (May 2010, and the second site (JBP was under power harrowed tillage at the end of July 2010. Both sites were sampled in mid-August. At each location, SSR was measured for three 1 m2 subplots using shadow analysis. To evaluate porosity and aggregation, soil samples were scanned using X-ray computed tomography with 5 μm resolution. The results show a strong negative correlation between SSR and porosity, 20.13% SSR and 41.38% porosity at PBI versus 42.00% SSR and 18.35% porosity at JBP. However, soil images show that when soil surface roughness is higher due to conservation and soil management practices, the processes of macroaggregation and structural porosity are enhanced. Further research must be conducted on SSR and porosity in different types of soils, as they provide complementary information on the evaluation of soil erosion susceptibility.

  11. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica (United States)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.


    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  12. A non-equilibrium model for soil heating and moisture transport during extreme surface heating

    Directory of Open Access Journals (Sweden)

    W. J. Massman


    Full Text Available With increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change comes the need to improve modeling capability of extreme heating of soils during fires. This issue is addressed here by developing a one-dimensional non-equilibrium model of soil evaporation and transport of heat, soil moisture, and water vapor, for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. The model employs a linearized Crank–Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m−2. The Hertz–Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. The model includes a dynamic residual soil moisture as a function of temperature and soil water potential, which allows the model to capture some of the dynamic aspects of the strongly bound soil moisture that seems to require temperatures well beyond 150 °C to fully evaporate. Furthermore, the model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50–90 °C. Sensitivity analyses indicate that the model's success results primarily from the use of a temperature and moisture potential dependent condensation coefficient in the evaporative source term. The model's solution for water vapor density (and vapor pressure, which can exceed one standard atmosphere, cannot be experimentally verified, but they are supported by results from (earlier and very different models developed for somewhat different purposes and for different porous

  13. Presence or absence of ocular surface inflammation directs clinical and therapeutic management of dry eye

    Directory of Open Access Journals (Sweden)

    Sambursky R


    Full Text Available Robert Sambursky Coastal Eye Institute, Cornea and Comprehensive Ophthalmology, Bradenton, FL, USA Background: The presence of clinically significant inflammation has been confirmed in the tears of 40%–65% of patients with symptoms of dry eye. Ocular surface inflammation may lead to tear film instability, epithelial cell irregularities, and permeability, resulting in chronic symptomatic pain and fluctuating vision as well as negative surgical outcomes.Patients and methods: A retrospective single center medical chart review of 100 patients was conducted. All patients were tested with the InflammaDry test to determine if patients exhibited elevated levels of matrix metalloproteinase 9 (MMP-9. InflammaDry-positive patients were started on a combination of cyclosporine 0.05% twice daily, 2,000–4,000 mg oral omega-3 fatty acids, and frequent artificial tear replacement. InflammaDry-negative patients were started on 2,000–4,000 mg of oral omega-3 fatty acids and frequent artificial tear replacement. Each patient was retested at ~90 days. A symptom questionnaire was performed at the initial visit and at 90 days.Results: 60% of the patients with dry eye symptoms tested positive for elevated MMP-9 at the initial visit. 78% of all patients returned for follow-up at ~90 days including 80% (48/60 of the previously InflammaDry-positive patients and 75% (30/40 of the previously InflammaDry-negative patients. A follow-up symptom questionnaire reported at least 75% symptomatic improvement in 65% (31/48 of the originally InflammaDry-positive patients and in 70% (21/30 of the initially InflammaDry-negative patients. Symptomatic improvement of at least 50% was reported in 85% (41/48 of previously InflammaDry-positive patients and 86% (26/30 of previously InflammaDry-negative patients. Following treatment, 54% (26/48 of previously InflammaDry-positive patients converted to a negative InflammaDry result.Conclusion: Identifying which symptomatic dry eye

  14. Numerical-analytical investigation into impact pipe driving in soil with dry friction. Part II: Deformable external medium

    CERN Document Server

    Aleksandrova, Nadezhda


    Under analysis is travel of P-waves in an elastic pipe partly embedded in soil with dry friction. The mathematical formulation of the problem on impact pipe driving in soil is based on the model of axial vibration of an elastic bar, considering lateral resistance described using the law of solid dry friction. The author solves problems on axial load on pipe in interaction with external elastic medium, and compares the analytical and numerical results obtained with and without accounting for the external medium deformability.

  15. Spatial variability of organochlorine pesticides (DDTs and HCHs) in surface soils from the alluvial region of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-yan; GAO Ru-tai; HUANG Yuan-fang; JIA Xiao-hong; JIANG Shu-ren


    The spatial variability in the concentrations of 1,2,3,4,5,6-hexachlorocyclohexane (HCH) and 1,1,1-trichloro-2,2-bis-(p-chlorophenyl) ethane (DDT) in surface soils was studied on the basis of the analysis of 131 soil samples collected from the surface layer (0-20 cm depth) of the alluvial region of Beijing, China. The concentrations of total HCHs (including α-, β-, γ-, and δ-isomers) and total DDTs (i ncluding p,p'-DDT, p,p'-DDD, p,p'-DDE, and o,p'-DDT) in the surface soils tested were in the range from nondetectable to 31.72 μg/kg dry soil, with a mean value of 0.91, and from nondetectable to 5910.83 μg/kg dry soil, with a mean value of 32.13,respectively. It was observed that concentrations of HCHs in all soil samples and concentrations of DDTs in 112 soil samples were much lower than the first grade (50 μg/kg) permitted in "Environment quality standard for soils in China (GB15618-1995)". This suggests that the pollution due to organochlorine pesticides was generally not significant in the farmland soils in the Beijing alluvial region. In this study, the spatial distribution and trend of HCHs and DDTs were analyzed using Geostatistical Analyst and GS+(513).Spatial distribution indicated how these pesticides had been applied in the past. Trend analysis showed that the concentrations of HCHs,DDTs, and their related metabolites followed an obvious distribution trend in the surface soils from the alluvial region of Beijing.

  16. Detection of trace organics in Martian soil analogs using fluorescence-free surface enhanced 1064-nm Raman Spectroscopy. (United States)

    Tang, Suning; Chen, Bin; McKay, Christopher P; Navarro-Gonzálezv, Rafael; Wang, Alan X


    A significant technology challenge in planetary missions is the in situ detection of organics at the sub-part-per-million (ppm) level in soils. This article reports the organic compound detection in Mars-like soils at the sub-ppm level using an ultra-sensitive spectral sensing technique based on fluorescence-free surface-enhanced Raman scattering (SERS), which has a significantly improved sensitivity and reduced fluorescence noise. Raman spectral detection of ppm level organics in Antarctic Dry Valley and Mojave Desert soils have been obtained for the first time, which otherwise are not detected by other Raman spectral techniques.

  17. Soil Moisture and Vegetation Controls on Surface Energy Balance Using the Maximum Entropy Production Model of Evapotranspiration (United States)

    Wang, J.; Parolari, A.; Huang, S. Y.


    The objective of this study is to formulate and test plant water stress parameterizations for the recently proposed maximum entropy production (MEP) model of evapotranspiration (ET) over vegetated surfaces. . The MEP model of ET is a parsimonious alternative to existing land surface parameterizations of surface energy fluxes from net radiation, temperature, humidity, and a small number of parameters. The MEP model was previously tested for vegetated surfaces under well-watered and dry, dormant conditions, when the surface energy balance is relatively insensitive to plant physiological activity. Under water stressed conditions, however, the plant water stress response strongly affects the surface energy balance. This effect occurs through plant physiological adjustments that reduce ET to maintain leaf turgor pressure as soil moisture is depleted during drought. To improve MEP model of ET predictions under water stress conditions, the model was modified to incorporate this plant-mediated feedback between soil moisture and ET. We compare MEP model predictions to observations under a range of field conditions, including bare soil, grassland, and forest. The results indicate a water stress function that combines the soil water potential in the surface soil layer with the atmospheric humidity successfully reproduces observed ET decreases during drought. In addition to its utility as a modeling tool, the calibrated water stress functions also provide a means to infer ecosystem influence on the land surface state. Challenges associated with sampling model input data (i.e., net radiation, surface temperature, and surface humidity) are also discussed.

  18. Dry spots in golf courses: occurrence, remediation, and prevention

    NARCIS (Netherlands)

    Dekker, L.W.; Ritsema, C.J.; Oostindie, K.


    Although soils are generally considered to wet readily, numerous sandy soils are actually water repellent at the surface and in the rhizosphere during dry periods. The failure to absorb water has been observed under a range of vegetation types, including grass. As soils dry, hydrophobic compounds

  19. Sound absorption at the soil surface

    NARCIS (Netherlands)

    Janse, A.R.P.


    The properties of a soil structure may be examined in various manners. As well as a study of the stability, a knowledge of the geometry of the volume of air filled pores is often needed. The most common measurements, like those of porosity and flow resistance to gases do not permit a detailed

  20. Autotrophic component of soil respiration is repressed by drought more than the heterotrophic one in dry grasslands (United States)

    Balogh, János; Papp, Marianna; Pintér, Krisztina; Fóti, Szilvia; Posta, Katalin; Eugster, Werner; Nagy, Zoltán


    Summer droughts projected to increase in central Europe due to climate changes strongly influence the carbon cycle of ecosystems. Persistent respiration activities during drought periods are responsible for a significant carbon loss, which may turn the ecosystem from a sink into a source of carbon. There are still gaps in our knowledge regarding the characteristic changes taking place in the respiration of the different components of the ecosystem in response to drought events.In the present study, we combined a physical separation of soil respiration components with continuous measurements of soil CO2 efflux and its isotopic (13C) signals at a dry grassland site in Hungary. The physical separation of soil respiration components was performed by means of inox meshes and tubes inserted into the soil. The root-excluded and root- and mycorrhiza-excluded treatments served to measure the isotopic signals of the rhizospheric, mycorrhizal fungi and heterotrophic components, respectively.In the dry grassland investigated in the study the three components of the soil CO2 efflux decreased at different rates under drought conditions. During drought the contribution made by the heterotrophic components was the highest (54 ± 8 %; mean ±SE). Rhizospheric component was the most sensitive to soil drying with its relative contribution to the total soil respiration dropping from 66 ± 7 (non-stressed) to 35 ± 17 % (mean ±SE) under drought conditions. According to our results the heterotrophic component of soil respiration is the major contributor to the respiration activities during drought events in the dry grassland ecosystem studied.

  1. Effects of Wet and Dry Finishing and Polishing on Surface Roughness and Microhardness of Composite Resins

    Directory of Open Access Journals (Sweden)

    Negin Nasoohi


    Full Text Available Objectives: This study aimed to assess the effect of wet and dry finishing and polishing on microhardness and roughness of microhybrid and nanohybrid composites.Materials and Methods: Thirty samples were fabricated of each of the Polofil Supra and Aelite Aesthetic All-Purpose Body microhybrid and Grandio and Aelite Aesthetic Enamel nanohybrid composite resins. Each group (n=30 was divided into three subgroups of D, W and C (n=10. Finishing and polishing were performed dry in group D and under water coolant in group W. Group C served as the control group and did not receive finishing and polishing. Surface roughness of samples was measured by a profilometer and their hardness was measured by a Vickers hardness tester. Data were analyzed using two-way ANOVA (P<0.05.Results: The smoothest surfaces with the lowest microhardness were obtained under Mylar strip without finishing/polishing for all composites (P<0.0001. The highest surface roughness was recorded for dry finishing/polishing for all composites (P<0.0001. Dry finishing/polishing increased the microhardness of all composites (P<0.0001.Conclusions: Dry finishing and polishing increases the microhardness and surface roughness of microhybrid and nanohybrid composite resins. Keywords: Composite Resins; Dental Polishing; Hardness

  2. Quantification of Gaseous Elemental Mercury Dry Deposition to Environmental Surfaces using Mercury Stable Isotopes in a Controlled Environment (United States)

    Rutter, A. P.; Schauer, J. J.; Shafer, M. M.; Olson, M.; Robinson, M.; Vanderveer, P.; Creswell, J. E.; Parman, A.; Mallek, J.; Gorski, P.


    Andrew P. Rutter (1) * *, James J, Schauer (1,2) *, Martin M. Shafer(1,2), Michael R. Olson (1), Michael Robinson (1), Peter Vanderveer (3), Joel Creswell (1), Justin L. Mallek (1), Andrew M. Parman (1) (1) Environmental Chemistry and Technology Program, 660 N. Park St, Madison, WI 53705. (2) Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718. (3) Biotron, University of Wisconsin - Madison, 2115 Observatory Drive, Madison, WI 53706 * Correspond author( * *Presenting author ( Abstract Gaseous elemental mercury (GEM) is the predominant component of atmospheric mercury outside of arctic depletion events, and locations where anthropogenic point sources are not influencing atmospheric concentrations. GEM constitutes greater than 99% of the mercury mass in most rural and remote locations. While dry and wet deposition of atmospheric mercury is thought to be dominated by oxidized mercury (a.k.a. reactive mercury), only small GEM uptake to environmental surfaces could impact the input of mercury to terrestrial and aquatic ecosystems. Dry deposition and subsequent re-emission of gaseous elemental mercury is a pathway from the atmosphere that remains only partially understood from a mechanistic perspective. In order to properly model GEM dry deposition and re-emission an understanding of its dependence on irradiance, temperature, and relative humidity must be measured and parameterized for a broad spectrum of environmental surfaces colocated with surrogate deposition surfaces used to make field based dry deposition measurements. Measurements of isotopically enriched GEM dry deposition were made with a variety of environmental surfaces in a controlled environment room at the University of Wisconsin Biotron. The experimental set up allowed dry deposition components which are not easily separated in the field to be decoupled. We were able to isolate surface transfer processes from variabilities caused by


    Directory of Open Access Journals (Sweden)

    Olov Karlsson,


    Full Text Available Carbohydrates that migrate to wood surfaces in sapwood during drying might influence properties such as mould susceptibility and colour. Sugars on the surface of Norway spruce boards during various heat treatments were studied. Samples (350mmx125mmx25mm were double-stacked, facing sapwood-side outwards, and dried at 110oC to a target moisture content (MC of 40%. Dried sub-samples (80 mm x 125 mm x 25 mm were stacked in a similar way and further heated at 110oC and at 130oC for 12, 24, and 36 hours, respectively. Glucose, fructose, and sucrose as well as 5-hydroxymethylfurfural (HMF and furfural in the sapwood surface layer of treated wood were analysed using HPLC (RI- and UV-detectors. Carbohydrates degraded to a lower extent at 110oC than at 130oC. Furfural and to a larger extent HMF increased with treatment period and temperature. Heat treatment led to a decrease in lightness and hue of the sapwood surface of sub-samples, while chroma increased somewhat. Furthermore, considerably faster degradation (within a few minutes of the carbohydrates on the surface of the dried spruce boards was observed when single sub-samples were conductively hot pressed at 200oC. Treatment period and initial MC influenced the presence of the carbohydrates in wood surface as well as colour change (Eab of the hot pressed sub-samples.

  4. Evaluation of Biological and Enzymatic Activity of Soil in a Tropical Dry Forest: Desierto de la Tatacoa (Colombia) with Potential in Mars Terraforming and Other Similar Planets (United States)

    Moreno Moreno, A. N.


    Desierto de la Tatacoa has been determined to be a tropical dry forest bioma, which is located at 3° 13" N 75° 13" W. It has a hot thermal floor with 440 msnm of altitude; it has a daily average of 28° C, and a maximum of 40° C, Its annual rainfall total can be upwards of 1250 mm. Its solar sheen has a daily average of 5.8 hours and its relative humidity is between 60% and 65%. Therefore, the life forms presents are very scant, and in certain places, almost void. It was realized a completely random sampling of soil from its surface down to 6 inches deep, of zones without vegetation and with soils highly loaded by oxides of iron in order to determine the number of microorganisms per gram and its subsequent identification. It was measured the soil basal respiration. Besides, it was determined enzymatic activity (catalase, dehydrogenase, phosphatase and urease). Starting with the obtained results, it is developes an alternative towards the study of soil genesis in Mars in particular, and recommendations for same process in other planets. Although the information found in the experiments already realized in Martian soil they demonstrate that doesnt exist any enzymatic activity, the knowledge of the same topic in the soil is proposed as an alternative to problems like carbonic fixing of the dense Martian atmosphere of CO2, the degradation of inorganic compounds amongst other in order to prepare the substratum for later colonization by some life form.

  5. Threshold criteria for heavy metals in the soils of hazard-free dry fruit production regions of China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianguang; LIU Yufang; GUO Suping; LI Baoguo; ZHOU Junyi; WANG Wenjiang


    Determination of proper threshold criteria for heavy metals in soils is an important basis for hazard-free dry fruit production in China.Based on the detection of heavy metal contents in soils in this study,it is initially concluded that the soils for dry fruit production in China are suitable for hazard-free growing.Moreover,the soil safety qualification for dry fruit production is much better than that in some developed countries or regions,which might help our production have a competitive advantage on the international market.However,soil Cr contents in the country are slightly higher,so that it is necessary to take steps to control any contamination during the whole chain of production.The following threshold criteria for heavy metals in soils is suggested according to physical,ecological and economical considerations:Hg 0.15 mg/kg;As 20mg/kg;Pb 50mg/kg;Cd 0.30 mg/kg and Gr 200 mg/kg.

  6. Tensile bond strength of hydroxyethyl methacrylate dentin bonding agent on dentin surface at various drying techniques

    Directory of Open Access Journals (Sweden)

    Kun Ismiyatin


    Full Text Available Background: There are several dentin surface drying techniques to provide a perfect resin penetration on dentin. There are two techniques which will be compared in this study. The first technique was by rubbing dentin surface gently using cotton pellet twice, this technique is called blot dry technique. The second technique is by air blowing dentin surface for one second and continued by rubbing dentin surface gently using moist cotton. Purpose: This experiment was aimed to examine the best dentin surface drying techniques after 37% phosphoric acid etching to obtain the optimum tensile bond strength between hydroxyethyl methacrylate (HEMA and dentin surface. Method: Bovine teeth was prepared flat to obtain the dentin surface and than was etched using 37% phosphoric acid for 15 seconds. After etching the dentin was cleaned using 20 cc plain water and dried with blot dry techniques (group I, or dried with air blow for one second (group II, or dried with air blow for one second, and continued with rubbing gently using moist cotton pellet (group III, and without any drying as control group (group IV. After these drying, the dentin surfaces were applied with resin dentin bonding agent and put into plunger facing the composite mould. The antagonist plunger was filled with composite resin. After 24 hours, therefore bond strength was measured using Autograph. Result: Data obtained was analyzed using One-Way ANOVA with 95% confidence level and continued with LSD test on p≤0.05. The result showed that the highest tensile bond strength was on group I, while the lowest on group IV. Group II and IV, III and IV, II and III did not show signigicant difference (p>0.05. Conclusion: Dentin surface drying techniques through gentle rubbing using cotton pellet twice (blot dry technique gave the greatest tensile bond strength.Latar belakang masalah: Tehnik pengeringan permukaan dentin agar resin dapat penetrasi dengan sempurna adalah dengan cara pengusapan secara

  7. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)



    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  8. The Use of a Geographic Information System and Remote Sensing Technology for Monitoring Land Use and Soil Carbon Change in the Subtropical Dry Forest Life Zone of Puerto Rico (United States)

    Velez-Rodriguez, Linda L. (Principal Investigator)


    Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.

  9. Optimization of microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds by response surface methodology. (United States)

    Tian, Yuting; Zhang, Yi; Zeng, Shaoxiao; Zheng, Yafeng; Chen, Feng; Guo, Zhebin; Lin, Yufei; Zheng, Baodong


    Drying is the main process used to treat lotus seeds for storage. In this study, response surface methodology was used to optimize processing methods for microwave vacuum (MWV) drying of lotus seeds and to create a desirable product. A central composite design with three important factors: microwave output power (2.0-4.0 kW), vacuum degree (-0.070 to -0.090 MPa) and on/off ratio (68/52 s to 99/21 s) was used to study the response variables of drying time, shrinkage ratio, rehydration ratio and whiteness index. The optimum conditions for MWV drying of lotus seeds were determined to obtain a minimal drying time, minimal shrinkage ratio, maximum rehydration ratio and maximum whiteness index. The optimum drying conditions were found to be: microwave output power 3.2 kW, vacuum degree -0.083 MPa and on/off ratio 94/26 s. Under these optimal conditions, drying time, shrinkage ratio, rehydration ratio and whiteness index were found to be 10 min, 37.66%, 157.1% and 68.83, respectively.

  10. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    Energy Technology Data Exchange (ETDEWEB)

    Pragadish, N.; Kumar, M. Pradeep [Anna University, Chennai (China)


    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T{sub ON}), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  11. Nature of organo-mineral particles across density fractions in a volcanic-ash soil: air-drying and sonication effect (United States)

    Wagai, R.; Kajiura, M.; Shirato, Y.; Uchida, M.


    Interactions of plant- and microbially-derived organic matter with mineral phases exert significant controls on the stabilization of organic matter (OM) as well as other biogeochemical processes in soil. Density fractionation techniques have been successful in distinguishing soil organo-mineral particles of different degrees of microbial alteration, turnover rate of C, mineral associations. A major methodological difference among the density fractionation studies is the choice of sample pre-treatment. Presence or absence of sonication to disrupt and disperse soil particles and aggregates is a particularly important choice which could significantly alter the nature and distribution of organo-mineral particle and thus the resultant elemental concentration in each density fraction. Soil moisture condition (air-dry vs. field-moist) may also have strong impact especially for soils rich in Fe oxides/hydroxides and/or poorly-crystalline minerals that are prone for (possibly irreversible) aggregation. We thus tested these two effects on the concentration and distribution of C, N, and extractable phases of Fe and Al (by pyrophosphate and acid oxalate) across six density fractions (from 2.5 g/cm^3) using a surface-horizon of volcanic-ash soil which contained large amounts of poorly-crystalline minerals and organo-metal complexes. Compared to field-moist sample, air-drying had little effects on the elemental concentration or distribution across the fractions. In contrast, sonication on air-dried sample at each density cutoff during fractionation process caused significant changes. In addition to well-known increase in low-density material due to the liberation of plant detritus upon aggregate disruption, we found clear increase in C, N, and metals in 2.0-2.3 g/cm^3 fraction, which was largely compensated by the reduction in 1.8-2.0 g/cm^3 and, to a less extent, 2.3-2.5 g/cm^3 particles. Overall, sonication led to the redistribution of C and N by 15-20% and that of poorly

  12. Novel Measurement and Monitoring Approaches for Surface and Near-Surface Soil Moisture (United States)

    Jones, S. B.; Sheng, W.; Zhou, R.; Sadeghi, M.; Tuller, M.


    The top inch of the earth's soil surface is a very dynamic and important layer where physical and biogeochemical processes take place under extreme diurnal and seasonal moisture and temperature variations. Some of these critical surfaces include biocrusts, desert pavements, agricultural lands, mine tailings, hydrophobic forest soils, all of which can significantly impact environmental conditions at large-scales. Natural hazards associated with surface conditions include dust storms, post-fire erosion and flooding in addition to crop failure. Less obvious, though continually occurring, are microbial-induced gas emissions that are also significantly impacted by surface conditions. With so much at stake, it is surprising that in today's technological world there are few if any sensors designed for monitoring the top few mm or cm of the soil surface. In particular, remotely sensed data is expected to provide near-real time surface conditions of our Earth, but we lack effective tools to measure and calibrate surface soil moisture. We are developing multiple methods for measurement and monitoring of surface and near-surface soil water content which include gravimetric as well as electromagnetic approaches. These novel measurement solutions and their prospects to improve soil surface water content determination will be presented.

  13. Thermal analysis of dry eye subjects and the thermal impulse perturbation model of ocular surface. (United States)

    Zhang, Aizhong; Maki, Kara L; Salahura, Gheorghe; Kottaiyan, Ranjini; Yoon, Geunyoung; Hindman, Holly B; Aquavella, James V; Zavislan, James M


    In this study, we explore the usage of ocular surface temperature (OST) decay patterns to distinguished between dry eye patients with aqueous deficient dry eye (ADDE) and meibomian gland dysfunction (MGD). The OST profiles of 20 dry eye subjects were measured by a long-wave infrared thermal camera in a standardized environment (24 °C, and relative humidity (RH) 40%). The subjects were instructed to blink every 5 s after 20 ∼ 25 min acclimation. Exponential decay curves were fit to the average temperature within a region of the central cornea. We find the MGD subjects have both a higher initial temperature (p thermal impulse perturbation (TIP) model. We conclude that long-wave-infrared thermal imaging is a plausible tool in assisting with the classification of dry eye patient.

  14. Speciated particle dry deposition to the sea surface: Results from ASEPS '97

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.; Geernaert, L.L.S.


    It has been postulated that atmospheric pathways may comprise a significant source of nitrogen for aquatic ecosystems and excess atmospheric deposition to coastal areas may be a major cause of eutrophication. Dry deposition of nitrogen containing particles is a potential, but poorly quantified...... on Precipitation Scavenging and Atmosphere-Surface Exchange Processes. AMS, Richland, Washington, USA, 12pp.) model to calculate size-segregated dry deposition of particle inorganic nitrogen compounds to the western Baltic during the late Spring of 1997 based on data collected as part of the Air-Sea Exchange...... Process Study (ASEPS). The results show that over a 15 d period in April and May dry deposition fluxes varied between 30 and 400 mu g m(-2) d(-1) for nitrate and 1 and 120 mu g m(-2) d(-1) for ammonium. Sensitivity analyses run to assess the potential bounds on actual dry deposition indicate that...

  15. Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station (United States)

    Sugathan, Neena; Biju, V.; Renuka, G.


    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured during April 2010 to March 2011 at a tropical station, viz., Astronomical Observatory, Thiruvananthapuram, Kerala, India (76°59'E longitude and 8°29'N latitude). The monthly, seasonal and seasonal mean diurnal variation of soil moisture content is analyzed in detail and is correlated with the rainfall measured at the same site during the period of study. The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also investigated. Surface albedo is found to fall exponentially with increase in soil moisture content. Soil thermal diffusivity and soil thermal conductivity are also estimated from the subsoil temperature profile. Log normal dependence of thermal diffusivity and power law dependence of thermal conductivity on soil moisture content are confirmed.

  16. Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station

    Indian Academy of Sciences (India)

    Neena Sugathan; V Biju; G Renuka


    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured during April 2010 to March 2011 at a tropical station, viz., Astronomical Observatory, Thiruvananthapuram, Kerala, India (76° 59’E longitude and 8°29’N latitude). The monthly, seasonal and seasonal mean diurnal variation of soil moisture content is analyzed in detail and is correlated with the rainfall measured at the same site during the period of study. The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also investigated. Surface albedo is found to fall exponentially with increase in soil moisture content. Soil thermal diffusivity and soil thermal conductivity are also estimated from the subsoil temperature profile. Log normal dependence of thermal diffusivity and power law dependence of thermal conductivity on soil moisture content are confirmed.

  17. Two Patients with Dry Eye Disease Followed Up Using an Expression Assay of Ocular Surface Mucin

    Directory of Open Access Journals (Sweden)

    Yumiko Machida


    Full Text Available Purpose: We report 2 patients with dry eye disease followed up using the expression levels of ocular surface mucin. Case Reports: Patient 1: a 57-year-old woman with Sjögren's syndrome-associated dry eyes experienced severe dryness and foreign body sensation in both her eyes, and instilled sodium hyaluronate ophthalmic solution 0.3% about 10-15 times daily. We measured the expression levels of MUC5AC mRNA (MUC5AC and MUC16 mRNA (MUC16 by using real-time reversed transcription polymerase chain reaction for the specimens of modified impression cytology. Expression levels of MUC5AC and MUC16 on her ocular surface were very low. Subjective symptoms and expression levels of ocular surface mucin improved after combined treatment of rebamipide (4 times daily and fluorometholone (once daily ophthalmic suspension. Patient 2: a 62-year-old man with chronic graft-versus-host disease-associated dry eye experienced severe foreign body sensation and developed superficial punctate keratopathy with mucous thread and filamentary keratitis. Expression level of MUC5AC was very high at baseline. Subjective symptoms and expression levels of ocular surface mucin improved by combined treatment of rebamipide (4 times daily and fluorometholone (once daily ophthalmic suspension. Conclusion: Clinical test for MUC gene expression on the ocular surface was found to be useful in the follow-up of dry eye treatment.

  18. The influence of soils on heterotrophic respiration exerts a strong control on net ecosystem productivity in seasonally dry Amazonian forests

    Directory of Open Access Journals (Sweden)

    J. R. Melton


    Full Text Available Net ecosystem productivity of carbon (NEP in seasonally dry forests of the Amazon varies greatly between sites with similar precipitation patterns. Correctly modeling the NEP seasonality with terrestrial ecosystem models has proven difficult. Previous modelling studies have mostly advocated incorporating processes that act to reduce water stress on gross primary productivity (GPP during the dry season such as including deep soils and roots, plant-mediated hydraulic redistribution of soil moisture, and increased dry season leaf litter generation which reduces leaf age and thus increases photosynthetic capacity. Recent observations, however, indicate that seasonality in heterotrophic respiration also contributes to the observed seasonal cycle of NEP. Here, we use the dynamic vegetation model CLASS-CTEM – without deep soils or roots, hydraulic redistribution of soil moisture or increased dry season litter generation – at two Large-Scale Biosphere–Atmosphere Experiment (LBA sites (Tapajós km 83 and Jarú Reserve. These LBA sites exhibit opposite seasonal NEP cycles despite similar meteorological conditions. Our simulations are able to reproduce the observed NEP seasonality at both sites. Simulated GPP, heterotrophic respiration, latent and sensible heat fluxes, litter fall rate, soil moisture and temperature, and basic vegetation state are also compared with available observation-based estimates which provide confidence that the model overall behaves realistically at the two sites. Our results indicate that appropriately representing the influence of soil texture and depth, through soil moisture, on seasonal patterns of GPP and, especially, heterotrophic respiration is important to correctly simulating NEP seasonality.

  19. Enhancement of convective drying by application of airborne ultrasound - a response surface approach. (United States)

    Beck, Svenja M; Sabarez, Henry; Gaukel, Volker; Knoerzer, Kai


    Drying is one of the oldest and most commonly used processes in the food manufacturing industry. The conventional way of drying is by forced convection at elevated temperatures. However, this process step often requires a very long treatment time, is highly energy consuming and detrimental to the product quality. Therefore, an investigation of whether the drying time and temperature can be reduced with the assistance of an airborne ultrasound intervention is of interest. Previous studies have shown that contact ultrasound can accelerate the drying process. It is assumed that mechanical vibrations, creating micro channels in the food matrix or keeping these channels from collapsing upon drying, are responsible for the faster water removal. In food samples, due to their natural origin, drying is also influenced by fluctuations in tissue structure, varying between different trials. For this reason, a model food system with thermo-physical properties and composition (water, cellulose, starch, fructose) similar to those of plant-based foods has been used in this study. The main objective was, therefore, to investigate the influence of airborne ultrasound conditions on the drying behaviour of the model food. The impact of airborne ultrasound at various power levels, drying temperature, relative humidity of the drying air, and the air speed was analysed. To examine possible interactions between these parameters, the experiments were designed with a Response Surface Method using Minitab 16 Statistical Software (Minitab Inc., State College, PA, USA). In addition, a first attempt at improving the process conditions and performance for better suitability and applicability in industrial scale processing was undertaken by non-continuous/intermittent sonication.

  20. Restoring the natural state of the soil surface by biocrusts (United States)

    Zaady, Eli; Ungar, Eugene D.; Stavi, Ilan; Shuker, Shimshon; Knoll, Yaakov M.


    In arid and semi-arid areas, with mean annual precipitation of 70-200 mm, the dominant component of the ground cover is biocrusts composed of cyanobacteria, moss and lichens. Biocrusts play a role in stabilizing the soil surface, which reduces erosion by water and wind. Human disturbances, such as heavy vehicular traffic, earthworks, overgrazing and land mining destroy the soil surface and promote erosion. The aim of the study was to evaluate restoration of the soil surface by the return of a biocrust layer. We examined the impact of disturbances on the creation of a stable crust and on the rate of recovery. Biocrust disturbance was studied in two sites in the northern Negev. The nine treatments included different rates of biocrust inoculum application and NPK fertilization. Recovery rates of the biocrusts were monitored for five years using chemical, physical and bio-physiological tests which determined infiltration rate, soil surface resistance to pressure, shear force of the soil surface, levels of chlorophyll, organic matter and polysaccharide, NDVI and aggregate stability. The results show that untreated disturbed biocrusts present long-term damage and a very slow rate of recovery, which may take decades, while most of the treatments showed a faster recovery. In particular, NDVI, polysaccharide levels and aggregate stability showed steady improvements over the research period.

  1. Effect of Electrolytes on Surface Charge Characteristics of Red Soils

    Institute of Scientific and Technical Information of China (English)



    The zero point of charge (ZPC) and the remaining charge σp at ZPC are two important parameters characterizing surface charge of red soils.Fourteen red soil samples of different soil type and parent material were treated with dithionite-citrate-dicarbonate (DCB) and Na2CO3 respectively.ZPC and σp of the samples in three indifferent electrolytes (NaCl,Na2SO4,and NaH2PO4) were determined.Kaolinite was used as reference.The results showed that ZPC of red soils was affected by the composition of parent materials and clay minerals and in significantly positive correlation with the content of total iron oxide (Fet),free iron oxide (Fed),amorphous iron oxide (Feo),aluminum oxide (Alo) and clay,but it was negatively correlated with the content of total silica (Sit).The σp of red soils was also markedly influenced by mineral components.Organic components were also contributing factor to the value of σp.The surface charges of red soils were evidently affected by the constitution of the electrolytes.Specific adsorption of anions in the electrolytes tended to make the ZPC of red soils shift to a higher pH value and to increase positive surface charges of the soils,thus leading to change of the σp value and decrease of the remaining net negative charges,even to the soils becoming net positive charge carriers.The effect of phosphate anion was greater than that of sulfate ion.

  2. Effects of kaolinite and drying temperature on the persistence of soil water repellency induced by humic acids

    NARCIS (Netherlands)

    Lichner, L.; Babejová, N.; Dekker, L.W.


    The effects of kaolinite additions and drying temperature on the persistence of soil water repellency, induced by humic acids from peat, were assessed in this study. It was found that additions of 5 and 10% kaolinite (referred to as the most effective material in combating the water repellency) did

  3. Bacteria-mineral interactions in soil and their effect on particle surface properties (United States)

    Miltner, Anja; Achtenhagen, Jan; Goebel, Marc-Oliver; Bachmann, Jörg; Kästner, Matthias


    Interactions between bacteria or their residues and mineral surfaces play an important role for soil processes and properties. It is well known that bacteria tend to grow attached to surfaces and that they get more hydrophobic when grown under stress conditions. In addition, bacterial and fungal biomass residues have recently been shown to contribute to soil organic matter formation. The attachment of bacteria or their residues to soil minerals can be expected to modify the surface properties of these particles, in particular the wettability. We hypothesize that the extent of the effect depends on the surface properties of the bacteria, which change depending on environmental conditions. As the wettability of soil particles is crucial for the distribution and the availability of water, we investigated the effect of both living cells and bacterial residues (cell envelope fragments and cytosol) on the wettability of model mineral particles in a simplified laboratory system. We grew Pseudomonas putida cells in mineral medium either without (unstressed) or with additional 1.5 M NaCl (osmotically stressed). After 2 h of incubation, the cells were disintegrated by ultrasonic treatment. Different amounts of either intact cells, cell envelope fragments or cytosol (each corresponding to 108, 109, or 1010 cells per gram of mineral) were mixed with quartz sand, quartz silt or kaolinite. The bacteria-mineral associations were air-dried for 2 hours and analyzed for their contact angle. We found that the surfaces of osmotically stressed cells were more hydrophobic than the surfaces of unstressed cells and that the bacteria-mineral associations had higher contact angles than the pure minerals. A rather low surface coverage (~10%) of the mineral surfaces by bacteria was sufficient to increase the contact angle significantly, and the different wettabilities of stressed and unstressed cells were reflected in the contact angles of the bacteria-mineral associations. The increases in

  4. A dry-surface coating method for visualization of separation. [bluff bodies (United States)

    Sadeh, W. Z.; Brauer, H. J.; Durgin, J. R.


    A relatively simple and reasonably accurate dry-surface coating method for visualization of the separation line on a bluff body was devised and successfully tested. This technique is based on the color reaction of a dry film containing a pH indicator with an appropriate gas released in the body wake. The dry-surface coating method is effective at any Reynolds number and for both incident laminar and turbulent flows. It further supplies a colorful permanent of consistently good photographic quality of the separation line. The effectiveness and accuracy of this technique were tested in visualizing the separation angle on a circular cylinder in both laminar and turbulent crossflows at subcritical Reynolds numbers. Separation angles revealed by the visualization were within + or - 4 percent of their counterparts deduced from the mean wall pressure distribution.

  5. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.


    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and

  6. Adaptations to soil drying in woody seedlings of African locust bean, (Parkia biglobosa (Jacq.) Benth.). (United States)

    Osonubi, O; Fasehun, F E


    Stomatal conductance, transpiration and xylem pressure potential of African locust bean (Parkia biglobosa (Jacq.) Benth.) seedlings subjected from the sixth week after emergence to four weeks of continuous soil drought did not differ from those of well-watered, control plants until two-thirds of the available soil water had been used. In both well-watered and drought-treated plants, stomatal conductance was highest early in the day when vapor pressure deficits were low, but decreased sharply by midday when evaporative demand reached its highest value. There was no increase in stomatal conductance later in the day as vapor pressure deficit declined. The relationship between transpiration rate and xylem pressure potential showed non-linearity and hysteresis in both control and drought-treated plants, which seems to indicate that the plants had a substantial capacity to store water. The rate of leaf extension in African locust bean seedlings subjected to six consecutive 2-week cycles of soil drought declined relative to that of well-watered, control plants, whereas relative root extension increased. It appears that African locust bean seedlings minimized the impact of drought by: (1) restricting transpiration to the early part of the day when a high ratio of carbon gain to water loss can be achieved; (2) utilizing internally stored water during periods of rapid transpiration; (3) reducing the rate of leaf expansion and final leaf size in response to soil drought without reducing the rate of root extension, thereby reducing the ratio of transpiring leaf surface area to absorbing root surface area.

  7. Soil erosion risk evaluation using GIS in the Yuanmou County,a dry-hot valley of Yunnan, China

    Institute of Scientific and Technical Information of China (English)


    Soil erosion is a major threat to sustainable agriculture. Evaluating regional erosion risk is increasingly needed by national and in-ternational environmental agencies. This study elaborates a model (using spatial principal component analysis [SPCA]) method for the evaluation of soil erosion risk in a representative area of dry-hot valley (Yuanmou County) at a scale of 1:100,000 using a spatial database and GIS. The model contains seven factors: elevation, slope, annual precipitation, land use, vegetation, soil, and population density. The evaluation results show that five grades of soil erosion risk: very low, low, medium, high, and very high. These are divided in the study area, and a soil erosion risk evaluation map is created. The model may be applicable to other areas of China because it utilizes spatial data that are generally available.

  8. Impact of drying surface and raking frequencies on mold incidence, ochratoxin A contamination, and cup quality during preparation of arabica and robusta cherries at the farm level. (United States)

    Velmourougane, Kulandaivelu; Bhat, Rajeev; Gopinandhan, Thirukonda Nannier


    The aim of this study was to evaluate the impact and contribution of various drying surfaces (soil, cement, and tarpaulin) and raking frequencies (1 and 4/day) on the incidence of toxigenic molds, ochratoxin A (OTA) production, and on the overall cup quality during preparation of arabica and robusta coffee cherry in India. Two individual experimental batches (run 1 at the begin of harvest and run 2 at the end of harvest) were set up for the study. Results showed high incidence of molds in coffee dried on soil surface compared with that on cement and tarpaulin surfaces. In both arabica and robusta, OTA could be detected in Aspergillus ochraceus contaminated samples at the end of harvest. Raking of the cherries 4 times/day showed lower fungal incidence with no OTA levels detected. Overall, coffee cherry prepared by drying on tarpaulin surface with 4 rakings/day showed lower OTA and fungal incidence with good and acceptable cup quality, and this is recommended to be practiced at the farm level.

  9. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651

    Directory of Open Access Journals (Sweden)

    Walid Jomaa


    Full Text Available The surface finish was extensively studied in usual machining processes (turning, milling, and drilling. For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining.

  10. Soil dehydrogenase in a land degradation-rehabilitation gradient: observations from a savanna site with a wet/dry seasonal cycle. (United States)

    Doi, Ryoichi; Ranamukhaarachchi, Senaratne Leelananda


    Soil dehydrogenase activity is a good indicator of overall microbial activity in soil, and it can serve as a good indicator of soil condition. However, seasonal changes in soil moisture content may have an effect on soil dehydrogenase activity, making an accurate assessment of soil condition difficult. In this study, we attempted to determine the significance of soil dehydrogenase activity for assessing soil condition, and we attempted to find a way to account for the influence of soil moisture content on soil dehydrogenase activity.' Soils were sampled in dry evergreen forest (original vegetation), bare ground (severely degraded) and Acacia plantation plots established on bare ground in 1986 and 1987 in Sakaerat, Thailand. Soil physico-chemical characteristics and dehydrogenase activity in the Acacia plantation soil had few differences from those in the evergreen forest soil. Soil dehydrogenase activity varied significantly between the bare ground and the forests regardless of the season (wet or dry), while the season did not produce a significant variation in soil dehydrogenase activity, as determined by repeated measures analysis of variance (p=0.077). The physico-chemical data provided the first principal component as a good measure of soil fertility. Values of soil dehydrogenase activity significantly correlated to scores of the soil samples of the first principal component (R=0.787, pThailand.

  11. Push broom microwave radiometer observations of surface soil moisture in Monsoon '90 (United States)

    Schmugge, T.; Jackson, T. J.; Kustas, W. P.; Roberts, R.; Parry, R.; Goodrich, D. C.; Amer, S. A.; Weltz, M. A.


    The push broom microwave radiometer (PBMR) was flown on six flights of the NASA C-130 to map the surface soil moisture over the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed in southeastern Arizona. The PBMR operates at a wavelength of 21 cm and has four horizontally polarized beams which cover a swath of 1.2 times the aircraft altitude. By flying a series of parallel flight lines it was possible to map the microwave brightness temperature (TB), and thus the soil moisture, over a large area. In this case the area was approximately 8 by 20 km. The moisture conditions ranged from very dry, 15%, after a heavy rain. The rain amounts ranged from less than 10 mm to more than 50 mm over the area mapped with the PBMR. With the PBMR we were able to observe the spatial variations of the rain amounts and the temporal variation as the soil dried. The TB values were registered to a Universal Transverse Mercator grid so that they could be compared to the rain gage readings and to the ground measurements of soil moisture in the 0- to 5-cm layer. The decreases in TB were well correlated with the rainfall amounts, R2 = 0.9, and the comparison of Tg with soil moisture was also good with an R2 of about 0.8. For the latter, there was some dependence of the relation on location, which may be due to soil or vegetation variations over the area mapped. The application of these data to runoff forecasts and flux estimates will be discussed.

  12. Regional Differences and Characteristics of Soil Organic Carbon Density Between Dry Land and Paddy Field in China

    Institute of Scientific and Technical Information of China (English)

    XU Quan; RUI Wen-yi; BIAN Xin-min; ZHANG Wei-jian


    Study on the regional characteristics of soil organic carbon (SOC) density in farmland will not only contribute greatly to the technique of soil productivity enhancement, but also give evidences of technique selection and policy making for carbon sequestration in soils. Based on the second national soil survey of China, the situation of SOC density in the plow layer of farmland was analyzed under different land use patterns. Results showed that SOC density in the plow layer was about 3.15 kg m-2 in average ranging from 0.81 to 12.68 kg m-2. The highest density was found in the southeastern region with an average of 3.63 kg m-2, while the lowest occurring in the northwestern region with an average of 3.00 kg m-2. The variation coefficient of SOC density in the plow layer of farmland was 57%, which was 35% lower than that of non-farmland soils. Compared to SOC density in the dry land, SOC density in paddy soils was 13% higher with a lower variation coefficient between different regions. In addition, the relationships between the climatic factors (annual average temperature and precipitation) and SOC density were lower in farmland than those in non-farmland soils, as well as lower in paddy soils than those in dry land of farmland. These results suggest that anthropogenic disturbances have great impacts on SOC density in farmland soils, especially in paddy soils, indicating that Chinese rice cropping may contribute greatly to the SOC stability and sequestration in paddy field.

  13. Study on characteristics of double surface VOC emissions from dry flat-plate building materials

    Institute of Scientific and Technical Information of China (English)

    WANG Xinke; ZHANG Yinping; ZHAO Rongyi


    This paper sets up an analytic model of double surface emission of volatile organic compound (VOC) from dry, flat-plate building materials. Based on it, the influence of factors including air change rate, loading factor of materials in the room, mass diffusion coefficient, partition coefficient, convective mass transfer coefficient, thickness of materials, asymmetric convective flow and initial VOC concentration distribution in the building material on emission is discussed. The conditions for simplifying double surface emission into single surface emission are also discussed. The model is helpful to assess the double surface VOC emission from flat-plate building materials used in indoor furniture and space partition.

  14. From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces. (United States)

    Kanduč, Matej; Netz, Roland R


    Using all-atom molecular dynamics (MD) simulations at constant water chemical potential in combination with basic theoretical arguments, we study hydration-induced interactions between two overall charge-neutral yet polar planar surfaces with different wetting properties. Whether the water film between the two surfaces becomes unstable below a threshold separation and cavitation gives rise to long-range attraction, depends on the sum of the two individual surface contact angles. Consequently, cavitation-induced attraction also occurs for a mildly hydrophilic surface interacting with a very hydrophobic surface. If both surfaces are very hydrophilic, hydration repulsion dominates at small separations and direct attractive force contribution can-if strong enough-give rise to wet adhesion in this case. In between the regimes of cavitation-induced attraction and hydration repulsion we find a narrow range of contact angle combinations where the surfaces adhere at contact in the absence of cavitation. This dry adhesion regime is driven by direct surface-surface interactions. We derive simple laws for the cavitation transition as well as for the transition between hydration repulsion and dry adhesion, which favorably compare with simulation results in a generic adhesion state diagram as a function of the two surface contact angles.

  15. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration (United States)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John


    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  16. [Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly area]. (United States)

    Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren


    Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (Psoil organic carbon concentration (r=0.838, Psoil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland.

  17. Hydraulic conductivity of active layer soils in the McMurdo Dry Valleys, Antarctica: Geological legacy controls modern hillslope connectivity (United States)

    Schmidt, Logan M.; Levy, Joseph S.


    Spatial variability in the hydraulic and physical properties of active layer soils influences shallow groundwater flow through cold-desert hydrological systems. This study measures the saturated hydraulic conductivity and grain-size distribution of 90 soil samples from the McMurdo Dry Valleys (MDV), Antarctica-primarily from Taylor Valley-to determine what processes affect the spatial distribution of saturated hydraulic conductivity in a simple, mineral-soil-dominated natural hillslope laboratory. We find that the saturated hydraulic conductivity and the grain-size distribution of soils are organized longitudinally within Taylor Valley. Soils sampled down-valley near the coast have a higher percentage of fine-sized sediments (fine sand, silt, clay) and lower saturated hydraulic conductivities than soils collected up-valley near Taylor Glacier (1.3 × 10- 2 vs. 1.2 × 10- 1 cm/s). Soils collected mid-valley have intermediate amounts of fines and saturated hydraulic conductivity values consistent with a hydrogeologic gradient spanning the valley from high inland to low near the coast. These results suggest the organization of modern soil properties within Taylor Valley is a relict signature from past glaciations that have deposited soils of decreasing age toward the mouth of the valley, modified by fluvial activity acting along temporal and microclimate gradients.

  18. Soil and surface layer type affect non-rainfall water inputs (United States)

    Agam, Nurit; Berliner, Pedro; Jiang, Anxia


    Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted

  19. The influence of time on the magnetic properties of late Quaternary periglacial and alluvial surface and buried soils along the Delaware River, USA

    Directory of Open Access Journals (Sweden)

    Gary E Stinchcomb


    Full Text Available Magnetic susceptibility of soils has been used as a proxy for rainfall, but other factors can contribute to magnetic enhancement in soils. Here we explore influence of century- to millennial-scale duration of soil formation on periglacial and alluvial soil magnetic properties by assessing three terraces with surface and buried soils ranging in exposure ages from <0.01 to ~16 kyrs along the Delaware River in northeastern USA. The A and B soil horizons have higher Xlf, Ms, and S-ratios compared to parent material, and these values increase in a non-linear fashion with increasing duration of soil formation. Magnetic remanence measurements show a mixed low- and high-coercivity mineral assemblage likely consisting of goethite, hematite and maghemite that contributes to the magnetic enhancement of the soil. Room-temperature and low-temperature field-cooled and zero field-cooled remanence curves confirm the presence of goethite and magnetite and show an increase in magnetization with increasing soil age. These data suggest that as the Delaware alluvial soils weather, the concentration of secondary ferrimagnetic minerals increase in the A and B soil horizons. We then compared the time-dependent Xlf from several age-constrained buried alluvial soils with known climate data for the region during the Quaternary. Contradictory to most studies that suggest a link between increases in magnetic susceptibility and high moisture, increased magnetic enhancement of Delaware alluvial soils coincides with dry climate intervals. Early Holocene enhanced soil Xlf (9.5 – 8.5 ka corresponds with a well-documented cool-dry climate episode. This relationship is probably related to less frequent flooding during dry intervals allowing more time for low-coercive pedogenic magnetic minerals to form and accumulate, which resulted in increased Xlf. Middle Holocene enhanced Xlf (6.1 – 4.3 ka corresponds with a transitional wet/dry phase and a previously documented incision

  20. Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Fairall, C.W.; Larsen, Søren Ejling


    A model of downward aerosol panicle flux characterized by dry deposition velocity, Vd, due to Slinn and Slinn (1980) is generalized to the case of nonzero surface concentration (absorbing surface with a surface source). A more general expression for the flux at some reference height is developed...... which includes Vd and an effective surface source strength, Si, which is a function of the true surface source strength, Si, and the particle transport properties below the reference height. The general expression for the surface flux is incorporated into a dynamic mixed layer model of the type...... developed by Davidson et al. (1983). This three layer model (diffusion sublayer, turbulent surface layer and mixed layer) is applied to an open ocean marine regime where boundary layer advection is ignored. The aerosol concentration in the boundary layer is considered to consist of sea salt particles...

  1. Diversity of soil fungi in dry deciduous forest of Bhadra Wildlife Sanctuary, Western Ghats of southern India

    Institute of Scientific and Technical Information of China (English)

    Shivakumar P.Banakar; B.Thippeswamy; B.V.Thirumalesh; K.J.Naveenkumar


    We assessed soil fungal diversity in the dry deciduous forest of a Bhadra Wildlife Sanctuary of the Western Ghats (210.31 m a.s.(l).; N 13°44′ and E75°37′).Soil samples were collected by random mixed sampling during winter (November,2008),summer (March,2009) and monsoon (August,2009) seasons,and physico-chemical parameters were recorded.During winter,summer,and monsoon seasons,49,45 and 49of fungal species belongs to 20,18 and 19 of genera were isolated,respectively.Isolated soil fungi were mainly of the Mitosporic fungi,followed by Zygomycotina,Ascomycotina,Oomycotina and Coelomycetes.Indices of diversity,dominance and fisher alpha during winter,summer and monsoon seasons were 3.756,3.638 and 3.738 (H′),0.9737,0.9694and 0.9726 (1-D) and 18.84,29.83 and 19.46 (α),respectivelv.Spearman's (r) correlation coefficient of fungal population with physicochemical parameters of soils showed significantly positive and negative correlations (p<0.01) during winter,summer and monsoon seasons.Physico-chemical soil parameters played an important role in the occurrence,diversity,distribution,and relative abundance of fungal species in the tropical dry deciduous forest soil.

  2. Contrasting Hydraulic Strategies during Dry Soil Conditions in Quercus rubra and Acer rubrum in a Sandy Site in Michigan

    Directory of Open Access Journals (Sweden)

    Julia E. Thomsen


    Full Text Available Correlation analyses were carried out for the dynamics of leaf water potential in two broad-leaf deciduous tree species in a sandy site under a range of air vapor pressure deficits and a relatively dry range of soil conditions. During nights when the soil is dry, the diffuse-porous, isohydric and shallow-rooted Acer rubrum does not recharge its xylem and leaf water storage to the same capacity that is observed during nights when the soil is moist. The ring-porous, deep-rooted Quercus rubra displays a more anisohydric behavior and appears to be capable of recharging to capacity at night-time even when soil moisture at the top 1 m is near wilting point, probably by accessing deeper soil layers than A. rubrum. Compared to A. rubrum, Q. rubra displays only a minimal level of down-regulation of stomatal conductance, which leads to a reduction of leaf water potential during times when vapor pressure deficit is high and soil moisture is limiting. We determine that the two species, despite typically being categorized by ecosystem models under the same plant functional type—mid-successional, temperate broadleaf—display different hydraulic strategies. These differences may lead to large differences between the species in water relations, transpiration and productivity under different precipitation and humidity regimes.

  3. Dry-surface coating method for visualization of separation on a bluff body (United States)

    Sadeh, W. Z.; Brauer, H. J.; Durgin, J. R.


    A simple and relatively accurate dry-surface coating method for visualization of the flow separation on a circular cylinder (or any bluff body) during wind tunnel tests is described. The technique consists of (1) application of a thin coating composed of an indicator and a paint carrier; (2) drying of the film; (3) conditioning of the coating with an acidic solution to ensure a suitable color reaction; (4) release into the body wake of a gas able to produce a base through chemical reaction with the solvent of the conditioning solution; and (5) color reaction according to pH.

  4. Mapping Surface Soil Moisture With Synthetic Aperture Radar Data and Basin Indexes (United States)

    Yilmaz, M.; Sorman, A.; Sorman, U.


    The soil moisture condition of a watershed plays a significant role in separation of infiltration and surface runoff, and hence is a key parameter for the majority of physical hydrological models. Due to the large difference in dielectric constants of dry soil and water, microwave remote sensing (particularly the commonly available synthetic aperture radar) is a potential tool for such studies. The main aim of this study is to compute a distributed soil moisture map of a catchment, which can be input to a hydrological model. For this purpose, nine field trips are performed and point surface soil moisture values are collected with a Time Domain Reflectometer. The field studies, which are carried out on a small catchment in western Anatolia, are planned to match radar image acquisitions and accomplished over a water year. First, the Dubois Model, a physical backscatter model is utilized in the reverse order to compute soil surface roughness values. This is accomplished for the field study dates which have two radar image acquisitions and with sparse vegetation cover. Then the first relationship of this study, between observed radar backscatter values and computed roughness values, is established with a correlation coefficient of 0.78. For bare soil surfaces, local incidence angle, soil moisture and roughness are the most dominant parameters effecting radar backscatter. After computing the incidence angle map of the study area, the second relationship, between observed radar backscatter values and the three governing parameters, is determined with a correlation coefficient of 0.87. The third and the last relationship of the study is estimated between the measured point soil moisture values and two basin indexes; topographic and solar radiation. In the last part of the study, the established three relationships, which are derived for point moisture measurements, are used to compute the soil moisture map of the whole catchment. This process is handled separately for the

  5. [Chronology of tropical dry forest regeneration in Santa Rosa, Guanacaste, Costa Rica. II. Vegetation in relation to the soil]. (United States)

    Leiva, Jorge A; Rocha, Oscar J; Mata, Rafael; Gutiérrez-Soto, Marco V


    Tropical dry forest (TDF) succession was monitored in Santa Rosa, Costa Rica. We analyzed the effect of soil type on forest structure and diversity. Eight seasonally-dry TDF sites located along a successional chrono-sequence (10, 15, 20, 40, 60 and >100 years) were examined in relation to 17 soil pedons and six soil orders. Soils had moderate to high fertility and were classified as Entisols and Vertisols, although Mollisols, Alfisols, Inceptisols and Ultisols were also present. One-hundred and thirty 500 m2 plots were established, 20 plots in secondary and 10 plots in mature TDF sites. Diameter at breast height (dbh) and total tree height were measured for saplings (dbh > or = 1 and trees (dbh > or = 5 cm). With the exception of two sites (40 and 60 years), soil type did not have significant effects on forest structure. However, tree diversity measured with Shannon-Wiener's H' and Fisher's alpha rarefaction curves, showed substantial differences among soil types, which became accentuated in mature forests. This pattern might be explained by non-random distributions of TDF trees, the scale of the study, the plot shape, and the use of systematic sampling designs. Low-fertility sites in general had higher species richness, consistent with idea that more restrictive soils reduce competition among trees and allow co-existence of species with contrasting growth rates. Changes in soil properties along a chrono-sequence of Entisols indicated that trees may experience more severe water stress as succession progresses, which may require adjustments in biomass allocation and phenological behavior of the dominant species. Our results suggest that edaphic specialization is more pronounced in mature TDF forests, and that most TDF trees are generalists in relation to soil type, highly tolerant to site heterogeneity, and show little physiological specializations in response to edaphic heterogeneity.

  6. The effect of surface cover and soil devastation on infiltration rate in steep forest plantations (United States)

    Onda, Y.; Hiraoka, M.; Kato, H.; Gomi, T.; Miyata, S.; Mizugaki, S.


    The Japanese cypress (Hinoki; Chamaecyparis obtusa) is a major commercial tree species in Japan, and without thinning of high-density stands, canopy closure prevents development of understory vegetation. Therefore there is a concern for overlandflow and sediment yield due to infiltration rate lowering. We developed a light-weight rainfall simulator based on the design of Meyer and Harmon (1979). A flat fan Veejet 80150 spraying nozzle (Spraying systems Co., USA) is mounted on the manifold at 2.13 m high from the plot surface. The nozzle oscillates so that the spray fan sweeps across the targeting 1 m x 1 m plot. The Veejet 80150 spraying nozzle produces large raindrops larger than 2 mm in diameter, and can simulate the high raindrop kinetic energy of natural throughfall. A targeted rainfall rate is 180 mm/h. About 30 sprinkling experiments have been conducted on 35-degree hillslopes with varying surface cover in 5 locations in Japan. We obtained the minimum infiltration rate of 14 mm/h where the surface cover is very little. The infiltration rates were plotted against the total understory vegetation and dry weight of total surface cover including litter. The infiltration rate increased with the increasing total surface cover, and generally higher regression coefficient was found for the case of the total surface cover. In some cases, high infiltration rates were obtained where surface cover is low. Two possible explanations can be made; 1) surface soil (especially fine particles) has been washed away, where soil is mostly composed of gravel and the percentage of fine fraction is low, or 2) because of long-term soil loss by raindrop detachment, remaining soil looks like "ghanging"h between exposed fine root networks of Japanese cypress, where soil bulk density is significantly lower than other site. Therefore the infiltration rate in the devastated Japanese cypress plantations is not only controlled by loss of surface vegetation by low light condition, but soil

  7. Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses (United States)

    Reynolds, R.; Phillips, S.; Duniway, M.; Belnap, J.


    Sources of desert soil fertility include parent material weathering, aeolian deposition, and on-site C and N biotic fixation. While parent materials provide many soil nutrients, aeolian deposition can provide up to 75% of plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. Soil surface biota are often sticky, and help retain wind-deposited nutrients, as well as providing much of the N inputs. Carbon inputs are from both plants and soil surface biota. Most desert soils are protected by cyanobacterial-lichen-moss soil crusts, chemical crusts and/or desert pavement. Experimental disturbances applied in US deserts show disruption of soil surfaces result in decreased N and C inputs from soil biota by up to 100%. The ability to glue aeolian deposits in place is compromised, and underlying soils are exposed to erosion. The ability to withstand wind increases with biological and physical soil crust development. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produce up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Soil fines and flora are often concentrated in the top 3 mm of the soil surface. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, disturbances of desert soil surfaces can both reduce fertility inputs and accelerate fertility losses.

  8. Denitrification 'hot spots' in soil following surface residue application (United States)

    Kuntz, Marianne; Morley, Nicholas J.; Hallett, Paul D.; Watson, Christine; Baggs, Elizabeth M.


    The availability of organic C is an important driver for the production and reduction of the greenhouse gas nitrous oxide (N2O) during denitrification. Denitrification as a response to plant residue amendments to soil surfaces has been extensively researched. However, the nature of hotspot sites of N2O production and reduction within the soil profile, especially in relation to the location of applied residues, is unknown. In a laboratory experiment we investigated the relationship between denitrifier N2O surface fluxes and N2O production and reduction sites. Probes which equilibrate with the soil gas phase by diffusion were developed to quantify denitrification products and product ratios at 1-2 cm, 4.5-5.5 cm or 8-9 cm from the surface. 13C labelled barley straw was incorporated at rates of 0, 2 and 4 t ha-1 into the top 3 cm of soil and subsequently amended with 14NH415NO3. In a three week experiment the soil gas phase at the three depths was analysed for 15N-N2O, 15N-N2, 13C-CO2 and O2 concentrations. Additionally, cores were destructively sampled for mineral 15N as well as microbial C and dissolved C in the respective depths. 15N-N2O and CO2 surface fluxes peaked one day after N application, with residue application resulting in significantly higher 15N-N2O emission rates compared to the non-amended control. The timing of the 15N-N2O surface flux on day 1 was related to maximum 15N-N2O concentrations of 36.6 μg 15N L-1 within the pore space at 5 cm depth. Three days after fertilizer application 15N-N2O pore space concentrations had significantly increased to 193 μg 15N L-1 at 9 cm depth indicating denitrifier activity at greater depth. Denitrification below the soil surface could be explained by increased microbial activity, oxygen depletion with increasing depth and progressive downwards diffusion of fertilizer NO3-. However, C availability appeared to only affect denitrification in the surface layer in which the residue was incorporated. Our results provide

  9. Near surface soil vapor clusters for monitoring emissions of volatile organic compounds from soils. (United States)

    Ergas, S J; Hinlein, E S; Reyes, P O; Ostendorf, D W; Tehrany, J P


    The overall objective of this research was to develop and test a method of determining emission rates of volatile organic compounds (VOCs) and other gases from soil surfaces. Soil vapor clusters (SVCs) were designed as a low dead volume, robust sampling system to obtain vertically resolved profiles of soil gas contaminant concentrations in the near surface zone. The concentration profiles, when combined with a mathematical model of porous media mass transport, were used to calculate the contaminant flux from the soil surface. Initial experiments were conducted using a mesoscale soil remediation system under a range of experimental conditions. Helium was used as a tracer and trichloroethene was used as a model VOC. Flux estimations using the SVCs were within 25% of independent surface flux estimates and were comparable to measurements made using a surface isolation flux chamber (SIFC). In addition, method detection limits for the SVC were an order of magnitude lower than detection limits with the SIFC. Field trials, conducted with the SVCs at a bioventing site, indicated that the SVC method could be easily used in the field to estimate fugitive VOC emission rates. Major advantages of the SVC method were its low detection limits, lack of required auxiliary equipment, and ability to obtain real-time estimates of fugitive VOC emission rates.

  10. Potential fate of SOC eroded from natural crusted soil surface under simulated wind driven storm (United States)

    Xiao, Liangang; Fister, Wolfgang; Greenwood, Philip; Hu, Yaxian; Kuhn, Nikolaus J.


    Improving the assessment of the impact of soil erosion on carbon (C) cycling requires a better understanding of the redistribution of eroded sediment and associated soil organic carbon (SOC) across agricultural landscapes. Recent studies conducted on dry-sieved aggregates in the laboratory demonstrated that aggregation can profoundly skew SOC redistribution and its subsequent fate by accelerating settling velocities of aggregated sediment compared to mineral grains, which in turn can increase SOC mineralization into greenhouse gases. However, the erodibility of the soil in the field is more variable than in the laboratory due to tillage, crus formation, drying-wetting and freeze-thaw cycles, and biological effects. This study aimed to investigate the potential fate of the SOC eroded from naturally developed soil surface and to compare the observations with those made in the laboratory. Simulated, short, high intensity wind driven storms were conducted on a crusted loam in the field. The sediments were fractionated with a settling tube according to their potential transport distances. The soil mass, SOC concentration and cumulative 80-day CO2 emission of each fraction were identified. The results show: 1) 53% of eroded sediment and 62% of eroded SOC from the natural surface in the field would be deposited across landscapes, which is six times and three times higher compared to that implied by mineral grains, respectively; 2) the preferential deposition of SOC-rich fast-settling sediment potentially releases approximately 50% more CO2 than the same layer of the non-eroded soil; 3) the respiration of the slow-settling fraction that is potentially transported to the aquatic systems was much more active compared to the other fractions and the bulk soil. Our results confirm in general the conclusions drawn from laboratory and thus demonstrate that aggregation can affect the redistribution of sediment associated SOC under field conditions, including an increase in

  11. The resistance of surfaces treated with oils and waxes to the action of dry heat

    Directory of Open Access Journals (Sweden)

    Jaić Milan


    Full Text Available Surface treatment of wood can be done with different coatings, and the choice of the appropriate system of processing depends on several factors, such as technological, aesthetic, economic and ecological. Raising awareness of the need to preserve the living and working environment has had a crucial impact on the increase in the use of natural materials for surface treatment of wood - oil and wax. The application of oils and waxes allows surface treated wood to keep the natural look, while protecting it from different influences, which can cause degradation and deterioration of the final product. The paper presents the results of testing the resistance of beech surface (Fagus silvatica L. processed with linseed oil and beeswax to the action of dry heat. In order to compare the quality of surface treated with oil and/or wax, beech wood treated with 2K-polyurethane coating is taken as a reference of surface treatment of wood. Surfaces treated with beeswax are less resistant to dry heat than those treated with linseed oil, and both showed significantly less resistance than surface treated with 2K-polyurethane coating.

  12. Soil CO2 Efflux Dynamics in the Northern Pantanal of Mato Grosso, Brazil during the Wet-Dry Season Transition (United States)

    Pinto-Jr, O. B.; Vourlitis, G. L.; Hentz, C. S.; Arruda, P. H. Z. D.; Santanna, F. B.; Dias, M. D. F.; de Musis, C. R.; Nogueira, J. D. S.


    The roles of tropical wetlands in the global carbon (C) cycle are still poorly understood, especially in seasonally flooded forests that are expected to be important sinks for atmospheric CO2. We measured soil CO2 efflux during the wet-dry transition period in a seasonally flooded palm-dominated forest (locally known as Acorizal) to determine the effect of litter input and seasonal hydrology. Measurements were performed monthly as part of a field litter manipulation experiment consisting of three treatments (litter removal, litter addition, and control; n = 6 plots per treatment), and our research objectives were to determine how soil CO2 efflux varied as a function of (1) litter input, (2) root density, and (3) seasonal variation in soil water content. We found that litter addition significantly increased soil CO2 efflux, but there was no relationship between root density and soil CO2 efflux. Efflux was highest during the wet season and declined as soil water content declined. Our data demonstrate that variations in litter inputs and soil water content are important controls on soil CO2 efflux in seasonally flooded tropical forests.

  13. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer (United States)

    Matilainen, Mika; Tuononen, Ari


    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  14. Enhancement of chromate reduction in soils by surface modified biochar. (United States)

    Mandal, Sanchita; Sarkar, Binoy; Bolan, Nanthi; Ok, Yong Sik; Naidu, Ravi


    Chromium (Cr) is one of the common metals present in the soils and may have an extremely deleterious environmental impact depending on its redox state. Among two common forms, trivalent Cr(III) is less toxic than hexavalent Cr(VI) in soils. Carbon (C) based materials including biochar could be used to alleviate Cr toxicity through converting Cr(VI) to Cr(III). Incubation experiments were conducted to examine Cr(VI) reduction in different soils (Soil 1: pH 7.5 and Soil 2: pH 5.5) with three manures from poultry (PM), cow (CM) and sheep (SM), three respective manure-derived biochars (PM biochar (PM-BC), CM biochar (CM-BC) and SM biochar (SM-BC)) and two modified biochars (modified PM-BC (PM-BC-M) and modified SM-BC (SM-BC-M)). Modified biochar was synthesized by incorporating chitosan and zerovalent iron (ZVI) during pyrolysis. Among biochars, highest Cr(VI) reduction was observed with PM-BC application (5%; w/w) (up to 88.12 mg kg(-1); 45% reduction) in Soil 2 (pH 5.5). The modified biochars enhanced Cr(VI) reduction by 55% (SM-BC-M) compared to manure (29%, SM) and manure-derived biochars (40% reduction, SM-BC). Among the modified biochars, SM-BC-M showed a higher Cr(VI) reduction rate (55%) than PM-BC-M (48%) in Soil 2. Various oxygen-containing surface functional groups such as phenolic, carboxyl, carbonyl, etc. on biochar surface might act as a proton donor for Cr(VI) reduction and subsequent Cr(III) adsorption. This study underpins the immense potential of modified biochar in remediation of Cr(VI) contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influence of prevailing disturbances on soil biology and biochemistry of montane habitats at Nanda Devi Biosphere Reserve, India during wet and dry seasons

    DEFF Research Database (Denmark)

    Singh, S.K.; Singh, Anoop; Rai, J.P.N.


    The impact of prevailing disturbances in montane habitats of Nanda Devi Biosphere Reserve (NDBR) was studied on soil microbial population, biomass, soil respiration and enzyme activities during wet and dry seasons. The physico-chemical characteristics of soils exhibited conspicuous variation in t...

  16. Characterization of a sodium dodecyl sulphate-degrading Pseudomonas sp. strain DRY15 from Antarctic soil. (United States)

    Halmi, M I E; Hussin, W S W; Aqlima, A; Syed, M A; Ruberto, L; MacCormack, W P; Shukor, M Y


    A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS.

  17. Nuclear thermal source transfer unit, post-blast soil sample drying system

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ralph S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valencia, Matthew J [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Los Alamos National Laboratory states that its mission is “To solve national security challenges through scientific excellence.” [2] The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. [5] As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in tool design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.

  18. Characteristics of woodland rhizobial populations from surface- and deep-soil environments of the sonoran desert. (United States)

    Waldon, H B; Jenkins, M B; Virginia, R A; Harding, E E


    A collection of 74 rhizobial isolates recovered from nodules of the desert woody legumes Prosopis glandulosa, Psorothamnus spinosus, and Acacia constricta were characterized by using 61 nutritional and biochemical tests. We compared isolates from A. constricta and Prosopis glandulosa and tested the hypothesis that the rhizobia from a deep-phreatic rooting zone of a Prosopis woodland in the Sonoran Desert of southern California were phenetically distinct from rhizobia from surface soils. Cluster analysis identified four major homogeneous groups. The first phenon contained slow-growing (SG) Prosopis rhizobia from surface and deep-phreatic-soil environments. These isolates grew poorly on most of the media used in the study, probably because of their requirement for a high medium pH. The second group of isolates primarily contained SG Prosopis rhizobia from the deep-phreatic rooting environment and included two fast-growing (FG) Psorothamnus rhizobia. These isolates were nutritionally versatile and grew over a broad pH range. The third major phenon was composed mainly of FG Prosopis rhizobia from surface and dry subsurface soils. While these isolates used a restricted range of carbohydrates (including sucrose) as sole carbon sources, they showed better growth on a range of organic acids as sole carbon sources and amino acids as sole carbon and nitrogen sources than did other isolates in the study. They grew better at 36 degrees C than at 26 degrees C. The FG Acacia rhizobia from surface-soil environments formed a final major phenon that was distinct from the Prosopis isolates. They produced very high absorbance readings on all of the carbohydrates tested except sucrose, grew poorly on many of the other substrates tested, and preferred a 36 to a 26 degrees C incubation temperature. The surface populations of Prosopis rhizobia required a higher pH for growth and, under the conditions used in this study, were less tolerant of low solute potential and high growth

  19. Optimization of microwave drying conditions of two banana varieties using response surface methodology

    Directory of Open Access Journals (Sweden)

    Adewale Olusegun Omolola


    Full Text Available AbstractOptimization of microwave drying conditions of Luvhele and Mabonde banana varieties were studied using response surface methodology. The drying was performed using a central composite rotatable design for two variables: microwave power level (100, 200 and 300 W and drying time (40, 26, and 12 min. for Luvhele; (100, 200 and 300 W and (42, 27, and 12 min for Mabonde. The colour and texture (hardness data were analyzed using ANOVA and regression analysis. The fitness of the models obtained was good as the lack of fit for each of the models was not significant. The coefficient of determination R2 of the models was relatively high, hence the models obtained for the responses were adequate and acceptable. Drying conditions of 178.76 W, 12 min. drying time were found optimum for product quality at a desirability of 0.91 for Luvhele; while 127.67 W, 12 min. with a desirability of 0.86 was predicted for Mabonde. The result of this study could be used as a standard for microwave processing of Luvhele and Mabondebanana varieties.

  20. Drying of suspensions and solutions on inert particle surface in mechanically spouted bed dryer

    Institute of Scientific and Technical Information of China (English)


    To eliminate some disadvantages of the conventional spouted bed dryers the mechanically spouted bed (MSB) system was developed. This dryer type is convenient to use inert particles providing an increased surface area for drying of materials of high-moisture content and heat sensitive materials. On three different drying tasks are demonstrated the experimental optimization of process parameters to obtain products of demanded quality. The main object was at drying of AlO(OH) suspension to preserve the particle size under 2.5 μm and to obtain product with a moisture content of about 0.05 kg/kg (d.b.). For this reason a very thin particle coating and intensive abrasion had to be assured. At drying of tomato concentrates the thermoplasticity makes the process very difficult. To jump over the deliquescent and sticky state developed at the critical temperature-moisture content values a very short drying time (8-10 s) must be provided. The third task was to form powder-like product from bovine serum albumin (BSA) solution having very low solid content (2-4%). The selected process parameters given in this paper resulted in a mean particle size of less than 20 μm while the soluble preserved protein content was higher than 90%.

  1. Vanadium Trineodecanoate Promoter for Fiberglass-Polyester Soil Surfacings. (United States)


    surfaces for soils consists of a polyester resin, cumene hydroperoxide catalyst and a promoter solution containing a vanadium salt and N,N-dimethyl-p-tolui...4 Synthesis of Vanadium Trineodecanoate .. .... ......... 4 Reactions Using Various Reagents. ..... ........... 4 Analysis of Vanadium...polymer system consists of a polyester resin, a peroxide cata- lyst ( cumene hydroperoxide) and a two-part, premixed, promoter solution. The promoter

  2. Photodegradation of pesticides on plant and soil surfaces. (United States)

    Katagi, Toshiyuki


    importance of an emission spectrum of the light source near its surface was clarified. Most photochemical information comes from photolysis in organic solvents or on glass surfaces and/or plant metabolism studies. Epicuticular waxes may be approximated by long-chain hydrocarbons as a very viscous liquid or solid, but the existing form of pesticide molecules in waxes is still obscure. Either coexistence of formulation agents or steric constraint in the rigid medium would cause a change of molecular excitation, deactivation, and photodegradation mechanisms, which should be further investigated to understand the dissipation profiles of a pesticide in or on crops in the field. A thin-layer system with a coat of epicuticular waxes extracted from leaves or isolated cuticles has been utilized as a model, but its application has been very limited. There appear to be gaps in our knowledge about the surface chemistry and photochemistry of pesticides in both rigid media and plant metabolism. Photodegradation studies, for example, by using these models to eliminate contribution from metabolic conversion as much as possible, should be extensively conducted in conjunction with wax chemistry, with the controlling factors being clarified. As with soil surfaces, the effects of atmospheric oxidants should also be investigated. Based on this knowledge, new methods of kinetic analysis or a device simulating the fate of pesticides on these surfaces could be more rationally developed. Concerning soil photolysis, detailed mechanistic analysis of the mobility and fate of pesticides together with volatilization from soil surfaces has been initiated and its spatial distribution with time has been simulated with reasonable precision on a laboratory scale. Although mechanistic analyses have been conducted on penetration of pesticides through cuticular waxes, its combination with photodegradation to simulate the real environment is awaiting further investigation.

  3. Liming and phosphorus fertilization in soils under cerrado. 1. Dry matter accumulation and phosphorus uptake by sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Souza, L.F.S. (Empresa Brasileira de Pesquisa Agropecuaria, Bahia. Centro Nacional de Pesquisa de Mandioca e Fruticultura); Fernandes, M.S.; Velloso, A.C.X. (Universidade Federal Rural do Rio de Janeiro (Brazil). Dept. de Solos); Castro, A.F. de (Empresa Brasileira de Pesquisa Agropecuaria, Rio de Janeiro. Servico Nacional de Levantamento e Conservacao de Solos)


    The effects of liming and phosphorus fertilizer (300 Kg P/sub 2/O/sub 5//ha) application on dry matter accumulation and P-uptake by sorghum plants were studied under greenhouse conditions. Plants were grown in four Oxisols originally under cerrado vegetation. There was a positive correlation between P-fertilization and liming on dry matter accumulation and P-uptake by plants. The results showed that the main effect of liming in these soils was on the elimination of phytotoxicity, mainly due to exchangeable aluminum.

  4. Increasing thermal drying temperature of biosolids reduced nitrogen mineralisation and soil N2O emissions

    DEFF Research Database (Denmark)

    Case, Sean; Gomez Muñoz, Beatriz; Magid, Jakob


    Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood....... This will be of importance for the value of the biosolids when used to fertilise crops. We sourced AD biosolids from a Danish waste water treatment plant (WWTP) and dried it in the laboratory at 70, 130, 190 or 250 °C to >95 % dry matter content. Also, we sourced biosolids from the WWTP dried using its in-house thermal...... drying process (input temperature 95 °C, thermal fluid circuit temperature 200 °C, 95 % dry matter content). The drying process reduced the ammonium content of the biosolids and reduced it further at higher drying temperatures. These findings were attributed to ammonia volatilisation. The percentage...

  5. Seasonal dynamics of CO2 efflux in soils amended with composted and thermally-dried sludge as affected by soil tillage systems in a semi-arid agroecosystem (United States)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro; López-de-Sa, Esther G.; Polo, Alfredo


    In semi-arid agricultural soils, seasonal dynamic of soil CO2 efflux (SCE) is highly variable. Based on soil respiration measurements the effects of different management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) was investigated in a long-term field experiment (28 years) conducted on a sandy-loam soil at the experimental station 'La Higueruela' (40o 03'N, 4o 24'W). Both organic amendments were applied at a rate of 30 Mg ha-1 prior to tillage practices. Unamended soils were used as control for each tillage system. SCE was moderate in late spring (2.2-11.8 μmol CO2 m-2 s-1) when amendments were applied and tillage was performed, markedly decreased in summer (0.4-3.2 μmol CO2 m-2 s-1), following a moderate increase in autumn (3.4-14.1 μmol CO2 m-2 s-1), rising sharply in October (5.6-39.8 μmol CO2 m-2 s-1 ). In winter, SCE was low (0.6-6.5 μmol CO2 m-2 s-1). In general, SCE was greater in chisel and moldboard tilled soils, and in CS and particularly TSS-amended soils, due to the addition of labile C with these amendments, meanwhile no-tillage soils exhibited smaller increases in C efflux throughout the seasons. Soil temperature controlled the seasonal variations of SCE. In summer, when drought occurs, a general decrease of SCE was observed due to a deficit in soil water content. After drought period SCE jumped to high values in response to rain events ('Birch effect') that changed soil moisture conditions. Soil drying in summer and rewetting in autumn may promotes some changes on the structure of soil microbial community, affecting associated metabolic processes, and enhancing a rapid mineralization of water-soluble organic C compounds and/or dead microbial biomass that acts as an energy source for soil microorganisms. To assess the effects of tillage and amendments on SCE, Q10 values were calculated. Data were grouped into three groups according to soil moisture (0

  6. The repeated drying-wetting and freezing-thawing cycles affect only the active pool of soil organic matter (United States)

    Semenov, Vyacheslav; Zinyakova, Natalya; Tulina, Anastasiya


    The decrease in the content of soil organic carbon, particularly in active form, is one of the major problems of the 21st century, which is closely related to the disturbance of the biogeochemical carbon cycle and to the increase in the emission of carbon dioxide into the atmosphere. The main reasons for the SOM losses are the surplus of the SOM active pool losses due to mineralization, erosion, and infiltration over the input of fresh organic matter to the soil, as well as the changes in the soil conditions and processes due to natural and anthropogenic disturbing impacts. Experiments were carried out with mixed samples from the upper layers of soddy-podzolic soil, gray forest soil, and typical chernozems. Soil samples as controls were incubated after wetting for 150 days. The dynamics and cumulative production of C-CO2 under stable temperature (22°C) and moisture conditions were determined; the initial content of potentially mineralizable organic matter (C0) in the soil at the beginning of the incubation was then calculated to use these data as the control. Other soil samples were exposed in flasks to the following successive treatments: wetting →incubation → freezing → thawing → incubation →drying. Six repeated cycles of disturbing impacts were performed for 140 days of the experiment. After six cycles, the soil samples were incubated under stable temperature and moisture conditions for 150 days. The wetting of dried soils and the thawing of frozen soils are accompanied by the pulsed dynamics of the C-CO2 production with an abrupt increase in the rate of the C-CO2 emission within several days by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. The rate of the C-CO2 production pulses under each subsequent impact decreased compared to the preceding one similarly for all studied soils, which could be due to the depletion in potentially mineralizable soil organic matter (C0). The cumulative extra C-CO2 production by

  7. Impact of surface roughness and soil texture on mineral dust emission fluxes modeling (United States)

    Menut, Laurent; PéRez, Carlos; Haustein, Karsten; Bessagnet, Bertrand; Prigent, Catherine; Alfaro, StéPhane


    Dust production models (DPM) used to estimate vertical fluxes of mineral dust aerosols over arid regions need accurate data on soil and surface properties. The Laboratoire Inter-Universitaire des Systemes Atmospheriques (LISA) data set was developed for Northern Africa, the Middle East, and East Asia. This regional data set was built through dedicated field campaigns and include, among others, the aerodynamic roughness length, the smooth roughness length of the erodible fraction of the surface, and the dry (undisturbed) soil size distribution. Recently, satellite-derived roughness length and high-resolution soil texture data sets at the global scale have emerged and provide the opportunity for the use of advanced schemes in global models. This paper analyzes the behavior of the ERS satellite-derived global roughness length and the State Soil Geographic data base-Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) using an advanced DPM in comparison to the LISA data set over Northern Africa and the Middle East. We explore the sensitivity of the drag partition scheme (a critical component of the DPM) and of the dust vertical fluxes (intensity and spatial patterns) to the roughness length and soil texture data sets. We also compare the use of the drag partition scheme to a widely used preferential source approach in global models. Idealized experiments with prescribed wind speeds show that the ERS and STATSGO-FAO data sets provide realistic spatial patterns of dust emission and friction velocity thresholds in the region. Finally, we evaluate a dust transport model for the period of March to July 2011 with observed aerosol optical depths from Aerosol Robotic Network sites. Results show that ERS and STATSGO-FAO provide realistic simulations in the region.

  8. Degradation and Sorption of Imidacloprid in Dissimilar Surface and Subsurface Soils (United States)

    Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. Once pesticides move past the surface soil layers, subsurface soil physical, chemical, and biological properties significantly affect pesticide fate and the potential for groundwater contam...

  9. [Influence of Different Straws Returning with Landfill on Soil Microbial Community Structure Under Dry and Water Farming]. (United States)

    Lan, Mu-ling; Gao, Ming


    Based on rice, wheat, corn straw and rape, broad bean green stalk as the research object, using phospholipid fatty acid (PLFA) method, combining principal component analysis method to study the soil microbial quantity, distribution of flora, community structure characteristics under dry and water farming as two different cultivated land use types. The PLFA analysis results showed that: under dry farming, total PLFA quantity ranged 8.35-25.15 nmol x g(-1), showed rape > broad bean > corn > rice > wheat, rape and broad bean significantly increased total PLFA quantity by 1.18 and 1.08 times compared to the treatment without straw; PLFA quantity of bacterial flora in treatments with straws was higher than that without straw, and fungal biomass was significantly increased, so was the species richness of microbial community. Under water faming, the treatments of different straws returning with landfill have improved the PLFA quantity of total soil microbial and flora comparing with the treatment without straw, fungi significantly increased, and species richness of microbial communities value also increased significantly. Total PLFA quantity ranged 4.04-22.19 nmol x g(-1), showed rice > corn > wheat > broad bean > rape, which in rape and broad bean treatments were lower than the treatment without straw; fungal PLFA amount in 5 kinds of straw except broad bean treatment was significantly higher than that of the treatment without straw, bacteria and total PLFA quantity in broad bean processing were significantly lower than those of other treatments, actinomycetes, G+, G- had no significant difference between all treatments; rice, wheat, corn, rape could significantly increase the soil microbial species richness index and dominance index under water faming. The results of principal component analysis showed that broad bean green stalk had the greatest impact on the microbial community structure in the dry soil, rape green stalk and wheat straw had the biggest influence on

  10. Effects of near surface soil moisture profiles during evaporation on far-field ground-penetrating radar data: A numerical study

    KAUST Repository

    Moghadas, Davood


    We theoretically investigated the effect of vapor flow on the drying front that develops in soils when water evaporates from the soil surface and on GPR data. The results suggest the integration of the full-wave GPR model with a coupled water, vapor, and heat flow model to accurately estimate the soil hydraulic properties. We investigated the Effects of a drying front that emerges below an evaporating soil surface on the far-field ground-penetrating radar (GPR) data. First, we performed an analysis of the width of the drying front in soils with 12 different textures by using an analytical model. Then, we numerically simulated vertical soil moisture profiles that develop during evaporation for the soil textures. We performed the simulations using a Richards flow model that considers only liquid water flow and a model that considers coupled water, vapor, and heat flows. The GPR signals were then generated from the simulated soil water content profiles taking into account the frequency dependency of apparent electrical conductivity and dielectric permittivity. The analytical approach indicated that the width of the drying front at the end of Stage I of the evaporation was larger in silty soils than in other soil textures and smaller in sandy soils. We also demonstrated that the analytical estimate of the width of the drying front can be considered as a proxy for the impact that a drying front could have on far-field GPR data. The numerical simulations led to the conclusion that vapor transport in soil resulted in S-shaped soil moisture profiles, which clearly influenced the GPR data. As a result, vapor flow needs to be considered when GPR data are interpreted in a coupled inversion approach. Moreover, the impact of vapor flow on the GPR data was larger for silty than for sandy soils. These Effects on the GPR data provide promising perspectives regarding the use of radars for evaporation monitoring. © Soil Science Society of America 5585 Guilford Rd., Madison, WI

  11. Dry deposition of particulate matter at an urban forest, wetland and lake surface in Beijing (United States)

    Liu, Jiakai; Zhu, Lijuan; Wang, Huihui; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Ma, Wu; Zhang, Zhenming; Liu, Jinglan


    The dry deposition of particular matters from atmosphere to ecosystems is an undesirable consequence of this pollution while the deposition process is also influenced by different land use types. In current study, concentration of fine particles, coarse particles and meteorological data were collected during the daytime in an artificial forest, wetland and a water surface in the Beijing Olympic Park. Dry deposition velocity, fluxes and vegetation collection were calculated by different models and the results were compared. The results show: (1) the deposition velocity onto the forest canopy was higher than which onto the wetland and the water surface and the velocity varied in different seasons; (2) the fine particles deposited most in the winter while the coarse particles was in the spring; (3) the vegetation collection rates of fine particles were lower than coarse particles, and the forest collected more PMs than the wetland plants.

  12. Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola viruses dried on surfaces. (United States)

    Sagripanti, Jose-Luis; Lytle, C David


    Germicidal UV (also known as UVC) provides a means to decontaminate infected environments as well as a measure of viral sensitivity to sunlight. The present study determined UVC inactivation slopes (and derived D(37) values) of viruses dried onto nonporous (glass) surfaces. The data obtained indicate that the UV resistance of Lassa virus is higher than that of Ebola virus. The UV sensitivity of vaccinia virus (a surrogate for variola virus) appeared intermediate between that of the two virulent viruses studied. In addition, the three viruses dried on surfaces showed a relatively small but significant population of virions (from 3 to 10 % of virus in the inoculum) that appeared substantially more protected by their environment from the effect of UV than the majority of virions tested. The findings reported in this study should assist in estimating the threat posed by the persistence of virus in environments contaminated during epidemics or after an accidental or intentional release.

  13. High friction and low wear properties of laser-textured ceramic surface under dry friction (United States)

    Xing, Youqiang; Deng, Jianxin; Wu, Ze; Wu, Fengfang


    Two kinds of grooved textures with different spacing were fabricated on Al2O3/TiC ceramic surface by an Nd:YAG laser. The dry tribological properties of the textured samples were investigated by carrying out unidirectional rotary sliding friction and wear tests using a ball-on-disk tribometer. Results show that the laser textured samples exhibit higher friction coefficient and excellent wear resistance compared with the smooth sample under dry friction conditions. Furthermore, the texture morphology and spacing have a significant influence on the tribological properties. The sample with small texture spacing may be beneficial to increasing the friction coefficient, and the wavy-grooved sample exhibits the highest friction coefficient and shallowest wear depth. The increasing friction coefficient and anti-wear properties are attributed to the combined effects of the increased surface roughness, reduced real contact area, micro-cutting effect by the texture edges and entrapment of wear debris.

  14. Effects of contact cap dimension on dry adhesion of bioinspired mushroom-shaped surfaces (United States)

    Wang, Yue; Shao, Jinyou; Ding, Yucheng; Li, Xiangming; Tian, Hongmiao; Hu, Hong


    Dry adhesion observed in small creatures, such as spiders, insects, and geckos, has many great advantages such as repeatability and strong adhesiveness. In order to mimic these unique performances, fibrillar surface with a mushroom shaped end has drawn lots of attentions because of its advantage in efficiently enhancing adhesion compared with other sphere or simple flat ends. Here, in order to study the effects of contact cap dimension on adhesion strength, patterned surfaces of mushroom-shaped micropillars with differing cap diameters are fabricated based on the conventional photolithography and molding. The normal adhesion strength of these dry adhesives with varying cap diameters is measured with home-built equipment. The strength increases with the rise of cap diameter, and interestingly it becomes strongest when the mushroom caps join together.

  15. An investigation of the effects of spatial heterogeneity of initial soil moisture content on surface runoff simulation at a small watershed scale (United States)

    Morbidelli, Renato; Saltalippi, Carla; Flammini, Alessia; Corradini, Corrado; Brocca, Luca; Govindaraju, Rao S.


    In addition to the soil saturated hydraulic conductivity, Ks, the initial soil moisture content, θi, is the quantity commonly incorporated in rainfall infiltration models for simulation of surface runoff hydrographs. Previous studies on the effect of the spatial heterogeneity of initial soil water content in the generation of surface runoff were generally not conclusive, and provided no guidance on designing networks for soil moisture measurements. In this study, the role of the spatial variability of θi at the small watershed scale is examined through the use of a simulation model and measurements of θi. The model combines two existing components of infiltration and surface runoff to model the flow discharge at the watershed outlet. The observed values of soil moisture in three experimental plots are combined to determine seven different distributions of θi, each used to compute the hydrographs produced by four different rainfall patterns for two initial conditions classified as "dry" soil and "wet" soil. For rainfalls events typically associated with floods, the spatial variability of θi at the watershed scale does not cause significant variations in surface runoff for initially dry or wet soils. Furthermore, when the main objective is to represent flood events a single ground point measurement of θi in each area with the same land use may suffice to obtain adequate outflow hydrographs at the outlet.

  16. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. (United States)

    Lipson, D A; Schadt, C W; Schmidt, S K


    Previous work in an alpine dry meadow in the Front Range of the Rocky Mountains has shown that microbial biomass is high during winter and declines rapidly as snow melts in the spring, and that this decline is associated with changes in temperature regime and substrate availability. In this study we tested the hypothesis that the summer and winter microbial communities differ in function and composition. Shifts in species composition between pre- and post-snowmelt communities were detected using reciprocal hybridization of community DNA; DNA extracted from soils sampled at different times was significantly less homologous relative to spatial replicates sampled at the same time. Fungal/bacterial ratios, as measured by direct microscopic counts and by substrate-induced respiration experiments with specific inhibitors, were higher in winter soils. Specific activity of cellulase (absolute cellulase activity per unit microbial biomass C) was higher in the winter soils than in summer soils, while specific amylase activity was not different between winter and summer. Based on most-probable number measurements, the use of the phenolic compound vanillic acid was highest in the winter, while the use of the amino acid glycine was lowest in the winter. Winter and summer soil respiration responded differently to temperature; at 0 degrees C, winter soils respired at a higher proportion of the 22 degrees C rate than did summer soils.

  17. Adhesion energy between mica surfaces: Implications for the frictional coefficient under dry and wet conditions (United States)

    Sakuma, Hiroshi


    frictional strength of faults is a critical factor that contributes to continuous fault slip and earthquake occurrence. Frictional strength can be reduced by the presence of sheet-structured clay minerals. In this study, two important factors influencing the frictional coefficient of minerals were quantitatively analyzed by a newly developed computational method based on a combination of first-principles study and thermodynamics. One factor that helps reduce the frictional coefficient is the low adhesion energy between the layers under dry conditions. Potassium ions on mica surfaces are easily exchanged with sodium ions when brought into contact with highly concentrated sodium-halide solutions. We found that the surface ion exchange with sodium ions reduces the adhesion energy, indicating that the frictional coefficient can be reduced under dry conditions. Another factor is the lubrication caused by adsorbed water films on mineral surfaces under wet conditions. Potassium and sodium ions on mica surfaces have a strong affinity for water molecules. In order to remove the adsorbed water molecules confined between mica surfaces, a differential compressive stress of the order of tens of gigapascals was necessary at room temperature. These water molecules inhibit direct contact between mineral surfaces and reduce the frictional coefficient. Our results imply that the frictional coefficient can be modified through contact with fluids depending on their salt composition. The low adhesion energy between fault-forming minerals and the presence of an adsorbed water film is a possible reason for the low frictional coefficient observed at continuous fault slip zones.

  18. Effect of Surface Omniphobicity on Drying by Forced Convection (Briefing Charts) (United States)


    Guenthner 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION...unlimited. AFRL Public Affairs Clearance # Background • I am from Bangladesh . • Education: The City College of New York • Major: Chemistry; Minor: Education...implemented to explore the optimum conditions for a fast drying low energy surface. The use of DOE and the results of this experiment are merged into a

  19. Polyelectrolyte complexes : Preparation, characterization, and use for control of wet and dry adhesion between surfaces


    Ankerfors, Caroline


    This thesis examines polyelectrolyte complex (PEC) preparation, adsorption behaviour, and potential use for control of wet and dry adhesion between surfaces. PEC formation was studied using a jet-mixing method not previously used for mixing polyelectrolytes. The PECs were formed using various mixing times, and the results were compared with those for PECs formed using the conventional polyelectrolyte titration method. The results indicated that using the jet mixer allowed the size of the form...

  20. Long-term evaluation of the fate of sulfur mustard on dry and humid soils, asphalt, and concrete. (United States)

    Mizrahi, Dana M; Goldvaser, Michael; Columbus, Ishay


    The long-term fate of the blister agent sulfur mustard (HD, bis(2-chloroethyl)sulfide) was determined in a variety of commercial and natural matrices. HD was found to be extremely stable in dry matrices for over a year. The addition of 5% water to the matrices induced slow degradation of HD, which lasted several months. The major degradation product in sands and asphalt was found to be a sulfonium salt, S[CH(2)CH(2)S(+)(CH(2)CH(2)OH)(2)](2) (H-2TG). Red loam soil, which has not been examined before, exhibited strong interaction with HD, both in dry form and in the presence of water. Humid red loam soil gave rise to unique oxidative degradation products. On humid concrete HD degraded to a complex mixture of products, including vinyls. This may be attributed to the basic sites incorporated in concrete.

  1. Water-repellent soil and its relationship to granularity, surface roughness and hydrophobicity: a materials science view


    McHale, Glen; Newton, Michael; Shirtcliffe, Neil


    Considerable soil water repellency has been observed at a wide range of locations worldwide. The soil exhibiting water repellency is found within the upper part of the soil profile. The reduced rate of water infiltration into these soils leads to severe run-off erosion, and reduction of plant growth. Soil water repellency is promoted by drying of soil, and can be induced by fire or intense heating of soil containing hydrophobic organic matter. Recent studies outside of soil science have shown...

  2. Ocular Surface Epithelial Thickness Evaluation in Dry Eye Patients: Clinical Correlations

    Directory of Open Access Journals (Sweden)

    Qingfeng Liang


    Full Text Available Purpose. To evaluate the relationship between corneal and conjunctival epithelium thickness and ocular surface clinical tests in dry eye disease (DED patients. Patients and Methods. Fifty-four patients with DED and 32 control subjects were included. Each patient underwent an ocular surface evaluation using the ocular surface disease index (OSDI, tear film break-up time (TBUT, corneal and conjunctival staining, tear film lipid layer analysis, and Schirmer test. The central corneal (CET, limbal (LET, and bulbar conjunctival epithelium thickness (BET were acquired using spectral-domain optical coherence tomography (SD-OCT. Results. Compared to control subjects, mean BET was significantly thicker and mean LET was significantly lower in the DED group. There was no significant difference in mean CET between the two groups. The mean LET was correlated with OSDI and TBUT. The inferior LET was correlated with OSDI, Schirmer I test, TBUT, Oxford score, and corneal sensitivity. Mean BET was correlated with OSDI and TBUT, but not with Schirmer I test and Oxford score. Conclusions. In dry eye patients, a thinner limbal epithelium and a thicker bulbar conjunctival epithelium were observed. These changes were correlated to the severity of dry eye symptoms and tear film alterations.

  3. Surface topography and contact mechanics of dry and wet human skin

    Directory of Open Access Journals (Sweden)

    Alexander E. Kovalev


    Full Text Available The surface topography of the human wrist skin is studied by using optical and atomic force microscopy (AFM methods. By using these techniques the surface roughness power spectrum is obtained. The Persson contact mechanics theory is used to calculate the contact area for different magnifications, for the dry and wet skin. The measured friction coefficient between a glass ball and dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 13 MPa and σf ≈ 5 MPa, respectively, act in the area of real contact during sliding. These frictional shear stresses are typical for sliding on surfaces of elastic bodies. The big increase in friction, which has been observed for glass sliding on wet skin as the skin dries up, can be explained as result of the increase in the contact area arising from the attraction of capillary bridges. Finally, we demonstrated that the real contact area can be properly defined only when a combination of both AFM and optical methods is used for power spectrum calculation.

  4. A new top boundary condition for modeling surface diffusive exchange of a generic volatile tracer: theoretical analysis and application to soil evaporation

    Directory of Open Access Journals (Sweden)

    J. Y. Tang


    Full Text Available We describe a new top boundary condition (TBC for representing the air–soil diffusive exchange of a generic volatile tracer. This new TBC (1 accounts for the multi-phase flow of a generic tracer; (2 accounts for effects of soil temperature, pH, solubility, sorption, and desorption processes; (3 enables a smooth transition between wet and dry soil conditions; (4 is compatible with the conductance formulation for modeling air–water volatile tracer exchange; and (5 is applicable to site, regional, and global land models.

    Based on the new TBC, we developed new formulations for bare-soil resistance and corresponding soil evaporation efficiency. The new soil resistance is predicted as the reciprocal of the harmonic sum of two resistances: (1 gaseous and aqueous molecular diffusion and (2 liquid mass flow resulting from the hydraulic pressure gradient between the soil surface and center of the topsoil control volume. We compared the predicted soil evaporation efficiency with those from several field and laboratory soil evaporation measurements and found good agreement with the typically observed two-stage soil evaporation curves. Comparison with the soil evaporation efficiency equation of Lee and Pielke (1992; hereafter LP92 indicates that their equation can overestimate soil evaporation when the atmospheric resistance is low and underestimate soil evaporation when the soil is dry. Using a synthetic inversion experiment, we demonstrated that using inverted soil resistance data from field measurements to derive empirical soil resistance formulations resulted in large uncertainty because (1 the inverted soil resistance data are always severely impacted by measurement error and (2 the derived empirical equation is very sensitive to the number of data points and the assumed functional form of the resistance.

    We expect the application of our new TBC in land models will provide a consistent representation for the diffusive tracer

  5. Computer Implementation of the Bounding Surface Plasticity Model for Cohesive Soils. (United States)


    23 REFERENCES 1. Dafalias, Y.F., and L.R. Herrmann, "A Bounding Surface Soil Plasticity Model", Proceedings of the International Symposium of Soils...Herrmann, "Bounding Surface Formulatin of Soil Plasticity ", Chapter in Soil Mechanics - Transient and Cyclic Loads, John Wiley and Sons, Eds. O.C...Herrmann and Y.F. r)afalias, "User’s Manual for MODCAL-Bounding Surface Soil Plasticity Model Calibration and Prediction Code (Volume I)," Civil

  6. NH 3 soil and soil surface gas measurements in a triticale wheat field (United States)

    Neftel, A.; Blatter, A.; Gut, A.; Högger, D.; Meixner, F.; Ammann, C.; Nathaus, F. J.

    We present a new approach for a continuous determination of NH 3 concentration in the open pore space of the soil and on the soil surface. In a semi-permeable membrane of 0.5 m length a flow of 0.5 s1pm maintained. In the tube the NH 3 concentration adjusts itself to the surrounding air concentration by diffusion through the membrane. Continuous measurements have been performed in a triticale wheat field over a period of several weeks in a field experiment at Bellheim (FRG) during June and July 1995 within the frame of the European program EXAMINE (Exchange of Atmospheric Ammonia with European Ecosystems). Soil concentrations are generally below the detection limit of 0.1 μg m -3. We conclude, that the investigated soil is generally a sink for NH 3. The NH 3 concentration on the soil surface shows a diurnal variation due to a combination of physico-chemical desorption and adsorption phenomena associated with changes in wetness of the surrounding surfaces and the NH 3 concentration in the canopy.

  7. Unexpected high decomposition of legume residues in dry season soils from tropical coffee plantations and crop lands


    Abera, Girma; Wolde-Meskel, Endalkachew; Bakken, Lars


    International audience; Crop residues are essential fertilizer source of low-input farming systems in Sub-Saharan Africa. However, crop residues provide nutrients only if they decompose in the soil. Decomposition is assumed to be very low during the dry season due to the scarcity of water, but there are few quantitative knowledge on decomposition under such conditions. Therefore, we studied the decomposition of legume residues, haricot bean (Phaseolus vulgaris L.), and pigeon pea (Cajanus caj...

  8. Influence of diesel contamination in soil on growth and dry matter partitioning of Lactuca sativa and Ipomoea batatas. (United States)

    Fatokun, Kayode; Zharare, Godfrey Elijah


    Phytotoxic effect of diesel contaminated soil was investigated on growth and dry matter partitioning in Lactuca sativa and Ipomoea batatas in greenhouse pot experiment at two concentration range (0-30 ml and 0-6 ml diesel kg(-1) soil) for 14 weeks. The results indicated thatwhole plant biomass, stem length, root length, number of leaves and leaf chlorophyll in two plants were negatively correlated with increasing diesel concentrations. The critical concentration of diesel associated with 10% decrease in plant growth was 0.33 ml for lettuce and 1.50 ml for sweet potato. Thus, growth of lettuce in diesel contaminated soil was more sensitive than sweet potato. The pattern of dry matter partitioning between root and shoot in both plants were similar. In 0-6 ml diesel contamination range, allocation of dry matter to shoot system was favoured resulting in high shoot: root ratio of 4.54 and 12.91 for lettuce and sweet potato respectively. However, in 0-30 ml diesel contamination range, allocation of dry matter to root was favoured, which may have been an adaptive mechanism in which the root system was used for storage in addition to increasing the capacity for foraging for mineral nutrients and water. Although lettuce accumulated more metals in its tissue than sweet potato, the tissue mineral nutrients in both species did not vary to great extent. The critical diesel concentration for toxicity suggested that the cause of mortality and poor growth of sweet potato and lettuce grown in diesel contaminated soil was due to presence of hydrocarbons in diesel.

  9. Spectra and vegetation index variations in moss soil crust in different seasons, and in wet and dry conditions (United States)

    Fang, Shibo; Yu, Weiguo; Qi, Yue


    Similar to vascular plants, non-vascular plant mosses have different periods of seasonal growth. There has been little research on the spectral variations of moss soil crust (MSC) over different growth periods. Few studies have paid attention to the difference in spectral characteristics between wet MSC that is photosynthesizing and dry MSC in suspended metabolism. The dissimilarity of MSC spectra in wet and dry conditions during different seasons needs further investigation. In this study, the spectral reflectance of wet MSC, dry MSC and the dominant vascular plant (Artemisia) were characterized in situ during the summer (July) and autumn (September). The variations in the normalized difference vegetation index (NDVI), biological soil crust index (BSCI) and CI (crust index) in different seasons and under different soil moisture conditions were also analyzed. It was found that (1) the spectral characteristics of both wet and dry MSCs varied seasonally; (2) the spectral features of wet MSC appear similar to those of the vascular plant, Artemisia, whether in summer or autumn; (3) both in summer and in autumn, much higher NDVI values were acquired for wet than for dry MSC (0.6 ∼ 0.7 vs. 0.3 ∼ 0.4 units), which may lead to misinterpretation of vegetation dynamics in the presence of MSC and with the variations in rainfall occurring in arid and semi-arid zones; and (4) the BSCI and CI values of wet MSC were close to that of Artemisia in both summer and autumn, indicating that BSCI and CI could barely differentiate between the wet MSC and Artemisia.

  10. Static friction of biomimetic surface microstructure of PDMS under wet and dry conditions (United States)

    Yu, Haiwu; Jia, Hongduo; Gong, Ling; Li, Rong; Wang, Caiping; Wang, Xiaojie


    Smooth adhesive pad found among arthropods, amphibians, particularly tree frogs, are usually covered with surface microstructure of different shape to enhance the attachment abilities on the smooth substrate. During the last decade, it has gained more attentions in the development of anti-slippery systems by mimicking these unique characteristics. In this paper, we studied a new amphibian species newt by observing their climbing abilities on wet and dry vertical smooth surface, and found that the newts can even hang on the surface with an inclination angle more than 90° without falling. We investigated the toe pad micro-structured surface of the newt by using scanning electron microscopy (SEM), and found that an array of hexagonal cells with micro-ridges on cell borders exists for the larvae; while an array of hexagonal cells separated by microgrooves is for the adult. Inspired by these features, the biomimetic micro-structured surfaces were fabricated using a soft elastomeric material polydimethysiloxane (PDMS). Four different microstructures were chosen to study their tribological properties with a solid substrate under wet and dry conditions. The patterns of the microstructures include round pillar, hexagonal pillar, round pillars surrounded by a closed hexagonal ridge, and round pillars surrounded by a semi-closed hexagonal ridge. The static friction tests were carried out using the multi-functional surface meter TYPE12. The results showed that the area ratio of the micro pillar plays a major role in enhancing the static friction for both wet and dry conditions, while the numerical density of the micro pillar has less effect on the friction enhancement. Among the four kind specimens, the specimen with hexagonal pillars would increase the static friction more than others at the same test conditions when the pillar area ratio is lower than 40%.

  11. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems. (United States)

    Campo, Julio; Merino, Agustín


    The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source-sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly - about 10% - from stands with 1240 mm yr(-1) to those with 642 mm yr(-1), while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long-term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained.

  12. Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter. (United States)

    Lohwacharin, J; Takizawa, S; Punyapalakul, P


    We evaluated factors affecting the transport, retention, and re-entrainment of carbon black nanoparticles (nCBs) in two saturated natural soils under different flow conditions and input concentrations using the two-site transport model and Kelvin probe force microscopy (KPFM). Soil organic matter (SOM) was found to create unfavorable conditions for the retention. Despite an increased flow velocity, the relative stability of the estimated maximum retention capacity in soils may suggest that flow-induced shear stress forces were insufficient to detach nCB. The KPFM observation revealed that nCBs were retained at the grain boundary and on surface roughness, which brought about substantial discrepancy between theoretically-derived attachment efficiency factors and the ones obtained by the experiments using the two-site transport model. Thus, decreasing ionic strength and increasing solution pH caused re-entrainment of only a small fraction of retained nCB in the soil columns.

  13. Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils. (United States)

    Chandra, K K; Kumar, Neeraj; Chand, Gireesh


    Five medicinal plants viz. Abelmoschatus moschatus Linn., Clitoria tematea L., Plumbagozeylanica L., Psorolea corylifolia L. and Withania sominifera L. were grown in a polypot experiment in five soils representing coal mine soil, coppermine soil, fly ash, skeletal soil and forest soil with and without mycorrhizal inoculations in a completely randomized block design. Dry matter yield and mycorrhizal root colonization of plants varied both in uninoculated and inoculated conditions. The forest soil rendered highest dry matter due to higher yield of A. moschatus, P. zeylanica and P corylifolia while fly ash showed lowest dry matter without any inoculants. P. cematea were best in coalmine soil and W. sominifera in copper mine soil without mycorrhizal inoculation. The mycorrhiza was found to enhance the dry matter yield. This contributed minimum 0.19% to maximum up to 422.0% in different soils as compared to uninoculated plants. The mycorrhizal dependency was noticed maximum in plants grown in fly ash followed by coal mine soil, copper mine soil, skeletal soil and forest soil. The mycorrhizal response was increased maximum in W. sominifera due to survival in fly ash after inoculation followed by P corylifolia and P cematea. Percent root colonization in inoculated plant was increased minimum of 1.10 fold to maximum of 12.0 folds in comparison to un-inoculated plants . The native mycorrhiza fungi were also observed to colonize 4.0 to 32.0% roots in plants understudy. This study suggests that mycorrhizal inoculation increased the dry matter yield of medicinal plants in all soils under study. It also helps in survival of W. sominifera in fly ash.

  14. Fourier and granulometry methods on 3D images of soil surfaces for evaluating soil aggregate size distribution

    DEFF Research Database (Denmark)

    Jensen, T.; Green, O.; Munkholm, Lars Juhl;


    The goal of this research is to present and compare two methods for evaluating soil aggregate size distribution based on high resolution 3D images of the soil surface. The methods for analyzing the images are discrete Fourier transform and granulometry. The results of these methods correlate...... with a measured weight distribution of the soil aggregates. The results have shown that it is possible to distinguish between the cultivated and the uncultivated soil surface. A sensor system suitable for capturing in-situ high resolution 3D images of the soil surface is also described. This sensor system...... is based on a SICK LMS111 laser range scanner....

  15. Microhardness changes gradient of the duplex stainless steel (DSS surface layer after dry turning

    Directory of Open Access Journals (Sweden)

    G. Krolczyk


    Full Text Available The article presents the gradient of microhardness changes as a function of the distance from the material surface after turning with a wedge provided with a coating with a ceramic intermediate layer. The investigation comprised the influence of cutting speed on surface integrity microhardness in dry machining. The tested material was duplex stainless steel (DSS with two-phase, ferritic-austenitic structure. The tests have been performed under production conditions during machining of parts for electric motors and deep-well pumps.

  16. Relative Efficacy of On-Farm Weeds as Soil-Amendement for Managing Dry Root Rot of Clusterbean in an Arid Environment

    Directory of Open Access Journals (Sweden)

    R. Mawar


    Full Text Available The effectiveness of certain on-farm weeds as soil amendments was ascertained against Macrophomina phaseolina, a soil-borne pathogen causing dry root rot of crops grown under rainfed conditions in arid regions. Population changes in M. phaseolina were determined in soils amended separately with residues (1%, w:w of Aerva persica, Celosia argentea, Corchorus depressus, Euphorbia hirta, Heliotropium subulatum and Polycarpaea corymbosa, for a period of 90 days. Significant reductions by 90.4–100% in the population of M. phaseolina were achieved with all the weed residues except P. corymbosa. Celosia and Euphorbia residues completely eradicated viable propagules of M. phaseolina. A strong increase (44–61% in the population of antagonistic actinomycetes was also found in soil amended with Corchorus and Euphorbia. In field tests, soil amended (50 g m2 with Euphorbia, Aerva and Celosia residues significantly reduced dry root rot incidence on clusterbean and also reduced M. phaseolina propagules in the soil. However, dry root rot incidence in Polycarpaea-amended soil (5.8–24.6% was not significantly different from that in non-amended soil (4.3–25.3% in both years of the experiment. P. corymbosa also increased the number of propagules of M. phaseolina in the soil. The results demonstrate that dry root rot of rainfed-cultivated annual crops in arid land can be managed with certain weeds as a soil amendment.

  17. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. (United States)

    Patil, Prafulla D; Gude, Veera Gnaneswar; Mannarswamy, Aravind; Cooke, Peter; Munson-McGee, Stuart; Nirmalakhandan, Nagamany; Lammers, Peter; Deng, Shuguang


    The effect of microwave irradiation on the simultaneous extraction and transesterification (in situ transesterification) of dry algal biomass to biodiesel was investigated. A high degree of oil/lipid extraction from dry algal biomass and an efficient conversion of the oils/lipids to biodiesel were demonstrated in a set of well-designed experimental runs. A response surface methodology (RSM) was used to analyze the influence of the process variables (dry algae to methanol (wt/vol) ratio, catalyst concentration, and reaction time) on the fatty acid methyl ester conversion. Based on the experimental results and RSM analysis, the optimal conditions for this process were determined as: dry algae to methanol (wt/vol) ratio of around 1:12, catalyst concentration about 2 wt.%, and reaction time of 4 min. The algal biodiesel samples were analyzed with GC-MS and thin layer chromatography (TLC) methods. Transmission electron microscopy (TEM) images of the algal biomass samples before and after the extraction/transesterification reaction are also presented.

  18. Optimization of spray drying process for developing seabuckthorn fruit juice powder using response surface methodology. (United States)

    Selvamuthukumaran, Meenakshisundaram; Khanum, Farhath


    The response surface methodology was used to optimize the spray drying process for development of seabuckthorn fruit juice powder. The independent variables were different levels of inlet air temperature and maltodextrin concentration. The responses were moisture, solubility, dispersibility, vitamin C and overall color difference value. Statistical analysis revealed that independent variables significantly affected all the responses. The Inlet air temperature showed maximum influence on moisture and vitamin C content, while the maltodextrin concentration showed similar influence on solubility, dispersibility and overall color difference value. Contour plots for each response were used to generate an optimum area by superimposition. The seabuckthorn fruit juice powder was developed using the derived optimum processing conditions to check the validity of the second order polynomial model. The experimental values were found to be in close agreement to the predicted values and were within the acceptable limits indicating the suitability of the model in predicting quality attributes of seabuckthorn fruit juice powder. The recommended optimum spray drying conditions for drying 100 g fruit juice slurry were inlet air temperature and maltodextrin concentration of 162.5 °C and 25 g, respectively. The spray dried juice powder contains higher amounts of antioxidants viz., vitamin C, vitamin E, total carotenoids, total anthocyanins and total phenols when compared to commercial fruit juice powders and they are also found to be free flowing without any physical alterations such as caking, stickiness, collapse and crystallization by exhibiting greater glass transition temperature.

  19. Optimisation of spray drying operating conditions of Morinda citrifolia L. fruit extract using response surface methodology

    Directory of Open Access Journals (Sweden)

    Duduku Krishnaiah


    Full Text Available A conventional solvent extract of Morinda citrifolia L. fruit was spray dried using adjuvant maltodextrin (5 wt.%. Spray drying was carried out according to the D-optimal design, and the independent variables selected were temperature and Mcore/Mwall. The spray drying process was optimised by using response surface methodology (RSM for four different responses: moisture content (MC, DPPH scavenging activity, total phenolic content (TPC, and total flavonoid (TF. The effects of temperature and of the core to wall material ratio were found to be significant for all responses. The optimal spray drying condition for maltodextrin as binding material was found to be 1:1.5 (Mcore/Mwall, volume ratio of M. citrifolia L. extract to additive solution at 95 °C. The experimental values of the response variables correspond well to the predicted values. The microparticles obtained in this study represent an interesting food additive for incorporation into functional foods due to the presence of antioxidants.

  20. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.


    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs.

  1. Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Kent


    This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

  2. Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Kent [Central Missouri State Univ., Warrensburg, MO (United States)


    This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

  3. Negentropy Generation and Fractality in the Dry Friction of Polished Surfaces

    Directory of Open Access Journals (Sweden)

    Mordecai Segall


    Full Text Available We consider the Robin Hood model of dry friction to study entropy transfer during sliding. For the polished surface (steady state we study the probability distribution of slips and find an exponential behavior for all the physically relevant asperity interaction-distance thresholds. In addition, we characterize the time evolution of the sample by its spatial fractal dimension and by its entropy content. Starting from an unpolished surface, the entropy decreases during the Robin Hood process, until it reaches a plateau; thereafter the system fluctuates above the critical height. This validates the notion that friction increases information in the neighborhood of the contacting surface at the expense of losing information in remote regions. We explain the practical relevance of these results for engineering surface processing such as honing.

  4. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico. (United States)

    Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio


    Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

  5. A Study of the Relations between Soil Moisture, Soil Temperatures and Surface Temperatures Using ARM Observations and Offline CLM4 Simulations

    Directory of Open Access Journals (Sweden)

    Menglin S. Jin


    Full Text Available Soil temperature, soil moisture, skin temperature and 2-m air temperature are examined from both ground observations and the offline community land model (CLM4. Two-layer soil moisture and three-layer soil temperature observations from six-year (2003–2008 ground measurements at the Lamont, Oklahoma site supported by the Atmospheric Radiation Measurement (ARM Program of the Department of Energy (DOE show clear vertical and temporal relations between soil temperature and soil moisture with surface skin temperature and 2-m air temperature. First, daily means reveal that all of these variables have clear seasonal variations, with temperatures peaking in summer and minimizing in winter as a result of surface insolation. Nevertheless, the 2-m air temperature and upper soil temperature (−0.05 m peak at 2 h after that of surface skin temperature because of the lag of transport of heat from the skin level to the 2-m air and to underground respectively. As a result of such lag, at the monthly annual cycle scale, 2-m air temperature has higher correlation with upper soil temperature than skin temperature does. Second, there are little diurnal and annual variations at the lowest soil layer (−0.25 m. Third, a negative correlation (~−0.40 between skin temperature and soil moisture is observed, consistent with the expectation that heat flux and evaporation are competing physical processes for redistributing surface net radiation. Soil moisture, however, minimizes in March and maximizes in winter due to the local rainfall cycle. All of these key observed relations are qualitatively reproduced in the offline CLM4 using the atmosphere forcing derived from ARM observations. Nevertheless, CLM4 is too dry at the upper layer and has less variation at the lower layer than observed. In addition, CLM4 shows stronger correlation between Tsoil and Tskin (r = 0.96 than the observations (r = 0.64, while the predicted nighttime Tskin is 0.5–2 °C higher than the

  6. Susceptibility of Opportunistic Burkholderia glumae to Copper Surfaces Following Wet or Dry Surface Contact

    Directory of Open Access Journals (Sweden)

    Zhouqi Cui


    Full Text Available Burkholderia glumae has been proposed to have a potential risk to vulnerable communities. In this work, we investigated the antibacterial activity and mechanism of copper surfaces against multi-drug resistant B. glumae from both patients and rice plants. The susceptibility of B. glumae to copper surfaces was noted by a significant decline in viable bacterial counts, relative to the slight reduction of stainless steel and polyvinylchloride, both of which were used as control surfaces. The mode of action of bacterial killing was determined by examing the mutagenicity, DNA damage, copper ions accumulation, and membrane damage in bacterial cells. The results indicated that the cells exposed to copper surfaces did not cause severe DNA lesions or increase the mutation frequencies, but resulted in a loss of cell membrane integrity within minutes. Furthermore, bacterial cells exposed to copper surfaces accumulated significantly higher amounts of copper compared to control surfaces. Overall, this study showed that metallic copper had strong antibacterial effect against B. glumae by causing DNA and membrane damage, cellular accumulation of copper, and cell death following DNA degradation, which could be utilized to reduce the risk of bacterial contamination and infection.

  7. Susceptibility of opportunistic Burkholderia glumae to copper surfaces following wet or dry surface contact. (United States)

    Cui, Zhouqi; Ibrahim, Muhammad; Yang, Chunlan; Fang, Yuan; Annam, Hussain; Li, Bin; Wang, Yanli; Xie, Guan-Lin; Sun, Guochang


    Burkholderia glumae has been proposed to have a potential risk to vulnerable communities. In this work, we investigated the antibacterial activity and mechanism of copper surfaces against multi-drug resistant B. glumae from both patients and rice plants. The susceptibility of B. glumae to copper surfaces was noted by a significant decline in viable bacterial counts, relative to the slight reduction of stainless steel and polyvinylchloride, both of which were used as control surfaces. The mode of action of bacterial killing was determined by examing the mutagenicity, DNA damage, copper ions accumulation, and membrane damage in bacterial cells. The results indicated that the cells exposed to copper surfaces did not cause severe DNA lesions or increase the mutation frequencies, but resulted in a loss of cell membrane integrity within minutes. Furthermore, bacterial cells exposed to copper surfaces accumulated significantly higher amounts of copper compared to control surfaces. Overall, this study showed that metallic copper had strong antibacterial effect against B. glumae by causing DNA and membrane damage, cellular accumulation of copper, and cell death following DNA degradation, which could be utilized to reduce the risk of bacterial contamination and infection.

  8. Soil nutrients and liming on dry weight yields and forage quality of Signal grass (Brachiaria decumbens Stapf.), grown on Korat soil series (oxic paleustults) in northeast Thailand. (United States)

    Pholsen, Suradej


    This experiment was carried out at Khon Kaen University Experimental Farm, Khon Kaen University, Thailand during the 2004-2005 aiming to investigate effect of phosphorus (P) and dolomite levels on dry weight yields (DWYs) and forage quality of Signal grass. A 4x3 factorial arranged in a Randomized Complete Block Design (RCBD) was used. Four P levels were: 0, 100, 200 and 400 kg P2O5 ha-1 and three dolomite levels were: 0, 625 and 2,500 kg ha-1. The Signal grass plants were grown on Korat soil series, (Oxic Paleustults). A quadrat with a dimension of 50x50 cm was used for grass yield harvests. Crude Protein (CP), Acid Detergent Fibre (ADF), Neutral Detergent Fibre (NDF) and Dry Matter Degradability (DMD) contents were determined. Tissues phosphorus and calcium contents were also analysed. The results showed that an increase in dolomite levels increased soil pH from 4.4 to 5.1 for levels 1 and 3, respectively. An increase in P levels increased available soil P from 4.56 to 28.38 ppm for levels 1 and 4, respectively. For the first year experiment, dolomite levels had no significant effect on DWYs, whilst P levels significantly increased but only up to level 2. The 2-year average DWYs reached 11,368 kg ha-1 for level 4 of P. With the first year rainy season harvests, P levels had its significant effect on ADF and DMD up to level 2 but not with CP and NDF. For the dry season harvests, P and dolomite levels had no significant effects on forage quality. Dolomite levels had no significant effect on P and Ca contents of the Signal grass tissues but an increase in P levels increased P contents. P and Ca contents, in most cases, were higher for the dry season than the rainy season.

  9. Stabilization of Desert Surfaces and Accumulation of Dust Under Biological Soil Crusts (United States)

    Finstad, K. M.; Mcnicol, G.; Pfeiffer, M.; Amundson, R.


    Biological soil crusts (BSC) are known to play a critical role in the stabilization of desert surfaces by helping to protect sediment from wind and water erosion and aiding in the trapping of airborne particles. The crusts are often composed of cyanobacteria, algae, and fungi, and occupy the upper few cm of a soil. Due to their high tolerance of desiccation and ability to utilize fog and dew sources, BSC are able to exist in environments that may otherwise be too dry for vascular plants. In the hyperarid Atacama Desert, decades or more between measurable precipitation events has created a landscape devoid of macroscopic life. While precipitation is rare, coastal fog occurs regularly and microbial communities capable of utilizing fog and dew water are able to persist. Here we found cyanobacteria and lichen living in association with a thin sulfate and dust crust (~2 cm) covering the surface of 'dust plateaus'. Topographically the region is highly irregular and part of a largely erosional landscape. We hypothesized that these flat-topped plateaus are accretionary features that have been able to maintain dust accumulation for thousands of years as a result of the surface crusts. To test this hypothesis we conducted radiocarbon analysis of crusts and soil profiles at two sites approximately 30 km apart, one in a high fog zone and another in lower fog frequency zone. The radiocarbon analysis shows that sediment has been accumulating in the 'plateaus' for the past 15,000 years and that biological activity and rates of C cycling in the crust increase with increasing fog frequency and intensity. The ages of organic material in the dust decrease monotonically with decreasing soil thickness, suggestive of progressive upward growth by dust accumulation. Our data indicate that the BSC are capable of surviving in hyperarid the Atacama Desert, a Mars analogue, through the utilization of fog water, and that their presence can leave a visible geomorphic imprint on the landscape.

  10. The Measurement of Dry Deposition and Surface Runoff to Quantify Urban Road Pollution in Taipei, Taiwan

    Directory of Open Access Journals (Sweden)

    Jen-Yang Lin


    Full Text Available Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01–5.14 g/m2·day and 78–87% of these solids are in the 75–300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS, chemical oxygen demand (COD, oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads.

  11. Actual evaporation estimation from infrared measurement of soil surface temperature

    Directory of Open Access Journals (Sweden)

    Davide Pognant


    Full Text Available Within the hydrological cycle, actual evaporation represents the second most important process in terms of volumes of water transported, second only to the precipitation phenomena. Several methods for the estimation of the Ea were proposed by researchers in scientific literature, but the estimation of the Ea from potential evapotranspiration often requires the knowledge of hard-to-find parameters (e.g.: vegetation morphology, vegetation cover, interception of rainfall by the canopy, evaporation from the canopy surface and uptake of water by plant roots and many existing database are characterized by missing or incomplete information that leads to a rough estimation of the actual evaporation amount. Starting from the above considerations, the aim of this study is to develop and validate a method for the estimation of the Ea based on two steps: i the potential evaporation estimation by using the meteorological data (i.e. Penman-Monteith; ii application of a correction factor based on the infrared soil surface temperature measurements. The dataset used in this study were collected during two measurement campaigns conducted both in a plain testing site (Grugliasco, Italy, and in a mountain South-East facing slope (Cogne, Italy. During those periods, hourly measurement of air temperature, wind speed, infrared surface temperature, soil heat flux, and soil water content were collected. Results from the dataset collected in the two testing sites show a good agreement between the proposed method and reference methods used for the Ea estimation.

  12. Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion. (United States)

    Van Eerdenbrugh, Bernard; Froyen, Ludo; Van Humbeeck, Jan; Martens, Johan A; Augustijns, Patrick; Van den Mooter, Guy


    the compounds of the second and the third group was linked to the compound's characteristics. It was found that compounds with a more hydrophobic surface resulted in agglomerates which were harder to disintegrate, for which dissolution was compromised upon drying. The same was found for compounds having higher logP values.

  13. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing


    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  14. Operational assimilation of ASCAT surface soil wetness at the Met Office

    Directory of Open Access Journals (Sweden)

    I. Dharssi


    Full Text Available Currently, no extensive global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness from the Advanced Scatterometer (ASCAT on the meteorological operational (MetOp satellite contain good quality information about surface soil moisture. This note describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010.

  15. The Investigation of Surface Roughness on AISI 1040 Steel with Dry Turning

    Directory of Open Access Journals (Sweden)

    Nergizhan Kavak


    Full Text Available In this study, the effect of cutting speed and feed rate on the surface roughness was investigated experimentaly in the machining of AISI 1040 steel being mostly used in industry. Experiments was done by dry turning with uncoated cementite carbite cutting tools at different speeds (46. 91 ve 128 m/dk and feed rates (0.16, 0.22 ve 0.28 mm/dev while cutting depth stays stable at 2 mm. It was observed that workpiece surface quality get worse with the increase of feed rate or decrease of cutting speed. As a result of this work, it was seen that 128 m/min cutting speed and 0.16 mm/rev feed rate for the 2 mm cutting depth are the optimum cutting conditions from the point of surface quality.

  16. Simulation solution for micro droplet impingement on a flat dry surface

    Institute of Scientific and Technical Information of China (English)

    Sun Zhen-Hai; Han Rui-Jing


    This paper presents a computational fluid dynamics approach for micro droplet impacting on a fiat dry surface.A two-phase flow approach is employed using FLUENT VOF multiphase model to calculate the flow distributions upon impact.The contact line velocity is tracked to calculate the dynamic contact angle through user defined function program.The study showed that the treatment of contact line velocity is crucial for the accurate prediction of droplet impacting on poor wettability surfaces.On the other hand,it has much less influence on the simulation of droplet impacting on good wettability surfaces.Good fit between simulation results and experimental data is obtained using this model.

  17. Thermodynamics of a dry atmosphere at different surface exchange rates and rotation speeds

    CERN Document Server

    Pascale, Salvatore; Lucarini, Valerio; Wang, Yixiong


    We study the combined effect of the rotation speed {\\Omega} and of the surface exchange rate - quantified by a surface turbulent relaxation timescale {\\tau} - on the dissipative properties of an Earth-like dry atmosphere. The rotation speed {\\Omega} is varied between one tenth and eight times that of the Earth {\\Omega} \\approx 7.29\\cdot10-5 rad-1 and {\\tau} from 45 minutes to 500 days. We study the circulation regimes induced by such parametric variations through two key dimensionless parameters, the thermal Rossby number Ro and the frictional dimensionless number Ff. An extensive analysis is performed by using nonequilibrium thermodynamics diagnostic tools such as material entropy production, efficiency, meridional heat transport and kinetic energy dissipation. The thermal dissipation associated with the sensible heat flux is found to depend mainly on the surface properties and to be almost independent from the rotation rate, whereas the dissipation of kinetic energy depends in a nontrivial way on both. Slow...

  18. Surface modification of plasticized PVC by dry cleaning methods: Consequences for artworks (United States)

    Morales Muñoz, C.


    A study of dry cleaning methods for plasticized PVC has been undertaken using three commercial cloths recommended for plastics artworks, in addition to cotton swabs traditionally used in art conservation. The evaluation of the cleaning has focussed on the efficiency of the cleaners, and the physical and chemical damages caused by the cleaning. The physical and chemical modifications of the PVC surface have been studied by optical microscopy, non-contact profilometry and ATR-FTIR spectroscopy, while spectrocolorimetry and non-contact profilometry have been used for evaluating the cleaning efficiency. The results have shown that the cleaner's composition and the cleaning time play an important role in damaging the plasticized PVC surface. On the contrary, it has not been completely determined if the texture of the cleaning agents' surface had an influence on the cleaning efficiency.

  19. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data

    Institute of Scientific and Technical Information of China (English)


    Surface soil heat flux is a component of surface energy budget and its estimation is needed in land-atmosphere interaction studies. This paper develops a new simple method to estimate soil heat flux from soil temperature and moisture observations. It gives soil temperature profile with the thermal diffusion equation and, then, adjusts the temperature profile with differences between observed and computed soil temperatures. The soil flux is obtained through integrating the soil temperature profile. Compared with previous methods, the new method does not require accurate thermal conductivity. Case studies based on observations, synthetic data, and sensitivity analyses show that the new method is preferable and the results obtained with it are not sensitive to the availability of temperature data in the topsoil. In addition, we pointed out that the soil heat flux measured with a heat-plate can be quite erroneous in magnitude though its phase is accurate.

  20. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar. (United States)

    Verhoest, Niko E C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M Susan; Mattia, Francesco


    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale.

  1. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process (United States)

    Zhu, Donghai; Nai, Xueying; Lan, Shengjie; Bian, Shaoju; Liu, Xin; Li, Wu


    In order to improve the compatibility of magnesium hydroxide sulfate hydrate (MHSH) whiskers with polymers, the surface of MHSH whiskers was modified using vinyltriethoxysilane (VTES) by dry process. The possible mechanism of the surface modification and the interfacial interactions between MHSH whiskers and VTES, as well as the effect of surface modification, were studied. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that the agglomerations were effectively separated and a thin layer was formed on the surface of the whiskers after modification. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses showed that the VTES molecules were bound to the surface of MHSH whiskers after modification. Chemical bonds (Sisbnd Osbnd Mg) were formed by the reaction between Sisbnd OC2H5 or Sisbnd OH and the hydroxyl group of MHSH whiskers. The effect of surface modification was evaluated by sedimentation tests, contact angle measurements and thermogravimetric analysis (TGA). The results showed that the surface of MHSH whiskers was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MHSH whiskers were significantly improved in the organic phase. Additionally, the thermal stability of the VTES-modified MHSH whiskers was improved significantly.

  2. Leaf area development, dry weight accumulation and solar energy conversion efficiencies of Phaseolus vulgaris L. under different soil moisture levels near Nairobi, Kenya

    NARCIS (Netherlands)

    Muniafu, M.M.; Macharia, J.N.M.; Stigter, C.J.; Coulson, G.L.


    Leaf area development, dry weight accumulation and solar energy conversion efficiencies of Phaseolus vulgaris L. cv GLP-2 under two soil moisture levels in two contrasting seasons near Nairobi, Kenya were investigated. The experiment confirms that dry weights and yields of Phaseolus vulgaris are lim

  3. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation. (United States)

    Hu, Jing; Aitken, Michael D


    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5-100 mg dry soil cm(-2)), temperature (20-40°C), and soil moisture content (2-40%) over periods up to 16d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks.

  4. Optimization of Drying Technique of Lentinus Edodes (Berk. Sing with Microwave Vacuum Equipment via Response Surface Analysis

    Directory of Open Access Journals (Sweden)

    Yi Zhang


    Full Text Available In this study, microwave vacuum equipment was employed to dry lentinus edodes (Berk. Sing. Response Surface Methodology was used to determine the optimal drying conditions. The significant levels were obtained by the equations. The optimal conditions for drying lentinus edodes (Berk. Sing with microwave vacuum equipment were obtained as following: microwave power 2650W, lentinus edodes load 171 g. Under these optimum conditions, lentinus edodes sensory evaluation, lentinan content and drying time were 80, 4.33% and 11 min, respectively.

  5. Effect of dry mycelium of Penicillium chrysogenum fertilizer on soil microbial community composition, enzyme activities and snap bean growth. (United States)

    Wang, Bing; Liu, Huiling; Cai, Chen; Thabit, Mohamed; Wang, Pu; Li, Guomin; Duan, Ziheng


    The dry mycelium fertilizer (DMF) was produced from penicillin fermentation fungi mycelium (PFFM) following an acid-heating pretreatment to degrade the residual penicillin. In this study, it was applied into soil as fertilizer to investigate its effects on soil properties, phytotoxicity, microbial community composition, enzyme activities, and growth of snap bean in greenhouse. As the results show, pH, total nitrogen, total phosphorus, total potassium, and organic matter of soil with DMF treatments were generally higher than CON treatment. In addition, the applied DMF did not cause heavy metal and residual drug pollution of the modified soil. The lowest GI values (microbial population and enzyme activities illustrated that DMF was rapidly decomposed and the decomposition process significantly affected microbial growth and enzyme activities. The DMF-modified soil phytotoxicity decreased at the late fertilization time. DMF1 was considered as the optimum amount of DMF dose based on principal component analysis scores. Plant height and plant yield of snap bean were remarkably enhanced with the optimum DMF dose.

  6. Describing soil surface microrelief by crossover length and fractal dimension

    Directory of Open Access Journals (Sweden)

    E. Vidal Vázquez


    Full Text Available Accurate description of soil surface topography is essential because different tillage tools produce different soil surface roughness conditions, which in turn affects many processes across the soil surface boundary. Advantages of fractal analysis in soil microrelief assessment have been recognised but the use of fractal indices in practice remains challenging. There is also little information on how soil surface roughness decays under natural rainfall conditions. The objectives of this work were to investigate the decay of initial surface roughness induced by natural rainfall under different soil tillage systems and to compare the performances of a classical statistical index and fractal microrelief indices. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil. Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. Measurements were made four times, firstly just after tillage and subsequently with increasing amounts of natural rainfall. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental surfaces. The sampling scheme was a square grid with 25×25 mm point spacing and the plot size was 1350×1350 mm, so that each data set consisted of 3025 individual elevation points. Statistical and fractal indices were calculated both for oriented and random roughness conditions, i.e. after height reading have been corrected for slope and for slope and tillage tool marks. The main drawback of the standard statistical index random roughness, RR, lies in its no spatial nature. The fractal approach requires two indices, fractal dimension, D, which describes how roughness changes with scale, and crossover length, l, specifying the variance of surface microrelief at a reference scale. Fractal parameters D and l, were estimated by two independent self-affine models

  7. Nitrous oxide emissions from sugarcane straw left on the soil surface in Brazil (United States)

    Galdos, M. V.; Cerri, C. E.; Carvalho, J. L.; Cerri, C. C.


    In Brazil, the largest exporter of ethanol from sugarcane in the world, burning the dry leaves and tops in order to facilitate the harvest and transportation of the stalks is still a common practice. Burning plant residues causes emissions of greenhouse gases (GHGs) such as CO2, CH4 and N2O, besides the release of charcoal particles into the atmosphere. Due to a combination of pressure from changes in the public opinion and economical reasons, in Brazil sugarcane harvest is changing from a burned into an unburned system. Since manual harvest of sugarcane without burning is not economically feasible, mechanical harvesters have been developed that can take the stalk and leave the residues on the field, forming a mulch, in a system called green cane management. It is expected that 80% of the cane harvested in the main producing regions in Brazil will be harvested without burning by 2014. The conversion from burning sugarcane to green management of sugarcane will have impacts on the biogeochemical cycling of carbon and nitrogen in the plant soil system. The green cane management results in the deposition of large amounts of plant litter on the soil surface after harvest, ranging from 10 to 20 tons per hectare, which impact the whole production process of sugarcane, influencing yields, fertilizer management and application, soil erosion, soil organic matter dynamics as well as greenhouse gas emissions (CO2, N2O, CH4). From a GHG perspective, the conservation of sugarcane residues prevents emissions from the burning process, may promote carbon sequestration in soils and releases nitrogen during the decomposition process replacing the need for, and GHG emissions from, fossil fuel based nitrogen fertilizer sources. Measurements of soil C and N stocks and associated greenhouse gas emissions from the burned and unburned sugarcane systems and in the sugarcane expansion areas are still scarce. Therefore, the main objective of this work was to quantify the nitrous oxide

  8. Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes (United States)

    Burger, M.; Jackson, L.E.; Lundquist, E.J.; Louie, D.T.; Miller, R.L.; Rolston, D.E.; Scow, K.M.


    The types and amounts of carbon (C) and nitrogen (N) inputs, as well as irrigation management are likely to influence gaseous emissions and microbial ecology of agricultural soil. Carbon dioxide (CO2) and nitrous oxide (N2O) efflux, with and without acetylene inhibition, inorganic N, and microbial biomass C were measured after irrigation or simulated rainfall in two agricultural fields under tomatoes (Lycopersicon esculentum). The two fields, located in the California Central Valley, had either a history of high organic matter (OM) inputs ("organic" management) or one of low OM and inorganic fertilizer inputs ("conventional" management). In microcosms, where short-term microbial responses to wetting and drying were studied, the highest CO2 efflux took place at about 60% water-filled pore space (WFPS). At this moisture level, phospholipid fatty acids (PLFA) indicative of microbial nutrient availability were elevated and a PLFA stress indicator was depressed, suggesting peak microbial activity. The highest N 2O efflux in the organically managed soil (0.94 mg N2O-N m-2 h-1) occurred after manure and legume cover crop incorporation, and in the conventionally managed soil (2.12 mg N2O-N m-2 h-1) after inorganic N fertilizer inputs. Elevated N2O emissions occurred at a WFPS >60% and lasted <2 days after wetting, probably because the top layer (0-150 mm) of this silt loam soil dried quickly. Therefore, in these cropping systems, irrigation management might control the duration of elevated N2O efflux, even when C and inorganic N availability are high, whereas inorganic N concentrations should be kept low during times when soil moisture cannot be controlled.

  9. Spray washing, absorbent corn starch powder and dry time to reduce bacterial numbers on soiled boiler transport cage flooring (United States)

    Most broilers in the U.S. are transported live to slaughter facilities in cages with fiberglass floors. Cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Drying feces out between uses is an effectiv...

  10. Assimilation of neural network soil moisture in land surface models (United States)

    Rodriguez-Fernandez, Nemesio; de Rosnay, Patricia; Albergel, Clement; Aires, Filipe; Prigent, Catherine; Kerr, Yann; Richaume, Philippe; Muñoz-Sabater, Joaquin; Drusch, Matthias


    In this study a set of land surface data assimilation (DA) experiments making use of satellite derived soil moisture (SM) are presented. These experiments have two objectives: (1) to test the information content of satellite remote sensing of soil moisture for numerical weather prediction (NWP) models, and (2) to test a simplified assimilation of these data through the use of a Neural Network (NN) retrieval. Advanced Scatterometer (ASCAT) and Soil Moisture and Ocean Salinity (SMOS) data were used. The SMOS soil moisture dataset was obtained specifically for this project training a NN using SMOS brightness temperatures as input and using as reference for the training European Centre for Medium-Range Weather Forecasts (ECMWF) H-TESSEL SM fields. In this way, the SMOS NN SM dataset has a similar climatology to that of the model and it does not present a global bias with respect to the model. The DA experiments are computed using a surface-only Land Data Assimilation System (so-LDAS) based on the HTESSEL land surface model. This system is very computationally efficient and allows to perform long surface assimilation experiments (one whole year, 2012). SMOS NN SM DA experiments are compared to ASCAT SM DA experiments. In both cases, experiments with and without 2 m air temperature and relative humidity DA are discussed using different observation errors for the ASCAT and SMOS datasets. Seasonal, geographical and soil-depth-related differences between the results of those experiments are presented and discussed. The different SM analysed fields are evaluated against a large number of in situ measurements of SM. On average, the SM analysis gives in general similar results to the model open loop with no assimilation even if significant differences can be seen for specific sites with in situ measurements. The sensitivity to observation errors to the SM dataset slightly differs depending on the networks of in situ measurements, however it is relatively low for the tests

  11. [Analysis of incidence of ocular surface disease index with objective tests and treatment for dry eye]. (United States)

    Rodríguez-Torres, L A; Porras-Machado, D J; Villegas-Guzmán, A E; Molina-Zambrano, J A


    To correlate ocular surface disease index (OSDI) with objective tests on patients with dry eye on first consultation and evaluate the efficiency of topical medication administered depending on severity of symptoms reported by patients who were evaluated at 3 months. We studied a sample of 144 patients with dry eye who were evaluated with OSDI and basic diagnostic tests at first consultation: Height of lacrimal meniscus, Schirmer II test (with anesthetic), Break-up time test (BUT), and lissamine green staining. The sample was divided into four groups depending on clinical severity, taking into account results of OSDI questionnaire. Treatment was determined for each group taking into account lubricant viscosity properties: OSDI (mild) = carboxymethylcelullose, OSDI (moderate) = hidroxypropylmethylcelullose, OSDI (severe) = polyethyleneglycol and OSDI (very severe) = polyethyleneglycol + cyclosporine A 0.05%. Final OSDI was established for 56 patients who were assessed at 3 months. Results of objective tests at first consult showed a correlation between the severity of symptoms and the grade of lissamine green staining (p = 0.0421). We found significant improvement in OSDI values after topical treatment was administered in all groups of patients (p = 0.0066) at three months post treatment. Conjuntival lissamine green staining is a useful guideline that could be routinely used to confirm diagnosis in subjective evaluations and patient follow-up. Patients with dry eye show a decrease in OSDI after being treated with the appropriate medication prescribed for each particular group, depending on severity.

  12. Investigation of surface finishing of carbon based coated tools for dry deep drawing of aluminium alloys (United States)

    Steiner, J.; Andreas, K.; Merklein, M.


    Global trends like growing environmental awareness and demand for resource efficiency motivate an abandonment of lubricants in metal forming. However, dry forming evokes increased friction and wear. Especially, dry deep drawing of aluminum alloys leads to intensive interaction between tool and workpiece due to its high adhesion tendency. One approach to improve the tribological behavior is the application of carbon based coatings. These coatings are characterized by high wear resistance. In order to investigate the potential of carbon based coatings for dry deep drawing, friction and wear behavior of different coating compositions are evaluated in strip drawing tests. This setup is used to model the tribological conditions in the flange area of deep drawing operations. The tribological behavior of tetrahedral amorphous (ta-C) and hydrogenated amorphous carbon coatings with and without tungsten modification (a-C:H:W, a-C:H) is investigated. The influence of tool topography is analyzed by applying different surface finishing. The results show reduced friction with decreased roughness for coated tools. Besides tool topography the coating type determines the tribological conditions. Smooth tools with ta-C and a-C:H coatings reveal low friction and prevent adhesive wear. In contrast, smooth a-C:H:W coated tools only lead to slight improvement compared to rough, uncoated specimen.

  13. A Variational Method for Estimating Near-Surface Soil Moisture and Surface Heat Fluxes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; ZHANG Weidong; QIU Chongjian


    A variational data assimilation method is proposed to estimate the near-surface soil moisture and surface sensible and latent heat fluxes. The method merges the five parts into a cost function, I.e., the differences of wind, potential temperature, and specific humidity gradient between observations and those computed by the profile method, the difference of latent heat fluxes calculated using the ECMWF land surface evaporation scheme and the profile method, and a weak constraint for surface energy balance. By using an optimal algorithm, the best solutions are found. The method is tested with the data collected at Feixi Station (31.41°N, 117.08°E) supported by the China Heavy Rain Experiment and Study (HeRES) during 7-30 June 2001. The results show that estimated near-surface soil moistures can quickly respond to rainfall, and their temporal variation is consistent with that of measurements of average soil moisture over 15-cm top depth with a maximum error less than 0.03 m3 m-3. The surface heat fluxes calculated by this method are consistent with those by the Bowen ratio method, but at the same time it can overcome the instability problem occurring in the Bowen ratio method when the latter is about -1. Meanwhile, the variational method is more accurate than the profile method in terms of satisfying the surface energy balance. The sensitivity tests also show that the variational method is the most stable one among the three methods.

  14. Spatial and temporal distribution of cyanobacterial soil crusts in the Kalahari: Implications for soil surface properties (United States)

    Thomas, A. D.; Dougill, A. J.


    Localised patterns of erosion and deposition in vegetated semi-arid rangelands have been shown to influence ecological change and biogeochemical cycles. In the flat, vegetated Kalahari rangelands of Southern Africa the factors regulating erodibility of the fine sand soils and the erosivity of wind regimes require further investigation. This paper reports on the spatial and temporal patterns of cyanobacterial soil crust cover from ten sites at five sampling locations in the semi-arid Kalahari and discusses the likely impact on factors regulating surface erodibility and erosivity. Cyanobacterial soil crust cover on Kalahari Sand varied between 11% and 95% of the ground surface and was higher than previously reported. Cover was inversely related to grazing with the lowest crust cover found close to boreholes and the highest in the Game Reserve and Wildlife Management Zone. In grazed areas, crusts form under the protective canopies of the thorny shrub Acacia mellifera. Fenced plot data showed that crusts recover quickly from disturbance, with a near complete surface crust cover forming within 15 months of disturbance. Crust development is restricted by burial by wind blown sediment and by raindrop impact. Crusts had significantly greater organic matter and total nitrogen compared to unconsolidated surfaces. Crusts also significantly increased the compressive strength of the surface (and thus decreased erodibility) and changed the surface roughness. Establishing exactly how these changes affect aeolian erosion requires further process-based studies. The proportion of shear velocity acting on the surface in this complex mixed bush-grass-crust environment will be the key to understanding how crusts affect erodibility.

  15. An Artificial Turf-Based Surrogate Surface Collector for the Direct Measurement of Atmospheric Mercury Dry Deposition (United States)

    This paper describes the development of a new artificial turf surrogate surface (ATSS) sampler for use in the measurement of mercury (Hg) dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more...

  16. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski


    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  17. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wildfire (United States)

    Sun, Q.; Meyer, W. S.; Koerber, G. R.; Marschner, P.


    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wildfire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content, which could be further modulated by wildfire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy mallee woodland, where part of the woodland experienced a wildfire which destroyed or damaged most of the aboveground plant parts 4 months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80 % of maximum water holding capacity (WHC) for 19 days; in DRW, soils were dried for 4 days, kept dry for another 5 days, then rewetted to 80 % WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per gram of soil in CM and DRW was greater under trees, but lower when expressed per gram of total organic carbon (TOC). Organic matter content, available P, and microbial biomass C, but not available N, were greater under trees than in open areas. Wild fire decreased the flush of respiration per gram of TOC in the open areas and under shrubs, and reduced TOC and microbial biomass C (MBC) concentrations only under trees, but had little effect on available N and P concentrations. We conclude that the impact of wildfire and DRW events on nutrient cycling differs among vegetation patches of a native semi-arid woodland which is related to organic matter amount and availability.

  18. Comparison, limitations and uncertainty of wet chemistry techniques, loss on ignition and dry combustion in soil organic carbon analysis (United States)

    Ćirić, Vladimir; Manojlović, Maja; Belić, Milivoj; Nešić, Ljiljana; Švarc-Gajić, Jaroslava; Sitaula, Bishal K.


    Soil organic carbon (SOC) has an important role in natural processes (carbon cycle, global climate change and plant growth), agriculture, soil protection and biodiversity. Determination of SOC is usually based on the oxidation of soil organic matter (SOM). Many methods are available, each with advantages and disadvantages in terms of accuracy, costs, convenience and repeatability. Therefore, it is necessary to make a comprehensive overview in order to select appropriate method with the purpose of accurate SOC determination. Most errors in SOC stocks assessment and SOC monitoring occur due to differences in analytical approaches and procedures. This can be a key factor in making incorrect conclusions. The purpose of this research was to compare methods for SOC determination and highlight the strengths and weaknesses of individual methods. The research was conducted on soil samples collected from different soil types and different land uses of temperate region. The concentration of SOC in every sample was determined by the following methods: Tyrin's method, Tyrin's method without addition of AgSO4, Kotzmann's method, loss on ignition (LOI) method, Walkley-Black method, dry combustion by CHN analyzer with pretreatment with HCl and subtraction of volumetrically determined soil inorganic carbon (SIC) from dry combustion by CHN analyzer without pretreatment. Each of the applied methods demonstrated specific limitations. The average SOC concentration determined by different methods ranged from 16.1-28.5 g kg-1. It has been established that different methods for the determination of total SOC recovered 76-157% of SOC compared to the reference dry combustion method by CHN analyzer. The correlation coefficients between applied methods ranged from 0.74-0.98. The Tyrin's method without addition of AgSO4 can be recommended as the most suitable method for the determination of SOC, with mandatory use of the correction factor 1.14. For the purpose of reducing the difference

  19. A Model for Formation of Dust, Soil and Rock Coatings on Mars: Physical and Chemical Processes on the Martian Surface (United States)

    Bishop, Janice; Murchie, Scott L.; Pieters, Carle M.; Zent, Aaron P.


    This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data From Mars and geologic analogs from terrestrial sites. One basic premise of this model is that the dust/soil units are not derived exclusively from local rocks, but are rather a product of global, and possibly remote, weathering processes. Another assumption in this model is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results on the surface. Physical processes distribute dust particles on rocks and drift units, forming physically-aggregated layers; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces and cohesive, crusted surface units between rocks, both of which are relatively permanent materials. According to this model the dominant components of the dust/soil particles are derived from alteration of volcanic ash and tephra, and contain primarily nanophase and poorly crystalline ferric oxides/oxyhydroxide phases as well as silicates. These phases are the alteration products that formed in a low moisture environment. These dust/soil particles also contain a smaller amount of material that was exposed to more water and contains crystalline ferric oxides/oxyhydroxides, sulfates and clay silicates. These components could have formed through hydrothermal alteration at steam vents or fumeroles, thermal fluids, or through evaporite deposits. Wet/dry cycling experiments are presented here on mixtures containing poorly crystalline and crystalline ferric oxides/oxyhydroxides, sulfates and silicates that range in size from nanophase to 1-2 pm diameter particles. Cemented products of these soil mixtures are formed in these experiments and variation in the surface texture was observed for samples containing smectites, non-hydrated silicates or sulfates

  20. The influence of surface type on the absorbed radiation by a human under hot, dry conditions (United States)

    Hardin, A. W.; Vanos, J. K.


    Given the predominant use of heat-retaining materials in urban areas, numerous studies have addressed the urban heat island mitigation potential of various "cool" options, such as vegetation and high-albedo surfaces. The influence of altered radiational properties of such surfaces affects not only the air temperature within a microclimate, but more importantly the interactions of long- and short-wave radiation fluxes with the human body. Minimal studies have assessed how cool surfaces affect thermal comfort via changes in absorbed radiation by a human (R abs) using real-world, rather than modeled, urban field data. The purpose of the current study is to assess the changes in the absorbed radiation by a human—a critical component of human energy budget models—based on surface type on hot summer days (air temperatures > 38.5∘C). Field tests were conducted using a high-end microclimate station under predominantly clear sky conditions over ten surfaces with higher sky view factors in Lubbock, Texas. Three methods were used to measure and estimate R abs: a cylindrical radiation thermometer (CRT), a net radiometer, and a theoretical estimation model. Results over dry surfaces suggest that the use of high-albedo surfaces to reduce overall urban heat gain may not improve acute human thermal comfort in clear conditions due to increased reflected radiation. Further, the use of low-cost instrumentation, such as the CRT, shows potential in quantifying radiative heat loads within urban areas at temporal scales of 5-10 min or greater, yet further research is needed. Fine-scale radiative information in urban areas can aid in the decision-making process for urban heat mitigation using non-vegetated urban surfaces, with surface type choice is dependent on the need for short-term thermal comfort, or reducing cumulative heat gain to the urban fabric.

  1. Impact of future land cover changes on HNO3 and O3 surface dry deposition

    Directory of Open Access Journals (Sweden)

    T. Verbeke


    Full Text Available Dry deposition is a key component of surface–atmosphere exchange of compounds, acting as a sink for several chemical species. Meteorological factors, chemical properties of the trace gas considered and land surface properties are strong drivers of dry deposition efficiency and variability. Under both climatic and anthropogenic pressure, the vegetation distribution over the Earth has been changing a lot over the past centuries, and could be significantly altered in the future. In this study, we perform a modeling investigation of the potential impact of land-cover changes between present-day (2006 and the future (2050 on dry deposition rates, with special interest for ozone (O3 and nitric acid vapor (HNO3, two compounds which are characterized by very different physico-chemical properties. The 3-D chemistry transport model LMDz-INCA is used, considering changes in vegetation distribution based on the three future projections RCPs 2.6, 4.5 and 8.5. The 2050 RCP 8.5 vegetation distribution leads to a rise up to 7 % (+0.02 cm s−1 in VdO3 and a decrease of −0.06 cm s−1 in VdHNO3 relative to the present day values in tropical Africa, and up to +18 and −15 % respectively in Australia. When taking into account the RCP 4.5 scenario, which shows dramatic land cover change in Eurasia, VdHNO3 increases by up to 20 % (annual-mean value and reduces VdO3 by the same magnitude in this region. When analyzing the impact of dry deposition change on atmospheric chemical composition, our model calculates that the effect is lower than 1 ppb on annual mean surface ozone concentration, for both for the RCP8.5 and RCP2.6 scenarios. The impact on HNO3 surface concentrations is more disparate between the two scenarios, regarding the spatial repartition of effects. In the case of the RCP 4.5 scenario, a significant increase of the surface O3 concentration reaching locally up to 5 ppb (+5 % is calculated on average during the June–August period. This scenario

  2. Photolysis of polycyclic aromatic hydrocarbons on soil surfaces under UV irradiation

    Institute of Scientific and Technical Information of China (English)

    Chengbin Xu; Dianbo Dong; Xuelian Meng; Xin Su; Xu Zheng; Yaoyao Li


    Photolysis of some polycyclic aromatic hydrocarbons (PAHs) on soil surfaces may play an important role in the fate of PAHs in the environment.Photolysis of PAHs on soil surfaces under UV irradiation was investigated.The effects of oxygen,irradiation intensity and soil moisture on the degradation of the three PAHs were observed.The results showed that oxygen,soil moisture and irradiation intensity enhanced the photolysis of the three PAHs on soil surfaces.The degradation of the three PAHs on soil surfaces is related to their absorption spectra and the oxidation-half-wave potential.The photolysis of PAHs on soil surfaces in the presence of oxygen followed pseudo first-order kinetics.The photolysis half-lives ranged from 37.87 days for benzo[a]pyrene to 58.73 days for phenanthrene.The results indicate that photolysis is a successful way to remediate PAHs-contaminated soils.

  3. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.; Klopfer, D.C.


    Protective barriers have been identified as integral components of plans to isolate defense waste on the Hanford Site. The use of natural materials to construct protective barriers over waste site is being considered. Design requirements for protective barriers include preventing exposure of buried waste, and restricting penetration or percolation of surface waters through the waste zone. Studies were initiated to evaluate the effects of wind erosion on candidate protective barrier surfaces. A wind tunnel was used to provide controlled erosive stresses and to investigate the erosive effects of wind forces on proposed surface layers for protective barriers. Mixed soil and gravel surfaces were prepared and tested for resistance to wind erosion at the Pacific Northwest Laboratory Aerosol Wind Tunnel Research Facility. These tests were performed to investigate surface deflation caused by suspension of soil from various surface layer configurations and to provide a comparison of the relative resistance of the different surfaces to wind erosion. Planning, testing, and analyzing phases of this wind erosion project were coordinated with other tasks supporting the development of protective barriers. These tasks include climate-change predictions, field studies and modeling efforts. This report provides results of measurements of deflation caused by wind forces over level surfaces. Section 2.0 reviews surface layer characteristics and previous relevant studies on wind erosion, describes effects of erosion, and discusses wind tunnel modeling. Materials and methods of the wind tunnel tests are discussed in Section 3.0. Results and discussion are presented in Section 4.0, and conclusions and recommendations Section 5.0. 53 refs., 29 figs., 7 tabs.

  4. Analysis of observed surface ozone in the dry season over Eastern Thailand during 1997-2012 (United States)

    Assareh, Nosha; Prabamroong, Thayukorn; Manomaiphiboon, Kasemsan; Theramongkol, Phunsak; Leungsakul, Sirakarn; Mitrjit, Nawarat; Rachiwong, Jintarat


    This study analyzed observed surface ozone (O3) in the dry season over a long-term period of 1997-2012 for the eastern region of Thailand and incorporated several technical tools or methods in investigating different aspects of O3. The focus was the urbanized and industrialized coastal areas recently recognized as most O3-polluted areas. It was found that O3 is intensified most in the dry-season months when meteorological conditions are favorable to O3 development. The diurnal variations of O3 and its precursors show the general patterns of urban background. From observational O3 isopleth diagrams and morning ratios of non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NOx), the chemical regime of O3 formation was identified as VOC-sensitive, and the degree of VOC sensitivity tends to increase over the years, suggesting emission control on VOC to be suitable for O3 management. Both total oxidant analysis and back-trajectory modeling (together with K-means clustering) indicate the potential role of regional transport or influence in enhancing surface O3 level over the study areas. A meteorological adjustment with generalized linear modeling was performed to statistically exclude meteorological effects on the variability of O3. Local air-mass recirculation factor was included in the modeling to support the coastal application. The derived trends in O3 based on the meteorological adjustment were found to be significantly positive using a Mann-Kendall test with block bootstrapping.

  5. Model-based surface soil moisture (SSM) retrieval algorithm using multi-temporal RISAT-1 C-band SAR data (United States)

    Pandey, Dharmendra K.; Maity, Saroj; Bhattacharya, Bimal; Misra, Arundhati


    Accurate measurement of surface soil moisture of bare and vegetation covered soil over agricultural field and monitoring the changes in surface soil moisture is vital for estimation for managing and mitigating risk to agricultural crop, which requires information and knowledge to assess risk potential and implement risk reduction strategies and deliver essential responses. The empirical and semi-empirical model-based soil moisture inversion approach developed in the past are either sensor or region specific, vegetation type specific or have limited validity range, and have limited scope to explain physical scattering processes. Hence, there is need for more robust, physical polarimetric radar backscatter model-based retrieval methods, which are sensor and location independent and have wide range of validity over soil properties. In the present study, Integral Equation Model (IEM) and Vector Radiative Transfer (VRT) model were used to simulate averaged backscatter coefficients in various soil moisture (dry, moist and wet soil), soil roughness (smooth to very rough) and crop conditions (low to high vegetation water contents) over selected regions of Gujarat state of India and the results were compared with multi-temporal Radar Imaging Satellite-1 (RISAT-1) C-band Synthetic Aperture Radar (SAR) data in σ°HH and σ°HV polarizations, in sync with on field measured soil and crop conditions. High correlations were observed between RISAT-1 HH and HV with model simulated σ°HH & σ°HV based on field measured soil with the coefficient of determination R2 varying from 0.84 to 0.77 and RMSE varying from 0.94 dB to 2.1 dB for bare soil. Whereas in case of winter wheat crop, coefficient of determination R2 varying from 0.84 to 0.79 and RMSE varying from 0.87 dB to 1.34 dB, corresponding to with vegetation water content values up to 3.4 kg/m2. Artificial Neural Network (ANN) methods were adopted for model-based soil moisture inversion. The training datasets for the NNs were

  6. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Ahmadi, Seyed Hamid; Lærke, Poul Erik


    Experiments were conducted in lysimeters with sandy soil under an automatic rain-out shelter to study the effects of subsurface drip irrigation treatments, full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD), on nitrogen (N) dynamics in the soil-plant system of potatoes....... In 2005, FI and PRD2 were investigated, where FI plants received 100% of evaporative demands, while PRD2 plants received 70% water of FI at each irrigation event after tuber initiation. In 2006, besides FI and PRD2 treatments, DI and PRDI receiving 70% water of FI during the whole season were also studied....... Crop N uptake and residual NH (4)-N and NO3-N to a depth of 0-50 cm, at 10 cm intervals were analyzed. For both years, the PRD2 treatment resulted in 30% water saving and maintained yield as compared with the FI treatment, while when investigated in 2006 only, DI and PRDI treatments resulted...

  7. Solute leaching in a sandy soil with a water-repellent surface layer: a simulation.

    NARCIS (Netherlands)

    Rooij, de G.H.; Vries, de P.


    Many sandy soils in the Netherlands have a water-repellent surface layer covering a wettable soil with a shallow groundwater table. Fingers form in the water-repellent surface layer and rapidly transport water and solutes to the wettable soil in which the streamlines diverge. Although several field

  8. Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model (United States)

    Decharme, Bertrand; Brun, Eric; Boone, Aaron; Delire, Christine; Le Moigne, Patrick; Morin, Samuel


    In this study we analyzed how an improved representation of snowpack processes and soil properties in the multilayer snow and soil schemes of the Interaction Soil-Biosphere-Atmosphere (ISBA) land surface model impacts the simulation of soil temperature profiles over northern Eurasian regions. For this purpose, we refine ISBA's snow layering algorithm and propose a parameterization of snow albedo and snow compaction/densification adapted from the detailed Crocus snowpack model. We also include a dependency on soil organic carbon content for ISBA's hydraulic and thermal soil properties. First, changes in the snowpack parameterization are evaluated against snow depth, snow water equivalent, surface albedo, and soil temperature at a 10 cm depth observed at the Col de Porte field site in the French Alps. Next, the new model version including all of the changes is used over northern Eurasia to evaluate the model's ability to simulate the snow depth, the soil temperature profile, and the permafrost characteristics. The results confirm that an adequate simulation of snow layering and snow compaction/densification significantly impacts the snowpack characteristics and the soil temperature profile during winter, while the impact of the more accurate snow albedo computation is dominant during the spring. In summer, the accounting for the effect of soil organic carbon on hydraulic and thermal soil properties improves the simulation of the soil temperature profile. Finally, the results confirm that this last process strongly influences the simulation of the permafrost active layer thickness and its spatial distribution.

  9. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites (United States)

    Bartsch, A.; Balzter, H.; George, C.


    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km2 under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  10. Elevation trends and shrink-swell response of wetland soils to flooding and drying (United States)

    Cahoon, Donald R.; Perez, Brian C.; Segura, Bradley D.; Lynch, James C.


    Given the potential for a projected acceleration in sea-level rise to impact wetland sustainability over the next century, a better understanding is needed of climate-related drivers that influence the processes controlling wetland elevation. Changes in local hydrology and groundwater conditions can cause short-term perturbations to marsh elevation trends through shrink—swell of marsh soils. To better understand the magnitude of these perturbations and their impacts on marsh elevation trends, we measured vertical accretion and elevation dynamics in microtidal marshes in Texas and Louisiana during and after the extreme drought conditions that existed there from 1998 to 2000. In a Louisiana marsh, elevation was controlled by subsurface hydrologic fluxes occurring below the root zone but above the 4 m depth (i.e., the base of the surface elevation table benchmark) that were related to regional drought and local meteorological conditions, with marsh elevation tracking water level variations closely. In Texas, a rapid decline in marsh elevation was related to severe drought conditions, which lowered local groundwater levels. Unfragmented marshes experienced smaller water level drawdowns and more rapid marsh elevation recovery than fragmented marshes. It appears that extended drawdowns lead to increased substrate consolidation making it less resilient to respond to future favorable conditions. Overall, changes in water storage lead to rapid and large short-term impacts on marsh elevation that are as much as five times greater than the long-term elevation trend, indicating the importance of long-term, high-resolution elevation data sets to understand the prolonged effects of water deficits on marsh elevation change.

  11. Dry deposition velocity of atmospheric nitrogen in a typical red soil agro-ecosystem in Southeastern China. (United States)

    Zhou, Jing; Cui, Jian; Fan, Jian-ling; Liang, Jia-ni; Wang, Ti-jian


    Atmospheric dry deposition is an important nitrogen (N) input to farmland ecosystems. The main nitrogen compounds in the atmosphere include gaseous N (NH3, NO2, HNO3) and aerosol N (NH4+/NO3-). With the knowledge of increasing agricultural effects by dry deposition of nitrogen, researchers have paid great attention to this topic. Based on the big-leaf resistance dry deposition model, dry N deposition velocities (Vd) in a typical red soil agro-ecosystem, Yingtan, Jiangxi, Southeastern China, were estimated with the data from an Auto-Meteorological Experiment Station during 2004-2007. The results show that hourly deposition velocities (Vdh) were in the range of 0.17-0.34, 0.05-0.24, 0.57-1.27, and 0.05-0.41 cm/s for NH3, NO2, HNO3, and aerosol N, respectively, and the Vdh were much higher in daytime than in nighttime and had a peak value around noon. Monthly dry deposition velocities (Vdm) were in the range of 0.14-0.36, 0.06-0.18, and 0.07-0.25 cm/s for NH3, NO2, and aerosol N, respectively. Their minimum values appeared from June to August, while their maximum values occurred from February to March each year. The maximum value for HNO3 deposition velocities appeared in July each year, and Vdm(HNO3) ranged from 0.58 to 1.31 cm/s during the 4 years. As for seasonal deposition velocities (Vds), Vds(NH3), Vds(NO2), and Vds(aerosol N) in winter or spring were significantly higher than those in summer or autumn, while Vds(HNO3) in summer were higher than that in winter. In addition, there is no significant difference among all the annual means for deposition velocities (Vda). The average values for NH3, NO2, HNO3, and aerosol N deposition velocities in the 4 years were 0.26, 0.12, 0.81, and 0.16 cm/s, respectively. The model is convenient and feasible to estimate dry deposition velocity of atmospheric nitrogen in the typical red soil agro-ecosystem.

  12. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  13. Three-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: Simplified Kalman filter covariance forecasting and field application (United States)

    Walker, Jeffrey P.; Willgoose, Garry R.; Kalma, Jetse D.


    The Kalman filter data assimilation technique is applied to a distributed three-dimensional soil moisture model for retrieval of the soil moisture profile in a 6 ha catchment using near-surface soil moisture measurements. A simplified Kalman filter covariance forecasting methodology is developed based on forecasting of the state correlations and imposed state variances. This covariance forecasting technique, termed the modified Kalman filter, was then used in a 1 month three-dimensional field application. Two updating scenarios were tested: (1) updating every 2 to 3 days and (2) a single update. The data used were from the Nerrigundah field site, near Newcastle, Australia. This study demonstrates the feasibility of data assimilation in a quasi three-dimensional distributed soil moisture model, provided simplified covariance forecasting techniques are used. It also identifies that (1) the soil moisture profile cannot be retrieved from near-surface soil moisture measurements when the near-surface and deep soil layers become decoupled, such as during extreme drying events; (2) if simulation of the soil moisture profile is already good, the assimilation can result in a slight degradation, but if the simulation is poor, assimilation can yield a significant improvement; (3) soil moisture profile retrieval results are independent of initial conditions; and (4) the required update frequency is a function of the errors in model physics and forcing data.

  14. Community-weighted mean traits but not functional diversity determine the changes in soil properties during wetland drying on the Tibetan Plateau (United States)

    Li, Wei; Epstein, Howard E.; Wen, Zhongming; Zhao, Jie; Jin, Jingwei; Jing, Guanghua; Cheng, Jimin; Du, Guozhen


    Climate change and human activities have caused a shift in vegetation composition and soil biogeochemical cycles of alpine wetlands on the Tibetan Plateau. The primary goal of this study was to test for associations between community-weighted mean (CWM) traits, functional diversity, and soil properties during wetland drying. We collected soil samples and investigated the aboveground vegetation in swamp, swamp meadow, and typical meadow environments. Four CWM trait values (specific leaf area is SLA, leaf dry matter content is LDMC, leaf area is LA, and mature plant height is MPH) for 42 common species were measured across the three habitats; three components of functional diversity (functional richness, functional evenness, and functional divergence) were also quantified at these sites. Our results showed that the drying of the wetland dramatically altered plant community and soil properties. There was a significant correlation between CWM of traits and soil properties, but not a significant correlation between functional diversity and soil properties. Our results further showed that CWM-LA, CWM-SLA, and CWM-LDMC had positive correlations with soil readily available nutrients (available nitrogen, AN; available phosphorus, AP), but negative correlations with total soil nutrients (soil organic carbon is SOC, total nitrogen is TN, and total phosphorus is TP). Our study demonstrated that simple, quantitative plant functional traits, but not functional diversity, are directly related to soil C and N properties, and they likely play an important role in plant-soil interactions. Our results also suggest that functional identity of species may be more important than functional diversity in influencing ecosystem processes during wetland drying.

  15. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands (United States)

    Hedo, J.; Lucas-Borja, M. E.; Wic, C.; Andrés-Abellán, M.; de Las Heras, J.


    Wildfires affecting forest ecosystems and post-fire silvicultural treatments may cause considerable changes in soil properties. The capacity of different microbial groups to recolonise soil after disturbances is crucial for proper soil functioning. The aim of this work was to investigate some microbial soil properties and enzyme activities in semiarid and dry Aleppo pine (Pinus halepensis M.) forest stands. Different plots affected by a wildfire event 17 years ago without or with post-fire silvicultural treatments 5 years after the fire event were selected. A mature Aleppo pine stand, unaffected by wildfire and not thinned was used as a control. Physicochemical soil properties (soil texture, pH, carbonates, organic matter, electrical conductivity, total N and P), soil enzymes (urease, phosphatase, β-glucosidase and dehydrogenase activities), soil respiration and soil microbial biomass carbon were analysed in the selected forests areas and plots. The main finding was that long time after this fire event produces no differences in the microbiological soil properties and enzyme activities of soil after comparing burned and thinned, burned and not thinned, and mature plots. Moreover, significant site variation was generally seen in soil enzyme activities and microbiological parameters. We conclude that total vegetation recovery normalises post-fire soil microbial parameters, and that wildfire and post-fire silvicultural treatments are not significant factors affecting soil properties after 17 years.

  16. Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lianhong [ORNL; Meyers, T. P. [NOAA ATDD; Pallardy, Stephen G. [University of Missouri; Hanson, Paul J [ORNL; Yang, Bai [ORNL; Heuer, Mark [ATDD, NOAA; Hosman, K. P. [University of Missouri; Riggs, Jeffery S [ORNL; Sluss, Daniel Wayne [ORNL; Wullschleger, Stan D [ORNL


    The purpose of this paper is to examine the mechanism that controls the variation of surface energy partitioning between latent and sensible heat fluxes at a temperate deciduous forest site in central Missouri, USA. Taking advantage of multiple micrometeorological and ecophysiological measurements and a prolonged drought in the middle of the 2005 growing season at this site, we studied how soil moisture, atmospheric vapor pressure deficit (VPD), and net radiation affected surface energy partitioning. We stratified these factors to minimize potential confounding effects of correlation among them. We found that all three factors had direct effects on surface energy partitioning, but more important, all three factors also had crucial indirect effects. The direct effect of soil moisture was characterized by a rapid decrease in Bowen ratio with increasing soil moisture when the soil was dry and by insensitivity of Bowen ratio to variations in soil moisture when the soil was wet. However, the rate of decrease in Bowen ratio when the soil was dry and the level of soil moisture above which Bowen ratio became insensitive to changes in soil moisture depended on atmospheric conditions. The direct effect of increased net radiation was to increase Bowen ratio. The direct effect of VPD was very nonlinear: Increased VPD decreased Bowen ratio at low VPD but increased Bowen ratio at high VPD. The indirect effects were much more complicated. Reduced soil moisture weakened the influence of VPD but enhanced the influence of net adiation on surface energy partitioning. Soil moisture also controlled how net radiation influenced the relationship between surface energy partitioning and VPD and how VPD affected the relationship between surface energy partitioning and net radiation. Furthermore, both increased VPD and increased net radiation enhanced the sensitivity of Bowen ratio to changes in soil moisture and the effect of drought on surface energy partitioning. The direct and indirect

  17. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala

    Indian Academy of Sciences (India)

    M S Roxy; V B Sumithranand; G Renuka


    Continuous observation data collected over the year 2008 at Astronomical Observatory, Thiruvananthapuram in south Kerala (76° 59′E longitude and 8° 30′N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed. We have investigated relationships of soil moisture with surface albedo and soil thermal diffusivity. The diurnal variation of surface albedo appears as a U-shaped curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is greater than 40°. So the daily average surface albedo was calculated using the data when solar elevation angle is greater than 40°. The results indicate that the mean daily surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. Soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.

  18. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model. (United States)

    Garcia, L; Bedos, C; Génermont, S; Braud, I; Cellier, P


    Ammonia and pesticide volatilization in the field is a surface phenomenon involving physical and chemical processes that depend on the soil surface temperature and water content. The water transfer, heat transfer and energy budget sub models of volatilization models are adapted from the most commonly accepted formalisms and parameterizations. They are less detailed than the dedicated models describing water and heat transfers and surface status. The aim of this work was to assess the ability of one of the available mechanistic volatilization models, Volt'Air, to accurately describe the pedo-climatic conditions of a soil surface at the required time and space resolution. The assessment involves: (i) a sensitivity analysis, (ii) an evaluation of Volt'Air outputs in the light of outputs from a reference Soil-Vegetation-Atmosphere Transfer model (SiSPAT) and three experimental datasets, and (iii) the study of three tests based on modifications of SiSPAT to establish the potential impact of the simplifying assumptions used in Volt'Air. The analysis confirmed that a 5 mm surface layer was well suited, and that Volt'Air surface temperature correlated well with the experimental measurements as well as with SiSPAT outputs. In terms of liquid water transfers, Volt'Air was overall consistent with SiSPAT, with discrepancies only during major rainfall events and dry weather conditions. The tests enabled us to identify the main source of the discrepancies between Volt'Air and SiSPAT: the lack of gaseous water transfer description in Volt'Air. They also helped to explain why neither Volt'Air nor SiSPAT was able to represent lower values of surface water content: current classical water retention and hydraulic conductivity models are not yet adapted to cases of very dry conditions. Given the outcomes of this study, we discuss to what extent the volatilization models can be improved and the questions they pose for current research in water transfer modeling and parameterization.

  19. Heavy Metal Pollution of Surface Soil in Thrace Region (Turkey)

    CERN Document Server

    Cocskun, M; Frontasyeva, M V; Munevver, C; Eidhammer Sjobakk, T; Demkina, S V


    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Mo, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. S...

  20. Surface atmosphere exchange in dry and a wet regime over the Ganges valley: a comprehensive investigation with direct observations and numerical simulations (United States)

    Sathyanadh, Anusha; Prabhakaran, Thara; Karipot, Anandakumar


    Land atmosphere interactions in the Ganges Valley basin is a topic of significant importance as it is most vulnerable region due to extreme weather, air pollution, etc. The complete energy balance observations over this region was conducted as part of the CAIPEEX-IGOC (Cloud Aerosol Interaction and Precipitation Enhancement Experiment - Integrated Ground based Observational Campaign) experiment for an entire year. These observations give first insight into the partitioning of energy in this vulnerable environment during the dry and wet regimes, which are typically part of the intraseasonal oscillations during the Indian monsoon season. These transitions wet-dry and dry-wet are poorly represented in GCMs and is the motivation for the detailed investigation here. Observations conducted with micrometeorological tower instrumented with eddy covariance sensors, radiation balance, soil heat flux measurements, microwave radiometer, sodar, radiosonde data are used in the present study. A set of numerical investigations of different Planetary Boundary Layer (PBL) schemes is also carried out to investigate features of the diurnal cycle during the wet and dry regimes. General behaviour of both local and nonlocal PBL schemes found from the investigation is to accomplish enhanced mixing, leading to a deeper PBL in the valley. However, observations give clear evidence of residual boundary layer characterised by a weak stratification, playing a key role in the exchange of PBL air mass with that of free atmosphere. Impact of changes in parameterization and controlling factors on the PBL height are investigated. Case studies for a dry phase during the incidence of a heat wave and a wet phase during a land depression are presented. Observed diurnal features of the surface meteorological parameters including the surface energy budget components were well captured by local and nonlocal PBL schemes during both the cases. Vertical profiles of temperature, mixing ratio and winds from

  1. Wear of Polished Steel Surfaces in Dry Friction Linear Contact on Polimer Composites with Glass Fibres

    Directory of Open Access Journals (Sweden)

    D. Rus


    Full Text Available It is generally known that the friction and wear between polymers and polished steel surfaces has a special character, the behaviour to friction and wear of a certain polymer might not be valid for a different polymer, moreover in dry friction conditions. In this paper, we study the reaction to wear of certain polymers with short glass fibres on different steel surfaces, considering the linear friction contact, observing the friction influence over the metallic surfaces wear. The paper includes also its analysis over the steel’s wear from different points of view: the reinforcement content influence and tribological parameters (load, contact pressure, sliding speed, contact temperature, etc.. Thus, we present our findings related to the fact that the abrasive component of the friction force is more significant than the adhesive component, which generally is specific to the polymers’ friction. Our detections also state that, in the case of the polyamide with 30% glass fibres, the steel surface linear wear rate order are of 10-4 mm/h, respectively the order of volumetric wear rate is of 10-6 cm3 /h. The resulting volumetric wear coefficients are of the order (10-11 – 10-12 cm3/cm and respectively linear wear coefficients of 10-9 mm/cm.

  2. Calibration of Soil Available Nitrogen and Water Content with Grain Yield of Dry land Wheat

    Directory of Open Access Journals (Sweden)

    V. Feiziasl


    Full Text Available Introduction: Nitrogen (N is one of the most important growth-limiting nutrients for dryland wheat. Mineral nitrogen or ammonium (NH4+ and nitrate (NO3− are two common forms of inorganic nitrogen that can serve as limiting factors for plant growth. Nitrogen fertilization in dryland area can increase the use of soil moisture, and improve wheat yields to some extent. Many researchers have been confirmed interactions between water stress and nitrogen fertilizers on wheat, especially under field conditions. Because of water stress affects forms of nitrogen uptake that leads to disorder in plant metabolism, reduction in grain yield and crop quality in dryland condition. On the other hand, use of suitable methods for determining nitrogen requirement can increase dryland wheat production. However, nitrogen recommendations should be based on soil profile content or precipitation. An efficient method for nitrogen fertilizer recommendation involves choosing an effective soil extractant and calibrating soil nitrogen (Total N, NO3− andNH4+ tests against yield responses to applied nitrogen in field experiments. Soil testing enables initial N supply to be measured and N supply throughout the season due to mineralization to be estimated. This study was carried out to establish relationship between nitrogen forms (Total N, NO3− andNH4+ in soil and soil profile water content with plant response for recommendation of nitrogen fertilizer. Materials and Methods: This study was carried out in split-split plot in a RCBD in Dryland Agricultural Research Institute (DARI, Maragheh, Iranwhere N application times (fall, 2/3 in fall and 1/3 in spring were assigned to the main plots, N rates to sub plot (0, 30, 60 and 90 kg/ha, and 7 dryland wheat genotypes to sub-sub plots (Azar2, Ohadi, Rasad and 1-4 other genotypes in three replications in 2010-2011. Soil samples were collected from 0-20, 20-40, 40-60 and 60-80 cm in sub-sub plots in shooting stage (ZGS32. Ammonium

  3. Improved representations of coupled soil-canopy processes in the CABLE land surface model (Subversion revision 3432) (United States)

    Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.; Harman, Ian N.


    CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil-canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil-air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.

  4. Surface coal mine land reclamation using a dry flue gas desulfurization product: Short-term and long-term water responses. (United States)

    Chen, Liming; Stehouwer, Richard; Tong, Xiaogang; Kost, Dave; Bigham, Jerry M; Dick, Warren A


    Abandoned coal-mined lands are a worldwide concern due to their potential negative environmental impacts, including erosion and development of acid mine drainage. A field study investigated the use of a dry flue gas desulfurization product for reclamation of abandoned coal mined land in USA. Treatments included flue gas desulfurization product at a rate of 280 Mg ha(-1) (FGD), FGD at the same rate plus 112 Mg ha(-1) yard waste compost (FGD/C), and conventional reclamation that included 20 cm of re-soil material plus 157 Mg ha(-1) of agricultural limestone (SOIL). A grass-legume sward was planted after treatment applications. Chemical properties of surface runoff and tile water (collected from a depth of 1.2m below the ground surface) were measured over both short-term (1-4 yr) and long-term (14-20 yr) periods following reclamation. The pH of surface runoff water was increased from approximately 3, and then sustained at 7 or higher by all treatments for up to 20 yr, and the pH of tile flow water was also increased and sustained above 5 for 20 yr. Compared with SOIL, concentrations of Ca, S and B in surface runoff and tile flow water were generally increased by the treatments with FGD product in both short- and long-term measurements and concentrations of the trace elements were generally not statistically increased in surface runoff and tile flow water over the 20-yr period. However, concentrations of As, Ba, Cr and Hg were occasionally elevated. These results suggest the use of FGD product for remediating acidic surface coal mined sites can provide effective, long-term reclamation. Copyright © 2015. Published by Elsevier Ltd.

  5. Self-assembling peptide detergents stabilize isolated photosystem ion a dry surface for an extended time.

    Directory of Open Access Journals (Sweden)


    Full Text Available We used a class of designed peptide detergents to stabilize photosystem I (PS-I upon extended drying under N2 on a gold-coated-Ni-NTA glass surface. PS-I is a chlorophyll-containing membrane protein complex that is the primary reducer of ferredoxin and the electron acceptor of plastocyanin. We isolated the complex from the thylakoids of spinach chloroplasts using a chemical detergent. The chlorophyll molecules associated with the PS-I complex provide an intrinsic steady-state emission spectrum between 650 and 800 nm at -196.15 degrees C that reflects the organization of the pigment-protein interactions. In the absence of detergents, a large blue shift of the fluorescence maxima from approximately 735 nm to approximately 685 nm indicates a disruption in light-harvesting subunit organization, thus revealing chlorophyll-protein interactions. The commonly used membrane protein-stabilizing detergents, N-dodecyl-beta-D-maltoside and N-octyl-beta-D-glucoside, only partially stabilized the approximately 735-nm complex with approximately 685-nm spectroscopic shift. However, prior to drying, addition of the peptide detergent acetyl-AAAAAAK at increasing concentration significantly stabilized the PS-I complex. Moreover, in the presence of acetyl-AAAAAAK, the PS-I complex is stable in a dried form at room temperature for at least 3 wk. Another peptide detergent, acetyl-VVVVVVD, also stabilized the complex but to a lesser extent. These observations suggest that the peptide detergents may effectively stabilize membrane proteins in the solid-state. These designed peptide detergents may facilitate the study of diverse types of membrane proteins.

  6. Stable isotope analyses of NO2-, NO3-, and N2O in the hypersaline ponds and soils of the McMurdo Dry Valleys, Antarctica (United States)

    Peters, Brian; Casciotti, Karen L.; Samarkin, Vladimir A.; Madigan, Michael T.; Schutte, Charles A.; Joye, Samantha B.


    Nitrous oxide (N2O) is produced in significant quantities in the soils and lakes of the McMurdo Dry Valleys, Antarctica. Unraveling the mechanisms of N2O production in these soils and ponds is of great interest due to the extreme arid and cold conditions, which are hostile to life. Recent studies have shown production of N2O having unique stable isotopic signatures in certain Dry Valley soils through abiotic reduction of nitrate (NO3-) and nitrite (NO2-) on active surfaces of Fe(II)-containing minerals, a process known as ‘chemodenitrification’. In this study, δ15N and δ18O of N2O, NO2-, and NO3-, as well as the N2O site preference (SP), were measured at three sites to evaluate the role of chemodenitrification in N2O production. The δ15N and δ18O values in NO3- indicated an atmospheric source, while δ15N values in NO2- (-150‰) were indicative of abiotic reactions. Instead of finding unique SP values for N2O at Dry Valley sites, SP values mostly fell within the range associated with microbial N2O production mechansims. The δ15N and δ18O of N2O were also within a range of values expected for various biological N2O production mechanisms. However, efforts to detect biological activity in Don Juan Pond (DJP), a hypersaline pond in the Wright Valley, have been largely unsuccessful. We consider two possible scenarios for N2O production at DJP: (1) abiotic production in the pond, or (2) biological production in nearby freshwater and transport to the pond. Although little is known about the isotopic systematics of abiotic N2O production, these results indicate that if the observed N2O was produced by an abiotic mechanism, its isotopic signature is indistinguishable from that expected from a mixture of several microbial processes and thus, the formation pathway cannot be determined from isotopic composition alone.

  7. Effects of soil heterogeneity on steady state soil water pressure head under a surface line source (United States)

    Zhang, Z. Fred; Parkin, Gary W.; Kachanoski, R. Gary; Smith, James E.


    There are numerous analytical solutions available for flow in unsaturated homogeneous porous media. In this paper, the stream tube model for one-dimensional water movement is extended to two-dimensional (2-D) water movement from a line source as the stream plane model. As well, new solutions are derived to predict the mean and variance of pressure head of water movement under a surface line source in heterogeneous soil using the perturbation method with first-order approximation (PM1) and with second-order approximation (PM2). A variance expression was also developed based on the spectral relationship presented by Yeh et al. [1985a]. The new solutions were tested using the 2-D stream plane model with parameters A = ln(α) and Y = ln(KS) and measurements from field experiments. Results show that the mean of steady state pressure head below the line source is not only a function of the mean parameter values but also a function of the variances of A and Y and the linear cross-correlation coefficient (ρ) between A and Y. The PM2 model can predict the mean pressure head accurately in heterogeneous soils at any level of correlation between A and Y, except when both the soil variability and ρ are high. The pressure head variance estimation based on the PM1 model predicts the measured variance well only when both the soil variability and ρ are low. The field experimental results show that both the PM1 and the spectral models give reasonable predictions of the pressure head variance. Both the measured and predicted values of the variance of pressure head using the two models increase with the depth of soil. Both models show that the variance of pressure head decreases as the source strength increases, but on average, the pressure head variance was underestimated by both models.

  8. Optimization of the bioactive compounds content in raspberry during freeze-drying using response surface method

    Directory of Open Access Journals (Sweden)

    Tumbas-Šaponjac Vesna T.


    Full Text Available The production of high-quality freeze-dried raspberry was studied by response surface method. Two independent variables, temperature (X1 and time (X2 were determined as the most important factors affecting the final product quality estimated by the responses: total phenol (Y1, total anthocyanin (Y2, vitamin C (Y3 and total bioactive compounds (Y4 content. A two-factor central composite design was used for freeze-drying experiments. The second order polynomial models obtained were found to be significant (p<0.05 for all responses. The statistical analysis of experimental data indicated that only quadratic time variable (X22 had significant (p<0.05 effect on all responses. The optimal conditions for all responses combined were found to be: -31 ºC and 35 h. The experimental values of all responses obtained under optimal conditions were in good agreement with predicted values which enables the use of the proposed mathematical models for optimization of investigated process. [Projekat Ministarstav nauke Republike Srbije, br. TR31044

  9. Biomassa microbiana em amostras de solos secadas ao ar e reumedecidas Microbial biomass in air dried and rewetted soil samples

    Directory of Open Access Journals (Sweden)

    Antônio Samarão Gonçalves


    Full Text Available O objetivo do trabalho foi avaliar a viabilidade do condicionamento de amostras como terra fina secada ao ar (TFSA por curto período, para a determinação do carbono da biomassa microbiana (BMS-C, pelo método da fumigaçãoextração, e verificar a respiração microbiana basal (RB do solo. O condicionamento como TFSA, procedendo-se à fumigação para a análise da BMS-C imediatamente ou 24 horas após o reumedecimento, proporcionou valores de BMS-C para os solos Podzólicos, Latossolo Vermelho-Amarelo álico e Orgânico, semelhantes aos valores dos seus controles. Os solos Glei Pouco Húmico e Vertissolo apresentaram valores de BMS-C similares aos do controle a partir de 24 horas de incubação; o solo Planossolo arenoso apresentou valores similares aos do controle com 72 horas, e a Rendizina, com 168 horas de incubação. Na maioria dos solos, a RB determinada na TFSA apresentou valores maiores do que os do tratamento-controle, quando avaliada imediatamente ou 24 horas após o reumedecimento a 60% da capacidade máxima de retenção de água, seguida de queda e manutenção em níveis semelhantes ao do controle nos períodos subseqüentes. O précondicionamento, de curta duração, como TFSA, é promissor para a determinação da BMS-C, quando níveis e períodos adequados de reumedecimento são adotados.The objective of this work was to evaluate the utilization of short term air dried soil samples in a determination of soil microbial biomass (SMB-C, by a fumigationextraction method, and soil microbial basal respiration (BR. Zero time or 24 hours rewetting incubation period before fumigation procedure gave values of SMB-C similar to those of the control for the Podzolic soils, Allic RedYellow Latosol and Organic soil. Low Humic Gley and Vertisol soils gave values of SMB-C similar to those of the control for periods of incubation equal or higher than 24 hours. Planosol (sandy soil and Rendzina soils gave values of SMB-C similar to the

  10. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. (United States)

    Ball, P N; MacKenzie, M D; DeLuca, T H; Holben, W E


    All forest fire events generate some quantity of charcoal, which may persist in soils for hundreds to thousands of years. However, few studies have effectively evaluated the potential for charcoal to influence specific microbial communities or processes. To our knowledge, no studies have specifically addressed the effect of charcoal on ammonia-oxidizing bacteria (AOB) in forest soils. Controlled experiments have shown that charcoal amendment of fire-excluded temperate and boreal coniferous forest soil increases net nitrification, suggesting that charcoal plays a major role in maintaining nitrification for extended periods postfire. In this study, we examined the influence of fire history on gross nitrification, nitrification potential, and the nature and abundance of AOB. Soil cores were collected from sites in the Selway-Bitterroot wilderness area in northern Idaho that had been exposed twice (in 1910, 1934) or three times (1910, 1934, and 1992) in the last 94 yr, allowing us to contrast soils recently exposed to fire to those that experienced no recent fire (control). Charcoal content was determined in the O horizon by hand-separation and in the mineral soil by a chemical digestion procedure. Gross and net nitrification, and potential rates of nitrification were measured in mineral soil. Analysis of the AOB community was conducted using primer sets specific for the ammonia mono-oxygenase gene (amoA) or the 16S rRNA gene of AOB. Denaturing gradient gel electrophoresis was used to analyze the AOB community structure, while AOB abundance was determined by quantitative polymerase chain reaction. Recent (12-yr-old) wildfire resulted in greater charcoal contents and nitrification rates compared with sites without fire for 75 yr, and the more recent fire appeared to have directly influenced AOB abundance and community structure. We predicted and observed greater abundance of AOB in soils recently exposed to fire compared with control soils. Interestingly, sequence data

  11. [Optimization of spraying dry technology of Biqiu ranules ethanol extract by Box-Behnken response surface method]. (United States)

    Zhang, Yan-jun; Liu, Li-li; Hu, Jun-hua; Wu, Yun; Chao, En-xiang; Xiao, Wei


    With inlet temperature, specific gravity, feeding speed as independent variables, the comprehensive evaluating indexes of content of schisandrin and arctiin as dependent variable, the experimental data were fitted to a second order polynomial equation. Based on establishing the mathematical relationship between the comprehensive evaluating indexes and respective variables, Box-Benhnken central composite test and response surface analysis method was employed to optimize the spray drying technology of Biqiu granules ethanol extract. The optimal drying parameter was as follows: the inlet temperature was 175 degrees C, the specific gravity was 1.10, feeding speed was 32 r x min(-1). Under these conditions, the comprehensive evaluating indexes of spraying dry processes was 92.68, which was close to the model prediction. The spraying dry technology of Biqiu granules ethanol extract optimized by response surface methodology was accurate and feasible, which provided theoretical experiment basis for the industrialization production.

  12. Uranium partition coefficients (Kd) in forest surface soil reveal long equilibrium times and vary by site and soil size fraction. (United States)

    Whicker, Jeffrey J; Pinder, John E; Ibrahim, Shawki A; Stone, James M; Breshears, David D; Baker, Kristine N


    The environmental mobility of newly deposited radionuclides in surface soil is driven by complex biogeochemical relationships, which have significant impacts on transport pathways. The partition coefficient (Kd) is useful for characterizing the soil-solution exchange kinetics and is an important factor for predicting relative amounts of a radionuclide transported to groundwater compared to that remaining on soil surfaces and thus available for transport through erosion processes. Measurements of Kd for 238U are particularly useful because of the extensive use of 238U in military applications and associated testing, such as done at Los Alamos National Laboratory (LANL). Site-specific measurements of Kd for 238U are needed because Kd is highly dependent on local soil conditions and also on the fine soil fraction because 238U concentrates onto smaller soil particles, such as clays and soil organic material, which are most susceptible to wind erosion and contribute to inhalation exposure in off-site populations. We measured Kd for uranium in soils from two neighboring semiarid forest sites at LANL using a U.S. Environmental Protection Agency (EPA)-based protocol for both whole soil and the fine soil fraction (diametersKd values, which are those specified in the EPA protocol, ranged from 276-508 mL g-1 for whole soil and from 615-2249 mL g-1 for the fine soil fraction. Unexpectedly, the 30-d Kd values, measured to test for soil-solution exchange equilibrium, were more than two times the 7-d values. Rates of adsorption of 238U to soil from solution were derived using a 2-component (FAST and SLOW) exponential model. We found significant differences in Kd values among LANL sampling sites, between whole and fine soils, and between 7-d and 30-d Kd measurements. The significant variation in soil-solution exchange kinetics among the soils and soil sizes promotes the use of site-specific data for estimates of environmental transport rates and suggests possible differences in

  13. The impact of soil moisture on the spin up of 1-D Noah land surface model at a site in monsoonal region (United States)

    Bhattacharya, A.; Mandal, M.


    Model spin-up is the process through which the model is adequately equilibrated to ensure balance between the mass fields and velocity fields. In this study, an offline 1-D Noah land surface model (LSM) has been used to investigate the impact of soil moisture on the model spin up at Kharagpur, India which is a site in monsoonal region. The model is integrated recursively for 3-years to assess its spin-up behavior. Several numerical experiments are performed to investigate the impact of initial soil moisture and subsequent dry or wet condition on model spin-up. These include simulations with different initial soil moisture content (observed soil moisture; dry soil; moderately wet soil; saturated soil), simulations initialized before different rain conditions (no rain; infrequent rain; continuous rain) and simulations initialized in different seasons (Winter, Spring, Summer/Pre-Monsoon, Monsoon and Autumn). It is noted that the model has significantly longer spin-up when initialized with very low initial soil moisture content than with higher soil moisture content. It is also seen that in general, simulations initialized just before a continuous rainfall event have the least spin-up time. In a region affected by the monsoon, such as Kharagpur, this observation is reinforced by the results from the simulations initialized in different seasons. It is seen that for monsoonal region, the model spin-up time is least for simulations initialized during Summer/Pre-monsoon. Model initialized during the Monsoon has a longer spin-up than that initialized in any other season. It appears that the model has shorter spin-up if it reaches the equilibrium state predominantly via drying process. It is also observed that the spin-up of offline 1-D Noah LSM may be as low as two months under quasi-equilibrium condition if the initial soil moisture content and time of start of simulations are chosen carefully.

  14. Dry sliding wear investigation of Al6082/Gr metal matrix composites by response surface methodology

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma


    Full Text Available The effect of graphite particles on the dry sliding wear behaviour of Al6082 alloy composites produced by conventional stir casting method has been investigated. The percentage of reinforcement was varied from 0% to 12% in a step of 3. The result showed that with the addition of graphite particles micro- and macro-hardness reduced by 11.11% and 10.44%, respectively. The tribological behaviour of composites was investigated by pin on disc apparatus. Percentage reinforcement, load, sliding speed and sliding distance were taken as the process variable. Response surface methodology has been used to plan and analyze the experiment. Results showed that sliding distance is the most influential factor and load is the factor which affects the wear least.

  15. Theory of wetting-induced fluid entrainment by advancing contact lines on dry surfaces. (United States)

    Ledesma-Aguilar, R; Hernández-Machado, A; Pagonabarraga, I


    We report on the onset of fluid entrainment when a contact line is forced to advance over a dry solid of arbitrary wettability. We show that entrainment occurs at a critical advancing speed beyond which the balance between capillary, viscous, and contact-line forces sustaining the shape of the interface is no longer satisfied. Wetting couples to the hydrodynamics by setting both the morphology of the interface at small scales and the viscous friction of the front. We find that the critical deformation that the interface can sustain is controlled by the friction at the contact line and the viscosity contrast between the displacing and displaced fluids, leading to a rich variety of wetting-entrainment regimes. We discuss the potential use of our theory to measure contact-line forces using atomic force microscopy and to study entrainment under microfluidic conditions exploiting colloid-polymer fluids of ultralow surface tension.

  16. Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus. (United States)

    Tzortzis, Michalis; Tsertos, Haralabos


    A comprehensive study was conducted to determine thorium, uranium and potassium elemental concentrations in surface soils throughout the accessible area of Cyprus using high-resolution gamma-ray spectrometry. A total of 115 soil samples was collected from all over the bedrock surface of the island based on the different lithological units of the study area. The soil samples were air-dried, sieved through a fine mesh, sealed in 1000-ml plastic Marinelli beakers, and measured in the laboratory in terms of their gamma radioactivity for a counting time of 18 h each. From the measured gamma-ray spectra, elemental concentrations were determined for thorium (range from 2.5 x 10(-3) to 9.8 microg g(-1)), uranium (from 8.1 x 10(-4) to 3.2 microg g(-1)) and potassium (from 1.3 x 10(-4) to 1.9%). The arithmetic mean values (A.M. +/- S.D.) calculated from all samples are: (1.2+/-1.7 microg g(-1)), (0.6+/-0.7) microg g(-1), and (0.4+/-0.3%), for thorium, uranium and potassium, respectively, which are by a factor of three-six lower than the world average values of 7.4 microg g(-1) (Th), 2.8 microg g(-1) (U) and 1.3% (K) derived from all data available worldwide. The best-fitting relation between the concentrations of Th and K versus U and also of K versus Th, is essentially of linear type with a correlation coefficient of 0.93, 0.84 and 0.90, respectively. The Th/U, K/U and K/Th ratios (slopes) extracted are equal to 2.0, 2.8 x 10(3) and 1.4 x 10(3), respectively.


    Directory of Open Access Journals (Sweden)

    Josef Kameník


    Full Text Available Three batches of dry fermented sausages were prepared. A proportion of the products from each batch were surface-treated with a mould starter culture, with the remaining products being smoked without mould. Physico-chemical analysis, including determination of the content of lactic acid and biogenic amines, was performed on day 35 during the ripening and on the final products (day 65. The sausages with surface mould showed a higher pH value, a higher water activity value and a lower content of D/L-lactic acid. The differences were statistically significant (P ≤ 0.001. A higher content of malondialdehyde (TBARS was found in products with mould, though the differences determined were not statistically significant. From day 35, statistically significant differences were found in the content of biogenic amines (BA. The highest content was recorded on day 65 in sausages with surface mould, with a content seven times that of the content in the mix immediately after being filled in the casing being recorded. In no case did the sum level of BA exceed 100 mg kg-1.

  18. Laser-induced dry-fabrication of bibenzyl molecular layers on the silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong Ping, E-mail: [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Chen, Zhi Qian [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Dong, Dong [School of Materials Science and Engineering, Northwest Polytechnical University, Xi’an 710072 (China); Xu, Guo Qin, E-mail: [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore)


    Graphical abstract: Schematic illustration of photoinduced polymerization of 4-bromostyrene molecules on the Si(1 1 1)-(7 × 7) surface. - Highlights: • Laser-induced fabrication of molecular layer. • XPS and HREELS experimental evidence for the reaction. • DFT explanation of photochemical reaction. - Abstract: The covalently attached organic monolayer has great effects on the structures of the organic semiconductor thin films and their electronic transport properties in the fabrication of molecular electronic devices. A laser-induced dry-fabrication method has been developed to form bibenzyl-like molecular layers by photoinduced reaction of 4-bromostyrene molecules on silicon surface in the vacuum environment. The radical site produced via the C–Br bond cleavage concurrently reacts with the C=C vinyl group of the physisorbed 4-bromostyrene molecule above to form the –CH{sub 2}–CHBr– covalent linkage. X-ray photoelectron spectroscopy (XPS) and high-resolution electron energy loss spectroscopy (HREELS) experimental results and density functional theory (DFT) calculations confirm the formation of covalently bonded bibenzyl-like (Phi–CH{sub 2}–CHBr–Phi) molecular layers on the silicon surface.

  19. The first contact of a droplet impacting a dry solid surface (United States)

    Thoroddsen, S. T.; Li, E. Q.; Vakarelski, I. U.


    The first contact of a drop hitting a dry solid surface, does not occur at a point but along a ring, owing to viscous lubrication pressure in the intervening air layer. This always leads to the entrapment of a small bubble under the center of the drop. The nature of the actual first contact is affected by the roughness of the solid. We use ultra-high-speed imaging, with 200 ns time resolution, to observe the structure of this first contact between the liquid and a smooth solid surface. For a water drop impacting onto regular micro-scope glass slide we observe a ring of micro-bubbles as observed by Thoroddsen et al. which conveniently marks the original diameter of the air-disc. This ring of bubbles arises owing to multiple initial contacts just before the formation of the fully wetted outer section. These contacts are spaced by a few microns and quickly grow in size until they meet each other, entrapping the bubbles. We thereby conclude that the localized contacts are due to nanometric roughness of the glass surface and the presence of the micro-bubbles can therefore distinguish between glass with 10 nm roughness from perfectly smooth glass.

  20. Elastomeric angled microflaps with reversible adhesion for transfer-printing semiconductor membranes onto dry surfaces. (United States)

    Yoo, Byungsuk; Cho, Sungbum; Seo, Seungwan; Lee, Jongho


    Recent research for unconventional types of electronics has revealed that it is necessary to transfer-print high-performance microelectronic devices onto diverse surfaces, including flexible or stretchable surfaces, to relieve mechanical constraints associated with conventional rigid electronics. Picking up and placing ultrathin microdevices without damage are critical procedures for the successful manufacture of various types of unconventional electronics. This paper introduces elastomeric angled microflaps that have reversible adhesion; i.e., they generate higher adhesion for picking up and low adhesion for printing because of their structural shapes and viscoelastic material properties. The microstructured stamp, fabricated in relatively simple ways, enables simultaneous transfer-printing of multiple silicon membranes that have irregular shapes in sizes ranging from micrometer to millimeter scales. Mechanical characterizations by experiment reveal optimal parameters for picking up and placing ultrathin membranes on a programmable custom-built microstage. Further refinement of the structures and materials should be useful for many applications requiring the microassembly of multiple semiconductor membranes in diverse shapes and sizes on dry surfaces without the aid of liquid adhesives.

  1. Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces (United States)

    Lee, Taehun; Liu, Lin


    A lattice Boltzmann equation (LBE) method for incompressible binary fluids is proposed to model the contact line dynamics on partially wetting surfaces. Intermolecular interactions between a wall and fluids are represented by the inclusion of the cubic wall energy in the expression of the total free energy. The proposed boundary conditions eliminate the parasitic currents in the vicinity of the contact line. The LBE method is applied to micron-scale drop impact on dry surfaces, which is commonly encountered in drop-on-demand inkjet applications. For comparison with the existing experimental results [H. Dong, W.W. Carr, D.G. Bucknall, J.F. Morris, Temporally-resolved inkjet drop impaction on surfaces, AIChE J. 53 (2007) 2606-2617], computations are performed in the range of equilibrium contact angles from 31° to 107° for a fixed density ratio of 842, viscosity ratio of 51, Ohnesorge number ( Oh) of 0.015, and two Weber numbers ( We) of 13 and 103.

  2. Soil seed bank composition along a gradient from dry alvar grassland to Juniperus shrubland

    NARCIS (Netherlands)

    Bakker, E.S; Rosén, E; Verweij, G.L.; Bekker, R.M.; Bakker, J.P.

    Dry alvar grasslands on limestone on the Baltic island of Oland, SE Sweden, are very species-rich as long as the traditional agricultural exploitation of grazing and fire wood collection continues. After abandonment, encroachment of Juniperus communis starts and a closed woodland can develop within

  3. Variation in soil water uptake and its effect on plant water status in Juglans regia L. during dry and wet seasons. (United States)

    Sun, Shou-Jia; Meng, Ping; Zhang, Jin-Song; Wan, Xianchong


    Temporal and spatial variations in the water status of walnut trees (Juglans regia L.) and the soil in which they were growing were traced by analyzing the differences in hydrogen isotopes during spring and summer in a 7-year-old walnut stand. Walnut root dynamics were measured in both dry and wet seasons. Walnut roots were mainly distributed in the upper soil (0-30 cm depth), with around 60% of the total root mass in upper soil layers and 40% in deep soil layers (30-80 cm depth). The upper soil layers contributed 68% of the total tree water requirement in the wet season, but only 47% in the dry season. In the wet season, total roots, living roots and new roots were all significantly more abundant than in the dry season. There were significant differences in pre-dawn branch percentage loss of hydraulic conductance (PLC), pre-dawn leaf water potential and transpiration between the dry and wet seasons. Water content in the upper soil layers remarkably influenced xylem water stable-hydrogen isotope (δD) values. Furthermore, there were linear relationships between the xylem water δD value and pre-dawn branch PLC, pre-dawn leaf water potential, transpiration rate and photosynthetic rate. In summary, J. regia was compelled to take a larger amount of water from the deep soil layers in the dry season, but this shift could not prevent water stress in the plant. The xylem water δD values could be used as an indicator to investigate the water stress of plants, besides probing profiles of soil water use.

  4. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution (United States)

    Ding, Wenfeng; Huang, Chihua


    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address this issue, a rainfall-simulation experiment was conducted with treatments that included two different initial soil surface roughnesses and two rainfall intensities. Soil surface roughness was determined by using photogrammetric method. For each simulated event, runoff and sediment samples were collected at different experimental times. The effective (undispersed) PSD of each sediment sample and the ultimate (after dispersion) PSD were used to investigate the detachment and transport mechanisms involved in sediment movement. The results show that soil surface roughness significantly delayed runoff initiation, but had no significant effect on the steady runoff rate. However, a significant difference in the soil loss rate was observed between the smooth and rough soil surfaces. Sediments from smooth soil surfaces were more depleted in clay-size particles, but more enriched in sand-size particles than those from rough soil surfaces, suggesting that erosion was less selective on smooth than on rough soil surfaces. The ratio of different sizes of transported sediment to the soil matrix indicates that most of the clay was eroded in the form of aggregates, silt-size particles were transported mainly as primary particles, and sand-size particles were predominantly aggregates of finer particles. Soil surface roughness has a crucial effect on the sediment size distribution and erosion processes. Significant differences of the enrichment ratios for the effective PSD and the ultimate PSD were observed under the two soil surface roughness treatments. These findings demonstrate that we should consider each particle size separately rather than use only the total sediment discharge in

  5. Soil surface morphology evolution under spatiallynon-uniform rainfall (United States)

    Cheraghi, M.; Rinaldo, A.; Sander, G. C.; Barry, D. A.


    We evaluated the applicability of a large-scale river network evolution modelused to simulate morphological changes of a laboratory-scale landscape onwhich there were no visible rills. Previously, such models were used onlyat the landscape scale, or in laboratory experiments where rills form in thesoils surface. The flume-scale experiment (1-m × 2-m surface area) was de-signed to allow model calibration. Low-cohesive fine sand was placed in theflume while the slope and relief height were 5% and 25 cm, respectively.Non-uniform rainfall with an average intensity of 85 mmh -1 and a stan-dard deviation of 26% was applied to the sediment surface for 16 h. Highresolution Digital Elevation Models were captured at intervals during theexperiment. Estimates of the overland flow drainage network were derivedand, using these, the river network evolution model was numerically solvedand calibrated. A noticeable feature of the experiment was a steep transitionzone in soil elevation that migrated upstream during the experiment. Physi-cally, this zone indicates where the shear stress is sufficient to cause sediment1erosion. The model was calibrated during the first 4 h of experiment. Af-terwards, it predicted the subsequent 12 h of measured surface morphologychanges. Therefore, the applicability of the landscape evolution model wasextended for non-uniform rainfall and in absence of visible rills.Keywords:Numerical simulation, Particle Swarm Optimization, Sediment transport,River network evolution model.

  6. Impacts of surface heterogeneity on dry planetary boundary layers in an urban-rural setting (United States)

    Zhu, Xiaoliang; Ni, Guangheng; Cong, Zhentao; Sun, Ting; Li, Dan


    Understanding the impacts of land use and land-cover change such as urbanization is essential in many disciplines. This study investigates the impacts of urban-rural contrasts in terms of momentum roughness length (z0) and aerodynamic surface temperature (TSK) on dry planetary boundary layers (PBLs) using large-eddy simulations (LES) with the Weather Research and Forecasting (WRF) model. In addition, the impacts of small-scale heterogeneities within urban areas are also examined. The original WRF-LES is modified in order to use prescribed TSK as surface boundary conditions. Numerical simulations are then conducted to examine turbulence characteristics and mesoscale circulations resulting from large-scale urban-rural contrasts as well as small-scale heterogeneities in urban areas. The results indicate that (1) the urban-rural contrasts in z0 and TSK have significant but different impacts on surface heat fluxes, mesoscale circulations, and the wind and potential temperature profiles. Compared to the case where the whole domain is homogeneous, increases in z0 and/or TSK in urban areas in the center of domain induce stronger sensible heat fluxes, stronger urban circulations, and weaker inversions at the top of the PBL. (2) When the patch size that characterizes the urban heterogeneity scale is comparable to the size of the whole urban area, the simulated results are strongly dependent on both the heterogeneity scale and the specified surface temperature values. As the patch size decreases, the simulated results become more similar to those over a homogeneous urban surface.

  7. The Effect of Shoe Sole Tread Groove Depth on the Gait Parameters during Walking on Dry and Slippery Surface

    Directory of Open Access Journals (Sweden)

    SF Tabatabai Ghomshe


    Full Text Available Background: Prevention of slipping accidents requires provision of adequate friction through the use of suitable combinations of footwear and underfoot surfaces. Shoe sole tread groove is one of the important factors on friction coefficient during walking.Objective: To measure the effect of different shoe sole tread groove depths and different surfaces on the required quotient of friction (Q, heel strike velocity and occurrence time of ground reaction forces (GRF in stance phase during walking on slippery and dry surfaces.Methods: In this semi-experimental study, 22 healthy men were studied under different conditions. The studied independent variables were shoe groove depths (included 1, 2.5 and 5 mm and type of walking surface (dry and slippery. Biomechanical gait analysis was carried out with 396 single steps. Data were collected by motion analysis system and two force platform.Results: The occurrence time of GRF was significantly faster on dry surface than slippery surface (p<0.01. Q was significantly lower on slippery surface and with groove depths of 1 and 2.5 mm. The highest value of Q was observed with the deepest groove depth of 5 mm. Heel strike velocity did not differ significantly in the 6 conditions tested.Conclusion: Tread groove depth is a significant factor affecting the Q at the shoes-surface interface on dry and slippery floors. It seems that deeper groove is more appropriate for maintaining the stability during walking. The walking surface affects the occurrence time of GRF; the force components occur sooner on the dry than slippery surface.

  8. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin


    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  9. Assessment of seasonal soil moisture forecasts over Southern South America with emphasis on dry and wet events (United States)

    Spennemann, Pablo; Rivera, Juan Antonio; Osman, Marisol; Saulo, Celeste; Penalba, Olga


    The importance of forecasting extreme wet and dry conditions from weeks to months in advance relies on the need to prevent considerable socio-economic losses, mainly in regions of large populations and where agriculture is a key value for the economies, like Southern South America (SSA). Therefore, to improve the understanding of the performance and uncertainties of seasonal soil moisture and precipitation forecasts over SSA, this study aims to: 1) perform a general assessment of the Climate Forecast System version-2 (CFSv2) soil moisture and precipitation forecasts; and 2) evaluate the CFSv2 ability to represent an extreme drought event merging observations with forecasted Standardized Precipitation Index (SPI) and the Standardized Soil Moisture Anomalies (SSMA) based on GLDAS-2.0 simulations. Results show that both SPI and SSMA forecast skill are regionally and seasonally dependent. In general a fast degradation of the forecasts skill is observed as the lead time increases with no significant metrics for forecast lead times longer than 2 months. Based on the assessment of the 2008-2009 extreme drought event it is evident that the CFSv2 forecasts have limitations regarding the identification of drought onset, duration, severity and demise, considering both meteorological (SPI) and agricultural (SSMA) drought conditions. These results have some implications upon the use of seasonal forecasts to assist agricultural practices in SSA, given that forecast skill is still too low to be useful for lead times longer than 2 months.

  10. Intra-rainfall soil surface change detection using close-range photogrammetry (United States)

    Bauer, Thomas; James, Michael R.; McShane, Gareth; Quinton, John N.; Strauss, Peter


    During precipitation events, the physical properties of soil surfaces change significantly. Such changes influence a large range of processes, e.g. surface runoff, soil erosion, water infiltration, soil-atmosphere interactions and plant growth. It has been proven that successive precipitation events change soil surfaces, but detailed studies on soil surface change within a single rainfall event do, to the best of our knowledge, not exist, due to a lack of suitable methods. However, recent developments in the use of photogrammetry are becoming a common tool in geoscience and can be utilized in soil surface detection. New concepts, developments in hardware and software allow a quick and user friendly calculation of surface models with close-range imagery and processing based on structure from motion (SfM) approaches. In this study we tested the potential of close range photogrammetry for detecting changes in soil surface topography within an artificial rainfall event. We used a photogrammetric approach to capture multiple images of the soil surface on two different soil types (loamy and sandy soil) under laboratory conditions while they were exposed to a 60 minute duration 47(60) mm hr-1 intensity rainfall event from a gravity driven rainfall simulator. The photographs were processed using Photoscan to produce point clouds which were then interpolated to produce DEM surfaces. Of the 126 surfaces produced during the rainfall event 125 were usable and able to demonstrate changes with a resolution of photogrammetry for surface detection within a precipitation event. The use of close-range photogrammetry opens new possibilities to monitor soil surfaces and could be developed for a range of other applications. Our results have the potential to lead to better understanding of infiltration, runoff, nutrient transport and soil erosion processes within precipitation event.

  11. On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from Synthetic Aperture Radar 1959 (United States)

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unles...

  12. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization

    NARCIS (Netherlands)

    Wang, Peng; Limpens, Juul; Mommer, Liesje; Ruijven, van Jasper; Nauta, Ake L.; Berendse, Frank; Schaepman-Strub, Gabriela; Blok, Daan; Maximov, Trofim C.; Heijmans, Monique M.P.D.


    Climate warming is faster in the Arctic than the global average. Nutrient availability in the tundra soil is expected to increase by climate warming through (i) accelerated nutrient mobilization in the surface soil layers, and (ii) increased thawing depths during the growing season which

  13. Effects of Near Soil Surface Characteristics on the Soil Detachment Process in a Chronological Series of Vegetation Restoration (United States)

    Wang, Bing


    The effects of near soil surface characteristics on the soil detachment process might be different at different stages of vegetation restoration. This study was performed to investigate the effects of the near soil surface factors of plant litter, biological soil crusts (BSCs), dead roots and live roots on the soil detachment process by overland flow at different stages of restoration. Soil samples (1 m long, 0.1 m wide, and 0.05 m high) under four treatment conditions were collected from 1-yr-old and 24-yr-old natural grasslands and subjected to flow scouring under five different shear stresses ranging from 5.3 to 14.6 Pa. The results indicated that the effects of near soil surface characteristics on soil detachment were substantial during the process of vegetation restoration. The total reduction in the soil detachment capacity of the 1-yr-old grassland was 98.1%, and of this total, 7.9%, 30.0% and 60.2% was attributed to the litter, BSCs and plant roots, respectively. In the 24-yr-old grassland, the soil detachment capacity decreased by 99.0%, of which 13.2%, 23.5% and 62.3% was caused by the litter, BSCs and plant roots, respectively. Combined with the previously published data of a 7-yr-old grassland, the influence of plant litter on soil detachment was demonstrated to increase with restoration time, but soil detachment was also affected by the litter type and composition. The role of BSCs was greater than that of plant litter in reducing soil detachment during the early stages of vegetation recovery. However, its contribution weakened with time since restoration. The influence of plant roots accounted for at least half or up to two-thirds of the total near soil surface factors, of which more than 72.6% was attributed to the physical binding effects of the roots. The chemical bonding effect of the roots increased with time since restoration and was greater than the effect of the litter on soil detachment in the late stages of vegetation restoration. The

  14. Microbial community dynamics and methane, carbon dioxide, oxygen, and nitrous oxide concentrations in upland forest and riparian soils across a seasonal gradient of fully saturated soils to completely dried soils (United States)

    Jones, R. T.; McGlynn, B. L.; McDermott, T.; Dore, J. E.


    Gas concentrations (CH4, CO2, N2O, and O2), soil properties (soil water content and pH), and microbial community composition were measured from soils at 32 sites across the Stringer Creek Watershed in the Tenderfoot Creek Experimental Forest 7 times between June 3, 2013 and September 20, 2013. Soils were fully saturated during the initial sampling period and dried down over the course of the summer. Soils and gas were sampled from 5cm and 20cm at each site and also at 50cm at eight riparian sites. In total, 496 individual soil samples were collected. Soil moisture ranged from 3.7% to fully saturated; soil pH ranged from 3.60 to 6.68. Methane concentrations in soils ranged from 0.426 ppm to 218 ppm; Carbon dioxide concentrations ranged from 550 ppm to 42,990 ppm; Nitrous oxide concentrations ranged from 0.220 ppm to 2.111 ppm; Oxygen concentrations ranged from 10.2% to 21.5%. Soil microbial communities were characterized by DNA sequences covering the V4 region of the 16S rRNA gene. DNA sequences were generated (~30,000,000 sequences) from the 496 soil samples using the Illumina MiSeq platform. Operational Taxonomic Units were generated using USEARCH, and representative sequences were taxonomically classified according the Ribosomal Database Project's taxonomy scheme. Analysis of similarity revealed that microbial communities found within a landscape type (high upland forest, low upland forest, riparian) were more similar than among landscape types (R = 0.600; p<0.001). Similarly, communities from unique site x depths were similar across the 7 collection periods (R = 0.646; p<0.001) despite changes in soil moisture. Euclidean distances of soil properties and gas concentrations were compared to Bray-Curtis community dissimilarity matrices using Mantel tests to determine how community structure co-varies with the soil environment and gas concentrations. All variables measured significantly co-varied with microbial community membership (pH: R = 0.712, p < 0.001; CO2: R

  15. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil. (United States)

    Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian


    Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO2) and nitrous oxide (N2O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO2 and N2O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N2O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

  16. Microbial Community Responses to Increased Water and Organic Matter in the Arid Soils of the McMurdo Dry Valleys, Antarctica

    Directory of Open Access Journals (Sweden)

    Heather N Buelow


    Full Text Available The soils of the McMurdo Dry Valleys, Antarctica are an extreme polar desert, inhabited exclusively by microscopic taxa. This region is on the threshold of anticipated climate change, with glacial melt, permafrost thaw, and the melting of massive buried ice increasing liquid water availability and mobilizing soil nutrients. Experimental water and organic matter (OM amendments were applied to investigate how these climate change effects may impact the soil communities. To identify active taxa and their functions, total community RNA transcripts were sequenced and annotated, and amended soils were compared with unamended control soils using differential abundance and expression analyses. Overall, taxonomic diversity declined with amendments of water and organic matter. The domain Bacteria increased with both amendments while Eukaryota declined from 38% of all taxa in control soils to 8% and 11% in water and OM amended soils, respectively. Among bacterial phyla, Actinobacteria (59% dominated water-amended soils and Firmicutes (45% dominated OM amended soils. Three bacterial phyla (Actinobacteria, Proteobacteria, and Firmicutes were primarily responsible for the observed positive functional responses, while eukaryotic taxa experienced the majority (27 of 34 of significant transcript losses. These results indicated that as climate changes in this region, a replacement of endemic taxa adapted to dry, oligotrophic conditions by gener