WorldWideScience

Sample records for surface slope measurements

  1. Modified coherent gradient sensing method for slope measurement of reflective surfaces

    Science.gov (United States)

    Ma, Kang; Xie, Huimin

    2015-05-01

    A phase shifting method was developed for Coherent Gradient Sensing (CGS) using a three-step phase shifting method. Three different inteferograms were obtained by changing the distance between two gratings. The phase filed can be calculated accurately from the three inteferograms. The interference fringes (phase field) in reflection mode represent the gradient contours of the out-of-plane displacement of a surface. The curvatures and shape of the surface both can be calculated by numerical methods using the fringe patterns. The measurement principle and experimental setup were introduced in detail. As an application, a standard specimen with a curvature radius of 5 m was measured. From the analysis of the experimental results, we find that the relative error of the curvature using this method was about 0.78%. The method has good potentials for measuring the slopes, curvatures and shapes of thin film/substrate systems.

  2. Observations of Bathymetry-Induced Ocean Roughness Modulation in In-situ Surface Slope Measurements and Coincident Airborne SAR Images

    NARCIS (Netherlands)

    Gommenginger, C.P.; Robinson, I.S.; Willoughby, J.; Greidanus, H.S.F.; Taylor, V.

    1999-01-01

    Empirical results from a field experiment in the southern North Sea have demonstrated the possibility to detect bathymetry-induced sea surface roughness modulation in the coastal zone using high frequency in-situ slope measurements provided by the Towed Laser Slopemeter. A strong correlation between

  3. Photogrammetrical deformation measurements at structures located in the vicinity of surface mine slopes, and forecasting of expected deformation values

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, O. (Ingenieurschule fuer Geodaesie und Kartographie, Dresden (German Democratic Republic))

    1990-02-01

    Discusses measurement of equipment stability in brown coal surface mines. A long conveyor belt system installed parallel to the spoil bank slope and a spoil belt conveyor bridge were surveyed for movements of position. Photogrammetrical measuring instrument was the UMK 10/1318 unit of Carl Zeiss Jena; for data analysis the Stecometer G and the TEBIT program systems were used. Measurement results are provided. Forecasting possible future movement of belt conveyor supports was further carried out using a mathematical collocation model and the empirical Moeser auto-covariance function of the bell shaped cosinus type. Results of mathematical forecasting are compared to repeated measurements carried out after 6 months, proving suitability of the mathematical method. 3 refs.

  4. Mathematical Model of the Identical Slope Surface

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The formation of the identical slope surface and the method of construction are discussed. Onthe basement of building the parameter equation of variable-radius circle family envelope, the frequentlyused parameter equation of the identical slope surface of the top of taper moving along column helix,horizental arc and line is built. The equation can be used to construct the identical slope surface's con-tours, gradient lines and three dimensional figures correctly.

  5. Airborne Lidar Measurements of Below-canopy Surface Water Height , Slope and Optical Properties in the Florida Everglades Shark River Slough

    Science.gov (United States)

    Dabney, P.; Harding, D. J.; Valett, S. R.; Yu, A. W.; Feliciano, E. A.; Neuenschwander, A. L.; Pitts, K.

    2015-12-01

    Determining the presence, persistence, optical properties and variation in height and slope of surface water beneath the dense canopies of flooded forests and mangrove stands could contribute to studies of the acquisition of water and nutrients by plant roots. NASA's airborne Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) provides unique capabilities that can identify below-canopy surface water, measure its height with respect to vegetation constituents with sub-decimeter precision and quantify its slope. It also provides information on canopy structure and closure, the water column extinction profile as a proxy for turbidity and water depth, with the penetration depth constrained by turbidity. It achieves this by using four laser beams operating at two wavelengths with measurements of water surface elevation at 1064 nm (near infrared) and water column properties at 532 nm (green), analogous to a bathymetric lidar. Importantly the instrument adds a polarimetry function, like some atmospheric lidars, which measures the amount of depolarization determined by the degree to which the plane-parallel transmitted laser pulse energy is converted to the perpendicular state. The degree of depolarization is sensitive to the number of photon multiple-scattering events. For the water surface, which is specular consisting only of single-scattering events, the near-infrared received signal retains the parallel polarization state. Absence of the perpendicular signal uniquely identifies surface water. Penetration of green light and the depth profile of photons converted to the perpendicular state compared to those in the parallel state is a measure of water-column multiple scattering, providing a relative measure of turbidity. The amount of photons reflected from the canopy versus the water provides a wavelength-dependent measure of canopy closure. By rapidly firing laser pulses (11,400 pulses per second) with a narrow width (1 nsec) and detecting single photons

  6. Absolute surface reconstruction by slope metrology and photogrammetry

    Science.gov (United States)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  7. Slope equalities for genus 5 surface fibrations

    CERN Document Server

    Tenni, Elisa

    2010-01-01

    K. Konno proved a slope equality for fibred surfaces with fibres of odd genus and general fibre of maximal gonality. More precisely he found a relation between the invariants of the fibration and certain weights of special fibres (called the Horikawa numbers). We give an alternative and more geometric proof in the case of a genus 5 fibration, under generality assumptions. In our setting we are able to prove that the fibre with positive Horikawa numbers are precisely the trigonal ones, we compute their weights explicitly and thus we exhibit explicit examples of regular surfaces with assigned invariants and Horikawa numbers.

  8. Linear chirped slope profile for spatial calibration in slope measuring deflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de; Zeschke, T. [Helmholtz Zentrum Berlin für Materialien und Energie, Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Arnold, T.; Paetzelt, H. [Leibnitz Institut für Oberflächen Modifizierung Leipzig e.V., IOM, Permoserstr. 15, 04318 Leipzig (Germany); Yashchuk, V. V. [Lawerence Berkeley National Laboratory, Advanced Light Source, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2016-05-15

    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface with a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.

  9. Improved wavefront reconstruction algorithm from slope measurements

    Science.gov (United States)

    Phuc, Phan Huy; Manh, Nguyen The; Rhee, Hyug-Gyo; Ghim, Young-Sik; Yang, Ho-Soon; Lee, Yun-Woo

    2017-03-01

    In this paper, we propose a wavefront reconstruction algorithm from slope measurements based on a zonal method. In this algorithm, the slope measurement sampling geometry used is the Southwell geometry, in which the phase values and the slope data are measured at the same nodes. The proposed algorithm estimates the phase value at a node point using the slope measurements of eight points around the node, as doing so is believed to result in better accuracy with regard to the wavefront. For optimization of the processing time, a successive over-relaxation method is applied to iteration loops. We use a trial-and-error method to determine the best relaxation factor for each type of wavefront in order to optimize the iteration time and, thus, the processing time of the algorithm. Specifically, for a circularly symmetric wavefront, the convergence rate of the algorithm can be improved by using the result of a Fourier Transform as an initial value for the iteration. Various simulations are presented to demonstrate the improvements realized when using the proposed algorithm. Several experimental measurements of deflectometry are also processed by using the proposed algorithm.

  10. Slope of the Slope Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope of slope was calculated from the bathymetry surface for each raster cell by applying the ArcGIS Spatial Analyst 'Slope' Tool to a previously created slope...

  11. Measuring acoustic emissions in an avalanche slope

    Science.gov (United States)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  12. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V; Barber, Samuel; Domning, Edward E.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Smith, Brian V; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf; Just, Andreas

    2009-09-11

    A new low budget slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought to operation at the ALS Optical Metrology Laboratory. The design, instrumental control and data acquisition system, initial alignment and calibration procedures, as well as the developed experimental precautions and procedures are described in detail. The capability of the DLTP to achieve sub-microradian surface slope metrology is verified via cross-comparison measurements with other high performance slope measuring instruments when measuring the same high quality test optics. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.

  13. RMS slope of exponentially correlated surface roughness for radar applications

    DEFF Research Database (Denmark)

    Dierking, Wolfgang

    2000-01-01

    In radar signature analysis, the root mean square (RMS) surface slope is utilized to assess the relative contribution of multiple scattering effects. For an exponentially correlated surface, an effective RMS slope can be determined by truncating the high frequency tail of the roughness spectrum...

  14. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-31

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  15. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-09-18

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  16. Evaluation of Surface Slope Irregularity in Linear Parabolic Solar Collectors

    Directory of Open Access Journals (Sweden)

    F. Francini

    2012-01-01

    Full Text Available The paper describes a methodology, very simple in its application, for measuring surface irregularities of linear parabolic collectors. This technique was principally developed to be applied in cases where it is difficult to use cumbersome instruments and to facilitate logistic management. The instruments to be employed are a digital camera and a grating. If the reflector surface is defective, the image of the grating, reflected on the solar collector, appears distorted. Analyzing the reflected image, we can obtain the local slope of the defective surface. These profilometric tests are useful to identify and monitor the mirror portions under mechanical stress and to estimate the losses caused by the light rays deflected outside the absorber.

  17. Water content distribution in the surface layer of Maoping slope

    Institute of Scientific and Technical Information of China (English)

    LIU Yuewu; CHEN Huixin; LIU Qingquan; GONG Xin; ZHANG Dawei; LI Lianxiang

    2005-01-01

    The water content distribution in the surface layer of Maoping slope has been studied by testing the water content at 31 control sites. The water content profiles at these sites have also been determined. The water content distributions at different segments have been obtained by using the Kriging method of geostatistics. By comparing the water content distributions with the landform of the slope, it was shown that the water content is closely dependent on the landform of the slope. The water content distribution in the surface layer provided a fundamental basis for landslide predication and treatment.

  18. Antarctic Ice Sheet Slope and Aspect Based on Icesat's Repeat Orbit Measurement

    Science.gov (United States)

    Yuan, L.; Li, F.; Zhang, S.; Xie, S.; Xiao, F.; Zhu, T.; Zhang, Y.

    2017-09-01

    Accurate information of ice sheet surface slope is essential for estimating elevation change by satellite altimetry measurement. A study is carried out to recover surface slope of Antarctic ice sheet from Ice, Cloud and land Elevation Satellite (ICESat) elevation measurements based on repeat orbits. ICESat provides repeat ground tracks within 200 meters in cross-track direction and 170 meters in along-track direction for most areas of Antarctic ice sheet. Both cross-track and along-track surface slopes could be obtained by adjacent repeat ground tracks. Combining those measurements yields a surface slope model with resolution of approximately 200 meters. An algorithm considering elevation change is developed to estimate the surface slope of Antarctic ice sheet. Three Antarctic Digital Elevation Models (DEMs) were used to calculate surface slopes. The surface slopes from DEMs are compared with estimates by using in situ GPS data in Dome A, the summit of Antarctic ice sheet. Our results reveal an average surface slope difference of 0.02 degree in Dome A. High resolution remote sensing images are also used in comparing the results derived from other DEMs and this paper. The comparison implies that our results have a slightly better coherence with GPS observation than results from DEMs, but our results provide more details and perform higher accuracy in coastal areas because of the higher resolution for ICESat measurements. Ice divides are estimated based on the aspect, and are weakly consistent with ice divides from other method in coastal regions.

  19. 膨胀土渠道坡面风化特征及处理措施探讨%Weathering characteristics of slope surface of expansive soil canal and treatment measures

    Institute of Scientific and Technical Information of China (English)

    强鲁斌; 麻斌; 薛永明; 倪柱柱

    2014-01-01

    After slope excavation of expansive soil canal, the soil body at slope surface would suffer weathering destruction of different degree due to the long-time exposure. If the protection and treatment for weathered canal slope are not taken in time, the destruction will expand and the stability of canal slope will be threatened. In view of the practical situation of deep excavation of slope of expansive soil canal of Middle Route Project of South-to-North Water Diversion, the weathering characteristics of the slope surface are analyzed, and the suggestions for its construction and excavation, protection and treatment are put forward. It is pointed out that after the excavation, modified soil should be backfilled in time. If it can not be sealed timely, the measures such as surface protection by waterproof material, setting drainage ditches and changing excavation mode should be adopted, so as to reduce or avoid the destruction of the slope surface by weathering.%膨胀土渠道边坡开挖后,若裸露时间过长,渠坡坡面土体会遭受不同程度的风化破坏。若不及时采取防护或处理,风化渠坡的破坏范围会不断扩大,很有可能会危及到渠坡的稳定。结合南水北调中线深挖方膨胀土渠道开挖所揭露的实际情况,对渠坡坡面风化特征进行了分析,并提出了膨胀土渠坡施工开挖、防护及处理措施。着重指出,渠道开挖后应及时回填改性土封闭,对于不能及时封闭的坡面,可采取防雨材料覆盖、设置排水沟、改变开挖方式等,避免或减小坡面土体遭受风化破坏的风险。

  20. Characterization and calibration of 2nd generation slope measuring profiler

    Science.gov (United States)

    Siewert, Frank; Buchheim, Jana; Zeschke, Thomas

    2010-05-01

    High spectral resolution and nanometer sized foci of 3rd generation SR beamlines can only be achieved by means of ultra precise optical elements. The improved brilliance and the coherence of free electron lasers (FEL) even push the accuracy limits and make the development of a new generation of ultra precise reflective optical elements mandatory. Typical elements are wave front preserving plane mirrors (lengths of up to 1 m, residual slope errors ˜0.05 μrad (rms) and values of 0.1 nm (rms) for the micro-roughness) and curved optical elements like spheres, toroids or elliptical cylinder (residual slope error ˜0.25 μrad (rms) and better). These challenging specifications and the ongoing progress in finishing technology need to be matched by improved accuracy metrology instruments. We will discuss the results of recent developments in the field of metrology made in the BESSY-II-optics laboratory (BOL) at the Helmholtz Zentrum Berlin (HZB), by the use of vertical angle comparator (VAC) in use to calibrate the nanometer optical component measuring machine (NOM). The BESSY-NOM represents an ultra accurate type of slope measuring instruments characterized by an accuracy of 0.05 μrad (rms) for plane substrates and 0.2 μrad (rms) for significant curved surfaces.

  1. Surface Macrofabric of Boulder Dominated Desert Mountain Slopes, California, USA

    Institute of Scientific and Technical Information of China (English)

    Donald A. FRIEND

    2005-01-01

    Rhyolite domes formed over a million year continuum in eastern California are used to study boulder dominated slopes. Slopes in this study are steep (~25° to ~35°) and are made of coarse boulder sized blocks. These slopes include well varnished vertically oriented eolluvial deposits that have been likened to relict periglacial stone stripes, or as indicated in this study, are the result of ongoing desert slope processes. The deposits are common throughout the arid southwestern US, but their morphometric character, fabric, and rates of formation have not been assessed systematically.Results indicate that boulder deposits examined here are remnant from the original surface formed during volcanic eruption and that these boulder slope deposits evolve slowly. Grain size, grain shape and grain angularity do not change significantly from genesis to ~0.6 Ma; trends in the data change markedly after that time. Mean eigenvectors indicate a fabric oriented downhill, parallel to the slope,consistent with the visual impression that long thin to plate-like rocks orient themselves similarly; however,fabric is actually randomly dispersed, similar to that at slope genesis, as indicated by the eigenvalue analysis resultants of C and K. Interestingly, grains remain or become more angular over the million-year time scale of the study as they decrease in size,indicating active in situ weathering processes on individual grains; this result is counter to the common assumption that as grains weather they become more rounded over time.

  2. Meteorological, elevation, and slope effects on surface hoar formation

    Science.gov (United States)

    Horton, S.; Schirmer, M.; Jamieson, B.

    2015-08-01

    Failure in layers of buried surface hoar crystals (frost) can cause hazardous snow slab avalanches. Surface hoar crystals form on the snow surface and are sensitive to micro-meteorological conditions. In this study, the role of meteorological and terrain factors was investigated for three layers of surface hoar in the Columbia Mountains of Canada. The distribution of crystals over different elevations and aspects was observed on 20 days of field observations during a period of high pressure. The same layers were modelled over simplified terrain on a 2.5 km horizontal grid by forcing the snow cover model SNOWPACK with forecast weather data from a numerical weather prediction model. Modelled surface hoar growth was associated with warm air temperatures, high humidity, cold surface temperatures, and low wind speeds. Surface hoar was most developed in regions and elevation bands where these conditions existed, although strong winds at high elevations caused some model discrepancies. SNOWPACK simulations on virtual slopes systematically predicted smaller surface hoar on south-facing slopes. In the field, a complex combination of surface hoar and sun crusts were observed, suggesting the simplified model did not adequately resolve the surface energy balance on slopes. Overall, a coupled weather-snow cover model could benefit avalanche forecasters by predicting surface hoar layers on a regional scale over different elevation bands.

  3. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; Barber, Samuel; Domning, Edward E.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Smith, Brian V.; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf; Just, Andreas

    2009-06-15

    Development of X-ray optics for 3rd and 4th generation X-ray light sources with a level of surface slope precision of 0.1-0.2 {micro}rad requires the development of adequate fabrication technologies and dedicated metrology instrumentation and methods. Currently, the best performance of surface slope measurement has been achieved with the NOM (Nanometer Optical Component Measuring Machine) slope profiler at BESSY (Germany) [1] and the ESAD (Extended Shear Angle Difference) profiler at the PTB (Germany) [2]. Both instruments are based on electronic autocollimators (AC) precisely calibrated for the specific application [3] with small apertures of 2.5-5 mm in diameter. In the present work, we describe the design, initial alignment and calibration procedures, the instrumental control and data acquisition system, as well as the measurement performance of the Developmental Long Trace Profiler (DLTP) slope measuring instrument recently brought into operation at the Advanced Light Source (ALS) Optical Metrology Laboratory (OML). Similar to the NOM and ESAD, the DLTP is based on a precisely calibrated autocollimator. However, this is a reasonably low budget instrument used at the ALS OML for the development and testing of new measuring techniques and methods. Some of the developed methods have been implemented into the ALS LTP-II (slope measuring long trace profiler [4]) which was recently upgraded and has demonstrated a capability for 0.25 {micro}rad surface metrology [5]. Performance of the DLTP was verified via a number of measurements with high quality reference mirrors. A comparison with the corresponding results obtained with the world's best slope measuring instrument, the BESSY NOM, proves the accuracy of the DLTP measurements on the level of 0.1-0.2 {micro}rad depending on the curvature of a surface under test. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.

  4. How Do Adults Perceive, Analyse and Measure Slope?

    Science.gov (United States)

    Duncan, Bruce; Chick, Helen

    2013-01-01

    Slope is a mathematical concept that is both fundamental to the study of advanced calculus and commonly perceived in everyday life. The measurement of steepness of terrain as a ratio is an example of an everyday application the concept of slope. In this study, a group of pre-service teachers were tested for their capacity to mathematize the…

  5. The Influence of Slope Breaks on Lava Flow Surface Disruption

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert

    2014-01-01

    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  6. Alternative method for direct measurement of tibial slope

    Directory of Open Access Journals (Sweden)

    Stijak Lazar

    2014-01-01

    Full Text Available Background/Aim. The tibial slope is one of the most frequently cited anatomical causes of anterior cruciate ligament trauma. The aim of this study was to determine the possibility of direct measuring of the tibial slope of the knee without prior soft tissue dissection in cadavers. Methods. Measurement was performed on the two groups of samples: osteological and cadaveric. The osteological group consisted of 102 matured tibiae and measurement was performed: indirectly by sagittal photographing of the tibia, and directly by a set of parallel bars. The cadaveric group consisted of 50 cadaveric knees and measurement was performed directly by a set of parallel bars. The difference and correlation between indirect and the direct measurements were observed, which included also measuring of the difference and correlation of the tibial slope on the medial and lateral condyles. Results. A statistically significant difference between the direct and indirect method of measuring (p 0.05. However, the slope on the medial condyle, as well as indirect measurement showed a statistically significant difference (p < 0.01. Conclusion. By the use of a set of parallel bars it is possible to measure the tibial slope directly without removal of the soft tissue. The results of indirect, photographic measurement did not statistically differ from the results of direct measurement of the tibial slope.

  7. Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes

    Science.gov (United States)

    Serrano-Ortiz, P.; Sánchez-Cañete, E. P.; Olmo, F. J.; Metzger, S.; Pérez-Priego, O.; Carrara, A.; Alados-Arboledas, L.; Kowalski, A. S.

    2016-03-01

    The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation (Rn) and soil heat fluxes ( G) are treated differently, and typically only Rn is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal Rn and G. For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal Rn, when only vertical Rn measurements are available.

  8. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  9. Slope Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope was calculated from the bathymetry surface for each raster cell using ArcGIS's Spatial Analyst 'Slope' Tool. Slope describes the maximum steepness of a terrain...

  10. Performance of the APS optical slope measuring system

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jun, E-mail: jqian@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, 60439 (United States); Sullivan, Joe; Erdmann, Mark; Khounsary, Ali; Assoufid, Lahsen [Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, 60439 (United States)

    2013-05-11

    An optical slope measuring system (OSMS) was recently brought into operation at the Advanced Photon Source of the Argonne National Laboratory. This system is equipped with a precision autocollimator and a very accurate mirror-based pentaprism on a scanning stage and kept in an environment-controlled enclosure. This system has the capability to measure precision optics with sub-microradian rms slope errors as documented with a series of tests demonstrating accuracy, stability, reliability and repeatability. Measurements of a flat mirror with 0.2 μrad rms slope error are presented which show that the variation of the slope profile measurements with the mirror setting at different locations along the scanning direction is only 60 nrad and the corresponding height error profile has 2 nm rms. -- Highlights: ► This is the first time to present the APS OSMS in publication. ► The APS OSMS is capable to measure flat and near flat mirrors with slope error <100 nrad rms. ► The accuracy of the slope error measurements of a 350 mm long mirror is less than 60 nrad rms.

  11. REVIEW OF HIGH FIELD Q SLOPE, CAVITY MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Gianluigi Ciovati

    2008-01-23

    One of the most interesting phenomenon occurring in superconducting radio-frequency (SRF) cavities made of bulk niobium is represented by a sharp decrease of the quality factor above peak surface magnetic field of about 90 mT and is referred to as "high field Q-slope" or "Q-drop". This phenomenon was observed first in 1997 and since then some effort was devoted to the understanding of the causes behind it. Still, no clear physical interpretation of the Q-drop has emerged, despite several attempts. In this contribution, I will review the experimental results for various cavities measured in many laboratories and I will try to identify common features and differences related to the Q-drop.

  12. Measurement of the π0 electromagnetic transition form factor slope

    Directory of Open Access Journals (Sweden)

    C. Lazzeroni

    2017-05-01

    Full Text Available The NA62 experiment collected a large sample of charged kaon decays in 2007 with a highly efficient trigger for decays into electrons. A measurement of the π0 electromagnetic transition form factor slope parameter from 1.11×106 fully reconstructed K±→π±πD0, πD0→e+e−γ events is reported. The measured value a=(3.68±0.57×10−2 is in good agreement with theoretical expectations and previous measurements, and represents the most precise experimental determination of the slope in the time-like momentum transfer region.

  13. Development of a New Generation of Optical Slope Measuring Profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, V.V.; Takacs, P.; McKinney, W.R.; Assoufid, L.; Siewert, F.; Zeschke, T.

    2011-10-26

    A collaboration including all DOE synchrotron laboratories and industrial vendors of X-ray optics, and with active participation of the HBZ-BESSY-II optics group, has been established to work together on a new slope measuring profiler - the Optical Slope Measuring System (OSMS). The slope measurement accuracy of the instrument is expected to be <50 nrad for the current and future metrology of X-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable, and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  14. Development of a new generation of optical slope measuring profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V., E-mail: vvyashchuk@lbl.gov [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Takacs, Peter Z. [Brookhaven National Laboratory, Upton, NY 11973 (United States); McKinney, Wayne R. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Assoufid, Lahsen [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Siewert, Frank; Zeschke, Thomas [Helmholtz Zentrum Berlin fuer Materialien und Energie, Elektronenspeicherring BESSY-II, Albert-Einstein-Street 15, 12489 Berlin (Germany)

    2011-09-01

    A collaboration including all DOE synchrotron laboratories and industrial vendors of X-ray optics, and with active participation of the HBZ-BESSY-II optics group, has been established to work together on a new slope measuring profiler-the Optical Slope Measuring System (OSMS). The slope measurement accuracy of the instrument is expected to be <50 nrad for the current and future metrology of X-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable, and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  15. Development of a new generation of optical slope measuring profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen; Siewert, Frank; Zeschke, Thomas

    2010-09-16

    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  16. Sliding surface searching method for slopes containing a potential weak structural surface

    Directory of Open Access Journals (Sweden)

    Aijun Yao

    2014-06-01

    Full Text Available Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simulated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

  17. Sliding surface searching method for slopes containing a potential weak structural surface

    Institute of Scientific and Technical Information of China (English)

    Aijun Yao; Zhizhou Tian; Yongjun Jin

    2014-01-01

    Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simu-lated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

  18. Summer Monsoon and Annual Variability of Sea Surface Slope and Their Effects on Alongshore Current near Qingdao

    Institute of Scientific and Technical Information of China (English)

    蒲书箴; 程军; 张义钧; 石强; 骆敬新; 范文静

    2004-01-01

    Based on the monthly mean sea level data obtained from 3 years′ (1999-2001) tide-gauge measurements, the annual variability of the sea level near Qingdao and Jiaozhou Bay is studied and discussed in this paper. Results show that the sea surface height at all the tide gauges becomes higher in summer than that in winter,with an obvious seasonal variability.Furthermore the sea surface height measured at a short distance outside the bay is lower than that in thebay, showing a sea surface slope downward from north to south. The reasons for the formation of the slope are explained as well, The dynamic action ofthe summer monsoon and the sea surface slope, and their effects on the monthly mean current are studied by means of dynamics principles. The importance of the summer monsoon and the pressure gradient generated by the sea surface slope, with their effects on the alongshore current, is pointed out and emphasized in this paper.

  19. Measurement of Pipe Slope with Laser Scanning Technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. Y.; Jeon, S. S.; Hong, S. J. [FNC Technology Co., Seoul National University, Seoul (Korea, Republic of); Park, S. C. [Enguard Co., Seoul (Korea, Republic of)

    2011-10-15

    U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 2008-01 which provides recommendation and guidance to nuclear power plants for managing gas intrusion and accumulation in safety systems such as Emergency Core Cooling (ECC), Decay Heat Removal (DHR) and Containment Spray (CS) systems. Following the GL2008-01, Nuclear Energy Institute (NEI) reported NEI 09-10 that gives industry guidance for effective prevention and management of system gas accumulation. The location of gas accumulation is usually a high point of piping systems. The high point of system is easily identified by investigating as-built isometric drawings of the subjected systems. However, the real plant piping configuration such as a slope might be different from as-built drawings. If there is a small slope on pipe which is a horizontal configuration in as-built drawing, gas can be accumulated at the high point in pipes with wrong slope as shown in Fig. 1. This paper demonstrates a feasibility to measure the slope of piping systems by using the laser scanning and presents a simple example

  20. Intensity measures for seismic liquefaction hazard evaluation of sloping site

    Institute of Scientific and Technical Information of China (English)

    陈志雄; 程印; 肖杨; 卢谅; 阳洋

    2015-01-01

    This work investigates the correlation between a large number of widely used ground motion intensity measures (IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to accomplish this purpose the seismic responses of 32 sloping liquefiable site models consisting of layered cohesionless soil were subjected to 139 earthquake ground motions. Two sets of ground motions, consisting of 80 ordinary records and 59 pulse-like near-fault records are used in the dynamic analyses. The liquefaction potential of the site is expressed in terms of the the mean pore pressure ratio, the maximum ground settlement, the maximum ground horizontal displacement and the maximum ground horizontal acceleration. For each individual accelerogram, the values of the aforementioned liquefaction potential measures are determined. Then, the correlation between the liquefaction potential measures and the IMs is evaluated. The results reveal that the velocity spectrum intensity (VSI) shows the strongest correlation with the liquefaction potential of sloping site. VSI is also proven to be a sufficient intensity measure with respect to earthquake magnitude and source-to-site distance, and has a good predictability, thus making it a prime candidate for the seismic liquefaction hazard evaluation.

  1. Mesoscale Characterization of Coupled Hydromechanical Behavior of a Fractured Porous Slope in Response to Free Water-Surface Movement

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Guglielmi, Y.; Cappa, F.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.

    2008-05-15

    To better understand the role of groundwater-level changes on rock-slope deformation and damage, a carbonate rock slope (30 m x 30 m x 15 m) was extensively instrumented for mesoscale hydraulic and mechanical measurements during water-level changes. The slope is naturally drained by a spring that can be artificially closed or opened by a water gate. In this study, a 2-hour slope-dewatering experiment was analyzed. Changes in fluid pressure and deformation were simultaneously monitored, both at discontinuities and in the intact rock, using short-base extensometers and pressure gauges as well as tiltmeters fixed at the slope surface. Field data were analyzed with different coupled hydromechanical (HM) codes (ROCMAS, FLAC{sup 3D}, and UDEC). Field data indicate that in the faults, a 40 kPa pressure fall occurs in 2 minutes and induces a 0.5 to 31 x 10{sup -6} m normal closure. Pressure fall is slower in the bedding-planes, lasting 120 minutes with no normal deformation. No pressure change or deformation is observed in the intact rock. The slope surface displays a complex tilt towards the interior of the slope, with magnitudes ranging from 0.6 to 15 x 10{sup -6} rad. Close agreement with model for both slope surface and internal measurements is obtained when a high variability in slope-element properties is introduced into the models, with normal stiffnesses of k{sub n{_}faults} = 10{sup -3} x k{sub n{_}bedding-planes} and permeabilities of k{sub h{_}faults} = 10{sup 3} x k{sub h{_}bedding-planes}. A nonlinear correlation between hydraulic and mechanical discontinuity properties is proposed and related to discontinuity damage. A parametric study shows that 90% of slope deformation depends on HM effects in a few highly permeable and highly deformable discontinuities located in the basal, saturated part of the slope while the remaining 10% are related to elasto-plastic deformations in the low-permeability discontinuities induced by complex stress/strain transfers from

  2. PVT Compensation for Wilkinson Single-Slope Measurement Systems

    Energy Technology Data Exchange (ETDEWEB)

    Britton Jr, Charles L [ORNL; Ericson, Milton Nance [ORNL; Blalock, Benjamin [University of Tennessee, Knoxville (UTK); Tham, Kevin [Intel Corporation; Ulaganathan, Chandradevi [University of Tennessee, Knoxville (UTK); Greenwell, Robert E [ORNL; Holleman, Jeremy [University of Tennessee, Knoxville (UTK)

    2012-01-01

    A pulse-width locked loop (PWLL) circuit is reported that compensates for process, voltage, and temperature (PVT) variations of a linear ramp generator within a 12-bit multi-channel Wilkinson (single-slope integrating) Analog-to-Digital (ADC). This PWLL was designed and fabricated in a 0.5- m Silicon Germanium (SiGe) BiCMOS process. Simulation and silicon measurement data are shown that demonstrate a large improvement in the accuracy of the PVT-compensated ADC over the uncompensated ADC.

  3. Automated High Resolution Measurement of Heliostat Slope Errors

    OpenAIRE

    Ulmer, Steffen; März, Tobias; Reinalter, Wolfgang; Belhomme, Boris

    2010-01-01

    A new optical measurement method that simplifies and optimizes the mounting and canting of heliostats and helps to assure their optical quality before commissioning of the solar field was developed. This method is based on the reflection of regular patterns in the mirror surface and their distortions due to mirror surface errors. The measurement has a resolution of about one million points per heliostat with a measurement uncertainty of less than 0.2 mrad and a measurement time of about one m...

  4. AUTOMATED HIGH RESOLUTION MEASUREMENT OF HELIOSTAT SLOPE ERRORS

    OpenAIRE

    Ulmer, Steffen; März, Tobias; Prahl, Christoph; Reinalter, Wolfgang; Belhomme, Boris

    2009-01-01

    A new optical measurement method that simplifies and optimizes the mounting and canting of heliostats and helps to assure their optical quality before commissioning of the solar field was developed. This method is based on the reflection of regular patterns in the mirror surface and their distortions due to mirror surface errors. The measurement has a resolution of about one million points per heliostat with a measurement uncertainty of less than 0.2 mrad and a measurement time of about one m...

  5. Data acquisition system for soil degradation measurements in sloping vineyard

    Science.gov (United States)

    Bidoccu, Marcella; Opsi, Francesca; Cavallo, Eugenio

    2013-04-01

    The agricultural management techniques and mechanization adopted in sloping areas under temperate and sub-continental climate can affect the physical and hydrological characteristics of the soil with an increase of the soil erosion rates. Vineyards have been reported among the land uses most prone to erosion. Agricultural operations can be conducted to enhance the soil conservation, it is therefore important to know the site-specific characteristics and conditions of adopted practices. A long-term monitoring to evaluate the influence of management systems in hilly vineyard on erosion and runoff and soil properties has been carried out in the north-western Italy since 2000. Three different inter-rows tillage systems were compared: conventional tillage (CT), reduced tillage (RT) and controlled grass cover (GC). To record the rainfall amount and duration, an agro-meteorological station was located near experimental plots. The three plots are hydraulically isolated, thus runoff and sediment have been collected at the bottom by a drain, connected with a tipping bucket device to measure the discharge of runoff. The system was implemented with electromagnetic counters that allow the automatic accounting with data capture by a control unit, powered by a photovoltaic panel and transmitted to a data collection center for remote viewing via web page. A portion of the runoff-sediment mixture was usually sampled and analyzed for soil and nutrients losses. In order to analyze with more detail the erosion process by means of predictive models, a micro-plot system was placed in the experimental site in 2012. Splash cups have been installed in each plot since 2011 to evaluate how the soil management affects the in-field splash erosion process. Rapid measurement of soil moisture content and temperature were performed starting from August 2011 to allow continuous monitoring of parameters that can provide an evaluation of space-time hydrological processes, determining the surface

  6. ICESat Observations of Inland Surface Water Stage, Slope, and Extent: a New Method for Hydrologic Monitoring

    Science.gov (United States)

    Harding, David J.; Jasinski, Michael F.

    2004-01-01

    River discharge and changes in lake, reservoir and wetland water storage are critical terms in the global surface water balance, yet they are poorly observed globally and the prospects for adequate observations from in-situ networks are poor (Alsdorf et al., 2003). The NASA-sponsored Surface Water Working Group has established a framework for advancing satellite observations of river discharge and water storage changes which focuses on obtaining measurements of water surface height (stage), slope, and extent. Satellite laser altimetry, which can achieve centimeter-level elevation precision for single, small laser footprints, provides a method to obtain these inland water parameters and contribute to global water balance monitoring. Since its launch in January, 2003 the Ice, Cloud, and land Elevation Satellite (ICESat), a NASA Earth Observing System mission, has achieved over 540 million laser pulse observations of ice sheet, ocean surface, land topography, and inland water elevations and cloud and aerosol height distributions. By recording the laser backscatter from 80 m diameter footprints spaced 175 m along track, ICESat acquires globally-distributed elevation profiles, using a 1064 nm laser altimeter channel, and cloud and aerosol profiles, using a 532 nm atmospheric lidar channel. The ICESat mission has demonstrated the following laser altimeter capabilities relevant to observations of inland water: (1) elevation measurements with a precision of 2 to 3 cm for flat surfaces, suitable for detecting river surface slopes along long river reaches or between multiple crossings of a meandering river channel, (2) from the laser backscatter waveform, detection of water surface elevations beneath vegetation canopies, suitable for measuring water stage in flooded forests, (3) single pulse absolute elevation accuracy of about 50 cm (1 sigma) for 1 degree sloped surfaces, with calibration work in progress indicating that a final accuracy of about 12 cm (1 sigma) will be

  7. Slope Measurements of Parabolic Dish Concentrators Using Color-Coded Targets

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, S.; Heller, P.; Reinalter, W.

    2006-07-01

    A new short, yet highly accurate method for measuring the slope errors of parabolic dish concentrators has been developed. This method uses a flat target with colored stripes that is placed close to the focal plane and a digital camera located at an observation point on the optical axis at some distance from it. A specially developed image analysis algorithm detects the different colors in the images of the reflection of the target in the concentrator and assigns them their known position on the color target. This information, along with the geometric relationship between the components of the measurement setup and the theoretical parabolic shape of the concentrator, is used to calculate the normal vectors of the concentrator surface. From these normal vectors the radial and tangential slopes can be calculated and compared to the design values of the concentrator. The resulting slope errors not only give the total concentrator error for general characterization of the dish, but also indicate systematic errors in fabrication and mounting with high spatial resolution. In order to verify the quality of the results obtained, a ray-tracing code was developed that calculates the flux distribution on planes perpendicular to the optical axis. Measured slope errors of a DISTAL-2 dish concentrator are presented and the calculated flux distributions are compared to measured flux distributions. The comparison shows excellent agreement in the flux distribution on the absorber plane. This verifies the promising potential of this method for fast, highly precise measurement of imperfections in dish concentrator shape. (Author)

  8. Statistical Distribution of Surface Slope in A 3-D Ocean Wave Field

    Institute of Scientific and Technical Information of China (English)

    XU Delun; LIU Xuehai; ZHANG Jun

    2000-01-01

    A joint probability density fnnction (PDF) for surface slopes in two arbitrary directions is de rived on the basis of Longuet-Higgins's linear model for three-dimensional (3-D) random wave field, and the correlation moments of surface slopes, as parameters in the PDF, are expressed in terms of directional spectrum of ocean waves. So long as the directional spectrum model is given, these parameters are deter mined. Since the directional spectrum models proposed so far are mostly parameterized by the wind speed and fetch, this allows for substituling these parameters with the wind speed and fetch. As an example, the wind speed and fetch are taken to be 14 m/s and 200 km, and the Hasselmann and Donelan directional spectra are, respectively, used to compute these paraneters. Some novel results are obtained. One of the in teresting results is that the variances of surface slope in downwind and cross-wind directions determined by the Donelan directional spectra are close to those measured by Cox and Munk (1954). Some discussionsare made on these results.

  9. Static and dynamic aspects of the rms local slope of growing random surfaces

    NARCIS (Netherlands)

    Palasantzas, George

    1997-01-01

    In this work, we investigated static and dynamic aspects of the rms local surface slope ‘‘ρ’’ for self-affine random surfaces. The rms local slope is expressed as a function of the rms roughness amplitude σ, the in-plane correlation length ξ, and the roughness exponent H (0 0).

  10. Using airborne LIDAR to measure tides and river slope

    Science.gov (United States)

    Talke, S. A.; Hudson, A.; Chickadel, C. C.; Farquharson, G.; Jessup, A. T.

    2014-12-01

    The spatial variability of tides and the tidally-averaged water-level is often poorly resolved in shallow waters, despite its importance in validating models and interpreting dynamics. In this contribution we explore using airborne LIDAR to remotely observe tides and along-river slope in the Columbia River estuary (CRE). Using an airplane equipped with LIDAR, differential GPS, and an infra-red camera, we flew 8 longitudinal transects over a 50km stretch of the CRE over a 14 hour period in June 2013. After correcting for airplane elevation, pitch and roll and median filtering over 1km blocks, a spatially-resolved data set of relative water level was generated. Results show the tide (amplitude 2m) propagating upstream at the expected phase velocity. A sinusoid with 2 periods (12.4 and 24 hours) was next fit to data to produce a smooth tide and extract the mean slope. Comparison with 4 tide gauges indicates first order agreement with measured tides (rms error 0.1m), and confirms that a substantial sub-tidal gradient exists in the CRE. This proof-of-concept experiment indicates that remote sensing of tides in coastal areas is feasible, with possible applications such as improving bathymetric surveys or inferring water depths.

  11. Precision Tiltmeter as a Reference for Slope MeasuringInstruments

    Energy Technology Data Exchange (ETDEWEB)

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-08-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 {micro}rad (rms).

  12. Direct strain and slope measurement using 3D DSPSI

    CERN Document Server

    Molimard, Jérôme; Picart, Pascal

    2013-01-01

    This communication presents a new implementation of DSPSI. Its main features are 1. an advanced model taking into account the beam divergence, 2. the coupling with a surface shape measurement in order to generalize DSPSI to nonplanar surfaces 3. the use of small shear distance made possible using a precise measurement procedure. A first application on a modified Iosipescu shear test is presented and compared to classical DIC measurements.

  13. Comparisons of Limit Analysis Solutions and Random Search Solutions on Slope Critical Slip SUrface

    Institute of Scientific and Technical Information of China (English)

    JianfengWANG

    1998-01-01

    The object of this paper is twofold:to present a kinematics limit analysis for assessing the safety of slope or its critical slip surface,and to compare the searched slip surface with that by limit analysis.

  14. Toe clearance and velocity profiles of young and elderly during walking on sloped surfaces

    Directory of Open Access Journals (Sweden)

    Begg Rezaul K

    2010-04-01

    Full Text Available Abstract Background Most falls in older adults are reported during locomotion and tripping has been identified as a major cause of falls. Challenging environments (e.g., walking on slopes are potential interventions for maintaining balance and gait skills. The aims of this study were: 1 to investigate whether or not distributions of two important gait variables [minimum toe clearance (MTC and foot velocity at MTC (VelMTC] and locomotor control strategies are altered during walking on sloped surfaces, and 2 if altered, are they maintained at two groups (young and elderly female groups. Methods MTC and VelMTC data during walking on a treadmill at sloped surfaces (+3°, 0° and -3° were analysed for 9 young (Y and 8 elderly (E female subjects. Results MTC distributions were found to be positively skewed whereas VelMTC distributions were negatively skewed for both groups on all slopes. Median MTC values increased (Y = 33%, E = 7% at negative slope but decreased (Y = 25%, E = 15% while walking on the positive slope surface compared to their MTC values at the flat surface (0°. Analysis of VelMTC distributions also indicated significantly (p th percentile (Q1 values in the elderly at all slopes. Conclusion The young displayed a strong positive correlation between MTC median changes and IQR (interquartile range changes due to walking on both slopes; however, such correlation was weak in the older adults suggesting differences in control strategies being employed to minimize the risk of tripping.

  15. Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface.

    Science.gov (United States)

    D'Alimonte, Davide; Kajiyama, Tamito

    2016-04-18

    Above-water radiometry depends on estimates of the reflectance factor ρ of the sea surface to compute the in situ water-leaving radiance. The Monte Carlo code for ocean color simulations MOX is used in this study to analyze the effect of different environmental components on ρ values. A first aspect is examining the reflectance factor without and by accounting for the sky-radiance polarization. The influence of the sea-surface statistics at discrete grid points is then considered by presenting a new scheme to define the variance of the waves slope. Results at different sun elevations and sensor orientations indicate that the light polarization effect on ρ simulations reduces from ∼17 to ∼10% when the wind speed increases from 0 to 14m s-1. An opposite tendency characterizes the modeling of the sea-surface slope variance, with ρ differences up to ∼12% at a wind speed of 10m s-1. The joint effect of polarization and the the sea-surface statistics displays a less systematic dependence on the wind speed, with differences in the range ∼13 to ∼18%. The ρ changes due to the light polarization and the variance of the waves slope become more relevant at sky-viewing geometries respectively lower and higher than 40° with respect to the zenith. An overall compensation of positive and negative offsets due to light polarization is finally documented when considering different sun elevations. These results address additional investigations which, by combining the modeling and experimental components of marine optics, better evaluate specific measurement protocols for collecting above-water radiometric data in the field.

  16. Mechanics of weathered clay-marl rock masses along the rupture surface in homogeneous dry slopes

    Directory of Open Access Journals (Sweden)

    Kostić Srđan

    2016-01-01

    Full Text Available Authors analyze stress-strain distribution within slope using the shear stress reduction technique based on finite element method, which was previously confirmed to provide approximately the same results as the Janbu's corrected limit equilibrium method. Results obtained indicate that the largest vertical displacements occur at the slope base and crest, while central part of the slope is exposed to the largest horizontal displacements. Normal and shear stress show maximum values in the middle part of the slope. It was also determined that separate stress-strain relations could be derived for the exact upper and lower part of the rupture surface. [Projekat Ministarstva nauke Republike Srbije, br. 37005

  17. Influence of physical capacities of males with transtibial amputation on gait adjustments on sloped surfaces.

    Science.gov (United States)

    Langlois, Karine; Villa, Coralie; Bonnet, Xavier; Lavaste, François; Fodé, Pascale; Martinet, Noel; Pillet, Hélène

    2014-01-01

    The aim of the study was to investigate how kinematic and kinetic adjustments between level and slope locomotion of persons with transtibial amputation are related to their individual muscular and functional capacities. A quantified gait analysis was conducted on flat and slope surfaces for seven patients with transtibial amputation and a control group of eight subjects to obtain biomechanical parameters. In addition, maximal isometric muscular strength (knee and hip extensors) and functional scores were measured. The results of this study showed that most of the persons with transtibial amputation could adapt to ramp ascent either by increasing ankle, knee, and hip flexion angles of the residual limb and/or by recruiting their hip extensors to guarantee enough hip extension power during early stance. Besides, 6-minute walk test score was shown to be a good predictor of adaptation capacities to slope ascent. In ramp descent, the increase of knee flexion moment was correlated with knee extensor strength and residual-limb length. However, no correlation was observed with functional parameters. Results show that the walking strategy adopted by persons with transtibial amputation to negotiate ramp locomotion mainly depends on their muscular capacities. Therefore, muscular strengthening should be a priority during rehabilitation.

  18. A new measurement method for ultrasonic surface roughness measurements

    DEFF Research Database (Denmark)

    Forouzbakhsh, Farshid; Rezanejad Gatabi, Javad; Rezanejad Gatabi, Iman

    2008-01-01

    This study proposes the application of Doppler-based ultrasonic method to surface roughness measurements. The fabricated prototype measures the slope of the under-test surface at small holes to evaluate the roughing parameters and this makes for more precise measurement. The device comprises...... at the reflecting point. The relationship between the Doppler shift and the roughing slope is mathematically analyzed. Compared to the transit-time based techniques, the dependency of the sensor on the sound speed in air is decreased by a factor of 2 and therefore a more precise measurement is achieved...

  19. On alpha stable distribution of wind driven water surface wave slope

    CERN Document Server

    Joelson, Maminirina

    2008-01-01

    We propose a new formulation of the probability distribution function of wind driven water surface slope with an $\\alpha$-stable distribution probability. The mathematical formulation of the probability distribution function is given under an integral formulation. Application to represent the probability of time slope data from laboratory experiments is carried out with satisfactory results. We compare also the $\\alpha$-stable model of the water surface slopes with the Gram-Charlier development and the non-Gaussian model of Liu et al\\cite{Liu}. Discussions and conclusions are conducted on the basis of the data fit results and the model analysis comparison.

  20. Multi-scale measures of rugosity, slope and aspect from benthic stereo image reconstructions.

    Directory of Open Access Journals (Sweden)

    Ariell Friedman

    Full Text Available This paper demonstrates how multi-scale measures of rugosity, slope and aspect can be derived from fine-scale bathymetric reconstructions created from geo-referenced stereo imagery. We generate three-dimensional reconstructions over large spatial scales using data collected by Autonomous Underwater Vehicles (AUVs, Remotely Operated Vehicles (ROVs, manned submersibles and diver-held imaging systems. We propose a new method for calculating rugosity in a Delaunay triangulated surface mesh by projecting areas onto the plane of best fit using Principal Component Analysis (PCA. Slope and aspect can be calculated with very little extra effort, and fitting a plane serves to decouple rugosity from slope. We compare the results of the virtual terrain complexity calculations with experimental results using conventional in-situ measurement methods. We show that performing calculations over a digital terrain reconstruction is more flexible, robust and easily repeatable. In addition, the method is non-contact and provides much less environmental impact compared to traditional survey techniques. For diver-based surveys, the time underwater needed to collect rugosity data is significantly reduced and, being a technique based on images, it is possible to use robotic platforms that can operate beyond diver depths. Measurements can be calculated exhaustively at multiple scales for surveys with tens of thousands of images covering thousands of square metres. The technique is demonstrated on data gathered by a diver-rig and an AUV, on small single-transect surveys and on a larger, dense survey that covers over [Formula: see text]. Stereo images provide 3D structure as well as visual appearance, which could potentially feed into automated classification techniques. Our multi-scale rugosity, slope and aspect measures have already been adopted in a number of marine science studies. This paper presents a detailed description of the method and thoroughly validates it

  1. Optimal tuning and calibration of bendable mirrors with slope measuring profilers

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Wayne; Kirschman, Jonathan; MacDowell, Alastair; Warwick, Tony; Yashchuk, Valeriy

    2009-06-22

    We describe a technique to optimally tune and calibrate bendable x-ray optics for sub-micron focusing. The focusing is divided between two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair. Each optic is shaped by applying unequal bending couples to each end of a flat mirror. The developed technique allowsoptimal tuning of these systems using surface slope data obtained with a slope measuring instrument, the long trace profiler (LTP). Due to the near linearity of the problem, the minimal set of data necessary for the tuning of each bender, consists of only three slope traces measured before and after a single adjustment of each bending couple. The data are analyzed with software realizing a method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired shape provides nearly final settings. Moreover, the characteristic functions of the benders found in the course of tuning, can be used for retuning to a new desired shape without removal from the beamline and re-measuring. We perform a ray trace, using profiler data for the finally tuned optics, predicting the performance to be expected during use of the optics on the beamline.

  2. Light Scattering of Rough Orthogonal Anisotropic Surfaces with Secondary Most Probable Slope Distributions

    Institute of Scientific and Technical Information of China (English)

    LI Hai-Xia; CHENG Chuan-Fu

    2011-01-01

    @@ We study the light scattering of an orthogonal anisotropic rough surface with secondary most probable slope distribution It is found that the scattered intensity profiles have obvious secondary maxima, and in the direction perpendicular to the plane of incidence, the secondary maxima are oriented in a curve on the observation plane,which is called the orientation curve.By numerical calculation of the scattering wave fields with the height data of the sample, it is validated that the secondary maxima are induced by the side face element, which constitutes the prismoid structure of the anisotropic surface.We derive the equation of the quadratic orientation curve.Experimentally, we construct the system for light scattering measurement using a CCD.The scattered intensity profiles are extracted from the images at different angles of incidence along the orientation curves.The experimental results conform to the theory.

  3. SEASONAL REVERSE OF SEA SURFACE SLOPE IN THE NORTHERN YELLOW SEA AND ITS DYNAMIC RELATION WITH MONSOON EFFECTS

    Institute of Scientific and Technical Information of China (English)

    PU Shu-zhen; CHENG Jun; ZHANG Yi-jun; SHI Qiang

    2004-01-01

    Based on the monthly average sea level data from the tide gauge measurement(1999-2001),the seasonal variability of the sea level in the Northern and Middle Yellow Sea is studied to reveal that the sea surface height at all the tide gauges becomes higher in summer than that in winter.In addition,the sea surface height of the Northern Yellow Sea is higher than the one of the Middle Yellow Sea with a slope downward from the north to the south in summer,while it is lower with a reversed slope in winter.The seasonal reverse of the sea surface slope can be attributed to the monsoon effects i.e.the annual reverse of the monsoon direction and the annual variation of the monsoon rainfall.A set of equations are established in light of the dynamic principles to expound how the monsoon forcing and the sea surface slope generate a summer outflow and a winter inflow in the Yellow Sea.

  4. Improved genetic algorithm freely searching for dangerous slip surface of slope

    Institute of Scientific and Technical Information of China (English)

    WAN Wen; CAO Ping; FENG Tao; YUAN Hai-ping

    2005-01-01

    Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of slope and the corresponding minimum safety factor without supposing the geometric shape of the most dangerous slip surface. This improved genetic algorithm can simulate the genetic evolution process of organisms and avoid the local minimum value compared with the classical methods. The results of engineering cases show that it is a global optimal algorithm and has many advantages, such as higher efficiency and shorter time than the simple genetic algorithm.

  5. A review of rapid transport of pesticides from sloping farmland to surface waters: Processes and mitigation strategies

    Institute of Scientific and Technical Information of China (English)

    Xiangyu Tang; Bo Zhu; Hidetaka Katou

    2012-01-01

    Pesticides applied to sloping farmland may lead to surface water contamination through rapid transport processes as influenced by the complex topography and high spatial variability of soil properties and land use in hilly or mountainous regions.However,the fate of pesticides applied to sloping farmland has not been sufficiently elucidated.This article reviews the current understanding of pesticide transport from sloping farmland to surface water.It examines overland flow and subsurface lateral flow in areas where surface soil is underlain by impervious subsoil or rocks and tile drains.It stresses the importance of quantifying and modeling the contributions of various pathways to rapid pesticide loss at catchment and regional scales.Such models could be used in scenario studies for evaluating the effectiveness of possible mitigation strategies such as constructing vegetated strips,depressions,wetlands and drainage ditches,and implementing good agricultural practices.Field monitoring studies should also be conducted to calibrate and validate the transport models as well as biophysical-economic models,to optimize mitigation measures in areas dominated by sloping farmland.

  6. Investigations on the spatial resolution of autocollimator-based slope measuring profilers

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de [Helmholtz Zentrum Berlin/BESSY-II—Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Buchheim, J.; Höft, T.; Zeschke, T. [Helmholtz Zentrum Berlin/BESSY-II—Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Schindler, A.; Arnold, T. [IOM—Leibniz Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany)

    2013-05-11

    During the last decade, autocollimator-based slope measuring profilers like the Nanometer Optical Component Measuring Machine (NOM) at BESSY-II have become standard instrument for the ultra-precise characterization of synchrotron optics with nanometer accuracy. Due to the increasing demand for highest accuracy, which can be provided by these profilers, further investigations are necessary to understand the performance of these instruments. Besides the achievable accuracy, it is of particular interest to characterize the possible spatial resolution of such instrumentation. The performance of the BESSY-NOM was characterized by means of sinusoidal and chirped surface profiles. A dedicated sample was prepared using the Atmospheric Plasma Jet Machining technology at the IOM—Leibniz-Institut für Oberflächenmodifizierung e.V. We report on our tests on the NOM, the interferometer measurements done for comparison as well as the sample preparation.

  7. Analysis of regional gullies within Noachis Terra, Mars: A complex relationship between slope, surface material and aspect

    Science.gov (United States)

    Hobbs, S. W.; Paull, D. J.; Clarke, J. D. A.

    2015-04-01

    The precise mechanisms by which martian hillside gullies erode and their dependence on the local environment remain subjects of debate. We studied three sharp rimmed craters in Noachis Terra and 37 gully profiles using Context Camera (CTX), Mars Orbiter Laser Altimeter (MOLA) and High Resolution Stereo Camera (HRSC) data. We analysed the gully topographic profiles of seven gullies and nine dry ravines. We measured slope properties using HRSC elevation data and used thermal inertia to infer material types of the gully sites. We compared these with three nearby Noachian age craters possessing crater wall slope angles within the range of previously observed gully formations. In-line with previous findings on individual gullies, we found that the slope angles of gullies in our study area consistently reflect the inherited slope angles of the host escarpment, suggesting that traditional slope-based evidence of fluvial activity in martian gullies needs to be placed in context of its local environment. We also observed a direct relationship between gully morphology and local composition of surface units. Martian gully features, and possibly method of erosion appeared heavily influenced by changes in underlying geology and presence of erodible sediment. Examples included gully shape changing in accordance with type of erodible sediment. We suggest that the degraded rims of gully-free Noachian craters precluded slope angles high enough to trigger creation of precursors to alcoves through mass wasting. Lack of these hollows has probably prevented the accumulation of enough ice-rich sediment for gullies to form in. Our analysis reveals that there is a complex interdependence between slope processes and the local environment, and global martian gully models may not work at the local scale.

  8. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    Science.gov (United States)

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  9. Passive prosthetic ankle-foot mechanism for automatic adaptation to sloped surfaces

    Directory of Open Access Journals (Sweden)

    Eric Nickel, MS

    2014-09-01

    Full Text Available This article describes the development of a prototype prosthetic ankle-foot system that passively adapts to surface slopes on each step of walking. Engineering analyses were performed to design the cam clutch and clutch engagement and disengagement mechanism. The prototype was tested by a veteran with a unilateral transtibial amputation. Kinematic and kinetic data were recorded while the subject walked on a treadmill at slopes ranging from −10 to +10 degrees. After each slope condition, the subject rated his level of exertion and socket comfort. The subject reported increased comfort and reduced exertion for downhill slopes when using the prototype compared with his usual prosthesis. The subject also expressed that when walking downhill on the prototype, it was the most comfortable he had ever been in a prosthesis. The prosthetic ankle torque-angle relationship shifted toward dorsiflexion for uphill and toward plantar flexion for downhill slopes when using the prototype, indicating slope adaptation, but this effect did not occur when the subject walked with his usual prosthesis. The prototype also demonstrated late-stance plantar flexion, suggesting the potential for storing and returning more energy than standard lower-limb prostheses.

  10. Measurement of tibial slope angle after medial opening wedge high tibial osteotomy: case series

    Directory of Open Access Journals (Sweden)

    Ricardo Hideki Yanasse

    Full Text Available CONTEXT AND OBJECTIVE: In the past, changes in tibial slope were not considered when planning or evaluating osteotomies, and success in high tibial osteotomy was related to the alignment and amount of femorotibial angular correction. The aim here was to measure changes in tibial slope after medial opening wedge tibial osteotomy and investigate the effect of tibial slope angle on the clinical results. DESIGN AND SETTING: Retrospective review study on a series of cases, at the Department of Orthopedics and Traumatology, Faculdade de Medicina de Marília (Famema, Marília, Brazil. METHODS: Twenty-eight patients were studied, and a total of thirty-one knees. Lateral roentgenograms of the tibia were used pre and postoperatively to measure the tibial slope based on the proximal tibial anatomical axis. The clinical results were measured using the Lysholm knee score. RESULTS: There was an average increase in tibial slope angle after surgery of 2.38° (95% confidence interval: ± 0.73°. There was no correlation (r = -0.28 between the postoperative Lysholm knee score and the difference in tibial slope angle from before to after surgery (P = 0.13. CONCLUSION: Medial opening wedge tibial osteotomy led to a small increase in tibial slope. No significant correlation was found between increased tibial slope and short-term clinical results after high tibial osteotomy. Other clinical studies are needed in order to establish whether extension or flexion osteotomy could benefit patients with medial compartment gonarthrosis.

  11. Efficiency of scalar and vector intensity measures for seismic slope displacements

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Ground motion intensity measures are usually used to predict the earthquake-induced displacements in earth dams,soil slopes and soil structures.In this study,the efficiency of various single ground motion intensity measures (scalar IMs) or a combination of them (vector IMs) are investigated using the PEER-NGA strong motion database and an equivalent-linear sliding-mass model.Although no single intensity measure is efficient enough for all slope conditions,the spectral acceleration at 1.5 times of the initial slope period and Arias intensity of the input motion are found to be the most efficient scalar IMs for flexible slopes and stiff slopes respectively.Vector IMs can incorporate different characteristics of the ground motion and thus significantly improve the efficiency over a wide range of slope conditions.Among various vector IMs considered,the spectral accelerations at multiple spectral periods achieve high efficiency for a wide range of slope conditions.This study provides useful guidance to the development of more efficient empirical prediction models as well as the ground motion selection criteria for time domain analysis of seismic slope displacements.

  12. Long-Term Drainage from the Riprap Side Slope of a Surface Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuanfang

    2017-07-01

    Surface barriers designed to isolate underground nuclear waste in place are expected to function for at least 1000 years. To achieve this long design life, such barriers need to be protected with side slopes against wind- and water-induced erosion and damage by natural or human activities. However, the side slopes are usually constructed with materials coarser than the barrier. Their hydrological characteristics must be understood so that any drainage from them is considered in the barrier design and will not compromise the barrier function. The Prototype Hanford Barrier, an evapotranspiration-capillary (ETC) barrier, was constructed in 1994 at the Hanford Site in southeastern Washington state, with a gravel side slope and a riprap side slope. The soil water content in the gravel side slope and drainage from both side slopes have been monitored since the completion of construction. The monitoring results show that under natural precipitation the annual drainage rates from the two types of side slopes were very similar and about 5 times the typical recharge from local soil with natural vegetation and 40 times the barrier design criterion. The higher recharge from the side slopes results in some of the drainage migrating laterally to the region beneath the ETC barrier. This edge effect of the enhanced drainage was evaluated for a period of 1000 years by numerical simulation. The edge effect was quantified by the amount of water across the barrier edges and the affecting distance of the barrier edges. These results indicate that design features can be adjusted to reduce the edge effect when necessary.

  13. Surface finish measurement studies

    Science.gov (United States)

    Teague, E. C.

    1983-01-01

    The performance of stylus instruments for measuring the topography of National Transonic Facility (NTF) model surfaces both for monitoring during fabrication and as an absolute measurement of topography was evaluated. It was found that the shop-grade instruments can damage the surface of models and that their use for monitoring fabrication procedures can lead to surface finishes that are substantially out of range in critical areas of the leading edges. The development of a prototype light-scattering instrument which would allow for rapid assessment of the surface finish of a model is also discussed.

  14. Comparative Study on Response Surfaces for Reliability Analysis of Spatially Variable Soil Slope

    Institute of Scientific and Technical Information of China (English)

    李亮; 褚雪松

    2015-01-01

    This paper focuses on the performance of the second-order polynomial-based response surfaces on the reliability of spatially variable soil slope. A single response surface constructed to approximate the slope system failure performance functionG(X) (called single RS) and multiple response surfaces constructed on finite number of slip surfaces (called multiple RS) are developed, respectively. Single RS and multiple RS are applied to evaluate the system failure probability pf for a cohesive soil slope together with Monte Carlo simulation (MCS). It is found thatpf calculated by single RS deviates significantly from that obtained by searching a large number of potential slip surfaces, and this deviation becomes insignificant with the decrease of the number of random variables or the increase of the scale of fluctuation. In other words, single RS cannot approximateG(X) with reasonable accuracy. The value ofpf from multiple response surfaces fits well with that obtained by searching a large number of potential slip surfaces. That is, multiple RS can estimateG(X) with reasonable accuracy.

  15. Large Curved Surface Measurement

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The measurement principle of large curved surface through theodolite industry survey system is introduced. Two methods are suggested with respect to the distribution range of curved surface error. The experiments show that the measurement precision can be up to 0.15mm with relative precision of 3×10-5. Finally, something needed paying attention to and the application aspects on theodolite industry survey system are given.

  16. System reliability analysis of layered soil slopes using fully specified slip surfaces and genetic algorithms

    OpenAIRE

    Zeng, Peng; Jiménez Rodríguez, Rafael; Jurado Piña, Rafael

    2015-01-01

    This paper presents a new approach to identify the fully specified representative slip surfaces (RSSs) of layered soil slopes and to compute their system probability of failure, Pf,s. Spencer's method is used to compute the factors of safety of trial slip surfaces, and the First Order Reliability Method (FORM) is employed to efficiently evaluate their reliability. A custom-designed Genetic Algorithm (GA) is developed to search all the RSSs in only one GA optimization. Taking advantage of the ...

  17. 3D Identification and Stability Analysis of Key Surface Blocks of Rock Slope

    Institute of Scientific and Technical Information of China (English)

    李明超; 周四宝; 王刚

    2016-01-01

    Complicated geological structures make it difficult to analyze the stability of rock slopes, such as faults, weak intercalated layers or joint fissures. Based on 3D geological modeling and surface block identifying methods, an integrated methodology framework was proposed and realized to analyze the stability of surface blocks in rock slopes. The surface blocks cut by geological structures, fissures or free faces could be identified subjected to the four principles of closure, completeness, uniqueness and validity. The factor of safety(FOS)of single key block was calculated by the limit equilibrium method. If there were two or more connected blocks, they were defined as a block-group. The FOS of a block-group was computed by the Sarma method. The proposed approach was applied to an actual rock slope of a hydropower project, and some possible instable blocks were demonstrated and analyzed visually. The obtained results on the key blocks or block-groups provide essential information for determining po-tential instable region of rock slopes and designing effective support scheme in advance.

  18. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Mingyong [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Tan Shuduan [College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Dang Haishan [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China); Zhang Quanfa, E-mail: qzhang@wbgcas.cn [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China)

    2011-12-15

    A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10 m x 2 m x 0.16 m with a gradient of 20{sup o} (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources. - Highlights: > Soil erosion processes with rare earth elements was conducted under natural rainfall. > Experimental setup developed here has seldom implemented in the world. > Sheet erosion is the main erosion type and main contributor to sediment loss. > Sediment source changed in different sections on the slope surface. > The primary sediment source area tended to move upslope as erosion progressed.

  19. Measurements of Cuspal Slope Inclination Angles in Palaeoanthropological Applications

    Science.gov (United States)

    Gaboutchian, A. V.; Knyaz, V. A.; Leybova, N. A.

    2017-05-01

    Tooth crown morphological features, studied in palaeoanthropology, provide valuable information about human evolution and development of civilization. Tooth crown morphology represents biological and historical data of high taxonomical value as it characterizes genetically conditioned tooth relief features averse to substantial changes under environmental factors during lifetime. Palaeoanthropological studies are still based mainly on descriptive techniques and manual measurements of limited number of morphological parameters. Feature evaluation and measurement result analysis are expert-based. Development of new methods and techniques in 3D imaging creates a background provides for better value of palaeoanthropological data processing, analysis and distribution. The goals of the presented research are to propose new features for automated odontometry and to explore their applicability to paleoanthropological studies. A technique for automated measuring of given morphological tooth parameters needed for anthropological study is developed. It is based on using original photogrammetric system as a teeth 3D models acquisition device and on a set of algorithms for given tooth parameters estimation.

  20. Direct strain and slope measurement using 2D DSPSI Title

    CERN Document Server

    Dandach, Wajdi; Picart, Pascal; 10.4028/www.scientific.net/AMR.324.384

    2011-01-01

    Large variety of optical full-field measurement techniques are being developed and applied to solve mechanical problems. Since each technique possess its own merits, it is important to know the capabilities and limitations of such techniques. Among these optical full-field methods, interferometry techniques take an important place. They are based on illumination with coherent light (laser). In shearing interferometry the difference of the out of-plane displacement in two neighboring object points is directly measured. Since object displacement does not result in interferometry fringes, the method is suited for localization of strain concentrations and is indeed used in industry for this purpose. Used quantitatively DSPSI possesses the advantage over conventional out-of-plane displacement-sensitive interferometry that only a single difference of the unwrapped phase map is required to obtain flexural strains, thereby relieving problems with noise and reduction in the field of view. The first publication on (DSP...

  1. Gait Characteristics Associated with Trip-Induced Falls on Level and Sloped Irregular Surfaces

    Directory of Open Access Journals (Sweden)

    Andrew Merryweather

    2011-11-01

    Full Text Available Same level falls continue to contribute to an alarming number of slip/trip/fall injuries in the mining workforce. The objective of this study was to investigate how walking on different surface types and transverse slopes influences gait parameters that may be associated with a trip event. Gait analysis was performed for ten subjects on two orientations (level and sloped on smooth, hard surface (control and irregular (gravel, larger rocks surfaces. Walking on irregular surfaces significantly increased toe clearance compared to walking on the smooth surface. There was a significant (p < 0.05 decrease in cadence (steps/min, stride length (m, and speed (m/s from control to gravel to larger rocks. Significant changes in external rotation and increased knee flexion while walking on irregular surfaces were observed. Toe and heel clearance requirements increased on irregular surfaces, which may provide an explanation for trip-induced falls; however, the gait alterations observed in the experienced workers used as subjects would likely improve stability and recovery from a trip.

  2. Green roof stormwater retention: effects of roof surface, slope, and media depth.

    Science.gov (United States)

    VanWoert, Nicholaus D; Rowe, D Bradley; Andresen, Jeffrey A; Rugh, Clayton L; Fernandez, R Thomas; Xiao, Lan

    2005-01-01

    Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.

  3. Comprehensive quantitative investigation of arm swing during walking at various speed and surface slope conditions.

    Science.gov (United States)

    Hejrati, Babak; Chesebrough, Sam; Bo Foreman, K; Abbott, Jake J; Merryweather, Andrew S

    2016-10-01

    Previous studies have shown that inclusion of arm swing in gait rehabilitation leads to more effective walking recovery in patients with walking impairments. However, little is known about the correct arm-swing trajectories to be used in gait rehabilitation given the fact that changes in walking conditions affect arm-swing patterns. In this paper we present a comprehensive look at the effects of a variety of conditions on arm-swing patterns during walking. The results describe the effects of surface slope, walking speed, and physical characteristics on arm-swing patterns in healthy individuals. We propose data-driven mathematical models to describe arm-swing trajectories. Thirty individuals (fifteen females and fifteen males) with a wide range of height (1.58-1.91m) and body mass (49-98kg), participated in our study. Based on their self-selected walking speed, each participant performed walking trials with four speeds on five surface slopes while their whole-body kinematics were recorded. Statistical analysis showed that walking speed, surface slope, and height were the major factors influencing arm swing during locomotion. The results demonstrate that data-driven models can successfully describe arm-swing trajectories for normal gait under varying walking conditions. The findings also provide insight into the behavior of the elbow during walking.

  4. Initiation of GPS-Acoustics Measurements on the Continental Slope of the Cascadia Subduction Zone

    Science.gov (United States)

    Chadwell, C. D.

    2016-12-01

    Land-based GPS measurements suggest the megathrust is locked offshore along the Cascadia Subduction Zone. However, land-based data alone lack geometric resolution to constrain the how the slip is distributed. GPS-Acoustic measurements can provide these constraints, but using traditional GPS-Acoustic approaches employing a ship is costly. Wave Gliders, a wave- and solar-powered, remotely-piloted sea surface platform, provide a low cost method for collecting GPS-A data. We have adapted GPS-Acoustic technology to the Wave Glider. In July 2016, the GPS-A Wave Glider was launched on month-long mission to two sites on the continental slope of the Cascadia Subduction Zone. One site is approximately 45 NM offshore central Oregon and the other approximately 50 NM offshore central Washington State. We will report on initial results of the GPS-A data collection and operational experiences of the mission. Wave Glider based GPS-A measurement have the potential to significantly increase the number and frequency of measurements of strain accumulation in Cascadia Subduction Zone and elsewhere.

  5. arXiv Measurement of the $\\pi^0$ electromagnetic transition form factor slope

    CERN Document Server

    Lazzeroni, C.; Romano, A.; Blazek, T.; Koval, M.; Ceccucci, A.; Danielsson, H.; Falaleev, V.; Gatignon, L.; Goy Lopez, S.; Hallgren, B.; Maier, A.; Peters, A.; Piccini, M.; Riedler, P.; Frabetti, P.L.; Gersabeck, E.; Kekelidze, V.; Madigozhin, D.; Misheva, M.; Molokanova, N.; Movchan, S.; Potrebenikov, Yu.; Shkarovskiy, S.; Zinchenko, A.; Rubin, P.; Baldini, W.; Cotta Ramusino, A.; Dalpiaz, P.; Fiorini, M.; Gianoli, A.; Norton, A.; Petrucci, F.; Savrié, M.; Wahl, H.; Bizzeti, A.; Bucci, F.; Iacopini, E.; Lenti, M.; Veltri, M.; Antonelli, A.; Moulson, M.; Raggi, M.; Spadaro, T.; Eppard, K.; Hita-Hochgesand, M.; Kleinknecht, K.; Renk, B.; Wanke, R.; Winhart, A.; Winston, R.; Bolotov, V.; Duk, V.; Gushchin, E.; Ambrosino, F.; Di Filippo, D.; Massarotti, P.; Napolitano, M.; Palladino, V.; Saracino, G.; Anzivino, G.; Imbergamo, E.; Piandani, R.; Sergi, A.; Cenci, P.; Pepe, M.; Costantini, F.; Doble, N.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.; Balev, S.; Collazuol, G.; DiLella, L.; Gallorini, S.; Goudzovski, E.; Lamanna, G.; Mannelli, I.; Ruggiero, G.; Cerri, C.; Fantechi, R.; Kholodenko, S.; Kurshetsov, V.; Obraztsov, V.; Semenov, V.; Yushchenko, O.; D'Agostini, G.; Leonardi, E.; Serra, M.; Valente, P.; Fucci, A.; Salamon, A.; Bloch-Devaux, B.; Peyaud, B.; Engelfried, J.; Coward, D.; Kozhuharov, V.; Litov, L.; Arcidiacono, R.; Bifani, S.; Biino, C.; Dellacasa, G.; Marchetto, F.; Numao, T.; Retière, F.

    2017-05-10

    The NA62 experiment collected a large sample of charged kaon decays in 2007 with a highly efficient trigger for decays into electrons. A measurement of the $\\pi^{0}$ electromagnetic transition form factor slope parameter from $1.11\\times10^{6}$ fully reconstructed $K^\\pm \\to \\pi^\\pm \\pi^0_D, \\; \\pi^0_D \\to e^+ e^- \\, \\gamma$ events is reported. The measured value $a = \\left(3.68 \\pm 0.57\\right)\\times 10^{-2}$ is in good agreement with theoretical expectations and previous measurements, and represents the most precise experimental determination of the slope in the time-like momentum transfer region.

  6. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall.

    Science.gov (United States)

    Zhu, Mingyong; Tan, Shuduan; Dang, Haishan; Zhang, Quanfa

    2011-12-01

    A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10m×2m×0.16m with a gradient of 20° (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources.

  7. Balanced gait generations of a two-legged robot on sloping surface

    Indian Academy of Sciences (India)

    Pandu Ranga Vundavilli; Dilip Kumar Pratihar

    2011-08-01

    In this paper, dynamically balanced gait generation problem of a 7-DOF two-legged robot moving up and down through the sloping surface is presented. The gait of the lower links during locomotion is obtained after assuming suitable trajectories for the swing leg and hip joint. The trunk motion is initially generated based on the concept of static balance, which is different from the well-known semi-inverse method and then checked for its dynamic balance calculated using the concept of Zero-Moment Point (ZMP). Lagrange–Euler formulation is attempted for the determination of joint torques. Average power consumption at each joint is then determined based on the computed torques. Moreover, the variations of dynamic balance margin and average power consumption are studied for both ascending and descending through the sloping surface. Both of them are found to be more for the ascending gait generation compared to those for the descending case. The effects of variations of the slope have also been studied on the average dynamic balance margin and power consumption for both the cases.

  8. A Genetic Algorithm for Locating the Multiscale Critical Slip Surface in Jointed Rock Mass Slopes

    Directory of Open Access Journals (Sweden)

    Qiang Xu

    2014-01-01

    Full Text Available The joints have great influence on the strength of jointed rock mass and lead to the multiscale, nonhomogeneous, and anisotropic characteristics. In order to consider these effects, a new model based on a genetic algorithm is proposed for locating the critical slip surface (CSS in jointed rock mass slope (JRMS from its stress field. A finite element method (FEM was employed to analyze the stress field. A method of calculating the mechanical persistence ratio (MPR was used. The calculated multiscale and anisotropic characteristics of the MPR were used in the fitness function of genetic algorithm (GA to calculate the factor of safety. The GA was used to solve optimization problems of JRMS stability. Some numerical examples were given. The results show that the multiscale and anisotropic characteristics of the MPR played an important role in locating the CSS in JRMS. The proposed model calculated the CSS and the factor of safety of the slope with satisfactory precision.

  9. Measurement of Slopes of a Deformed Object Corresponding to Different Directions with Digital Holography

    Institute of Scientific and Technical Information of China (English)

    LIU Cheng(刘诚); LI Liangyu(李良钰); LI Yinzhu(李银柱); CHEN Xiaotian(程笑天); LIU Zhigang(刘志刚); BO Feng(薄锋); ZHU Jianqiang(朱健强)

    2002-01-01

    A digital holographic method that can be used for the simultaneous measurement of slopes of a deformed object in different directions is described in this paper. In this method, two holograms are recorded numerically under the normal and deformed states of the specimen, and two object waves are numerically calculated from these two holograms. The slopes corresponding to different directions are measured by superposing the two object waves with appropriate shifts. It is a superior method in regard to the simple experiment setup, the flexibility in handing the data, and the high quality phase maps.

  10. 78 FR 66071 - Proposed Information Collection; Slope and Shaft Sinking Plans (Pertains to Surface Work Areas of...

    Science.gov (United States)

    2013-11-04

    ... Safety and Health Administration Proposed Information Collection; Slope and Shaft Sinking Plans (Pertains to Surface Work Areas of Underground Coal Mines) AGENCY: Mine Safety and Health Administration, Labor... information collection for Slope and Shaft Sinking Plans, 30 CFR 77.1900. DATES: All comments must...

  11. On the joint distribution of surface slopes for the fourth order nonlinear random sea waves

    Institute of Scientific and Technical Information of China (English)

    张书文; 孙孚; 管长龙

    1999-01-01

    Based upon the nonlinear model of Longuet-Higgins the joint distribution of wave surface slopes is theoretically investigated. It is shown that in the fourth order approximation, the distribution is given by truncated Gram-Charlier series. The types of wave-wave coupling interactions are related to the order of approximation to nonlinearity of sea surface, which eventually defines the truncated term of the Gram-Charlier series. For each order approximation, the coefficients in the series are modified comparatively to the corresponding ones for the previous order approximation. If the nonlinear effect of the kurtosis is considered, the wave surface must be as accurate at least as to the third order approximation, and with regard to skewness, the wave surface must be as accurate at least as to the fourth order approximation.

  12. Massachusetts Bay - Internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface for Massachusetts Bay. The...

  13. Robust Regression for Slope Estimation in Curriculum-Based Measurement Progress Monitoring

    Science.gov (United States)

    Mercer, Sterett H.; Lyons, Alina F.; Johnston, Lauren E.; Millhoff, Courtney L.

    2015-01-01

    Although ordinary least-squares (OLS) regression has been identified as a preferred method to calculate rates of improvement for individual students during curriculum-based measurement (CBM) progress monitoring, OLS slope estimates are sensitive to the presence of extreme values. Robust estimators have been developed that are less biased by…

  14. Lunar surface engineering properties experiment definition. Volume 2: Mechanics of rolling sphere-soil slope interaction

    Science.gov (United States)

    Hovland, H. J.; Mitchell, J. K.

    1971-01-01

    The soil deformation mode under the action of a rolling sphere (boulder) was determined, and a theory based on actual soil failure mechanism was developed which provides a remote reconnaissance technique for study of soil conditions using boulder track observations. The failure mechanism was investigated by using models and by testing an instrumented spherical wheel. The wheel was specifically designed to measure contact pressure, but it also provided information on the failure mechanism. Further tests included rolling some 200 spheres down sand slopes. Films were taken of the rolling spheres, and the tracks were measured. Implications of the results and reevaluation of the lunar boulder tracks are discussed.

  15. Crawling versus Walking Infants' Perception of Affordances for Locomotion over Sloping Surfaces.

    Science.gov (United States)

    Adolph, Karen E.; And Others

    1993-01-01

    Examined the behavior of 8.5-month-old crawling infants and 14-month-old walking toddlers in ascending and descending sloping walkways. Both groups overestimated their ability to ascend slopes. Toddlers hesitated most before descending 10 and 20 degree slopes, whereas infants hesitated most before descending 30 and 40 degree slopes. (MDM)

  16. Ion beam figuring of high-slope surfaces based on figure error compensation algorithm.

    Science.gov (United States)

    Dai, Yifan; Liao, Wenlin; Zhou, Lin; Chen, Shanyong; Xie, Xuhui

    2010-12-01

    In a deterministic figuring process, it is critical to guarantee high stability of the removal function as well as the accuracy of the dwell time solution, which directly influence the convergence of the figuring process. Hence, when figuring steep optics, the ion beam is required to keep a perpendicular incidence, and a five-axis figuring machine is typically utilized. In this paper, however, a method for high-precision figuring of high-slope optics is proposed with a linear three-axis machine, allowing for inclined beam incidence. First, the changing rule of the removal function and the normal removal rate with the incidence angle is analyzed according to the removal characteristics of ion beam figuring (IBF). Then, we propose to reduce the influence of varying removal function and projection distortion on the dwell time solution by means of figure error compensation. Consequently, the incident ion beam is allowed to keep parallel to the optical axis. Simulations and experiments are given to verify the removal analysis. Finally, a figuring experiment is conducted on a linear three-axis IBF machine, which proves the validity of the method for high-slope surfaces. It takes two iterations and about 9 min to successfully figure a fused silica sample, whose aperture is 21.3 mm and radius of curvature is 16 mm. The root-mean-square figure error of the convex surface is reduced from 13.13 to 5.86 nm.

  17. Measurements of slope currents and internal tides on the Continental Shelf and slope off Newport Beach, California

    Science.gov (United States)

    Rosenberger, Kurt J.; Noble, Marlene A.; Norris, Benjamin

    2014-01-01

    An array of seven moorings housing current meters and oceanographic sensors was deployed for 6 months at 5 sites on the Continental Shelf and slope off Newport Beach, California, from July 2011 to January 2012. Full water-column profiles of currents were acquired at all five sites, and a profile of water-column temperature was also acquired at two of the five sites for the duration of the deployment. In conjunction with this deployment, the Orange County Sanitation District deployed four bottom platforms with current meters on the San Pedro Shelf, and these meters provided water-column profiles of currents. The data from this program will provide the basis for an investigation of the interaction between the deep water flow over the slope and the internal tide on the Continental Shelf.

  18. Study on extracting method of single slope surface shape based on DEM:taking Wanzhou district of three gorges reservoir area as example

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qi-gang; YUAN Li-feng

    2007-01-01

    This paper focused on the extracting method of single slope shape. Applying the software of ARCGIS 9.0, DEM (digital elevation model) was established. From the DEM, topographic characters, including valleys and ridges were extracted. Some valley lines were extended in order to intersect with the ridges nearby. All slope were divided into different slope surface, which enclosed by valleys and ridges. And the slope surface shapes were defined three types, Line Slope, Upper-concave and lower-convex slope, Upper-convex and lower-concave slope, according to their functions. And the judge formula of single slope surface shape was brought forward. Taking Wanzhou District as test area, it indicates that auto-extracting method of single slope surface shape has high precision relatively. This study can provide references to the studies of region geological disasters prevention and cure.

  19. Determination of Critical Slip Surface of Soil Slope by New Complex Method

    Institute of Scientific and Technical Information of China (English)

    Li Liang; Chi Shichun; Lin Gao

    2006-01-01

    A new complex method is presented considering not only the improvement upon the "bad "design point, but also the diversity of the newly generated complex, which is obtained by replacing the "bad "design point with the better design point located at the line between the "bad "design point and the centroid of the remaining design points of the old complex. The new complex method is apphed to searching for the critical slip surface of two non-homogeneous soil slopes. The comparison of the results obtained by the new complex method with that by the basic complex method shows that the new complex method is much more likely to find the true critical surface for the randomly generated initial complex.

  20. Measurements and Slope Analyses of Quaternary Cinder Cones, Camargo Volcanic Field, Chihuahua, Mexico

    Science.gov (United States)

    Gallegos, M. I.; Espejel-Garcia, V. V.

    2012-12-01

    The Camargo volcanic field (CVF) covers ~3000 km2 and is located in the southeast part of the state of Chihuahua, within the Basin and Range province. The CVF represents the largest mafic alkali volcanic field in northern Mexico. Over a 300 cinder cones have been recognized in the Camargo volcanic field. Volcanic activity ranges from 4.7 to 0.09 Ma revealed by 40Ar/39Ar dating methods. Previous studies say that there is a close relationship between the cinder cone slope angle, due to mechanical weathering, and age. This technique is considered a reliable age indicator, especially in arid climates, such as occur in the CVF. Data were acquired with digital topographic maps (DRG) and digital elevation models (DEM) overlapped in the Global Mapper software. For each cone, the average radius (r) was calculated from six measurements, the height (h) is the difference between peak elevation and the altitude of the contour used to close the radius, and the slope angle was calculated using the equation Θ = tan-1(h/r). The slope angles of 30 cinder cones were calculated showing angles ranging from 4 to 15 degrees. A diffusion model, displayed by an exponential relationship between slope angle and age, places the ages of these 30 cones from 215 to 82 ka, within the range marked by radiometric methods. Future work include the analysis of more cinder cones to cover the whole CVF, and contribute to the validation of this technique.

  1. Slope Error Measurements of Parabolic troughs using the Reflected Image of the Absorber Tube

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, S.; Heinz, B.; Pottler, K.; Lupfer, E.

    2006-07-01

    A new fast method for optically measuring the reflector slope of parabolic troughs with high accuracy has been developed. It uses the reflection of the absorber tube in the concentrator as seen from some distance and is therefore called absorber reflection method. A digital camera is placed at a distant observation point perpendicular to the trough axis with the concentrator orientated towards it. Then, a set of pictures from the absorber tube reflection is taken with the concentrator in slightly different tilt angles. A specially developed image analysis algorithm detects the edges of the absorber tube in the reflected images. This information, along with the geometric relationship between the components of the set-up and the known approximately parabolic shape of the concentrator, is used to calculate the slopes perpendicular to the trough axis. Measurement results of a EuroTrough segment of four facets are presented and verified with results from a reference measurement using high-resolution close-range photogrammetry. The results show good agreement as well in statistical values as in local values of the reflector slope. In contrast to the photogrammetric data acquisition method, the new technique allows for drastically reduced measurement time. (Author)

  2. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sawhney, Kawal [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2016-05-15

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  3. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad.

    Science.gov (United States)

    Alcock, Simon G; Nistea, Ioana; Sawhney, Kawal

    2016-05-01

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM's autocollimator adds into the overall measured value of the mirror's slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  4. A shallow landslide analysis method consisting of contour line based method and slope stability model with critical slip surface

    Science.gov (United States)

    Tsutsumi, D.

    2015-12-01

    To mitigate sediment related disaster triggered by rainfall event, it is necessary to predict a landslide occurrence and subsequent debris flow behavior. Many landslide analysis method have been developed and proposed by numerous researchers for several decades. Among them, distributed slope stability models simulating temporal and spatial instability of local slopes are more essential for early warning or evacuation in area of lower part of hill-slopes. In the present study, a distributed, physically based landslide analysis method consisting of contour line-based method that subdivide a watershed area into stream tubes, and a slope stability analysis in which critical slip surface is searched to identify location and shape of the most instable slip surface in each stream tube, is developed. A target watershed area is divided into stream tubes using GIS technique, grand water flow for each stream tubes during a rainfall event is analyzed by a kinematic wave model, and slope stability for each stream tube is calculated by a simplified Janbu method searching for a critical slip surface using a dynamic programming method. Comparing to previous methods that assume infinite slope for slope stability analysis, the proposed method has advantage simulating landslides more accurately in spatially and temporally, and estimating amount of collapsed slope mass, that can be delivered to a debris flow simulation model as a input data. We applied this method to a small watershed in the Izu Oshima, Tokyo, Japan, where shallow and wide landslides triggered by heavy rainfall and subsequent debris flows attacked Oshima Town, in 2013. Figure shows the temporal and spatial change of simulated grand water level and landslides distribution. The simulated landslides are correspond to the uppermost part of actual landslide area, and the timing of the occurrence of landslides agree well with the actual landslides.

  5. Quantifying Slopes with Digital Elevation Models of the Verdugo Hills, California: Effects of Resolution

    Science.gov (United States)

    Fielding, E. J.; Burbank, D. W.; Duncan, C. C.

    1996-01-01

    Quantification of surface slope angles is valuable in a wide variety of earth sciences. Slopes measured from digital elevation models (DEMs) or other topographic data sets depend strongly on the length scale or window size used in the slope calculations.

  6. Subthreshold slope as a measure of interfacial trap density in pentacene films

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yongwoo; Park, Byoungnam, E-mail: metalpbn@hongik.ac.kr

    2016-01-29

    Electrical properties in organic field effect transistors (FETs) are dominated by charge transport in the accumulation layer, few molecular layers close to the gate dielectric. Through comparison of the subthreshold slope between monolayer (ML) and thick pentacene FETs, formation of the second layer islands on top of the complete first layer is found to be crucial in determining the charge transport in ML pentacene FETs. It is demonstrated that a pentacene ML field effect transistor (FET) is an excellent probe that can detect electronic states of organic semiconductors interfacing with the gate dielectric at nanometer scale. Far higher sub-threshold slope in ML FETs, as a measure of interfacial charge trap density, than that in thick pentacene FETs is translated that the path of the induced carriers in ML FETs is limited into the molecular layer interfacing with the gate dielectric with a high density of charge traps, while carriers in thicker films have alternative pathways through more electrically conductive layer above the first layer with much less trap density. - Highlights: • Sub-threshold slope is demonstrated to be a measure of interface traps. • For application to sensors, effective charge transport layer should be chosen. • Monolayer transistors can be used as a platform for probing localized states.

  7. Multi-scale Characterization and Modeling of Surface Slope Probability Distribution for ~20-km Diameter Lunar Craters

    Science.gov (United States)

    Mahanti, P.; Robinson, M. S.; Boyd, A. K.

    2013-12-01

    Craters ~20-km diameter and above significantly shaped the lunar landscape. The statistical nature of the slope distribution on their walls and floors dominate the overall slope distribution statistics for the lunar surface. Slope statistics are inherently useful for characterizing the current topography of the surface, determining accurate photometric and surface scattering properties, and in defining lunar surface trafficability [1-4]. Earlier experimental studies on the statistical nature of lunar surface slopes were restricted either by resolution limits (Apollo era photogrammetric studies) or by model error considerations (photoclinometric and radar scattering studies) where the true nature of slope probability distribution was not discernible at baselines smaller than a kilometer[2,3,5]. Accordingly, historical modeling of lunar surface slopes probability distributions for applications such as in scattering theory development or rover traversability assessment is more general in nature (use of simple statistical models such as the Gaussian distribution[1,2,5,6]). With the advent of high resolution, high precision topographic models of the Moon[7,8], slopes in lunar craters can now be obtained at baselines as low as 6-meters allowing unprecedented multi-scale (multiple baselines) modeling possibilities for slope probability distributions. Topographic analysis (Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) 2-m digital elevation models (DEM)) of ~20-km diameter Copernican lunar craters revealed generally steep slopes on interior walls (30° to 36°, locally exceeding 40°) over 15-meter baselines[9]. In this work, we extend the analysis from a probability distribution modeling point-of-view with NAC DEMs to characterize the slope statistics for the floors and walls for the same ~20-km Copernican lunar craters. The difference in slope standard deviations between the Gaussian approximation and the actual distribution (2-meter sampling) was

  8. Measurement of the $\\eta\\to 3\\pi^{0}$ slope parameter $\\alpha$ with the KLOE detector

    CERN Document Server

    Ambrosino, F; Antonelli, M; Archilli, F; Beltrame, P; Bencivenni, G; Bini, C; Bloise, C; Bocchetta, S; Bossi, F; Branchini, P; Campana, P; Capon, G; Capussela, T; Ceradini, F; Ciambrone, P; De Lucia, E; De Santis, A; De Simone, P; De Zorzi, G; Denig, A; Di Domenico, A; Di Donato, C; Di Micco, B; Dreucci, M; Felici, G; Ferrari, A; Fiore, S; Franzini, P; Gatti, C; Gauzzi, P; Giovannella, S; Jacewicz, M; Kluge, W; Kulikov, V; Lee-Franzini, J; Martini, M; Massarotti, P; Meola, S; Miscetti, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nguyen, F; Palutan, M; Passeri, A; Patera, V; Perfetto, F; Santangelo, P; Sciascia, B; Sciubba, A; Spadaro, T; Taccini, C; Tortora, L; Valente, P; Venanzoni, G; Versaci, R; Xu, G

    2010-01-01

    We present a measurement of the slope parameter $\\alpha$ for the $\\eta\\to 3\\pi^{0}$ decay, with the KLOE experiment at the DA$\\Phi$NE $\\phi$-factory, based on a background free sample of $\\sim$ 17 millions $\\eta$ mesons produced in $\\phi$ radiative decays. By fitting the event density in the Dalitz plot we determine $\\alpha = -0.0301 \\pm 0.0035\\,stat\\;_{-0.0035}^{+0.0022}\\,syst\\,$. The result is in agreement with recent measurements from hadro- and photo-production experiments.

  9. Multifactor analysis and simulation of the surface runoff and soil infiltration at different slope gradients

    Science.gov (United States)

    Huang, J.; Kang, Q.; Yang, J. X.; Jin, P. W.

    2017-08-01

    The surface runoff and soil infiltration exert significant influence on soil erosion. The effects of slope gradient/length (SG/SL), individual rainfall amount/intensity (IRA/IRI), vegetation cover (VC) and antecedent soil moisture (ASM) on the runoff depth (RD) and soil infiltration (INF) were evaluated in a series of natural rainfall experiments in the South of China. RD is found to correlate positively with IRA, IRI, and ASM factors and negatively with SG and VC. RD decreased followed by its increase with SG and ASM, it increased with a further decrease with SL, exhibited a linear growth with IRA and IRI, and exponential drop with VC. Meanwhile, INF exhibits a positive correlation with SL, IRA and IRI and VC, and a negative one with SG and ASM. INF was going up and then down with SG, linearly rising with SL, IRA and IRI, increasing by a logit function with VC, and linearly falling with ASM. The VC level above 60% can effectively lower the surface runoff and significantly enhance soil infiltration. Two RD and INF prediction models, accounting for the above six factors, were constructed using the multiple nonlinear regression method. The verification of those models disclosed a high Nash-Sutcliffe coefficient and low root-mean-square error, demonstrating good predictability of both models.

  10. Measurement of surface roughness

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with two 3 hours laboratory exercises that are part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The laboratories include a demonstration of the function of roughness measuring instruments plus a series of exercises illustrating roughness measurement...

  11. Theoretical analysis of reflected ray error from surface slope error and their application to the solar concentrated collector

    CERN Document Server

    Huang, Weidong

    2011-01-01

    Surface slope error of concentrator is one of the main factors to influence the performance of the solar concentrated collectors which cause deviation of reflected ray and reduce the intercepted radiation. This paper presents the general equation to calculate the standard deviation of reflected ray error from slope error through geometry optics, applying the equation to calculate the standard deviation of reflected ray error for 5 kinds of solar concentrated reflector, provide typical results. The results indicate that the slope error is transferred to the reflected ray in more than 2 folds when the incidence angle is more than 0. The equation for reflected ray error is generally fit for all reflection surfaces, and can also be applied to control the error in designing an abaxial optical system.

  12. Modification of ITU-R Rain Fade Slope Prediction Model Based on Satellite Data Measured at High Elevation Angle

    OpenAIRE

    2012-01-01

    Rain fade slope is one of fade dynamics behaviour used by system engineers to design fade mitigation techniques (FMT) for space-earth microwave links. Recent measurements found that fade slope prediction model proposed by ITU-R is unable to predict fade slope distribution accurately in tropical regions. Rain fade measurement was conducted  in Kuala Lumpur (3.3° N, 101.7° E) where located in heavy rain zone by receiving signal at 10.982 GHz (Ku-band) from MEASAT3 (91.5° E) on ...

  13. Three-dimensional critical slip surface locating and slope stability assessment for lava lobe of Unzen volcano

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Even Unzen volcano has been declared to be in a state of relative dormancy,the latest formed lava lobe No.11 now represents a potential slope failure mass based on the latest research.This paper concentrates on the stability of the lava lobe No.11 and its possible critical sliding mass.It proposes geographic information systems (GIS) based three-dimensional (3D) slope stability analysis models.It uses a 3D locating approach to identify the 3D critical slip surface and to analyze the 3D stability of the lava...

  14. A Simple Monte Carlo Method for Locating the Three-dimensional Critical Slip Surface of a Slope

    Institute of Scientific and Technical Information of China (English)

    XIE Mowen

    2004-01-01

    Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is applicable to the 3D case. In this paper, a simple Monte Carlo random simulation method is proposed to identify the 3D critical slip surface. Assuming the initial slip to be the lower part of a slip ellipsoid, the 3D critical slip surface is located by means of a minimized 3D safety factor. A column-based 3D slope stability analysis model is used to calculate this factor. In this study, some practical cases of known minimum safety factors and critical slip surfaces in 2D analysis are extended to 3D slope problems to locate the critical slip surfaces. Compared with the 2D result, the resulting 3D critical slip surface has no apparent difference in terms of only cross section, but the associated 3D safety factor is definitely higher.

  15. Effects of Slope and Aspect Variations on Satellite Surface Temperature Retrievals and Mesoscale Analysis in Mountainous Terrain.

    Science.gov (United States)

    Lipton, Alan E.

    1992-03-01

    Surface temperature retrieval in mountainous areas is complicated by the high variability of temperatures that can occur within a single satellite field of view. Temperatures depend in part on slope orientation relative to the sun, which can vary radically over very short distances. The surface temperature detected by a satellite is biased toward the temperatures of the sub-field-of-view terrain elements that most directly face the satellite. Numerical simulations were conducted to estimate the effects of satellite viewing geometry on surface temperature retrievals for a section of central Colorado. Surface temperatures were computed using a mesoscale model with a parameterization of subgrid variations in slope and aspect angles.The simulations indicate that the slope-aspect effect can lead to local surface temperature variations up to 30°C for autumn conditions in the Colorado mountains. For realistic satellite viewing conditions, these variations can give rise to biases in retrieved surface temperatures of about 3°C. Relative biases between retrievals from two satellites with different viewing angles can be over 6°C, which could lead to confusion when merging datasets. The bias computations were limited by the resolution of the available terrain height data (90 m). The results suggest that the biases would be significantly larger if the data resolution was fine enough to represent every detail of the real Colorado terrain or if retrievals were made in mountain areas that have a larger proportion of steep slopes than the Colorado Rockies. The computed bias gradients across the Colorado domain were not large enough to significantly alter the forcing of the diurnal upslope-downslope circulations, according to simulations in which surface temperature retrievals with view-dependent biases were assimilated into time-continuous analyses. View-dependent retrieval biases may be relevant to climatological analysts that rely on remotely sensed data, given that bias

  16. Numerical simulation of the observed near-surface East India Coastal Current on the continental slope

    Science.gov (United States)

    Mukherjee, A.; Shankar, D.; Chatterjee, Abhisek; Vinayachandran, P. N.

    2017-08-01

    We simulate the East India Coastal Current (EICC) using two numerical models (resolution 0.1° × 0.1°), an oceanic general circulation model (OGCM) called Modular Ocean Model and a simpler, linear, continuously stratified (LCS) model, and compare the simulated current with observations from moorings equipped with acoustic Doppler current profilers deployed on the continental slope in the western Bay of Bengal (BoB). We also carry out numerical experiments to analyse the processes. Both models simulate well the annual cycle of the EICC, but the performance degrades for the intra-annual and intraseasonal components. In a model-resolution experiment, both models (run at a coarser resolution of 0.25° × 0.25° ) simulate well the currents in the equatorial Indian Ocean (EIO), but the performance of the high-resolution LCS model as well as the coarse-resolution OGCM, which is good in the EICC regime, degrades in the eastern and northern BoB. An experiment on forcing mechanisms shows that the annual EICC is largely forced by the local alongshore winds in the western BoB and remote forcing due to Ekman pumping over the BoB, but forcing from the EIO has a strong impact on the intra-annual EICC. At intraseasonal periods, local (equatorial) forcing dominates in the south (north) because the Kelvin wave propagates equatorward in the western BoB. A stratification experiment with the LCS model shows that changing the background stratification from EIO to BoB leads to a stronger surface EICC owing to strong coupling of higher order vertical modes with wind forcing for the BoB profiles. These high-order modes, which lead to energy propagating down into the ocean in the form of beams, are important only for the current and do not contribute significantly to the sea level.

  17. Standard Test Method for Measuring Optical Distortion in Transparent Parts Using Grid Line Slope

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 When an observer looks through an aerospace transparency, relative optical distortion results, specifically in thick, highly angled, multilayered plastic parts. Distortion occurs in all transparencies but is especially critical to aerospace applications such as combat and commercial aircraft windscreens, canopies, or cabin windows. This is especially true during operations such as takeoff, landing, and aerial refueling. It is critical to be able to quantify optical distortion for procurement activities. 1.2 This test method covers the apparatus and procedures that are suitable for measuring the grid line slope (GLS) of transparent parts, including those that are small or large, thin or thick, flat or curved, or already installed. This test method is not recommended for raw material. 1.3 The values stated in SI units shall be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with it...

  18. Snowpack spatial variability: Towards understanding its effect on remote sensing measurements and snow slope stability

    Science.gov (United States)

    Marshall, Hans-Peter

    on a slope. The ability to accurately characterize snowpack properties at much higher resolutions and spatial extent than previously possible will hopefully help lead to a more complete understanding of spatial variability, its effect on remote sensing measurements and snow slope stability, and result in improvements in avalanche prediction and accuracy of SWE estimates from space.

  19. Slope Stability Analysis and Mitigation Measures in the Area of the Sighişoara Medieval Citadel

    Directory of Open Access Journals (Sweden)

    George-Cătălin Silvaş

    2014-07-01

    Full Text Available The Sighişoara Medieval Citadel has a very big importance to the cultural, architectural and historical heritage of Romania. The citadel is situated on the Fortress Hill and it is the only inhabited fortress in Romania. But underneath the beauty of the Citadel lies some problems that only the inhabitants and the authorities know. These problems consist in the presence of the slope instability phenomenon. Throughout the years the slopes of the Fortress Hill, because of a series of factors, became instable. Thus landslides occurred that affected the Citadel fortress walls. There are still some areas of the walls that have never been reconstructed yet. So a slope stability analysis shall show if the slope instability phenomenon is still active and the mitigation measures recommended will stop the activity of this phenomenon.

  20. [Sediment content and nitrogen and phosphorus load characteristics of surface runoff on bamboo forest slopes: a simulation test].

    Science.gov (United States)

    Zhang, Li-Ping; Fu, Xing-Tao; Wu, Xi-Yuan

    2012-04-01

    To understand the load characteristics and related mechanisms of surface runoff on two management types of bamboo forests (bamboo timber forest and bamboo shoot forest) slopes (gradient 20 degrees) in Zhejiang Province, this study measured the runoff volume, sediment yield, its total nitrogen (TN) and total phosphorus (TP) concentrations of runoff under six artificial simulated rainfall intensity (31.8-114.0 mm x h(-1)). In bamboo timber forest, the total runoff volume and runoff coefficient were higher, but the runoff sediment content and the total sediment yield were far lower, as compared with those in bamboo shoot forest. The runoff TN concentration in bamboo shoot forest decreased with increasing rainfall intensity. Under the same rainfall intensity, the runoff TN concentration in bamboo shoot forest was 5-6 times of that in bamboo timber forest. The runoff TP concentration was higher in bamboo timber forest than in bamboo shoot forest, but the TP loss from the sediment runoff in bamboo shoot forest was hundreds times of that in bamboo timber forest. During the processes of the TN and TP losses from the sediment runoff, the TN and TP concentrations at the prophase of runoff yield played a cardinal role, while the runoff volume and sediment yield at the anaphase played a decisive role.

  1. Slope-Velocity-Equilibrium and evolution of surface roughness on a stony hillslope

    Science.gov (United States)

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and bed morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow ...

  2. Mathematical modelling of stability of closing slopes in large-scale surface coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Kloss, K. (Stavebni Geologie, Prague (Czechoslovakia))

    1990-05-01

    Describes methods of modelling stability of slopes of the Krusne Hory mountains in North Bohemian brown coal mines using the finite element method and a large IBM computer, with output on a Digigraph plotter. Briefly discusses results for the Merkur, Jansky and Jiretin mines, illustrating their geological profiles with diagrams of finite element networks. 4 refs.

  3. Lumbar lordosis and sacral slope in lumbar spinal stenosis: standard values and measurement accuracy.

    Science.gov (United States)

    Bredow, J; Oppermann, J; Scheyerer, M J; Gundlfinger, K; Neiss, W F; Budde, S; Floerkemeier, T; Eysel, P; Beyer, F

    2015-05-01

    Radiological study. To asses standard values, intra- and interobserver reliability and reproducibility of sacral slope (SS) and lumbar lordosis (LL) and the correlation of these parameters in patients with lumbar spinal stenosis (LSS). Anteroposterior and lateral X-rays of the lumbar spine of 102 patients with LSS were included in this retrospective, radiologic study. Measurements of SS and LL were carried out by five examiners. Intraobserver correlation and correlation between LL and SS were calculated with Pearson's r linear correlation coefficient and intraclass correlation coefficients (ICC) were calculated for inter- and intraobserver reliability. In addition, patients were examined in subgroups with respect to previous surgery and the current therapy. Lumbar lordosis averaged 45.6° (range 2.5°-74.9°; SD 14.2°), intraobserver correlation was between Pearson r = 0.93 and 0.98. The measurement of SS averaged 35.3° (range 13.8°-66.9°; SD 9.6°), intraobserver correlation was between Pearson r = 0.89 and 0.96. Intraobserver reliability ranged from 0.966 to 0.992 ICC in LL measurements and 0.944-0.983 ICC in SS measurements. There was an interobserver reliability ICC of 0.944 in LL and 0.990 in SS. Correlation between LL and SS averaged r = 0.79. No statistically significant differences were observed between the analyzed subgroups. Manual measurement of LL and SS in patients with LSS on lateral radiographs is easily performed with excellent intra- and interobserver reliability. Correlation between LL and SS is very high. Differences between patients with and without previous decompression were not statistically significant.

  4. Determining the Critical Slip Surface of Three-Dimensional Soil Slopes from the Stress Fields Solved Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-chuan Yang

    2016-01-01

    Full Text Available The slope stability problem is an important issue for the safety of human beings and structures. The stability analysis of the three-dimensional (3D slope is essential to prevent landslides, but the most important and difficult problem is how to determine the 3D critical slip surface with the minimum factor of safety in earth slopes. Basing on the slope stress field with the finite element method, a stability analysis method is proposed to determine the critical slip surface and the corresponding safety factor of 3D soil slopes. Spherical and ellipsoidal slip surfaces are considered through the analysis. The moment equilibrium is used to compute the safety factor combined with the Mohr-Coulomb criteria and the limit equilibrium principle. Some assumptions are introduced to reduce the search range of center points and the radius of spheres or ellipsoids. The proposed method is validated by a classical 3D benchmark soil slope. Simulated results indicate that the safety factor of the benchmark slope is 2.14 using the spherical slip surface and 2.19 using the ellipsoidal slip surface, which is close to the results of previous methods. The simulated results indicate that the proposed method can be used for the stability analysis of a 3D soil slope.

  5. STUDY ON THE DYNAMIC PROCESS OF RILL EROSION OF LOESS SLOPE SURFACE

    Institute of Scientific and Technical Information of China (English)

    Zhanbin LI; Kexin LU; Wenfeng DING

    2001-01-01

    Rill erosion is a dominant process of morphological evolution of the Loess Plateau in China, and deliveries much loess sediment to rivers. Data from two flume experiments conducted on the bare and glass-covered beds indicated that the fill flow develops into a series of rolling waves. The shear stress on the rill bed distributes unevenly both spatially and temporally. A new method based on the energy conservation law is proposed in this study. Thus the relationship between the runoff energy consumption from the interaction of water flow and slope bed and soil detachment is formulated. The results showed that the data for the soil detachment rate on slope (Dr) and the energy consumption of runoff (E1) fitted well with newly-developed function. The rill erosion occurs when the runoff energy consumption exceeds a critical value.

  6. Oxygen uptake efficiency slope as a useful measure of cardiorespiratory fitness in morbidly obese women.

    Science.gov (United States)

    Onofre, Tatiana; Oliver, Nicole; Carlos, Renata; Felismino, Amanda; Corte, Renata Cristina; Silva, Eliane; Bruno, Selma

    2017-01-01

    Cardiopulmonary assessment through oxygen uptake efficiency slope (OUES) data has shown encouraging results, revealing that we can obtain important clinical information about functional status. Until now, the use of OUES has not been established as a measure of cardiorespiratory capacity in an obese adult population, only in cardiac and pulmonary diseases or pediatric patients. The aim of this study was to characterize submaximal and maximal levels of OUES in a sample of morbidly obese women and analyze its relationship with traditional measures of cardiorespiratory fitness, anthropometry and pulmonary function. Thirty-three morbidly obese women (age 39.1 ± 9.2 years) performed Cardiopulmonary Exercise Testing (CPX) on a treadmill using the ramp protocol. In addition, anthropometric measurements and pulmonary function were also evaluated. Maximal and submaximal OUES were measured, being calculated from data obtained in the first 50% (OUES50%) and 75% (OUES75%) of total CPX duration. In one-way ANOVA analysis, OUES did not significantly differ between the three different exercise intensities, as observed through a Bland-Altman concordance of 58.9 mL/min/log(L/min) between OUES75% and OUES100%, and 0.49 mL/kg/min/log(l/min) between OUES/kg75% and OUES/kg100%. A strong positive correlation between the maximal (r = 0.79) and submaximal (r = 0.81) OUES/kg with oxygen consumption at peak exercise (VO2peak) and ventilatory anaerobic threshold (VO2VAT) was observed, and a moderate negative correlation with hip circumference (r = -0.46) and body adiposity index (r = -0.50) was also verified. There was no significant difference between maximal and submaximal OUES, showing strong correlations with each other and oxygen consumption (peak and VAT). These results indicate that OUES can be a useful parameter which could be used as a cardiopulmonary fitness index in subjects with severe limitations to perform CPX, as for morbidly obese women.

  7. Modification of ITU-R Rain Fade Slope Prediction Model Based on Satellite Data Measured at High Elevation Angle

    Directory of Open Access Journals (Sweden)

    Hassan Dao

    2012-01-01

    Full Text Available Rain fade slope is one of fade dynamics behaviour used by system engineers to design fade mitigation techniques (FMT for space-earth microwave links. Recent measurements found that fade slope prediction model proposed by ITU-R is unable to predict fade slope distribution accurately in tropical regions. Rain fade measurement was conducted  in Kuala Lumpur (3.3° N, 101.7° E where located in heavy rain zone by receiving signal at 10.982 GHz (Ku-band from MEASAT3 (91.5° E on 77.4° elevation angle. The measurement has been carried out for one year period. Fade slope S parameter on ITU-R prediction model has been investigated. New parameter is proposed for the fade slope prediction modeling based on measured data at high elevation angle, Ku-band. ABSTRAK: Cerun hujan pudar adalah salah satu dinamik tingkah laku pudar yang digunakan oleh jurutera sistem untuk mereka bentuk teknik-teknik pengurangan pudar (FMT bagi link gelombang mikro ruang bumi. Ukuran baru-baru ini mendapati bahawa cerun pudar ramalan model yang dicadangkan oleh ITU-R tidak mampu untuk meramalkan pengagihan cerun pudar tepat di kawasan tropika. Pengukuran  hujan pudar telah dijalankan di Kuala Lumpur (3.3° N, 101.7° E yang terletak di kawasan hujan lebat dengan menerima isyarat pada 10,982 GHz (Ku-band dari MEASAT3 (91.5° E pada sudut ketinggian 77.4°. Pengukuran telah dijalankan untuk tempoh satu tahun. Parameter cerun pudar S pada model ramalan ITU-R telah disiasat. Parameter baru adalah dicadangkan untuk pemodelan cerun pudar ramalan berdasarkan data yang diukur pada sudut paras ketinggian, Ku-band.KEYWORDS: fade slope; ITU-R; fade mitigation techniques; sampling time interval

  8. Surface flow measurements from drones

    Science.gov (United States)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  9. An Improved Particle Swarm Optimization Algorithm with Harmony Strategy for the Location of Critical Slip Surface of Slopes

    Institute of Scientific and Technical Information of China (English)

    LI Liang; CHU Xue-song

    2011-01-01

    The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy can be adopted instead of the three parameters which are required in the original particle swarm optimization algorithm to update the positions of all the particles. The improved particle swarm optimization is used in the location of the critical slip surface of soil slope, and it is found that the improved particle swarm optimization algorithm is insensitive to the two parameters while the original particle swarm optimization algorithm can be sensitive to its three parameters.

  10. Environmental Life Cycle Assessment Model for Soil Bioengineering Measures on Infrastructure Slopes

    Science.gov (United States)

    Hoerbinger, Stephan; Obriejetan, Michael

    2015-04-01

    Soil bioengineering techniques can be a helpful instrument for civil engineers taking into account not only technical but also ecological, socio-economic and sustainability aspects. Environmental Life Cycle Assessment (LCA) models can serve as supplementary evaluation methods to economic analyses, taking into account the resource demand and environmental burdens of engineering structures. The presented LCA model includes the functional grade of structures in addition to environmental aspects. When using vegetation as living construction material, several factors have to be considered. There is the provision of ecosystem services of plants, such as the stabilization of the slope through its root-system, CO2 sequestration through biomass production et cetera. However, it must be noted that vegetation can cause security issues on infrastructure facilities and entail costs through the necessity of maintenance works. For this reason, it is necessary to already define the target systems during the planning phase of a soil bioengineering structure. In this way, necessary measures can be adapted in all life cycles of a structure. The objective of the presented LCA model is to serve as a basis for the definition of target systems. In the designed LCA model the soil bioengineering structures are divided into four life phases; construction phase, operational phase, end of life phase and subsequent use phase. A main objective of the LCA model is the understanding of the "Cumulative Energy Demand" (CED) and "Global Warming Potential" (GWP) of soil bioengineering structures during all life cycle phases. Additionally, the biomass production and the CO2 sequestration potential of the used plants are regarded as well as the functional integrity of the soil bioengineering system. In the life phase of soil bioengineering structures, a major part of the energy input is required during the construction phase. This is mainly due to the cumulative energy demand of the inert materials

  11. Measurements of soil temperature for monitoring of the soil water behavior in an embankment slope during periodic rainfall

    Science.gov (United States)

    Yoshioka, M.; Takakura, S.; Ishizawa, T.; Sakai, N.

    2013-12-01

    One of the most common causes of slope disaster (e.g. landslide, slope failure and debris flow) is heavy rainfall. Distributions of soil moisture and soil suction stress are changed by rain water infiltration. Monitoring of soil water behavior is crucial for prediction of the slope disaster. This study focuses on soil temperatures of a slope as a detector for monitoring soil water behavior. Soil temperature is varied by soil water condition, this is, infiltrating water transports thermal energy downward and thermal property of soil is shifted by containing of soil water. The purpose of this study is to detect the changes in soil water behavior caused by infiltration of rainfalls using measurement of soil temperature. For this purpose, we had carried out the measurements of soil temperature during various rainfalls (Yoshioka et al., 2013). In addition, we measured soil temperature and soil water content at several depths in a slope of an experimental embankment during various intensities of periodic and/or continuous rainfalls. In this presentation, we represent the details of the experiments and the results. Experiments were performed using the experimental embankment at NIED in Japan, which is about 7.3 meters tall and 27 meters wide. The embankment is located in a large-scale rainfall simulator. This facility is about 73 meters long, 48 meters wide and 20 meters tall. We measured soil temperature and volumetric water contents in the slope of the embankment, meteorological condition and rain water temperature. The rainfall intensities were 30, 60, 90 and 120 mm/h. The artificial rainfalls were carried out 10th, 17th, 24th, 31st, May and 10th, 11th, 12th June, 2013. As the results, soil temperature at many points in all experimental days rose caused by rainfalls, but the temperature at some points didn't change. We had two forms of soil temperature changes; one was a steep rise and the other was a gradual rise. In the case of periodic rainfall, soil temperature at

  12. Sea surface wind speed estimation from space-based lidar measurements

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2008-02-01

    Full Text Available Global satellite observations of lidar backscatter measurements acquired by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO mission and collocated sea surface wind speed data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E, are used to investigate the relation between wind driven wave slope variance and sea surface wind speed. The new slope variance – wind speed relation established from this study is similar to the linear relation from Cox-Munk (1954 and the log-linear relation from Wu (1972, 1990 for wind speed larger than 7 m/s and 13.3 m/s, respectively. For wind speed less than 7 m/s, the slope variance is proportional to the square root of the wind speed, assuming a two dimensional isotropic Gaussian wave slope distribution. This slope variance – wind speed relation becomes linear if a one dimensional Gaussian wave slope distribution is assumed. Contributions from whitecaps and subsurface backscattering are effectively removed by using 532 nm lidar depolarization measurements. This new slope variance – wind speed relation is used to derive sea surface wind speed from CALIPSO single shot lidar measurements (70 m spot size, after correcting for atmospheric attenuation. The CALIPSO wind speed result agrees with the collocated AMSR-E wind speed, with 1.2 m/s rms error.

  13. Open questions in surface topography measurement: a roadmap

    Science.gov (United States)

    Leach, Richard; Evans, Christopher; He, Liangyu; Davies, Angela; Duparré, Angela; Henning, Andrew; Jones, Christopher W.; O'Connor, Daniel

    2015-03-01

    principles for statistically stationary, random surfaces. For rougher surfaces, correlations can be found experimentally for specific manufacturing processes. Improvements in computational methods encourage us to revisit light scattering as a powerful and versatile tool to investigate surface and thin film topographies, potentially providing information on both topography and defects over large areas at high speed. Future scattering techniques will be applied for complex film systems and for sub-surface damage measurement, but more research is required to quantify and standardise such measurements. A fundamental limitation of all topography measurement systems is their finite spatial bandwidth, which limits the slopes that they can detect. The third section ‘Optical measurements of surfaces containing high slope angles’ discusses this limitation and potential methods to overcome it. In some cases, a rough surface can allow measurement of slopes outside the classical optics limit, but more research is needed to fully understand this process. The last section ‘What are the challenges for high dynamic range surface measurement?’ presents the challenge facing metrologists by the use of surfaces that need measurement systems with very high spatial and temporal bandwidths, for example, those found in roll-to-roll manufacturing. High resolution, large areas and fast measurement times are needed, and these needs are unlikely to be fulfilled by developing a single all-purpose instrument. A toolbox of techniques needs to be developed which can be applied for any specific manufacturing scenario. The functional significance of surface topography has been known for centuries. Mirrors are smooth. Sliding behaviour depends on roughness. We have been measuring surfaces for centuries, but we still face many challenges. New manufacturing paradigms suggest that we need to make rapid measurements online that relate to the functional performance of the surface. This first

  14. Tailored Voltage Waveforms in an SF6 /O2 discharge: slope asymmetry and its effect on surface nanotexturing of silicon

    Science.gov (United States)

    Fischer, G.; Drahi, E.; Poulain, G.; Bruneau, B.; Johnson, E. V.

    2016-09-01

    The nanotexturing of the surface of a crystalline silicon (c-Si) wafer for improved photovoltaic performance can be achieved through the use of a SF6 /O2 capacitively coupled reactive ion etching plasma. In this study, we attempt to modify the texturing conditions by taking advantage of slope asymmetries of Tailored Voltage Waveform (TVW) excitation. We show that TVW shapes resembling ``sawtooths'', presenting a large slope asymmetry, induce high ionization asymmetries in the discharge, and that the dominance of this effect strongly depends on both gas mixture and pressure. These asymmetries have been previously observed in other electronegative gas and are due to differing plasma sheath dynamics at powered and grounded electrode in a discharge operating in drift-ambipolar mode. The texturing of c-Si in SF6 /O2 occurs through competing mechanisms, including etching by fluorine radicals and in-situ deposition of micro-masking species. The relative fluxes of etching and passivating species are expected to be strongly varied due to the plasma asymmetry. Morphological and optical characterization of textured c-Si surfaces will give more insight into both the plasma properties and the mechanisms involved in dry nanotexturing. This project has been supported by the French Government in the frame of the program of investment for the future (Programme d'Investissement d'Avenir - ANR-IEED-002-01).

  15. Spatial Heterogeneity of Loess Tilled Slope Surface Roughness%黄土坡耕地地表糙度的空间异质性研究

    Institute of Scientific and Technical Information of China (English)

    张莉; 张青峰; 赵龙山; 王健; 吴发启

    2014-01-01

    Objective]The objective of this paper is to reveal the spatial heterogeneity of surface roughness of 4 typical loess tilled slopes during different erosive stages under a micro-scale (2 cm×2 cm) condition.[Method]When slopes with 4 different gradients and tillage measures were prepared (artificial backhoe, artificial digging, contour tillage and straight cultivated slope (check), an erosive rainfall with a rainfall intensity of 60 mm/h was carried out. Soil surface roughness relative elevation data points were taken by a laser scanner and analyzed with both the semivariogram function and fractal dimension models.[Result]The result of classical statistical analysis showed that the loess tillage slope surface roughness has a weak spatial variability. The result of the semivariogram analysis indicated that the loess tilled slope surface roughness had a higher spatial autocorrelation, their spatial autocorrelation scale of surface roughness ranged from 2.02 m to 3.82 m. The spatial heterogeneity caused by the spatial structure characteristic accounted for the greater proportion of the total heterogeneity. The fractal dimension analysis showed that the surface roughness had good fractal features, and it ranged from 1.59 to 1.91. With the increase of gradient, the spatial distribution of slope surface roughness tended to complex, its spatial heterogeneity was stronger. The spatial heterogeneities of the artificial backhoe (AB), artificial digging (AD) and contour tillage (CT) increase in turn within the scope of the small scale, and had a good effect on soil and water conservation.[Conclusion]The main reason for the differences of the spatial heterogeneity of surface roughness is the spatial structural characteristics formed by the integrated interaction of human farming and slope and the artificial cultivation. The space configuration pattern of surface roughness is mainly controlled by slope gradient factor in a smaller scale range, and by the rainfall with its

  16. TU-G-204-03: Dynamic CT Myocardial Perfusion Measurement Using First Pass Analysis and Maximum Slope Models

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, L; Ziemer, B; Sadeghi, B; Javan, H; Lipinski, J; Molloi, S [University of California, Irvine, CA (United States)

    2015-06-15

    Purpose: To evaluate the accuracy of dynamic CT myocardial perfusion measurement using first pass analysis (FPA) and maximum slope models. Methods: A swine animal model was prepared by percutaneous advancement of an angioplasty balloon into the proximal left anterior descending (LAD) coronary artery to induce varying degrees of stenosis. Maximal hyperaemia was achieved in the LAD with an intracoronary adenosine drip (240 µg/min). Serial microsphere and contrast (370 mg/mL iodine, 30 mL, 5mL/s) injections were made over a range of induced stenoses, and dynamic imaging was performed using a 320-row CT scanner at 100 kVp and 200 mA. The FPA CT perfusion technique was used to make vessel-specific myocardial perfusion measurements. CT perfusion measurements using the FPA and maximum slope models were validated using colored microspheres as the reference gold standard. Results: Perfusion measurements using the FPA technique (P-FPA) showed good correlation with minimal offset when compared to perfusion measurements using microspheres (P- Micro) as the reference standard (P -FPA = 0.96 P-Micro + 0.05, R{sup 2} = 0.97, RMSE = 0.19 mL/min/g). In contrast, the maximum slope model technique (P-MS) was shown to underestimate perfusion when compared to microsphere perfusion measurements (P-MS = 0.42 P -Micro −0.48, R{sup 2} = 0.94, RMSE = 3.3 mL/min/g). Conclusion: The results indicate the potential for significant improvements in accuracy of dynamic CT myocardial perfusion measurement using the first pass analysis technique as compared with the standard maximum slope model.

  17. Scale effects in Hortonian surface runoff on agricultural slopes in West Africa: Field data and models

    NARCIS (Netherlands)

    Giesen, van de N.; Stomph, T.J.; Ajayi, A.E.; Bagayoko, F.

    2011-01-01

    This article provides an overview of both experimental and modeling research carried out over the past 15 years by the authors addressing scaling effects in Hortonian surface runoff. Hortonian surface runoff occurs when rainfall intensity exceeds infiltration capacity of the soil. At three sites in

  18. Time prediction of an onset of shallow landslides based on the monitoring of the groundwater level and the surface displacement at different locations on a sandy model slope

    Science.gov (United States)

    Sasahara, Katsuo

    2016-04-01

    Location of monitoring of the deformation and the groundwater level in a slope is important for time-prediction of an onset of shallow landslides based on the monitoring. The analysis of the monitored data of the surface displacement and the groundwater level at different locations in sandy model slope under artificial rainfall was conducted in this study. The monitored data showed that the surface displacement increased with the increase of the groundwater level significantly. Then the analysis of the monitored data revealed that the relation between the surface displacement and the groundwater level can be modified as hyperbolic curve. The surface displacement grew larger and maximum groundwater level was smaller at farther location from the toe of the slope. Time-prediction of an onset of a landslide based on the monitored data at different location on the slope was proposed as following procedures. (1) To make a regression equation for the relation between the surface displacement and the groundwater level based on the monitored data at any time before the failure, (2) To make a regression equation for the relation between the time and the groundwater level based on the same data with (1), and (3) To incorporate the equation for the relation between the time and the groundwater level into that between the surface displacement and the groundwater level to derive the time - the surface displacement relation. (4) To derive the time - the inverse of the surface displacement velocity from the equation for the time - the surface displacement relation. The equation for the time - the surface displacement and the equation for the time - the inverse of the surface displacement velocity could simulate the actual phenomena of the slope well based on the monitored data at any location on the model slope.

  19. 3D shape measurement of optical free-form surface based on fringe projection

    Science.gov (United States)

    Li, Shaohui; Liu, Shugui; Zhang, Hongwei

    2011-05-01

    Present a novel method of 3D shape measurement of optical free-from surface based on fringe projection. A virtual reference surface is proposed which can be used to improve the detection efficiency and realize the automation of measuring process. Sinusoidal fringe patterns are projected to the high reflected surface of the measured object. The deflection fringe patterns that modulated by the object surface are captured by the CCD camera. The slope information can be obtained by analyzing the relationship between the phase deflectometry and the slope of the object surface. The wave-front reconstruction method is used to reconstruct the surface. With the application of fringe projection technology the accuracy of optical free-form surfaces measurement could reach the level of tens of micrometer or even micrometer.

  20. A Preliminary Study on the Measurement of Sediment Concentration in Hill-Slope Runoff with an Electrolyte Tracer

    Directory of Open Access Journals (Sweden)

    Xiaonan Shi Fan Zhang

    2012-01-01

    Full Text Available Sediment concentration in hill-slope runoff is an important index for soil erosion. Developing a reliable and portable measuring system of sediment concentration is a core issue for soil and water conservation study, especially for the Tibetan Plateau under unfavorable climate and terrain conditions for field investigation. Challenges include uneven distribution of sediment across a runoff section as well as difficulty in detecting a wide range of particle sizes. An electrolyte tracer, with the advantage of uniform distribution and its widely used electric-conductivity sensor, can avoid the problems of direct measurement of sediment. A new measurement method of sediment concentration in runoff with an electrolyte tracer is proposed based on a premise that sediment concentration is closely correlated with hydrodynamic dispersion coefficient of solute in runoff. In this study, an experiment system of hill-slope runoff with an electrolyte tracer and sediments is first designed. Second, two model parameters in the advective-dispersive equation of solute transport, flow velocity and diffusion coefficient, are inversely estimated by calibrating the observed concentrations of an electrolyte tracer. And third, the relationship between sediment concentrations and hydrodynamic dispersion coefficients are defined through specified regression. As a result, a measurement system of sediment concentration in hill-slope runoff with an electrolyte tracer is primarily established by integrating the relationship of variables, experiment system, and model theory.

  1. Development of a high-performance gantry system for a new generation of optical slope measuring profilers

    Energy Technology Data Exchange (ETDEWEB)

    Assoufid, Lahsen, E-mail: assoufid@aps.anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Brown, Nathan; Crews, Dan [ALIO Industries, 11919 I-70 Frontage Road N, Unit 119, Wheat Ridge, CO 80033 (United States); Sullivan, Joseph; Erdmann, Mark; Qian, Jun; Jemian, Pete [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Yashchuk, Valeriy V. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Takacs, Peter Z. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Artemiev, Nikolay A.; Merthe, Daniel J.; McKinney, Wayne R. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Siewert, Frank; Zeschke, Thomas [Helmholtz Zentrum Berlin/ BESSY-II, Institut für Nanometer Optik und Technologie, Albert-Einstein-Strasse 15 12489 Berlin (Germany)

    2013-05-11

    A new high-performance metrology gantry system has been developed within the scope of collaborative efforts of optics groups at the US Department of Energy synchrotron radiation facilities as well as the BESSY-II synchrotron at the Helmholtz Zentrum Berlin (Germany) and the participation of industrial vendors of x-ray optics and metrology instrumentation directed to create a new generation of optical slope measuring systems (OSMS) [1]. The slope measurement accuracy of the OSMS is expected to be <50 nrad, which is strongly required for the current and future metrology of x-ray optics for the next generation of light sources. The fabricated system was installed and commissioned (December 2012) at the Advanced Photon Source (APS) at Argonne National Laboratory to replace the aging APS Long Trace Profiler (APS LTP-II). Preliminary tests were conducted (in January and May 2012) using the optical system configuration of the Nanometer Optical Component Measuring Machine (NOM) developed at Helmholtz Zentrum Berlin (HZB)/BESSY-II. With a flat Si mirror that is 350 mm long and has 200 nrad rms nominal slope error over a useful length of 300 mm, the system provides a repeatability of about 53 nrad. This value corresponds to the design performance of 50 nrad rms accuracy for inspection of ultra-precise flat optics.

  2. Spatially resolved surface topography retrieved from far-field intensity scattering measurements.

    Science.gov (United States)

    Zerrad, Myriam; Lequime, Michel; Amra, Claude

    2014-02-01

    A far-field setup based on the fast and simultaneous recording of 1 million intensity angle-resolved-light-scattering patterns allows both to reconstruct surface topography and to cancel local defects in this topography. A spectral analysis is performed on measured data and allows to extract roughness and slopes mapping of a surface taking into account the spectral bandpass.

  3. Occurrence of agrochemicals in surface waters of shallow soils and steep slopes cropped to tobacco

    Directory of Open Access Journals (Sweden)

    Letícia Sequinatto

    2013-01-01

    Full Text Available Tobacco cultivation in shallow soils and steep landscape under intense use of agrochemicals contributes to environment degradation. In this study, we assessed the concentration of agrochemicals in draw wells used for human consumption and a creek in a small catchment predominantly cropped to tobacco. Chlorpyrifos, flumetralin, and iprodione were determined by gas chromatography with electron capture detection, while imidalcloprid, atrazine, simazine, and clomazone were quantified by high-performance liquid chromatography with UV detection. Considering all sampling sites, all agrochemicals were detected at least once, except for flumetralin. The occurrence of agrochemicals in tobacco crops is a consequence of their fast transfer to surface water.

  4. Automated suppression of errors in LTP-II slope measurements of x-ray optics. Part 2: Specification for automated rotating/flipping/aligning system

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Zulfiqar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yashchuk, Valeriy V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-07-11

    Systematic error and instrumental drift are the major limiting factors of sub-microradian slope metrology with state-of-the-art x-ray optics. Significant suppression of the errors can be achieved by using an optimal measurement strategy suggested in [Rev. Sci. Instrum. 80, 115101 (2009)]. With this series of LSBL Notes, we report on development of an automated, kinematic, rotational system that provides fully controlled flipping, tilting, and shifting of a surface under test. The system is integrated into the Advanced Light Source long trace profiler, LTP-II, allowing for complete realization of the advantages of the optimal measurement strategy method. We provide details of the system?s design, operational control and data acquisition. The high performance of the system is demonstrated via the results of high precision measurements with a spherical test mirror.

  5. Automated suppression of errors in LTP-II slope measurements with x-ray optics. Part1: Review of LTP errors and methods for the error reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Zulfiqar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yashchuk, Valeriy V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-05-11

    Systematic error and instrumental drift are the major limiting factors of sub-microradian slope metrology with state-of-the-art x-ray optics. Significant suppression of the errors can be achieved by using an optimal measurement strategy suggested in [Rev. Sci. Instrum. 80, 115101 (2009)]. With this series of LSBL Notes, we report on development of an automated, kinematic, rotational system that provides fully controlled flipping, tilting, and shifting of a surface under test. The system is integrated into the Advanced Light Source long trace profiler, LTP-II, allowing for complete realization of the advantages of the optimal measurement strategy method. We provide details of the system’s design, operational control and data acquisition. The high performance of the system is demonstrated via the results of high precision measurements with a spherical test mirror.

  6. Numerical calculation of light scattering from metal and dielectric randomly rough Gaussian surfaces using microfacet slope probability density function based method

    Science.gov (United States)

    Wang, Shouyu; Xue, Liang; Yan, Keding

    2017-07-01

    Light scattering from randomly rough surfaces is of great significance in various fields such as remote sensing and target identification. As numerical methods can obtain scattering distributions without complex setups and complicated operations, they become important tools in light scattering study. However, most of them suffer from huge computing load and low operating efficiency, limiting their applications in dynamic measurements and high-speed detections. Here, to overcome these disadvantages, microfacet slope probability density function based method is presented, providing scattering information without computing ensemble average from numerous scattered fields, thus it can obtain light scattering distributions with extremely fast speed. Additionally, it can reach high-computing accuracy quantitatively certificated by mature light scattering computing algorithms. It is believed the provided approach is useful in light scattering study and offers potentiality for real-time detections.

  7. Surface-diffusion-driven decay of patterns: beyond the small slopes approximation

    Energy Technology Data Exchange (ETDEWEB)

    Castez, Marcos F, E-mail: fcastez@inifta.unlp.edu.a [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Casilla de Correo 16, Sucursal 4, (1900) La Plata, UNLP, CONICET (Argentina)

    2010-09-01

    By combining analytical results and computer simulations, we studied the continuous theory of surface diffusion applied to the decay of periodic high-aspect-ratio patterned substrates. Our results show that, after a transient stage, and for a broad class of initial conditions, patterns adopt a 'universal' mathematically well-specified shape that depends on two coefficients. Moreover, we were able to determine the time-dependence of such coefficients, which enabled us to mathematically reconstruct the pattern's shape at any subsequent time. So, our analysis can be a useful predictive theoretical tool for the design and interpretation of experiments on thermal treatments of high-aspect-ratio patterns.

  8. Remote Monitoring of Near-Surface Soil Moisture Dynamics In Unstable Slopes Using a Low-Power Autonomous Resistivity Imaging System

    Science.gov (United States)

    Chambers, J. E.; Meldrum, P.; Gunn, D.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Kuras, O.; Inauen, C.; Hutchinson, D.; Butler, S.

    2016-12-01

    ERT monitoring has been demonstrated in numerous studies as an effective means of imaging near surface processes for applications as diverse as permafrost studies and contaminated land assessment. A limiting factor in applying time-lapse ERT for long-term studies in remote locations has been the availability of cost-effective ERT measurement systems designed specifically for monitoring applications. Typically, monitoring is undertaken using repeated manual data collection, or by building conventional survey instruments into a monitoring setup. The latter often requires high power and is therefore difficult to operate remotely without access to mains electricity. We describe the development of a low-power resistivity imaging system designed specifically for remote monitoring, taking advantage of, e.g., solar power and data telemetry. Here, we present the results of two field deployments. The system has been installed on an active railway cutting to provide insights into the effect of vegetation on the moisture dynamics in unstable infrastructure slopes and to gather subsurface information for pro-active remediation measures. The system, comprising 255 electrodes, acquires 4596 reciprocal measurement pairs twice daily during standard operation. In case of severe weather events, the measurement schedule is reactively changed, to gather high temporal resolution data to image rainfall infiltration processes. The system has also been installed along a leaking and marginally stable canal embankment; a less favourable location for remote monitoring, with limited solar power and poor mobile reception. Nevertheless, the acquired data indicated the effectiveness of remedial actions on the canal. The ERT results showed that one leak was caused by the canal and fixed during remediation, while two other "leaks" were shown to be effects of groundwater dynamics. The availability of cost-effective, low-power ERT monitoring instrumentation, combined with an automated workflow of

  9. 坡屋顶的绿化技术%THE TECHNICAL MEASURES OF GREENING OF SLOPING ROOF

    Institute of Scientific and Technical Information of China (English)

    李海英; 杨洁

    2014-01-01

    The present study of roof greening is more concentrated in the flat roof , and less in the sloping roof .With respect to flat roof , loss of soil and water is the main problem of greening of sloping roofs .The paper studied anti-skid measures, irrigation and drainage system and combining with rainwater collection to popularize the design of greening of sloping roofs .%目前屋顶绿化的研究大多集中于平屋顶,而坡屋顶的较少;相对平屋顶,水土流失是坡屋顶绿化存在的主要问题。通过研究坡屋顶绿化的防滑措施、灌溉方式、蓄排水系统及结合雨水收集等关键技术来推广和普及坡屋顶绿化的设计。

  10. The measurement of surface gravity.

    Science.gov (United States)

    Crossley, David; Hinderer, Jacques; Riccardi, Umberto

    2013-04-01

    This review covers basic theory and techniques behind the use of ground-based gravimetry at the Earth's surface. The orientation is toward modern instrumentation, data processing and interpretation for observing surface, land-based, time-variable changes to the geopotential. The instrumentation side is covered in some detail, with specifications and performance of the most widely used models of the three main types: the absolute gravimeters (FG5, A10 from Micro-g LaCoste), superconducting gravimeters (OSG, iGrav from GWR instruments), and the new generation of spring instruments (Micro-g LaCoste gPhone, Scintrex CG5 and Burris ZLS). A wide range of applications is covered, with selected examples from tides and ocean loading, atmospheric effects on gravity, local and global hydrology, seismology and normal modes, long period and tectonics, volcanology, exploration gravimetry, and some examples of gravimetry connected to fundamental physics. We show that there are only a modest number of very large signals, i.e. hundreds of µGal (10(-8) m s(-2)), that are easy to see with all gravimeters (e.g. tides, volcanic eruptions, large earthquakes, seasonal hydrology). The majority of signals of interest are in the range 0.1-5.0 µGal and occur at a wide range of time scales (minutes to years) and spatial extent (a few meters to global). Here the competing effects require a careful combination of different gravimeter types and measurement strategies to efficiently characterize and distinguish the signals. Gravimeters are sophisticated instruments, with substantial up-front costs, and they place demands on the operators to maximize the results. Nevertheless their performance characteristics such as drift and precision have improved dramatically in recent years, and their data recording ability and ruggedness have seen similar advances. Many subtle signals are now routinely connected with known geophysical effects such as coseismic earthquake displacements, post

  11. High precision tilt stage as a key element to a universal test mirror for characterization and calibration of slope measuring instruments.

    Science.gov (United States)

    Yashchuk, Valeriy V; Artemiev, Nikolay A; Centers, Gary; Chaubard, Arthur; Geckeler, Ralf D; Lacey, Ian; Marth, Harry; McKinney, Wayne R; Noll, Tino; Siewert, Frank; Winter, Mathias; Zeschke, Thomas

    2016-05-01

    The ultimate performance of surface slope metrology instrumentation, such as long trace profilers and auto-collimator based deflectometers, is limited by systematic errors that are increased when the entire angular range is used for metrology of significantly curved optics. At the ALS X-Ray Optics Laboratory, in collaboration with the HZB/BESSY-II and PTB (Germany) metrology teams, we are working on a calibration method for deflectometers, based on a concept of a universal test mirror (UTM) [V. V. Yashchuk et al., Proc. SPIE 6704, 67040A (2007)]. Potentially, the UTM method provides high performance calibration and accounts for peculiarities of the optics under test (e.g., slope distribution) and the experimental arrangement (e.g., the distance between the sensor and the optic under test). At the same time, the UTM calibration method is inherently universal, applicable to a variety of optics and experimental arrangements. In this work, we present the results of tests with a key component of the UTM system, a custom high precision tilt stage, which has been recently developed in collaboration with Physik Instrumente, GmbH. The tests have demonstrated high performance of the stage and its capability (after additional calibration) to provide angular calibration of surface slope measuring profilers over the entire instrumental dynamic range with absolute accuracy better than 30 nrad. The details of the stage design and tests are presented. We also discuss the foundation of the UTM method and calibration algorithm, as well as the possible design of a full scale UTM system.

  12. Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX

    Directory of Open Access Journals (Sweden)

    W. Choi

    2010-11-01

    Full Text Available In this study the atmospheric boundary layer (ABL height (zi over complex, forested terrain is estimated based on the power spectra and the integral length scale of horizontal winds obtained from a three-axis sonic anemometer during the BEARPEX (Biosphere Effects on Aerosol and Photochemistry Experiment. The zi values estimated with this technique showed very good agreement with observations obtained from balloon tether sonde (2007 and rawinsonde (2009 measurements under unstable conditions (z/L < 0 at the coniferous forest in the California Sierra Nevada. The behavior of the nocturnal boundary layer height (h and power spectra of lateral winds and temperature under stable conditions (z/L > 0 is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007, although it was observed to only vary from 60–80 m during the experiment. Finally, significant directional wind shear was observed during both day and night with winds backing from the prevailing west-southwesterlies in the ABL (anabatic cross-valley circulation to consistent southerlies in a layer ~1 km thick just above the ABL before veering to the prevailing westerlies further aloft. We show that this is consistent with the forcing of a thermal wind driven by the regional temperature gradient directed due east in the lower troposphere.

  13. Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX

    Directory of Open Access Journals (Sweden)

    W. Choi

    2011-07-01

    Full Text Available The atmospheric boundary layer (ABL height (zi over complex, forested terrain is estimated based on the power spectra and the integral length scale of cross-stream winds obtained from a three-axis sonic anemometer during the two summers of the BEARPEX (Biosphere Effects on Aerosol and Photochemistry Experiment. The zi values estimated with this technique show very good agreement with observations obtained from balloon tether sondes (2007 and rawinsondes (2009 under unstable conditions (z/L < 0 at the coniferous forest in the California Sierra Nevada. On the other hand, the low frequency behavior of the streamwise upslope winds did not exhibit significant variations and was therefore not useful in predicting boundary layer height. The behavior of the nocturnal boundary layer height (h with respect to the power spectra of the v-wind component and temperature under stable conditions (z/L > 0 is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007, although it was observed to only vary from 60–80 m during the 2009 experiment in which it was measured. Finally, significant directional wind shear was observed during both day and night soundings. The winds were found to be consistently backing from the prevailing west-southwesterlies within the ABL (the anabatic cross-valley circulation to southerlies in a layer ~1–2 km thick just above the ABL before veering to the prevailing westerlies further aloft. This shear pattern is shown to be consistent with the forcing of a thermal wind driven by the regional temperature gradient directed east-southeast in the lower troposphere.

  14. Measurement of the Slope Parameter for the eta->3pi0 Decay in the pp->pp eta Reaction

    CERN Document Server

    Bashkanov, M; Calén, H; Capellaro, F; Clement, H; Demirörs, L; Ekström, C; Fransson, K; Gustafsson, L; Höistad, B; Ivanov, G; Jacewicz, M; Jiganov, E; Johansson, T; Keleta, S; Koch, I; Kullander, Sven; Kupsc, A; Kuznetsov, A; Marciniewski, P; Meier, R; Morosov, B; Oelert, W; Pauly, C; Petukhov, Yu P; Pettersson, H; Povtorejko, A; Ruber, R J M Y; Schönning, K; Scobel, W; Skorodko, T; Shwartz, B; Sopov, V; Stepaniak, J; Chernyshov, V; Engblom, P Thörngren; Tikhomirov, V; Turowiecki, A; Wagner, G J; Wiedner, U; Wolke, M; Yamamoto, A; Zabierowski, J; Złomańczuk, J

    2007-01-01

    The CELSIUS/WASA setup is used to measure the 3pi0 decay of eta mesons produced in pp interactions with beam kinetic energies of 1.36 and 1.45 GeV. The efficiency-corrected Dalitz plot and density distributions for this decay are shown, together with a fit of the quadratic slope parameter alpha yielding alpha = -0.026 +/- 0.010(stat) +/- 0.010(syst). This value is compared to recent experimental results and theoretical predictions.

  15. Measurement of the slope parameter \\alpha for the \\eta\\to 3\\pi^0 decay at KLOE

    CERN Document Server

    Ambrosino, F; Antonelli, M; Archilli, F; Bacci, C; Beltrame, P; Bencivenni, G; Bertolucci, S; Bini, C; Bloise, C; Bocchetta, S; Bocci, V; Bossi, F; Branchini, P; Caloi, R; Campana, P; Capon, G; Capussela, T; Ceradini, F; Chi, S; Chiefari, G; Ciambrone, P; De Lucia, E; De Santis, A; De Simone, P; De Zorzi, G; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Di Micco, B; Doria, A; Dreucci, M; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Fiore, S; Forti, C; Franzini, P; Gatti, C; Gauzzi, P; Giovannella, S; Gorini, E; Graziani, E; Incagli, M; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Leone, D; Martini, M; Massarotti, P; Mei, W; Meola, S; Miscetti, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nguyen, F; Palutan, M; Pasqualucci, E; Passeri, A; Patera, V; Perfetto, F; Primavera, M; Santangelo, P; Saracino, G; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Spadaro, T; Testa, M; Tortora, L; Valente, P; Valeriani, B; Venanzoni, G; Versaci, R; Xu, G

    2007-01-01

    We report a preliminary measurement of the slope parameter $\\alpha$ for the $\\eta\\to 3\\piz$ decay carried out with KLOE at DA$\\Phi$NE; where $\\alpha$ is the parameter describing the energy dependence of the square of the matrix element for this decay. By fitting the event density in the Dalitz plot with a collected statistic of 420 pb$^{-1}$ we determine $\\alpha = -0.027 \\pm 0.004 (stat) ^{+0.004}_{-0.006} (syst)$. This result is consistent with current chiral perturbation theory calculations within the unitary approach.

  16. Characterization and assessment of different algorithms for retrieval of mean square slopes from GNSS-R measurements

    Science.gov (United States)

    Clarizia, Maria Paola; Ruf, Christopher; Gommenginger, Christine

    2013-04-01

    Global Navigation Satellite System-Reflectometry (GNSS-R) exploits signals of opportunity from navigation constellations (e.g. GPS, GLONASS, Galileo), scattered by the surface of the ocean, to retrieve the surface wind and wave fields. GNSS-R represents a true innovation in remote sensing, and it is receiving a growing interest from the scientific community. Its main advantages lie in the dense space-time sampling capabilities, the ability of L-band signals to penetrate well through rain, and the possibility of simple, low-cost/low-power GNSS receivers. These recognized strengths of GNSS-R recently led to the approval of the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS), a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the problem of inadequate observations and modeling of the inner core, which represents the principal deficiency with current TC intensity forecasts, and which can be overcome with GNSS-R. The present study focuses on the information content about the sea surface roughness and wind speed, that is contained in spaceborne GNSS-R Delay-Doppler Maps (DDMs). A number of algorithms for the retrieval of Mean Square Slopes (MSS) - representative of the surface roughness - are analyzed. These include existing algorithms based on least-square fitting procedures (e.g. 2D least-square fitting of DDMs, using the Zavorotny-Voronovich DDM theoretical model), or based on direct observables (e.g. DDM volume), as well as "new" algorithms, which make use of waveforms derived from the DDM, which have thusfar been unexploited (e.g. integrated delay and Doppler waveforms). The analysis is carried out using simulated DDMs generated by the mature forward model end-to-end simulator developed for CYGNSS. A comparison of the results obtained for different retrieval algorithms will be presented. In particular, the performance of the algorithms considered is investigated and characterized for the case of

  17. High angular resolution slope measuring deflectometry for the characterization of ultra-precise reflective x-ray optics

    Science.gov (United States)

    Siewert, F.; Buchheim, J.; Höft, T.; Fiedler, S.; Bourenkov, G.; Cianci, M.; Signorato, R.

    2012-07-01

    Slope measuring deflectometry has become a standard technique for inspection of ultra-precise reflective optical elements of synchrotron applications. We will report on the inspection of ultra-precise adaptive synchrotron mirrors (bimorph mirrors) to be used under grazing incidence condition. The measurements were performed at the BESSY-II Optics Laboratory of the Helmholtz Zentrum Berlin using the nanometer optical component measuring machine (NOM). Based on the data obtained by the optical measurements, we in this paper simulate the characteristics of the achievable x-ray focus by ray tracing calculations, demonstrated in the case of bimorph mirrors of the EMBL MX1 beamline for macromolecular crystallography at DESY's synchrotron radiation source PETRA III in Hamburg.

  18. Automation of Morphometric Measurements for Planetary Surface Analysis and Cartography

    Science.gov (United States)

    Kokhanov, A. A.; Bystrov, A. Y.; Kreslavsky, M. A.; Matveev, E. V.; Karachevtseva, I. P.

    2016-06-01

    For automation of measurements of morphometric parameters of surface relief various tools were developed and integrated into GIS. We have created a tool, which calculates statistical characteristics of the surface: interquartile range of heights, and slopes, as well as second derivatives of height fields as measures of topographic roughness. Other tools were created for morphological studies of craters. One of them allows automatic placing of topographic profiles through the geometric center of a crater. Another tool was developed for calculation of small crater depths and shape estimation, using C++ programming language. Additionally, we have prepared tool for calculating volumes of relief features from DTM rasters. The created software modules and models will be available in a new developed web-GIS system, operating in distributed cloud environment.

  19. AUTOMATION OF MORPHOMETRIC MEASUREMENTS FOR PLANETARY SURFACE ANALYSIS AND CARTOGRAPHY

    Directory of Open Access Journals (Sweden)

    A. A. Kokhanov

    2016-06-01

    Full Text Available For automation of measurements of morphometric parameters of surface relief various tools were developed and integrated into GIS. We have created a tool, which calculates statistical characteristics of the surface: interquartile range of heights, and slopes, as well as second derivatives of height fields as measures of topographic roughness. Other tools were created for morphological studies of craters. One of them allows automatic placing of topographic profiles through the geometric center of a crater. Another tool was developed for calculation of small crater depths and shape estimation, using C++ programming language. Additionally, we have prepared tool for calculating volumes of relief features from DTM rasters. The created software modules and models will be available in a new developed web-GIS system, operating in distributed cloud environment.

  20. Observing slope stability changes on the basis of tilt and hydrologic measurements

    Science.gov (United States)

    Mentes, Gy.

    2017-06-01

    In Hungary, the high loess bank of the River Danube in Dunaszekcső has been moving with varying rate since 2007. On the high bank a geodetic monitoring network was established in September 2007. At the same time two borehole tiltmeters and later two ground water level sensors were also installed. The high-sensitive tiltmeters made it possible to study the relationships between the small tilts of the high bank and the ground water levels and the water level of the River Danube. Results of the multiple regression analysis between tilt components and water levels showed that the temporal variation of the regression coefficients is in close connection with the stability of the high bank. The investigations also showed that the movements are in very strong connection with the variation of the ground water level and less depend on the variation of the water level of the River Danube. The characteristic tilt processes, 3-4 weeks before large movements, and the slope stability changes inferred from the relationships between tilts and water level variations can be useful for early warning of landslides.

  1. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    Science.gov (United States)

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  2. Beryllium-7 measurements of wind erosion on sloping fields in the wind-water erosion crisscross region on the Chinese Loess Plateau.

    Science.gov (United States)

    Zhang, Jiaqiong; Yang, Mingyi; Deng, Xinxin; Liu, Zhang; Zhang, Fengbao; Zhou, Weiying

    2017-09-29

    Soil erosion is complex in the wind-water erosion crisscross region of the Chinese Loess Plateau, as interleaving of wind and water erosion occurs on both temporal and spatial scales. It is difficult to distinguish wind erosion from the total erosion in previous studies due to the untraceable of aeolian particles and the limitation of feasible methods and techniques. This study used beryllium-7 measurements to study wind erosion in the wind-water erosion crisscross region on the Chinese Loess Plateau arms to delineate wind erosion distribution, to analyze its implication to erosive winds and surface microrelief, and to determine correlations between erosion rates and slope gradients. Results obtained using beryllium-7 measurements based on observation plots were verified with saltating particle collection method, and were also verified on a field scale. Results indicated that the effective resultant erosion wind was from northward, which was proved by the eight-directional distributed saltating particles. The microrelief of the ground surface contributed to the formation of high or low erosion centers. Wind erosion rates increased with a linear (R(2)≥0.95) or exponential (R(2)≥0.83) fitting increase in the slope gradients as reported in previous studies. Compared to wind erosion on field scale, both the plots and fields exhibited similar distribution patterns in wind erosion isolines. We also determined that the wind erosion rate for two fields estimated, based on equations developed from plot scale was acceptable. This study validates the feasibility of beryllium-7 measurements for soil-wind erosion field experiments and the potential to expand this approach to real field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Surface temperature measurements of diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2006-07-01

    Full Text Available ) and the waist position (z0) 3. TEMPERATURE MEASUREMENTS There are many methods to measure the temperature of a body. Here we used a thermocou- ple and a pyrometer, while future plans involve emission spectroscopy. A thermocouple is a temperature... sensor that consists of two wires con- nected together made from different metals, which produces an electrical voltage that is dependant on tem- perature. A Newport electronic thermocou- ple was used to meas- ured temperature. It can measure...

  4. EXTENDED MILD-SLOPE EQUATION

    Institute of Scientific and Technical Information of China (English)

    黄虎; 丁平兴; 吕秀红

    2001-01-01

    The Hamiltonian formalism for surface waves and the mild-slope approximation were empolyed in handling the case of slowly varying three-dimensional currents and an uneven bottom, thus leading to an extended mild-slope equation. The bottom topography consists of two components: the slowly varying component whose horizontal length scale is longer than the surface wave length, and the fast varying component with the amplitude being smaller than that of the surface wave. The frequency of the fast varying depth component is, however, comparable to that of the surface waves. The extended mild- slope equation is more widely applicable and contains as special cases famous mild-slope equations below: the classical mild-slope equation of Berkhoff , Kirby' s mild-slope equation with current, and Dingemans' s mild-slope equation for rippled bed. The extended shallow water equations for ambient currents and rapidly varying topography are also obtained.

  5. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, Sebastien C [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO2 and/or CH4) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols and cloud properties in North Slopes of Alaska (NSA) are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections. From June 1 through September 15, 2015, AAF deployed the G1 research aircraft and flew over the North Slope of Alaska (38 flights, 140 science flight hours), with occasional vertical profiling over Prudhoe Bay, Oliktok point, Barrow, Atqasuk, Ivotuk, and Toolik Lake. The aircraft payload included Picarro and Los Gatos Research (LGR) analyzers for continuous measurements of CO2, CH4, H2O, and CO and N2O mixing ratios, and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, and trace hydrocarbon species). The aircraft payload also include measurements of aerosol properties (number size distribution, total number concentration, absorption, and scattering), cloud properties (droplet and ice size information), atmospheric thermodynamic state, and solar/infrared radiation.

  6. Internal waves and temperature fronts on slopes

    Directory of Open Access Journals (Sweden)

    S. A. Thorpe

    Full Text Available Time series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the `internal surf zone' where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect `events', periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by `events' are described. The motion along the slope may be a consequence of (a instabilities advected by the flow (b internal waves propagating along-slope or (c internal waves approaching the slope from oblique directions. The propagation of several of the observed 'events' can only be explained by (c, evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional 'surface wave' surf zone, with waves steepening as they approach the slope at oblique angles.

    Key words. Oceanography: general (benthic boundary layers; limnology, Oceanography: physical (internal and inertial waves

  7. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    Science.gov (United States)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  8. Measurement of the Dalitz plot slope parameters for $K^{-} \\to\\pi^{0},\\pi^{0},\\pi^{-}$ decay using ISTRA+ detector

    CERN Document Server

    Ajinenko, I; Britvich, G I; Datsko, K V; Filin, A P; Inyakin, A V; Konstantinov, A S; Konstantinov, V F; Korolkov, I Ya; Leontiev, V M; Novikov, V P; Obraztsov, V F; Polyakov, V A; Romanovsky, V I; Shelikhov, V I; Smirnov, N E; Chikilev, O G; Uvarov, V A; Yushchenko, O P; Bolotov, V N; Laptev, S V; Pastsjak, A R; Polyarush, A Yu; Sirodeev, R K

    2003-01-01

    The Dalitz plot slope parameters g, h and k for the K- -> pi0 pi0 pi- decay have been measured using in-flight decays detected with the ISTRA+ setup operating in the 25 GeV negative secondary beam of the U-70 PS. About 252 K events with four-momenta measured for the pi- and four involved photons were used for the analysis. The values obtained g=0.627+/-0.004(stat)+/-0.010(syst), h=0.046+/-0.004(stat)+/-0.012(syst), k=0.001+/-0.001(stat)+/-0.002(syst) are consistent with the world averages dominated by K+ data, but have significantly smaller errors.

  9. Visitor’s Guide to Oliktok Point Atmospheric Radiation Measurement Climate Research Facility, North Slope of Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Desilets, Darin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Helsel, Fred M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bendure, Al O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucero, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dexheimer, Danielle N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-04-01

    The importance of Oliktok Point, Alaska, as a focal point for climate research in the Arctic continues to grow with the addition of a U.S. Department of Energy (DOE) Atmospheric Radiation Monitoring (ARM) Climate Research Facility Mobile Facility (AMF) and the expansion of infrastructure to support airborne measurements. The site hosts a suite of instruments for making multi-year, high-fidelity atmospheric measurements; serves as a base of operations for field campaigns; and contains the only Restricted Airspace and Warning Area in the U.S. Arctic, which enables the use of unmanned aircraft systems. The use of this site by climate researchers involves several considerations, including its remoteness, harsh climate, and location amid the North Slope oilfields. This guide is intended to help visitors to Oliktok Point navigate this unique physical and administrative environment, and thereby facilitate safe and productive operations.

  10. Numerical Simulation and Wind Tunnel Experiment of Wind Field over Slope Surface%坡面地表下的风场的风洞实验与数值模拟

    Institute of Scientific and Technical Information of China (English)

    蒋红; 佟鼎; 黄宁

    2011-01-01

    Current theoretical studies and numerical simulations of windblown sand movement concentrate on ideal circumstances, such as steady wind velocity, flat sand surface, etc. However, the environment of windblown sand movement is complex in natural environments, such as complex landform, turbulence structure of wind flow. Actually the gradient of the windward slope of the sand dune and the sand ripple etc. Which are the basic form of the desert landscape, have great influence on the initiation and transportation of and particles. In this paper, wind tunnel experiments are carried out and the wind velocity over slope surace is measured by using the Phase Doppler Particle Analyzer technique and the characteristics of wind flow it the windward slope and at the leeward slope are analyzed. Then the SIMPLE algorithm is applied to calculate the wind flow over the slope, and the numerical simulation results are compared with the experiment results. The results show that the numerical model can not only simulate the wind flow characteristics of the slope surface effectively, but also displays the wind field structures of windward slope and leeward slope intuitively and comprehensively.%针对传统近地层风沙流的理论与数值模拟研究以及风洞实验大多是基于理想条件(平坦床面、定常风速),而实际风沙运动通常发生在复杂环境下(如复杂地形、湍流结构风场等),沙漠最基本的地貌形态如沙丘、沙波纹等迎风面坡度对颗粒起动和输沙率影响很大.基于此,应用相位多普勒粒子分析仪(PDPA)对坡面近地表风场进行测量,得到迎风坡及背风坡的风场特性,并且采用SIMPLE算法对坡面风场进行了数值模拟.通过对数值模拟及风洞实验结果进行对比分析后,发现数值模型不仅能够有效地模拟风洞实验中坡面地表的风场特性,而且能够较为直观全面的展现迎风坡面、特别是背风坡面的风场结构特性.

  11. Measuring the Reflection Matrix of a Rough Surface

    Directory of Open Access Journals (Sweden)

    Kenneth Burgi

    2017-05-01

    Full Text Available Phase modulation methods for imaging around corners with reflectively scattered light required illumination of the occluded scene with a light source either in the scene or with direct line of sight to the scene. The RM (reflection matrix allows control and refocusing of light after reflection, which could provide a means of illuminating an occluded scene without access or line of sight. Two optical arrangements, one focal-plane, the other an imaging system, were used to measure the RM of five different rough-surface reflectors. Intensity enhancement values of up to 24 were achieved. Surface roughness, correlation length, and slope were examined for their effect on enhancement. Diffraction-based simulations were used to corroborate experimental results.

  12. Mapping and Measuring the Microrelief of Slope Deformations Using Modern Contactless Technologies and Practical Application in Territorial Planning

    Science.gov (United States)

    Chudý, František; Slámová, Martina; Tomaštík, Julián; Kardoš, Miroslav; Tunák, Daniel; Saloň, Šimon

    2017-04-01

    Slope deformations are risks limiting economic land use potential. A national database system keeps records of slope disturbances and deformations, however, it is important to update the information mainly from the point of view of practical territorial planning, especially in the high-risk areas presented in the study. The paper explains the possibilities of applying modern methods of mapping the microrelief of slope deformations of a lower extent (up to several hundreds of m2) and using not very well known contactless technologies, which could be applied in practice due to their low-cost and low-time consuming nature. In order to create a digital model of the microrelief used to carry out the measurements we applied the method of terrestrial photogrammetry, terrestrial scanning using Lenovo Phab 2Pro. It is the first device available for users that uses the Google Tango technology. So far there have been only prototypes of devices available for the developers only. The Tango technology consists of 3 partial technologies - "depth perception" (measuring the distance to objects, nowadays it uses mainly infrared radiation), "motion tracking" (tracking the position and motion of the device using embedded sensors) and "area learning" (simply learning the area, where the device looks for same objects within already existing 3D models and real space). Even though the technology utilisation is nowadays presented mainly in the field of augmented reality and navigation in the interior, there are already some applications for collecting the point clouds in real time, which can be used in a wide spectrum of applications in exterior, which was also applied in our research. Data acquired this way can be processed in readily available software products, what enabled a high degree of automation also in our case. After comparing with the reference point field that was measured using GNSS and electronic tachymeter, we reached accuracy of point position determination from a digital

  13. Measurement of the Form-Factor Slopes for the Decay KLe3 with the KLOE Detector

    CERN Document Server

    Ambrosino, F; Antonelli, M; Bacci, C; Beltrame, P; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Bowring, D; Branchini, P; Caloi, R; Campana, P; Capon, G; Capussela, T; Ceradini, F; Chi, S; Chiefari, G; Ciambrone, P; Conetti, S; De Lucia, E; De Santis, A; De Simone, P; De Zorzi, G; Dell'Agnello, S; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Di Micco, B; Doria, A; Dreucci, M; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Fiore, S; Forti, C; Franzini, P; Gatti, C; Gauzzi, P; Giovannella, S; Gorini, E; Graziani, E; Incagli, M; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Leone, D; Martini, M; Massarotti, P; Mei, W; Meola, S; Miscetti, S; Moulson, M; Murtas, F; Müller, S; Napolitano, M; Nguyen, F; Palutan, M; Pasqualucci, E; Passeri, A; Patera, V; Perfetto, F; Pontecorvo, L; Primavera, M; Santangelo, P; Santovetti, E; Saracino, G; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Spadaro, T; Testa, M; Tortora, L; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Ventura, A; Versaci, R; Xu, G

    2006-01-01

    We present a measurement of the K-pi vector current form-factor parameters for the Ke3 decay. We use 328 pb$^{-1}$ of data collected in 2001 and 2002, corresponding to about 2 million Ke3 events. Measurements of semileptonic form factors provide information about the dynamics of the strong interaction and are necessary for evaluation of the phase-space integral Ie_K needed to measure the CKM matrix element Vus for Ke3 decays. Our result is $l=(28.6\\pm0.5\\pm0.4)10^{-3}$ for a linear fit, and $l'=(25.5\\pm1.5\\pm1.0)10^{-3}$, $l''=(1.4\\pm0.7\\pm0.4)10^{-3}$ for a quadratic fit.

  14. Dynamic contact angle measurements on superhydrophobic surfaces

    Science.gov (United States)

    Kim, Jeong-Hyun; Kavehpour, H. Pirouz; Rothstein, Jonathan P.

    2015-03-01

    In this paper, the dynamic advancing and receding contact angles of a series of aqueous solutions were measured on a number of hydrophobic and superhydrophobic surfaces using a modified Wilhelmy plate technique. Superhydrophobic surfaces are hydrophobic surfaces with micron or nanometer sized surface roughness. These surfaces have very large static advancing contact angles and little static contact angle hysteresis. In this study, the dynamic advancing and dynamic receding contact angles on superhydrophobic surfaces were measured as a function of plate velocity and capillary number. The dynamic contact angles measured on a smooth hydrophobic Teflon surface were found to obey the scaling with capillary number predicted by the Cox-Voinov-Tanner law, θD3 ∝ Ca. The response of the dynamic contact angle on the superhydrophobic surfaces, however, did not follow the same scaling law. The advancing contact angle was found to remain constant at θA = 160∘, independent of capillary number. The dynamic receding contact angle measurements on superhydrophobic surfaces were found to decrease with increasing capillary number; however, the presence of slip on the superhydrophobic surface was found to result in a shift in the onset of dynamic contact angle variation to larger capillary numbers. In addition, a much weaker dependence of the dynamic contact angle on capillary number was observed for some of the superhydrophobic surfaces tested.

  15. [Rainfall intensity effects on nutrients transport in surface runoff from farmlands in gentle slope hilly area of Taihu Lake Basin].

    Science.gov (United States)

    Li, Rui-ling; Zhang, Yong-chun; Liu, Zhuang; Zeng, Yuan; Li, Wei-xin; Zhang, Hong-ling

    2010-05-01

    To investigate the effect of rainfall on agricultural nonpoint source pollution, watershed scale experiments were conducted to study the characteristics of nutrients in surface runoff under different rainfall intensities from farmlands in gentle slope hilly areas around Taihu Lake. Rainfall intensity significantly affected N and P concentrations in runoff. Rainfall intensity was positively related to TP, PO4(3-) -P and NH4+ -N event mean concentrations(EMC). However, this study have found the EMC of TN and NO3- -N to be positively related to rainfall intensity under light rain and negatively related to rainfall intensity under heavy rain. TN and TP site mean amounts (SMA) in runoff were positively related to rainfall intensity and were 1.91, 311.83, 127.65, 731.69 g/hm2 and 0.04, 7.77, 2.99, 32.02 g/hm2 with rainfall applied under light rain, moderate rain, heavy rain and rainstorm respectively. N in runoff was mainly NO3- -N and NH4+ -N and was primarily in dissolved form from Meilin soils. Dissolved P (DP) was the dominant form of TP under light rain, but particulate P (PP) mass loss increased with the increase of rainfall intensity and to be the dominant form when the rainfall intensity reaches rainstorm. Single relationships were used to describe the dependence of TN and TP mass losses in runoff on rainfall, maximum rainfall intensity, average rainfall intensity and rainfall duration respectively. The results showed a significant positive correlation between TN mass loss and rainfall, maximum rainfall intensity respectively (p rainfall, maximum rainfall intensity respectively (p < 0.01).

  16. Measurement of the Dalitz plot slopes of the $K^\\pm\\to\\pi^\\pm\\pi^+\\pi^-$ decay

    CERN Document Server

    Batley, J Richard; Kalmus, George Ernest; Lazzeroni, C; Munday, D J; Slater, M W; Wotton, S A; Arcidiacono, R; Bocquet, G; Cabibbo, Nicola; Ceccucci, A; Cundy, Donald C; Falaleev, V; Fidecaro, Maria; Gatignon, L; Gonidec, Allain; Kubischta, Werner; Norton, Alan Robert; Maier, A; Patel, M; Peters, A; Balev, S; Frabetti, P L; Goudzovski, E; Khristov, P Z; Kekelidze, V D; Kozhuharov, V; Litov, L; Madigozhin, D T; Marinova, E; Molokanova, N A; Polenkevich, I; Potrebenikov, Yu K; Stoynev, S; Zinchenko, A I; Monnier, E; Swallow, E; Winston, R; Rubin, P; Walker, A; Baldini, W; Cotta-Ramusino, A; Dalpiaz, P; Damiani, C; Fiorini, M; Gianoli, A; Martini, M; Petrucci, F; Savrié, M; Scarpa, M; Wahle, H; Bizzeti, A; Calvetti, M; Celeghini, E; Iacopini, E; Lenti, M; Martelli7, F; Ruggiero, G; Veltri, M; Behler, M; Eppard, K; Kleinknecht, Konrad; Marouelli, P; Masetti, L; Moosbrugger, U; Morales-Morales, C; Renk, B; Wache, M; Wanke, R; Winhart, A; Coward, David; Dabrowski, A; Fonseca-Martin, T; Shieh, M; Szleper, M; Velasco, M; Wood, M D; Anzivino, Giuseppina; Cenci, P; Imbergamo, E; Nappi, A; Pepé, Monica; Petrucci, M C; Piccini, M; Raggi, M; Valdata-Nappi, M; Cerri, C; Collazuol, G; Costantini, F; Di Lella, Luigi; Doble, Niels; Fantechi, R; Fiorini, L; Giudici, S; Lamanna, G; Mannelli, I; Michetti, A; Pierazzini, G M; Sozzi, M; Bloch-Devaux, B; Cheshkov, C; Chèze, J B; De Beer, M; Derr, J; Marel, Gérard; Mazzucato, E; Peyaud, B; Vallage, B; Holder, M; Ziolkowski, M; Bifani, S; Biino, C; Cartiglia, N; Clemencic, M; Goy-Lopez, S; Marchetto, F; Dibon, Heinz; Jeitler, Manfred; Markytan, Manfred; Mikulec, I; Neuhofer, G; Widhalm, L

    2007-01-01

    The distribution of the $K^\\pm\\to\\pi^\\pm\\pi^+\\pi^-$ decays in the Dalitz plot has been measured by the NA48/2 experiment at the CERN SPS with a sample of $4.71\\times 10^8$ fully reconstructed events. With the standard Particle Data Group parameterization the following values of the slope parameters were obtained: $g=(-21.134\\pm0.014)\\%$, $h=(1.848\\pm0.039)\\%$, $k=(-0.463\\pm0.012)\\%$. The quality and statistical accuracy of the data have allowed an improvement in precision by more than an order of magnitude, and are such as to warrant a more elaborate theoretical treatment, including pion-pion rescattering, which is in preparation.

  17. Measurement of Sound Propagation, Down Slope to a Bottom-Limited Sound Channel

    Science.gov (United States)

    1985-08-01

    CONTRACT OR GRANT NUMBERf.J 10. PROGRAM ELEMENT, PROJECT , TASK AREA ft WORK UNIT NUMBERS 12. REPORT DATE August 1985 ’J. NUMBER OF PAGES...23 13 - A NORMAL MODE (SNAP) COMPARISON WITH DATA 25 14 - A NORMAL MODE (SNAP/ ASTRAL ) COMPARISON WITH DATA 29 15 - HIGH ANGLE PARABOLIC...400m RECEIVER: 91m ASTRAL - (LOW) 130 0 25 50 75 100 RANGE (NM) 125 150 29 SLIDE 14 Several calculations were made using the measured

  18. 戈壁地区高速铁路路基边坡防护措施研究%Study on Slope Protection Measures for Subgrade of High-speed Railway in Gobi Region

    Institute of Scientific and Technical Information of China (English)

    苑宝华; 张立刚; 杨有海; 连继峰

    2013-01-01

    The Second Double Line of Lanzhou-Xinjiang Railway crosses the well-known four wind areas in Gobi region, Xinjiang. To prevent subgrade slope from erosion caused by wind-sand flow and rain water there, there are three test points on the slope along the line are set with seven varieties of slope protection measures used and, from the perspective of protection result, technology and economics, these measures are studied. The result shows that with regard to the protection along the whole line, the slope surface shall be protected appropriately by, in case of the slope height less than 3m, hollow concrete brick, and in case of the slope height more than or equal to 3m, arch skeleton, i. e. laying hollow concrete brick in the skeleton.%兰新铁路第二双线穿越新疆戈壁地区著名的四大风区,为防止路基边坡遭受戈壁风沙流吹蚀以及雨水冲蚀破坏,在线路所经戈壁地区设立三处路基边坡试验工点,选用了七种边坡防护措施,分别从防护效果、技术经济等角度对试验段各种边坡防护措施进行研究.研究结果表明:全线路堤边坡防护中,若边坡高度H<3m时,边坡坡面宜采用混凝土空心砖防护;边坡高度H≥3 m时,边坡坡面宜采用拱形骨架护坡,骨架内铺设混凝土空心砖进行防护.

  19. Production and measurement of superpolished surfaces

    Science.gov (United States)

    van Wingerden, Johannes; Frankena, Hans J.; van der Zwan, Bertram A.

    1992-05-01

    The influence of polishing time on the roughness of ultrasmooth bowl-feed-polished surfaces is studied. A large improvement of the surface quality is obtained within the first 10 min, but increasing the polishing time from 10 to 60 min did not yield a significant difference. A Linnik interference microscope, adapted for phase-shifting interferometry, was used for roughness measurements. Preliminary measurements have been performed with a setup determining the scattered intensity within a small solid angle. This relatively simple setup, which is also suitable for uncoated glass surfaces, clearly showed the improvement of surface quality by bowl-feed polishing.

  20. Surface texture measurement for additive manufacturing

    Science.gov (United States)

    Triantaphyllou, Andrew; Giusca, Claudiu L.; Macaulay, Gavin D.; Roerig, Felix; Hoebel, Matthias; Leach, Richard K.; Tomita, Ben; Milne, Katherine A.

    2015-06-01

    The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting.

  1. Actual evaporation estimation from infrared measurement of soil surface temperature

    Directory of Open Access Journals (Sweden)

    Davide Pognant

    2013-09-01

    Full Text Available Within the hydrological cycle, actual evaporation represents the second most important process in terms of volumes of water transported, second only to the precipitation phenomena. Several methods for the estimation of the Ea were proposed by researchers in scientific literature, but the estimation of the Ea from potential evapotranspiration often requires the knowledge of hard-to-find parameters (e.g.: vegetation morphology, vegetation cover, interception of rainfall by the canopy, evaporation from the canopy surface and uptake of water by plant roots and many existing database are characterized by missing or incomplete information that leads to a rough estimation of the actual evaporation amount. Starting from the above considerations, the aim of this study is to develop and validate a method for the estimation of the Ea based on two steps: i the potential evaporation estimation by using the meteorological data (i.e. Penman-Monteith; ii application of a correction factor based on the infrared soil surface temperature measurements. The dataset used in this study were collected during two measurement campaigns conducted both in a plain testing site (Grugliasco, Italy, and in a mountain South-East facing slope (Cogne, Italy. During those periods, hourly measurement of air temperature, wind speed, infrared surface temperature, soil heat flux, and soil water content were collected. Results from the dataset collected in the two testing sites show a good agreement between the proposed method and reference methods used for the Ea estimation.

  2. Benthic foraminiferal distribution in surface sediments along continental slope of the southern Okinawa Trough:dependance on water masses and food supply

    Institute of Scientific and Technical Information of China (English)

    向荣; 李铁刚; 杨作升; 阎军; 曹奇原

    2003-01-01

    Benthic foraminiferal analysis of 29 samples in surface sediments from the southern Oki-nawa Trough is carried out. The results indicate that benthic foraminiferal abundance decreases rapidlywith increasing water depth. Percentage frequencies of agglutinated foraminifera further confirm themodem shallow carbonate lysocline in the southern Okinawa Trough. From continental shelf edge to thebottom of Okinawa Trough, benthic foraminiferal fauna in the surface sediments can be divided into 5assemblages: (1) Continental shelf break assemblage, dominated by Cibicides pseudoungerianus, corre-sponds to subsurface water mass of the Kuroshio Current; (2) upper continental slope assemblage, domi-nated by Cassidulina carinata, Globocassidulina subglobosa, corresponds to intermediate water mass of the Kuroshio Current; (3) intermediate continental slope assemblage, dominated by Uvigerina hispi-da, corresponds to the Okinawa Trough deep water mass above the carbonate lysocline; (4) lower con-tinental slope- trough bottom assemblage, dominated by Pullenia bulloides, Epistominella exigua andCibicidoides hyalinus, corresponds to deep water mass of the Okinawa Trough; and (5) trough bottomagglutinated assemblage, dominated by Rhabdammina spp., Bathysiphon flavidus, corresponds tostrongly dissolved environment of the trough bottom. The benthic foraminiferal fauna in the southemOkinawa Trough are controlled jointly by water masses and food supply. Water temperature, oxygenconcentration and carbonate dissolution of the water masses are important controlling factors especiallyfor the continental shelf break and trough bottom assemblages. The food supply also plays an importantrole in these benthic foraminiferal assemblages along the westem slope of the Okinawa Trough. Both theabundance and the 5 assemblages of benthic foraminifera correspond well to the organic matter supplyalong the continental slope and a lateral transport of TSM (total suspended matter) and POC (particulateorganic

  3. Constructing Invariant Fairness Measures for Surfaces

    DEFF Research Database (Denmark)

    Gravesen, Jens; Ungstrup, Michael

    1998-01-01

    This paper presents a general method which from an invariant curve fairness measure constructs an invariant surface fairness measure. Besides the curve fairness measure one only needs a class of curves on the surface for which one wants to apply the curve measure. The surface measure at a point...... variation.The method is extended to the case where one considers, not the fairness of one curve, but the fairness of a one parameter family of curves. Such a family is generated by the flow of a vector field, orthogonal to the curves. The first, respectively the second order derivative along the curve...... of the size of this vector field is used as the fairness measure on the family.Six basic 3rd order invariants satisfying two quadratic equations are defined. They form a complete set in the sense that any invariant 3rd order function can be written as a function of the six basic invariants together...

  4. Constructing Invariant Fairness Measures for Surfaces

    DEFF Research Database (Denmark)

    Gravesen, Jens; Ungstrup, Michael

    1998-01-01

    This paper presents a general method which from an invariant curve fairness measure constructs an invariant surface fairness measure. Besides the curve fairness measure one only needs a class of curves on the surface for which one wants to apply the curve measure. The surface measure at a point...... variation.The method is extended to the case where one considers, not the fairness of one curve, but the fairness of a one parameter family of curves. Such a family is generated by the flow of a vector field, orthogonal to the curves. The first, respectively the second order derivative along the curve...... of the size of this vector field is used as the fairness measure on the family.Six basic 3rd order invariants satisfying two quadratic equations are defined. They form a complete set in the sense that any invariant 3rd order function can be written as a function of the six basic invariants together...

  5. Geometric Measure Theory and Minimal Surfaces

    CERN Document Server

    Bombieri, Enrico

    2011-01-01

    W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi's measure and thin obstacles.

  6. Distribution patterns and enrichment of lead, zinc and copper in surface sediments of the central Portuguese shelf and upper slope

    NARCIS (Netherlands)

    Jesus, C.C.; de Stigter, H.; Miranda, P.; Oliveira, A.; Rocha, F.

    2013-01-01

    Geographic patterns of Cu, Pb and Zn enrichment on the Lisbon-Setúbal-Sines continental shelf and upper slope (central Portuguese margin) were studied in this paper to gain insight into current pathways of trace metal dispersal. Our study is based on the analysis of elemental concentrations and

  7. Preparation of stable silica surfaces for surface forces measurement

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Kurihara, Kazue

    2017-09-01

    A surface forces apparatus (SFA) measures the forces between two surfaces as a function of the surface separation distance. It is regarded as an essential tool for studying the interactions between two surfaces. However, sample surfaces used for the conventional SFA measurements have been mostly limited to thin (ca. 2-3 μm) micas, which are coated with silver layers (ca. 50 nm) on their back, due to the requirement of the distance determination by transmission mode optical interferometry called FECO (fringes of equal chromatic order). The FECO method has the advantage of determining the absolute distance, so it should be important to increase the availability of samples other than mica, which is chemically nonreactive and also requires significant efforts for cleaving. Recently, silica sheets have been occasionally used in place of mica, which increases the possibility of surface modification. However, in this case, the silver layer side of the sheet is glued on a cylindrical quartz disc using epoxy resin, which is not stable in organic solvents and can be easily swollen or dissolved. The preparation of substrates more stable under severe conditions, such as in organic solvents, is necessary for extending application of the measurement. In this study, we report an easy method for preparing stable silica layers of ca. 2 μm in thickness deposited on gold layers (41 nm)/silica discs by sputtering, then annealed to enhance the stability. The obtained silica layers were stable and showed no swelling in organic solvents such as ethanol and toluene.

  8. Coherent methods for measuring ophthalmic surfaces

    Science.gov (United States)

    Rottenkolber, Matthias; Podbielska, Halina

    1996-01-01

    Topographic analysis of the ophthalmic surfaces is an important task. Especially recently, when a laser assisted refractive surgery becomes more and more popular in a daily clinical praxis. Ophthalmologists need to know exact corneal parameters as a basis for proper operational approach, as well as for monitoring of the post-operative process. The fitting of the contact lenses can be more accurate when topography of both, cornea and contacts, can be precisely measured. We develop new coherent methods for measuring of the topography of curved optical surfaces. One of the proposed techniques is based on interferometry with a special distance measurement unit and spatial phase shifting interferogram evaluation. The other one uses deflectometry with spatial carrier frequency. The sensitivity of this method is adjustable and thus it closes the gap between the white light and interferometric measuring methods. The techniques proposed here can be suitable for measurement of the contact lenses or corneal surface.

  9. Imaging interferometry to measure surface rotation field

    DEFF Research Database (Denmark)

    Travaillot, Thomas; Dohn, Søren; Boisen, Anja

    2013-01-01

    This paper describes a polarized-light imaging interferometer to measure the rotation field of reflecting surfaces. This setup is based on a homemade prism featuring a birefringence gradient. The arrangement is presented before focusing on the homemade prism and its manufacturing process....... The dependence of the measured optical phase on the rotation of the surface is derived, thus highlighting the key parameters driving the sensitivity. The system’s capabilities are illustrated by imaging the rotation field at the surface of a tip-loaded polymer specimen....

  10. Absolute height measurement of specular surfaces with modified active fringe reflection photogrammetry

    Science.gov (United States)

    Ren, Hongyu; Jiang, Xiangqian; Gao, Feng; Zhang, Zonghua

    2014-07-01

    Deflectometric methods have been studied for more than a decade for slope measurement of specular freeform surfaces through utilization of the deformation of a sample pattern after reflection from a tested sample surface. Usually, these approaches require two-directional fringe patterns to be projected on a LCD screen or ground glass and require slope integration, which leads to some complexity for the whole measuring process. This paper proposes a new mathematical measurement model for measuring topography information of freeform specular surfaces, which integrates a virtual reference specular surface into the method of active fringe reflection photogrammetry and presents a straight-forward relation between height of the tested surface and phase signals. This method only requires one direction of horizontal or vertical sinusoidal fringe patterns to be projected from a LCD screen, resulting in a significant reduction in capture time over established methods. Assuming the whole system has been precalibrated during the measurement process, the fringe patterns are captured separately via the virtual reference and detected freeform surfaces by a CCD camera. The reference phase can be solved according to the spatial geometric relation between the LCD screen and the CCD camera. The captured phases can be unwrapped with a heterodyne technique and optimum frequency selection method. Based on this calculated unwrapped-phase and that proposed mathematical model, absolute height of the inspected surface can be computed. Simulated and experimental results show that this methodology can conveniently calculate topography information for freeform and structured specular surfaces without integration and reconstruction processes.

  11. A Method for Constructing Identical Slope Surface Based on Parametric Spline Interpolation%基于参数样条插值的同坡曲面构造方法

    Institute of Scientific and Technical Information of China (English)

    李军成

    2011-01-01

    The traditional method for constructing identical slope surface is under the premise that exact expression of lead curve is known. But in practical engineering, the exact expression of lead curve is hard to obtain, and only some measured data points of the lead curve are given. For solving that problem, a method of constructing the identical slope surface in engineering is presented in this paper. Firstly, cubic parametric spline interpolation curve is constructed according to the measured data points, which is regarded as the lead curve. Then, the parametric equation of identical slope gradient surface is constructed based on the forming principle of that surface. Lastly, an example is presented to show the method is feasible and effectual.%传统的同坡曲面构造方法都是在导线方程为已知的前提下进行的.然而在实际工程中,导线方程往往是很难得到的,只能通过测量得知导线通过一列数据点.针对这一问题,给出了一种实际工程中同坡曲面的构造方法,该法首先根据测量数据点,利用三次参数样条曲线插值方法构造出同坡曲面的导线方程,然后再从同坡曲面的形成原理入手建立其参数方程,最后通过实例表明该方法是可行有效的.

  12. Surface roughness measurement with laser triangulation

    Science.gov (United States)

    Bai, Fuzhong; Zhang, Xiaoyan; Tian, Chaoping

    2016-09-01

    A surface roughness measurement method is introduced in the paper, which is based on laser triangulation and digital image processing technique. In the measuring system, we use the line-structured light as light source, microscope lens and high-accuracy CCD sensor as displacement sensor as well. In addition, the working angle corresponding to the optimal sensitivity is considered in the optical structure design to improve the measuring accuracy. Through necessary image processing operation for the light strip image, such as center-line extraction with the barycenter algorithm, Gaussian filtering, the value of roughness is calculated. A standard planing surface is measured experimentally with the proposed method and the stylus method (Mitutoyo SJ-410) respectively. The profilograms of surface appearance are greatly similar in the shape and the amplitude to two methods. Also, the roughness statistics values are close. The results indicate that the laser triangulation with the line-structured light can be applied to measure the surface roughness with the advantages of rapid measurement and visualized display of surface roughness profile.

  13. Constructing invariant fairness measures for surfaces

    DEFF Research Database (Denmark)

    Gravesen, Jens; Ungstrup, Michael

    2002-01-01

    The paper proposes a rational method to derive fairness measures for surfaces. It works in cases where isophotes, reflection lines, planar intersection curves, or other curves are used to judge the fairness of the surface. The surface fairness measure is derived by demanding that all the given...... curves should be fair with respect to an appropriate curve fairness measure. The method is applied to the field of ship hull design where the curves are plane intersections. The method is extended to the case where one considers, not the fairness of one curve, but the fairness of a one parameter family...... of curves. Six basic third order invariants by which the fairing measures can be expressed are defined. Furthermore, the geometry of a plane intersection curve is studied, and the variation of the total, the normal, and the geodesic curvature and the geodesic torsion is determined....

  14. Continuous measurements of water surface height and width along a 6.5km river reach for discharge algorithm development

    Science.gov (United States)

    Tuozzolo, S.; Durand, M. T.; Pavelsky, T.; Pentecost, J.

    2015-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite will provide measurements of river width and water surface elevation and slope along continuous swaths of world rivers. Understanding water surface slope and width dynamics in river reaches is important for both developing and validating discharge algorithms to be used on future SWOT data. We collected water surface elevation and river width data along a 6.5km stretch of the Olentangy River in Columbus, Ohio from October to December 2014. Continuous measurements of water surface height were supplemented with periodical river width measurements at twenty sites along the study reach. The water surface slope of the entire reach ranged from during 41.58 cm/km at baseflow to 45.31 cm/km after a storm event. The study reach was also broken into sub-reaches roughly 1km in length to study smaller scale slope dynamics. The furthest upstream sub-reaches are characterized by free-flowing riffle-pool sequences, while the furthest downstream sub-reaches were directly affected by two low-head dams. In the sub-reaches immediately upstream of each dam, baseflow slope is as low as 2 cm/km, while the furthest upstream free-flowing sub-reach has a baseflow slope of 100 cm/km. During high flow events the backwater effect of the dams was observed to propagate upstream: sub-reaches impounded by the dams had increased water surface slopes, while free flowing sub-reaches had decreased water surface slopes. During the largest observed flow event, a stage change of 0.40 m affected sub-reach slopes by as much as 30 cm/km. Further analysis will examine height-width relationships within the study reach and relate cross-sectional flow area to river stage. These relationships can be used in conjunction with slope data to estimate discharge using a modified Manning's equation, and are a core component of discharge algorithms being developed for the SWOT mission.

  15. Evaluation of Arctic broadband surface radiation measurements

    OpenAIRE

    N. Matsui; C. N. Long; Augustine, J.; D. Halliwell; T. Uttal; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-01-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that ...

  16. The August 24th 2016 Accumoli earthquake: surface faulting and Deep-Seated Gravitational Slope Deformation (DSGSD in the Monte Vettore area

    Directory of Open Access Journals (Sweden)

    Domenico Aringoli

    2016-11-01

    Full Text Available On August 24th 2016 a Mw=6.0 earthquake hit central Italy, with the epicenter located at the boundaries between Lazio, Marche, Abruzzi and Umbria regions, near the village of Accumoli (Rieti, Lazio. Immediately after the mainshock, this geological survey has been focused on the earthquake environmental effects related to the tectonic reactivation of the previously mapped active fault (i.e. primary, as well as secondary effects mostly related to the seismic shaking (e.g. landslides and fracturing in soil and rock.This paper brings data on superficial effects and some preliminary considerations about the interaction and possible relationship between surface faulting and the occurrence of Deep-Seated Gravitational Slope Deformation (DSGSD along the southern and western slope of Monte Vettore.

  17. Impact cratering on slopes

    Science.gov (United States)

    Aschauer, Johannes; Kenkmann, Thomas

    2017-07-01

    The majority of impact craters have circular outlines and axially symmetric morphologies. Deviation from crater circularity is caused by either target heterogeneity, a very oblique impact incidence, post-impact deformation, or by topography. Here, we investigate the effect of topography on crater formation and systematically study impact cratering processes on inclined hillsides up to 25° slope utilizing analogue experiments. A spring-driven air gun mounted in a vertical position shoots into three different types of granular bulk solids (two sorts of glass beads, quartz sand) to emulate impact cratering on slopes. In all, 170 experiments were conducted. The transient crater develops roughly symmetrically perpendicular to the slope plane, resulting in higher ejection angles uphill than downhill when measured with respect to a horizontal plane. Craters become increasingly elliptical with increasing slope angle. At slope angles close to angle of repose of the respective bulk solids, aspect ratios of the craters reach ∼1.7. Uphill-downhill cross sections become increasingly asymmetric, the depth-diameter ratio of the craters decreases, and the deepest point shifts downhill with increasing slope angle. Mass wasting is initiated both in the uphill and downhill sectors of the crater rim. For steep slopes the landslides that emanate from the uphill rim can overshoot the crater cavity and superpose the downhill crater rim in a narrow tongue. Mass wasting initiated at the downhill sector forms broader and shallower tongues and is triggered by the deposition of ejecta on the inclined slope. Our experiments help to explain asymmetric crater morphologies observed on asteroids such as Ceres, Vesta, Lutetia, and also on Mars.

  18. Evaluating EIV, OLS, and SEM Estimators of Group Slope Differences in the Presence of Measurement Error: The Single-Indicator Case

    Science.gov (United States)

    Culpepper, Steven Andrew

    2012-01-01

    Measurement error significantly biases interaction effects and distorts researchers' inferences regarding interactive hypotheses. This article focuses on the single-indicator case and shows how to accurately estimate group slope differences by disattenuating interaction effects with errors-in-variables (EIV) regression. New analytic findings were…

  19. Self-Calibrating Surface Measuring Machine

    Science.gov (United States)

    Greenleaf, Allen H.

    1983-04-01

    A new kind of surface-measuring machine has been developed under government contract at Itek Optical Systems, a Division of Itek Corporation, to assist in the fabrication of large, highly aspheric optical elements. The machine uses four steerable distance-measuring interferometers at the corners of a tetrahedron to measure the positions of a retroreflective target placed at various locations against the surface being measured. Using four interferometers gives redundant information so that, from a set of measurement data, the dimensions of the machine as well as the coordinates of the measurement points can be determined. The machine is, therefore, self-calibrating and does not require a structure made to high accuracy. A wood-structured prototype of this machine was made whose key components are a simple form of air bearing steering mirror, a wide-angle cat's eye retroreflector used as the movable target, and tracking sensors and servos to provide automatic tracking of the cat's eye by the four laser beams. The data are taken and analyzed by computer. The output is given in terms of error relative to an equation of the desired surface. In tests of this machine, measurements of a 0.7 m diameter mirror blank have been made with an accuracy on the order of 0.2µm rms.

  20. Modeled and Measured Partially Coherent Illumination Speckle Effects from Sloped Surfaces for Tactical Tracking

    Science.gov (United States)

    2015-03-26

    gated imaging systems,” Proc. SPIE, 6542: 654218, April 2007. 90 St. Pierre, Randall J. and others. “ Active Tracker Laser (ATLAS),” IEEE J. Sel...Abstract This work investigates the statistical properties of speckle relevant to short to medium range (tactical) active tracking engagements...91 ix List of Figures Page Figure 1.1. HEL keep-out-zone comparison of passive and active illumination

  1. Wear measurement by surface layer activation

    Energy Technology Data Exchange (ETDEWEB)

    Blatchley, C.

    1987-05-01

    The purpose of these projects was to demonstrate the capability for precisely but remotely measuring small increments of wear, erosion or corrosion in utility components using detectors mounted outside the system to monitor the presence of radionuclide surface markers. These gamma ray emitting markers are produced by surface layer activation (SLA) using a high energy particle beam from a Van de Graaff or cyclotron particle accelerator. The work was divided into three major projects: (1) determination of the feasibility of applying SLA based surface monitoring techniques to key power plant systems; (2) a field demonstration of SLA monitoring in steam turbine components subject to severe solid particle erosion; and (3) a field demonstration of SLA wear or corrosion monitoring of components in boiler auxiliaries. In the field tests, surface material removal was successfully measured from both selected systems, demonstrating the feasibility of the technique for long term diagnostic condition monitoring. Three bearing components in a boiler circulation pump were monitored almost continuously for a period of over 5 months until the pump was stopped due to electrical problems unrelated to the wear measurements. Solid particle erosion from two stop valve bypass valves was measured during a series of nine startup cycles. Both test demonstrations confirmed the earlier feasibility estimates and showed how SLA markers can be used to provide valuable diagnostic information to plant operators. 22 refs., 63 figs., 29 tabs.

  2. Casimir force measurements from silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold-coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was mea

  3. Optical measurement of surface roughness in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Brodmann, R.

    1984-11-01

    The measuring system described here is based on the light-scattering method, and was developed by Optische Werke G. Rodenstock, Munich. It is especially useful for rapid non-contact monitoring of surface roughness in production-related areas. This paper outlines the differences between this system and the common stylus instrument, including descriptions of some applications in industry.

  4. Surface charge measurement using an electrostatic probe

    DEFF Research Database (Denmark)

    Crichton, George C; McAllister, Iain Wilson

    1998-01-01

    During the 1960s, the first measurements of charge on dielectric surfaces using simple electrostatic probes were reported. However it is only within the last 10 years that a proper understanding of the probe response has been developed. This situation arose as a consequence of the earlier studies...

  5. Stationary Sea Surface Height Anomalies in Cyclonic Boundary Currents; the Role of PV-Conservation Along a Topographic Slope

    Science.gov (United States)

    Broomé, S.; Nilsson, J.; Nycander, J.

    2016-02-01

    In northern high-latitude sub-polar seas, such as the Nordic Seas and the Labrador Sea, time-mean geostrophic currents mediate the meridional oceanic heat transport. These currents are often found on the continental slopes as intense cyclonic boundary currents, which, due to the relatively weak stratification, are strongly steered by the bottom topography. However, analysis of hydrographic and satellite altimetric data along depth contours exhibit some remarkable stationary along-stream variations in the depth-integrated buoyancy. A closer examination reveals that the variations seem to be linked to changes in steepness and curvature of the topography beneath.In order to examine the underlying dynamics, a steady-state model of a cyclonic stratified boundary current over a topographic slope is developed in the limit of small Rossby numbers. To the lowest order, the bottom velocities are aligned with the bottom topography. Based on the conservation of potential vorticity, equations for variations of the first-order pressure and buoyancy fields along the depth contours are derived. These show that the pressure and the depth-integrated buoyancy tend to increase (decrease) where the lowest order flow increases (decreases) its relative vorticity. Along-isobath variations in relative vorticity, in turn, tend to be most pronounced for cyclonic anomalies and occur where the topography is steep and/or curves. The thus predicted variations in pressure and buoyancy are comparable in magnitude to the ones found in the data.

  6. Sea-surface salinity: the missing measurement

    Science.gov (United States)

    Stocker, Erich F.; Koblinsky, Chester

    2003-04-01

    Even the youngest child knows that the sea is salty. Yet, routine, global information about the degree of saltiness and the distribution of the salinity is not available. Indeed, the sea surface salinity measurement is a key missing measurement in global change research. Salinity influences circulation and links the ocean to global change and the water-cycle. Space-based remote sensing of important global change ocean parameters such as sea-surface temperature and water-cycle parameters such as precipitation have been available to the research community but a space-based global sensing of salinity has been missing. In July 2002, the National Aeronautical and Space Administration (NASA) announced that the Aquarius mission, focused on the global measurement of sea surface salinity, is one of the missions approved under its ESSP-3 program. Aquarius will begin a risk-reduction phase during 2003. Aquarius will carry a multi-beam 1.4 GHz (L-band) radiometer used for retrieving salinity. It also will carry a 1.2 GHz (L-band) scatterometer used for measuring surface roughness. Aquarius is tentatively scheduled for a 2006 launch into an 8-day Sun-synchronous orbit. Aquarius key science data product will be a monthly, global surface salinity map at 100 km resolution with an accuracy of 0.2 practical salinity units. Aquarius will have a 3 year operational period. Among other things, global salinity data will permit estimates of sea surface density, or buoyancy, that drives the ocean's three-dimensional circulation.

  7. A statistical look at turbulence from high-resolution temperature measurements above a deep-ocean sloping seafloor.

    Science.gov (United States)

    Cimatoribus, Andrea; van Haren, Hans

    2016-04-01

    A detailed analysis of the statistics of temperature in an oceanographic observational dataset is presented. The data is collected using a moored array of 144 thermistors, 100m tall, deployed above the slopes of a seamount in the North Eastern Atlantic Ocean from April to August 2013. The thermistors are built in-house at the Royal Netherlands Institute for Sea Research, and provide a precision better than 10-3 K and very low noise levels. The thermistors measure temperature every second, synchronised throughout the moored array. The thermistor array ends 5m above the bottom, and no bottom mixed layer is visible in the data, indicating that restratification is constantly occurring and that a mixed layer is either absent or very thin. Intense turbulence is observed, and a strong dependence of turbulence parameters on the phase of the semidiurnal tidal wave (the dominant frequency in the power spectrum) is also evident. We present an overview of the results obtained form this dataset, exploiting the unprecedent detail of the observations. We compute the statistical moments (generalised structure functions) of order up to 10 of the distributions of temperature increments. Strong intermittency is observed, in particular, during the downslope phase of the tide, and farther from the seafloor. In the lower half of the mooring during the upslope phase, the temperature statistics are consistent with those of a passive scalar. In the upper half of the mooring, the temperature statistics deviate from those of a passive scalar, and evidence of turbulent convective activity is found. The downslope phase is generally thought to be more shear-dominated, but our results suggest on the other hand that convective activity is present. High-order moments also show that the turbulence scaling behaviour breaks at a well-defined scale (of the order of the buoyancy length scale), which is however dependent on the flow state (tidal phase, height above the bottom). At larger scales, wave

  8. Laboratory laser reflectance measurement and applications to asteroid surface analysis

    Science.gov (United States)

    Shaw, A.; Daly, M. G.; Cloutis, E. A.; Tait, K. T.; Izawa, M. R. M.; Barnouin, O. S.; Hyde, B. C.; Nicklin, I.

    2014-07-01

    Introduction Laboratory reflectance measurement of asteroid analogs is an important tool for interpreting the reflectance of asteroids. One dominant factor affecting how measured reflectance changes as a function of phase angle (180° minus the scattering angle) is surface roughness [1], which is related to grain size. A major goal of this study is to be able to use the angular distributions (phase functions) of scattered light from various regions on an asteroid surface to determine the relative grain size between those regions. Grain size affects the spectral albedo and continuum slopes of surface materials, has implications in terms of understanding geologic processes on asteroids and is also valuable for the planning and operations of upcoming missions to asteroids, such as the New Frontiers OSIRIS-REx sample return mission to the asteroid (101955) Bennu [2]. Information on surface roughness is particularly powerful when combined with other datasets, such as thermal inertia maps (e.g., a smooth, low-backscatter surface of low thermal inertia likely contains fine grains). Approach To better constrain the composition and surface texture of Bennu, we are conducting experiments to investigate the laser return signature of terrestrial and meteorite analogs to Bennu. The objective is to understand the nature of laser returns given possible compositional, grain size and slope distributions on the surface of Bennu to allow surface characterization, particularly surface grain size, which would significantly aid efforts to identify suitable sites for sampling by the OSIRIS-REx mission. Setup A 1064-nm laser is used to determine the reflectance of Bennu analogs and their constituents (1064 nm is the wavelength of many laser altimeters including the one planned to fly on OSIRIS-REx). Samples of interest include serpentinites (greenalite, etc.), magnetite, and shungite. To perform the experiments, a goniometer has been built. This instrument allows reflectance measurements

  9. Drag force and surface roughness measurements on freshwater biofouled surfaces.

    Science.gov (United States)

    Andrewartha, J; Perkins, K; Sargison, J; Osborn, J; Walker, G; Henderson, A; Hallegraeff, G

    2010-05-01

    The detrimental effect of biofilms on skin friction for near wall flows is well known. The diatom genera Gomphonema and Tabellaria dominated the biofilm mat in the freshwater open channels of the Tarraleah Hydropower Scheme in Tasmania, Australia. A multi-faceted approach was adopted to investigate the drag penalty for biofouled 1.0 m x 0.6 m test plates which incorporated species identification, drag measurement in a recirculating water tunnel and surface characterisation using close-range photogrammetry. Increases in total drag coefficient of up to 99% were measured over clean surface values for biofouled test plates incubated under flow conditions in a hydropower canal. The effective roughness of the biofouled surfaces was found to be larger than the physical roughness; the additional energy dissipation was caused in part by the vibration of the biofilms in three-dimensions under flow conditions. The data indicate that there was a roughly linear relationship between the maximum peak-to-valley height of a biofilm and the total drag coefficient.

  10. Theoretical analysis of error transfer from surface slope to refractive ray and their application to the solar concentrated collector

    CERN Document Server

    Huang, Weidong

    2011-01-01

    This paper presents the general equation to calculate the standard deviation of reflected ray error from optical error through geometry optics, applying the equation to calculate the standard deviation of reflected ray error for 8 kinds of solar concentrated reflector, provide typical results. The results indicate that the slope errors in two direction is transferred to any one direction of the focus ray when the incidence angle is more than 0 for solar trough and heliostats reflector; for point focus Fresnel lens, point focus parabolic glass mirror, line focus parabolic galss mirror, the error transferring coefficient from optical to focus ray will increase when the rim angle increase; for TIR-R concentrator, it will decrease; for glass heliostat, it relates to the incidence angle and azimuth of the reflecting point. Keywords: optic error, standard deviation, refractive ray error, concentrated solar collector

  11. Acid test of joint technical and biological measures in slope stabilisation - Impact analysis of the heavy rainstorm event in August 2005

    Science.gov (United States)

    Graf, F.; Böll, A.

    2009-04-01

    The persisting and heavy rainstorms from 20th to 22nd August in 2005 resulted in loss of human lives and tremendous damage on infrastructure all over Switzerland. Many of the measures taken hitherto to protect against such natural hazards were stressed to their limits or even beyond due to water saturation of the soils and extreme discharges of the torrents. This particular configuration offered the possibility to investigate the reliability of technical and biological measures taken within the scope of slope stabilisation, torrent and gully control. In the context of a joint project the ancient sliding area "Schwandrübi" in Dallenwil (Switzerland) providing joint technical and biological measures was chosen to address aspects concerning the reliability of technical supporting structures, the development of biological measures in the course of time and their performance under the extreme impact as well as the effects of biological measures on the stability of slopes. During 1981 and 1982 joint technical and biological measures had been taken on a large scale with minor follow-ups shortly after to stabilise the "Schwandrübi". The underlying strategy was based on several pilot surveys as thorough soil analysis, e.g. grain size distribution and determination of the angle of internal friction (Φ') related to the porosity (n) and the dry unit weight (γ), respectively. Basically, the spatial arrangement of the gabions was in accordance with the theoretical guidelines. However, based on the angle of internal friction (Φ') determined on the loose moraine soil material, it was not possible to meet the soil mechanical criterion of inclination between the constructions in all cases. Regardless of the extreme impact during the rainstorm (~100-year event), no serious damage occurred neither on the roughly 25-year old gabions nor on the torrent control structures. The recalculated peak discharge in the outlet channel was ~60 m3s-1 superimposed by high bed load

  12. Assessment and mapping of slope stability based on slope units: A case study in Yan’an, China

    Indian Academy of Sciences (India)

    Jianqi Zhuang; Jianbing Peng; Yonglong Xu; Qiang Xu; Xinghua Zhu; Wei Li

    2016-10-01

    Precipitation frequently triggers shallow landslides in the Loess Plateau of Shaanxi, China, resulting in loss of life, damage to gas and oil routes, and destruction of transport infrastructure and farmland. To assess the possibility of shallow landslides at different precipitation levels, a method to draw slope units and steepest slope profiles based on ARCtools and a new method for calculating slope stability areproposed. The methods were implemented in a case study conducted in Yan’an, north-west China. High resolution DEM (Digital Elevation Model) images, soil parameters from in-situ laboratory measurements and maximum depths of precipitation infiltration were used as input parameters in the method. Next,DEM and reverse DEM were employed to map 2146 slope units in the study area, based on which the steepest profiles of the slope units were constructed. Combining analysis of the water content of loess, strength of the sliding surface, its response to precipitation and the infinite slope stability equation, a newequation to calculate infinite slope stability is proposed to assess shallow landslide stability. The slope unit stability was calculated using the equation at 10-, 20-, 50- and 100-year return periods of antecedent effective precipitation. The number of slope units experiencing failure increased in response to increasing effective antecedent rainfall. These results were validated based on the occurrence of landslides in recent decades. Finally, the applicability and limitations of the model are discussed.

  13. Reliability and Consistency of Surface Contamination Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rouppert, F.; Rivoallan, A.; Largeron, C.

    2002-02-26

    Surface contamination evaluation is a tough problem since it is difficult to isolate the radiations emitted by the surface, especially in a highly irradiating atmosphere. In that case the only possibility is to evaluate smearable (removeable) contamination since ex-situ countings are possible. Unfortunately, according to our experience at CEA, these values are not consistent and thus non relevant. In this study, we show, using in-situ Fourier Transform Infra Red spectrometry on contaminated metal samples, that fixed contamination seems to be chemisorbed and removeable contamination seems to be physisorbed. The distribution between fixed and removeable contamination appears to be variable. Chemical equilibria and reversible ion exchange mechanisms are involved and are closely linked to environmental conditions such as humidity and temperature. Measurements of smearable contamination only give an indication of the state of these equilibria between fixed and removeable contamination at the time and in the environmental conditions the measurements were made.

  14. Surface Wear Measurement Using Optical Correlation Technique

    Science.gov (United States)

    Acinger, Kresimir

    1983-12-01

    The coherent optical correlation technique was applied for measuring the surface wear of a tappet (part of car engine), worn by friction with the camshaft. It was found that maximum correlation intensity decays exponentially with the number of wear cycles (i.e. camshaft revolutions). Tappets of the same make have an identical rate of correlation decay. Tappets of different makes have different rates of correlation decay which are in agreement with observed long term wear.

  15. Microwave Radiometric Measurement of Sea Surface Salinity.

    Science.gov (United States)

    1984-04-01

    potential problems of polution and urban water sup- plies. Although salinity can be measured from a surface vessel, economic consider- ations advocate...Washington, DC 20350 Commander Naval Sea System Commandaa ComAinder ATTN: Mr. C. Smith, NAVSEA 63R* Nval Air Development Center "’-’. "Washington, DC...20362 ATTN: Mr. R. Bollard, Code 2062% .’* Warminster, PA 18974 • .’.Commander CNaval Sea System CommandCoimCander Headquarters Naval Air Systems

  16. THE 05.06.2012 SLOPE FLOOD RUNOFF IN THE LOWER BASIN OF ILIŞUA RIVER – CAUSES, EFFECTS AND FUTURE MEASURES

    Directory of Open Access Journals (Sweden)

    Gh. Şerban

    2013-03-01

    Full Text Available In the context of the Code Yellow for rainfalls and storms, issued by National Administration of Meteorology (NAM, a downpoor occurred on the 5th of June 2012 in the afternoon, between 16.00 and 16.30 hours, with maximum intensity in the area of the Dobric – Dobricel – Spermezeu – Păltineasa – Dumbrăviţa – Căianu Mare – Căianu Mic localities. The extreme meteorological event has caused a severe slope runoff. Fortunately, the effects did not include any victims, although they were very severe, judging by the blocking of tens of kilometres of road, the flooding of almost 200 households and several hundreds of hectares of agricultural land. The risk map showing the occurrence distribution of slope flood runoff and associate meteorological events reveals the need of implementing strict measures consisting in: partial afforestation of the two thirds of the cleared slopes, management and diversion of floods that discharge their liquid and alluvial material over the human settlements located in the closest proximity of the slopes, resizing of the access infrastructure (bridges, footbridges and flood defence infrastructure (dams, runoff drainage system, scenario-based training of population to react promptly to the development of the extreme hydrometeorological events. On the contrary, the questionnaires applied in the study area reveal a lower preparedness level of the population for an efficient, optimum reaction, in order to significantly reduce the effects of these phenomena.

  17. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    Science.gov (United States)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  18. An improved approach for measuring the impact of multiple CO2 conductances on the apparent photorespiratory CO2 compensation point through slope-intercept regression.

    Science.gov (United States)

    Walker, Berkley J; Skabelund, Dane C; Busch, Florian A; Ort, Donald R

    2016-06-01

    Biochemical models of leaf photosynthesis, which are essential for understanding the impact of photosynthesis to changing environments, depend on accurate parameterizations. One such parameter, the photorespiratory CO2 compensation point can be measured from the intersection of several CO2 response curves measured under sub-saturating illumination. However, determining the actual intersection while accounting for experimental noise can be challenging. Additionally, leaf photosynthesis model outcomes are sensitive to the diffusion paths of CO2 released from the mitochondria. This diffusion path of CO2 includes both chloroplastic as well as cell wall resistances to CO2 , which are not readily measurable. Both the difficulties of determining the photorespiratory CO2 compensation point and the impact of multiple intercellular resistances to CO2 can be addressed through application of slope-intercept regression. This technical report summarizes an improved framework for implementing slope-intercept regression to evaluate measurements of the photorespiratory CO2 compensation point. This approach extends past work to include the cases of both Rubisco and Ribulose-1,5-bisphosphate (RuBP)-limited photosynthesis. This report further presents two interactive graphical applications and a spreadsheet-based tool to allow users to apply slope-intercept theory to their data.

  19. Casimir force measurements from silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  20. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Science and Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S [Lawrence Berkeley National Laboratory

    2015-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO₂ and/or CH₄) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols, and cloud properties at the North Slope of Alaska are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections.

  1. Study on frost damage control measures for permanent slope of a hydroelectric station in North Xinjiang%北疆某水电站永久边坡冻害治理措施研究

    Institute of Scientific and Technical Information of China (English)

    孙根民

    2012-01-01

    A water control project in Xinjiang is located in the alpine region of the North Xinjiang; of which the permanent slope of the ground powerhouse for the hydropower plant is under the impact of frost damage due to the unsmooth seepage water drainage therein, i. e. the slope surface is even covered by the ice with the thickness up to 1 m during winter, and then a Larger damage is made on both Uie slope and the ground concrete nearby. Through the relevant study, the control measures of adding drainage adits, densifying drain-holes and making heat-insulation for drainage pipelines are adopted; thereby, the ice damage is eliminated at last.%新疆某水利工程地处新疆北部严寒地区,水电站地面厂房永久边坡因排水不畅受冻害影响,冬季坡面冰盖厚度达2 m以上,并对边坡及地面混凝土造成较大破坏.经研究,采用了增设排水洞,加密排水孔,并对排水管进行保温等治理措施,最终消除了冰害影响.

  2. The Chukchi slope current

    Science.gov (United States)

    Corlett, W. Bryce; Pickart, Robert S.

    2017-04-01

    Using a collection of 46 shipboard hydrographic/velocity transects occupied across the shelfbreak and slope of the Chukchi Sea between 2002 and 2014, we have quantified the existence of a current transporting Pacific-origin water westward over the upper continental slope. It has been named the Chukchi slope current, which is believed to emanate from Barrow Canyon. The current is surface-intensified, order 50 km wide, and advects both summer and winter waters. It is not trapped to a particular isobath, but instead is reminiscent of a free jet. There is no significant variation in Pacific water transport with distance from Barrow Canyon. A potential vorticity analysis suggests that the flow is baroclinically unstable, consistent with the notion that it meanders. The current is present during all synoptic wind conditions, but increases in strength from summer to fall presumably due to the seasonal enhancement of the easterly winds in the region. Its transport increased over the 12-year period of data coverage, also likely in response to wind forcing. In the mean, the slope current transports 0.50 ± 0.07 Sv of Pacific water. This estimate allows us to construct a balanced mass budget of the Chukchi shelf inflows and outflows. Our study also confirms the existence of an eastward-flowing Chukchi shelfbreak jet transporting 0.10 ± 0.03 Sv of Pacific water towards Barrow Canyon.

  3. Deformation Measurements of Smart Aerodynamic Surfaces

    Science.gov (United States)

    Fleming, Gary A.; Burner, Alpheus

    2005-01-01

    Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F planform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flap, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.

  4. Surface ozone measurements using differential absorption lidar

    Science.gov (United States)

    Jain, Sohan L.; Arya, B. C.; Ghude, Sachin D.; Arora, Arun K.; Sinha, Randhir K.

    2005-01-01

    Human activities have been influencing the global atmosphere since the beginning of the industrial era, causing shifts from its natural state. The measurements have shown that tropospheric ozone is increasing gradually due to anthropogenic activities. Surface ozone is a secondary pollutant, its concentration in lower troposphere depends upon its precursors (CO, CH4, non methane hydrocarbons, NOx) as well as weather and transport phenomenon. The surface ozone exceeding the ambient air quality standard is health hazard to human being, animal and vegetation. The regular information of its concentrations on ground levels is needed for setting ambient air quality objectives and understanding photo chemical air pollution in urban areas. A Differential Absorption Lidar (DIAL) using a tunable CO2 laser has been designed and developed at National Physical Laboratory, New Delhi, to monitor water vapour, surface ozone, ammonia, ethylene etc. Some times ethylene and surface ozone was found to be more than 40 ppb and 140 ppb respectively which is a health hazard. Seasonal variation in ozone concentrations shows maximum in the months of summer and autumn and minimum in monsoon and winter months. In present communication salient features of experimental set up and results obtained will be presented in detail.

  5. Relationship between the electric resistivity and the rain fall in discontinuity zone of rock slope by the continuous measurement; Renzoku tokei ni yoru ganban shamen no furenzokutaibu ni okeru mikake hiteiko henka to kou tono kankei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kusumi, H.; Nishida, K. [Kansai University, Osaka (Japan). Faculty of Engineering; Nakamura, M. [Newjec Inc., Osaka (Japan)

    1996-10-01

    The relationship between change in resistivity and rainfall was studied by continuously measuring resistivities of fracture zone and stratum boundary along the measuring line of 95m long from the top to bottom of rock slope. The measurement field was located on a hill of 150-200m high at the northern part of Arima-Takatsuki tectonic line. Electrodes of 30m in maximum measuring depth were arranged at 289 points by dipole-dipole method. Resistivity was continuously measured at time intervals of 6 hours. Apparent resistivity was hardly affected by rainfall at points with less infiltration of stormwater from the ground surface, while it decreased by rainfall at points on fracture zone, stratum boundary or bleeding channel. The change rate of apparent resistivity could be approximated with the exponential function of rainfall. In such case, the apparent resistivity under most dried condition at the concerned point should be used as reference maximum apparent resistivity. The change rate of apparent resistivity due to rainfall in fracture zone reflects infiltration of stormwater, suggesting to be useful for disaster prevention of slopes. 5 refs., 6 figs.

  6. Measuring the Valence of Nanocrystal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jonathan Scharle [Columbia Univ., New York, NY (United States)

    2016-11-30

    The goal of this project is to understand and control the interplay between nanocrystal stoichiometry, surface ligand binding and exchange, and the optoelectronic properties of semiconductor nanocrystals in solution and in thin solid films. We pursued three research directions with this goal in mind: 1) We characterized nanocrystal stoichiometry and its influence on the binding of L-type and X-type ligands, including the thermodynamics of binding and the kinetics of ligand exchange. 2) We developed a quantitative understanding of the relationship between surface ligand passivation and photoluminescence quantum yield. 3) We developed methods to replace the organic ligands on the nanocrystal with halide ligands and controllably deposit these nanocrystals into thin films, where electrical measurements were used to investigate the electrical transport and internanocrystal electronic coupling.

  7. Indium adhesion provides quantitative measure of surface cleanliness

    Science.gov (United States)

    Krieger, G. L.; Wilson, G. J.

    1968-01-01

    Indium tipped probe measures hydrophobic and hydrophilic contaminants on rough and smooth surfaces. The force needed to pull the indium tip, which adheres to a clean surface, away from the surface provides a quantitative measure of cleanliness.

  8. Evaluation of Arctic broadband surface radiation measurements

    Directory of Open Access Journals (Sweden)

    N. Matsui

    2012-02-01

    Full Text Available The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW and thermal infrared, or longwave (LW, radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse SW measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  9. Martian Surface after Phoenix's Conductivity Measurements

    Science.gov (United States)

    2008-01-01

    NASA's Phoenix Mars Lander's Robotic Arm Camera took this image on Sol 71 (August 6, 2008), the 71st Martian day after landing. The shadow shows the outline of Phoenix's Thermal and Electrical Conductivity Probe, or TECP. The holes seen in the Martian surface were made by this instrument to measure the soil's conductivity. A fork-like probe inserted into the soil checks how well heat and electricity move through the soil from one prong to another. The measurements completed Wednesday ran from the afternoon of Phoenix's 70th Martian day, or sol, to the morning of Sol 71. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Gravity-induced stresses in finite slopes

    Science.gov (United States)

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  11. Measurement of the Slope Parameter $\\alpha$ for the $\\eta\\to 3\\pi^0$ decay with the Crystal Ball at MAMI-C

    CERN Document Server

    Prakhov, S; Aguar, P; Akasoy, L K; Annand, J R M; Arends, H J; Bartolome, P A; Bantawa, K; Beck, R; Bekrenev, V; Berghauser, H; Boillat, B; Braghieri, A; Branford, D; Briscoe, W J; Brudvik, J; Cherepnya, S; Codling, R F B; Downie, E J; Drexler, P; Filkov, L V; Glazier, D I; Gregor, R; Heid, E; Hornidge, D; Jahn, O; Jude, T C; Kashevarov, V L; Kellie, J D; Kondratiev, R; Korolija, M; Kotulla, M; Koulbardis, A; Krambrich, D; Kruglov, S; Krusche, B; Lang, M; Lisin, V; Livingston, K; MacGregor, I J D; Maghrbi, Y; Manley, D M; Martínez, M; McGeorge, J C; McNicoll, E F; Mekterovic, D; Metag, V; Micanovic, S; Nikolaev, A; Novotny, R; Ostrick, M; Otte, P B; Pedroni, P; Pheron, F; Polonski, A; Robinson, J; Rosner, G; Rost, M; Rostomyan, T; Schumann, S; Sikora, M H; Sober, D I; Starostin, A; Suarez, I M; Supek, I; Tarbert, C M; Thiel, M; Thomas, A; Unverzagt, M; Watts, D P; Zamboni, I; Zehr, F

    2008-01-01

    The dynamics of the $\\eta\\to 3\\pi^0$ decay have been studied with the Crystal Ball multiphoton spectrometer and the TAPS calorimeter. Bremsstrahlung photons produced by the 1.5 GeV electron beam of the Mainz microtron MAMI-C and tagged by the Glasgow photon spectrometer were used for $\\eta$-meson production. The analysis of $3 \\times 10^6$ $\\gamma p \\to \\eta p \\to 3\\pi^0 p \\to 6\\gamma p$ events yields the value $\\alpha=-0.032\\pm0.003$ for the $\\eta\\to 3\\pi^0$ slope parameter, which agrees with the majority of recent experimental results and has the smallest uncertainty. The $\\pi^0\\pi^0$ invariant-mass spectrum was investigated for the occurrence of a cusp-like structure in the vicinity of the $\\pi^+\\pi^-$ threshold. The observed effect is small and does not affect our measured value for the slope parameter.

  12. ElevationSlope_SLOPE2M

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington County 2012 2.0m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  13. ElevationSlope_SLOPE1M2005

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Essex County 2005 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in...

  14. ElevationSlope_SLOPE1M2010

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington Floodplain 2010 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  15. ElevationSlope_SLOPE1M2007

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington Floodplain 2007 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  16. ElevationSlope_SLOPE1M2009

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Barre Montpelier 2009 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  17. Anisotropy of Soil Hydraulic Properties Along Arable Slopes

    Institute of Scientific and Technical Information of China (English)

    JING Yuan-Shu; ZHANG Bin; A.THIMM; H.ZEPP

    2008-01-01

    The spatial variations of the soil hydraulic properties were mainly considered in vertical direction.The objectives of this study were to measure water-retention curves,θ(ψ),and unsaturated hydraulic conductivity functions,K(ψ),of the soils sampled at different slope positions in three directions,namely,in vertical direction,along the slope and along the contour,and to determine the effects of sampling direction and slope position of two soil catenas.At the upper slope positions,the surface soils (0-10 cm) sampled in the vertical direction had a lower soil water content,θ,at a certain soil water potential (-1500 kPa <ψ<-10 kPa) and had the greatest unsaturated hydraulic conductivity,K,at ψ> -10kPa.At the lower slope positions,K at ψ>-10 kPa was smaller in the vertical direction than in the direction along the slope.The deep soils (100-110 cm) had similar soil hydraulic properties in all the three directions.The anisotropic variations of the hydraulic properties of the surface soils were ascribed to the effects of natural wetting and drying cycles on the structural heterogeneity.These results suggested that the anisotropy of soil hydraulic properties might be significant in influencing soil water movement along the slope and need to be considered in modeling.

  18. Constitutive models in stability analysis of rock slope

    Institute of Scientific and Technical Information of China (English)

    言志信; 段建; 王后裕

    2008-01-01

    Equivalent Mohr-Coulomb yield criterion was established,and the relationship between different constitutive models was studied.The application of equivalent Mohr-Coulomb yield criterion in Ansys was achieved by means of transforming material parameters.The stability research aiming at the most common rock slope without conspicuous slide surface was accomplished,the methods of measurably assessing the stability of rock slope without conspicuous slide surface were explored,and the disadvantages of method of minimum slide-resisted reserve as dangerous slide path were pointed out.The results show that through the calculation and analysis of cases,the conception that measurable assessment of the stability of rock slope without conspicuous slide surface can be achieved under condition that equivalent Mohr-Coulomb yield criterion is validated.Its safety parameter formula is explicit in theory and credible in results.The results obtained are approximate to those obtained by using finite element intensity reducing method.

  19. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: implications for slope stability, Edmonds, Washington, USA

    Directory of Open Access Journals (Sweden)

    G. Biavati

    2006-01-01

    Full Text Available Shallow landslides on steep (>25° hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5 m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope

  20. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: implications for slope stability, Edmonds, Washington, USA

    Science.gov (United States)

    Biavati, G.; Godt, J. W.; McKenna, J. P.

    2006-05-01

    Shallow landslides on steep (>25°) hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5 m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope-parallel flow conditions

  1. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: Implications for slope stability, Edmonds, Washington, USA

    Science.gov (United States)

    Biavati, G.; Godt, J.W.; McKenna, J.P.

    2006-01-01

    Shallow landslides on steep (>25??) hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope-parallel flow conditions

  2. Quadrotor helicopter for surface hydrological measurements

    Science.gov (United States)

    Pagano, C.; Tauro, F.; Porfiri, M.; Grimaldi, S.

    2013-12-01

    Surface hydrological measurements are typically performed through user-assisted and intrusive field methodologies which can be inadequate to monitor remote and extended areas. In this poster, we present the design and development of a quadrotor helicopter equipped with digital acquisition system and image calibration units for surface flow measurements. This custom-built aerial vehicle is engineered to be lightweight, low-cost, highly customizable, and stable to guarantee optimal image quality. Quadricopter stability guarantees minimal vibrations during image acquisition and, therefore, improved accuracy in flow velocity estimation through large scale particle image velocimetry algorithms or particle tracking procedures. Stability during the vehicle pitching and rolling is achieved by adopting large arm span and high-wing configurations. Further, the vehicle framework is composed of lightweight aluminum and durable carbon fiber for optimal resilience. The open source Ardupilot microcontroller is used for remote control of the quadricopter. The microcontroller includes an inertial measurement unit (IMU) equipped with accelerometers and gyroscopes for stable flight through feedback control. The vehicle is powered by a 3 cell (11.1V) 3000 mAh Lithium-polymer battery. Electronic equipment and wiring are hosted into the hollow arms and on several carbon fiber platforms in the waterproof fuselage. Four 35A high-torque motors are supported at the far end of each arm with 10 × 4.7 inch propellers. Energy dissipation during landing is accomplished by four pivoting legs that, through the use of shock absorbers, prevent the impact energy from affecting the frame thus causing significant damage. The data capturing system consists of a GoPro Hero3 camera and in-house built camera gimbal and shock absorber damping device. The camera gimbal, hosted below the vehicle fuselage, is engineered to maintain the orthogonality of the camera axis with respect to the water surface by

  3. Suspended sediment load and mechanical erosion in the Senegal Basin — Estimation of the surface runoff concentration and relative contributions of channel and slope erosion

    Science.gov (United States)

    Kattan, Z.; Gac, J. Y.; Probst, J. L.

    1987-06-01

    The main purpose of this paper is to propose a method to better understand the suspended sediment dynamics in the Senegal Basin, and the behaviour of the river particulate load at Bakel gauging station (218,000 km 2) during the period 1979-1984. The method is based on the estimation of surface discharge using a simple hydrological model which allows separation of the different flow components of the annual hydrograph. Then the suspended sediment loads can be correlated with the surface discharge. During the study period, the mean annual flow (330 m 3s -1) represented only 46% of the mean long-term flow (1903-1984), and the mean yearly particulate load carried by the Senegal River was about 1.9 million tons. Two approaches are used to estimate the different contributions to the river's suspended sediment transport. The main contribution originates from slope erosion, which supplies 50-80% of the total sediment transport and the second originates from channel erosion. The suspended sediment concentration in the surface runoff, primarily calculated by a global annual method, ranges from 0.9 to 1.6 gl -1 and averages 1.3 gl -1. After correction for channel erosion input, this concentration is reduced to 1.1 gl -1.

  4. Measurements of an expanding surface flashover plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J. R., E-mail: john.harris@colostate.edu [Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2014-05-21

    A better understanding of vacuum surface flashover and the plasma produced by it is of importance for electron and ion sources, as well as advanced accelerators and other vacuum electronic devices. This article describes time-of-flight and biased-probe measurements made on the expanding plasma generated from a vacuum surface flashover discharge. The plasma expanded at velocities of 1.2–6.5 cm/μs, and had typical densities of 10{sup 10}–10{sup 12} cm{sup −3}. The expansion velocity of the plasma leading edge often exhibited a sharp increase at distances of about 50 mm from the discharge site. Comparison with biased-probe data suggests that, under most conditions, the plasma leading edge was dominated by negative ions, with the apparent increase in velocity being due to fast H{sup −} overtaking slower, heavier ions. In some cases, biased-probe data also showed abrupt discontinuities in the plasma energy distribution co-located with large changes in the intercepted plasma current, suggesting the presence of a shock in the leading edge of the expanding plasma.

  5. Optical measurements of chemically heterogeneous particulate surfaces

    Science.gov (United States)

    Zubko, Nataliya; Gritsevich, Maria; Zubko, Evgenij; Hakala, Teemu; Peltoniemi, Jouni I.

    2016-07-01

    We experimentally study light scattering by particulate surfaces consisting of two high-contrast materials. Using the Finnish Geodetic Institute field goniospectropolarimeter, reflectance and degree of linear polarization are measured in dark volcanic sand, bright salt (NaCl) and bright ferric sulfate (Fe2(SO4)3); and in mixtures of bright and dark components. We found that the light-scattering response monotonically changes with volume ratio of dark and bright components. In contrast to previous finding, we do not detect an enhancement of the negative polarization amplitude in two-component high-contrast mixtures. Two-component mixtures reveal an inverse correlation between maximum of their linear polarization and reflectance near backscattering, the so-called Umov effect. In log-log scales this inverse correlation takes a linear form for the dark and moderate-dark samples, while for the brightest samples there is a noticeable deviation from the linear trend.

  6. Heat kernel measures on random surfaces

    CERN Document Server

    Klevtsov, Semyon

    2015-01-01

    The heat kernel on the symmetric space of positive definite Hermitian matrices is used to endow the spaces of Bergman metrics of degree k on a Riemann surface M with a family of probability measures depending on a choice of the background metric. Under a certain matrix-metric correspondence, each positive definite Hermitian matrix corresponds to a Kahler metric on M. The one and two point functions of the random metric are calculated in a variety of limits as k and t tend to infinity. In the limit when the time t goes to infinity the fluctuations of the random metric around the background metric are the same as the fluctuations of random zeros of holomorphic sections. This is due to the fact that the random zeros form the boundary of the space of Bergman metrics.

  7. Slope Morphology of Twin Peaks, Mars Pathfinder Landing Site

    Science.gov (United States)

    Hobbs, Steven; Paine, Colin; Clarke, Jon; Caprarelli, Graziella

    2010-05-01

    Development of slope form over time has long been a concern of geomorphologists, although recently this concern has been moved to slope processes rather than form. There are two basic approaches. The first is theoretical, involving modeling of different types and rates of processes, and calculation of results in terms of slope evolution over time. Comparisons with real-life slopes can follow this approach [1], [2]. The second, inductive, approach involves field measurements to test ideas about slope evolution starting from the assumption that observed slopes represent different stages of an essentially similar evolution [3]. Space is substituted for time, and a number of slopes, assumed to be of increasing age, are measured and placed in an evolutionary sequence (e.g. [4], [5], [6]). [5] showed that slope angles are modally distributed, with the modal angles controlled by the materials (regolith) of which the slopes are formed, and by the processes operating on them. Data can be obtained directly from field work or from digital elevation models (DEM) derived from remote sensing investigations [7]. DEMs are particularly useful to study inaccessible planets, such as Mars, where on site observations are restricted to only a few landing sites. Here we present a study of slopes on the Twin Peaks, two small hills located 780 m north and 910 m south of the Mars Pathfinder landing site at the mouth of the Ares and Tiu flood channels. The presence of streamlined hills, jumbled surfaces and conglomerates suggested the region was modified by massive flooding 1.8 - 3.5 billion years ago [8], [9]. The streamlined forms and terraces of the Twin Peaks were taken to indicate catastrophic flood conditions that were believed to be prevalent in the area [8]. It was also suggested that the northernmost peak was topped by floodwater, causing its flatter appearance. Other researchers postulated alternative geomorphological origins for the features observed at the Pathfinder landing site

  8. Relating weak layer and slab properties to snow slope stability

    Directory of Open Access Journals (Sweden)

    J. Schweizer

    2014-07-01

    Full Text Available Snow slope stability evaluation requires considering weak layer as well as slab properties – and in particular their interaction. We developed a stability index from snow micro-penetrometer measurements and compared it to 129 concurrent point observations with the compression test (CT. The index considers the SMP-derived micro-structural strength and the additional load which depends on the hardness of the surface layers. The new quantitative measure of stability discriminated well between point observations rated as either "poor" or "fair" (CT < 19 and those rated as "good" (CT ≥ 19. However, discrimination power within the intermediate range was low. We then applied the index to gridded snow micro-penetrometer measurements from 11 snow slopes to explore the spatial structure and possibly relate it to slope stability. Stability distributions on the 11 slopes reflected various possible strength and load (stress distributions that naturally can occur. Their relation to slope stability was poor possibly because the index does not consider crack propagation. Hence, the relation between spatial patterns of point stability and slope stability remains elusive. Whereas this is the first attempt of a truly quantitative measure of stability, future developments should consider a better reference of stability and incorporate a measure of crack propagation.

  9. Inferring snow pack ripening and melt out from distributed ground surface temperature measurements

    Directory of Open Access Journals (Sweden)

    M.-O. Schmid

    2012-02-01

    Full Text Available The seasonal snow cover and its melting are heterogeneous both in space and time. Describing and modelling this variability are important because it affects divers phenomena such as runoff, ground temperatures or slope movements. This study investigates the derivation of melting characteristics based on spatial clusters of temperature measurements. Results are based on data from Switzerland where ground surface temperatures were measured with miniature loggers (iButtons at 40 locations, referred to as footprints. At each footprint, ten iButtons have been distributed randomly few cm below the ground surface over an area of 10 m × 10 m. Footprints span elevations of 2100–3300 m a.s.l. and slope angles of 0–55°, as well as diverse slope expositions and types of surface cover and ground material. Based on two years of temperature data, the basal ripening date and the melt-out date are determined for each iButton, aggregated to the footprint level and further analysed. The date of melt out could be derived for nearly all iButtons, the ripening date could be extracted for only approximately half of them because it requires ground freezing below the snow pack. The variability within a footprint is often considerable and one to three weeks difference between melting or ripening of the points in one footprint is not uncommon. The correlation of mean annual ground surface temperatures, ripening date and melt-out date is moderate, making them useful intuitive complementary measured for model evaluation.

  10. An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope

    Science.gov (United States)

    Durand, M.; Gleason, C. J.; Garambois, P. A.; Bjerklie, D.; Smith, L. C.; Roux, H.; Rodriguez, E.; Bates, P. D.; Pavelsky, T. M.; Monnier, J.; Chen, X.; Di Baldassarre, G.; Fiset, J.-M.; Flipo, N.; Frasson, R. P. d. M.; Fulton, J.; Goutal, N.; Hossain, F.; Humphries, E.; Minear, J. T.; Mukolwe, M. M.; Neal, J. C.; Ricci, S.; Sanders, B. F.; Schumann, G.; Schubert, J. E.; Vilmin, L.

    2016-06-01

    The Surface Water and Ocean Topography (SWOT) satellite mission planned for launch in 2020 will map river elevations and inundated area globally for rivers >100 m wide. In advance of this launch, we here evaluated the possibility of estimating discharge in ungauged rivers using synthetic, daily "remote sensing" measurements derived from hydraulic models corrupted with minimal observational errors. Five discharge algorithms were evaluated, as well as the median of the five, for 19 rivers spanning a range of hydraulic and geomorphic conditions. Reliance upon a priori information, and thus applicability to truly ungauged reaches, varied among algorithms: one algorithm employed only global limits on velocity and depth, while the other algorithms relied on globally available prior estimates of discharge. We found at least one algorithm able to estimate instantaneous discharge to within 35% relative root-mean-squared error (RRMSE) on 14/16 nonbraided rivers despite out-of-bank flows, multichannel planforms, and backwater effects. Moreover, we found RRMSE was often dominated by bias; the median standard deviation of relative residuals across the 16 nonbraided rivers was only 12.5%. SWOT discharge algorithm progress is therefore encouraging, yet future efforts should consider incorporating ancillary data or multialgorithm synergy to improve results.

  11. Study on the Slope Surface State Detecting Method Based on Image Processing%基于图像处理的边坡表面状态检测方法研究

    Institute of Scientific and Technical Information of China (English)

    严传鹏

    2011-01-01

    针对图像边坡表面状态发生的变化检测,提出了一种新的智能检测方法。人工设置两个目标体,一个作为参考标识点,一个作为监测点,标识点具有特殊的颜色(红色)与形状(圆形),以两者之间的相对位移来表征边坡的状态变化。该方法由以下4个环节构成:选取特定目标体,设置目标体;将图像转换到HIS空间,提取特定的颜色---红色,确定感兴趣区域(ROI);进行图像二值化,确定感兴趣区域的中心坐标;通过位移判定准则判定边坡表面状态是否发生变化。实验证明,该方法具有鲁棒性好、检测准确率高等特点。%This paper presents an intelligent method based on image processing for the detection of slope surface state.Two objects were set by artificial body,one is a reference point,another is a monitoring point.The relative displacement between the two points was used to characterize the change of the state of the slope surface.The signature points have special color(red) and shape(round).This method is mainly carried out in four steps.Firstly,select a specific target body and set the target body.Secondly,convert RGB color space to HIS color space,and extract pixels with red color,and determine the region of interest.Then,convert the image to binary image and measure center coordinates of the ROI.And finally we detect the state of the slope surface by using the some Criteria.The experimental result reveals the good robustness,accurate detection rate of the presented method.

  12. Rotationally Induced Surface Slope-Instabilities and the Activation of CO2 Activity on Comet 103P/Hartley 2

    CERN Document Server

    Steckloff, Jordan K; Hirabayashi, Toshi; Melosh, H Jay; Richardson, James

    2016-01-01

    Comet 103P/Hartley 2 has diurnally controlled, CO2-driven activity on the tip of the small lobe of its bilobate nucleus. Such activity is unique among the comet nuclei visited by spacecraft, and suggests that CO2 ice is very near the surface, which is inconsistent with our expectations of an object that thermophysically evolved for ~45 million years prior to entering the Jupiter Family of comets. Here we explain this pattern of activity by showing that a very plausible recent episode of rapid rotation (rotation period of ~11 [10-13] hours) would have induced avalanches in Hartley 2's currently active regions that excavated down to CO2-rich ices and activated the small lobe of the nucleus. At Hartley 2's current rate of spindown about its principal axis, the nucleus would have been spinning fast enough to induce avalanches ~3-4 orbits prior to the DIXI flyby (~1984-1991). This coincides with Hartley 2's discovery in 1986, and implies that the initiation of CO2 activity facilitated the comet's discovery. During...

  13. The Surface Roughness of (433) Eros as Measured by Thermal-Infrared Beaming

    CERN Document Server

    Rozitis, Ben

    2016-01-01

    In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an "almost pole-on" illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterised by an RMS slope of 38 $\\pm$ 8{\\deg} at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the RMS slope of 25 $\\pm$ 5{\\deg} implied by the NEAR Shoemaker laser ran...

  14. Application of the PE method to up-slope sound propagation

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo; Arranz, Marta Galindo

    1995-01-01

    velocity at the surface. The staircase PE method approximates the normal at the slope surface with the vertical component at the stair-step surface. A numerical correction can be included. Using a scale model facility [K. B. Rasmussen, 3617–3620 (1994)], a series of measurements is carried out. The results......The wide-angle PE method is applied to the prediction of sound propagation in a range-dependent environment. The finite-difference model treats the sloping ground by a staircase approximation. The method allows impedance and slope angle variations to be taken into account. The implementation...

  15. Slope stability hazard management systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Weather-related geo-hazards are a major concern for both natural slopes and man-made slopes and embankments.Government agencies and private companies are increasingly required to ensure that there is adequate protection of sloping surfaces in order that interaction with the climate does not produce instability. Superior theoretical formulations and computer tools are now available to address engineering design issues related to the near ground surface soil-atmospheric interactions. An example is given in this paper that illustrates the consequences of not paying adequate attention to the hazards of slope stability prior to the construction of a highway in South America. On the other hand, examples are given from Hong Kong and Mainland China where significant benefits are derived from putting in place a hazard slope stability management system. Some results from a hazard management slope stability study related to the railway system in Canada are also reported. The study took advantage of recent research on unsaturated soil behaviour and applied this information to real-time modelling of climatic conditions. The quantification of the water balance at the ground surface, and subsequent infiltration, is used as the primary tool for hazard level assessment. The suggested hazard model can be applied at either specific high risk locations or in a more general, broad-based manner over large areas. A more thorough understanding of unsaturated soil behaviour as it applies to near ground surface soils,along with the numerical computational power of the computer has made it possible for new approaches to be used in slope hazard management engineering.

  16. 基于图像识别的边坡表面位移检测方法研究%Study on the Slope Surface Displacement Detecting Method Based on Image Recognition

    Institute of Scientific and Technical Information of China (English)

    彭艺; 黄小华

    2012-01-01

    针对边坡表面状态发生的变化检测,提出了一种新的智能检测方法。人工设置两类标识体,一类为定位标识,一类为观测标识。用图像识别方法对标识体的质心进行提取和计算,通过一定的判别准则来判断边坡的表面位移状况。具体处理方法为先将图像转换到HIS空间,根据设定的颜色提取感兴趣区域。进行图像边缘二值化处理,计算出感兴趣区域的中心坐标值。实验证明,该方法具有鲁棒性好、检测准确率高等特点。%In this paper an intelligent method based on image recognition for the detection of slope surface state was presented. Firstly two objects were set by artificial body, with one as an anchor point, and another as a monitoring point. Secondly the centroid of object was found and calculated by using the method of image recognition. Then the change of the state of the slope surface was characterized through some criteria. This method was mainly carried out in follow steps: convert RGB color space to HIS color space, and extract pixels with given color, and determine the region of interest, followed by converting the image to binary image and measuring center coordinates of the ROI. The experimental results revealed the good robustness, accurate detection rate of the presented method.

  17. The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees)

    Science.gov (United States)

    Nadal-Romero, E.; Revuelto, J.; Errea, P.; López-Moreno, J. I.

    2015-08-01

    Erosion and deposition processes in badland areas are usually estimated using traditional observations of topographic changes, measured by erosion pins or profile metres (invasive techniques). In recent times, remote-sensing techniques (non-invasive) have been routinely applied in geomorphology studies, especially in erosion studies. These techniques provide the opportunity to build high-resolution topographic models at centimetre accuracy. By comparing different 3-D point clouds of the same area, obtained at different time intervals, the variations in the terrain and temporal dynamics can be analysed. The aim of this study is to assess and compare the functioning of terrestrial laser scanner (TLS, RIEGL LPM-321) and structure-from-motion photogrammetry (SfM) techniques (Camera FUJIFILM, Finepix x100 and software PhotoScan by AgiSoft) to evaluate erosion and deposition processes in two opposite slopes in a humid badlands area in the central Spanish Pyrenees. Results showed that TLS data sets and SfM photogrammetry techniques provide new opportunities in geomorphological erosion studies. The data we recorded over 1 year demonstrated that north-facing slopes experienced more intense and faster changing geomorphological dynamics than south-facing slopes as well as the highest erosion rates. Different seasonal processes were observed, with the highest topographic differences observed during winter periods and the high-intensity rainfalls in summer. While TLS provided the highest accuracy models, SfM photogrammetry was still a faster methodology in the field and precise at short distances. Both techniques present advantages and disadvantages, and do not require direct contact with the soil and thus prevent the usual surface disturbance of traditional and invasive methods.

  18. 江坪河水电站高陡边坡落石运动分析及防护措施%Analysis of movement of rockfall from high and steep slopes at Jiangping River Hydropower Station and protective measures

    Institute of Scientific and Technical Information of China (English)

    王盛年; 石崇; 陈鸿杰; 黄玮

    2012-01-01

    The high and steep rock slopes behind the workshops of the Jiangping River Hydropower Station have developed joints and fissures, and a nearly vertical free surface angle, and are thus likely to pose rockfall hazards, threatening the safety of workshops in the river valley area. To solve this problem, typical sections of slopes were selected and a rockfall movement analysis model was established based on geological exploration. The experiential formulas were used for quantitative analysis of the characteristics of rockfall movement, and the kinematics formulas based on probability were used for numerical simulation. The rockfall placement distribution, bounce height, movement velocity, and kinetic energy distribution were analyzed. The calculated results show that the rockfall from high and steep rock slopes significantly threaten the safety of workshops of the hydropower station and protective measures should be taken.%针对江坪河水电站厂房后边坡陡岩临空面倾角接近垂直、节理裂隙发育,可能发生崩塌落石灾害以至于威胁河谷部位地表厂房安全问题,在进行地质勘察的基础上,选取典型剖面建立落石运动分析模型,采用经验计算法定量分析落石运动特征,并以基于概率的运动学原理对落石进行数值仿真,探讨落石的落点分布、弹跳高度、运动速度及动能分布问题.计算结果表明,陡岩发生崩塌落石对电站厂房安全威胁巨大,需采取必要的落石防护措施.

  19. Estimation of infiltration rate, run-off and sediment yield under simulated rainfall experiments in upper Pravara Basin, India: Effect of slope angle and grass-cover

    Indian Academy of Sciences (India)

    Veena U Joshi; Devidas T Tambe

    2010-12-01

    The main objective of this study is to measure the effect of slope and grass-cover on in filtration rate, run-off and sediment yield under simulated rainfall conditions in a badland area located in the upper Pravara Basin in western India. An automatic rainfall simulator was designed following Dunne et al (1980) and considering the local conditions. Experiments were conducted on six selected experimental fields of 2 × 2 m within the catchment with distinct variations in surface characteristics –grass-covered area with gentle slope, recently ploughed gently sloping area, area covered by crop residue (moderate slope), bare badland with steep slope, gravelly surface with near flat slope and steep slope with grass-cover. The results indicate subtle to noteworthy variations amongst the plots depending on their slope angle and surface characteristics. An important finding that emerges from the study is that the grass-cover is the most effective measure in inducing infiltration and in turn minimizing run-off and sediment yield. Sediment yields are lowest in gently sloping grass-covered surfaces and highest in bare badland surfaces with steep slopes. These findings have enormous implication for this area, because over 2/3 area is characterized by bare and steep slopes.

  20. The surface roughness of (433) Eros as measured by thermal-infrared beaming

    Science.gov (United States)

    Rozitis, B.

    2017-01-01

    In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an `almost pole-on' illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterized by an rms slope of 38 ± 8° at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the rms slope of 25 ± 5° implied by the NEAR Shoemaker laser ranging results when extrapolated to this spatial scale, and indicates that other surface shaping processes might operate, in addition to collisions and gravity, at spatial scales under one metre in order to make asteroid surfaces rougher. For other high-obliquity asteroids observed during `pole-on' illumination conditions, the thermal-infrared beaming effect allows surface roughness to be constrained when the sub-solar latitude is greater than 60°, and if the asteroids are observed at phase angles of less than 40°. They will likely exhibit near-Earth asteroid thermal model beaming parameters that are lower than expected for a typical asteroid at all phase angles up to 100°.

  1. Surface-finish measurement with interference microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Sladky, R. E.

    1977-02-01

    Diamond turning copper and other metals, to produce mirror surfaces with reflectivities generally higher than can be obtained by lapping and polishing, has become an important new technology. Evaluation of the finish of these surfaces requires careful examination, using optical instruments. This document provides background information about the theory and equipment involved in this program. Data from several specimens have been acquired that show the type of surface finish that is obtained. Mirrors have been fabricated that show the state of the art that has been achieved in diamond turning copper and nickel.

  2. Measurement of the Dalitz plot slope parameters for K{sup -}{yields}{pi}{sup 0}{pi}{sup 0}{pi}{sup -} decay using ISTRA+ detector

    Energy Technology Data Exchange (ETDEWEB)

    Ajinenko, I.V.; Akimenko, S.A.; Britvich, G.I.; Datsko, K.V.; Filin, A.P.; Inyakin, A.V.; Konstantinov, A.S.; Konstantinov, V.F.; Korolkov, I.Y.; Leontiev, V.M.; Novikov, V.P.; Obraztsov, V.F.; Polyakov, V.A.; Romanovsky, V.I.; Shelikhov, V.I.; Smirnov, N.E.; Tchikilev, O.G.; Uvarov, V.A.; Yushchenko, O.P.; Bolotov, V.N.; Laptev, S.V.; Pastsjak, A.R.; Polyarush, A.Yu.; Sirodeev, R.Kh

    2003-08-14

    The Dalitz plot slope parameters g, h and k for the K{sup -}{yields}{pi}{sup 0}{pi}{sup 0}{pi}{sup -} decay have been measured using in-flight decays detected with the ISTRA+ setup operating in the 25 GeV negative secondary beam of the U-70 PS. About 252 K events with four-momenta measured for the {pi}{sup -} and four involved photons were used for the analysis. The values obtained g=0.627{+-}0.004(stat){+-}0.010(syst), h=0.046{+-}0.004(stat){+-}0.012(syst), k=0.001{+-}0.001(stat){+-}0.002(syst) are consistent with the world averages dominated by K{sup +} data, but have significantly smaller errors.

  3. Direct measurements of blood glucose concentration in the presence of saccharide interferences using slope and bias orthogonal signal correction and Fourier transform near-infrared spectroscopy.

    Science.gov (United States)

    Abookasis, David; Workman, Jerome J

    2011-02-01

    Saccharide interferences such as Dextran, Galactose, etc. have a great potential to interfere with near infrared (NIR) glucose analysis since they have a similar spectroscopic fingerprint and are present physiologically at large relative concentrations. These can lead to grossly inappropriate interpretation of patient glucose levels and resultant treatment in critical care and hospital settings. This study describes a methodology to reduce this effect on glucose analysis using an NIR Fourier transform spectroscopy method combined with a multivariate calibration technique (PLS) using preprocessing by orthogonal signal correction (OSC). A mathematical approach based on the use of a single calibration based bias and slope correction was applied in addition to a standard OSC was investigated. This approach is combined with a factorial interferent calibration design to accommodate for interference effects. We named this approach as a slope and bias OSC (sbOSC). sbOSC differs from OSC in the way it handles the prediction. In sbOSC, statistics on slope and bias obtained from a set of calibration samples are then used as a validation parameter in the prediction set. Healthy human volunteer blood with different glucose (80 to 200 mg/dL) and hematocrit (24 to 48 vol.%) levels containing high expected levels of inteferents have been measured with a transmittance near-infrared Fourier transform spectrometer operates in the broadband spectral range of 1.25-2.5 μm (4000-8000 cm(-1)). The effect of six interferents compounds used in intensive care and operating rooms, namely Dextran, Fructose, Galactose, Maltose, Mannitol, and Xylose, were tested on blood glucose. A maximum interference effect (MIE) parameter was used to rank the significance for the individual interferent type on measurement error relative to the total NIR whole blood glucose measurement error. For comparison, a YSI (Yellow Springs Instrument) laboratory reference glucose analyzer and NIR data were collected at

  4. Estimating river discharge from earth observation measurement of river surface hydraulic variables

    Directory of Open Access Journals (Sweden)

    J. Negrel

    2010-10-01

    Full Text Available River discharge is a key variable to quantify the water cycle, its fluxes and stocks at different scales, from local scale for the efficient management of water resource to global scale for the monitoring of climate change. Therefore, developing Earth observation (EO techniques for the measurement or estimation of river discharge is a major challenge. A key question deals with the possibility of deriving river discharge values from EO surface variables (width, level, slope, velocity the only one accessible through EO without any in situ measurement. Based on a literature study and original developments, the possibilities of estimating water surface variables using remote-sensing techniques have been explored, mainly RADAR altimetry as well as across-track and along-track interferometry.

  5. Surface properties of a single perfluoroalkyl group on water surfaces studied by surface potential measurements.

    Science.gov (United States)

    Shimoaka, Takafumi; Tanaka, Yuki; Shioya, Nobutaka; Morita, Kohei; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

    2016-12-01

    A discriminative study of a single perfluoroalkyl (Rf) group from a bulk material is recently recognized to be necessary toward the total understanding of Rf compounds based on a primary chemical structure. The single molecule and the bulk matter have an interrelationship via an intrinsic two-dimensional (2D) aggregation property of an Rf group, which is theorized by the stratified dipole-arrays (SDA) theory. Since an Rf group has dipole moments along many C-F bonds, a single Rf group would possess a hydrophilic-like character on the surface. To reveal the hydration character of a single Rf group, in the present study, surface potential (ΔV) measurements are performed for Langmuir monolayers of Rf-containing compounds. From a comparative study with a monolayer of a normal hydrocarbon compound, the hydration/dehydration dynamics of a lying Rf group on water has first been monitored by ΔV measurements, through which a single Rf group has been revealed to have a unique "dipole-interactive" character, which enables the Rf group interacted with the water 'surface.' In addition, the SDA theory proves to be useful to predict the 2D aggregation property across the phase transition temperature of 19°C by use of the ΔV measurements.

  6. A real time method for surface cleanliness measurement

    OpenAIRE

    Bilmes, Gabriel Mario; Orzi, Daniel Jesús Omar; Martínez , Oscar E.; Lencina, Alberto

    2005-01-01

    The measurement of surface cleanliness is a signifi cant problem in many industrial and technological processes. Existing methods are based on laboratory procedures, that are not performed in real time, can not be automated, and usually are restricted to a small portion of the sample. In this study we describe a new method for real time measurement of the amount of surface dirt or contamination deposited on a surface. It relies on the ablation of the surface dirt film by means of a ...

  7. Evaluation of arctic broadband surface radiation measurements

    OpenAIRE

    N. Matsui; C. N. Long; Augustine, J.; D. Halliwell; T. Uttal; Longenecker, D.; O. Nievergall; Wendell, J.; Albee, R.

    2011-01-01

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are...

  8. General regularity of dynamic responses of slopes under dynamic input

    Institute of Scientific and Technical Information of China (English)

    QI Shengwen; WU Faquan; SUN Jinzhong

    2003-01-01

    Through lots of numerical simulations with FLAC3D, dynamic responses of slopes are comprehensively studied in this paper and the general regularities of the isoline of the coefficient of the displacement, velocity and acceleration of the slope section are reached. Given a certain material slope, if the height of the slope is less than a certain value, the displacement, velocity and acceleration linearly enlarge with elevation in the vertical direction; if the height of the slope surpasses the certain value, the displacement,velocity and acceleration do not linearly enlarge with elevation any more, on the other hand, they fluctuate with a certain rhythm. At the same time, the rhythm appears in the horizontal direction, and the displacement, velocity and acceleration of the slope surface enlarge near the slope surface. The distribution form of the isoline of the coefficient of displacement, velocity and acceleration in the section of the slope is remarkably affected by the slope angle. In the certain area near the slope surface, the isoline of displacement,velocity and acceleration is parallel to the surface of the slope; in the mean time the strike direction of the extremum area is parallel to the surface of the slope, too. The charts of the slope dynamic responses can be depicted with two indexes, one is the strike direction of the isoline, and the other is the number of the rhythm extremum area of the direction parallel to the surface of the slope.

  9. A method for obtaining distributed surface flux measurements in complex terrain

    Science.gov (United States)

    Daniels, M. H.; Pardyjak, E.; Nadeau, D. F.; Barrenetxea, G.; Brutsaert, W. H.; Parlange, M. B.

    2011-12-01

    Sonic anemometers and gas analyzers can be used to measure fluxes of momentum, heat, and moisture over flat terrain, and with the proper corrections, over sloping terrain as well. While this method of obtaining fluxes is currently the most accurate available, the instruments themselves are costly, making installation of many stations impossible for most campaign budgets. Small, commercial automatic weather stations (Sensorscope) are available at a fraction of the cost of sonic anemometers or gas analyzers. Sensorscope stations use slow-response instruments to measure standard meteorological variables, including wind speed and direction, air temperature, humidity, surface skin temperature, and incoming solar radiation. The method presented here makes use of one sonic anemometer and one gas analyzer along with a dozen Sensorscope stations installed throughout the Val Ferret catchment in southern Switzerland in the summers of 2009, 2010 and 2011. Daytime fluxes are calculated using Monin-Obukhov similarity theory in conjunction with the surface energy balance at each Sensorscope station as well as at the location of the sonic anemometer and gas analyzer, where a suite of additional slow-response instruments were co-located. Corrections related to slope angle were made for wind speeds and incoming shortwave radiation measured by the horizontally-mounted cup anemometers and incoming solar radiation sensors respectively. A temperature correction was also applied to account for daytime heating inside the radiation shield on the slow-response temperature/humidity sensors. With these corrections, we find a correlation coefficient of 0.77 between u* derived using Monin-Obukhov similarity theory and that of the sonic anemometer. Calculated versus measured heat fluxes also compare well and local patterns of latent heat flux and measured surface soil moisture are correlated.

  10. Measurement Uncertainty of Microscopic Laser Triangulation on Technical Surfaces.

    Science.gov (United States)

    Mueller, Thomas; Poesch, Andreas; Reithmeier, Eduard

    2015-12-01

    Laser triangulation is widely used to measure three-dimensional structure of surfaces. The technique is suitable for macroscopic and microscopic surface measurements. In this paper, the measurement uncertainty of laser triangulation is investigated on technical surfaces for microscopic measurement applications. Properties of technical surfaces are, for example, reflectivity, surface roughness, and the presence of scratches and pores. These properties are more influential in the microscopic laser triangulation than in the macroscopic one. In the Introduction section of this paper, the measurement uncertainty of laser triangulation is experimentally investigated for 13 different specimens. The measurements were carried out with and without a laser speckle reducer. In the Materials and Methods section of this paper, the surfaces of the 13 specimens are characterized in order to be able to find correlations between the surface properties and the measurement uncertainty. The last section of this paper describes simulations of the measurement uncertainty, which allow for the calculation of the measurement uncertainty with only one source of uncertainty present. The considerations in this paper allow for the assessment of the measurement uncertainty of laser triangulation on any technical surface when some surface properties, such as roughness, are known.

  11. Surface force measurement of ultraviolet nanoimprint lithography materials

    Science.gov (United States)

    Taniguchi, Jun; Hasegawa, Masayuki; Amemiya, Hironao; Kobayashi, Hayato

    2016-02-01

    Ultraviolet nanoimprint lithography (UV-NIL) has advantages such as room-temperature operation, high through-put, and high resolution. In the UV-NIL process, the mold needs a release coating material to prevent adhesion of the transfer resin. Usually, fluorinated silane coupling agents are used as release coating materials. To evaluate the release property, surface force analyzer equipment was used. This equipment can measure the surface forces between release-coated or noncoated mold material surfaces and UV-cured resin surfaces in the solid state. Lower surface forces were measured when a release coating was used on the mold material surface.

  12. Evaluation of arctic broadband surface radiation measurements

    Directory of Open Access Journals (Sweden)

    N. Matsui

    2011-08-01

    Full Text Available The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW and broadband thermal infrared, or longwave (LW radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse shortwave measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  13. Measurement of canine pancreatic perfusion using dynamic computed tomography: Influence of input-output vessels on deconvolution and maximum slope methods

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Miori, E-mail: miori@mx6.et.tiki.ne.jp [Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro 080-8555 (Japan); Tsuji, Yoshihisa, E-mail: y.tsuji@extra.ocn.ne.jp [Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoinkawara-cho 54, Sakyo-ku 606-8507 (Japan); Katabami, Nana; Shimizu, Junichiro; Lee, Ki-Ja [Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro 080-8555 (Japan); Iwasaki, Toshiroh [Department of Veterinary Internal Medicine, Tokyo University of Agriculture and Technology, Saiwai-cho, 3-5-8, Fuchu 183-8509 (Japan); Miyake, Yoh-Ichi [Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro 080-8555 (Japan); Yazumi, Shujiro [Digestive Disease Center, Kitano Hospital, 2-4-20 Ougi-machi, Kita-ku, Osaka 530-8480 (Japan); Chiba, Tsutomu [Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoinkawara-cho 54, Sakyo-ku 606-8507 (Japan); Yamada, Kazutaka, E-mail: kyamada@obihiro.ac.jp [Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro 080-8555 (Japan)

    2011-01-15

    Objective: We investigated whether the prerequisite of the maximum slope and deconvolution methods are satisfied in pancreatic perfusion CT and whether the measured parameters between these algorithms are correlated. Methods: We examined nine beagles injected with iohexol (200 mgI kg{sup -1}) at 5.0 ml s{sup -1}. The abdominal aorta and splenic and celiac arteries were selected as the input arteries and the splenic vein, the output veins. For the maximum slope method, we determined the arterial contrast volume of each artery by measuring the area under the curve (AUC) and compared the peak enhancement time in the pancreas with the contrast appearance time in the splenic vein. For the deconvolution method, the artery-to-vein collection rate of contrast medium was calculated. We calculated the pancreatic tissue blood flow (TBF), tissue blood volume (TBV), and mean transit time (MTT) using both algorithms and investigated their correlation based on vessel selection. Results: The artery AUC significantly decreased as it neared the pancreas (P < 0.01). In all cases, the peak time of the pancreas (11.5 {+-} 1.6) was shorter than the appearance time (14.1 {+-} 1.6) in the splenic vein. The splenic artery-vein combination exhibited the highest collection rate (91.1%) and was the only combination that was significantly correlated between TBF, TBV, and MTT in both algorithms. Conclusion: Selection of a vessel nearest to the pancreas is considered as a more appropriate prerequisite. Therefore, vessel selection is important in comparison of the semi-quantitative parameters obtained by different algorithms.

  14. Surface runoff scale effects in West African watersheds: Modeling and management options

    NARCIS (Netherlands)

    Giesen, van de N.C.; Stomph, T.J.; Ridder, de N.

    2005-01-01

    Measurements of surface runoff from uniform slopes of different lengths in West Africa have shown that longer slopes tend to have less runoff per unit of length than short slopes. The main reason for this scale effect is that once the rain stops, water on long slopes has more opportunity time to inf

  15. Measurements of the form-factors slopes of KL -> pi mu nu decay with the KLOE Detector

    CERN Document Server

    Ambrosino, F; Antonelli, M; Archilli, F; Bacci, C; Beltrame, P; Bencivenni, G; Bertolucci, S; Bini, C; Bloise, C; Bocchetta, S; Bocci, V; Bossi, F; Branchini, P; Caloi, R; Campana, P; Capon, G; Capussela, T; Ceradini, F; Chi, S; Chiefari, G; Ciambrone, P; De Lucia, E; De Santis, A; De Simone, P; De Zorzi, G; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Di Micco, B; Doria, A; Dreucci, M; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Fiore, S; Forti, C; Franzini, P; Gatti, C; Gauzzi, P; Giovannella, S; Gorini, E; Graziani, E; Incagli, M; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Leone, D; Martini, M; Massarotti, P; Mei, W; Meola, S; Miscetti, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nguyen, F; Palutan, M; Pasqualucci, E; Passeri, A; Patera, V; Perfetto, F; Primavera, M; Santangelo, P; Saracino, G; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Sibidanov, A; Spadaro, T; Testa, M; Tortora, L; Valente, P; Valeriani, B; Venanzoni, G; Versaci, R; Xu, G

    2007-01-01

    We present a measurement of the K-$\\pi$ form-factor parameters for the decay \\klpmn. We use 328 pb^{-1} of data collected in 2001 and 2002, corresponding to $\\sim $ 1.8 million \\semil events. Measurements of semileptonic form factors provide information about the dynamics of the strong interaction and are necessary for evaluation of the phase-space integral $I^\\mu_K$ needed to measure the CKM matrix element $|V_{us}|$ for \\klpmn decays and to test lepton universality in kaon decays. Using a new parameterization for the vector and scalar form factors we find $\\lambda_+$=\\pt(25.6\\pm 0.4_{\\rm{stat.}}\\pm 0.3_{\\rm{syst.}}),-3, and $\\lambda_0$=\\pt(14.3\\pm 1.7_{\\rm{stat.}}\\pm 1.1_{\\rm{stat.}}),-3,. In the more usual quadratic expansion of the form factor the above result is corresponds to $\\lambda'_+=\\lambda_+$, $\\lambda''_+=2\\lambda^2_+$, $\\lambda'_0=\\lambda_0$ and $\\lambda''_0=(\\lambda^2_0+0.000416)/2$. Our results, together with recent lattice calculations of $f_\\pi$, $f_K$ and $f(0)$, satisfy the Callan-Trieman ...

  16. Free-form surface measuring method based on optical theodolite measuring system

    Science.gov (United States)

    Yu, Caili

    2012-10-01

    The measurement for single-point coordinate, length and large-dimension curved surface in industrial measurement can be achieved through forward intersection measurement by the theodolite measuring system composed of several optical theodolites and one computer. The measuring principle of flexible large-dimension three-coordinate measuring system made up of multiple (above two) optical theodolites and composition and functions of the system have been introduced in this paper. Especially for measurement of curved surface, 3D measured data of spatial free-form surface is acquired through the theodolite measuring system and the CAD model is formed through surface fitting to directly generate CAM processing data.

  17. Measurement of surface recombination velocity on heavily doped indium phosphide

    Science.gov (United States)

    Jenkins, Phillip; Ghalla-Goradia, Manju; Faur, Mircea; Faur, Maria; Bailey, Sheila

    1990-01-01

    Surface recombination velocity (SRV) on heavily doped n-type and p-type InP was measured as a function of surface treatment. For the limited range of substrates and surface treatments studied, SRV and surface stability depend strongly on the surface treatment. SRVs of 100,000 cm/sec in both p-type and n-type InP are obtainable, but in n-type the low-SRV surfaces were unstable, and the only stable surfaces on n-type had SRVs of more than 10to the 6th cm/sec.

  18. Interferometric measurements of sea surface temperature and emissivity

    Science.gov (United States)

    Fiedler, Lars; Bakan, Stephan

    1997-09-01

    A new multispectral method to derive sea surface emissivity and temperature by using interferometer measurements of the near surface upwelling radiation in the infrared window region is presented. As reflected sky radiation adds substantial spectral variability to the otherwise spectrally smooth surface radiation, an appropriate estimate of surface emissivity allows the measured upwelling radiation to be corrected for the reflected sky component. The remaining radiation, together with the estimated surface emissivity, yields an estimate of the sea surface temperature. Measurements from an ocean pier in the Baltic Sea in October 1995 indicate an accuracy of about 0.1 K for the sea surface temperature thus derived. A strong sea surface skin effect of about 0.6 K is found in that particular case.

  19. Research on optical measurement for additive manufacturing surfaces

    Science.gov (United States)

    Cheng, Fang; Fu, Shao Wei; Leong, Yong Shin

    2017-02-01

    Surfaces made by Additive Manufacturing (AM) processes normally show higher roughness and more complicated microstructures than conventional machined surfaces. In this study, AM surface roughness measurements using both tactile and optical techniques are analyzed, theoretically and experimentally. Analytical results showed both techniques have comparable performance when measuring AM samples with good surface integrity. For surfaces with steep features, coherence scanning interferometry showed more reliable performance especially when peak-to-valley value was required. In addition of the benchmarking study, development of a low-cost measurement system, using laser confocal technology, is also presented in this paper. By comparing the measurement results with those from a coherent scanning interferometer, accuracy levels of the proposed system can be evaluated. It was concluded that with comparable accuracy, the proposed low-cost optical system was able to achieve much faster measurements, which would make it possible for in-situ surface quality checking.

  20. Measuring a System’s Attack Surface

    Science.gov (United States)

    2004-01-01

    fold: • In terms of a state machine model of the system, we present formal definitions of attack, attack surface, and attack class. Our definitions are...versions. The rest of this paper is organized as follows. In Section 2, we introduce our state machine model and point out the key differences from...approach in Section 6 and compare it to related work in Section 7. We conclude in Section 8. 2 State Machine Model We use a state machine to model the

  1. The Algorithm Theoretical Basis Document for the Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights

    Science.gov (United States)

    Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.; Yi, Donghui

    2012-01-01

    The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.

  2. INFLUENCES OF SLOPE GRADIENT ON SOIL EROSION

    Institute of Scientific and Technical Information of China (English)

    刘青泉; 陈力; 李家春

    2001-01-01

    The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows , and the erosion-resisting capacity of soil. The laws of these factors varying with the slope gradient were investigated by using the kinematic wave theory. Furthermore, the critical slope gradient of erosion was driven. The analysis shows that the critical slope gradient of soil erosion is dependent on grain size , soil bulk density , surface roughness, runoff length, net rain excess, and the friction coefficient of soil, etc. The critical slope gradient has been estimated theoretically with its range between 41. 5 °~ 50°.

  3. Measurement of |Vcb| and the Form-Factor Slope for BBar -> Dlnu Decays on the Recoil of Fully Reconstructed B Mesons

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B

    2008-08-21

    We present a measurement of the CKM matrix element |V{sub cb}| and the form-factor slope {rho}{sup 2} for {bar B} {yields} D{ell}{sup -} {bar {nu}}{sub {ell}} decays based on 417 fb{sup -1} of data collected at the {Upsilon}(4S) resonance with the BABAR detector. The semileptonic decays are selected in B{bar B} events in which the hadronic decay of the second B meson is fully reconstructed. From the measured differential decay rate of the signal decay we determine G(1)|V{sub cb}| = (43.0 {+-} 1.9 {+-} 1.4) x 10{sup -3}, {rho}{sup 2} = 1.20 {+-} 0.09 {+-} 0.04, where G(1) is the hadronic form factor at the point of zero recoil. Using a lattice calculation for G(1) we extract |V{sub cb}| = (39.8 {+-} 1.8 {+-} 1.3 {+-} 0.9) x 10{sup -3}, where the stated errors refer to the statistical, systematic, and form factor uncertainties. We also present a measurement of the exclusive branching fractions, {Beta}(B{sup -} {yields} D{sup 0} {ell}{sup -} {bar {nu}}{sub {ell}}) = (2.31 {+-} 0.08 {+-} 0.07)% and {Beta}({bar B}{sup 0} {yields} D{sup +} {ell}{sup -} {bar {nu}}{sub {ell}}) = (2.23 {+-} 0.11 {+-} 0.08)%.

  4. Measurement of |V_cb| and the form-factor slope for Bbar -> D l^- nubar_l decays on the recoil of fully reconstructed B mesons

    CERN Document Server

    Aubert, B

    2008-01-01

    We present a measurement of the CKM matrix element |V_cb| and the form-factor slope rho^2 for Bbar -> D l^- nubar_l decays based on 417 fb-1 of data collected at the Upsilon(4S) resonance with the BaBar detector. The semileptonic decays are selected in BBar events in which the hadronic decay of the second B meson is fully reconstructed. From the measured differential decay rate of the signal decay we determine G(1) |V_cb|= (43.0 +/- 1.9 +/- 1.4) x 10^-3, rho^2 = 1.20 +/- 0.09 +/- 0.04, where G(1) is the hadronic form factor at the point of zero recoil. Using a lattice calculation for G(1) we extract |V_cb|= (39.8 +/- 1.8 +/- 1.3 +/- 0.9) x 10^-3, where the stated errors refer to the statistical, systematic, and form factor uncertainties. We also present a measurement of the exclusive branching fractions, BF(B^- -> D^0 l^- nubar_l) = (2.31 +/- 0.08 +/- 0.07)% and BF (B0bar -> D^+ l^- nubar_l)=(2.23 +/- 0.11 +/- 0.08)%.

  5. Adaption of the MODIS aerosol retrieval algorithm by airborne spectral surface reflectance measurements over urban areas: a case study

    Directory of Open Access Journals (Sweden)

    E. Jäkel

    2015-07-01

    Full Text Available MODIS retrievals of the aerosol optical depth (AOD are biased over urban areas, where surface reflectance is not well characterized. Since the operational MODIS aerosol retrieval for dark targets assumes fixed spectral slopes to calculate the surface reflectance at 0.47 μm, the algorithm may fail in urban areas with different spectral characteristics of the surface reflectance. To investigate this bias we have implemented variable spectral slopes into the operational MODIS aerosol algorithms of Collection 5 (C5 and C6. The variation of slopes is based on airborne measurements of surface reflectances over the city of Zhongshan, China. AOD retrieval results of the operational and the modified algorithms were compared for a MODIS measurement over Zhongshan. For this case slightly lower AOD values were derived using the modified algorithm. The retrieval methods were additionally applied to MODIS data of the Beijing area for a period between 2010–2014 when also AERONET data were available. A reduction of the differences between the AOD retrieved using the modified C5 algorithm and AERONET was found, whereby the mean difference from 0.31 ± 0.11 for the operational C5 and 0.18 ± 0.12 for the operational C6 where reduced to a mean difference of 0.09 ± 0.18 by using the modified C5 retrieval. Furthermore, the sensitivity of the MODIS AOD retrieval for several surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectances were used as input for the retrieval methods. It is shown that the operational MODIS AOD retrieval over land reproduces the AOD reference input of 0.85 for dark surface types [retrieved AOD = 0.87 (C5]. An overestimation of AOD = 0.99 is found for urban surfaces, whereby the modified C5 algorithm shows a good performance with a retrieved value of AOD = 0.86.

  6. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, O; Edinger, E; Guilderson, T P; Ghaleb, B; Risk, M J; Scott, D B

    2008-08-15

    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface water bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.

  7. Dirt reference standard for surface cleanliness measurements

    Science.gov (United States)

    Orzi, D. J. O.; Bilmes, G. M.

    2016-08-01

    Thin films based on polymer poly(isobutyl methacrylate) (PIBMA), doped with carbon black particles deposited on steel plate substrates are proposed as dirt reference standards for cleanliness accreditation methods, particularly for instruments based on laser ablation. The films were made with the spin-coating method, obtaining layers with thickness between 4 and 17 μm. Carbon black particles with sizes smaller than 100 nm and concentrations between 1 and 27.6 mgr/cm3 were used. Characterization of the films was made by using absorbance measurements and laser ablation-induced photoacoustic.

  8. Measurement of |V_cb| and the Form-Factor Slope in Bbar -> D l- nubar Decays in Events Tagged by a Fully Reconstructed B Meson

    CERN Document Server

    Aubert, B

    2009-01-01

    We present a measurement of the Cabibbo-Kobayashi-Maskawa matrix element |V_cb| and the form-factor slope rho^2 in Bbar -> Dl- nubar decays based on 460 million BBar events recorded at the Upsilon(4S) resonance with the BaBar detector. BBar -> Dl- nubar decays are selected in events in which a hadronic decay of the second B meson is fully reconstructed. We measure the differential decay rate and determine G(1) |V_cb|= (43.0 \\pm 1.9 \\pm 1.4)\\times 10^{-3} and rho^2 = 1.20 \\pm 0.09 \\pm 0.04, where G(1) is the the hadronic form factor at the point of zero recoil. We also determine the exclusive branching fractions and find BF(B^- -> D0l- nubar) = (2.31 \\pm 0.08 \\pm 0.09)% and BF (B0bar -> D+ l^- nubar)=(2.23 \\pm 0.11 \\pm 0.11)%.

  9. Measurement of |Vcb| and the Form-Factor Slope in Bbar -> Dlnu Decays in Events Tagged by a Fully Reconstructed B Meson

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, Bernard; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-06-30

    We present a measurement of the Cabibbo-Kobayashi-Maskawa matrix element |V{sub cb}| and the form-factor slope {rho}{sup 2} in {bar B} {yields} D{ell}{sup -} {bar {nu}}{sub {ell}} decays based on 460 million B{bar B} events recorded at the {Gamma}(4S) resonance with the BABAR detector. {bar B} {yields} D{ell}{sup -} {bar {nu}}{sub {ell}} decays are selected in events in which a hadronic decay of the second B meson is fully reconstructed. We measure the differential decay rate and determine G(1)|V{sub cb}| = (43.0 {+-} 1.9 {+-} 1.4) x 10{sup -3} and {rho}{sup 2} = 1.20 {+-}0.09 {+-} 0.04, where G(1) is the hadronic form factor at the point of zero recoil. We also determine the exclusive branching fractions and find {Beta}(B{sup -} {yields} D{sup 0} {ell}{sup -}{bar {nu}}{sub {ell}}) = (2.31 {+-} 0.08 {+-} 0.09)% and {Beta}(B{sup 0} {yields} D{sup +} {ell}{sup -} {bar {nu}}{sub {ell}}) = (2.23 {+-} 0.11 {+-} 0.11)%.

  10. Automated optimization of measurement setups for the inspection of specular surfaces

    Science.gov (United States)

    Kammel, Soeren

    2002-02-01

    Specular surfaces are used in a wide variety of industrial and consumer products like varnished or chrome plated parts of car bodies, dies or molds. Defects of these parts reduce the quality regarding their visual appearance and/or their technical performance. Even defects that are only about 1 micrometer deep can lead to a rejection during quality control. Deflectometric techniques are an adequate approach to recognize and measure defects on specular surfaces, because the principle of measurement of these methods mimics the behavior of a human observer inspecting the surface. With these methods, the specular object is considered as a part of the optical system. Not the object itself but the surrounding that is reflected by the specular surface is observed in order to obtain information about the object. This technique has proven sensitive for slope and topography measurement. Inherited from the principle of measurement, especially surface parts with high curvature need a special illumination which surrounds the object under inspection to guarantee that light from any direction is reflected onto the sensor. Thus the design of a specific measurement setup requires a substantial engineering effort. To avoid the time consuming process of building, testing and redesigning the measurement setup, a system to simulate and automatically optimize the setup has been developed. Based on CAD data of the object under inspection and a model of the optical system, favorable realizations of the shape, the position and the pattern of the lighting device are determined. In addition, optimization of other system parameters, such as object position and distance relative to the camera, is performed. Finally, constraints are imposed to ascertain the feasibility of illumination system construction.

  11. Laser scanning dynamic measurement of the curved surface

    Science.gov (United States)

    Hong, Xin; Zheng, Wenxue

    1996-10-01

    A new measurement of the curved surface has been developed. The paper provides an effective, real time and dynamic optical measurement which is suitable for the measurement of airfoil, turbine blade, car and tank's curved surface. The system consists of a laser probe, a charge couple device (CCD), a computer, three servomotors. Consideration is also given to the design of the laser probe and CCD driving circuit.

  12. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms

    Energy Technology Data Exchange (ETDEWEB)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

    2007-06-01

    The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

  13. A real time method for surface cleanliness measurement

    OpenAIRE

    Bilmes, Gabriel Mario; Orzi, Daniel Jesús Omar; Martínez , Oscar E.; Lencina, Alberto

    2006-01-01

    The measurement of surface cleanliness is a signifi cant problem in many industrial and technological processes. Existing methods are based on laboratory procedures, that are not performed in real time, can not be automated, and usually are restricted to a small portion of the sample. In this study we describe a new method for real time measurement of the amount of surface dirt or contamination deposited on a surface. It relies on the ablation of the surface dirt film by means of a short l...

  14. ROUGHNESS ON WOOD SURFACES AND ROUGHNESS MEASUREMENT METHODS

    Directory of Open Access Journals (Sweden)

    İsmail Aydın

    2003-04-01

    Full Text Available Some visual characteristics of wood such as color, pattern and texture determine the quality of manufactured products. Surface properties of wood material are important both in production and marketing after production. Initial studies related to the roughness of wood surface were begun in early 1950’s. However, no general agreed standardization can not have been developed for wood surfaces. Surface roughness of wood is function of the production process, product type and the natural anatomical properties of wood. Contact and non-contact tracing methods are used to measure of wood surface roughness. Surface roughness also affects the gluability and wettability of wood surfaces. The success in finishing also depends on the surface roughness of wood.

  15. Regional variability of slope stability: Application to the Eel margin, California

    Science.gov (United States)

    Lee, H.; Locat, J.; Dartnell, P.; Israel, K.; Florence, Wong

    1999-01-01

    Relative values of downslope driving forces and sediment resisting forces determine the locations of submarine slope failures. Both of these vary regionally, and their impact can be addressed when the data are organized in a Geographic Information System (GIS). The study area on the continental margin near the Eel River provides an excellent opportunity to apply GIS spatial analysis techniques for evaluation of slope stability. In this area, swath bathymetric mapping shows seafloor morphology and distribution of slope steepness in fine detail, and sediment analysis of over 70 box cores delineates the variability of sediment density near the seafloor surface. Based on the results of ten geotechnical studies of submarine study areas, we developed an algorithm that relates surface sediment density to the shear strength appropriate to the type of cyclic loading produced by an earthquake. Strength and stress normalization procedures provide results that are conceptually independent of subbottom depth. Results at depth are rigorously applicable if sediment lithology does not vary significantly and consolidation state can be estimated. Otherwise, the method applies only to shallow-seated slope failure. Regional density, slope, and level of anticipated seismic shaking information were combined in a GIS framework to yield a map that illustrates the relative stability of slopes in the face of seismically induced failure. When a measure of predicted relative slope stability is draped on an oblique view of swath bathymetry, a variation in this slope stability is observed on an otherwise smooth slope along the mid-slope region north of a plunging anticline. The section of slope containing diffuse, pockmarked gullies has a lower measure of stability than a separate section containing gullies that have sharper boundaries and somewhat steeper sides. Such an association suggests that our slope-stability analysis relates to the stability of the gully sides. The remainder of the

  16. Estimation of surface area and surface area measure of three-dimensional sets from digitizations

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Kiderlen, Markus

    2010-01-01

    A local method for estimating surface area and surface area measure of three-dimensional objects from discrete binary images is presented. A weight is assigned to each 2 × 2 × 2 configuration of voxels and the total surface area of an object is given by summation of the local area contributions. ...

  17. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  18. Optical technique for measurement of random water wave surfaces

    Science.gov (United States)

    Sorrell, F. Y.; Withers, A. L.

    1976-01-01

    An optical system using the refraction of a vertical light ray has been developed for measuring the slope of random wind-generated water waves. The basic elements of the system are photovoltaic cells which are connected to individual amplifiers so that when the refracted light beam is incident on a cell, the output of the cell is amplified and then supplied as input to a comparator. The comparator then provides a specified voltage output, independent of the incident light intensity, as long as it is above a designated background value. The comparators are designed to give output voltages comparable with standard TTL. This arrangement provides a high signal from the cell when it experiences incident light, and a low signal when there is only background light, with the high and low signals at TTL voltage levels.

  19. Surface and interfacial tension measurement, theory, and applications

    CERN Document Server

    Hartland, Stanley

    2004-01-01

    This edited volume offers complete coverage of the latest theoretical, experimental, and computer-based data as summarized by leading international researchers. It promotes full understanding of the physical phenomena and mechanisms at work in surface and interfacial tensions and gradients, their direct impact on interface shape and movement, and their significance to numerous applications. Assessing methods for the accurate measurement of surface tension, interfacial tension, and contact angles, Surface and Interfacial Tension presents modern simulations of complex interfacial motions, such a

  20. Reliability Evaluation of Slopes Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohammad Khajehzadeh

    2011-01-01

    Full Text Available The objective of this research is to develop a numerical procedure to reliability evaluation of earth slope and locating the critical probabilistic slip surface. The performance function is  formulated using simplified Bishop’s limit equilibrium method  to calculate the reliability index. The reliability index defined by Hasofer and Lind is used as an index of safety measure. Searching the critical probabilistic surface that is associated with the lowest reliability index will be formulated as an optimization problem. In this paper, particle swarm optimization is applied to calculate the minimum Hasofer and Lind reliability index and critical probabilistic failure surface. To demonstrate the applicability and to investigate the effectiveness of the algorithm, two numerical examples from literature are illustrated. Results show that the proposed method is capable to achieve better solutions for reliability analysis of slope if compared with those reported in the literature.

  1. Roughness parameters and surface deformation measured by coherence radar

    Science.gov (United States)

    Ettl, Peter; Schmidt, Berthold E.; Schenk, M.; Laszlo, Ildiko; Haeusler, Gerd

    1998-09-01

    The 'coherence radar' was introduced as a method to measure the topology of optically rough surfaces. The basic principle is white light interferometry in individual speckles. We will discuss the potentials and limitations of the coherence radar to measure the microtopology, the roughness parameters, and the out of plane deformation of smooth and rough object surfaces. We have to distinguish objects with optically smooth (polished) surfaces and with optically rough surfaces. Measurements at polished surfaces with simple shapes (flats, spheres) are the domain of classical interferometry. We demonstrate new methods to evaluate white light interferograms and compare them to the standard Fourier evaluation. We achieve standard deviations of the measured signals of a few nanometers. We further demonstrate that we can determine the roughness parameters of a surface by the coherence radar. We use principally two approaches: with very high aperture the surface topology is laterally resolved. From the data we determine the roughness parameters according to standardized evaluation procedures, and compare them with mechanically acquired data. The second approach is by low aperture observation (unresolved topology). Here the coherence radar supplies a statistical distance signal from which we can determine the standard deviation of the surface height variations. We will further discuss a new method to measure the deformation of optically rough surfaces, based on the coherence radar. Unless than with standard speckle interferometry, the new method displays absolute deformation. For small out-of-plane deformation (correlated speckle), the potential sensitivity is in the nanometer regime. Large deformations (uncorrelated speckle) can be measured with an uncertainty equal to the surface roughness.

  2. Far-infrared emissivity measurements of reflective surfaces

    Science.gov (United States)

    Xu, J.; Lange, A. E.; Bock, J. J.

    1996-01-01

    An instrument developed to measure the emissivity of reflective surfaces by comparing the thermal emission of a test sample to that of a reference surface is reported. The instrument can accurately measure the emissivity of mirrors made from lightweight thermally insulating materials such as glass and metallized carbon fiber reinforced plastics. Far infrared measurements at a wavelength of 165 micrometers are reported. The instrument has an absolute accuracy of Delta epsilon = 9 x 10(exp -4) and can reproducibly measure an emissivity of as small as 2 x 10(exp -4) between flat reflective surfaces. The instrument was used to measure mirror samples for balloon-borne and spaceborne experiments. An emissivity of (6.05 +/- 1.24) x 10(exp -3) was measured for gold evaporated on glass, and (6.75 +/- 1.17) x 10(exp -3) for aluminum evaporated on glass.

  3. Accuracy of Surface Plate Measurements - General Purpose Software for Flatness Measurement

    NARCIS (Netherlands)

    Meijer, J.; Heuvelman, C.J.

    1990-01-01

    Flatness departures of surface plates are generally obtained from straightness measurements of lines on the surface. A computer program has been developed for on-line measurement and evaluation, based on the simultaneous coupling of measurements in all grid points. Statistical methods are used to de

  4. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface sep...

  5. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  6. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces.

  7. New Approach for Measured Surface Localization Based on Umbilical Points

    Science.gov (United States)

    Xiao, Xiao-Ping; Yin, Ming; Heng, Liang; Yin, Guo-Fu; Li, Zi-Sheng

    2017-09-01

    Measured surface localization (MSL) is one of the key essentials for the assessment of form error in precision manufacturing. Currently, the researches on MSL have focused on the corresponding relation search between two surfaces, the performance improvement of localization algorithms and the uncertainty analysis of localization. However, low efficiency, limitation of localization algorithms and mismatch of multiple similarities of feature points with no prior are the common disadvantages for MSL. In order to match feature points quickly and fulfill MSL efficiently, this paper presents a new localization approach for measured surfaces by extracting the generic umbilics and estimating their single complex variables, describing the match methods of ambiguous relation at umbilics, presenting the initial localization process of one pair matched points, refining MSL on the basis of obtained closet points for some measured points by the improvement directed projection method. In addition, the proposed algorithm is simulated in two different types of surfaces, two different localization types and multiple similar surfaces, also tested with the part of B-spline surface machined and bottle mould with no knowledge, finally the initial and accurate rigid body transformation matrix, localization errors between two surfaces and execution time are got. The experimental results show that the proposed method is feasible, more accurate in localization and high in efficiency. The proposed research can not only improve the accuracy and performance of form error assessment, but also provide an effective guideline for the integration of different types of measured surfaces.

  8. Surface-Borne Time-of-Reception Measurements (STORM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Invocon proposes the Surface-borne Time-Of-Reception Measurements (STORM) system as a method to locate the position of lightning strikes on aerospace vehicles....

  9. The measurement of surface heat flux using the Peltier effect

    Energy Technology Data Exchange (ETDEWEB)

    Shewen, E.C. (Pavement Management Systems Ltd., Cambridge, Ontario (Canada)); Hollands, K.G.T., Raithby, G.D. (Univ. of Waterloo, Ontario (Canada))

    1989-08-01

    Calorimetric methods for measuring surface heat flux use Joulean heating to keep the surface isothermal. This limits them to measuring the heat flux of surfaces that are hotter than their surroundings. Presented in this paper is a method whereby reversible Peltier effect heat transfer is used to maintain this isothermality, making it suitable for surfaces that are either hotter or colder than the surroundings. The paper outlines the theory for the method and describes physical models that have been constructed, calibrated, and tested. The tested physical models were found capable of measuring heat fluxes with an absolute accuracy of 1 percent over a wide range of temperature (5-50C) and heat flux (15-500 W/m{sup 2}), while maintaining isothermality to within 0.03 K. A drawback of the method is that it appears to be suited only for measuring the heat flux from thick metallic plates.

  10. Closed surface modeling with helical line measurement data

    Institute of Scientific and Technical Information of China (English)

    LI Ruqiong; LI Guanghu; WANG Yuhan

    2007-01-01

    Models for surface modeling of free-form surface and massive data points are becoming an important feature in commercial computer aided design/computer-aided manu- facturing software. However, there are many problems to be solved in this area, especially for closed free-form surface modeling. This article presents an effective method for cloud data closed surface modeling from asynchronous profile modeling measurement. It includes three steps: first, the cloud data are preprocessed for smoothing; second, a helical line is segmented to form triangle meshes; and third, Bezier surface patches are created over a triangle mesh and trimmed to shape on an entire surface. In the end, an illustrative example of shoe last surface modeling is given to show the availability of this method.

  11. Method and Apparatus for Measuring Surface Air Pressure

    Science.gov (United States)

    Lin, Bing (Inventor); Hu, Yongxiang (Inventor)

    2014-01-01

    The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.

  12. Calibrating surface weather observations to atmospheric attenuation measurements

    Science.gov (United States)

    Sanii, Babak

    2001-06-01

    A correlation between near-IR atmospheric attenuation measurements made by the Atmospheric Visibility Monitor (AVM) at the Table Mountain Facility and airport surface weather observations at Edwards Air Force Base has been performed. High correlations (over 0.93) exist between the Edwards observed sky cover and the average AVM measured attenuations over the course of the 10 months analyzed. The statistical relationship between the data-sets allows the determination of coarse attenuation statistics from the surface observations, suggesting that such statistics may be extrapolated from any surface weather observation site. Furthermore, a superior technique for converting AVM images to attenuation values by way of MODTRAN predictions has been demonstrated.

  13. Young's modulus measurement based on surface plasmon resonance

    Science.gov (United States)

    Lotfalian, Ali; Jandaghian, Ali; Saghafifar, Hossein; Mohajerani, Ezzedin

    2017-09-01

    In this paper, Young's modulus of polymers is experimentally measured using pressure sensors based on surface plasmon polariton. Theoretical relationships of changes in polymer reflective index due to applying pressure are investigated as well as the dependence of surface plasmon to the polymer reflective index. For the purpose of investigating the effects of the layers thicknesses, numerical simulation is performed using transfer matrix. Changes in resonance angle of surface plasmon due to applying pressure are experimentally studied as well. Practically, a sample of silicon rubber, as one of the most widely-used polymers, is checked and its Young's modulus is measured as 8.1 MPa.

  14. Measuring anterior trunk deformity in scoliosis: development of asymmetry parameters using surface topography (a pilot study

    Directory of Open Access Journals (Sweden)

    Patrick Knott

    2016-10-01

    Full Text Available Abstract Background Clinicians who assess and treat patients for scoliosis typically use parameters that are all visible from the posterior view. Radiographs assess the internal spinal deformity, but do not directly evaluate body shape, either posterior or anterior. This is problematic, as the patient is most concerned about the way they appear in the mirror. An objective set of anterior measurements is needed to help quantify the anterior asymmetry that is present in scoliosis. Methods The design of this system of assessment was developed as a consensus of thinking from four points of view. A spine surgeon provided the musculoskeletal structural perspective. A plastic surgeon specializing in breast reconstruction provided the aesthetic and soft tissue perspective. A surface topography researcher provided the imaging perspective, and a scoliosis patient provided the self-perception and emotional perspective. Using an iterative process, a series of potential measurement parameters using surface topography measurements were considered, debated, and ultimately selected to be part of a system of measurement that provides an overall assessment of anterior trunk asymmetry. Results An anterior surface topography scan in the relaxed, standing position was taken of the scoliosis patient. The computer provides a 3D topographical model that is used to complete measurements that can be combined to achieve an Anterior Aesthetic Deformity Score. Shoulder parameters, including shoulder height difference and shoulder slope difference, make up 40 % of the total score. Breast asymmetry, including nipple height difference and sternal notch-to-nipple distance, make up 30 % of the total score. Waist asymmetry makes up the final 30 % of the score, providing an objective and quantifiable measure of anterior trunk deformity. Conclusions These measurements provide an objective, systematic evaluation of anterior trunk asymmetry that can be used in the assessment of

  15. A novel in-situ measuring technique for aspheric surface

    Science.gov (United States)

    Zhang, Chuan; Wang, Ping; Chen, Yaolong

    2011-11-01

    In this paper, a novel in-situ surface measuring technique for optical elements with aspheric surface is presented. It is a contact type probe, and can be used for measuring ground surfaces. The theory of this technique develops from coordinate measuring machine (CMM), and the measurement accuracy of this technique is depended on the accuracy of computer numerical controlled (CNC). By installing a special equipment with high accuracy measuring head in main spindle of CNC machine, and moving the probe along the path which is described by a mathematical aspheric expression precisely, we could get relative errors of sag height of any position in this path. With this technique, the repeat positioning error caused by traditional off-line measurement will be avoided. The author also has finished a special software with VC++ 6.0. With this software, the form error of ground work piece could be corrected rapidly. This software can calculate and handle the arrangement automatically with all parameters which are required to input in operation interface. In the correction stage, the software can analyze and process error data and generate a new NC program with corrected data for next grinding stage. After 2 or 3 times measuring and correction, the surface shape error of the aspheric optical element will be less than 1μm. The finished work piece has a very good surface finish and can be polished with high quality.

  16. Direct Measurements of the Surface-Atmosphere Exchange of Ammonia

    Science.gov (United States)

    Tevlin, A.; Murphy, J. G.; Wentworth, G.; Gregoire, P.

    2012-12-01

    As the dominant atmospheric base, ammonia plays an important role in the formation and growth of inorganic aerosols. Surface-atmosphere exchange of ammonia has been observed to occur as a bidirectional flux governed by the relative magnitudes of atmospheric gas phase concentration and a temperature-dependent surface compensation point. In order to better characterise the links between gas-particle and surface-atmosphere exchanges, more direct measurements of these exchanges are necessary. Eddy Covariance (EC) can provide the most direct surface-atmosphere flux measurements, but its requirement for high frequency data combined with the reactive nature of ammonia have limited its application for this species. In order to address this lack, an investigation into the instrumental sensitivity and time response requirements for EC ammonia flux measurements was carried out using a Quantum Cascade-Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) capable of measuring ammonia concentration at 10 Hz. Time response was additionally improved through the use of a heated sample line and custom glass inlet, and the system was deployed over a short grass field in rural Ontario. The ammonia measurements were used along with three dimensional sonic anemometer wind speed data to calculate EC ammonia fluxes. When combined with simultaneous measurements of the inorganic composition of gas and particle phases made by Ambient Ion Monitor - Ion Chromatography (AIM-IC), these flux measurements can provide insight into the links between gas-particle and surface-atmosphere exchange.

  17. New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Frezzotti, Massimo; Gragnani, Roberto; Proposito, Marco [l' Energia e l' Ambiente, ' Progetto Clima Globale' , Ente per le Nuove Tecnologie, Rome (Italy); Pourchet, Michel; Gay, Michel; Vincent, Christian; Fily, Michel [CNRS, Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres (France); Flora, Onelio [University of Trieste, Dipartimento di Scienze Geologiche, Ambientali e Marine, Trieste (Italy); Gandolfi, Stefano [University of Bologna, Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, Bologna (Italy); Urbini, Stefano [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Becagli, Silvia; Severi, Mirko; Traversi, Rita; Udisti, Roberto [University of Florence, Dipartimento di Chimica, Florence (Italy)

    2004-12-01

    Surface mass balance (SMB) distribution and its temporal and spatial variability is an essential input parameter in mass balance studies. Different methods were used, compared and integrated (stake farms, ice cores, snow radar, surface morphology, remote sensing) at eight sites along a transect from Terra Nova Bay (TNB) to Dome C (DC) (East Antarctica), to provide detailed information on the SMB. Spatial variability measurements show that the measured maximum snow accumulation (SA) in a 15 km area is well correlated to firn temperature. Wind-driven sublimation processes, controlled by the surface slope in the wind direction, have a huge impact (up to 85% of snow precipitation) on SMB and are significant in terms of past, present and future SMB evaluations. The snow redistribution process is local and has a strong impact on the annual variability of accumulation. The spatial variability of SMB at the kilometre scale is one order of magnitude higher than its temporal variability (20-30%) at the centennial time scale. This high spatial variability is due to wind-driven sublimation. Compared with our SMB calculations, previous compilations generally over-estimate SMB, up to 65% in some areas. (orig.)

  18. Slope Estimation from ICESat/GLAS

    Directory of Open Access Journals (Sweden)

    Craig Mahoney

    2014-10-01

    Full Text Available We present a novel technique to infer ground slope angle from waveform LiDAR, known as the independent slope method (ISM. The technique is applied to large footprint waveforms (\\(\\sim\\ mean diameter from the Ice, Cloud and Land Elevation Satellite (ICESat Geoscience Laser Altimeter System (GLAS to produce a slope dataset of near-global coverage at \\(0.5^{\\circ} \\times 0.5^{\\circ}\\ resolution. ISM slope estimates are compared against high resolution airborne LiDAR slope measurements for nine sites across three continents. ISM slope estimates compare better with the aircraft data (R\\(^{2}=0.87\\ and RMSE\\(=5.16^{\\circ}\\ than the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM inferred slopes (R\\(^{2}=0.71\\ and RMSE\\(=8.69^{\\circ}\\ ISM slope estimates are concurrent with GLAS waveforms and can be used to correct biophysical parameters, such as tree height and biomass. They can also be fused with other DEMs, such as SRTM, to improve slope estimates.

  19. Measuring skew in average surface roughness as a function of surface preparation

    Science.gov (United States)

    Stahl, Mark T.

    2015-08-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo® white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.

  20. Influence of Nanoscale Surface Roughness on Colloidal Force Measurements.

    Science.gov (United States)

    Zou, Yi; Jayasuriya, Sunil; Manke, Charles W; Mao, Guangzhao

    2015-09-29

    Forces between colloidal particles determine the performances of many industrial processes and products. Colloidal force measurements conducted between a colloidal particle AFM probe and particles immobilized on a flat substrate are valuable in selecting appropriate surfactants for colloidal stabilization. One of the features of inorganic fillers and extenders is the prevalence of rough surfaces-even the polymer latex particles, often used as model colloidal systems including the current study, have rough surfaces albeit at a much smaller scale. Surface roughness is frequently cited as the reason for disparity between experimental observations and theoretical treatment but seldom verified by direct evidence. This work reports the effect of nanoscale surface roughness on colloidal force measurements carried out in the presence of surfactants. We applied a heating method to reduce the mean surface roughness of commercial latex particles from 30 to 1 nm. We conducted force measurements using the two types of particles at various salt and surfactant concentrations. The surfactants used were pentaethylene glycol monododecyl ether, Pluronic F108, and a styrene/acrylic copolymer, Joncryl 60. In the absence of the surfactant, nanometer surface roughness affects colloidal forces only in high salt conditions when the Debye length becomes smaller than the surface roughness. The adhesion is stronger between colloids with higher surface roughness and requires a higher surfactant concentration to be eliminated. The effect of surface roughness on colloidal forces was also investigated as a function of the adsorbed surfactant layer structure characterized by AFM indentation and dynamic light scattering. We found that when the layer thickness exceeds the surface roughness, the colloidal adhesion is less influenced by surfactant concentration variation. This study demonstrates that surface roughness at the nanoscale can influence colloidal forces significantly and should be taken

  1. Can shallow-layer measurements at a single location be used to predict deep soil water storage at the slope scale?

    Science.gov (United States)

    Gao, Lei; Lv, Yujuan; Wang, Dongdong; Tahir, Muhammad; Peng, Xinhua

    2015-12-01

    Knowing the amount of soil water storage (SWS) in agricultural soil profiles is important for understanding physical, chemical, and biological soil processes. However, measuring the SWS in deep soil layers is more expensive and time consuming than in shallower layers. Whether deep SWS can be predicted from shallow-layer measurements through temporal stability analysis (TSA) remains unclear. To address this issue, the soil water content was measured at depths of 0-1.6 m (0.2-m depth intervals) at 79 locations along an agricultural slope on 28 occasions between July 2013 and October 2014. SWSs values were then calculated for the 0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, and 0-1.6 m soil layers. The SWS exhibited strong temporal stability, with mean Spearman's ranking coefficients (rs) of 0.83, 0.92, 0.83, and 0.79 in the 0-0.4, 0.4-0.8, 0.8-1.2, and 1.2-1.6 m soil layers, respectively. As expected, the most temporally stable location (MTSL1) accurately predicted the average SWS of the corresponding soil layer, and the values of absolute bias relative to mean (ARB) were lower than 3% for all of the investigated soil layers. Using TSA, deep-layer SWS information could be predicted using a single-location measurement in the 0-0.4 m soil layer. The mean ARB values between the observed and predicted mean SWS values were 2.9%, 4.3%, 3.9%, and 2.7% in the 0.4-0.8, 0.8-1.2, 1.2-1.6, and 0-1.6 m soil layers, respectively. The prediction accuracy of the spatial distribution generally decreased with increasing depth, with linear determination coefficients (R2) of 0.93, 0.79, 0.72, and 0.84 for the four soil layers, respectively. The proposed method could further expand the application of the temporal stability technique in the estimation of SWS.

  2. Measurement of aggregate cohesion by tissue surface tensiometry.

    Science.gov (United States)

    Butler, Christine M; Foty, Ramsey A

    2011-04-08

    Rigorous measurement of intercellular binding energy can only be made using methods grounded in thermodynamic principles in systems at equilibrium. We have developed tissue surface tensiometry (TST) specifically to measure the surface free energy of interaction between cells. The biophysical concepts underlying TST have been previously described in detail. The method is based on the observation that mutually cohesive cells, if maintained in shaking culture, will spontaneously assemble into clusters. Over time, these clusters will round up to form spheres. This rounding-up behavior mimics the behavior characteristic of liquid systems. Intercellular binding energy is measured by compressing spherical aggregates between parallel plates in a custom-designed tissue surface tensiometer. The same mathematical equation used to measure the surface tension of a liquid droplet is used to measure surface tension of 3D tissue-like spherical aggregates. The cellular equivalent of liquid surface tension is intercellular binding energy, or more generally, tissue cohesivity. Previous studies from our laboratory have shown that tissue surface tension (1) predicts how two groups of embryonic cells will interact with one another, (2) can strongly influence the ability of tissues to interact with biomaterials, (3) can be altered not only through direct manipulation of cadherin-based intercellular cohesion, but also by manipulation of key ECM molecules such as FN and 4) correlates with invasive potential of lung cancer, fibrosarcoma, brain tumor and prostate tumor cell lines. In this article we will describe the apparatus, detail the steps required to generate spheroids, to load the spheroids into the tensiometer chamber, to initiate aggregate compression, and to analyze and validate the tissue surface tension measurements generated.

  3. Measuring Total Surface Moisture with the COSMOS Rover

    Science.gov (United States)

    Chrisman, B. B.; Zreda, M.; Franz, T. E.; Rosolem, R.

    2012-12-01

    The COSMOS rover is the mobile application of the cosmic-ray soil moisture probe. By quantifying the relative amount of the hydrogen molecules within the instrument's support volume (~335 m radius in air, 10-70 cm depth in soil) the instrument makes an area-average surface moisture measurement. We call this measurement "total surface moisture". Quantifying hydrogen in all major stocks (soils, infrastructure, vegetation, and water vapor) allows for an isolation of the volumetric fraction of the exchangeable surface moisture. By isolating the hydrogen molecule we can measure the exchangeable surface moisture over all land cover types including those with built-up infrastructure and dense vegetation; two environments which have been challenging to existing technologies. . The cosmic-ray rover has the capability to improve hydrologic, climate, and weather models by parameterizing the exchangeable surface moisture status over complex landscapes. It can also fill a gap in the verification and development processes of surface moisture satellite missions, such as SMOS and SMAP. In our current research program, 2D transects are produced twice a week and 3D maps are produced once a week during the 2012 monsoon season (July-September) within the Tucson Basin. The 40 km x 40 km area includes four land cover classes; developed, scrub (natural Sonoran Desert), crops, and evergreen forest. The different land cover types show significant differences in their surface moisture behavior with irrigation acting as the largest controlling factor in the developed and crop areas. In addition we investigated the use of the cosmic-ray rover data to verify/compare with satellite derived soil moisture. A Maximum Entropy model is being used to create soil moisture profiles from shallow surface measurements (SMOS data). With the cosmic-ray penetration depth and weighting function known, the satellite measurement can be interpolated, weighted and compared with the cosmic-ray measurement when the

  4. Effectiveness of the GAEC cross-compliance standard Short-term measures for runoff water control on sloping land (temporary ditches and grass strips in controlling soil erosion

    Directory of Open Access Journals (Sweden)

    Paolo Bazzoffi

    2011-08-01

    Full Text Available The agronomic measures made obligatory by the cross-compliance Standard Temporary measures for runoff water control on sloping land included in the Ministry of Agricultural, Food and Forestry Policies (MiPAAF decree on cross compliance until 2008, and by Standard 1.1 Creation of temporary ditches for the prevention of soil erosion in the 2009 decree, certainly appear to be useful for the control of soil erosion and runoff. The efficacy of temporary drainage ditches and of grass strips in controlling runoff and erosion has been demonstrated in trials conducted in field test plots in Italy. When level temporary drainage ditches are correctly built, namely with an inclination of not more than 2.5% in relation to the maximum hillslope gradient, they allow the suspended sediment eroded upstream to settle in the ditches, retaining the material carried away on the slope and, as a result, reducing the quantity of sediment delivered to the hydrographic network. In particular, among all the results, the erosion and runoff data in a trial conducted in Guiglia (Modena showed that in corn plots, temporary drainage ditches reduced soil erosion by 94%, from 14.4 Mg ha-1 year-1 (above the limit established by the NRCS-USDA of 11.2 Mg ha-1 year-1 to 0.8 Mg ha-1 year-1 (within the NRCS limit and also within the more restrictive limit established by the OECD of 6.0 Mg ha-1 year-1. With respect to the grass buffer strips the most significant research was carried out in Volterra. This research demonstrated their efficacy in reducing erosion from 8.15 Mg ha-1 to 1.6 Mg ha-1, which is approximately 5 times less than the erosion observed on bare soil. The effectiveness of temporary drainage ditches was also assessed through the application of the Revised Universal Soil Loss Equation (RUSLE erosion model to 60 areas under the control of the Agency for Agricultural Payments (AGEA in 2009, comparing the risk of erosion in these sample areas by simulating the presence and

  5. Capillary-force measurement on SiC surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness similar to 4-14 nm mainly

  6. Novel Measurement and Monitoring Approaches for Surface and Near-Surface Soil Moisture

    Science.gov (United States)

    Jones, S. B.; Sheng, W.; Zhou, R.; Sadeghi, M.; Tuller, M.

    2015-12-01

    The top inch of the earth's soil surface is a very dynamic and important layer where physical and biogeochemical processes take place under extreme diurnal and seasonal moisture and temperature variations. Some of these critical surfaces include biocrusts, desert pavements, agricultural lands, mine tailings, hydrophobic forest soils, all of which can significantly impact environmental conditions at large-scales. Natural hazards associated with surface conditions include dust storms, post-fire erosion and flooding in addition to crop failure. Less obvious, though continually occurring, are microbial-induced gas emissions that are also significantly impacted by surface conditions. With so much at stake, it is surprising that in today's technological world there are few if any sensors designed for monitoring the top few mm or cm of the soil surface. In particular, remotely sensed data is expected to provide near-real time surface conditions of our Earth, but we lack effective tools to measure and calibrate surface soil moisture. We are developing multiple methods for measurement and monitoring of surface and near-surface soil water content which include gravimetric as well as electromagnetic approaches. These novel measurement solutions and their prospects to improve soil surface water content determination will be presented.

  7. [Response characteristics of the field-measured spectrum for the four general types of halophyte and species recognition in the northern slope area of Tianshan Mountain in Xinjiang].

    Science.gov (United States)

    Zhang, Fang; Xiong, Hei-gang; Nurbay, Abdusalih; Luan, Fu-ming

    2011-12-01

    Based on the field-measured Vis-NIR reflectance of four common types of halophyte (Achnatherum splendens(Trin.) Nevski, Sophora alopecuroides L., Camphorosma monspeliaca L. subsp. lessingii(L.)Aellen, Alhagi sparsifolia shap) within given spots in the Northern Slope Area of Tianshan Mountain in Xinjiang, the spectral response characteristics and species recognition of these types of halophyte were analyzed. The results showed that (Alhagi sparsifolia shap) had higher chlorophyll and carotenoid by CARI and SIPI index. (Sophora alopecuroides L. was at a vigorously growing state and had a higher NDVI compared with the other three types of halophyte because of its greater canopy density. But its CARI and SIPI values were lower due to the influence of its flowers. (Sophora alopecuroides L.) and (Camphorosma monspeliaca L. subsp. lessingii(L.)) had stable REPs and BEPs, but REPs and BEPs of (Achnatherum splendens(Trin.)Nevski, Aellen, Alhagi sparsifolia shap) whose spectra red shift and spectra blue shift occurred concurrently obviously changed. There was little difference in spectral curves among the four types of halophyte, so the spectrum mixing phenomenon was severe. (Camphorosma monspeliaca L. subsp. lessingii (L.)Aellen) and (Alhagi sparsifolia shap) could not be separated exactly in a usual R/NIR feature space in remote sensing. Using the stepwise discriminant analysis, five indices were selected to establish the discriminant model, and the model accuracy was discussed using the validated sample group. The total accuracy of the discriminant model was above 92% and (Achnatherum splendens(Trin.)Nevski) and (Camphorosma monspeliaca L. subsp. lessingii(L.)Aellen) could be respectively recognized 100% correctly.

  8. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    Science.gov (United States)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  9. Numerical computation of homogeneous slope stability.

    Science.gov (United States)

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).

  10. Numerical Computation of Homogeneous Slope Stability

    Directory of Open Access Journals (Sweden)

    Shuangshuang Xiao

    2015-01-01

    Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.

  11. 三维缓变流场上波浪折射-绕射的缓坡方程%THE MILD-SLOPE EQUATION FOR REFRACTION- DIFFRACTION OF SURFACE WAVES ON THREE DIMENSIONAL SLOWLY VARYING CURRENTS 1)

    Institute of Scientific and Technical Information of China (English)

    黄虎; 丁平兴; 吕秀红

    2001-01-01

    运用Luke变分原理,建立了波浪在三维缓变流场中和缓变海底上折射-绕射的一般缓坡方程.据此给出了在几何-光学逼近( S)2=k2有效时,波浪、环境流和海底坡度必须满足的若干条件. 对一般缓坡方程进行了分类,在一种特定流场结构的假定下,得到了方程的行波解.%When deep ocean waves enter shoaling waters, their height and directionundergo significant modification due to interaction with bottomtopographical variations and strong ambient currents, exerting a directand important influence on sediment transport, ship navigation, andforces on coastal structures. Using Luke's variational principle, thegeneral time-dependent mild-slope equation for refraction-diffractionof surface waves over slowly varying media of topography and threedimensional currents is derived, which can be reduced to Kirby'smild-slope equation for wave-current interaction when neglecting thevertical effect of ambient currents. The linear approach to the boundaryvalue problem involving the wave propagating over the slowly changingbottom and the slowly varying three dimensional currents gives aparticular representation for the potential and the free surfacedisplacement , in which a nonlinear scale parameter is introduced.Based on the general two dimensional solution of Laplace equation on thehorizontal bottom, the vertical structure of the velocity field isadopted and supposed to be hold locally for the mild-slope bottom.   An alternative form of the mild-slope equation for time-harmonic wavesis also obtained, which is suitable for parabolic wave model,and valid for large current velocities ,that is for velocities |U|which are comparable to the wave celerity C and the group velocityCg. For the geometric-optic approximation ( S)2=k2 to bevalid, a number of conditions concerning water wave, ambient current andbottom slope should be met. It is shown that the time-harmonicmild-slope equation can be divided into three types

  12. Analysis of slope stability of circular arc slip surface based on nonlocal elastic model%基于非局部弹性模型的圆弧滑裂面土坡稳定性分析

    Institute of Scientific and Technical Information of China (English)

    谢帮华; 扶名福; 李云生

    2015-01-01

    According to the proposed two kinds of nonlocal computing element,established two different nonlocal elastic model.Combining with the principle of minimum potential energy is studied based on the nonlocal elastic model of circular slip surface in slope stability,and the nonlocal material parameters are discussed and analyzed.Studied the influnce of material parameter on the stability safety factor of slope, from microscopic point analysis the action mechanism problems of the macro engineering,found the change of nonlocal material parameters which have the microscopic properties,the slope safety factor change obvi-ously.When discussing the influence of related parameters on the slope safety factor,the slope stability safety factor based on the nonlocal model is very sensitive on the internal friction angle.It is shown that u-sing the nonlocal elastic model analysis the slope stability is more reliable,this research can provide the ref-erence for engineering of soil management.%根据提出的两种非局部计算元件,建立两种非局部弹性模型。结合最小势能原理研究了基于非局部弹性模型下圆弧滑裂面土坡的稳定性,并对非局部材料参数进行了讨论与分析。研究了材料参数对土坡安全数的影响,从微观的角度分析了宏观工程的作用机理,发现带微观性质的非局部材料参数变化时,土坡安全系数变化很明显。当讨论土体相关参数对安全系数的影响时,基于非局部模型的土坡稳定安全系数对内摩擦角的变化比较敏感。结果表明,采用非局部弹性模型分析土坡的稳定性更可靠,该研究可为工程中土坡治理提供参考依据。

  13. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  14. Measurement of rectangular surface mobility of an infinite plate

    Institute of Scientific and Technical Information of China (English)

    DAI Jue

    2001-01-01

    A measuring method of surface mobility for an infinite plate subject to a uniform conphase velocity excitation is investigated. In the measurement, a finite plate is employed to simulate an infinite plate and a rigid cone is used to make a uniform conphase velocity excitation. A method to deduct the affect of additional mass is derived: The results of the measurement agree with that calculated theoretically.

  15. Picometer-scale surface roughness measurements inside hollow glass fibres

    OpenAIRE

    2014-01-01

    International audience; A differential profilometry technique is adapted to the problem of measuring the roughness of hollow glass fibres by use of immersion objectives and index-matching liquid. The technique can achieve picometer level sensitivity. Cross validation with AFM measurements is obtained through use of vitreous silica step calibration samples. Measurements on the inner surfaces of fiber-sized glass capillaries drawn from high purity suprasil F300 tubes show a sub-nanometer roughn...

  16. Emissivity measurements of reflective surfaces at near-millimeter wavelengths.

    Science.gov (United States)

    Bock, J J; Parikh, M K; Fischer, M L; Lange, A E

    1995-08-01

    We have developed an instrument for directly measuring the emissivity of reflective surfaces at near-millimeter wavelengths. The thermal emission of a test sample is compared with that of a reference surface, allowing the emissivity of the sample to be determined without heating. The emissivity of the reference surface is determined by one's heating the reference surface and measuring the increase in emission. The instrument has an absolute accuracy of Δε = 5 × 10(-4) and can reproducibly measure a difference in emissivity as small as Δε = 10(-4) between flat reflective samples. We have used the instrument to measure the emissivity of metal films evaporated on glass and carbon fiber-reinforced plastic composite surfaces. We measure an emissivity of (2.15 ± 0.4) × 10(-3) for gold evaporated on glass and (2.65 ± 0.5) × 10(-3) for aluminum evaporated on carbon fiber-reinforced plastic composite.

  17. Comparing contact angle measurements and surface tension assessments of solid surfaces.

    Science.gov (United States)

    Cwikel, Dory; Zhao, Qi; Liu, Chen; Su, Xueju; Marmur, Abraham

    2010-10-05

    Four types of contact angles (receding, most stable, advancing, and "static") were measured by two independent laboratories for a large number of solid surfaces, spanning a large range of surface tensions. It is shown that the most stable contact angle, which is theoretically required for calculating the Young contact angle, is a practical, useful tool for wettability characterization of solid surfaces. In addition, it is shown that the experimentally measured most stable contact angle may not always be approximated by an average angle calculated from the advancing and receding contact angles. The "static" CA is shown in many cases to be very different from the most stable one. The measured contact angles were used for calculating the surface tensions of the solid samples by five methods. Meaningful differences exist among the surface tensions calculated using four previously known methods (Owens-Wendt, Wu, acid-base, and equation of state). A recently developed, Gibbsian-based correlation between interfacial tensions and individual surface tensions was used to calculate the surface tensions of the solid surfaces from the most stable contact angle of water. This calculation yielded in most cases higher values than calculated with the other four methods. On the basis of some low surface energy samples, the higher values appear to be justified.

  18. Measurement of dynamic surface tension by mechanically vibrated sessile droplets

    Science.gov (United States)

    Iwata, Shuichi; Yamauchi, Satoko; Yoshitake, Yumiko; Nagumo, Ryo; Mori, Hideki; Kajiya, Tadashi

    2016-04-01

    We developed a novel method for measuring the dynamic surface tension of liquids using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the shape of the deformed droplet was fitted by numerical analysis, taking into account the force balance at the drop surface and the momentum equation. The surface tension was determined by optimizing four parameters: the surface tension, the droplet's height, the radius of the droplet-substrate contact area, and the horizontal symmetrical position of the droplet. The accuracy and repeatability of the proposed method were confirmed using drops of distilled water as well as viscous aqueous glycerol solutions. The vibration frequency had no influence on surface tension in the case of pure liquids. However, for water-soluble surfactant solutions, the dynamic surface tension gradually increased with vibration frequency, which was particularly notable for low surfactant concentrations slightly below the critical micelle concentration. This frequency dependence resulted from the competition of two mechanisms at the drop surface: local surface deformation and surfactant transport towards the newly generated surface.

  19. Ultrasonic P-wave velocity measurements with variable effective pressure at the boundary between slope basin sediments and the accretionary prism: IODP Expedition 315 Site C0001

    Science.gov (United States)

    Hashimoto, Y.; Knuth, M. W.; Tobin, H. J.; 314/315/316 Scientist, I.

    2008-12-01

    IODP Expedition 315 Site C0001 is located on the hanging wall of the midslope megasplay fault in the Nankai subduction zone off Kii peninsula (SW Japan), and penetrated an unconformity between ~200 m thick slope basin sediments and the accretionary prism. While a down-section porosity increase was clearly observed at the boundary from ~50% to ~60%, logging velocity does not appear to decrease at the boundary, which suggests that different diagenetic processes might exist above and below the boundary. In this study, we conducted ultrasonic P-wave velocity measurements with pore pressure control. We also conducted observations of sediment and chemical analysis. We examined the relationships between the acoustic properties, sediment textures, logging data from IODP Expedition 314 Site C0001 and data from shipboard core analysis. The ultrasonic P-wave velocity measurements were conducted under constant pore pressure (500 kPa) and varying confining pressure to control effective pressure. The confining pressure ranges from 550 kPa to a maximum calculated from the density of overlying sediments (lithostatic pressure - hydrostatic pressure). 8 samples were analyzed, located from ~70 m to ~450 m below the sea floor. P-wave velocity ranges from ~1620 m/s to ~1990 m/s under the hydrostatic pressure condition. These velocities are in good agreement with the logging data. Porosity-velocity relationship in the analyzed data also coincide with that observed in the logging data. Samples shallower than ~300 m fall within previously-defined empirical relationships for normal- and high- consolidation. The deeper samples (at ~370 m and ~450 m below sea floor) show much higher velocity than that predicted by the empirical relationship, suggesting that significant cementation is present in those samples. The textural observations of sediments indicate a decrease in pore space with depth. Quartz and feldspar grains are surrounded by clay mineral matrices. Grain size seems to be almost

  20. APPLICATION OF PITCH RULES OF DISCONTINUITIES TO EXCAVATION SURFACE FOR ROCK SLOPE STRUCTURE MAPPING%侧伏规律在岩质边坡结构面编录中的应用

    Institute of Scientific and Technical Information of China (English)

    刘明; 黄润秋; 严明; 巨能攀

    2011-01-01

    理论上,据边坡设计坡面来编录展示结构面的迹线分布应与其在坡面内的侧伏交线一致.把握一定的侧伏规律,处以适当的素描技法,既可吻合实际情况,又可提高绘图效率和资料质量,对边坡结构模型的准确分析不无裨益.有鉴于此,经过现场观测总结,分析了结构面与坡面的各种交切关系及其迹线的侧伏特征.在侧伏规律公式推导的基础上,根据两者产状提出其特征三角形判别法,并编制相应的算图,可校核以及在适当条件下推测某一产状要素.讨论了实践中几类难以作图的特殊情况下侧伏规律的应用.%In theory, the extension of a discontinuity trace in revealing detailed map of the excavated surface by rock slope design must be in accordance with the pitch of the intersecting line of discontinuity and excavated surface on the latter. Grasping the pitch regularity and manipulating the appropriate sketch technique maybe not only make the trace map coincide with the in-site actual situation, but also increase drawing efficiency and data quality, without no avail of the accurate analysis for slope structure model. In view of this, by means of in-site observation and conclusion, relationships between discontinuity and slope surface and properties of discontinuities traces are analyzed.Based on formulas to express pitch rules, the discriminance of pitching by features triangle, which is inferred from both attitudes of discontinuity and slope surface,is proposed. Meanwhile, homograph to determine pitch of discontinuity trace is drawn up. Under the proper condition,checking and concluding one of essentials of attitude by other one is discussed. Practical application of pitch regularity to a particular case, the trace of which is difficult to draw,is illustrated.

  1. Intelligent sampling for the measurement of structured surfaces

    Science.gov (United States)

    Wang, J.; Jiang, X.; Blunt, L. A.; Leach, R. K.; Scott, P. J.

    2012-08-01

    Uniform sampling in metrology has known drawbacks such as coherent spectral aliasing and a lack of efficiency in terms of measuring time and data storage. The requirement for intelligent sampling strategies has been outlined over recent years, particularly where the measurement of structured surfaces is concerned. Most of the present research on intelligent sampling has focused on dimensional metrology using coordinate-measuring machines with little reported on the area of surface metrology. In the research reported here, potential intelligent sampling strategies for surface topography measurement of structured surfaces are investigated by using numerical simulation and experimental verification. The methods include the jittered uniform method, low-discrepancy pattern sampling and several adaptive methods which originate from computer graphics, coordinate metrology and previous research by the authors. By combining the use of advanced reconstruction methods and feature-based characterization techniques, the measurement performance of the sampling methods is studied using case studies. The advantages, stability and feasibility of these techniques for practical measurements are discussed.

  2. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie

    2009-10-01

    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  3. NON-CONTACT MEASUREMENT OF SCULPTURED SURFACE OF ROTATION

    Institute of Scientific and Technical Information of China (English)

    Zhang Guoxiong; Liu Shugui; Qiu Zurong; Yu Fusheng; Na Yonglin; Leng Changlin

    2004-01-01

    A method for measuring the sculptured surface of rotation by using coordinate measuring machine (CMM) and rotary table is proposed. The measurement is realized during the continuous rotation of the workpiece mounted on the rotary table while the probe moves along the generatrix of the surface step by step. This method possesses lots of advantages such as simplicity of probe motion, high reliability and efficiency. Some key techniques including calibration of the effective radius of the probing system, determination of the position of axis of rotation, auto-centering of the workpiece, data processing algorithm, are discussed. Approaches for determining the coordinates on measured surface, establishing workpiece coordinate system and surface fitting are presented in detail. The method can be used with contact or non-contact probes. Some fragile ceramic and plaster parts are measured by using the system consisting of a CMM, rotary table, motorized head and non-contact laser triangulation probe. The measuring uncertainty is about 0.02 mm which meets the general requirement in most cases.

  4. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions....

  5. HIGH FIELD Q-SLOPE AND THE BAKING EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2009-11-01

    The performance of SRF cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing RF losses (high-field Q-slope), in the absence of field emission, which are often mitigated by a low temperature (100-140 °C, 12-48h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated at high temperature in the presence of a small partial pressure of nitrogen. Improvement of the cavity performances have been obtained, while surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.

  6. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  7. NON-CONTACT MEASUREMENT SYSTEM OF FREEFORM SURFACE AND NURBS RECONSTRUCTION OF MEASUREMENT POINTS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the development of the non-contact measurement system of free-form surface, NURBS reconstruc-tion of measurement points of freeform surface is effectively realized by modifying the objective function and recursiveprocedure and calculating the optimum number of control points. The reconstruction precision is evaluated through Ja-cobi's transformation method. The feasibility of the measurement system and effectiveness of the reconstruction algo-rithm above are proved by experiment.

  8. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements

    Science.gov (United States)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Smith, W. L.; Strow, L. L.; Yang, Ping; Schlussel, P.; Calbet, X.

    2011-01-01

    Ultraspectral resolution infrared (IR) radiances obtained from nadir observations provide information about the atmosphere, surface, aerosols, and clouds. Surface spectral emissivity (SSE) and surface skin temperature from current and future operational satellites can and will reveal critical information about the Earth s ecosystem and land-surface-type properties, which might be utilized as a means of long-term monitoring of the Earth s environment and global climate change. In this study, fast radiative transfer models applied to the atmosphere under all weather conditions are used for atmospheric profile and surface or cloud parameter retrieval from ultraspectral and/or hyperspectral spaceborne IR soundings. An inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral IR sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface or cloud microphysical parameters. This inversion scheme has been applied to the Infrared Atmospheric Sounding Interferometer (IASI). Rapidly produced SSE is initially evaluated through quality control checks on the retrievals of other impacted surface and atmospheric parameters. Initial validation of retrieved emissivity spectra is conducted with Namib and Kalahari desert laboratory measurements. Seasonal products of global land SSE and surface skin temperature retrieved with IASI are presented to demonstrate seasonal variation of SSE.

  9. 锚索加固措施在高边坡治理工程合理应用%The anchor Suo reinforces measure to manage an engineering reasonable application at High slope

    Institute of Scientific and Technical Information of China (English)

    张希虹

    2011-01-01

    Mid-June,2010 three clear city territory the occurrence hold out for long time big rain-storm,to generate High slope slippery fall geology accident.Be greatly located in three clear downtown Chen to the green jade orifice connectivity YK 2+730~ YKs 2+s 855 right side one stage,second class and x-rated side ascent occurrence of High slope slippery fall a disease to harm,original of paying and blocking all of the safeguard engineering lose efficacy to cause the side's ascent whole to slid,fraction's collapsing to fall a body a pile has already still gone on to road surface and ascent body strain,and the side ascent is placed in an unsteady status.Work out the engineering problem of mountain area geology bad side ascent for assuring that the high way hole tax carries a camp safety,the submission hasing already aimed at sex road Qian side ascent preventing and curing measure to.%2010年6月中旬三明市境发生持久大暴雨,致使发生高边坡滑塌地质灾害。位于邵三高速公路三明段YK2+715~YK2+840段右侧高边坡一级、二级、三级边坡发生滑塌病害,原有的支挡防护工程全部失效导致该边坡整体下滑,部分坍塌体已堆至路面且坡体变形仍在继续,边坡处于不稳定状态。为保证公路运营安全,提出有针对性路堑边坡防治措施,以解决山区高速公路地质不良边坡的工程问题。

  10. 3D Surface Morphology Measurement and Auto-focusing System

    Institute of Scientific and Technical Information of China (English)

    CHEN Qi; ZANG Huai-pei

    2005-01-01

    When interference microscope measures the surface rough of the micromechanical device, as soon as the work distance of interference microscope and the depth of field is shortened, the interference images become slur for the measured object if there has small interference after clear focus. The auto-focusing system is introduced into the interference microscope, the system can obtain high definition interference image rapidly,and can improve the measuring velocity and measuring precision. The system is characterized by auto-focusing range of ±150 μm, auto-focusing precision of ±0.3 μm, auto-focusing time of 4~8 s.

  11. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    Energy Technology Data Exchange (ETDEWEB)

    Bietti, Sergio, E-mail: sergio.bietti@mater.unimib.it; Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano [L–NESS and Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 55, I–20125 Milano (Italy); Fedorov, Alexey [L–NESS and CNR–IFN, via Anzani 42, I-22100 Como (Italy)

    2014-09-21

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E{sub A}=1.31±0.15 eV, a diffusivity prefactor of D₀=0.53(×2.1±1) cm² s⁻¹ that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  12. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  13. Optical Measurement System for Motion Characterization of Surface Mount Technology

    Institute of Scientific and Technical Information of China (English)

    LI Song; AN Bing; ZHANG Tong-jun; XIE Yong-jun

    2006-01-01

    Advanced testing methods for the dynamics of mechanical microdevices are necessary to develop reliable,marketable microelectromechanical systems. A system for measuring the nanometer motions of microscopic structures has been demonstrated. Stop-action images of a target have been obtained with computer microvision,microscopic interferometry,and stroboscopic illuminator. It can be developed for measuring the in-plane-rigid-body motions,surface shapes,out-of-plane motions and deformations of microstructures. A new algorithm of sub-pixel step length correlation template matching is proposed to extract the in-plane displacement from vision images. Hariharan five-step phase-shift interferometry algorithm and unwrapping algorithms are adopted to measure the out-of-plane motions. It is demonstrated that the system can measure the motions of solder wetting in surface mount technology(SMT).

  14. Two-pulse rapid remote surface contamination measurement.

    Energy Technology Data Exchange (ETDEWEB)

    Headrick, Jeffrey M.; Kulp, Thomas J.; Bisson, Scott E.; Reichardt, Thomas A.; Farrow, Roger L.

    2010-11-01

    This project demonstrated the feasibility of a 'pump-probe' optical detection method for standoff sensing of chemicals on surfaces. Such a measurement uses two optical pulses - one to remove the analyte (or a fragment of it) from the surface and the second to sense the removed material. As a particular example, this project targeted photofragmentation laser-induced fluorescence (PF-LIF) to detect of surface deposits of low-volatility chemical warfare agents (LVAs). Feasibility was demonstrated for four agent surrogates on eight realistic surfaces. Its sensitivity was established for measurements on concrete and aluminum. Extrapolations were made to demonstrate relevance to the needs of outside users. Several aspects of the surface PF-LIF physical mechanism were investigated and compared to that of vapor-phase measurements. The use of PF-LIF as a rapid screening tool to 'cue' more specific sensors was recommended. Its sensitivity was compared to that of Raman spectroscopy, which is both a potential 'confirmer' of PF-LIF 'hits' and is also a competing screening technology.

  15. Capillary-force measurement on SiC surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-06-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ˜4-14 nm mainly due to sphere morphology, the relative humidity (RH) ˜0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH˜40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads.

  16. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

    Science.gov (United States)

    2013-09-30

    Radiometric Measurement Lian Shen Department of Mechanical Engineering & St. Anthony Falls Laboratory University of Minnesota Minneapolis, MN...information if it does not display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00...2013 4. TITLE AND SUBTITLE Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  17. Towards attosecond measurement in molecules and at surfaces

    Science.gov (United States)

    Marangos, Jonathan

    2015-05-01

    1) We will present a number of experimental approaches that are being developed at Imperial College to make attosecond timescale measurements of electronic dynamics in suddenly photoionized molecules and at surfaces. A brief overview will be given of some of the unanswered questions in ultrafast electron and hole dynamics in molecules and solids. These questions include the existence of electronic charge migration in molecules and how this process might couple to nuclear motion even on the few femtosecond timescale. How the timescale of photoemission from a surface may differ from that of an isolated atom, e.g. due to electron transport phenomena associated with the distance from the surface of the emitting atom and the electron dispersion relation, is also an open question. 2) The measurement techniques we are currently developing to answer these questions are HHG spectroscopy, attosecond pump-probe photoelectron/photoion studies, and attosecond pump-probe transient absorption as well as attosecond streaking for measuring surface emission. We will present recent advances in generating two synchronized isolated attosecond pulses at different colours for pump-probe measurements (at 20 eV and 90 eV respectively). Results on generation of isolated attosecond pulses at 300 eV and higher photon energy using a few-cycle 1800 nm OPG source will be presented. The use of these resources for making pump-probe measurements will be discussed. Finally we will present the results of streaking measurement of photoemission wavepackets from two types of surface (WO3 and a evaporated Au film) that show a temporal broadening of ~ 100 as compared to atomic streaks that is consistent with the electron mean free path in these materials. Work supported by ERC and EPSRC.

  18. Mechanical interaction between roots and soil mass in slope vegetation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The most basic function of slope vegetation is to strengthen rock and soil mass through plant roots which increase the shear strength of the slope markedly and thereby increase the stability of the slope. However, the calculation of the reinforcement ability of slope vegetation still remains at the stage of judging by experience, because it is rather difficult due to the intricacy and volatility of the force condition of plant roots in rock and soil medium. Although some scholars have tried to study the interaction between plant roots and soil mass, the systemic analysis of the mechanical reinforcement mechanism and the contribution of plant roots to strengthening the rock and soil mass on the surface of the slope is untapped. In this paper, by analyzing the mechanism of slope vegetation and the corresponding reinforcement effect, the effects that slope vegetation generates on the shear strength of slope soil mass are studied, thereby a theoretical basis for plant protection designing is provided.

  19. Slope Streaks in Terra Sabaea

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 Click on image for larger version This HiRISE image shows the rim of a crater in the region of Terra Sabaea in the northern hemisphere of Mars. The subimage (figure 1) is a close-up view of the crater rim revealing dark and light-toned slope streaks. Slope streak formation is among the few known processes currently active on Mars. While their mechanism of formation and triggering is debated, they are most commonly believed to form by downslope movement of extremely dry sand or very fine-grained dust in an almost fluidlike manner (analogous to a terrestrial snow avalanche) exposing darker underlying material. Other ideas include the triggering of slope streak formation by possible concentrations of near-surface ice or scouring of the surface by running water from aquifers intercepting slope faces, spring discharge (perhaps brines), and/or hydrothermal activity. Several of the slope streaks in the subimage, particularly the three longest darker streaks, show evidence that downslope movement is being diverted around obstacles such as large boulders. Several streaks also appear to originate at boulders or clumps of rocky material. In general, the slope streaks do not have large deposits of displaced material at their downslope ends and do not run out onto the crater floor suggesting that they have little reserve kinetic energy. The darkest slope streaks are youngest and can be seen to cross cut and superpose older and lighter-toned streaks. The lighter-toned streaks are believed to be dark streaks that have lightened with time as new dust is deposited on their surface. Observation Geometry Image PSP_001808_1875 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Dec-2006. The complete image is centered at 7.4 degrees latitude, 47.0 degrees East longitude. The range to the target site was 272.1 km (170.1 miles). At this distance the

  20. Freeform surface measurement and characterisation using a toolmakers microscope

    Science.gov (United States)

    Seung-yin Wong, Francis; Chauh, Kong-Bieng; Venuvinod, Patri K.

    2014-03-01

    Current freeform surface (FFS) characterization systems mainly cover aspects related to computer-aided design/manufacture (CAD/CAM). This paper describes a new approach that extends into computer-aided inspection (CAI).The following novel features are addressed: blacksquare Feature recognition and extraction from surface data blacksquare Characterisation of properties of the surface's M and N vectors at individual vertex blacksquare Development of a measuring plan using a toolmakers microscope for the inspection of the FFS blacksquare Inspection of the actual FFS produced by CNC milling blacksquare Verification of the measurement results and comparison with the CAD design data Tests have shown that the deviations between the CAI and CAD data were within the estimated uncertainty limits.

  1. Reconstruction of faults in elastic half space from surface measurements

    Science.gov (United States)

    Volkov, Darko; Voisin, Christophe; Ionescu, Ioan R.

    2017-05-01

    We study in this paper a half-space linear elasticity model for surface displacements caused by slip along underground faults. We prove uniqueness of the fault location and (piecewise-planar) geometry and of the slip field for a given surface displacement field. We then introduce a reconstruction algorithm for the realistic case where only a finite number of surface measurements are available. After showing how this algorithm performs on simulated data and assessing the effect of noise, we apply it to measured data. The data were recorded during slow slip events in Guerrero, Mexico. Since this is a well studied subduction zone, it is possible to compare our inferred fault geometry to other reconstructions (obtained using different techniques) found in the literature.

  2. Surface photovoltage measurements and finite element modeling of SAW devices.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  3. Surface roughness measurement on a wing aircraft by speckle correlation.

    Science.gov (United States)

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  4. Optical imaging of breast tumor through temporal log-slope difference mappings.

    Science.gov (United States)

    Guo, Zhixiong; Kan Wan, Siew; August, David A; Ying, Jinpin; Dunn, Stanley M; Semmlow, John L

    2006-02-01

    A novel optical temporal log-slope difference mapping approach is proposed for cancerous breast tumor detection. In this method, target tissues are illuminated by near-infrared (700-1000 nm) ultrashort laser pulses from various surface source points, and backscattered time-resolved light signals are collected at the same surface points. By analyzing the log-slopes of decaying signals over all points on the source-detection grid, a log-slope distribution on the surface is obtained. After administration of absorption contrast agents, the presence of cancerous tumors increases the decaying steepness of the transient signals. The mapping of log-slope difference between native tissue and absorption-enhanced cancerous tissue indicates the location and projection of tumors on the detection surface. In this paper, we examine this method in the detection of breast tumors in two model tissue phantoms through computer simulation. The first model has a spherical tumor of 6mm in diameter embedded at the tissue center. The second model is a large tissue phantom embedded with a non-centered spherical tumor 8mm in diameter. Monte Carlo methods were employed to simulate the light transport and signal measurement. It is shown that the tumor in both the tissue models will be accurately projected on the detection surface by the proposed log-slope difference mapping method. The image processing is very fast and does not require any inverse optimization in image reconstruction.

  5. Wave run-up on sandbag slopes

    Directory of Open Access Journals (Sweden)

    Thamnoon Rasmeemasmuang

    2014-03-01

    Full Text Available On occasions, sandbag revetments are temporarily applied to armour sandy beaches from erosion. Nevertheless, an empirical formula to determine the wave run -up height on sandbag slopes has not been available heretofore. In this study a wave run-up formula which considers the roughness of slope surfaces is proposed for the case of sandbag slopes. A series of laboratory experiments on the wave run -up on smooth slopes and sandbag slopes were conducted in a regular-wave flume, leading to the finding of empirical parameters for the formula. The proposed empirical formula is applicable to wave steepness ranging from 0.01 to 0.14 and to the thickness of placed sandbags relative to the wave height ranging from 0.17 to 3.0. The study shows that the wave run-up height computed by the formula for the sandbag slopes is 26-40% lower than that computed by the formula for the smooth slopes.

  6. A continental slope stability evaluation in the Zhujiang River Mouth Basin in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    LIU Ke; WANG Jianhua

    2014-01-01

    In nature, a slope stability is determined by the ratio of a sliding resistance to a slide force. The slide force of a marine deep-water continental slope is mainly affected by sediment mechanics properties, a topography, and a marine seismic. However, the sliding resistance is mainly affected by sedimentary patterns and a sedi-mentary stress history. Both of these are different from case to case, and their impact can be addressed when the data are organized in a geographic information system (GIS). The study area on the continental slope in Zhujiang River Mouth Basin in South China Sea provides an excellent opportunity to apply GIS spatial analysis technology for the evaluation of the slope stability. In this area, a continental slope topography and a three-dimension (3-D) topography mapping show a sea-floor morphology and the distribution of a slope steepness in good detail, and the sediment analysis of seabed samples and an indoor appraisal reveals the variability of a sediment density near the sea-floor surface. On the basis of the results of nine geotechnical studies of submarine study areas, it has worked out that an equivalent cyclic shear stress ratio is roughly between 0.158 and 0.933, which is mainly depending on the initial water content of sediment. A regional density, slope and level of anticipated seismic shaking information are combined in a GIS framework to yield a map that illustrates a continental slope stability zoning under the influencing factors in Zhujiang River Mouth Basin in the South China Sea. The continental slope stability evaluation can contribute to north resources development in the South China Sea, the marine functional zoning, the marine engineering con-struction and adjust measures to local conditions, at the same time also can provide references for other deep-water slope stability analysis.

  7. Step-height measurements on sand surfaces: A comparison between optical scanner and coordinate measuring machine

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Yazdanbakhsh, Seyed Alireza; Tiedje, Niels Skat

    2016-01-01

    the same routine to touch the different positions on the polygonised mesh. Each measurement was repeated 5 times. The results of step height measurements on sand surfaces showed a maximum error of ± 12 µm for CMM, while scanner shows only ± 4 µm. Generally speaking, optical step height values were measured...

  8. Design parameters for measurements of local catalytic activity on surfaces

    DEFF Research Database (Denmark)

    Johansson, Martin; Johannessen, Tue; Jørgensen, Jan Hoffmann;

    2006-01-01

    Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward...

  9. Mild Slope Ligningen

    DEFF Research Database (Denmark)

    Brorsen, Michael

    Der gives en beskrivelse af forudsætningerne for Mild Slope ligningen, som kort fortalt kan benyttes til at beregne harmoniske, lineære bølger i områder med "små" gradienter på dybderne.......Der gives en beskrivelse af forudsætningerne for Mild Slope ligningen, som kort fortalt kan benyttes til at beregne harmoniske, lineære bølger i områder med "små" gradienter på dybderne....

  10. Measurements of slope distances and vertical angles at Mount Baker and Mount Rainier, Washington, Mount Hood and Crater Lake, Oregon, and Mount Shasta and Lassen Peak, California, 1980-1984

    Science.gov (United States)

    Chadwick, W.W.

    1985-01-01

    Personnel of the U.S.Geological Survey's Cascades Volcano Observatory established trilateration networks at Mount Baker, Mount Rainier, Mount Hood, Crater Lake, Mount Shasta, and Lassen Peak in 1980-1984. These networks are capable of detecting changes in slope distance of several centimeters or more. The networks were established to provide baseline information on potentially active volcanoes and were designed along guidelines found useful at Mount St. Helens. Periodic reoccupation of the networks is planned as part of the overall monitoring program of Cascades volcanoes. Methodology, slope distance and vertical angle data, maps of the networks, and benchmark descriptions are presented in this report. Written benchmark descriptions are augmented by photographs, which we have found by experience to very useful in relocating the marks. All repeat measurements at the six volcanoes are probably within measurement error.

  11. Hazard assessment of vegetated slopes

    NARCIS (Netherlands)

    Norris, J.E.; Greenwood, J.R.; Achim, A.; Gardiner, B.A.; Nicoll, B.C.; Cammeraat, E.; Mickovski, S.B.; Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.

    2008-01-01

    The hazard assessment of vegetated slopes are reviewed and discussed in terms of the stability of the slope both with and without vegetation, soil erosion and the stability of the vegetated slope from windthrow and snow loading. Slope stability can be determined by using either limit equilibrium or

  12. Hazard assessment of vegetated slopes

    NARCIS (Netherlands)

    J.E. Norris; J.R. Greenwood; A. Achim; B.A. Gardiner; B.C. Nicoll; E. Cammeraat; S.B. Mickovski

    2008-01-01

    The hazard assessment of vegetated slopes are reviewed and discussed in terms of the stability of the slope both with and without vegetation, soil erosion and the stability of the vegetated slope from windthrow and snow loading. Slope stability can be determined by using either limit equilibrium or

  13. Ambient vibrations of unstable rock slopes - insights from numerical modeling

    Science.gov (United States)

    Burjanek, Jan; Kleinbrod, Ulrike; Fäh, Donat

    2017-04-01

    The recent events in Nepal (2015 M7.8 Gorkha) and New Zealand (2016 M7.8 Kaikoura) highlighted the importance of earthquake-induced landslides, which caused significant damages. Moreover, landslide created dams present a potential developing hazard. In order to reduce the costly consequences of such events it is important to detect and characterize earthquake susceptible rock slope instabilities before an event, and to take mitigation measures. For the characterisation of instable slopes, acquisition of ambient vibrations might be a new alternative to the already existing methods. We present both observations and 3D numerical simulations of the ambient vibrations of unstable slopes. In particular, models of representative real sites have been developed based on detailed terrain mapping and used for the comparison between synthetics and observations. A finite-difference code has been adopted for the seismic wave propagation in a 3D inhomogeneous visco-elastic media with irregular free surface. It utilizes a curvilinear grid for a precise modeling of curved topography and local mesh refinement to make computational mesh finer near the free surface. Topographic site effects, controlled merely by the shape of the topography, do not explain the observed seismic response. In contrast, steeply-dipping compliant fractures have been found to play a key role in fitting observations. Notably, the synthetized response is controlled by inertial mass of the unstable rock, and by stiffness, depth and network density of the fractures. The developed models fit observed extreme amplification levels (factors of 70!) and show directionality as well. This represents a possibility to characterize slope structure and infer depth or volume of the slope instability from the ambient noise recordings in the future.

  14. Wireless Sensor Node for Surface Seawater Density Measurements

    Directory of Open Access Journals (Sweden)

    Roberto Saletti

    2012-03-01

    Full Text Available An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  15. Tokamak dust particle size and surface area measurement

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J.; Smolik, G.R.; Anderl, R.A.; Pawelko, R.J.; Hembree, P.B.

    1998-07-01

    The INEEL has analyzed a variety of dust samples from experimental tokamaks: General Atomics` DII-D, Massachusetts Institute of Technology`s Alcator CMOD, and Princeton`s TFTR. These dust samples were collected and analyzed because of the importance of dust to safety. The dust may contain tritium, be activated, be chemically toxic, and chemically reactive. The INEEL has carried out numerous characterization procedures on the samples yielding information useful both to tokamak designers and to safety researchers. Two different methods were used for particle characterization: optical microscopy (count based) and laser based volumetric diffraction (mass based). Surface area of the dust samples was measured using Brunauer, Emmett, and Teller, BET, a gas adsorption technique. The purpose of this paper is to present the correlation between the particle size measurements and the surface area measurements for tokamak dust.

  16. Pre-correction of projected gratings for surface profile measurement

    Science.gov (United States)

    Sun, Cuiru; Lu, Hua

    2008-11-01

    This paper discusses errors caused by unequal grating pitch in applying the phase-shifted digital grating projection method for object profile measurement. To address the related issues, a new scheme is proposed to effectively improve the uniformity of the projected grating pitch across the object surface with no additional hardware cost. The improvement is mainly realized via a grating pitch pre-correction algorithm assisted by Digital Speckle/Image Correlation (DSC/DIC). DIC is utilized to accurately determine the surface grating pitch variation when an originally equal-pitched grating pattern is slant projected to the surface. With the actual pitch distribution function determined, a pre-corrected grating with unequal pitch is generated and projected, and the iterative algorithm reaches a constant pitched surface grating. The mapping relationship between the object surface profile (or out-of-plane displacement) and the fringe phase changes is obtained with a real-time subtraction based calibration. A quality guide phase unwrapping method is also adopted in the fringe processing. Finally, a virtual reference phase plane obtained by a 3-point plane fitting algorithm is subtracted to eliminate the carrier phase. The study shows that a simple optical system implemented with the mentioned improvements remarkably increase the accuracy and the efficiency of the measurement.

  17. Shipboard Measurements of Surface Flux and Near Surface Profiles and Surface Flux Parameterization

    Science.gov (United States)

    2010-09-30

    suspected that the bow measurements are affected by wave breaking that is similar to the problem in the Licor system. We also note that temperature...vapor mixing ratio measurements with the same Licor systems on the two masts (not shown here) had significant differences and frequent problems, which...is probable due to the sensitivity of Licor sensor to the spays from the breaking waves, especially the system on the bow mast. More careful

  18. In vivo measurement of vocal fold surface resistance.

    Science.gov (United States)

    Mizuta, Masanobu; Kurita, Takashi; Dillon, Neal P; Kimball, Emily E; Garrett, C Gaelyn; Sivasankar, M Preeti; Webster, Robert J; Rousseau, Bernard

    2017-10-01

    A custom-designed probe was developed to measure vocal fold surface resistance in vivo. The purpose of this study was to demonstrate proof of concept of using vocal fold surface resistance as a proxy of functional tissue integrity after acute phonotrauma using an animal model. Prospective animal study. New Zealand White breeder rabbits received 120 minutes of airflow without vocal fold approximation (control) or 120 minutes of raised intensity phonation (experimental). The probe was inserted via laryngoscope and placed on the left vocal fold under endoscopic visualization. Vocal fold surface resistance of the middle one-third of the vocal fold was measured after 0 (baseline), 60, and 120 minutes of phonation. After the phonation procedure, the larynx was harvested and prepared for transmission electron microscopy. In the control group, vocal fold surface resistance values remained stable across time points. In the experimental group, surface resistance (X% ± Y% relative to baseline) was significantly decreased after 120 minutes of raised intensity phonation. This was associated with structural changes using transmission electron microscopy, which revealed damage to the vocal fold epithelium after phonotrauma, including disruption of the epithelium and basement membrane, dilated paracellular spaces, and alterations to epithelial microprojections. In contrast, control vocal fold specimens showed well-preserved stratified squamous epithelia. These data demonstrate the feasibility of measuring vocal fold surface resistance in vivo as a means of evaluating functional vocal fold epithelial barrier integrity. Device prototypes are in development for additional testing, validation, and for clinical applications in laryngology. NA Laryngoscope, 127:E364-E370, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Reducing measurement scale mismatch to improve surface energy flux estimation

    Science.gov (United States)

    Iwema, Joost; Rosolem, Rafael; Rahman, Mostaquimur; Blyth, Eleanor; Wagener, Thorsten

    2016-04-01

    Soil moisture importantly controls land surface processes such as energy and water partitioning. A good understanding of these controls is needed especially when recognizing the challenges in providing accurate hyper-resolution hydrometeorological simulations at sub-kilometre scales. Soil moisture controlling factors can, however, differ at distinct scales. In addition, some parameters in land surface models are still often prescribed based on observations obtained at another scale not necessarily employed by such models (e.g., soil properties obtained from lab samples used in regional simulations). To minimize such effects, parameters can be constrained with local data from Eddy-Covariance (EC) towers (i.e., latent and sensible heat fluxes) and Point Scale (PS) soil moisture observations (e.g., TDR). However, measurement scales represented by EC and PS still differ substantially. Here we use the fact that Cosmic-Ray Neutron Sensors (CRNS) estimate soil moisture at horizontal footprint similar to that of EC fluxes to help answer the following question: Does reduced observation scale mismatch yield better soil moisture - surface fluxes representation in land surface models? To answer this question we analysed soil moisture and surface fluxes measurements from twelve COSMOS-Ameriflux sites in the USA characterized by distinct climate, soils and vegetation types. We calibrated model parameters of the Joint UK Land Environment Simulator (JULES) against PS and CRNS soil moisture data, respectively. We analysed the improvement in soil moisture estimation compared to uncalibrated model simulations and then evaluated the degree of improvement in surface fluxes before and after calibration experiments. Preliminary results suggest that a more accurate representation of soil moisture dynamics is achieved when calibrating against observed soil moisture and further improvement obtained with CRNS relative to PS. However, our results also suggest that a more accurate

  20. Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table

    Science.gov (United States)

    Fan, Gang; Zhang, Jianjing; Wu, Jinbiao; Yan, Kongming

    2016-08-01

    A large-scale shaking table test was performed to study the dynamic response of slopes parallel to geological bedding (bedding slopes) and slopes that cross-cut geological bedding (counter-bedding slopes). The test results show that the acceleration amplification coefficients increase with increasing elevation and, when the input earthquake amplitude is greater than 0.3 g, both bedding and counter-bedding slopes begin to show nonlinear dynamic response characteristics. With increasing elevation, the displacement of the bedding slope surface increases greatly. Conversely, the displacement of the counter-bedding slope surface increases first and then decreases; the slope develops a bulge at the relative elevation of 0.85. The displacement of the bedding slope surface is greater than that of the counter-bedding slope. The counter-bedding slope is more seismically stable compared with the bedding slope. Based on the Hilbert-Huang transform and marginal spectrum theories, the processes that develop dynamic damage of the bedding and counter-bedding slopes are identified. It is shown that the dynamic failure mode of the bedding slope is mainly represented by vertical tensile cracks at the rear of the slope, bedding slide of the strata along the weak intercalation, and rock collapse from the slope crest. However, the dynamic failure mode of the counter-bedding slope is mainly represented by staggered horizontal and vertical fissures, extrusion of the weak intercalation, and breakage at the slope crest.

  1. Measurements of water surface snow lines in classical protoplanetary disks

    CERN Document Server

    Blevins, Sandra M; Banzatti, Andrea; Zhang, Ke; Najita, Joan R; Carr, John S; Salyk, Colette; Blake, Geoffrey A

    2015-01-01

    We present deep Herschel-PACS spectroscopy of far-infrared water lines from a sample of four protoplanetary disks around solar-mass stars, selected to have strong water emission at mid-infrared wavelengths. By combining the new Herschel spectra with archival Spitzer-IRS spectroscopy, we retrieve a parameterized radial surface water vapor distribution from 0.1-100 AU using two-dimensional dust and line radiative transfer modeling. The surface water distribution is modeled with a step model comprising of a constant inner and outer relative water abundance and a critical radius at which the surface water abundance is allowed to change. We find that the four disks have critical radii of $\\sim 3-11$ AU, at which the surface water abundance decreases by at least 5 orders of magnitude. The measured values for the critical radius are consistently smaller than the location of the surface snow line, as predicted by the observed spectral energy distribution. This suggests that the sharp drop-off of the surface water abu...

  2. Surface topographical changes measured by phase-locked interferometry

    Science.gov (United States)

    Lauer, J. L.; Fung, S. S.

    1984-01-01

    An electronic optical laser interferometer capable of resolving depth differences of as low as 30 A and planar displacements of 6000 A was constructed to examine surface profiles of bearing surfaces without physical contact. Topological chemical reactivity was determined by applying a drop of dilute alcoholic hydrochloric acid and measuring the profile of the solid surface before and after application of this probe. Scuffed bearing surfaces reacted much faster than virgin ones but that bearing surfaces exposed to lubricants containing an organic chloride reacted much more slowly. The reactivity of stainless steel plates, heated in a nitrogen atmosphere to different temperatures, were examined later at ambient temperature. The change of surface contour as a result of the probe reaction followed Arrhenius-type relation with respect to heat treatment temperature. The contact area of the plate of a ball/plate sliding elastohydrodynamic contact run on trimethylopropane triheptanoate with or without additives was optically profiled periodically. As scuffing was approached, the change of profile within the contact region changed much more rapidly by the acid probe and assumed a constant high value after scuffing. A nonetching metallurgical phase was found in the scuff mark, which was apparently responsible for the high reactivity.

  3. Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability

    Science.gov (United States)

    Gischig, Valentin S.; Moore, Jeffrey R.; Evans, Keith F.; Amann, Florian; Loew, Simon

    2011-12-01

    Deformation monitoring between 2004 and 2011 at the rock slope instability above Randa (Switzerland) has revealed an intriguing seasonal trend. Relative dislocation rates across active fractures increase when near-surface rock temperatures drop in the fall and decrease after snowmelt as temperatures rise. This temporal pattern was observed with different monitoring systems at the ground surface and at depths up to 68 m, and represents the behavior of the entire instability. In this paper, the second of two companion pieces, we interpret this seasonal deformation trend as being controlled by thermomechanical (TM) effects driven by near-surface temperature cycles. While Part 1 of this work demonstrated in a conceptual manner how TM effects can drive deep rock slope deformation and progressive failure, we present here in Part 2 a case study where temperature-controlled deformation trends were observed in a natural setting. A 2D discrete-element numerical model is employed, which allows failure along discontinuities and successfully reproduces the observed kinematics of the Randa instability. By implementing simplified ground surface temperature forcing, model results were able to reproduce the observed deformation pattern, and TM-induced displacement rates and seasonal amplitudes in the model are of the same order of magnitude as measured values. Model results, however, exhibit spatial variation in displacement onset times while field measurements show more synchronous change. Additional heat transfer mechanisms, such as fracture ventilation, likely create deviations from the purely transient-conductive temperature field modeled. We suggest that TM effects are especially important at Randa due to the absence of significant groundwater within the unstable rock mass.

  4. Specific surface as a measure of burial diagenesis of chalk

    DEFF Research Database (Denmark)

    Borre, Mai Kirstine; Lind, Ida; Mortensen, Jeanette

    1997-01-01

    ODP Leg 130, Site 807, in the western equatorial Pacific, penetrates a sequence of pelagic carbonate ooze, chalk and limestone. Compaction, recrystallisation and cementation of the carbonate matrix are diagenetic processes expected to be taking place more or less simultaneously. In order to assess...... the relative importance of the three processes, simple models have been established to illustrate changes in pore space, particle size and -shape and the resulting trends in the specific surface. Specific surface and porosity of the samples were measured using image analysis on electron micrographs of polished...

  5. Slope constrained Topology Optimization

    DEFF Research Database (Denmark)

    Petersson, J.; Sigmund, Ole

    1998-01-01

    pointwise bounds on the density slopes. A finite element discretization procedure is described, and a proof of convergence of finite element solutions to exact solutions is given, as well as numerical examples obtained by a continuation/SLP (sequential linear programming) method. The convergence proof...

  6. 30 CFR 716.2 - Steep-slope mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Steep-slope mining. 716.2 Section 716.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.2 Steep-slope mining. The permittee conducting surface coal...

  7. Simultaneous measurements of top surface and its underlying film surfaces in multilayer film structure.

    Science.gov (United States)

    Ghim, Young-Sik; Rhee, Hyug-Gyo; Davies, Angela

    2017-09-19

    With the growth of 3D packaging technology and the development of flexible, transparent electrodes, the use of multilayer thin-films is steadily increasing throughout high-tech industries including semiconductor, flat panel display, and solar photovoltaic industries. Also, this in turn leads to an increase in industrial demands for inspection of internal analysis. However, there still remain many technical limitations to overcome for measurement of the internal structure of the specimen without damage. In this paper, we propose an innovative optical inspection technique for simultaneous measurements of the surface and film thickness corresponding to each layer of multilayer film structures by computing the phase and reflectance over a wide range of wavelengths. For verification of our proposed method, the sample specimen of multilayer films was fabricated via photolithography process, and the surface profile and film thickness of each layer were measured by two different techniques of a stylus profilometer and an ellipsometer, respectively. Comparison results shows that our proposed technique enables simultaneous measurements of the top surface and its underlying film surfaces with high precision, which could not be measured by conventional non-destructive methods.

  8. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  9. Relief unity emulator and slope stability simulator applied to mass movement occurrence analysis in slope evolution

    Science.gov (United States)

    Colangelo, Antonio C.

    2010-05-01

    This work refers to a part of my "Fellow" thesis "Geomorphosynthesis and Geomorphocinematic applied to slope stability and evolution" (Colangelo, 2007). Relief unity emulator (rue) is a device that permits to synthesize a slope unity by means of a single generatrix profile that determine the initial conditions for application of a set of a geotechnical, hydrological and morphological models. This initial profile is considered in equilibrium with original environmental conditions, and operates in an integrated manner with these models. The aim is to induce a boundary condition on initial profile and produce a new profile: a threshold profile. For this manner and by iterations we generate a set of new profiles that represents, each one, a meta-stable profile, or a descending profile. The evolution of these profiles is in according with the central geomorphologycal concepts of slope retreat, base level change and head retreat. This set of "descending profiles" will be now sliced at topographic equivalent points, that will linked for describe a "topographic equivalence line". The crossing of this kind of isolines with descending profiles composes a 3D slope unity. This descending slope unity is represented by a mesh built for the crossing of these new slope profiles with the topographic equivalence lines and, the result is a four-dimensional meta-stable object integrated to the slope stability simulator (sss). This composite "rue-sss" device operates with 10 main models and 16 variables. The models describe effective stress, shearing resistance, soil saturation level behavior, potential rupture surface depth, critical depth, potential rupture surface critical gradient, critical soil saturation level, top of percolation flow gradient and unit weight of soil. Of this manner, is possible to evaluate effective friction angles and cohesion, critical soil saturation levels, critical gradients for potential rupture surfaces, neutral stress, shear strength, shear stress

  10. Surface albedo measurements in Mexico City metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Castro, T; Mar, B; Longoria, R; Ruiz Suarez, L. G [Centro de Ciencias de la Atmosfera, UNAM, Mexico, D.F. (Mexico); Morales, L [Instituto de Geografia, UNAM, Mexico, D.F. (Mexico)

    2001-04-01

    Optical and thermal properties of soils are important input data for the meteorological and photochemical modules of air quality models. As development of these models increase on spatial resolution good albedo data become more important. In this paper measurements of surface albedo of UV (295-385 nm) and visible (450-550 nm) radiation are reported for different urban and rural surfaces in the vicinity of Mexico City. It was found for the downtown zone and average albedo value of 0.05 which is in very good agreement with reported values for urban surfaces. Our albedo values measured in UV region for grey cement and green grass are of 0.10 and 0.009, respectively, and quite similar to those found at the literature of 0.11 and 0.008 for those type of surfaces. [Spanish] Las propiedades opticas y termicas de suelos son datos importantes para los modulos meteorologicos y fotoquimicos de los modelos de calidad del aire. Conforme aumenta la resolucion espacial del modelo se vuelve mas importante contar con buenos datos de albedo. En este articulo se presentan mediciones de albedo superficial de radiacion Ultravioleta (295-385 nm) y visible (450-550 nm) para diferentes superficies urbanas. Los valores medidos de albedo en la region UV para cemento gris y pasto verde son de 0.10 y 0.009, respectivamente, y son muy similares a los reportados en la literatura, 0.11 y 0.008 para este tipo de superficies.

  11. Surface conductivity measurements in nanometric to micrometric foam films.

    Science.gov (United States)

    Bonhomme, Oriane; Mounier, Anne; Simon, Gilles; Biance, Anne-Laure

    2015-05-20

    Foam films (a liquid lamella in air covered by surfactants) are tools of choice for nanofluidic characterization as they are intrinsically nanometric. Their size is indeed fixed by a balance between external pressure and particular molecular interactions in the vicinity of interfaces. To probe the exact nature of these interfaces, different characterizations can be performed. Among them, conductivity in confined systems is a direct probe of the electrostatic environment in the vicinity of the surface. Therefore, we designed a dedicated experiment to measure this conductivity in a cylindrical bubble coupled to interferometry for film thickness characterization. We then show that this conductivity depends on the surfactant nature. These conductivity measurements have been performed in an extremely confined system, the so called Newton black foam films. Unexpectedly in this case, a conductivity close to surface conductivity is recovered.

  12. Defects, detection and measurement on polished silicon wafer surface by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.P.; Seow, W.S. [S.E.H. (M) Sdn. Kuala Lumpur (Malaysia); Yow, H.K.; Tou, T.Y. [Multimedia Univ., Faculty of Engineering, Cyberjaya (Malaysia)

    2000-01-01

    Crystal originated ''particles'' (COPs) have been recognized as surface defects or micro-pits which originate from grown-in defects. The basic microstructure of the COP is an octahedral void with faces along the {l_brace}111{r_brace} orientation. In this paper, COPs were detected using an optical scattering technique and the change of their widths in an etching solution of NH{sub 4}OH:H{sub 2}O{sub 2}:H{sub 2}O (SC-1) was measured using atomic force microscopy (AFM). The rate of change in the width, r, of these COPs in the SC-1 solution was determined. r can be used to determine if a COP emanated from either the upper or lower portion of the void. For a single type COP originating from the lower portion of the void, r was measured to be 0.94 nm/min along the left angle 011 right angle direction. However, a single type COP from the upper portion has an r value of 2.5 nm/min. For this case, two factors are responsible for the higher rate; the etching of silicon horizontally along the left angle 011 right angle direction and the sloping {l_brace}111{r_brace} surface of the octahedral void during the removal of the silicon (100) plane. Further, a single type COP might also develop into a twin type COP after repeated SC-1 dipping if there is a second void located close to the first COP but lying just below the wafer surface. (orig.)

  13. Height measurement of astigmatic test surfaces by a keratoscope that uses plane geometry surface reconstruction.

    Science.gov (United States)

    Tripoli, N K; Cohen, K L; Obla, P; Coggins, J M; Holmgren, D E

    1996-06-01

    To assess the accuracy with which the Keratron keratoscope (Optikon 2000, Rome, Italy) measured astigmatic test surfaces by a profile reconstruction algorithm within a plane geometry model and to discriminate between error caused by the model and error caused by other factors. Height was reported by the Keratron for eight surfaces with central astigmatism ranging from 4 to 16 diopters. A three-dimensional ray tracing simulation produced theoretic reflected ring patterns on which the Keratron's reconstruction algorithm was performed. The Keratron's measurements were compared with the surfaces' formulas and the ray-traced simulations. With a new mathematical filter for smoothing ring data, now part of the Keratron's software, maximum error was 0.47% of the total height and was usually less than 1% of local power for surfaces with 4 diopters of astigmatism. For surfaces with 16 diopters of astigmatism, maximum error was as high as 2.9% of total height and was usually less than 2.5% of local power. The reconstruction algorithm accounted for 40% and 70% of height error, respectively. The efficacy of keratoscopes cannot be assumed from their design theories but must be tested. Although plane geometry surface reconstruction contributed greatly to total height error, total error was so small that it is unlikely to affect clinical use.

  14. The slope, curvature, and higher parameters in $pp$ and $\\bar{p}p$ scattering, and the extrapolation of measurements of $d\\sigma(s,t)/dt$ to $t=0$

    CERN Document Server

    Block, Martin M; Ha, Phuoc; Halzen, Francis

    2016-01-01

    We study the effects of curvature in the expansion of the logarithm of the differential elastic scattering cross section near $t=0$ as $d\\sigma(s,t)/dt=d\\sigma(s,0)/dt\\,\\times\\exp(Bt+Ct^2+Dt^3\\cdots)$ in an eikonal model for $pp$ and $\\bar{p}p$ scattering, and use the results to discuss the extrapolation of measured differential cross sections and the slope parameters $B$ to $t=-q^2=0$. We find that the curvature effects represented by the parameters $C$ and $D$, while small, lead to significant changes in the forward slope parameter relative to that determined in a purely exponential fit, and to smaller but still significant changes in the forward elastic scattering and total cross sections. Curvature effects should therefore be considered in future analyses or reanalyses of the elastic scattering data.

  15. Slope, curvature, and higher parameters in p p and p ¯p scattering, and the extrapolation of measurements of d σ (s ,t )/d t to t =0

    Science.gov (United States)

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; Halzen, Francis

    2016-06-01

    We study the effects of curvature in the expansion of the logarithm of the differential elastic scattering cross section near t =0 as d σ (s ,t )/d t =d σ (s ,0 )/d t ×exp (B t +C t2+D t3⋯) in an eikonal model for p p and p ¯p scattering, and use the results to discuss the extrapolation of measured differential cross sections and the slope parameters B to t =-q2=0 . We find that the curvature effects represented by the parameters C and D , while small, lead to significant changes in the forward slope parameter relative to that determined in a purely exponential fit, and to smaller but still significant changes in the forward elastic scattering and total cross sections. Curvature effects should therefore be considered in future analyses or reanalyses of the elastic scattering data.

  16. CNC NON-CONTACT MEASURING SYSTEM FOR FREEFORM SURFACE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Developing CNC measuring method on the base of coordinate machine can make the best of the hardware resource of CNC system and realize the integration of CAD/CAM/CAT. Based on the evenly spaced parallel planes scanning, a new adaptive digitizing approach for freeform surface namely arc length extrapolation is put forward. By this way, the digitizing approach can be added to the CNC system, while the system's hardware and software are not changed.

  17. Semiconductor Surface Characterization Using Transverse Acoustoelectric Voltage versus Voltage Measurements.

    Science.gov (United States)

    1982-10-01

    Das, R. T. Webster and B. Davari, "SAW Characterization of Photo- Voltaic Solar Cell", Electrochemical Society Extended Abstracts, Vol. 79-1, Spring...Measurement of Carrier Generation Rate in Semiconductors", presented at the 153rd Meeting of the Electrochemical Society , Seattle, Washington, May 21-26...Ion-implanted Silicon by Surface Acoustic Waves", presented at the Electrochemical Society Meeting, May 6-11, 1979, Boston, Massachusetts. 6. P. Das, M

  18. Confocal Image 3D Surface Measurement with Optical Fiber Plate

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao; ZHU Sheng-cheng; LI Bing; TAN Yu-shan

    2004-01-01

    A whole-field 3D surface measurement system for semiconductor wafer inspection is described.The system consists of an optical fiber plate,which can split the light beam into N2 subbeams to realize the whole-field inspection.A special prism is used to separate the illumination light and signal light.This setup is characterized by high precision,high speed and simple structure.

  19. SMOS: The Challenging Sea Surface Salinity Measurement From Space

    OpenAIRE

    Font, Jordi; Camps, Adriano; Borges, A; Martin-Neira, Manuel; Boutin, Jacqueline; Reul, Nicolas; Kerr, Yann; Hahne, A.; Mecklenburg, Suzanne

    2010-01-01

    Soil Moisture and Ocean Salinity, European Space Agency, is the first satellite mission addressing the challenge of measuring sea surface salinity from space. It uses an L-band microwave interferometric radiometer with aperture synthesis (MIRAS) that generates brightness temperature images, from which both geophysical variables are computed. The retrieval of salinity requires very demanding performances of the instrument in terms of calibration and stability. This paper highlights the importa...

  20. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

    Science.gov (United States)

    2015-03-31

    2. REPORT DATE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND...WORK UNIT NUMBER 1. REPORT DATE (DD-MM-YYYY) 16. SECURITY CLASSIFICATION OF: PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 31-03-2015...Final March 2013 -- February 2015 Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements N00014-13-1-0352 Yue, Dick K.P

  1. Can atom-surface potential measurements test atomic structure models?

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  2. Evaluation of multilayered pavement structures from measurements of surface waves

    Science.gov (United States)

    Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.

    2006-01-01

    A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.

  3. Surface moisture measurement system hardware acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.A., Westinghouse Hanford

    1996-05-28

    This document summarizes the results of the hardware acceptance test for the Surface Moisture Measurement System (SMMS). This test verified that the mechanical and electrical features of the SMMS functioned as designed and that the unit is ready for field service. The bulk of hardware testing was performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. The SMMS was developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks.

  4. System design description for surface moisture measurement system (SMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, G.F.

    1996-09-23

    The SMMS has been developed to measure moisture in the top few centimeters of tank waste. The SMMS development was initiated by the preliminary findings of SAR-033, and does not necessarily fulfill any established DQO. After the SAR-033 is released, if no significant changes are made, moisture measurements in the organic waste tanks will rapidly become a DQO. The SMMS was designed to be installed in any 4 inch or larger riser, and to allow maximum adjustability for riser lengths, and is used to deploy a sensor package on the waste surface within a 6 foot radius about the azimuth. The first sensor package will be a neutron probe.

  5. Reliability of surface EMG measurements from the suprahyoid muscle complex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Stubbs, Peter William; Pedersen, Asger Roer

    2017-01-01

    reliable for ≈50% of participants. Although using sEMG to assess swallowing musculature function is easier to perform clinically and more comfortable to patients than invasive measures, as the measurement of muscle activity using TMS is unreliable, the use of sEMG for this muscle group is not recommended......Background: Assessment of swallowing musculature using motor evoked potentials (MEPs) can be used to evaluate neural pathways. However, recording of the swallowing musculature is often invasive, uncomfortable and unrealistic in normal clinical practise. Objective: To investigate the possibility...... of using the suprahyoid muscle complex (SMC) using surface electromyography (sEMG) to assess changes to neural pathways by determining the reliability of measurements in healthy participants over days. Methods: Seventeen healthy participants were recruited. Measurements were performed twice with one week...

  6. Interfacial forces between silica surfaces measured by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    DUAN Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  7. Interfacial forces between silica surfaces measured by atomic force microscopy.

    Science.gov (United States)

    Duan, Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  8. The role of probe oxide in local surface conductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C. J.; Kryvchenkova, O.; Wilson, L. S. J.; Maffeis, T. G. G.; Cobley, R. J. [Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Kalna, K. [Electronic Systems Design Centre, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-05-07

    Local probe methods can be used to measure nanoscale surface conductivity, but some techniques including nanoscale four point probe rely on at least two of the probes forming the same low resistivity non-rectifying contact to the sample. Here, the role of probe shank oxide has been examined by carrying out contact and non-contact I V measurements on GaAs when the probe oxide has been controllably reduced, both experimentally and in simulation. In contact, the barrier height is pinned but the barrier shape changes with probe shank oxide dimensions. In non-contact measurements, the oxide modifies the electrostatic interaction inducing a quantum dot that alters the tunneling behavior. For both, the contact resistance change is dependent on polarity, which violates the assumption required for four point probe to remove probe contact resistance from the measured conductivity. This has implications for all nanoscale surface probe measurements and macroscopic four point probe, both in air and vacuum, where the role of probe oxide contamination is not well understood.

  9. Organic biomarker records spanning the last 34,800 years from the southeastern Brazilian upper slope: links between sea surface temperature, displacement of the Brazil Current, and marine productivity

    Science.gov (United States)

    Lourenço, Rafael André; de Mahiques, Michel Michaelovitch; Wainer, Ilana Elazari Klein Coaracy; Rosell-Melé, Antoni; Bícego, Márcia Caruso

    2016-10-01

    Collective assessment of marine and terrigenous organic biomarkers was performed on a sediment core spanning the last 34,800 years on the upper slope southeast of Brazil to verify the signatures of climatic variations in sea surface temperature (SST), marine productivity, and the flux of terrigenous material in this region. This evaluation is based on marine and terrigenous proxies including alkenones, chlorins, aliphatic hydrocarbons, n-alcohols, and fatty acids. This first report of organic biomarker data for this region confirms a correlation between SST, changes in terrigenous organic matter flow into the ocean, and marine productivity over the last 34.8 ka as a response to the displacement of the Brazil Current. Conditions prevailing during marine isotopic stage (MIS) 3 may be considered intermediate between the last glacial maximum (LGM) and the Late Holocene. For MIS 2, a period of low relative sea level, it was verified that the lowest SSTs were associated with the LGM and higher marine productivity. SST increased by up to 4.4 °C between the LGM and the Holocene. This reveals synchronicity between SST on the southeastern Brazilian upper slope and the North Atlantic Ocean SST records reported in earlier studies.

  10. Online measurement system for the surface inclination of metal workpieces

    Science.gov (United States)

    Yin, Peng; Sun, Changku; Wang, Peng; Yang, Qian

    2013-12-01

    The online measurement of the metal surfaces' parameters plays an important role in many industrial fields. Because the surfaces of the machined metal pieces have the characteristics of strong reflection and high possibilities of scattered disturbing irradiation points, this paper designs an online measurement system based on the measurement principles of linear structured light to detect whether the parameters of the machined metal surfaces' height difference and inclination fulfill the compliance requirements, in which the grayscale gravity algorithm is applied to extract the sub-pixel coordinates of the center of laser, the least squares method is employed to fit the data and the Pauta criterion is utilized to remove the spurious points. The repeat accuracy of this system has been tested. The experimental results prove that the precision of inclination is 0.046° RMS under the speed of 40mm/sec, and the precision of height difference is 0.072mm RMS, which meets the design expectations. Hence, this system can be applied to online industrial detection of high speed and high precision.

  11. A surface wave elastography technique for measuring tissue viscoelastic properties.

    Science.gov (United States)

    Zhang, Xiaoming

    2017-04-01

    A surface wave elastography method is proposed to study the viscoelastic properties of skin by measuring the surface wave speed and attenuation on the skin. Experiments were carried out on porcine skin tissues. The surface wave speed is measured by the change of phase with distance. The wave attenuation is measured by the decay of wave amplitude with distance. The change of viscoelastic properties with temperature was studied at room and body temperatures. The wave speed was 1.83m/s at 22°C but reduced to 1.52m/s at 33°C. The viscoelastic ratio was almost constant from 22°C to 33°C. Fresh and decayed tissues were studied. The wave speed of the decayed tissue increased from 1.83m/s of fresh state to 2.73m/s. The viscoelastic ratio was 0.412/mm at the decayed state compared to 0.215/mm at the fresh state. More tissue samples are needed to study these viscoelastic parameters according to specific applications.

  12. Simultaneous surface acoustic wave and surface plasmon resonance measurements: Electrodeposition and biological interactions monitoring

    Science.gov (United States)

    Friedt, J.-M.; Francis, L.; Reekmans, G.; De Palma, R.; Campitelli, A.; Sleytr, U. B.

    2004-02-01

    We present results from an instrument combining surface acoustic wave propagation and surface plasmon resonance measurements. The objective is to use two independent methods, the former based on adsorbed mass change measurements and the latter on surface dielectric properties variations, to identify physical properties of protein layers, and more specifically their water content. We display mass sensitivity calibration curves using electrodeposition of copper leading to a sensitivity in liquid of 150±15 cm2/g for the Love mode device used here, and the application to monitoring biological processes. The extraction of protein layer thickness and protein to water content ratio is also presented for S-layer proteins under investigation. We obtain, respectively, 4.7±0.7 nm and 75±15%.

  13. Measuring wintertime surface fluxes at the Tiksi observatory in northern Sakha (Yakutia)

    Science.gov (United States)

    Laurila, Thomas; Aurela, Mika; Hatakka, Juha; Tuovinen, Juha-Pekka; Asmi, Eija; Kondratyev, Vladimir; Ivakhov, Victor; Reshetnikov, Alexander; Makshtas, Alexander; Uttal, Taneil

    2013-04-01

    Tiksi hydrometeorological observatory has been equipped by new instrumentation for meteorology, turbulence, trace gas and aerosols studies as a joint effort by National Oceanic and Atmospheric Administration (NOAA), Roshydromet (Yakutian Hydrometeorological Service, Arctic and Antarctic Research Institute and Voeikov Main Geophysical Observatory units) and the Finnish Meteorological Institute (FMI). The site is close to the coast of the Laptev Sea on deep permafrost soil with low tundra vegetation and patches of arctic semidesert. Near-by terrain is gently sloping to the south. Further away they are hills in the NE- and W-directions. Turbulence (3-d wind components and sonic temperature) was measured at 10 Hz by USA-1Scientific sonic by Metek, Gmbh. Concentrations of CO2 and H2O were measured by LiCor LI7000 analyzer and CH4 concentrations by Los Gatos RMT200 analyzer. Measurement height was 2.5m. Active layer freeze up took place in extended October period. Methane and carbon dioxide emissions were observed up to early December. Emissions to the atmosphere were enhanced by turbulence created by high wind speeds. Midwinter conditions existed from the end of October to the beginning of April based on rather constant negative net radiation between 20-30 Wm-2 that cools the surface and forms highly stable stratification. Weather conditions are characterized by either low or high wind speed modes. Roughly half of the time wind speed was low, below 2 ms-1. Then, katabatic winds were common and air temperature was between -40..-30°C. High wind speeds, up to 24 ms-1, were observed during synoptic disturbances which lasted typically a few days. In this presentation we will show climatology of surface layer characteristics in late autumn and winter. We will show frequency of well-developed turbulence vs. katabatic low wind speed conditions and related atmospheric stability. The effect of wind speed on methane and carbon dioxide emissions during the freezing period will be

  14. Slope earthquake stability

    CERN Document Server

    Changwei, Yang; Jing, Lian; Wenying, Yu; Jianjing, Zhang

    2017-01-01

    This book begins with the dynamic characteristics of the covering layerbedrock type slope, containing monitoring data of the seismic array, shaking table tests, numerical analysis and theoretical derivation. Then it focuses on the landslide mechanism and assessment method. It also proposes a model that assessing the hazard area based on the field investigations. Many questions, exercises and solutions are given. Researchers and engineers in the field of Geotechnical Engineering and Anti-seismic Engineering can benefit from it.

  15. ElevationSlope_SLOPE0p7M2013

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Rutland/GI Counties 2013 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  16. ElevationSlope_SLOPE0p7M2015

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Windham County 2015 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  17. ElevationSlope_SLOPE1p6M2010

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  18. ElevationSlope_SLOPE1p6M2012

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Addison County 2012 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  19. ElevationSlope_SLOPE0p7M2014

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in...

  20. ElevationSlope_SLOPE1p6M2008

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Lower 2008 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  1. ElevationSlope_SLOPE3p2M

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): ( and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in elevation over the...

  2. ElevationSlope_SLOPE3p2M2004

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): ( and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in elevation over the...

  3. Inverting measurements of surface slip on the Superstition Hills fault

    Science.gov (United States)

    Boatwright, J.; Budding, K.E.; Sharp, R.V.

    1989-01-01

    We derive and test a set of inversions of surface-slip measurements based on the empirical relation u(t)=uf/(1 + T/t)c proposed by Sharp and Saxton (1989) to estimate the final slip uf, the power-law exponent c, and the power-law duration T. At short times, Sharp's relation behaves like the simple power law, u(t)~u1tc, where u1 is the initial slip, that is, the slip at 1 day after the earthquake. At long times, the slip approaches the final slip asymptotically. The inversions are designed in part to exploit the accuracy of measurements of differential slip; that is, measurements of surface slip which are made relative to a set of nails or stakes emplaced after the earthquake. We apply the inversions to slip measurements made at 53 sites along the Superstition Hills fault for the 11 months following the M=6.2 and 6.6 earthqakes of 24 November 1987. -from Authors

  4. DIRECT MEASUREMENT OF WEAK DEPLETION FORCE BETWEEN TWO SURFACES*

    Institute of Scientific and Technical Information of China (English)

    Xiang-jun Gong; Xiao-chen Xing; Xiao-ling Wei; To Ngai

    2011-01-01

    In a mixture of colloidal particles and polymer molecules, the particles may experience an attractive “depletion force” if the size of the polymer molecule is larger than the interparticle separation. This is because individual polymer molecules experience less conformational entropy if they stay between the particles than they escape the inter-particle space,which results in an osmotic pressure imbalance inside and outside the gap and leads to interparticle attraction. This depletion force has been the subject of several studies since the 1980s, but the direct measurement of this force is still experimentally challenging as it requires the detection of energy variations of the order of kBT and beyond. We present here our results for applying total internal reflection microscopy (TIRM) to directly measure the interaction between a free-moving particle and a flat surface in solutions consisting of small water-soluble organic molecules or polymeric surfactants. Our results indicate that stable nanobubbles (ca. 150 nm) exist free in the above aqueous solutions. More importantly, the existence of such nanobubbles induces an attraction between the spherical particle and flat surface. Using TIRM, we are able to directly measure such weak interaction with a range up to 100 nm. Furthermore, we demonstrate that by employing thermo-sensitive microgel particles as a depleting agent, we are able to quantitatively measure and reversibly control kBT-scale depletion attraction as function of solution pH.

  5. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layer physical properties

    Directory of Open Access Journals (Sweden)

    J.-M. Friedt

    2016-12-01

    Full Text Available We use an instrument combining optical (surface plasmon resonance and acoustic (Love mode surface acoustic wave device real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition and surfactant adsorption, the bound mass and its physical properties – density and optical index – are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70±20% water and are 16±3 to 19±3 nm thick for bulk concentrations ranging from 30 to 300 μg/ml. Fibrinogen layers include 50±10% water for layer thicknesses in the 6±1.5 to 13±2 nm range when the bulk concentration is in the 46 to 460 μg/ml range.

  6. Compare and Selection of Sloped Surfaces Machining Methods in MasterCAM9.0%MasterCAM9.0中斜面加工方案的比较与选择

    Institute of Scientific and Technical Information of China (English)

    何伟

    2014-01-01

    Taking sloped surfaces feature in actual processing as research object,all kinds machining methods were compared and studied by using MasterCAM9.0, by the research results, how to choose the proper machining methods is known on the premise of assuring quality and efficiency of processing.%本文以实际生产加工过程中的斜面特征为研究对象,通过MasterCAM9.0中各种斜面加工方法的比较研究,论述了在保证加工质量和效率的前提下,如何选择适合的加工方法。

  7. Traceability of optical length measurements on sand surfaces

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Yazdanbakhsh, Seyed Alireza; Tiedje, Niels Skat

    2016-01-01

    This work concerns traceable measurements on moulds used in automatic casting lines made of green sand, which has a very low strength against the force of a contact probe. A metrological set-up was made based on the use of calibrated workpieces following ISO 15530-3 to determine the uncertainty...... of optical measurements on a sand surface. A new customised sand sample was developed using a hard binder to withstand the contact force of a touch probe, while keeping optical cooperativeness similar to that of green sand. The length of the sample was calibrated using a dial gauge set-up. An optical 3D...... scanner with fringe pattern projection was used to measure the length of a green sand sample (soft sample) with traceability transfer through the hard sample. Results confirm that the uncertainty of the optical scanner on the substituted hard sample is similar to that of the soft sample, so the hard...

  8. Using surface tension measurement in applications; Oberflaechenspannungsmesstechnik fuer den Prozesseinsatz

    Energy Technology Data Exchange (ETDEWEB)

    Haberland, R.; Krause, W. [SITA Messtechnik GmbH, Gostritzer Strasse 61-63, 01217 Dresden (Germany)

    2003-07-01

    When cleaning surfaces it is crucial for the process stability that the optimum surfactant concentration is maintained. The concentration of free surfactants can be measured by determining the surface tension. SITA Messtechnik has developed an innovative sensor based on the bubble pressure method. This sensor makes it possible to continuously measure surface tension with a high reliability. With this application for monitoring cleaning baths the potential to save money arises in regard to the use of raw materials, waste disposal and the costs resulting from undiscovered production failures. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Bei der Reinigung von Oberflaechen ist das Einhalten der optimalen Tensidkonzentration fuer die Prozesssicherheit entscheidend. Die Konzentration der freien Tenside ist messbar, indem die Oberflaechenspannung erfasst wird. Die SITA Messtechnik GmbH hat einen neuartigen Sensor auf der Basis der Blasendifferenzdruckmethode entwickelt, der eine kontinuierliche Messung der Oberflaechenspannung bei hoher Standzeit ermoeglicht. Mit dessen Anwendung zum Ueberwachen von Reinigungsbaedern ergeben sich Einsparpotentiale hinsichtlich Rohstoffeinsatz, Entsorgung und Fehlerfolgekosten. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  9. Surface Current Measurements In Terra Nova Bay By Hf Radar

    Science.gov (United States)

    Flocco, D.; Falco, P.; Wadhams, P.; Spezie, G.

    We present the preliminary results of a field experiment carried out within frame- work of the CLIMA project of the Italian National Programme for Antarctic Research (PNRA) and in cooperation with the Scott Polar Research Institute of Cambridge. Dur- ing the second period (02/12/1999-23/01/2000) of the XV Italian expedition a coastal radar was used to characterize the current field in the area of Terra Nova Bay (TNB). One of the aims of the CLIMA (Climatic Long-term Interactions for the Mass balance in Antarctica) project is to determine the role of the polynya in the sea ice mass bal- ance, water structure and local climate. The OSCR-II experiment was planned in order to provide surface current measurements in the area of TNB polynya, one of the most important coastal polynya of the Ross Sea. OSCR (Ocean Surface Current Radar) is a shore based, remote sensing system designed to measure sea surface currents in coastal waters. Two radar sites (a master and a slave) provide with radial current mea- surements; data combined from both sites yield the total current vector. Unfortunately the master and slave stations did not work together throughout the whole period of the experiment. A description of the experiment and a discussion of the results, will be proposed.

  10. Quantifying Slope Effects and Variations in Crater Density across a Single Geologic Unit

    Science.gov (United States)

    Meyer, Heather; Mahanti, Prasun; Robinson, Mark; Povilaitis, Reinhold

    2016-10-01

    Steep underlying slopes (>~5°) significantly increase the rate of degradation of craters [1-3]. As a result, the density of craters is less on steeper slopes for terrains of the same age [2, 4]. Thus, when age-dating a planetary surface, an area encompassing one geologic unit of constant low slope is chosen. However, many key geologic units, such as ejecta blankets, lack sufficient area of constant slope to derive robust age estimates. Therefore, accurate age-dating of such units requires an accurate understanding of the effects of slope on age estimates. This work seeks to determine if the observed trend of decreasing crater density with increasing slopes [2] holds for craters >1 km and to quantify the effect of slope for craters of this size, focusing on the effect of slopes over the kilometer scale. Our study focuses on the continuous ejecta of Orientale basin, where we measure craters >1 km excluding secondaries that occur as chains or clusters. Age-dating via crater density measurements relies on uniform cratering across a single geologic unit. In the case of ejecta blankets and other impact related surfaces, this assumption may not hold due to the formation of auto- secondary craters. As such, we use LRO WAC mosaics [5], crater size-frequency distributions, absolute age estimates, a 3 km slope map derived from the WAC GLD100 [6], and density maps for various crater size ranges to look for evidence of non-uniform cratering across the continuous ejecta of Orientale and to determine the effect of slope on crater density. Preliminary results suggest that crater density does decrease with increasing slope for craters >1 km in diameter though at a slower rate than for smaller craters.References: [1] Trask N. J. and Rowan L. C. (1967) Science 158, 1529-1535. [2] Basilevsky (1976) Proc. Lunar Sci. Conf. 7th, p. 1005-1020. [3] Pohn and Offield (1970) USGS Prof. Pap., 153-162. [4] Xiao et al. (2013) Earth and Planet. Sci. Lett., 376, pgs. 1-11. doi:10.1016/j.epsl.2013

  11. Can C7 Slope Substitute the T1 slope? An Analysis Using Cervical Radiographs and Kinematic MRIs.

    Science.gov (United States)

    Tamai, Koji; Buser, Zorica; Paholpak, Permsak; Seesumpun, Kittipong; Nakamura, Hiroaki; Wang, Jeffrey C

    2017-08-01

    Retrospective analysis of consecutive 45 radiographs and 120 kinematic magnetic resonance images (kMRI) OBJECTIVE.: The aim was to assess the visibility of C7 and T1 endplates on radiographs, and to verify the correlation between C7 or T1 slope and cervical balance parameters using kMRI. Because the T1 slope is not always visible due to the anatomical interference, several studies have used C7 slope instead of T1. However, it is still unclear whether the C7 endplate is more visible on radiographs than T1, and if C7 slope has similarity with T1 slope. The endplate visibility was determined using weight-bearing radiography. Subsequently, using weight-bearing MR images, the C7 slope of upper and lower endplate, T1 slope, C1 inclination, C2 slope, atlas-dens interval (ADI), C2-C7 lordotic angle, cervical sagittal vertical axis (cSVA), cervical tilt, cranial tilt, neck tilt, thoracic inlet angle (TIA) were measured, for the analysis of correlation between three types of slopes and cervical balance parameters. 82% of the upper C7, and 18% of T1 endplate were clearly visible. The upper C7 endplate was significantly visible, whereas T1 endplate was significantly invisible (residual analysis, p < 0.01). Linear regression analysis showed correlation between the upper C7 slope and T1 slope (R = 0.818, p < 0.01) and, lower C7 slope and T1 slope (R = 0.840, p < 0.01). T1 slope significantly correlated with neck tilt, TIA, C2-C7 angle, cSVA, cervical and cranial tilt, but not with the C1 inclination, C2 slope and ADI. Upper and lower C7 slopes showed the close resemblance with T1 slope in terms of correlation with those parameters. Both, upper and lower C7 slope correlated strongly with T1 slope and showed similar relationship with cervical balance parameters as T1 slope. Therefore, C7 slope could potentially substitute T1 slope, especially upper C7 slope due to the good visibility. 3.

  12. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    Science.gov (United States)

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  13. Bam earthquake: Surface deformation measurement using radar interferometry

    Institute of Scientific and Technical Information of China (English)

    XIA Ye

    2005-01-01

    On the 26th December 2003 an earthquake with Mw=6.5 shook a large area of the Kerman Province in Iran. The epicenter of the devastating earthquake was located near the city of Bam. This paper described the application of differential synthetic aperture radar interferometry (D-INSAR) and ENVISAT ASAR data to map the coseismic surface deformation caused by the Bam earthquake including the interferometric data processing and results in detail. Based on the difference in the coherence images before and after the event and edge search of the deformation field, a new fault ruptured on the surface was detected and used as a data source for parameter extraction of a theoretical seismic modeling. The simulated deformation field from the model perfectly coincides with the result derived from the SAR interferometric measurement.

  14. Influence of the surface hydrophobicity on fluorescence correlation spectroscopy measurements

    Science.gov (United States)

    Boutin, Céline; Jaffiol, Rodolphe; Plain, Jérome; Royer, Pascal

    2007-02-01

    Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique used to analyze the diffusion at the single molecule level in solution. FCS is based on the temporal autocorrelation of fluorescent signal generated by dye molecules diffusing through a small confocal volume. These measurements are mostly carried out in a chambered coverglass, close to the glass substrate. In this report, we discuss how the chemical nature of the glass-water interface may interact with the free diffusion of molecules. Our results reveal a strong influence, up to a few μm from the interface, of the surface hydrophobicity degree. This influence is assessed through the relative weight of the two dimension diffusion process observed at the vicinity of the surface.

  15. Coherence scanning interferometry: linear theory of surface measurement.

    Science.gov (United States)

    Coupland, Jeremy; Mandal, Rahul; Palodhi, Kanik; Leach, Richard

    2013-06-01

    The characterization of imaging methods as three-dimensional (3D) linear filtering operations provides a useful way to compare the 3D performance of optical surface topography measuring instruments, such as coherence scanning interferometry, confocal and structured light microscopy. In this way, the imaging system is defined in terms of the point spread function in the space domain or equivalently by the transfer function in the spatial frequency domain. The derivation of these characteristics usually involves making the Born approximation, which is strictly only applicable to weakly scattering objects; however, for the case of surface scattering, the system is linear if multiple scattering is assumed to be negligible and the Kirchhoff approximation is assumed. A difference between the filter characteristics derived in each case is found. However this paper discusses these differences and explains the equivalence of the two approaches when applied to a weakly scattering object.

  16. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    Directory of Open Access Journals (Sweden)

    A. Fraser

    2013-06-01

    Full Text Available We use an ensemble Kalman filter (EnKF, together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4 fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4 from GOSAT (Greenhouse gases Observing SATellite and/or NOAA ESRL (Earth System Research Laboratory and CSIRO GASLAB (Global Atmospheric Sampling Laboratory CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1 occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45% than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2 and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our

  17. Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles

    Science.gov (United States)

    Witte, Brandon; Smith, Lorli; Schlagenhauf, Cornelia; Bailey, Sean

    2016-11-01

    We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).

  18. A Different Pitch to Slope

    Science.gov (United States)

    Wolbert, William

    2017-01-01

    The query "When are we ever going to use this?" is easily answered when discussing the slope of a line. The pitch of a roof, the grade of a road, and stair stringers are three applications of slope that are used extensively. The concept of slope, which is introduced fairly early in the mathematics curriculum has hands-on applications…

  19. Comments on the slope function

    CERN Document Server

    Kim, Minkyoo

    2016-01-01

    The exact slope function was first proposed in $SL(2)$ sector and generalized to $SU(2)$ sector later. In this note, we consider the slope function in $SU(1|1)$ sector of ${\\cal N}=4$ SYM. We derive the quantity through the method invented by N. Gromov and discuss about its validity. Further, we give comments on the slope function in deformed SYM.

  20. On the measurement of the surface energy budget over a land surface during the summer monsoon

    Indian Academy of Sciences (India)

    G S Bhat; S C Arunchandra

    2008-12-01

    The measurement of surface energy balance over a land surface in an open area in Bangalore is reported. Measurements of all variables needed to calculate the surface energy balance on time scales longer than a week are made. Components of radiative fluxes are measured while sensible and latent heat fluxes are based on the bulk method using measurements made at two levels on a micrometeorological tower of 10 m height. The bulk flux formulation is verified by comparing its fluxes with direct fluxes using sonic anemometer data sampled at 10 Hz.Soil temperature is measured at 4 depths. Data have been continuously collected for over 6 months covering pre-monsoon and monsoon periods during the year 2006. The study first addresses the issue of getting the fluxes accurately.It is shown that water vapour measurements are the most crucial. A bias of 0.25% in relative humidity,which is well above the normal accuracy assumed by the manufacturers but achievable in the field using a combination of laboratory calibration and field intercomparisons, results in about 20 W m−2 change in the latent heat flux on the seasonal time scale. When seen on the seasonal time scale,the net longwave radiation is the largest energy loss term at the experimental site. The seasonal variation in the energy sink term is small compared to that in the energy source term.

  1. Prediction of slope failure due to earthquake

    Institute of Scientific and Technical Information of China (English)

    CHEN XiaoLi; KATO Nobuaki; TSUNAKI Ryosuke; MUKAI Keiji

    2009-01-01

    The earthquake-triggered landslides and slope failures are common phenomena during strong earthquakes and have drawn more attention from the world because of severe hazards they induced.These hazards usually cannot be prevented by current mitigating measures,thus,it becomes more and more important to develop a precise technique for the risk assessment of earthquake-induced failures in the mountainous area.The application of discrimination analysis method is proved to be successful and effective in the prediction of earthquake-triggered landslides and slope failures in the region of Imokawa Basin in Japan.Diacriminant score can be used to assess the relative risk of slope failures,as the score increases,the possibility of slope failures occurrence increases accordingly.At the same time,the variables in the judgement formula,such as slope gradient,slope curvature and seismic peak ground acceleration,are easy to obtain.This advantage makes this method more practical and manipulable than others at present.In order to apply this method more effectively,there are still several problems to resolve.

  2. Holographic Measurement and Improvement of the Green Bank Telescope Surface

    CERN Document Server

    Hunter, Todd R; White, Steven D; Ford, John M; Ghigo, Frank D; Maddalena, Ronald J; Mason, Brian S; Nelson, Jack D; Prestage, Richard M; Ray, Jason; Ries, Paul; Simon, Robert; Srikanth, Sivasankaran; Whiteis, Peter

    2011-01-01

    We describe the successful design, implementation, and operation of a 12 GHz holography system installed on the Robert C. Byrd Green Bank Telescope (GBT). We have used a geostationary satellite beacon to construct high-resolution holographic images of the telescope mirror surface irregularities. These images have allowed us to infer and apply improved position offsets for the 2209 actuators which control the active surface of the primary mirror, thereby achieving a dramatic reduction in the total surface error (from 390 microns to ~240 microns, rms). We have also performed manual adjustments of the corner offsets for a few panels. The expected improvement in the radiometric aperture efficiency has been rigorously modeled and confirmed at 43 GHz and 90 GHz. The improvement in the telescope beam pattern has also been measured at 11.7 GHz with greater than 60 dB of dynamic range. Symmetric features in the beam pattern have emerged which are consistent with a repetitive pattern in the aperture due to systematic p...

  3. Measured ground-surface movements, Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Massey, B.L.

    1981-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  4. A Granulation "Flicker"-based Measure of Stellar Surface Gravity

    CERN Document Server

    Bastien, Fabienne A; Basri, Gibor; Pepper, Joshua

    2015-01-01

    In Bastien et al. (2013) we found that high quality light curves, such as those obtained by Kepler, may be used to measure stellar surface gravity via granulation-driven light curve "flicker". Here, we update and extend the relation originally presented in Bastien et al. (2013) after calibrating flicker against a more robust set of asteroseismically derived surface gravities. We describe in detail how we extract the flicker signal from the light curves, including how we treat phenomena, such as exoplanet transits and shot noise, that adversely affect the measurement of flicker. We examine the limitations of the technique, and, as a result, we now provide an updated treatment of the flicker-based logg error. We briefly highlight further applications of the technique, such as astrodensity profiling or its use in other types of stars with convective outer layers. We discuss potential uses in current and upcoming space-based photometric missions. Finally, we supply flicker-based logg values, and their uncertainti...

  5. Using Impedance Measurements to Characterize Surface Modified with Gold Nanoparticles

    Science.gov (United States)

    MacKay, Scott; Abdelrasoul, Gaser N.; Tamura, Marcus; Yan, Zhimin

    2017-01-01

    With the increased practice of preventative healthcare to help reduce costs worldwide, sensor technology improvement is vital to patient care. Point-of-care (POC) diagnostics can reduce time and lower labor in testing, and can effectively avoid transporting costs because of portable designs. Label-free detection allows for greater versatility in the detection of biological molecules. Here, we describe the use of an impedance-based POC biosensor that can detect changes in the surface modification of a micro-fabricated chip using impedance spectroscopy. Gold nanoparticles (GNPs) have been employed to evaluate the sensing ability of our new chip using impedance measurements. Furthermore, we used impedance measurements to monitor surface functionalization progress on the sensor’s interdigitated electrodes (IDEs). Electrodes made from aluminum and gold were employed and the results were analyzed to compare the impact of electrode material. GNPs coated with mercaptoundecanoic acid were also used as a model of biomolecules to greatly enhance chemical affinity to the silicon substrate. The portable sensor can be used as an alternative technology to ELISA (enzyme-linked immunosorbent assays) and polymerase chain reaction (PCR)-based techniques. This system has advantages over PCR and ELISA both in the amount of time required for testing and the ease of use of our sensor. With other techniques, larger, expensive equipment must be utilized in a lab environment, and procedures have to be carried out by trained professionals. The simplicity of our sensor system can lead to an automated and portable sensing system.

  6. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be

  7. Effects of Contour Hedgerow Intercropping on Surface Flow Control of Sloping Cropland%等高固氮植物篱控制坡耕地地表径流的效果

    Institute of Scientific and Technical Information of China (English)

    孙辉; 唐亚; 陈克明; 张炎周

    2001-01-01

    在金沙江干旱河谷坡耕地上进行等高固氮植物篱试验结果表明,种植植物篱后,坡耕地上不论是单次降雨产生的径流还是累积地表径流量均显著降低,幅度为26%~60%。同时,植物篱对控制暴雨产生的地表径流尤其有效,这对防治山区坡耕地由于暴雨产生水土流失很有意义。坡耕地径流的季节分布表明,在干旱河谷区,坡耕地径流主要产生于雨季中后期,与土壤侵蚀主要发生在雨季前期有所不同。%A long-term experiments was carried out in Tanguanyao and Masangping site in dry valley of Jinsha riverwith a climate of more than 90% of its rainfall in monsoon from May to Oct since 1991. The long-term experiments involved five treatments with three replicates (CK: control, conventional slope tillage, T2 and T3: Leucaena leucocephala hedgerow with or without fertiliszr; T4: Tephrosia candida hedgerow with fertilizer, and T5:mulberry trees within Leucaena hedgerows with fertiliszr). The pruning of contour hedgerow of Leucaena and Tephrosia were used as mulch. The crops were the same in the same site. The results showed that contour hedgerow intercropping could reduce runoff of sloping cropland significantly. Compared with the control, contour hedgerow intercropping decreased runoff by 26%~60%. Regression analysis showed that linear dependence exists between events runoff under contour hedgerow and that of CK. The data of events runoff indicated that surface flow of sloping cropland mainly occurred in the metaphase and anaphase of monsoon.

  8. Reliability of surface electromyography measurements from the suprahyoid muscle complex.

    Science.gov (United States)

    Kothari, M; Stubbs, P W; Pedersen, A R; Jensen, J; Nielsen, J F

    2017-09-01

    Assessment of swallowing musculature using motor evoked potentials (MEPs) can be used to evaluate neural pathways. However, recording of the swallowing musculature is often invasive, uncomfortable and unrealistic in normal clinical practice. To investigate the possibility of using the suprahyoid muscle complex (SMC) using surface electromyography (sEMG) to assess changes to neural pathways by determining the reliability of measurements in healthy participants over days. Seventeen healthy participants were recruited. Measurements were performed twice with one week between sessions. Single-pulse (at 120% and 140% of the resting motor threshold (rMT)) and paired-pulse (2 ms and 15 ms paired pulse) transcranial magnetic stimulation (TMS) were used to elicit MEPs in the SMC which were recorded using sEMG. ≈50% of participants (range: 42-58%; depending on stimulus type/intensity) had significantly different MEP values between day 1 and day 2 for single-pulse and paired-pulse TMS. A large stimulus artefact resulted in MEP responses that could not be assessed in four participants. The assessment of the SMC using sEMG following TMS was poorly reliable for ≈50% of participants. Although using sEMG to assess swallowing musculature function is easier to perform clinically and more comfortable to patients than invasive measures, as the measurement of muscle activity using TMS is unreliable, the use of sEMG for this muscle group is not recommended and requires further research and development. © 2017 John Wiley & Sons Ltd.

  9. Entrance surface dose measurements in mammography using thermoluminescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada Unidad Legaria del IPM Av. Legaria 694, 11500 Mexico D.F. (Mexico); Vega C, H.R.; Manzanares A, E [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas (Mexico); Azorin, J. [Universidad Autonoma Metropolitana-lztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico D.F. (Mexico); Gonzalez, P.R. [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico Toluca, 52045 Salazar Estado de Mexico (Mexico)

    2007-07-01

    Full text: Of the various techniques that can be used for personnel dosimetry, thermoluminescence dosimetry (TLD) has emerged as a superior technique due to its manifold advantages over other methods of dose estimation. Various phosphors have been therefore investigated regarding their suitability for dosimetry. In this paper, a dosimetry system based on thermally stimulated luminescence (TSL) from zirconium oxide phosphors embedded in polytetrafluorethylene (ZrO{sub 2}+PTFE) was developed for entrance surface doses (ES) measurements in mammography. Small ZrO{sub 2} pellets of 5 mm in diameter and 0.8 mm in thickness were used. The reproducibility of measurements and linearity of ZrO{sub 2} were also studied. The results were compared with those obtained from LiF:Mg,Cu,P usually used for the determination of absorbed dose in mammography. Measurements both per unit air kerma and In vivo were performed using a mammography unit model DMR (General Electric). The results showed that ZrO{sub 2} TLDs can be used for the same X-ray dosimetry applications as LiF:Mg,Cu,P, with each type having the disadvantage of a response dependent on energy, particularly at low energies. These results indicate a considerable potential for use in routine control and In vivo ES measurements in mammography. (Author)

  10. Model slope infiltration experiments for shallow landslides early warning

    Science.gov (United States)

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    simple empirical models [Versace et al., 2003] based on correlation between some features of rainfall records (cumulated height, duration, season etc.) and the correspondent observed landslides. Laboratory experiments on instrumented small scale slope models represent an effective way to provide data sets [Eckersley, 1990; Wang and Sassa, 2001] useful for building up more complex models of landslide triggering prediction. At the Geotechnical Laboratory of C.I.R.I.AM. an instrumented flume to investigate on the mechanics of landslides in unsaturated deposits of granular soils is available [Olivares et al. 2003; Damiano, 2004; Olivares et al., 2007]. In the flume a model slope is reconstituted by a moist-tamping technique and subjected to an artificial uniform rainfall since failure happens. The state of stress and strain of the slope is monitored during the entire test starting from the infiltration process since the early post-failure stage: the monitoring system is constituted by several mini-tensiometers placed at different locations and depths, to measure suction, mini-transducers to measure positive pore pressures, laser sensors, to measure settlements of the ground surface, and high definition video-cameras to obtain, through a software (PIV) appositely dedicated, the overall horizontal displacement field. Besides, TDR sensors, used with an innovative technique [Greco, 2006], allow to reconstruct the water content profile of soil along the entire thickness of the investigated deposit and to monitor its continuous changes during infiltration. In this paper a series of laboratory tests carried out on model slopes in granular pyroclastic soils taken in the mountainous area north-eastern of Napoli, are presented. The experimental results demonstrate the completeness of information provided by the various sensors installed. In particular, very useful information is given by the coupled measurements of soil water content by TDR and suction by tensiometers. Knowledge of

  11. Recurring slope lineae in equatorial regions of Mars

    Science.gov (United States)

    McEwen, Alfred S.; Dundas, Colin M.; Mattson, Sarah S.; Toigo, Anthony D.; Ojha, Lujendra; Wray, James J.; Chojnacki, Matthew; Byrne, Shane; Murchie, Scott L.; Thomas, Nicolas

    2014-01-01

    The presence of liquid water is a requirement of habitability on a planet. Possible indicators of liquid surface water on Mars include intermittent flow-like features observed on sloping terrains. These recurring slope lineae are narrow, dark markings on steep slopes that appear and incrementally lengthen during warm seasons on low-albedo surfaces. The lineae fade in cooler seasons and recur over multiple Mars years. Recurring slope lineae were initially reported to appear and lengthen at mid-latitudes in the late southern spring and summer and are more common on equator-facing slopes where and when the peak surface temperatures are higher. Here we report extensive activity of recurring slope lineae in equatorial regions of Mars, particularly in the deep canyons of Valles Marineris, from analysis of data acquired by the Mars Reconnaissance Orbiter. We observe the lineae to be most active in seasons when the slopes often face the sun. Expected peak temperatures suggest that activity may not depend solely on temperature. Although the origin of the recurring slope lineae remains an open question, our observations are consistent with intermittent flow of briny water. Such an origin suggests surprisingly abundant liquid water in some near-surface equatorial regions of Mars.

  12. Alaskan North Slope Oil & Gas Transportation Support

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Michael Russell [Geo-Watersheds Scientific LLC, Fairbanks, AK (United States)

    2017-03-31

    North Slope oil and gas resources are a critical part of US energy supplies and their development is facing a period of new growth to meet increasing national energy needs. While this growth is taking place in areas active in development for more than 20 years, there are many increasing environmental challenges facing industry and management agencies. A majority of all exploration and development activities, pipeline maintenance and other field support activities take place in the middle of winter, when the fragile tundra surface is more stable. The window for the critical oil and gas winter operational season has been steadily decreasing over the last 25 years. The number of companies working on the North Slope is increasing. Many of these companies are smaller and working with fewer resources than the current major companies. The winter operations season starts with the tundra-travel opening, which requires 15 cm of snow on the land surface in the coastal management areas and 23 cm in the foothills management areas. All state managed areas require -5°C soil temperatures at a soil depth of 30 cm. Currently there are no methods to forecast this opening date, so field mobilization efforts are dependent on agency personnel visiting field sites to measure snow and soil temperature conditions. Weeks can be easily lost in the winter operating season due to delays in field verification of tundra conditions and the resulting mobilization. After the season is open, a significant percentage of exploration, construction, and maintenance do not proceed until ice roads and pads can be built. This effort is dependent on access to lake ice and under-ice water. Ice chipping is a common ice-road construction technique used to build faster and stronger ice roads. Seasonal variability in water availability and permitting approaches are a constant constraint to industry. At the end of the winter season, projects reliant on ice-road networks are often faced with ending operations

  13. AN EXAMPLE OF THREE-DIMENSIONAL PROGRESSIVE SLOPE FAILURE

    Institute of Scientific and Technical Information of China (English)

    王家臣; 骆中洲

    1995-01-01

    In fact, the failure of any slope takes place progressively, but the progressive failure mechanism has not been emphasized sufficently in the present stability analysis of slopes. This paper provides an example of the progressive slope failure which took place at Pingzhuang west surface coal mine and was numbered the 26th slide. The three-dimensional reliability model for progressive slope failure is used to study the failure process of the 26th slide. The outcomes indicate that the progressive failure is indeed the failure mechanism of the slide.

  14. Measurement of Surface Strains from a Composite Hydrofoil using Fibre Bragg Grating Sensing Arrays

    Science.gov (United States)

    2015-07-01

    UNCLASSIFIED UNCLASSIFIED Measurement of Surface Strains from a Composite Hydrofoil using Fibre Bragg Grating Sensing Arrays Claire...arrays to the surface of a composite hydrofoil and reports on an experiment to measure surface strains from the hydrofoil under static and fatigue...July 2015 APPROVED FOR PUBLIC RELEASE UNCLASSIFIED UNCLASSIFIED Measurement of Surface Strains from a Composite Hydrofoil using

  15. Gravitational spectra from direct measurements. [of surface field

    Science.gov (United States)

    Wagner, C. A.; Colombo, O. L.

    1979-01-01

    A simple rapid method is described for determining the spectrum of a surface field (in spherical harmonics) from harmonic analysis of direct (in situ) measurements along great circle arcs. The method is shown to give excellent overall trends (smoothed spectra) to very high degree from even a few short arcs of satellite data. Three examples are taken with perfect measurements of satellite tracking over a planet made up of hundreds of point masses using (1) altimetric heights from a low-orbiting spacecraft, (2) velocity (range rate) residuals between a low and a high satellite in circular orbits, and (3) range rate data between a station at infinity and a satellite in a highly eccentric orbit. In particular, the smoothed spectrum of the earth's gravitational field is determined to about degree 400(50-km half wavelength) from 1 x 1 deg gravimetry and the equivalent of 11 revolutions of GEOS 3 and Skylab altimetry. This measurement shows that there is about 46 cm of geoid height (rms worldwide) remaining in the field beyond degree 180.

  16. Colour measurements of surfaces to evaluate the restoration materials

    Science.gov (United States)

    Lo Monaco, Angela; Marabelli, Maurizio; Pelosi, Claudia; Picchio, Rodolfo

    2011-06-01

    In this paper two case studies on the application of colour measurements for the evaluation of some restoration materials are discussed. The materials related to the research are: watercolours employed in restoration of wall paintings and preservative/consolidants for wood artifacts. Commercial watercolours, supplied by Maimeri, Windsor&Newton and Talens factories have been tested. Colour measurements have been performed by means of a reflectance spectrophotometer (RS) before and after accelerated ageing of watercolours at 92% relative humidity (RH) and in a Solar Box chamber. The experimental results show that watercolours based on natural earths and artificial ultramarine undergo the main colour changes, expressed as L*, a* and b* variations and total colour difference (▵E*). In the other cases colour differences depend on both watercolour typology and suppliers. The other example concerns the evaluation of colour change due to surface treatment of Poplar (Populus sp.) and chestnut (Castanea sativa L.) wood samples. The wooden samples have been treated with a novel organic preservative/consolidant product that has been tested also in a real case as comparison. The treated samples have been artificially aged in Solar Box chamber equipped with a 280 nm UV filter. Colour has been measured before and after the artificial ageing by means of a RS. Colour changes have been determined also for the main door of an historical mansion in Viterbo, made of chestnut wood, and exposed outdoors.

  17. Fully-coupled hydrologic/geomechanical simulations of slope failure in a prototypical steep mountain catchment

    Science.gov (United States)

    White, J. A.; Borja, R. I.; Ebel, B. A.; Loague, K.

    2009-12-01

    This work presents a physics-based framework for continuum modeling of hydrologically-driven slope failure. The analyses employ a mixed finite element formulation for variably-saturated geomaterials undergoing elastoplastic deformations. The deforming soil mass is treated as a multiphase continuum, and the governing mass and momentum balance equations are solved in a fully-coupled manner. This tight coupling is necessary to capture key features of slope behavior. To test the coupled formulation, we present a three-dimensional slope analysis motivated by a 1996 landslide that occurred at a steep experimental catchment (CB1) near Coos Bay, Oregon. Simulations are used to quantify the rainfall-induced slope deformation and assess the failure potential. Results of parametric studies suggest that for a steep hillslope underlain by bedrock, similar to the CB1 site, failure would occur by a multiple slide block mechanism, with progressive failure surfaces forming at the bedrock interface and propagating to the surface. Extensive field observations and experimental measurements made at the CB1 site provide a rich data set to calibrate and evaluate the proposed numerical model. We take the opportunity, however, to point out those features of the model that are not well-constrained by available field data, but which may play an important role in determing the timing and location of failure. These observations are used to assess the current state of predictive capability of the slope simulations, and to inform the design of future field experiments.

  18. Advanced metrology of surface defects measurement for aluminum die casting

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2011-07-01

    Full Text Available The scientific objective of the research is to develop a strategy to build computer based vision systems for inspection of surface defects inproducts, especially discontinuities which appear in castings after machining. In addition to the proposed vision inspection method theauthors demonstrates the development of the advanced computer techniques based on the methods of scanning to measure topography ofsurface defect in offline process control. This method allow to identify a mechanism responsible for the formation of casting defects. Also,the method allow investigating if the, developed vision inspection system for identification of surface defects have been correctlyimplemented for an online inspection. Finally, in order to make casting samples with gas and shrinkage porosity defects type, the LGT gas meter was used . For this task a special camera for a semi-quantitative assessment of the gas content in aluminum alloy melts, using a Straube-Pfeiffer method was used. The results demonstrate that applied solution is excellent tool in preparing for various aluminum alloysthe reference porosity samples, identified next by the computer inspection system.

  19. Development of a GIS-based failure investigation system for highway soil slopes

    Science.gov (United States)

    Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.

    2015-06-01

    A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).

  20. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  1. Improved Large-Scale Slope Analysis on Mars Based on Correlation of Slopes Derived with Different Baselines

    Science.gov (United States)

    Wang, Y.; Wu, B.

    2017-07-01

    The surface slopes of planetary bodies are important factors for exploration missions, such as landing site selection and rover manoeuvre. Generally, high-resolution digital elevation models (DEMs) such as those generated from the HiRISE images on Mars are preferred to generate detailed slopes with a better fidelity of terrain features. Unfortunately, high-resolution datasets normally only cover small area and are not always available. While lower resolution datasets, such as MOLA, provide global coverage of the Martian surface. Slopes generated from the low-resolution DEM will be based on a large baseline and be smoothed from the real situation. In order to carry out slope analysis at large scale on Martian surface based low-resolution data such as MOLA data, while alleviating the smoothness problem of slopes due to its low resolution, this paper presents an amplifying function of slopes derived from low-resolution DEMs based on the relationships between DEM resolutions and slopes. First, slope maps are derived from the HiRISE DEM (meter-level resolution DEM generated from HiRISE images) and a series of down-sampled HiRISE DEMs. The latter are used to simulate low-resolution DEMs. Then the high-resolution slope map is down- sampled to the same resolution with the slope map from the lower-resolution DEMs. Thus, a comparison can be conducted pixel-wise. For each pixel on the slope map derived from the lower-resolution DEM, it can reach the same value with the down-sampled HiRISE slope by multiplying an amplifying factor. Seven sets of HiRISE images with representative terrain types are used for correlation analysis. It shows that the relationship between the amplifying factors and the original MOLA slopes can be described by the exponential function. Verifications using other datasets show that after applying the proposed amplifying function, the updated slope maps give better representations of slopes on Martian surface compared with the original slopes.

  2. Slope Estimation during Normal Walking Using a Shank-Mounted Inertial Sensor

    Directory of Open Access Journals (Sweden)

    Juan C. Álvarez

    2012-08-01

    Full Text Available In this paper we propose an approach for the estimation of the slope of the walking surface during normal walking using a body-worn sensor composed of a biaxial accelerometer and a uniaxial gyroscope attached to the shank. It builds upon a state of the art technique that was successfully used to estimate the walking velocity from walking stride data, but did not work when used to estimate the slope of the walking surface. As claimed by the authors, the reason was that it did not take into account the actual inclination of the shank of the stance leg at the beginning of the stride (mid stance. In this paper, inspired by the biomechanical characteristics of human walking, we propose to solve this issue by using the accelerometer as a tilt sensor, assuming that at mid stance it is only measuring the gravity acceleration. Results from a set of experiments involving several users walking at different inclinations on a treadmill confirm the feasibility of our approach. A statistical analysis of slope estimations shows in first instance that the technique is capable of distinguishing the different slopes of the walking surface for every subject. It reports a global RMS error (per-unit difference between actual and estimated inclination of the walking surface for each stride identified in the experiments of 0.05 and this can be reduced to 0.03 with subject-specific calibration and post processing procedures by means of averaging techniques.

  3. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  4. Measuring surface temperature of isolated neutron stars and related problems

    Science.gov (United States)

    Teter, Marcus Alton

    New and exciting results for measuring neutron star surface temperatures began with the successful launch of the Chandra X-ray observatory. Among these results are new detections of neutron star surface temperatures which have made it possible to seriously test neutron star thermal evolution theories. The important new temperature determination of the Vela pulsar (Pavlov, et al., 2001a) requires a non-standard cooling scenario to explain it. Apart from this result, we have measured PSR B1055-52's surface temperature in this thesis, determining that it can be explained by standard cooling with heating. Our spectral fit of the combined data from ROSAT and Chandra have shown that a three component model, two thermal blackbodies and an non-thermal power-law, is required to explain the data. Furthermore, our phase resolved spectroscopy has begun to shed light on the geometry of the hot spot on PSR B1055-52's surface as well as the structure of the magnetospheric radiation. Also, there is strong evidence for a thermal distribution over its surface. Most importantly, the fact that PSR B1055-52 does not have a hydrogen atmosphere has been firmly established. To reconcile these two key observations, on the Vela pulsar and PSR B1055-52, we tested neutron star cooling with neutrino processes including the Cooper pair neutrino emission process. Overall, it has been found that a phase change associated with pions being present in the cores of more massive neutron stars explains all current of the data. A transition from neutron matter to pion condensates in the central stellar core explains the difference between standard and non-standard cooling scenarios, because the superfluid suppression of pion cooling will reduce the emissivity of the pion direct URCA process substantially. A neutron star with a mass of [Special characters omitted.] with a medium stiffness equation of state and a T72 type neutron superfluid models the standard cooling case well. A neutron star of [Special

  5. Mycorrhizal aspects in slope stabilisation

    Science.gov (United States)

    Graf, Frank

    2016-04-01

    appendiculata with ecto, arbuscular, and the combination of the two mycorrhizal types revealed different effects in respect of aggregate stabilisation as well as above and below ground biomass production of the host plant. Only the ecto-mycorrhized plants significantly increased soil aggregate stability compared to non-inoculated willows. Significantly higher production of host plant biomass was restricted to roots and the inoculation with arbuscular mycorrhiza. Additionally, there are successional processes in mycorrhizal communities in the way that perennial plants do have other fungal partners in their juvenile, prime, and senescent living phase, respectively. It was found that, particularly, in the initial phase of the re-colonisation and development of a protective vegetation cover, the lack of relevant (ecto-) mycorrhizal fungi considerably decelerate or even stop succession processes. Conclusively, with regard to support and accelerate plant growth and the re-colonisation and stabilisation of slopes within the scope of eco-engineering measures it is necessary to select the fungal species based on sound information. This may include ecology and sociology as well as the potential for aggregate formation depending on the plant species used.

  6. Characteristics of Soil Erosion by Water Under Different Soil and Water Conservation Measures on Sloping Farmland of Black Soils%黑土坡耕地不同水土保持措施的土壤水蚀特征研究

    Institute of Scientific and Technical Information of China (English)

    齐智娟; 张忠学; 杨爱峥

    2012-01-01

    Different tillage measures of soil and water conservation,such as ridge tillage,subsoiling,cross-slope cultivation,and no-tillage seeding,are taken to control serious soil erosion on sloping farmland in the arid areas of Northern China.In 2010,the effects of different conservation tillage measures on surface runoff,soil erosion,and rainfall infiltration were studied on a 5° farmland in Dongxing Village,Qiqihar City,Heilongjiang Province.Results showed that all the conservation tillage measures had a certain effect on the reduction in runoff and soil erosion.Cross-slope tillage had the most obvious effect,with which surface runoff and soil erosion were reduced by 92% and 90%,respectively,and stable infiltration rate was increased by 41.2% as contrasted with conventional tillage.Changes in runoff coefficient,sediment concentration in runoff,runoff generation,and sediment yield under the different conservation tillage measures were all consistent with the order of cross-slope no-tillage cross-slope cultivation subsoiling and ridge tillage ridge tillage less tillage and subsoiling no-tillage conventional tillage bare land.%针对北方干旱地区坡耕地严重的水土流失问题,采取垄向区田、深松、横坡种植、免耕播种等水土保持耕作措施,于2010年,以黑龙江省齐齐哈尔市东兴村5°坡耕地径流场为研究对象,研究了不同耕作措施对地表径流、土壤侵蚀和降雨入渗的影响。结果表明,这几种水土保持耕作措施均有不同程度的减流减沙作用,其中横坡种植效果最为明显,地表径流量和土壤流失量较常规耕作分别减少了92%和90%,稳定入渗率较常规耕作提高了41.2%。不同耕作措施的径流系数过程线的变化、径流含沙率变化以及产流量、产沙量的变化均符合横坡免耕〉横坡种植〉深松+区田〉垄向区田〉少耕深松〉免耕〉常规耕作〉裸地这一变化规律。

  7. Turbulent boundary layer measurements over high-porosity surfaces

    Science.gov (United States)

    Efstathiou, Christoph; Luhar, Mitul

    2016-11-01

    Porous surfaces are ubiquitous across a variety of turbulent boundary layer flows of scientific and engineering interest. While turbulent flows over smooth and rough walls have been studied extensively, experimental measurements over porous walls have thus far focused on packed beds, which are limited in porosity (Φ = 0 . 3 - 0 . 5) by their geometry. The current project seeks to address this limitation. A two-component laser doppler velocimeter (LDV) is used to generate velocity measurements in turbulent boundary layer flows over commercially available reticulated foams and 3D-printed porous media at Reynolds number Reθ 3000 - 4000 . Smooth wall profiles for mean and turbulent quantities are compared to data over substrates with porosity Φ > 0 . 8 and average pore sizes in the range 0.4-2.5mm (corresponding to 8 - 50 viscous units). Previous analytical and simulation efforts indicate that the effects of porous substrates on boundary layer flows depend on a modified Reynolds number defined using the length scale √{ κ}, where κ is substrate permeability. A custom permeameter is currently being developed to estimate κ for the substrates tested in the boundary layer experiments.

  8. Preliminary Analysis of Slope Stability in Kuok and Surrounding Areas

    Directory of Open Access Journals (Sweden)

    Dewandra Bagus Eka Putra

    2016-12-01

    Full Text Available The level of slope influenced by the condition of the rocks beneath the surface. On high level of slopes, amount of surface runoff and water transport energy is also enlarged. This caused by greater gravity, in line with the surface tilt from the horizontal plane. In other words, topsoil eroded more and more. When the slope becomes twice as steep, then the amount of erosion per unit area be 2.0 - 2.5 times more. Kuok and surrounding area is the road access between the West Sumatra and Riau which plays an important role economies of both provinces. The purpose of this study is to map the locations that have fairly steep slopes and potential mode of landslides. Based on SRTM data obtained,  the roads in Kuok area has a minimum elevation of + 33 m and a maximum  + 217.329 m. Rugged road conditions with slope ranging from 24.08 ° to 44.68 ° causing this area having frequent landslides. The result of slope stability analysis in a slope near the Water Power Plant Koto Panjang, indicated that mode of active failure is toppling failure or rock fall and the potential zone of failure is in the center part of the slope.

  9. Surface force measurements and simulations of mussel-derived peptide adhesives on wet organic surfaces.

    Science.gov (United States)

    Levine, Zachary A; Rapp, Michael V; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H; Mittal, Jeetain; Waite, J Herbert; Israelachvili, Jacob N; Shea, Joan-Emma

    2016-04-19

    Translating sticky biological molecules-such as mussel foot proteins (MFPs)-into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue's molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces.

  10. INITIAL SLOPE OF THE HYSTERESIS CURVE

    OpenAIRE

    Gerritsma, G.J.; Stam, M.T.H.C.W.; Lodder, J. C.; Popma, Th.J.A.

    1988-01-01

    An analytical expression for the initial slope T of the hysteresis curve is derived for a stripe domain structure in a thin magnetic film, giving that T-1 is proportional to t-1/2 (t = film thickness). This is confirmed by measurements on RF sputtered CoCr films with 20 nm ≤ t ≤ 950 nm.

  11. Initial slope of the hysteresis curve

    NARCIS (Netherlands)

    Gerritsma, G.J.; Stam, M.T.H.C.W.; Lodder, J.C.; Popma, Th.J.A.

    1988-01-01

    An analytical expression for the initial slope T of the hysteresis curve is derived for a stripe domain structure in a thin magnetic film, giving that T-1 is proportional to t-1/2 (t = film thickness). This is confirmed by measurements on RF sputtered CoCr films with 20 nm £ t £ 950 nm.

  12. Interpreting Ground Temperature Measurements for Thermophysical Properties on Complex Surfaces of the Moon and Mars

    Science.gov (United States)

    Vasavada, A. R.; Hamilton, V. E.; Team, M.

    2013-12-01

    With the successful deployments of the Diviner radiometer on the Lunar Reconnaissance Orbiter and the REMS ground temperature sensor on the Curiosity Mars rover, records of ground temperature with high accuracy and finely sampled diurnal and seasonal cycles have become available. The detailed shapes of these temperature profiles allow inferences beyond just bulk thermophysical properties. Subtle (or sometime significant) effects of surface roughness, slope, and lateral and vertical heterogeneity may be identified in the surface brightness temperature data. For example, changes in thermal or physical properties with depth in the shallow subsurface affect the conduction and storage of thermal energy. These affect the surface energy balance and therefore surface temperatures, especially the rate of cooling at night. Making unique determinations of subsurface soil properties requires minimizing the uncertainties introduced by other effects. On Mars, atmospheric aerosol opacity and wind-driven sensible heat fluxes also affect the diurnal and annual temperature profiles. On both bodies, variations in thermal inertia, slopes, roughness, albedo, and emissivity within the radiometer footprint will cause the composite brightness temperature to differ from a kinetic temperature. Nevertheless, we have detected potential effects of complex surfaces in the temperature data from both Diviner and Curiosity. On the Moon, the results reveal a nearly ubiquitous surface structure, created mechanically by impact gardening, that controls the thermal response of the surface. On Mars, the thermal response is controlled primarily by grain size, cementation, lithification, and composition. However, the secondary effects of near-surface layering aid in the interpretation of stratigraphy and in the identification of geologic processes that have altered the surface.

  13. Long Wave Reflection and Transmission over A Sloping Step

    Institute of Scientific and Technical Information of China (English)

    Hsien-Kuo CHANG; Jin-Cheng LIOU

    2004-01-01

    This investigation examines long wave reflection and transmission induced by a sloping step. Bellman and Kalaba's(1959) invariant imbedding is introduced to find wave reflection. An alternative method matching both the surface elevation and its surface slope of each region at the junction is applied to the determination of wave reflection and transmission.The proposed methods are compared with the accurate numerical results of Porter and Porter (2000) and those of Mei(1983) for a vertical step. The wave reflection obtained for a mildly sloping step differs significantly from the result of Mei. The wave reflection is found to fluctuate owing to wave trapping for the mild sloping step. The height and the face slope of the step are important for determining wave reflection and transmission coefficients.

  14. Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations

    Directory of Open Access Journals (Sweden)

    Mahdi Motagh

    2013-07-01

    Full Text Available The detection and monitoring of mass movement of susceptible slopes plays a key role in mitigating hazards and potential damage associated with creeping slopes and landslides. In this paper, we use observations from both Interferometric Synthetic Aperture Radar (InSAR and Global Positioning System (GPS to assess the slope stability of the Sarcheshmeh ancient landslide in the North Khorasan province of northeast Iran. InSAR observations were obtained by the time-series analysis of Envisat SAR images covering 2004–2006, whereas repeated GPS observations were conducted by campaign measurements during 2010–2012. Surface displacement maps of the Sarcheshmeh landslide obtained from InSAR and GPS are both indicative of slope stability. Hydrogeological analysis suggests that the multi-year drought and lower than average precipitation levels over the last decade might have contributed to the current dormancy of the Sarcheshmeh landslide.

  15. A Method for Dimensional and Surface Optical Measurements Uncertainty Assessment on Micro Structured Surfaces Manufactured by Jet-ECM

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Islam, Aminul;

    2015-01-01

    Surface texture and step height measurements of electrochemically machined cavities have been compared among optical and tactile instruments. A procedure is introduced for correcting possible divergences among the instruments and, ultimately, for evaluating the measurement uncertainty according...

  16. A Method for Dimensional and Surface Optical Measurements Uncertainty Assessment on Micro Structured Surfaces Manufactured by Jet-ECM

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Islam, Aminul;

    2015-01-01

    Surface texture and step height measurements of electrochemically machined cavities have been compared among optical and tactile instruments. A procedure is introduced for correcting possible divergences among the instruments and, ultimately, for evaluating the measurement uncertainty according t...

  17. Effects of drop size and measuring condition on static contact angle measurement on a superhydrophobic surface with goniometric technique

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwangseok; Kim, Minyoung; Kim, Do Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Ahn, Jeong Keun [Chungnam National University, Daejeon (Korea, Republic of)

    2015-12-15

    It is not a simple task to measure a contact angle of a water drop on a superhydrophobic surface with sessile drop method, because a roll-off angle is very low. Usually contact angle of a water drop on a superhydrophobic surface is measured by fixing a drop with intentional defects on the surface or a needle. We examined the effects of drop size and measuring condition such as the use of a needle or defects on the static contact angle measurement on superhydrophobic surface. Results showed that the contact angles on a superhydrophobic surface remain almost constant within intrinsic measurement errors unless there is a wetting transition during the measurement. We expect that this study will provide a deeper understanding on the nature of the contact angle and convenient measurement of the contact angle on the superhydrophobic surface.

  18. 3-D surface properties of glacier penitentes over an ablation season, measured using a Microsoft Xbox Kinect

    Science.gov (United States)

    Nicholson, Lindsey I.; Pętlicki, Michał; Partan, Ben; MacDonell, Shelley

    2016-09-01

    In this study, the first small-scale digital surface models (DSMs) of natural penitentes on a glacier surface were produced using a Microsoft Xbox Kinect sensor on Tapado Glacier, Chile (30°08' S, 69°55' W). The surfaces produced by the complete processing chain were within the error of standard terrestrial laser scanning techniques, but insufficient overlap between scanned sections that were mosaicked to cover the sampled areas can result in three-dimensional (3-D) positional errors of up to 0.3 m. Between November 2013 and January 2014 penitentes become fewer, wider and deeper, and the distribution of surface slope angles becomes more skewed to steep faces. Although these morphological changes cannot be captured by manual point measurements, mean surface lowering of the scanned areas was comparable to that derived from manual measurements of penitente surface height at a minimum density of 5 m-1 over a 5 m transverse profile. Roughness was computed on the 3-D surfaces by applying two previously published geometrical formulae: one for a 3-D surface and one for single profiles sampled from the surface. Morphometric analysis shows that skimming flow is persistent over penitentes, providing conditions conducive for the development of a distinct microclimate within the penitente troughs. For each method a range of ways of defining the representative roughness element height was used, and the calculations were done both with and without application of a zero displacement height offset to account for the likelihood of skimming air flow over the closely spaced penitentes. The computed roughness values are on the order of 0.01-0.10 m during the early part of the ablation season, increasing to 0.10-0.50 m after the end of December, in line with the roughest values previously published for glacier ice. Both the 3-D surface and profile methods of computing roughness are strongly dependent on wind direction. However, the two methods contradict each other in that the maximum

  19. Short-Term Estimates of Growth Using Curriculum-Based Measurement of Oral Reading Fluency: Estimating Standard Error of the Slope to Construct Confidence Intervals

    Science.gov (United States)

    Christ, Theodore J.

    2006-01-01

    Curriculum-based measurement of oral reading fluency (CBM-R) is an established procedure used to index the level and trend of student growth. A substantial literature base exists regarding best practices in the administration and interpretation of CBM-R; however, research has yet to adequately address the potential influence of measurement error.…

  20. Consequence assessment of large rock slope failures in Norway

    Science.gov (United States)

    Oppikofer, Thierry; Hermanns, Reginald L.; Horton, Pascal; Sandøy, Gro; Roberts, Nicholas J.; Jaboyedoff, Michel; Böhme, Martina; Yugsi Molina, Freddy X.

    2014-05-01

    Steep glacially carved valleys and fjords in Norway are prone to many landslide types, including large rockslides, rockfalls, and debris flows. Large rockslides and their secondary effects (rockslide-triggered displacement waves, inundation behind landslide dams and outburst floods from failure of landslide dams) pose a significant hazard to the population living in the valleys and along the fjords shoreline. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected more than 230 unstable slopes with significant postglacial deformation. This large number necessitates prioritisation of follow-up activities, such as more detailed investigations, periodic displacement measurements, continuous monitoring and early-warning systems. Prioritisation is achieved through a hazard and risk classification system, which has been developed by a panel of international and Norwegian experts (www.ngu.no/en-gb/hm/Publications/Reports/2012/2012-029). The risk classification system combines a qualitative hazard assessment with a consequences assessment focusing on potential life losses. The hazard assessment is based on a series of nine geomorphological, engineering geological and structural criteria, as well as displacement rates, past events and other signs of activity. We present a method for consequence assessment comprising four main steps: 1. computation of the volume of the unstable rock slope; 2. run-out assessment based on the volume-dependent angle of reach (Fahrböschung) or detailed numerical run-out modelling; 3. assessment of possible displacement wave propagation and run-up based on empirical relations or modelling in 2D or 3D; and 4. estimation of the number of persons exposed to rock avalanches or displacement waves. Volume computation of an unstable rock slope is based on the sloping local base level technique, which uses a digital elevation model to create a second-order curved surface between the mapped extent of

  1. Treatment Measures for Empty Bearing of Arc Steel Box Girder with Cross Slope for Rotating Structure%旋转结构找横坡弧形钢箱梁支座托空处理措施

    Institute of Scientific and Technical Information of China (English)

    李粤东; 夏崇滔; 张翼; 巫正伟

    2014-01-01

    钢箱梁结构因其自身的特性在市政工程建设得到大量运用,钢箱梁吊装施工中空间就位及空形态的控制问题较为突出,其中带纵坡的弧形钢箱梁通过旋转结构找横坡就使得钢箱梁在施工过程中整体空间形态要有控制技术难度更高,极易造成钢箱梁支座托空。该文结合工程实例,就有纵坡且旋转结构找横坡弧形钢箱梁吊装后产生支座托空的处理措施进行论述。%Steel box girder structure is widely applied nowadays for its virtues, but the controlling problems in space location and spatial form in its con-struction are severe, and the finding of cross slope through rotating structure by arc steel box girder with longitudinal slope renders controlling technology of steel box girder over spatial form harder, easily causing empty bearing of steel box girder. The treatment measures for such problem are presented in de-tail.

  2. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    Science.gov (United States)

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto

    2016-04-01

    Slope erosion and shallow slope instabilities are the major factors of soil losses in cultivated steep terrains. These phenomena also cause loss of organic matter and plants nutrients, together with the partial or total destruction of the structures, such as the row tillage pattern of the vineyards, which allow for the plants cultivation. Vegetation has long been used as an effective tool to decrease the susceptibility of a slope to erosion and to shallow landslides. In particular, the scientific research focused on the role played by the plant roots, because the belowground biomass has the major control on the potential development of soil erosion and of shallow failures. Instead, a comprehensive study that analyzes the effects of the roots of agricultural plants on both soil erosion and slope instability has not been carried out yet. This aspect should be fundamental where sloped terrains are cultivated with plants of great economical relevance, as grapevine. To contribute to fill this gap, in this study the features of root density in the soil profile have been analyzed in slopes cultivated with vineyards, located on a sample hilly area of Oltrepò Pavese (northern Italy). In this area, the viticulture is the most important branch of the local economy. Moreover, several events of rainfall-induced slope erosion and shallow landslides have occurred in this area in the last 6 years, causing several economical damages linked to the destruction of the vineyards and the loss of high productivity soils. Grapevine root distribution have been measured in different test-site slopes, representative of the main geological, geomorphological, pedological, landslides distribution, agricultural features, in order to identify particular patterns on root density that can influence the development of slope instabilities. Roots have been sampled in each test-site for characterizing their strength, in terms of the relation between root diameter and root force at rupture. Root

  3. ROUGHNESS ON WOOD SURFACES AND ROUGHNESS MEASUREMENT METHODS

    OpenAIRE

    İsmail Aydın; Gürsel Çolakoğlu

    2003-01-01

    Some visual characteristics of wood such as color, pattern and texture determine the quality of manufactured products. Surface properties of wood material are important both in production and marketing after production. Initial studies related to the roughness of wood surface were begun in early 1950’s. However, no general agreed standardization can not have been developed for wood surfaces. Surface roughness of wood is function of the production process, product type and the natural anatomic...

  4. Seafloor geodesy: Measuring surface deformation and strain-build up

    Science.gov (United States)

    Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian

    2017-04-01

    Seafloor deformation is intrinsically related to tectonic processes, which potentially may evolve into geohazards, including earthquakes and tsunamis. The nascent scientific field of seafloor geodesy provides a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The measurements extract information on stress and elastic strain stored in the oceanic crust. Horizontal seafloor displacement can be obtained by acoustic/GPS combination to provide absolute positioning or by long-term acoustic telemetry between different beacons fixed on the seafloor. The GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array uses acoustic telemetry for relative positioning at mm-scale resolution. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years. The seafloor acoustic transponders are mounted on 4 m high tripod steel frames to ensure clear line-of-sight between the stations. The transponders also include high-precision pressure sensors to monitor vertical movements and dual-axis inclinometers in order to measure their level as well as any tilt of the seafloor. Sound velocity sensor measurements are used to correct for water sound speed variations. A further component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is able to upload the seafloor data to the sea surface and to transfer it via satellite. The GeoSEA array is capable of both continuously monitoring horizontal and vertical ground displacement rates along submarine fault zones and characterizing their behavior (locked or aseismically creeping). Seafloor transponders are currently installed along the Siliviri segment of the North Anatolian Fault offshore Istanbul for measurements of strain build-up along the fault. The first 18 month of baseline ranging were analyzed by a joint-least square inversion

  5. Laboratory experiments on rainfall-induced flowslide from pore pressure and moisture content measurements

    Directory of Open Access Journals (Sweden)

    M. R. Hakro

    2015-02-01

    Full Text Available During or immediately after rainfall many slope failures have been observed. The slope failure occurred due to rainfall infiltration that rapidly increase the pore pressure and trigger the slope failure. Numerous studies have been conducted to investigate the rainfall-induced slope failure, but the mechanism of slope failure is still not well clarified. To investigate mechanism of rainfall-induced slope failure laboratory experiments have been conducted in flume. The slope was prepared with sandy soil in flume with constant inclination of 45°, because most of rainfall-induced slope failure occurred in sandy soil and on steep slope. The hydrological parameters such as pore pressure and moisture content were measured with piezometers and advanced Imko TDRs respectively. The slope failure occurred due to increase in moisture content and rise in pore pressure. During the flowslide type of slope failure the sudden increase in pore pressure was observed. The higher moisture content and pore pressure was at the toe of the slope. The pore pressure was higher at the toe of the slope and smaller at the upper part of the slope. After the saturation the run-off was observed at the toe of the slope that erodes the toe and forming the gullies from toe to upper part of the slope. In the case antecedent moisture conditions the moisture content and the pore pressure increased quickly and producing the surface runoff at the horizontal part of the slope. The slope having less density suffer from flowslide type of the failure, however in dense slope no major failure was occurred even at higher rainfall intensity. The antecedent moisture accompanied with high rainfall intensity also not favors the initiation of flowslide in case of dense slope. The flowslide type of failure can be avoided by controlling the density of soil slope. Knowing such parameters that controls the large mass movement helpful in developing the early warning system for flowslide type of

  6. An improved approach for measuring the impact of multiple CO2 conductances on the apparent photorespiratory CO2 compensation point through slope-intercept regression

    Science.gov (United States)

    Biochemical models of leaf photosynthesis, which are essential for understanding the impact of photosynthesis to changing environments, depend on accurate parameterizations. The CO2 photocompensation point can be especially difficult to determine accurately but can be measured from the intersection ...

  7. Stability analysis of slopes of expansive soils considering rainfall effect

    Institute of Scientific and Technical Information of China (English)

    ZHU Fang-cai

    2007-01-01

    Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content and shear strength inculding cohesion and friction angle, was studied in detail. Acoording to change of water content and depth effect during rainfall, distribution of shear strength in slopes of expansive soils was analyzed. Finally,with a slope of expansive soils in Nanning city of Guangxi Autonomous Region of China as a case, safety factor and slip surface was studied.

  8. Measurement of diffusion length and surface recombination velocity in Interdigitated Back Contact (IBC) and Front Surface Field (FSF) solar cells

    Science.gov (United States)

    Verlinden, Pierre; Van de Wiele, Fernand

    1985-03-01

    A method is proposed for measuring the diffusion length and surface recombination velocity of Interdigitated Back Contact (IBC) solar cells by means of a simple linear regression on experimental quantum efficiency values versus the inverse of the absorption coefficient. This method is extended to the case of Front Surface Field (FSF) solar cells. Under certain conditions, the real or the effective surface recombination velocity may be measured.

  9. UAV BASED BRDF-MEASUREMENTS OF AGRICULTURAL SURFACES WITH PFIFFIKUS

    Directory of Open Access Journals (Sweden)

    G. J. Grenzdörffer

    2012-09-01

    Full Text Available BRDF is a common problem in remote sensing and also in oblique photogrammetry. Common approaches of BRDF-measurement with a field goniometer are costly and rather cumbersome. UAVs may offer an interesting alternative by using a special flight pattern of oblique and converging images. The main part of this paper is the description of a photogrammetric workflow in order to determine the anisotropic reflection properties of a given surface. Due to the relatively low flying heights standard procedures from close range photogrammetry were adopted for outdoor usage. The photogrammetric processing delivered automatic and highly accurate orientation information with the aid of coded targets. The interior orientation of the consumer grade camera is more or less stable. The radiometrically corrected oblique images are converted into ortho photos. The azimuth and elevation angle of every point may then be computed. The calculated anisotropy of a winter wheat plot is shown. A system four diagonally-looking cameras (Four Vision and an additional nadir looking camera is under development. The multi camera system especially designed for a Micro- UAV with a payload of min 1 kg. The system is composed of five industrial digital frame cameras (1.3 Mpix CCD-chips, 15 fp/s with fixed lenses. Also special problems with the construction of a light weight housing of the multi camera solution are covered in the paper.

  10. Measuring protoplanetary disk gas surface density profiles with ALMA

    CERN Document Server

    McPartland, Jonathan P Williams Conor

    2016-01-01

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams & Best (2014) to show that gas surface density profiles can be measured from high fidelity 13CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, Mgas = 0.048 solar masse, and accretion disk characteristic size Rc = 213au and gradient gamma = 0.39. The same parameters match the C18O 2--1 image and indicates an abundance ratio [13CO]/[C18O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large 13CO 2--1 image library and fit simulated data. For disks with gas masses 3-10 Jupiter masses at 150pc, ALMA observations with a resolutio...

  11. Urban Visible/SWIR surface reflectance ratios from satellite and sun photometer measurements in Mexico City

    Directory of Open Access Journals (Sweden)

    A. D. de Almeida Castanho

    2007-06-01

    Full Text Available The surface reflectance ratio between the visible (VIS and shortwave infrared (SWIR radiation is an important quantity for the retrieval of the aerosol optical depth (τa from the MODIS sensor data. Based on empirically determined VIS/SWIR ratios, MODIS τa retrieval uses the surface reflectance in the SWIR band (2.1 μm, where the interaction between solar radiation and the aerosol layer is small, to predict the visible reflectances in the blue (0.47 μm and red (0.66 μm bands. Therefore, accurate knowledge of the VIS/SWIR ratio is essential for achieving accurate retrieval of aerosol optical depth from MODIS. The heterogeneity of the surface cover in an urban environment increases the uncertainties in the estimation of the surface reflectance and, consequently, τa. We analyzed the surface reflectance over some distinct surface covers in and around the Mexico City metropolitan area (MCMA using MODIS radiances at 0.66 μm and 2.1 μm. The analysis was performed at 1.5 km×1.5 km spatial resolution. Also, ground-based AERONET sun-photometer data acquired in Mexico City from 2002 to 2005 were analyzed for aerosol optical thickness and other aerosol optical properties. In addition, a network of hand-held sun-photometers deployed in Mexico City, as part of the MCMA-2006 Study during the MILAGRO Campaign, provided an unprecedented measurement of τa in 5 different sites well distributed in the city. We found that the average RED/SWIR ratio representative of the urbanized sites analyzed is 0.73±0.06. This average ratio was significantly different for non-urban sites, which was approximately 0.55. The aerosol optical thickness retrieved from MODIS radiances at a spatial resolution of 1.5 km×1.5 km and averaged within 10 x 10 km boxes were compared with collocated 1-h τa averaged from sun-photometer measurements. The use of the new RED/SWIR ratio of 0.73 in

  12. SEA SURFACE ALTIMETRY BASED ON AIRBORNE GNSS SIGNAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    K. Yu

    2012-07-01

    Full Text Available In this study the focus is on ocean surface altimetry using the signals transmitted from GNSS (Global Navigation Satellite System satellites. A low-altitude airborne experiment was recently conducted off the coast of Sydney. Both a LiDAR experiment and a GNSS reflectometry (GNSS-R experiment were carried out in the same aircraft, at the same time, in the presence of strong wind and rather high wave height. The sea surface characteristics, including the surface height, were derived from processing the LiDAR data. A two-loop iterative method is proposed to calculate sea surface height using the relative delay between the direct and the reflected GNSS signals. The preliminary results indicate that the results obtained from the GNSS-based surface altimetry deviate from the LiDAR-based results significantly. Identification of the error sources and mitigation of the errors are needed to achieve better surface height estimation performance using GNSS signals.

  13. Maternal cortisol slope at 6 months predicts infant cortisol slope and EEG power at 12 months.

    Science.gov (United States)

    St John, Ashley M; Kao, Katie; Liederman, Jacqueline; Grieve, Philip G; Tarullo, Amanda R

    2017-09-01

    Physiological stress systems and the brain rapidly develop through infancy. While the roles of caregiving and environmental factors have been studied, implications of maternal physiological stress are unclear. We assessed maternal and infant diurnal cortisol when infants were 6 and 12 months. We measured 12-month infant electroencephalography (EEG) 6-9 Hz power during a social interaction. Steeper 6-month maternal slope predicted steeper 12-month infant slope controlling for 6-month infant slope and breastfeeding. Steeper 6-month maternal slope predicted lower 6-9 Hz power. Six-month maternal area under the cuve (AUCg) was unrelated to 12-month infant AUCg and 6-9 Hz power. Psychosocial, caregiving, and breastfeeding variables did not explain results. At 6 months, maternal and infant slopes correlated, as did maternal and infant AUCg. Twelve-month maternal and infant cortisol were unrelated. Results indicate maternal slope is an informative predictor of infant physiology and suggest the importance of maternal physiological stress in this developmental period. © 2017 Wiley Periodicals, Inc.

  14. Surface roughness measurement using dichromatic speckle pattern: an experimental study.

    Science.gov (United States)

    Fujii, H; Lit, J W

    1978-09-01

    Surface roughness is studied experimentally by making use of the statistical properties of dichromatic speckle patterns. The rms intensity difference between two speckle patterns produced by two argon laser lines are analyzed in the far field as functions of the object surface roughness and the difference in the two wavenumbers of the illuminating light. By applying previously derived formulas, the rms surface roughness is obtained from rms intensity differences. Glass and metal rough surfaces are used. Other than the scattering arrangement, the experimental setup has a simple spectrometric system and an electronic analyzing circuit.

  15. Measurements of Antenna Surface for a Millimeter-Wave Space Radio Telescope II; Metal Mesh Surface for Large Deployable Reflector

    CERN Document Server

    Kamegai, Kazuhisa

    2012-01-01

    Large deployable antennas with a mesh surface woven by fine metal wires are an important technology for communications satellites and space radio telescopes. However, it is difficult to make metal mesh surfaces with sufficient radio-frequency (RF) performance for frequencies higher than millimeter waves. In this paper, we present the RF performance of metal mesh surfaces at 43 GHz. For this purpose, we developed an apparatus to measure the reflection coefficient, transmission coefficient, and radiative coefficient of the mesh surface. The reflection coefficient increases as a function of metal mesh surface tension, whereas the radiative coefficient decreases. The anisotropic aspects of the reflection coefficient and the radiative coefficient are also clearly seen. They depend on the front and back sides of the metal mesh surface and the rotation angle. The transmission coefficient was measured to be almost constant. The measured radiative coefficients and transmission coefficients would cause significant degr...

  16. Investigating talus slope geomorphology as impacted by permafrost thaw (Valais, Switzerland): stipulating a research framework

    Science.gov (United States)

    Hendrickx, Hanne; Delaloye, Reynald; Nyssen, Jan; Frankl, Amaury

    2017-04-01

    Climate change is altering temperature regimes and precipitation patterns worldwide. In the European Alps, atmospheric temperatures have risen twice as fast as the global average since 1900, while precipitation regimes are changing as well. Snow cover duration and extent has significantly decreased in the Swiss Alps, mainly due to earlier spring melt and rise in winter temperatures. Moreover, future projections predict a continuation of these trends. Spatial distribution and thermal properties of permafrost are highly influenced by ground surface conditions (snow and vegetation) and air temperature. Climate induced permafrost degradation is, therefore, expected. While alpine permafrost research has mainly focused on rock glaciers, less attention has been given to talus slopes. The latter are subjected to different kinds of slope processes such as debris flows, solifluction, permafrost creep, avalanches and rock fall. These processes are especially effective under a changing periglacial climate. Therefore, it is important to study permafrost distribution in these talus slopes, since it is believed to have large influence on slope stability. In this study, permafrost distribution will be mapped on several talus slope segments (10 - 40 ha) using geomorphological evidence, temperature data and measuring electrical resistivity tomography (ERT) profiles in addition to already existing data. The current dynamics of the study area will be studied by constructing detailed 3D models, using ground based and aerial photography (Unmanned Aerial Vehicles, UAV) and the Structure-from-Motion method (SfM). The resulting Digital Elevation Models (DEM) will be used to quantify and understand the current geomorphological processes acting on these talus slopes. Historical aerial and terrestrial photographs will be used to give an idea about the magnitude and frequency of past geomorphic processes (e.g. debris flows). Historical and current dynamics can then be compared and contrasted

  17. Removals of pollutants in surface runoff from sloping farmland using different hedgerow systems%不同植物篱系统对坡耕地农田径流污染物的去除效果

    Institute of Scientific and Technical Information of China (English)

    刘强; 邓仕槐; 敬子卉; 罗春燕; 周鑫; 陈红春; 梁智强; 王紫麟

    2016-01-01

    采用人工模拟实验,探讨了四种植物篱系统在不同坡度(5°、10°和20°)、不同污染物进水浓度(低、中、高)下对坡耕地农田径流污染物TN、TP、NH3-N、TOC、COD的去除效果。植物篱系统分别是红叶石楠+小叶女贞+黑麦草(T1)、红叶石楠+小叶女贞(T2)、小叶女贞+黑麦草(T3)、红叶石楠+黑麦草(T4)。结果表明:植物篱系统对污染物的去除率均随坡度的增加而下降,TP、NH3-N、COD尤为明显,当坡度由5°增加到20°时,TP的去除率由52.25%~76.75%降至33.68%~60.34%,NH3-N的去除率由36.84%~68.33%降至34.30%~45.46%,COD的去除率由13.26%~38.69%降至3.15%~26.74%。除NH3-N外,随污染物进水浓度的升高,植物篱对污染物的去除效果越明显,TP的去除率可由33.33%~60.11%升至57.06%~81.44%,TOC的去除率可由-0.84%~2.92%升至9.64%~17.69%, COD的去除率可由-14.75%~11.25%升至20.62%~42.33%。植物篱系统对TN、TP、NH3-N、TOC、COD的去除效果显著优于裸土(对照系统),在不同坡度下去除率最高分别能由12.81%升至47.02%、34.29%升至76.75%、18.27%升至68.33%、-0.93%升至11.52%、2.31%升至38.69%,在不同污染物进水浓度下分别能由15.57%升至53.05%、37.93%升至81.44%、17.60%升至64.05%、2.92%升至17.69%、-33.40%升至11.25%。总体而言,植物篱系统平均去除效果依次为T1>T4>T3>T2,即红叶石楠+小叶女贞+黑麦草去除效果最佳,这与三种植物的地表覆盖率高、根系发达以及在功能上相互取长补短、协同固定污染物有关。%Four hedgerow systems were designed to examine their removal efficiencies of TN, TP, NH3-N, TOC and COD in surface runoff from farm land with different slopes(5°, 10°, 20°) at different influent concentrations(low, medium, high). The hedgerow systems included photinia fraseri+lobular privet+ryegrass(T1);photinia fraseri+lobular privet(T2);lobular privet+ryegrass(T3

  18. Measuring surface current velocities in the Agulhas region with ASAR

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-01-01

    Full Text Available velocities for oceanographic research in the Agulhas Current are assessed. Comparisons between radar, altimetry and surface drifters observations of the surface currents show that accurate wind fields are a strong pre-requisite to the derivation of meaningful...

  19. Rock slope instabilities in Norway: First systematic hazard and risk classification of 22 unstable rock slopes

    Science.gov (United States)

    Böhme, Martina; Hermanns, Reginald L.; Oppikofer, Thierry; Penna, Ivanna

    2016-04-01

    Unstable rock slopes that can cause large failures of the rock-avalanche type have been mapped in Norway for almost two decades. Four sites have earlier been characterized as high-risk objects based on expertise of few researchers. This resulted in installing continuous monitoring systems and set-up of an early-warning system for those four sites. Other unstable rock slopes have not been ranked related to their hazard or risk. There are ca. 300 other sites known of which 70 sites were installed for periodic deformation measurements using multiple techniques (Global Navigation Satellite Systems, extensometers, measurement bolts, and others). In 2012 a systematic hazard and risk classification system for unstable rock slopes was established in Norway and the mapping approach adapted to that in 2013. Now, the first 22 sites were classified for hazard, consequences and risk using this classification system. The selection of the first group of sites to be classified was based on an assumed high hazard or risk and importance given to the sites by Norwegian media and the public. Nine of the classified 22 unstable rock slopes are large sites that deform inhomogeneously or are strongly broken up in individual blocks. This suggests that different failure scenarios are possible that need to be analyzed individually. A total of 35 failure scenarios for those nine unstable rock slopes were considered. The hazard analyses were based on 9 geological parameters defined in the classification system. The classification system will be presented based on the Gamanjunni unstable rock slope. This slope has a well developed back scarp that exposes 150 m preceding displacement. The lateral limits of the unstable slope are clearly visible in the morphology and InSAR displacement data. There have been no single structures observed that allow sliding kinematically. The lower extend of the displacing rock mass is clearly defined in InSAR data and by a zone of higher rock fall activity. Yearly

  20. Surface finish quality of the outer AXAF mirror pair based on X-ray measurements of the VETA-I

    Science.gov (United States)

    Hughes, John P.; Schwartz, Daniel; Szentgyorgyi, Andrew; Van Speybroeck, Leon; Zhao, Ping

    1993-01-01

    We employ the X-ray measurements of the VETA-I taken at the X-Ray Calibration Facility (XRCF) of the Marshall Space Flight Center (MSFC) to extract information about the surface finish quality of the outermost pair of AXAF mirrors. The particular measurements we consider are 1D scans of the core of the point response function (PRF) (FWHM scans), the encircled energy as a function of radius, and 1D scans of the wings of the PRF. We discuss briefly our raytrace model which incorporates the numerous effects present in the VETA-I test, such as the finite source distance, the size and shape of the X-ray source, the residual gravitational distortions of the optic, the despace of the VETA-I, and particulate contamination. We show how the data constrain the amplitude of mirror surface deviations for spatial frequencies greater than about 0.1/mm. Constraints on the average amplitude of circumferential slope errors are derived as well.