Sample records for surface slip profiles

  1. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)


    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geo- metrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hy- drodynamic load support as high as 2.5 times of what the geometrical conver- gent-wedge can produce. Wall slip usually gives a small surface friction.

  2. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    MA GuoJun; WU ChengWei; ZHOU Ping


    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geometrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hydrodynamic load support as high as 2.5 times of what the geometrical convergent-wedge can produce. Wall slip usually gives a small surface friction.

  3. Large Slip Length over a Nanopatterned Surface

    Institute of Scientific and Technical Information of China (English)

    LI Ding; DI Qin-Feng; LI Jing-Yuan; QIAN Yue-Hong; FANG Hai-Ping


    A thermodynamic method is employed to analyse the slip length of hydrophobic nanopatterned surface.The maximal slip lengths with respect to the hydrophobicity of the nanopatterned surface are computed.It is found that the slip length reaches more than 50μm if the nanopatterned surfaces have a contact angle larger than 160°.Such results are expected to find extensive applications in micro-channels and helpful to understand recent experimental observations of the slippage of nanopatterned surfaces.

  4. Thermal slip for liquids at rough solid surfaces (United States)

    Zhang, Chengbin; Chen, Yongping; Peterson, G. P.


    Molecular dynamics simulation is used to examine the thermal slip of liquids at rough solid surfaces as characterized by fractal Cantor structures. The temperature profiles, potential energy distributions, thermal slip, and interfacial thermal resistance are investigated and evaluated for a variety of surface topographies. In addition, the effects of liquid-solid interaction, surface stiffness, and boundary condition on thermal slip length are presented. Our results indicate that the presence of roughness expands the low potential energy regions in adjacent liquids, enhances the energy transfer at liquid-solid interface, and decreases the thermal slip. Interestingly, the thermal slip length and thermal resistance for liquids in contact with solid surfaces depends not only on the statistical roughness height, but also on the fractal dimension (i.e., topographical spectrum).

  5. Effective slip boundary conditions for arbitrary periodic surfaces: The surface mobility tensor

    CERN Document Server

    Kamrin, Ken; Stone, Howard A


    In a variety of applications, most notably microfluidic design, slip-based boundary conditions have been sought to characterize fluid flow over patterned surfaces. We focus on laminar shear flows over surfaces with periodic height fluctuations and/or fluctuating Navier scalar slip properties. We derive a general formula for the "effective slip", which describes equivalent fluid motion at the mean surface as depicted by the linear velocity profile that arises far from it. We show that the slip and the applied stress are related linearly through a tensorial mobility matrix, and the method of domain perturbation is then used to derive an approximate formula for the mobility law directly in terms of surface properties. The specific accuracy of the approximation is detailed, and the mobility relation is then utilized to address several questions, such as the determination of optimal surface shapes and the effect of random surface fluctuations on fluid slip.

  6. Hydrodynamic slip length as a surface property (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.


    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  7. Hydrodynamic slip length as a surface property. (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G P


    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  8. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.


    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  9. Optimization of Partial Slip Surface at Lubricated-MEMS

    NARCIS (Netherlands)

    Tauviqirrahman, M.; Ismail, R.; Schipper, D.J.; Jamari, J.; Suprijanto, Dr.


    This work reports the hydrodynamic performance (load support, friction force, friction coefficient, and volume flow) generated by a partial slip surface at lubricated-MEMS. The partial slip surface is optimized so that a maximum hydrodynamic load support could be obtained. The partial slip is applie

  10. Surface fault slip associated with the 2004 Parkfield, California, earthquake (United States)

    Rymer, M.J.; Tinsley, J. C.; Treiman, J.A.; Arrowsmith, J.R.; Ciahan, K.B.; Rosinski, A.M.; Bryant, W.A.; Snyder, H.A.; Fuis, G.S.; Toke, N.A.; Bawden, G.W.


    Surface fracturing occurred along the San Andreas fault, the subparallel Southwest Fracture Zone, and six secondary faults in association with the 28 September 2004 (M 6.0) Parkfield earthquake. Fractures formed discontinuous breaks along a 32-km-long stretch of the San Andreas fault. Sense of slip was right lateral; only locally was there a minor (1-11 mm) vertical component of slip. Right-lateral slip in the first few weeks after the event, early in its afterslip period, ranged from 1 to 44 mm. Our observations in the weeks following the earthquake indicated that the highest slip values are in the Middle Mountain area, northwest of the mainshock epicenter (creepmeter measurements indicate a similar distribution of slip). Surface slip along the San Andreas fault developed soon after the mainshock; field checks in the area near Parkfield and about 5 km to the southeast indicated that surface slip developed more than 1 hr but generally less than 1 day after the event. Slip along the Southwest Fracture Zone developed coseismically and extended about 8 km. Sense of slip was right lateral; locally there was a minor to moderate (1-29 mm) vertical component of slip. Right-lateral slip ranged from 1 to 41 mm. Surface slip along secondary faults was right lateral; the right-lateral component of slip ranged from 3 to 5 mm. Surface slip in the 1966 and 2004 events occurred along both the San Andreas fault and the Southwest Fracture Zone. In 1966 the length of ground breakage along the San Andreas fault extended 5 km longer than that mapped in 2004. In contrast, the length of ground breakage along the Southwest Fracture Zone was the same in both events, yet the surface fractures were more continuous in 2004. Surface slip on secondary faults in 2004 indicated previously unmapped structural connections between the San Andreas fault and the Southwest Fracture Zone, further revealing aspects of the structural setting and fault interactions in the Parkfield area.

  11. Prediction of fluid velocity slip at solid surfaces

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Todd, Billy; Daivis, Peter


    methods, it allows us to directly compute the intrinsic wall-fluid friction coefficient rather than an empirical friction coefficient that includes all sources of friction for planar shear flow. The slip length predicted by our method is in excellent agreement with the slip length obtained from direct......The observed flow enhancement in highly confining geometries is believed to be caused by fluid velocity slip at the solid wall surface. Here we present a simple and highly accurate method to predict this slip using equilibrium molecular dynamics. Unlike previous equilibrium molecular dynamics...

  12. Inverting measurements of surface slip on the Superstition Hills fault (United States)

    Boatwright, J.; Budding, K.E.; Sharp, R.V.


    We derive and test a set of inversions of surface-slip measurements based on the empirical relation u(t)=uf/(1 + T/t)c proposed by Sharp and Saxton (1989) to estimate the final slip uf, the power-law exponent c, and the power-law duration T. At short times, Sharp's relation behaves like the simple power law, u(t)~u1tc, where u1 is the initial slip, that is, the slip at 1 day after the earthquake. At long times, the slip approaches the final slip asymptotically. The inversions are designed in part to exploit the accuracy of measurements of differential slip; that is, measurements of surface slip which are made relative to a set of nails or stakes emplaced after the earthquake. We apply the inversions to slip measurements made at 53 sites along the Superstition Hills fault for the 11 months following the M=6.2 and 6.6 earthqakes of 24 November 1987. -from Authors

  13. Molecular Dynamics Simulations of Slip on Curved Surfaces

    Directory of Open Access Journals (Sweden)

    Ross D.A.


    Full Text Available We present Molecular Dynamics (MD simulations of liquid water confined within nanoscale geometries, including slit-like and cylindrical graphitic pores. These equilibrium results are used for calculating friction coefficients, which in turn can be used to calculate slip lengths. The slip length is a material property independent of the fluid flow rate. It is therefore a better quantity for study than the fluid velocity at the wall, also known as the slip velocity. Once the slip length has been found as a function of surface curvature, it can be used to parameterise Lattice Boltzmann (LB simulations. These larger scale simulations are able to tell us about how fluid transport is affected by slip in complex geometries; not just limited to single pores. Applications include flow and transport in nano-porous engine valve deposits and gas shales. The friction coefficient is found to be a function of curvature and is higher for fluid on convex surfaces and lower for concave surfaces. Both concave and convex surfaces approach the same value of the friction coefficient, which is constant above some critical radius of curvature, here found to be 7.4 ± 2.9 nm. The constant value of the friction coefficient is 10,000 ± 600 kg m−2 s−1, which is equivalent to a slip length of approximately 67 ± 4 nm.

  14. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake (United States)

    Barnhart, W. D.; Briggs, R. W.; Reitman, N. G.; Gold, R. D.; Hayes, G. P.


    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip - normal, reverse, or strike-slip - until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200 + km 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  15. A unified slip boundary condition for flow over a surface

    CERN Document Server

    Thalakkottor, Joseph John


    Interface between two phases of matter are ubiquitous in nature and technology. Determining the correct velocity condition at an interface is essential for understanding and designing of flows over a surface. We demonstrate that both the widely used no-slip and the Navier and Maxwell slip boundary conditions do not capture the complete physics associated with complex problems, such as spreading of liquids or corner flows. Hence, we present a unified boundary condition that is applicable to a wide-range of flow problems.

  16. Surface Slip Gradients and Fault Connectivity at Depth (United States)

    Oglesby, D. D.


    Observational and numerical evidence has implied that it is difficult for earthquake rupture to jump stepovers with widths significantly larger than 4 km [e.g., Harris et al., 1991; Harris and Day, 1999; Wesnousky, 2006]. It has also been shown observationally that if surface slip tapers to zero over a small along-strike distance on the primary fault segment at a stepover, an earthquake has a significantly increased likelihood of jumping the stepover and propagating to a secondary fault segment [Elliott et al., 2009]. This latter result has been attributed to a high slip gradient on the primary segment generating a strong dynamic stress concentration on the second segment, which can facilitate rupture renucleation [Oglesby, 2008]. Recent 3D dynamic earthquake simulations, however, provide an alternative interpretation for this effect: an earthquake on a fault that is disconnected at the surface but is connected (i.e., is a throughgoing structure) at depth also will tend to produce a higher surface slip gradient at the edges of the segments than will a system that is fully disconnected, at least for relatively long segments that are connected at relatively shallow depth. This result raises the possibility that many of the rupture "jumps" that we see at fault stepovers on the surface may in fact reflect through-going ruptures on a continuous subsurface fault. These results may have implications for the pervasiveness of fault connectivity at depth, the likelihood of throughgoing rupture at surface stepovers, ground motion estimates, and seismic hazard.

  17. Comparisons of Limit Analysis Solutions and Random Search Solutions on Slope Critical Slip SUrface

    Institute of Scientific and Technical Information of China (English)



    The object of this paper is twofold:to present a kinematics limit analysis for assessing the safety of slope or its critical slip surface,and to compare the searched slip surface with that by limit analysis.

  18. Photoinduced "stick-slip" on superhydrophilic semiconductor surfaces. (United States)

    Denison, Kieth R; Boxall, Colin


    Transparent mesoporous TiO2 (M-TiO2) thin films were prepared on quartz via a reverse micelle, sol-gel, spin-coating technique. Films were characterized by atomic force microscopy (AFM) and Raman and UV-vis spectroscopies and were found to be mostly anatase with low surface roughness (Rt approximately 5 nm). The time dependence of film photoinduced superhydrophilicity (PISH) was measured by observation of the spreading of a sessile water drop using a new, continuous measurement technique wherein the drop was first applied to the semiconductor surface and then was filmed while it and the underlying substrate were illuminated by 315 nm ultraband gap light. Results obtained at 100% relative humidity (RH) at 293 K showed that drops on M-TiO2 surfaces exhibited a photoinduced "stick-slip" behavior, the first time such an effect has been observed. The thermodynamic driving force for this photoinduced stick-slip was the departure of the system from capillary equilibrium as, with increasing illumination time, the concentration of surface Ti-OH groups increased and the equilibrium contact angle of the drop, theta0, decreased. A simple theoretical description of photoinduced stick-slip is derived and is used to calculate a value of the potential energy barrier associated with surface inhomogeneities that oppose onset of movement of the triple line, U = 6.63 x 10(-6) J m(-1). This is the first time that U has been quantified for a surface with photoinduced superhydrophilicity. Triple line retreat measurements on an evaporating drop on M-TiO2 in the dark, RH = 60%, T = 293 K, gave a value of U = 9.4 x 10(-6) J m(-1), indicating that U decreases upon UV illumination and that U in the light is primarily associated with inhomogeneities that are unaffected by an increase in the surface Ti-OH population, such as the physical roughness of the surface. In the dark evaporation experiment, the drop was found to retreat with an areal velocity of 1.48 x 10(-8) m2 s(-1). However, under UV

  19. Evaporation of Sessile Droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS). (United States)

    Guan, Jian H; Wells, Gary G; Xu, Ben; McHale, Glen; Wood, David; Martin, James; Stuart-Cole, Simone


    Over the past decade, the most common approach to creating liquid shedding surfaces has been to amplify the effects of nonwetting surface chemistry, using micro/nanotexturing to create superhydrophobic and superoleophobic surfaces. Recently, an alternative approach using impregnation of micro/nanotextured surfaces with immiscible lubricating liquids to create slippery liquid-infused porous surfaces (SLIPS) has been developed. These types of surfaces open up new opportunities to study the mechanism of evaporation of sessile droplets in zero contact angle hysteresis situations where the contact line is completely mobile. In this study, we fabricated surfaces consisting of square pillars (10-90 μm) of SU-8 photoresist arranged in square lattice patterns with the center-to-center separation between pillars of 100 μm, on which a hydrophobic coating was deposited and the textures impregnated by a lubricating silicone oil. These surfaces showed generally low sliding angles of 1° or less for small droplets of water. Droplet profiles were more complicated than on nonimpregnated surfaces and displayed a spherical cap shape modified by a wetting ridge close to the contact line due to balancing the interfacial forces at the line of contact between the droplet, the lubricant liquid and air (represented by a Neumann triangle). The wetting ridge leads to the concept of a wetting "skirt" of lubricant around the base of the droplet. For the SLIP surfaces, we found that the evaporation of small sessile droplets (∼2 mm in diameter) followed an ideal constant contact angle mode where the apparent contact angle was defined from the intersection of the substrate profile with the droplet spherical cap profile. A theoretical model based on diffusion controlled evaporation was able to predict a linear dependence in time for the square of the apparent contact radius. The experimental data was in excellent quantitative agreement with the theory and enabled estimates of the diffusion

  20. Slip of polymer melts over micro/nano-patterned metallic surfaces. (United States)

    Ebrahimi, Marzieh; Konaganti, Vinod Kumar; Moradi, Sona; Doufas, Antonios K; Hatzikiriakos, Savvas G


    The slip behavior of high-density polyethylenes (HDPEs) is studied over surfaces of different topology and surface energy. Laser ablation has been used to micro/nano-pattern the surface of dies in order to examine the effect of surface roughness on slip. In addition, fluoroalkyl silane-based coatings on smooth and patterned substrates were used to understand the effect of surface energy on slip. Surface roughness and surface energy effects were incorporated into the double reptation slip model (Ebrahimi et al., J. Rheol., 2015, 59, 885-901) in order to predict the slip velocity of studied polymers on different substrates. It was found that for dies with rough surfaces, polymer melt penetrates into the cavities of the substrate (depending on the depth and the distance between the asperities), thus decreasing wall slip. On the other hand, silanization of the surface increases the slip velocity of polymers in the case of smooth die, although it has a negligible effect on rough dies. Interestingly, the slip velocity of the studied polymers on various substrates of different degrees of roughness and surface energy, were brought into a mastercurve by modifying the double reptation slip velocity model.

  1. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Yan; YI Hou-Hui; LI Hua-Bing


    The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions.The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles.Other factors,such as fluid viscosity,bulk pressure may also change the slip length.We find that boundary slip only occurs under a certain density(bulk pressure).If the density is large enough,the slip length will tend to zero.In our simulations,a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics.It is the low density layer that induces the boundary slip.The results may be helpful to understand recent experimental observations on the slippage of micro flows.

  2. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy. (United States)

    Bhushan, Bharat; Wang, Yuliang; Maali, Abdelhamid


    Slip length has been measured using the dynamic atomic force microscopy (AFM) method. Unlike the contact AFM method, the sample surface approaches an oscillating sphere with a very low velocity in the dynamic AFM method. During this process, the amplitude and phase shift data are recorded to calculate the hydrodynamic damping coefficient, which is then used to obtain slip length. In this study, a glass sphere with a large radius was glued to the end of an AFM cantilever to measure the slip length on rough surfaces. Experimental results for hydrophilic, hydrophobic, and superhydrophobic surfaces show that the hydrodynamic damping coefficient decreases from the hydrophilic surface to the hydrophobic surface and from the hydrophobic one to the superhydrophobic one. The slip lengths obtained on the hydrophobic and superhydrophobic surfaces are 43 and 236 nm, respectively, which indicates increasing boundary slip from the hydrophobic surface to the superhydrophobic one.

  3. Surface slip associated with the 2004 Parkfield, California, earthquake measured on alinement arrays (United States)

    Lienkaemper, J.J.; Baker, B.; McFarland, F.S.


    Although still continuing, surface slip from the 2004 Parkfield earth-quake as measured on alinement arrays appears to be approaching about 30-35 cm between Parkfield and Gold Hill. This includes slip along the main trace and the Southwest Fracture Zone (SWFZ). Slip here was higher in 1966 at about 40 cm. The distribution of 2004 slip appears to have a shape similar to that of the 1966 event, but final slip is expected to be lower in 2004 by about 3-15 cm, even when continuing slip is accounted for. Proportionately, this difference is most notable at the south end at Highway 46, where the 1966 event slip was 13 cm compared to the 2004 slip of 4 cm. Continuous Global Positioning System and creepmeters suggest that significant surface coseismic slip apparently occurred mainly on the SWFZ and perhaps on Middle Mountain (the latter possibly caused by shaking) (Langbein et al., 2005). Creepmeters indicate only minor (<0.2 cm) surface coseismic slip occurred on the main trace between Parkfield and Gold Hill. We infer that 3-6 cm slip accumulated across our arrays in the first 24 hr. At Highway 46, slip appears complete, whereas the remaining sites are expected to take 2-6 years to reach their background creep rates. Following the 1966 event, afterslip at one site persisted as much as 5-10 years. The much longer recurrence intervals between the past two Parkfield earthquakes and the decreasing slip per event may suggest that larger slip deficits are now growing along the Parkfield segment.

  4. The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids. (United States)

    Li, Yifan; Bhushan, Bharat


    The reduction of fluid drag is an important issue in many fluid flow applications at the micro/nanoscale. Boundary slip is believed to affect fluid drag. Slip length has been measured on various surfaces with different degrees of hydrophobicity and oleophobicity immersed in various liquids of scientific interest. Surface charge has been found to affect slip length in water and electrolytes. However, there are no studies on the effect of surface charge on slip at solid-oil interfaces. This study focuses on the effect of surface charge on the boundary slip of superoleophilic, oleophilic, oleophobic, and superoleophobic surfaces immersed in deionized (DI) water and hexadecane and ethylene glycol, based on atomic force microscopy (AFM). The surface charge was changed by applying a positive electric field to the solid-liquid interface, and by using liquids with different pH values. The results show that slip length increases with an increase in applied positive electric field voltage. Slip length also increases with a decrease in the pH of the solutions. The change in slip length is dependent on the absolute value of the surface charge, and a larger surface charge density results in a smaller slip length. In addition, the surface charge density at different solid-liquid interfaces is related to the dielectric properties of the surface. The underlying mechanisms are analyzed.

  5. Dynamic growth of slip surfaces in catastrophic landslides. (United States)

    Germanovich, Leonid N; Kim, Sihyun; Puzrin, Alexander M


    This work considers a landslide caused by the shear band that emerges along the potential slip (rupture) surface. The material above the band slides downwards, causing the band to grow along the slope. This growth may first be stable (progressive), but eventually becomes dynamic (catastrophic). The landslide body acquires a finite velocity before it separates from the substrata. The corresponding initial-boundary value problem for a dynamic shear band is formulated within the framework of Palmer & Rice's (Proc. R. Soc. Lond. A332, 527-548. (doi:10.1098/rspa.1973.0040)) approach, which is generalized to the dynamic case. We obtain the exact, closed-form solution for the band velocity and slip rate. This solution assesses when the slope fails owing to a limiting condition near the propagating tip of the shear band. Our results are applicable to both submarine and subaerial landslides of this type. It appears that neglecting dynamic (inertia) effects can lead to a significant underestimation of the slide size, and that the volumes of catastrophic slides can exceed the volumes of progressive slides by nearly a factor of 2. As examples, we consider the Gaviota and Humboldt slides offshore of California, and discuss landslides in normally consolidated sediments and sensitive clays. In particular, it is conceivable that Humboldt slide is unfinished and may still displace a large volume of sediments, which could generate a considerable tsunami. We show that in the case of submarine slides, the effect of water resistance on the shear band dynamics may frequently be limited during the slope failure stage. For a varying slope angle, we formulate a condition of slide cessation.


    Directory of Open Access Journals (Sweden)

    Petar Hrženjak


    Full Text Available Due to the specific characteristics of rock mass compared to other geological materials, the calculation of rock slope stability is very complex. One of the basic characteristics of rock masses is discontinuity, which, to the most degree, is formed by the geological structure and its elements. Because of discontinuities the slip surfaces of complex shapes are formed in rock slopes, mostly of straight and curved segments. The calculation of the stability factor of rock slopes for complex shapes of slip surfaces has been made possible by the development of the MathSlope method. The complex shape of slip surface has been achieved by introduction of planes of discontinuities in the slip surface. Thus, the setting up and searching procedure of critical slip surfaces of complex shapes is very different in the MathSlope method than in other ones. The example of back analysis for the quarry Vukov Dol shows the successfulness in determining the critical slip surface, as well as the calculation factor of stability for the complex shape of slip surface. Apart from calculating the factor of stability for the complex slip surface, the solution for the position of discontinuity on the slope is obtained, which matches with the real position on the quarry.

  7. Flow past superhydrophobic surfaces with cosine variation in local slip length

    CERN Document Server

    Asmolov, Evgeny S; Harting, Jens; Vinogradova, Olga I


    Anisotropic super-hydrophobic surfaces have the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused mostly on cases of super-hydrophobic stripes. Here, we analyze a relevant situation of cosine variation of the local slip length. We derive approximate formulae for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that are in good agreement with the exact numerical solution and lattice-Bolzmann simulations for any surface slip fraction. The cosine texture can provide a very large effective (forward) slip, but it was found to be less efficient in generating a transverse flow as compared to super-hydrophobic stripes.

  8. Contribution of multi-temporal remote sensing images to characterize landslide slip surface ‒ Application to the La Clapière landslide (France

    Directory of Open Access Journals (Sweden)

    B. Casson


    Full Text Available Landslide activity is partly controlled by the geometry of the slip surface. This activity is traduced at the surface by displacements and topographic variations. Consequently, multi-temporal remote sensing images can be used in order to characterize the geometry of landslide slip surface and its spatial and temporal evolution. Differential Digital Elevation Models (DEMs are obtained by subtracting two DEMs of different years. A method of multi-temporal images correlation allows to generate displacement maps that can be interpreted in terms of velocity and direction of movements. These data are then used to characterize qualitatively the geometry of the slip surface of the la Clapière landslide (French Southern Alps. Distribution of displacement vectors and of topographic variations are in accordance with a curved slip surface, characterizing a preferential rotational behaviour of this landslide. On the other hand, a spatial and temporal evolution of the geometry of the slip surface is pointed out. Indeed, a propagation of the slip surface under the Iglière bar, in the W part of the landslide, is suspected and can be linked to the acceleration of the landslide in 1987. This study shows the high potential of multi-temporal remote sensing images for slip surface characterization. Although this method could not replace in situ investigations, it can really help to well distribute geophysical profiles or boreholes on unstable areas.

  9. Quantifying effective slip length over micropatterned hydrophobic surfaces

    CERN Document Server

    Tsai, Peichun; Pirat, Christophe; Wessling, Matthias; Lammertink, Rob G H; Lohse, Detlef


    We employ micro-particle image velocimetry ($\\mu$-PIV) to investigate laminar micro-flows in hydrophobic microstructured channels, in particular the slip length. These microchannels consist of longitudinal micro-grooves, which can trap air and prompt a shear-free boundary condition and thus slippage enhancement. Our measurements reveal an increase of the slip length when the width of the micro-grooves is enlarged. The result of the slip length is smaller than the analytical prediction by Philip et al. [1] for an infinitely large and textured channel comprised of alternating shear-free and no-slip boundary conditions. The smaller slip length (as compared to the prediction) can be attributed to the confinement of the microchannel and the bending of the meniscus (liquid-gas interface). Our experimental studies suggest that the curvature of the meniscus plays an important role in microflows over hydrophobic micro-ridges.

  10. Measurements of slip length for flows over graphite surface with gas domains (United States)

    Li, Dayong; Wang, Yuliang; Pan, Yunlu; Zhao, Xuezeng


    We present the measurements of slip lengths for the flows of purified water over graphite surface covered with surface nanobubbles or nano/micropancakes, which can be produced after using high temperature water to replace low temperature water. The slip length values measured on bare graphite surface, nano/micropancake or nanobubble covered graphite surfaces are about 8 nm, 27 nm, and 63 nm, respectively. Our results indicate that the gaseous domains formed at the solid-liquid interface, including surface nanobubbles and nano/micropancakes, could act as a lubricant and significantly increase slip length.

  11. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

    Directory of Open Access Journals (Sweden)

    Yunlu Pan


    Full Text Available The drag of fluid flow at the solid–liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA and contact angle hysteresis (CAH of a droplet of deionized (DI water on a hydrophobic polystyrene (PS surface were measured with applied direct current (DC and alternating current (AC voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found.

  12. Slip length measurement of confined air flow on three smooth surfaces. (United States)

    Pan, Yunlu; Bhushan, Bharat; Maali, Abdelhamid


    An experimental measurement of the slip length of air flow close to three different solid surfaces is presented. The substrate was driven by a nanopositioner moving toward an oscillating glass sphere glued to an atomic force microscopy (AFM) cantilever. A large separation distance was used to get more effective data. The slip length value was obtained by analyzing the amplitude and phase data of the cantilever. The measurements show that the slip length does not depend on the oscillation amplitude of the cantilever. Because of the small difference among the slip lengths of the three surfaces, a simplified analysis method was used. The results show that on glass, graphite, and mica surfaces the slip lengths are 98, 234, and 110 nm, respectively.

  13. Temperature dependence of the slip length in polymer melts at attractive surfaces. (United States)

    Servantie, J; Müller, M


    Using Couette and Poiseuille flows, we extract the temperature dependence of the slip length, delta, from molecular dynamics simulations of a coarse-grained polymer model in contact with an attractive surface. delta is dictated by the ratio of bulk viscosity and surface mobility. At weakly attractive surfaces, lubrication layers form; delta is large and increases upon cooling. Close to the glass transition temperature Tg, very large slip lengths are observed. At a more attractive surface, a sticky surface layer is built up, giving rise to small slip lengths. Upon cooling, delta decreases at high temperatures, passes through a minimum, and grows for T-->Tg. At strongly attractive surfaces, the Navier-slip condition fails to describe Couette and Poiseuille flows simultaneously. The simulations are corroborated by a schematic, two-layer model suggesting that the observations do not depend on details of the computational model.

  14. Improved genetic algorithm freely searching for dangerous slip surface of slope

    Institute of Scientific and Technical Information of China (English)

    WAN Wen; CAO Ping; FENG Tao; YUAN Hai-ping


    Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of slope and the corresponding minimum safety factor without supposing the geometric shape of the most dangerous slip surface. This improved genetic algorithm can simulate the genetic evolution process of organisms and avoid the local minimum value compared with the classical methods. The results of engineering cases show that it is a global optimal algorithm and has many advantages, such as higher efficiency and shorter time than the simple genetic algorithm.

  15. Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations (United States)

    Wang, LiYa; Wang, FengChao; Yang, FuQian; Wu, HengAn


    A theoretical model extended from the Frenkel-Eyring molecular kinetic theory (MKT) was applied to describe the boundary slip on textured surfaces. The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces. The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics (MD) simulations. The extended MKT slip model is validated by our MD simulations under various situations, by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid. This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow. Moreover, the slip velocity shear-rate dependence can be predicted using this slip model, since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.

  16. Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations

    Institute of Scientific and Technical Information of China (English)

    WANG LiYa; WANG FengChao; YANG FuQian; WU HengAn


    A theoretical model extended from the Frenkel-Eyring molecular kinetic theory (MKT) was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics (MD) simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.

  17. Absence of molecular slip on ultraclean and SAM-coated surfaces (United States)

    Pye, Justin; Wood, Clay; Burton, Justin


    The liquid/solid boundary condition is a complex problem that is becoming increasingly important for the development of nanoscale fluidic devices. Many groups have now measured slip near an interface at nanoscale dimensions using a variety of experimental techniques. In simple systems, large slip lengths are generally measured for non-wetting liquid/solid combinations, but many conflicting measurements and interpretations remain. We have developed a novel pseudo-differential technique using a quartz crystal microbalance (QCM) to measure slip lengths on various surfaces. A drop of one liquid is grown on the QCM in the presence of a second, ambient liquid. We have isolated any anomalous boundary effects such as interfacial slip by choosing two liquids which have identical bulk effects on the QCM frequency and dissipation in the presence of no-slip. Slip lengths are -less than 2 nm- for water (relative to undecane) on all surfaces measured, including plasma cleaned gold, SiO2, and two different self assembled monolayers (SAMs), regardless of contact angle. We also find that surface cleanliness is crucial to accurately measure slip lengths. Additionally, clean glass substrates appear to have a significant adsorbed water layer and SAM surfaces show excess dissipation, possibly associated with contact line motion. In addition to investigating other liquid pairs, future work will include extending this technique to surfaces with independently controllable chemistry and roughness, both of which are known to strongly affect interfacial hydrodynamics.

  18. Slippery versus slip resistant work surfaces: The background for a regulatory definition (United States)

    Miller, J. M.


    There has been over fifty years of scattered research into the areas of walking/working surface slipperiness and coefficient of friction (COF) measurement. In spite of this research, numerous standards address slip/fail type accidents only in terms of requiring surfaces to be qualitatively useful in providing guidelines for establishing quantitative criteria for "slippery' vs. "slip resistant' combinations of surface, shoe, task, and contaminant conditions. Recommendations applicable to standards making organizations are made. Among them are: (1) changing legally inappropriate descriptor terms such as "nonslip' to "slip resistant'; and (2) defining "slippery' vs. "slip resistant' in terms of quantitative COF values (i.e., for persons walking unloaded on level surfaces a COF of 0.5 would be a reasonable standard).

  19. Quantifying effective slip length over micropatterned hydrophobic surfaces

    NARCIS (Netherlands)

    Tsai, Peichun; Peters, Alisia M.; Pirat, Christophe; Wessling, Matthias; Lammertink, Rob G.H.; Lohse, Detlef


    We employ microparticle image velocimetry to investigate laminar microflows in hydrophobic microstructured channels, in particular the slip length. These microchannels consist of longitudinal microgrooves, which can trap air and prompt a shear-free boundary condition and thus slippage enhancement. O

  20. System reliability analysis of layered soil slopes using fully specified slip surfaces and genetic algorithms


    Zeng, Peng; Jiménez Rodríguez, Rafael; Jurado Piña, Rafael


    This paper presents a new approach to identify the fully specified representative slip surfaces (RSSs) of layered soil slopes and to compute their system probability of failure, Pf,s. Spencer's method is used to compute the factors of safety of trial slip surfaces, and the First Order Reliability Method (FORM) is employed to efficiently evaluate their reliability. A custom-designed Genetic Algorithm (GA) is developed to search all the RSSs in only one GA optimization. Taking advantage of the ...

  1. Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake

    KAUST Repository

    Goda, Katsuichiro


    In this study, we develop stochastic random-field slip models for the 2011 Tohoku earthquake and conduct a rigorous sensitivity analysis of tsunami hazards with respect to the uncertainty of earthquake slip and fault geometry. Synthetic earthquake slip distributions generated from the modified Mai-Beroza method captured key features of inversion-based source representations of the mega-thrust event, which were calibrated against rich geophysical observations of this event. Using original and synthesised earthquake source models (varied for strike, dip, and slip distributions), tsunami simulations were carried out and the resulting variability in tsunami hazard estimates was investigated. The results highlight significant sensitivity of the tsunami wave profiles and inundation heights to the coastal location and the slip characteristics, and indicate that earthquake slip characteristics are a major source of uncertainty in predicting tsunami risks due to future mega-thrust events.

  2. Turbulent flows over superhydrophobic surfaces with shear-dependent slip length (United States)

    Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre


    Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).

  3. Simulation of Effective Slip and Drag in Pressure-Driven Flow on Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Yuanding Huang


    Full Text Available The flow on superhydrophobic surfaces was investigated using finite element modeling (FEM. Surfaces with different textures like grooves, square pillars, and cylinders immersed in liquid forming Cassie state were modeled. Nonslip boundary condition was assumed at solid-liquid interface while slip boundary condition was supposed at gas-liquid interface. It was found that the flow rate can be affected by the shape of the texture, the fraction of the gas-liquid area, the height of the channel, and the driving pressure gradient. By extracting the effective boundary slip from the flow rate based on a model, it was found that the shape of the textures and the fraction of the gas-liquid area affect the effective slip significantly while the height of the channel and the driving pressure gradient have no obvious effect on effective slip.

  4. Thermophoresis at a charged surface: the role of hydrodynamic slip. (United States)

    Morthomas, Julien; Würger, Alois


    By matching boundary layer hydrodynamics with slippage to the force-free flow at larger distances, we obtain the thermophoretic mobility of charged particles as a function of the Navier slip length b. A moderate value of b augments Ruckenstein's result by a term 2b/λ, where λ is the Debye length. If b exceeds the particle size a, the enhancement coefficient a/λ is independent of b but proportional to the particle size. Similar effects occur for transport driven by a salinity gradient or by an electric field.

  5. MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation (absorption and slip velocity

    Directory of Open Access Journals (Sweden)

    Mostafa A.A. Mahmoud


    Full Text Available In this work, the effects of slip velocity on the flow and heat transfer for an electrically conducting micropolar fluid over a permeable stretching surface with variable heat flux in the presence of heat generation (absorption and a transverse magnetic field are investigated. The governing partial differential equations describing the problem are converted to a system of non-linear ordinary differential equations by using the similarity transformation, which is solved numerically using the Chebyshev spectral method. The effects of the slip parameter on the flow, micro-rotation and temperature profiles as well as on the local skin-friction coefficient, the wall couple stress and the local Nusselt number are presented graphically. The numerical results of the local skin-friction coefficient, the wall couple stress and the local Nusselt number are given in a tabular form and discussed.

  6. Stick-slip control in nanoscale boundary lubrication by surface wettability. (United States)

    Chen, Wei; Foster, Adam S; Alava, Mikko J; Laurson, Lasse


    We study the effect of atomic-scale surface-lubricant interactions on nanoscale boundary-lubricated friction by considering two example surfaces-hydrophilic mica and hydrophobic graphene-confining thin layers of water in molecular dynamics simulations. We observe stick-slip dynamics for thin water films confined by mica sheets, involving periodic breaking-reforming transitions of atomic-scale capillary water bridges formed around the potassium ions of mica. However, only smooth sliding without stick-slip events is observed for water confined by graphene, as well as for thicker water layers confined by mica. Thus, our results illustrate how atomic-scale details affect the wettability of the confining surfaces and consequently control the presence or absence of stick-slip dynamics in nanoscale friction.

  7. On the slip number choice in computations of liquid droplet impinging on a hydrophilic surface

    CERN Document Server

    Ganesan, Sashikumaar


    A mesh-dependent relation for the slip number in the Navier-slip with friction boundary condition for computations of impinging droplets is proposed. The relation is obtained as a function of the Reynolds number, the Weber number and the mesh size. The proposed relation is validated for several test cases by comparing the numerically obtained wetting diameter with the experimental results. Further, the computationally obtained maximum wetting diameter using the proposed slip relation is verified with the theoretical predictions. The relative error between the computationally obtained maximum wetting diameter and the theoretical predictions is less than 10\\% for impinging droplet on a hydrophilic surface, and the error increases in the case of hydrophobic surface.

  8. Magnetohydrodynamic and thermal radiation effects on the boundary-layer flow due to a moving extensible surface with the velocity slip model: A comparative study of four nanofluids (United States)

    Aly, Emad H.; Sayed, Hamed M.


    In the current work, we investigated effects of the velocity slip for the flow and heat transfer of four nanofluids over a non-linear stretching sheet taking into account the thermal radiation and magnetic field in presence of the effective electrical conductivity. The governing partial differential equations were transformed into a set of nonlinear ordinary differential equation using similarity transformations before being solved numerically by the Chebyshev pseudospectral differentiation matrix (ChPDM). It was found that the investigated parameters affect remarkably on the nanofluid stream function for the whole investigated nanoparticles. In addition, velocity and skin friction profiles of the four investigated nanofluids decreases and increases, respectively, with the increase of the magnetic parameter, first-order and second-order velocity slips. Further, the flow velocity, surface shear stress and temperature are strongly influenced on applying the velocity slip model, where lower values of the second-order imply higher surface heat flux and thereby making the fluid warmer.

  9. Numerical investigation of velocity slip and temperature jump effects on unsteady flow over a stretching permeable surface (United States)

    Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.


    In this paper, the boundary layer flow and heat transfer of unsteady flow over a porous accelerating stretching surface in the presence of the velocity slip and temperature jump effects are investigated numerically. A new effective collocation method based on rational Bernstein functions is applied to solve the governing system of nonlinear ordinary differential equations. This method solves the problem on the semi-infinite domain without truncating or transforming it to a finite domain. In addition, the presented method reduces the solution of the problem to the solution of a system of algebraic equations. Graphical and tabular results are presented to investigate the influence of the unsteadiness parameter A , Prandtl number Pr, suction parameter fw, velocity slip parameter γ and thermal slip parameter φ on the velocity and temperature profiles of the fluid. The numerical experiments are reported to show the accuracy and efficiency of the novel proposed computational procedure. Comparisons of present results are made with those obtained by previous works and show excellent agreement.

  10. Identification of slip surface location by TLS-GPS datafor landslide mitigation case study: Ciloto-Puncak, West Java

    Energy Technology Data Exchange (ETDEWEB)

    Sadarviana, Vera, E-mail:; Hasanuddin, A. Z.; Joenil, G. K.; Irwan; Wijaya, Dudy; Ilman, H.; Agung, N.; Achmad, R. T.; Pangeran, C.; Martin, S.; Gamal, M. [Geodesy Research Group, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132, West Java (Indonesia); Santoso, Djoko [Geophysics Engineering Research Group, Faculty of Geoscience and Mineral Engineering, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132, West Java (Indonesia)


    Landslide can prevented by understanding the direction of movement to the safety evacuation track or slip surface location to hold avalanches. Slip surface is separating between stable soil and unstable soil in the slope. The slip surface location gives information about stable material depth. The information can be utilize to mitigate technical step, such as pile installation to keep construction or settlement safe from avalanches.There are two kinds landslide indicators which are visualization and calculation. By visualization, landslide identified from soil crack or scarp. Scarp is a scar of exposed soil on the landslide. That identification can be done by Terrestrial Laser Scanner (TLS) Image. Shape of scarp shows type of slip surface, translation or rotational. By calculation, kinematic and dynamic mathematic model will give vector, velocity and acceleration of material movement. In this calculation need velocity trend line at GPS point from five GPS data campaign. From intersection of trend lines it will create curves or lines of slip surface location. The number of slip surface can be known from material movement direction in landslide zone.Ciloto landslide zone have complicated phenomenon because that zone have influence from many direction of ground water level pressure. The pressure is causes generating several slip surface in Ciloto zone. Types of Ciloto slip surface have mix between translational and rotational type.

  11. Micro contact and stick-slip number between AFM probe tip and sample surface

    Institute of Scientific and Technical Information of China (English)

    张向军; 孟永钢; 温诗铸


    In an atomic force microscope (AFM), the cantilever probe, probe tip and sample surface form a micro system in which micro contact, elastic deformation, relative sliding and friction occur during scanning with the contact mode. In this paper, the energy conversion and dissipation during scanning process in the micro system is investigated based on the Mauges-Daules contact model. A dimensionless stick-slip number(η=( )) is defined to describe the micro stick-slip behavior under AFM. Through numerical simulation of the dynamics of the probe tip, it is shown that AFM lateral force is dependent on the defined stick-slip number. If η 1, the tip moves off the sticking points with an adhesion hysteresis, resulting in an energy dissipation. Therefore, the stick-slip number can serve as a characteristic parameter. Numerical simulation of AFM lateral force with different stick-slip numbers is in agreement with experimental results. Finally a method to extract frictional force from the AFM lateral force signal is proposed.

  12. Effective slip for flow through a channel bounded by lubricant-impregnated grooved surfaces (United States)

    Sun, Rui; Ng, Chiu-On


    This study aims to investigate effective slip arising from pressure-driven flow through a slit channel bounded by lubricant-impregnated grooved surfaces. The problem for flow over longitudinal grooves is solved analytically using the methods of domain decomposition and eigenfunction expansion, while that for flow over transverse grooves is solved numerically using the front tracking method. It is found that the effective slip length and the lubricant flow rate can depend strongly on the geometry of the microstructure, the direction of flow, and the lubricant viscosity. In particular, the effective slip can be effectively enhanced by increasing the thickness of a lubricating film atop the ribs. Under the same conditions, a flow that is parallel to the lubricant-impregnated grooves will have a larger effective slip, but also a larger lubricant flow rate, when compared with the case of flow normal to the grooves. It is also shown that, in the case of transverse grooves, because of the downward displacement of the interface between the working/lubricating fluids, the effective slip length and lubricant flow rate may vary non-monotonically with the groove depth.

  13. A Simple Monte Carlo Method for Locating the Three-dimensional Critical Slip Surface of a Slope

    Institute of Scientific and Technical Information of China (English)

    XIE Mowen


    Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is applicable to the 3D case. In this paper, a simple Monte Carlo random simulation method is proposed to identify the 3D critical slip surface. Assuming the initial slip to be the lower part of a slip ellipsoid, the 3D critical slip surface is located by means of a minimized 3D safety factor. A column-based 3D slope stability analysis model is used to calculate this factor. In this study, some practical cases of known minimum safety factors and critical slip surfaces in 2D analysis are extended to 3D slope problems to locate the critical slip surfaces. Compared with the 2D result, the resulting 3D critical slip surface has no apparent difference in terms of only cross section, but the associated 3D safety factor is definitely higher.

  14. Surface deformation due to slow slip source considering a non-elastic medium (United States)

    Voss, N. K.; Malservisi, R.; Dixon, T. H.; Protti, M.


    Slow slip events (SSEs) are now recognized as a feature common in many subduction zones. They have been recognized in both the shallow part of subduction interface as well as deeper, beneath the seismogenic zone. While shallow events are difficult to image due to lack of resolution with onshore instrumentation, deep events appear to correlate well with seismic phenomena including tremor and low frequency events. However, uncertainty regarding source properties of the events and their surrounding medium remains high at these depths. Deep slow slip appears to be located between 60 and 25 km depth at many locations worldwide (Schwartz and Rokosky , 2007). This places the events at depths at or near the mantle wedge corner. Serpentinization of the mantle wedge is thought to be one source of fluids commonly attributed as the source of SSEs and tremor (Wada et al., 2008) but also leads to drastic changes in rheology of the down going slab and near by mantle. Traditionally, measured geodetic transients are inverted for slip distributions using a simple elastic "Okada" type models. Often the shape of these transients is attributed to variance in slip rate on the fault. Here we explore the response of the surrounding lithosphere to the transient stress propagation induced by SSE and the effects on observed surface deformation using varying rheologies within a finite element model. Understanding these effects allows a better estimation of the uncertainty in the geodetically derived slip distributions thus is important to consider when evaluating SSEs role in earthquake hazard as well as deciphering the relationship between tremor and slip.

  15. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake (United States)

    Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.


    The April 4, 2010 (Mw7.2), El Mayor-Cucapah, Baja California, Mexico, earthquake is the strongest earthquake to shake the Salton Trough area since the 1992 (Mw7.3) Landers earthquake. Similar to the Landers event, ground-surface fracturing occurred on multiple faults in the trough. However, the 2010 event triggered surface slip on more faults in the central Salton Trough than previous earthquakes, including multiple faults in the Yuha Desert area, the southwestern section of the Salton Trough. In the central Salton Trough, surface fracturing occurred along the southern San Andreas, Coyote Creek, Superstition Hills, Wienert, Kalin, and Imperial Faults and along the Brawley Fault Zone, all of which are known to have slipped in historical time, either in primary (tectonic) slip and/or in triggered slip. Surface slip in association with the El Mayor-Cucapah earthquake is at least the eighth time in the past 42 years that a local or regional earthquake has triggered slip along faults in the central Salton Trough. In the southwestern part of the Salton Trough, surface fractures (triggered slip) occurred in a broad area of the Yuha Desert. This is the first time that triggered slip has been observed in the southwestern Salton Trough.

  16. Effect of the Loma Prieta Earthquake on surface slip along the Calaveras Fault in the Hollister area (United States)

    Galehouse, Jon S.

    Over the past ten years we have made over 800 measurements of slip rates at 20 sites on various faults in the San Francisco Bay region. This data set enables us to compare rates and amounts of slip on these various faults before and after the Loma Prieta earthquake (LPEQ) on the San Andreas fault. No surface slip rate changes associated with the earthquake occurred at any of our sites on the San Andreas, Hayward, northern Calaveras, Concord-Green Valley, Seal Cove-San Gregorio, Antioch, Rodgers Creek, or West Napa faults. The LPEQ apparently triggered up to 12-14 mm of right slip on the southern Calaveras fault at our two sites in the Hollister area less than 50 km from the epicenter. Most of this slip was probably coseismic or nearly so. About the same amount of slip was triggered at these sites in 1984 by the Morgan Hill earthquake. This slip, in contrast, occurred as afterslip within about a 2.5-month interval. The Calaveras fault in the Hollister area moves episodically, with shorter times of more rapid slip alternating with longer times of slower slip. The alternation occurs whether or not the times of faster slip are triggered by any nearby seismic event(s).

  17. Effect of the Loma Prieta earthquake on surface slip along the Calaveras fault in the Hollister area

    Energy Technology Data Exchange (ETDEWEB)

    Galehouse, J.S. (San Francisco State Univ., CA (USA))


    Over the past ten years the author has made over 800 measurements of slip rates at 20 sites on various faults in the San Francisco Bay region. This data set enables them to compare rates and amounts of slip on these various faults before and after the Loma Prieta earthquake (LPEQ) on the San Andreas fault. No surface slip rate changes associated with the earthquake occurred at any of the sites on the San Andreas, Hayward, northern Calaveras, Concord-Green Valley, Seal Cove-San Gregorio, Antioch, Rodgers Creek, or West Napa faults. The LPEQ apparently triggered up to 12-14 mm of right slip on the southern Calaveras fault at two sites in the Hollister area less than 50 km from the epicenter. Most of this slip was probably coseismic or nearly so. About the same amount of slip was triggered at these sites in 1984 by the Morgan Hill earthquake. This slip, in contrast, occurred as afterslip within about a 2.5-month interval. The Calaveras fault in the Hollister area moves episodically, with shorter times of more rapid slip alternating with longer times of slower slip. The alternation occurs whether or not the times of faster slip are triggered by any nearby seismic event(s).

  18. Surface Rupture and Slip Distribution Resulting from the 2013 M7.7 Balochistan, Pakistan Earthquake (United States)

    Reitman, N. G.; Gold, R. D.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.


    The 24 September 2013 M7.7 earthquake in Balochistan, Pakistan, produced a ~200 km long left-lateral strike-slip surface rupture along a portion of the Hoshab fault, a moderately dipping (45-75º) structure in the Makran accretionary prism. The rupture is remarkably continuous and crosses only two (0.7 and 1.5 km wide) step-overs along its arcuate path through southern Pakistan. Displacements are dominantly strike-slip, with a minor component of reverse motion. We remotely mapped the surface rupture at 1:5,000 scale and measured displacements using high resolution (0.5 m) pre- and post-event satellite imagery. We mapped 295 laterally faulted stream channels, terrace margins, and roads to quantify near-field displacement proximal (±10 m) to the rupture trace. The maximum near-field left-lateral offset is 15±2 m (average of ~7 m). Additionally, we used pre-event imagery to digitize 254 unique landforms in the "medium-field" (~100-200 m from the rupture) and then measured their displacements compared to the post-event imagery. At this scale, maximum left-lateral offset approaches 17 m (average of ~8.5 m). The width (extent of observed surface faulting) of the rupture zone varies from ~1 m to 3.7 km. Near- and medium-field offsets show similar slip distributions that are inversely correlated with the width of the fault zone at the surface (larger offsets correspond to narrow fault zones). The medium-field offset is usually greater than the near-field offset. The along-strike surface slip distribution is highly variable, similar to the slip distributions documented for the 2002 Denali M7.9 earthquake and 2001 Kunlun M7.8 earthquake, although the Pakistan offsets are larger in magnitude. The 2013 Pakistan earthquake ranks among the largest documented continental strike-slip displacements, possibly second only to the 18+ m surface displacements attributed to the 1855 Wairarapa M~8.1 earthquake.

  19. White Light Interferometric Surface Profiler


    Toal, Vincent; Bowe, Brian


    We describe an optical system for 3-D profilometry based on the white light interferometer. We detail a simple way to construct a profiler that uses two simple algorithms which deal efficiently and quickly with the data. The system has a theoretically unlimited range and can deal with rough and smooth surfaces

  20. Turbulent plane Poiseuille-Couette flow as a model for fluid slip over superhydrophobic surfaces (United States)

    Nguyen, Quoc T.; Papavassiliou, Dimitrios V.


    In this study, plane Poiseuille-Couette flow is simulated as a model for specified streamwise slip on one of the channel walls. The relative velocity between the two walls is set to be 1, 2, and 4 in viscous wall units. This is equivalent to the presence of a superhydrophobic surface at one of the channel walls that causes fluid to slip on the boundary. The results show that the streamwise slip forces turbulence in the near-wall region to tend towards a limiting one-component state. This leads to the suppression of small scale turbulence and laminarization close to the wall and then to drag reduction. The selective weakening of the streamwise vorticity close the wall and the observed decrease of turbulence kinetic energy production can then be considered as a consequence of this effect. Changes in the coherent structures, including a decrease of sweep events and increase of ejection events close to the wall where slip occurs, are also observed.

  1. Transitions between smooth and complex stick-slip sliding of surfaces (United States)

    Gourdon, Delphine; Israelachvili, Jacob N.


    Shear measurements were performed on mica surfaces with molecularly thin films of squalane (C30H62) confined between them. Squalane is a branched hydrocarbon liquid that can be in the liquid, glassy, or liquid-crystalline state under confinement. The friction forces, especially the transitions between smooth and intermittent (e.g., stick-slip) sliding, were measured over a wider range of applied loads (pressures), sliding velocities (shear rates), and temperatures than in previous studies. The results reveal that, depending on the conditions, qualitatively different behavior can arise in the same system. These include both abrupt and continuous transitions, both upper and lower critical transition temperatures, short and very long transient effects, and chaotic, sawtooth, or sinusoidal stick-slip that can slowly decay with time or distance sheared. The differences between these branched and simpler, e.g., spherical, unbranched molecules are compared, as well as with unlubricated (dry) surfaces and macroscopic (geological) systems.

  2. Modeling Surface Subsidence from Hydrocarbon Production and Induced Fault Slip in the Louisiana Coastal Zone (United States)

    Mallman, E. P.; Zoback, M. D.


    Coastal wetland loss in southern Louisiana poses a great threat to the ecological and economic stability of the region. In the region of interest, wetland loss is a combination of land subsidence along with eustatic sea level rise, sediment accumulation, erosion, filling and drainage. More than half of the land loss in coastal Louisiana between 1932 and 1990 was related to subsidence due to the complicated interaction of multiple natural and anthropogenic processes, including compaction of Holocene sediments in the Mississippi River delta, lithospheric flexure as a response to sediment loading, and natural episodic movement along regional growth faults. In addition to these mechanisms, it has recently been suggested that subsurface oil and gas production may be a large contributing factor to surface subsidence in the Louisiana Coastal Zone. We model the effect of fluid withdrawal from oil and gas fields in the Barataria Bay region of the Louisiana Coastal Zone on surface subsidence and its potential role in inducing fault slip on the region's growth faults. Along the western edge of Barataria Basin is a first-order leveling line to constrain our model of land subsidence. The rates for this leveling line show numerous locations of increased subsidence rate over the surrounding area, which tend to be located over the large oil and gas fields in the region. However, also located in the regions of high subsidence rate and oil and gas fields are the regional normal faults. Slip on these growth faults is important in two contexts: Regional subsidence would be expected along these faults as a natural consequence of naturally-occurring slip over time. In addition, slip along the faults can be exacerbated by production such that surface subsidence would be localized near the oil and gas fields. Using pressure data from wells in the Valentine, Golden Meadow, and Leeville oil and gas fields we estimate the amount of compaction of the various reservoirs, the resulting surface

  3. Instantaneous stress release in fault surface asperities during mining-induced fault-slip

    Institute of Scientific and Technical Information of China (English)

    Atsushi Sainoki; Hani S. Mitri


    Fault-slip taking place in underground mines occasionally causes severe damage to mine openings as a result of strong ground motion induced by seismic waves arising from fault-slip. It is indicated from previous studies that intense seismic waves could be generated with the shock unloading of fault surface asperities during fault-slip. This study investigates the shock unloading with numerical simulation. A three-dimensional (3D) numerical model with idealized asperities is constructed with the help of discrete element code 3DEC. The idealization is conducted to particularly focus on simulating the shock unloading that previous numerical models, which replicate asperity degradation and crack development during the shear behavior of a joint surface in previous studies, fail to capture and simulate. With the numerical model, static and dynamic analyses are carried out to simulate unloading of asperities in the course of fault-slip. The results obtained from the dynamic analysis show that gradual stress release takes place around the center of the asperity tip at a rate of 45 MPa/ms for the base case, while an instantaneous stress release greater than 80 MPa occurs near the periphery of the asperity tip when the contact between the upper and lower asperities is lost. The instantaneous stress release becomes more intense in the vicinity of the asperity tip, causing tensile stress more than 20 MPa. It is deduced that the tensile stress could further increase if the numerical model is discretized more densely and analysis is carried out under stress conditions at a great depth. A model parametric study shows that in-situ stress state has a significant influence on the magnitude of the generated tensile stress. The results imply that the rapid stress release generating extremely high tensile stress on the asperity tip can cause intense seismic waves when it occurs at a great depth.

  4. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface

    Institute of Scientific and Technical Information of China (English)

    M. Sajid; K. Mahmood; Z. Abbas


    We investigate the axisymmetric stagnation-point flow of a viscous fluid over a lubricated surface by imposing a generalized slip condition at the fluid-fluid interface.The power law non-Newtonian fluid is considered as a lubricant.The lubrication layer is thin and assumed to have a variable thickness.The transformed nonlinear ordinary differential equation governing the flow is linearized using quasilinearization.The method of superposition is adopted to convert the boundary value problem into an initial value problem and the solution is obtained numerically by using the fourth-order RungeKutta method.The results are discussed to see the influence of pertinent parameters.The limiting cases of Navier and no-slip boundary conditions are obtained as the special cases and found to be in excellent agreement with the existing results in the literature.%We investigate the axisymmetric stagnation-point flow of a viscous fluid over a lubricated surface by imposing a generalized slip condition at the fluid-fluid interface. The power law non-Newtonian fluid is considered as a lubricant. The lubrication layer is thin and assumed to have a variable thickness. The transformed nonlinear ordinary differential equation governing the flow is linearized using quasilinearization. The method of superposition is adopted to convert the boundary value problem into an initial value problem and the solution is obtained numerically by using the fourth-order Runge Kutta method. The results arc discussed to see the influence of pertinent parameters. The limiting cases of Navier and no-slip boundary conditions are obtained as the special cases and found to be in excellent agreement with the existing results in the literature.

  5. Slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating (United States)

    Mohamed, Muhammad Khairul Anuar; Noar, Nor Aida Zuraimi Md; Ismail, Zulkhibri; Kasim, Abdul Rahman Mohd; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Ishak, Anuar


    Present study solved numerically the velocity slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating. The governing equations which in the form of partial differential equations are transformed to ordinary differential equations before being solved numerically using the Runge-Kutta-Fehlberg method in MAPLE. The numerical solution is obtained for the surface temperature, heat transfer coefficient, reduced skin friction coefficient as well as the temperature and velocity profiles. The flow features and the heat transfer characteristic for the pertinent parameter such as Prandtl number, stretching parameter, heat generation/absorption parameter, velocity slip parameter and conjugate parameter are analyzed and discussed.

  6. Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces. (United States)

    Kim, In-Ju; Hsiao, Hongwei; Simeonov, Peter


    Literature has shown a general trend that slip resistance performance improves with floor surface roughness. However, whether slip resistance properties are linearly correlated with surface topographies of the floors or what roughness levels are required for effective slip resistance performance still remain to be answered. This pilot study aimed to investigate slip resistance properties and identify functional levels of floor surface roughness for practical design applications in reducing the risk of slip and fall incidents. A theory model was proposed to characterize functional levels of surface roughness of floor surfaces by introducing a new concept of three distinctive zones. A series of dynamic friction tests were conducted using 3 shoes and 9 floor specimens under clean-and-dry as well as soapsuds-covered slippery wet environments. The results showed that all the tested floor-shoe combinations provided sufficient slip resistances performance under the clean-and-dry condition. A significant effect of floor type (surface roughness) on dynamic friction coefficient (DFC) was found in the soapsuds-covered wet condition. As compared to the surface roughness effects, the shoe-type effects were relatively small. Under the soapsuds-covered wet condition, floors with 50 μm in Ra roughness scale seemed to represent an upper bound in the functional range of floor surface roughness for slip resistance because further increase of surface roughness provided no additional benefit. A lower bound of the functional range for slip resistance under the soapsuds-covered wet condition was estimated from the requirement of DFC > 0.4 at Ra ≅ 17 μm. Findings from this study may have potential safety implications in the floor surface design for reducing slip and fall hazards.

  7. Stick-Slip Motion of Moving Contact Line on Chemically Patterned Surfaces

    KAUST Repository

    Wu, Congmin


    Based on our continuum hydrodynamic model for immiscible two-phase flows at solid surfaces, the stick-slip motion has been predicted for moving contact line at chemically patterned surfaces [Wang et al., J. Fluid Mech., 605 (2008), pp. 59-78]. In this paper we show that the continuum predictions can be quantitatively verified by molecular dynamics (MD) simulations. Our MD simulations are carried out for two immiscible Lennard-Jones fluids confined by two planar solid walls in Poiseuille flow geometry. In particular, one solid surface is chemically patterned with alternating stripes. For comparison, the continuum model is numerically solved using material parameters directly measured in MD simulations. From oscillatory fluid-fluid interface to intermittent stick-slip motion of moving contact line, we have quantitative agreement between the continuum and MD results. This agreement is attributed to the accurate description down to molecular scale by the generalized Navier boundary condition in our continuum model. Numerical results are also presented for the relaxational dynamics of fluid-fluid interface, in agreement with a theoretical analysis based on the Onsager principle of minimum energy dissipation. © 2010 Global-Science Press.

  8. Strike-slip fault network of the Huangshi structure, SW Qaidam Basin: Insights from surface fractures and seismic data (United States)

    Cheng, Xiang; Zhang, Qiquan; Yu, Xiangjiang; Du, Wei; Liu, Runchao; Bian, Qing; Wang, Zhendong; Zhang, Tuo; Guo, Zhaojie


    The Huangshi structure, as one of the NWW-trending S-shaped structures in the southwestern Qaidam Basin, holds important implications for unraveling the regional structural pattern. There are four dominant sets of surface strike-slip fractures at the core of the Huangshi structure. The fractures with orientations of N28°E, N47°E and N65°E correlate well with conjugate Riedel shears (R‧), tension fractures (T) and Riedel shears (R) in the Riedel shear model, respectively. Two conjugate strike-slip fracture sets occur at the surface of the Hongpan structure (secondary to the Huangshi structure) and the southwestern part of the Huangshi structure. In seismic sections, the Huangshi structure is present as a positive flower or Y-shaped structure governed by steeply dipping faults, whereas Hongpan and Xiaoshaping structures, located symmetrically to the Huangshi structure, are thrust-controlled anticlines. The Riedel shear pattern of surface strike-slip fractures, the positive flower or Y-shaped structure in seismic sections and the NW-trending secondary compressional anticlines consistently demonstrate that the Huangshi structure is dominated by left-lateral strike-slip faults which comprise a strike-slip fault network. Considering the similar S-shaped configuration and NWW trend of structures across the southwestern Qaidam Basin, it can be further speculated that these structures are also predominantly of left-lateral strike-slip types.

  9. Hybrid of Natural Element Method (NEM with Genetic Algorithm (GA to find critical slip surface

    Directory of Open Access Journals (Sweden)

    Shahriar Shahrokhabadi


    Full Text Available One of the most important issues in geotechnical engineering is the slope stability analysis for determination of the factor of safety and the probable slip surface. Finite Element Method (FEM is well suited for numerical study of advanced geotechnical problems. However, mesh requirements of FEM creates some difficulties for solution processing in certain problems. Recently, motivated by these limitations, several new Meshfree methods such as Natural Element Method (NEM have been used to analyze engineering problems. This paper presents advantages of using NEM in 2D slope stability analysis and Genetic Algorithm (GA optimization to determine the probable slip surface and the related factor of safety. The stress field is produced under plane strain condition using natural element formulation to simulate material behavior analysis utilized in conjunction with a conventional limit equilibrium method. In order to justify the preciseness and convergence of the proposed method, two kinds of examples, homogenous and non-homogenous, are conducted and results are compared with FEM and conventional limit equilibrium methods. The results show the robustness of the NEM in slope stability analysis.

  10. A preliminary study on surface ground deformation near shallow foundation induced by strike-slip faulting (United States)

    Wong, Pei-Syuan; Lin, Ming-Lang


    According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation

  11. Thermophoretic MHD slip flow over a permeable surface with variable fluid properties

    Directory of Open Access Journals (Sweden)

    K. Das


    Full Text Available The present paper focuses on the analysis of thermophoretic hydromagnetic slip flow over a permeable flat plate with convective surface heat flux at the boundary and temperature dependent fluid properties in the presence of non-uniform heat source/sink. The transverse magnetic field is assumed to be a function of the distance from the origin. Also it is assumed that the liquid viscosity and the thermal conductivity vary as an inverse function and a linear function of temperature, respectively. The shooting method is employed to yield the numerical solutions for the model. Results show that the thermal boundary layer thickness reduces with increase of surface convection parameter whereas reverse effect occurs for viscosity parameter. It is also observed that the thermophoretic parameter decreases the concentration distribution across the boundary layer.

  12. Determination of Critical Slip Surface of Soil Slope by New Complex Method

    Institute of Scientific and Technical Information of China (English)

    Li Liang; Chi Shichun; Lin Gao


    A new complex method is presented considering not only the improvement upon the "bad "design point, but also the diversity of the newly generated complex, which is obtained by replacing the "bad "design point with the better design point located at the line between the "bad "design point and the centroid of the remaining design points of the old complex. The new complex method is apphed to searching for the critical slip surface of two non-homogeneous soil slopes. The comparison of the results obtained by the new complex method with that by the basic complex method shows that the new complex method is much more likely to find the true critical surface for the randomly generated initial complex.

  13. Hydrodynamic model of bacterial tumbling near a non-slip surface (United States)

    Sheng, Jian; Molaei, Mehdi


    To swim forward, wild type Escherichia coli bacteria rotate their helical flagella CCW to form a bundle; to tumble, one or more flagella rotate CW to initiate flagella unbundling and polymorphic transformation that leads to a significant change in cell orientation in comparison to original swimming direction. These random change of direction increases bacterial dispersion and also is long speculated to be a mechanism for perichtricous bacteria to escape from a surface. Our recent experimental results show that the tumbling frequency is substantially suppressed near a solid surface by 50%, and the bacterium tends to start a new run in the direction parallel to the surface. This suppression occurs at two cell length (including flagella) away from the surface whereby steric hindrance plays less significant role. Here we propose an analytical model based on hydrodynamic interaction between flagella and the solid surface. We utilize Slender Body Theory combined with the image system of the singularities for the Stoke-flow to quantify the flow around the bacterial flagella in the presence of a no-slip surface. The model includes two non-identical rigid helical flagella representing a bundle and single flagellum. We have showed that in the bulk, a repulsive force among flagella initiates the unbundling and consequently tumbling; however, in presence of a solid surface, the force is strongly mitigated that stabilize the bundle and suppress the tumbling. NIH, NSF, GoMRI.

  14. Bond–slip behavior of superelastic shape memory alloys for near-surface-mounted strengthening applications (United States)

    Daghash, Sherif M.; Ozbulut, Osman E.


    The use of superelastic shape memory alloy (SMA) bars in the near-surface-mounted (NSM) strengthening application can offer advantages such as improved bond behavior, enhanced deformation capacity, and post-event functionality. This study investigates bond characteristics and load transfer mechanisms between NSM SMA reinforcement and concrete. A modified pull-out test specimen that consists of a C-shaped concrete block, where the NSM reinforcement are placed at the center of gravity of the block, was used for experimental investigations. The effects of various parameters such as epoxy type, bonded length, bar diameter, and mechanical anchorage on the bond behavior were studied. The slip of the SMA reinforcement relative to concrete was measured using an optical measurement system and the bond–slip curves were developed. Results indicate that the sandblasted SMA bars exhibit satisfactory bond behavior when used with the correct filling material in NSM strengthening applications, while the mechanical anchorage of SMA bars can significantly increase the bond resistance.

  15. Slip-stick wetting and large contact angle hysteresis on wrinkled surfaces. (United States)

    Bukowsky, Colton; Torres, Jessica M; Vogt, Bryan D


    Wetting on a corrugated surface that is formed via wrinkling of a hard skin layer formed by UV oxidation (UVO) of a poly(dimethylsiloxane) (PDMS) slab is studied using advancing and receding water contact angle measurements. The amplitude of the wrinkled pattern can be tuned through the pre-strain of the PDMS prior to surface oxidation. These valleys and peaks in the surface topography lead to anisotropic wetting by water droplets. As the droplet advances, the fluid is free to move along the direction parallel to the wrinkles, but the droplet moving orthogonal to the wrinkles encounters energy barriers due to the topography and slip-stick behavior is observed. As the wrinkle amplitude increases, anisotropy in the sessile droplet increases between parallel and perpendicular directions. For the drops receding perpendicular to the wrinkles formed at high strains, the contact angle tends to decrease steadily towards zero as the drop volume decreases, which can result in apparent hysteresis in the contact angle of over 100°. The wrinkled surfaces can exhibit high sessile and advancing contact angles (>115°), but the receding angle in these cases is generally vanishing as the drop is removed. This effect results in micrometer sized drops remaining in the grooves for these highly wrinkled surfaces, while the flat analogous UVO-treated PDMS shows complete removal of all macroscopic water drops under similar conditions. These wetting characteristics should be considered if these wrinkled surfaces are to be utilized in or as microfluidic devices.

  16. Surface slip and off-fault deformation patterns in the 2013 MW 7.7 Balochistan, Pakistan earthquake: Implications for controls on the distribution of near-surface coseismic slip (United States)

    Zinke, Robert; Hollingsworth, James; Dolan, James F.


    of 398 fault offsets measured by visual analysis of WorldView high-resolution satellite imagery with deformation maps produced by COSI-Corr subpixel image correlation of Landsat-8 and SPOT5 imagery reveals significant complexity and distributed deformation along the 2013 Mw 7.7 Balochistan, Pakistan earthquake. Average slip along the main trace of the fault was 4.2 m, with local maximum offsets up to 11.4 m. Comparison of slip measured from offset geomorphic features, which record localized slip along the main strand of the fault, to the total displacement across the entire width of the surface deformation zone from COSI-Corr reveals ˜45% off-fault deformation. While previous studies have shown that the structural maturity of the fault exerts a primary control on the total percentage of off-fault surface deformation, large along-strike variations in the percentage of strain localization observed in the 2013 rupture imply the influence of important secondary controls. One such possible secondary control is the type of near-surface material through which the rupture propagated. We therefore compared the percentage off-fault deformation to the type of material (bedrock, old alluvium, and young alluvium) at the surface and the distance of the fault to the nearest bedrock outcrop (a proxy for sediment thickness along this hybrid strike slip/reverse slip fault). We find significantly more off-fault deformation in younger and/or thicker sediments. Accounting for and predicting such off-fault deformation patterns has important implications for the interpretation of geologic slip rates, especially for their use in probabilistic seismic hazard assessments, the behavior of near-surface materials during coseismic deformation, and the future development of microzonation protocols for the built environment.

  17. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qi, E-mail: [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA (United Kingdom); Diamessis, Peter J. [School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853 (United States)


    In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes drift cancels each other out completely at the second order in wave steepness A, i.e., O(A{sup 2}), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A{sup 2}) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A{sup 2}) and thus particle dispersion on O(A{sup 4}). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.

  18. Lie symmetry analysis of a double-diffusive free convective slip flow with a convective boundary condition past a radiating vertical surface embedded in a porous medium (United States)

    Afify, A. A.; Uddin, Md. J.


    A numerical study of a steady two-dimensional double-diffusive free convection boundary layer flow over a vertical surface embedded in a porous medium with slip flow and convective boundary conditions, heat generation/absorption, and solar radiation effects is performed. A scaling group of transformations is used to obtain the governing boundary layer equations and the boundary conditions. The transformed equations are then solved by the fourth- and fifth-order Runge-Kutta-Fehlberg numerical method with Maple 13. The results for the velocity, temperature, and concentration profiles, as well as the skin friction coefficient, the Nusselt number, and the Sherwood number are presented and discussed.

  19. A Genetic Algorithm for Locating the Multiscale Critical Slip Surface in Jointed Rock Mass Slopes

    Directory of Open Access Journals (Sweden)

    Qiang Xu


    Full Text Available The joints have great influence on the strength of jointed rock mass and lead to the multiscale, nonhomogeneous, and anisotropic characteristics. In order to consider these effects, a new model based on a genetic algorithm is proposed for locating the critical slip surface (CSS in jointed rock mass slope (JRMS from its stress field. A finite element method (FEM was employed to analyze the stress field. A method of calculating the mechanical persistence ratio (MPR was used. The calculated multiscale and anisotropic characteristics of the MPR were used in the fitness function of genetic algorithm (GA to calculate the factor of safety. The GA was used to solve optimization problems of JRMS stability. Some numerical examples were given. The results show that the multiscale and anisotropic characteristics of the MPR played an important role in locating the CSS in JRMS. The proposed model calculated the CSS and the factor of safety of the slope with satisfactory precision.

  20. Surface Break and Coseismic Slip of the Great 1950 Assam Earthquake and Previous Events along the Eastern Himalayan Syntaxis (United States)

    Coudurier Curveur, A.; Kali, E.; Tapponnier, P.; Karakas, C.; Ildefonso, S.; van der Woerd, J.; Baruah, S.; Choudhury, S.; Okal, E. A.; Banerjee, P.


    The Eastern Himalayan Syntaxis (EHS) is a complex tectonic region where the nearly orthogonal Himalayan and Burmese ranges meet. The Indian plate (or Assam block) subducts beneath the Tibetan plateau while sliding northwards relative to northwest Myanmar and Yunnan. Present-day deformation in this 200 x 200 km2 wide zone is mostly accommodated by two nearly orthogonal thrust systems: the North dipping, N60E striking Himalayan Main Frontal Thrust (MFT) and the NE dipping, N130E striking Mishmi Thrust (MST). We have shown that the great M8.6, 1950 Assam earthquake, which triggered huge landslides and numerous aftershocks along both thrusts, ruptured the surface from at least Wakro to Pasighat, a minimum distance of ≈ 200 km. Here, we map more carefully and characterize quantitatively the surface rupture of that event. We analyze the heights, shapes, and slopes of topographic profiles leveled using Total Station and kinematic GPS across steep scarps, and atop uplifted Quaternary alluvial terraces, to document 1950 co-seismic and older cumulative surface uplifts. Co-seismic vertical throws differ between the two thrusts (≈ 7 m and ≈ 2 m, along the MST and MFT, respectively). The stratigraphy along freshly cut terrace risers and along paleo-seismological trench walls is used to constrain the distinctly different dips of the two thrusts (≈ 14° and < 8° along the MST and MFT, respectively). Both 14C and 10Be dating results are combined to assess the ages of uplifted surfaces. The results are then used to evaluate the rates of Quaternary surface uplift and shortening across both active thrusts. At two sites, our data suggests characteristic slip on either thrust for at least the last two large events, improving our estimate of the return time (≈ 1300 ± 500 at Wakro) of recent great earthquakes along these connected thrusts of the Himalayan and Burmese ranges.

  1. Magnetic Field and Slip Effects on the Flow and Heat Transfer of Stagnation Point Jeffrey Fluid over Deformable Surfaces (United States)

    Turkyilmazoglu, Mustafa


    The Mhd slip flow and heat transfer of stagnation point Jeffrey fluid over deformable surfaces are the state of the art of this article. Following an analytical approach, the existence, uniqueness, and possible multiplicity of the physical solutions affected by several physical parameters are investigated. Particularly, magnetic interaction and slip factor are shown to much influence the structure of the solutions regarding both momentum and thermal boundary layers. The presented exact solutions not only provide a clear understanding of fruitful physical mechanisms present in this nonlinear flow problem but they have also merits in calculations by means of numerous numerical schemes aiming to explore further complex phenomena.

  2. 6.5 Years of Slow Slip Events in Cascadia: A Catalogue of SSE Surface Expressions, Interface Slip Distributions, Event Magnitudes and Relationship to Tremor. (United States)

    Dimitrova, L. L.; Wallace, L. M.; Haines, A. J.; Bartlow, N. M.


    Slow slip events (SSEs) in Cascadia occur at ~30-50 km depth, every 10-19 months, and typically involve slip of a few cm, producing surface displacements on the order of a few mm up to ~1cm. Are there smaller SSE signals that are currently not recognized geodetically? What is the spatial, temporal and size distribution of SSEs, and how are SSE related to tremor? We address these questions with a catalogue of all detectable SSEs spanning the last 6.5 years using a new methodology based on Vertical Derivatives of Horizontal Stress (VDoHS) rates obtained from cGPS times series. VDoHS rates, calculated by solving the force balance equations at the Earth's surface, represent the most inclusive and spatially compact surface expressions of subsurface deformation sources: VDoHS rate vectors are tightly localized above the sources and point in the direction of push or pull. We compare our results with those from the Network Inversion Filter (NIF) for selected events. We identify and characterize a spectrum of SSEs, including events with moment release at least two orders of magnitudes smaller than has been previously identified with GPS data. We catalogue events timing, interface slip distribution and moment release, and compare our results with existing tremor catalogues. VDoHS rates also reveal the boundaries between the locked and unlocked portions of the megathrust, and we can track how this varies throughout the SSE cycle. Above the locked interface, the pull of the subducted plate generates shear tractions in the overlying plate in the direction of subduction, while above the creeping section shear tractions are in the opposite direction, which is reflected in the VDoHS rates. We show that sections of the Cascadia megathrust unlock prior to some SSEs and lock thereafter, with the locked zone propagating downdip and eastward after the SSEs over weeks to months. The catalogue and movies of events will be available at

  3. Impact of anisotropic slip on transient three dimensional MHD flow of ferrofluid over an inclined radiate stretching surface

    Directory of Open Access Journals (Sweden)

    A.M. Rashad


    Full Text Available The present study explores the impact of anistropic slip on transient three dimensional MHD flow of Cobalt-kerosene ferrofluid over an inclined radiate stretching surface. The governing partial differential equations for this study are solved by the Thomas algorithm with finite-difference type. The impacts of several significant parameters on flow and heat transfer characteristics are exhibited graphically. The conclusion is revealed that the local Nusselt number is significantly promoted due to influence of thermal radiation whereas diminished with elevating the solid volume fraction, magnet parameter and slip factors. Further, the skin friction coefficients visualizes a considerable enhancement with boosting the magnet and radiation parameters, but a prominent reduction is recorded by elevating the solid volume fraction and slip factors.

  4. Bioinspired Surface Treatments for Improved Decontamination: Silicate-Based Slippery Liquid-Infused Porous Surfaces (SLIPS) (United States)


    environment including contamination avoidance, individual protection, collective protection, and decontamination. In January 2015, the Center for Bio...methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces with a soapy water solution...and diisopropyl fluorophosphate following treatment of contaminated surfaces with a soapy water solution is reported along with droplet diffusion on

  5. Combined Effect of Surface Roughness and Slip Velocity on Jenkins Model Based Magnetic Squeeze Film in Curved Rough Circular Plates

    Directory of Open Access Journals (Sweden)

    Jimit R. Patel


    Full Text Available This paper aims to discuss the effect of slip velocity and surface roughness on the performance of Jenkins model based magnetic squeeze film in curved rough circular plates. The upper plate’s curvature parameter is governed by an exponential expression while a hyperbolic form describes the curvature of lower plates. The stochastic model of Christensen and Tonder has been adopted to study the effect of transverse surface roughness of the bearing surfaces. Beavers and Joseph’s slip model has been employed here. The associated Reynolds type equation is solved to obtain the pressure distribution culminating in the calculation of load carrying capacity. The computed results show that the Jenkins model modifies the performance of the bearing system as compared to Neuringer-Rosensweig model, but this model provides little support to the negatively skewed roughness for overcoming the adverse effect of standard deviation and slip velocity even if curvature parameters are suitably chosen. This study establishes that for any type of improvement in the performance characteristics the slip parameter is required to be reduced even if variance (−ve occurs and suitable magnetic strength is in force.

  6. The 3-D surface deformation, coseismic fault slip and after-slip of the 2010 Mw6.9 Yushu earthquake, Tibet, China (United States)

    Zhang, Guohong; Shan, Xinjian; Feng, Guangcai


    Using SAR interferometry on C band Envisat descending track and L band ALOS ascending track SAR images, respectively, we firstly obtain two coseismic deformation fields and one postseismic deformation of the 2010 Yushu earthquake, Tibet, China. In the meanwhile, we also obtain the azimuthal coseismic deformation of the Yushu event by Multi Aperture Interferometry (MAI) technique. With the 3 components of one-dimensional coseismic InSAR measurements, we resolve the complete 3-dimensional deformation of the 2010 Yushu event, which shows conformity and complexity to left lateral slip mechanism. The horizontal deformation is basically consistent with a sinistral slip event; whereas the vertical displacement does show certain level of complexity, which we argue is indicative of local fault geometry variation. Based on the InSAR data and elastic dislocation assumption, we invert for coseismic fault slip and early after-slip of the Yushu event. Our inversion results show major coseismic left lateral strike slip with only minor thrust component. The after-slip model fills most of the slip gaps left by the coseismic fault slip and finds a complementary slip distribution to the coseismic fault slip, which is a good indicator that future earthquake potential on the Yushu segment has been significantly reduced.

  7. Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, S. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Mehmood, Rashid, E-mail: [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Akbar, Noreen Sher [DBS and H, CEME, National University of Sciences and Technology, Islamabad (Pakistan)


    This study explores the collective effects of partial slip and transverse magnetic field on an oblique stagnation point flow of a rheological fluid. The prevailing momentum equations are designed by manipulating Casson fluid model. By applying the suitable similarity transformations, the governing system of equations is being transformed into coupled nonlinear ordinary differential equations. The resulting system is handled numerically through midpoint integration scheme together with Richardson's extrapolation. It is found that both normal and tangential velocity profiles decreases with an increase in magnetic field as well as slip parameter. Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. A suitable comparison with the previous literature is also provided to confirm the accuracy of present results for the limiting case. - Highlights: • The MHD 2-Dimensional flow of Casson fluid is present. • Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. • The prevailing momentum equations are designed by manipulating Casson fluid model. • Obtained coupled ordinary differential equations are investigated numerically. • Graphical results are obtained for each physical parameter.

  8. Airborne Surface Profiling of Alaskan Glaciers (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of glacier outline, laser altimetry profile, and surface elevation change data for 46 glaciers in Alaska and British Columbia, Canada,...

  9. Dynamical and scale invariance of charged particles slipping on a rough surface with periodic excitation (United States)

    Zhang, Hao; Luo, Pengcheng; Ding, Huifang


    This letter deals with the dynamical and scaling invariance of charged particles slipping on a rough surface with periodic excitation. A variant of the Fermi-Ulam model (FUM) is proposed to describe the transport behavior of the particles when the electric field force Fe is smaller or larger than the friction force Ff, i.e., A 0. For these two cases, the stability of fixed points is analyzed with the help of the eigenvalue analysis method, and further the invariant manifolds are constructed to investigate the dynamical invariance such as energy diffusion for some initial conditions in the case A > 0 and decay process in the case A law of the statistical behavior. It follows that both the FA phenomenon for A > 0 and the velocity decay process for A < 0 satisfy scaling invariance with respect to the nondimensional acceleration A. Besides, for A < 0, the transient number nx is proposed to evaluate the speed of the velocity decay process. More importantly, nx is found to possess the attribute of scaling invariance with respect to both the initial velocity V0 and the nondimensional acceleration A. These results are very useful for the in-depth understanding of the energy transport properties of charged particle systems.

  10. Surface Microtextures of Slipping Zone Soil of Some Landslides in the Three Gorges Reservoir District and Their Significance

    Institute of Scientific and Technical Information of China (English)


    The mineral assemblage and content and surface microtextures of slipping zone soil of several landslides in the Three Gorges Reservoir District have been analyzed using the scanning electron microscope (SEM) and X-ray diffractometer (XRD). All the mineral assemblages are similar in these landslides. The main minerals are montmorillonite, illite, kaolinite, chlorite, quartz and feldspar. There are two kinds of surface microtexture in the slipping zone soil, i.e., linear scratches and arcuate scratches. Based on analyses of the changes of the microtextures, one can obtain information about the number, directions and stages of landslide movements. The authors have also studied the mechanism of landslide formation, evaluated the stability of landslides and revival possibility of ancient landslides and forecasted the activity of similar landslides in different districts. The surface microtexture features of stable landslides and mobile landslides are summarized and it is concluded that the existence of filamentous bacteria may result in or increase movements of landslides.

  11. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Li; Sansoz, Frederic; He, Yang; Wang, Chongmin; Zhang, Ze; Mao, Scott X.


    Atom diffusion assisted by surfaces or interfaces (e.g. Coble creep) has been known to be the origin of large creep rates and superplastic softening in nanosized crystals at low temperature. By contrast, source-limited crystal slip in defect-free nanostructures engenders important strengths, but also premature plastic instability and low ductility. Here, using in-situ transmission electron microscopy, we report a slip-activated surface creep mechanism that suppresses the tendency towards plastic instability without compromising the strength, resulting in ultra-large room-temperature plasticity in face-centered-cubic silver nanocrystals. This phenomenon is shown experimentally and theoretically to prevail over a material-dependent range of diameters where surface dislocation nucleation becomes a stimulus to diffusional creep. This work provides new fundamental insight into coupled diffusive-displacive deformation mechanisms maximizing ductility and strength simultaneously in nanoscale materials.

  12. Apparent slip at the surface of a ball spinning in a concentrated suspension.

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, Howard H. (Massachusetts Institute of Technology, Cambridge, MA); Graham, Alan Lyman (Los Alamos National Laboratory, Los Alamos, NM); Grillet, Anne Mary; Pacheco, Glynis; Ingber, Marc Stuart (University of New Mexico, Albuquerque, NM); Mondy, Lisa Ann; Henfling, John Francis


    The couple on a ball rotating relative to an otherwise quiescent suspension of comparably-sized, neutrally buoyant spheres is studied both experimentally and numerically. Apparent 'slip' relative to the analytical solution for a sphere spinning in a Newtonian fluid (based upon the viscosity of the suspension) is determined in suspensions with volume fractions c ranging from 0.03 to 0.50. This apparent slip results in a decrease of the measured torque on the spinning ball when the radius of the ball becomes comparable with that of the suspended spheres. Over the range of our data, the slip becomes more pronounced as the concentration c increases. At c = 0.25, three-dimensional boundary-element simulations agree well with the experimental data. Moreover, at c = 0.03, good agreement exists between such calculations and theoretical predictions of rotary slip in dilute suspensions.

  13. Slicing up the San Francisco Bay Area: Block kinematics and fault slip rates from GPS-derived surface velocities (United States)

    D'Alessio, M. A.; Johanson, I. A.; Bürgmann, R.; Schmidt, D. A.; Murray, M. H.


    Observations of surface deformation allow us to determine the kinematics of faults in the San Francisco Bay Area. We present the Bay Area velocity unification (B?V?, "bay view"), a compilation of over 200 horizontal surface velocities computed from campaign-style and continuous Global Positioning System (GPS) observations from 1993 to 2003. We interpret this interseismic velocity field using a three-dimensional block model to determine the relative contributions of block motion, elastic strain accumulation, and shallow aseismic creep. The total relative motion between the Pacific plate and the rigid Sierra Nevada/Great Valley (SNGV) microplate is 37.9 ± 0.6 mm yr-1 directed toward N30.4°W ± 0.8° at San Francisco (±2σ). Fault slip rates from our preferred model are typically within the error bounds of geologic estimates but provide a better fit to geodetic data (notable right-lateral slip rates in mm yr-1: San Gregorio fault, 2.4 ± 1.0; West Napa fault, 4.0 ± 3.0; zone of faulting along the eastern margin of the Coast Range, 5.4 ± 1.0; and Mount Diablo thrust, 3.9 ± 1.0 of reverse slip and 4.0 ± 0.2 of right-lateral strike slip). Slip on the northern Calaveras is partitioned between both the West Napa and Concord/Green Valley fault systems. The total convergence across the Bay Area is negligible. Poles of rotation for Bay Area blocks progress systematically from the North America-Pacific to North America-SNGV poles. The resulting present-day relative motion cannot explain the strike of most Bay Area faults, but fault strike does loosely correlate with inferred plate motions at the time each fault initiated.

  14. Optical profiler for low reflectance ultrasmooth surfaces (United States)

    van Wingerden, Johannes; Frankena, Hans J.; van der Zwan, Bertram A.


    Design considerations are discussed for an optical profiler consisting of an interference microscope adapted for phase shifting interferometry. The influence of several errors on the accuracy of the profiler are estimated. Specific attention is paid to the case of low-reflectance surfaces, which have to be measured with extremely high precision (e.g., uncoated bowl-feed polished glass surfaces). The accuracy-limiting factor for the measurement of these low- reflectance ultrasmooth surfaces is shown to be the inaccuracy of the measured intensity. A significant increase in accuracy is obtained by using a mercury arc lamp, which has a very high brightness, yielding a larger intensity signal and thus reducing the signal-to-noise ratio. Extensive tests results of such an optical profiler using a Linnik interference microscope are presented, including the determination of the estimated reference profile accuracy. A measurement accuracy of 0.015 nm rms was obtained for uncoated glass surfaces by averaging 64 profiles. The accuracy of the estimated reference profile using 32 measurements was determined as being about 0.03 nm rms.

  15. Surface tension profiles in vertical soap films

    CERN Document Server

    Adami, N


    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed introducing deformable elastic objets in the films. The shape adopted by those objects set in the film can be related to the surface tension value at a given vertical position by numerical solving of adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position in the soap film can be reproduced by simple modeling taking into account film thickness measurements.

  16. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review. (United States)

    Jing, Dalei; Bhushan, Bharat


    Fluid drag of micro/nano fluidic systems has inspired wide scientific interest. Surface charge and boundary slip at the solid-liquid interface are believed to affect fluid drag. This review summarizes the recent studies on the coupling of surface charge and slip, and their combined effect on fluid drag at micro/nano scale. The effect of pH on surface charge of borosilicate glass and silica surfaces in deionized (DI) water and saline solution is discussed using a method based on colloidal probe atomic force microscopy (AFM). The boundary slip of various oil-solid interfaces are discussed for samples with different degrees of oleophobicity prepared by nanoparticle-binder system. By changing the pH of solution or applying an electric field, effect of surface charge on slip of a smooth hydrophobic octadecyltrichlorosilane (OTS) in DI water and saline solution is studied. A theoretical model incorporating the coupling relationship between surface charge and slip is used to discuss the combined effect of surface charge-induced electric double layer (EDL) and slip on fluid drag of pressure-driven flow in a one-dimensional parallel-plates microchannel. A theoretical method is used to reduce the fluid drag. The studies show that the increasing magnitude of surface charge density leads to a decrease in slip length. The surface charge results in a larger fluid drag, and the coupling of surface charge and slip can further increase the fluid drag. Surface charge-induced EDLs with asymmetric zeta potentials can effectively reduce the fluid drag.

  17. Effective boundary condition at a rough surface starting from a slip condition

    CERN Document Server

    Dalibard, Anne-Laure


    We consider the homogenization of the Navier-Stokes equation, set in a channel with a rough boundary, of small amplitude and wavelength $\\epsilon$. It was shown recently that, for any non-degenerate roughness pattern, and for any reasonable condition imposed at the rough boundary, the homogenized boundary condition in the limit $\\epsilon = 0$ is always no-slip. We give in this paper error estimates for this homogenized no-slip condition, and provide a more accurate effective boundary condition, of Navier type. Our result extends those obtained in previous works, in which the special case of a Dirichlet condition at the rough boundary was examined.

  18. Surface deformation associated with the 2013 Mw7.7 Balochistan earthquake: Geologic slip rates may significantly underestimate strain release (United States)

    Gold, Ryan; Reitman, Nadine; Briggs, Richard; Barnhart, William; Hayes, Gavin


    The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the 60° ± 15° northwest-dipping Hoshab fault in southern Pakistan. The earthquake is notable because it produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. Surface displacements and geodetic and teleseismic inversions indicate that peak slip occurred within the upper 0-3 km of the crust. To explore along-strike and fault-perpendicular surface deformation patterns, we remotely mapped the surface trace of the rupture and measured its surface deformation using high-resolution (0.5 m) pre- and post-event satellite imagery. Post-event images were collected 7-114 days following the earthquake, so our analysis captures the sum of both the coseismic and post-seismic (e.g., after slip) deformation. We document peak left-lateral offset of ~15 m using 289 near-field (±10 m from fault) laterally offset piercing points, such as streams, terrace risers, and roads. We characterize off-fault deformation by measuring the medium- (±200 m from fault) and far-field (±10 km from fault) displacement using manual (242 measurements) and automated image cross-correlation methods. Off-fault peak lateral displacement values (medium- and far-field) are ~16 m and commonly exceed the on-fault displacement magnitudes. Our observations suggest that coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, the majority of surface displacement is within 100 m of the primary fault trace and is most localized on sections of the rupture exhibiting narrow (<5 m) zones of observable surface deformation. Furthermore, the near-field displacement measurements account for, on average, only 73% of the total coseismic displacement field and the pattern is highly heterogeneous. This analysis highlights the importance of identifying paleoseismic field study sites (e.g. trenches) that span fault

  19. Radiative flow of MHD Jeffrey fluid past a stretching sheet with surface slip and melting heat transfer

    Directory of Open Access Journals (Sweden)

    Kalidas Das


    Full Text Available The present paper investigates numerically the influence of melting heat transfer and thermal radiation on MHD stagnation point flow of an electrically conducting non-Newtonian fluid (Jeffrey fluid over a stretching sheet with partial surface slip. The governing equations are reduced to non-linear ordinary differential equations by using a similarity transformation and then solved numerically by using Runge–Kutta–Fehlberg method. The effects of pertinent parameters on the flow and heat transfer fields are presented through tables and graphs, and are discussed from the physical point of view. Our analysis revealed that the fluid temperature is higher in case of Jeffrey fluid than that in the case of Newtonian fluid. It is also observed that the wall stress increases with increasing the values of slip parameter but the effect is opposite for the rate of heat transfer at the wall.

  20. Modelling fault surface roughness and fault rocks thickness evolution with slip: calibration based on field and laboratory data (United States)

    Bistacchi, A.; Tisato, N.; Spagnuolo, E.; Nielsen, S. B.; Di Toro, G.


    The architecture and physical properties of fault zones evolve with slip and time. Such evolution, which progressively modifies the type and thickness of fault rocks, the fault surface roughness, etc., controls the rheology of fault zones (seismic vs. aseismic) and earthquakes (main shock magnitude, coseismic slip distribution, stress drop, foreshock and aftershock sequence evolution, etc.). Seismogenic faults exhumed from 2-10 km depth and hosted in different rocks (carbonates, granitoids, etc.) show a (1) self-affine (Hurst exponent H definition of "wear" (including every process that destroys geometrical asperities and produces fault rocks). The output roughness and fault rock thickness depend on two parameters: (1) wear rate and (2) wear products (fault rocks) accumulation rate. To test the model we used surface roughness, fault rock thickness, and slip data collected in the field (Gole Larghe Fault Zone, Italian Southern Alps) and in the lab (rotary shear experiments on different rocks). The model was successful in predicting the first-order evolution of roughness and of fault rock thickness with slip in both natural and experimental datasets. Differences in best-fit model parameters (wear rate and wear products accumulation rate) were satisfactorily explained in terms of different deformation processes (e.g. frictional melting vs. cataclasis) and experimental conditions (unconfined vs. confined). Since the model is based on geometrical and volume-conservation considerations (and not on a particular deformation mechanism), we conclude that the surface roughness and fault-rock thickness after some slip is mostly determined by the initial roughness (measured over several orders of magnitude in wavelength), rather than the particular deformation process (cataclasis, melting, etc.) activated during faulting. Conveniently, since the model can be applied (under certain conditions) to surfaces which depart from self-affine roughness, the model parameters can be

  1. Stick-slip phenomenon in measurements of dynamic contact angles and surface viscoelasticity of poly(styrene-b-isoprene-b-styrene) triblock copolymers. (United States)

    Zuo, Biao; Zheng, Fan Fan; Zhao, Yu Rong; Chen, TianYu; Yan, Zhuo Hua; Ni, Huagang; Wang, Xinping


    In this paper, a series of poly(styrene-b-isoprene-b-styrene) triblock copolymers (SIS), with different chemical components, was synthesized by anionic polymerization. The relationships between surface structures of these block copolymers and their stick-slip phenomena were investigated. There is a transition from stick-slip to a closely smooth motion for the SIS films with increasing PS content; the patterns almost vanish and the three-phase line appears to move overall smoothly on the film surface. The results show that the observed stick-slip pattern is strongly dependent on surface viscoelasticity. The jumping angle Δθ, which is defined as θ(1) - θ(2) (when a higher limit to θ(1) is obtained, the triple line "jumps" from θ(1) to θ(2) with increases in drop volume), was employed to scale the stick-slip behavior on various SIS film surfaces. Scanning force microscopy/atomic force microscopy (AFM) and sum frequency generation methods were used to investigate the surface structures of the films and the contributions of various possible factors to the observed stick-slip behavior. It was found that there is a linear relationship between jumping angle Δθ and the slope of the approach curve obtained from AFM force measurement. This means that the stick-slip behavior may be attributed mainly to surface viscoelasticity for SIS block copolymers. The measurement of jumping angle Δθ may be a valuable method for studying surface structure relaxation of polymer films.

  2. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  3. Surface tension profiles in vertical soap films (United States)

    Adami, N.; Caps, H.


    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  4. Hypersonic low-density solutions of the Navier-Stokes equations with chemical nonequilibrium and multicomponent surface slip (United States)

    Gupta, R. N.; Simmonds, A. L.


    Solutions of the Navier-Stokes equations with chemical nonequilibrium and multicomponent surface slip are presented along the stagnation streamline under low-density hypersonic flight conditions. The conditions analyzed are those encountered by the nose region of the Space Shuttle Orbiter during reentry. A detailed comparison of the Navier-Stokes (NS) results is made with the viscous shock-layer (VSL) and Direct Simulation Monte Carlo (DSMC) predictions. With the inclusion of surface-slip boundary conditions in NS calculations, the surface heat transfer and other flow field quantities adjacent to the surface are predicted favorably with the DSMC calculations from 75 km to 115 km in altitude. Therefore, the practical range for the applicability of Navier-Stokes solutions is much wider than previously thought. This is appealing because the continuum (NS and VSL) methods are commonly used to solve the fluid flow problems and are less demanding in terms of computer resource requirements than the noncontinuum (DSMC) methods. The NS solutions agree well with the VSL results for altitudes less than 92 km. An assessment is made of the frozen flow approximation employed in the VSL calculations.

  5. A shallow landslide analysis method consisting of contour line based method and slope stability model with critical slip surface (United States)

    Tsutsumi, D.


    To mitigate sediment related disaster triggered by rainfall event, it is necessary to predict a landslide occurrence and subsequent debris flow behavior. Many landslide analysis method have been developed and proposed by numerous researchers for several decades. Among them, distributed slope stability models simulating temporal and spatial instability of local slopes are more essential for early warning or evacuation in area of lower part of hill-slopes. In the present study, a distributed, physically based landslide analysis method consisting of contour line-based method that subdivide a watershed area into stream tubes, and a slope stability analysis in which critical slip surface is searched to identify location and shape of the most instable slip surface in each stream tube, is developed. A target watershed area is divided into stream tubes using GIS technique, grand water flow for each stream tubes during a rainfall event is analyzed by a kinematic wave model, and slope stability for each stream tube is calculated by a simplified Janbu method searching for a critical slip surface using a dynamic programming method. Comparing to previous methods that assume infinite slope for slope stability analysis, the proposed method has advantage simulating landslides more accurately in spatially and temporally, and estimating amount of collapsed slope mass, that can be delivered to a debris flow simulation model as a input data. We applied this method to a small watershed in the Izu Oshima, Tokyo, Japan, where shallow and wide landslides triggered by heavy rainfall and subsequent debris flows attacked Oshima Town, in 2013. Figure shows the temporal and spatial change of simulated grand water level and landslides distribution. The simulated landslides are correspond to the uppermost part of actual landslide area, and the timing of the occurrence of landslides agree well with the actual landslides.

  6. Age related effects of transitional floor surfaces and obstruction of view on gait characteristics related to slips and falls. (United States)

    Bunterngchit, Yuthachai; Lockhart, Thurmon; Woldstad, Jeffrey C; Smith, James L


    A laboratory study was conducted to examine gait changes between younger and older subjects as they walked across different floor surfaces. Twenty subjects participated in the experiment (five each of older and younger males and females). For half of the trials, subjects carried light loads that blocked their view of the floor surface immediately in front of them. Subjects walked on slippery (soapy water on vinyl) and stable (outdoor carpet) floor surfaces, as well as transitioning from one surface to another. Responses studied included: required coefficient of friction (RCOF), stride length (SL), and minimum toe clearance (MTC). Significant effects were found for the floor surface, load versus no load condition, and some interactions involving age (older versus younger subjects). Not all expected differences due to age were found in this experiment. The lack of significant differences between younger and older subjects could be due to the older subjects that participated in the experiment. They were volunteers at a local medical center, were in good physical shape, and were probably not typical of the population of people over 65 years of age. RELEVANCE TO INDUSTRY: Slips and falls in industry are costly safety issues in terms of human suffering as well as financial compensation. In many facilities and at home, people make transitions from one floor surface to another many times each day, while carrying loads or just walking. A better understanding of characteristics of people as they walk on slippery floor surfaces and the changes that might occur with age, will allow engineers to design better floor surfaces to reduce the incidence of slips and falls.

  7. Three-dimensional critical slip surface locating and slope stability assessment for lava lobe of Unzen volcano

    Institute of Scientific and Technical Information of China (English)


    Even Unzen volcano has been declared to be in a state of relative dormancy,the latest formed lava lobe No.11 now represents a potential slope failure mass based on the latest research.This paper concentrates on the stability of the lava lobe No.11 and its possible critical sliding mass.It proposes geographic information systems (GIS) based three-dimensional (3D) slope stability analysis models.It uses a 3D locating approach to identify the 3D critical slip surface and to analyze the 3D stability of the lava...

  8. An Improved Particle Swarm Optimization Algorithm with Harmony Strategy for the Location of Critical Slip Surface of Slopes

    Institute of Scientific and Technical Information of China (English)

    LI Liang; CHU Xue-song


    The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy can be adopted instead of the three parameters which are required in the original particle swarm optimization algorithm to update the positions of all the particles. The improved particle swarm optimization is used in the location of the critical slip surface of soil slope, and it is found that the improved particle swarm optimization algorithm is insensitive to the two parameters while the original particle swarm optimization algorithm can be sensitive to its three parameters.

  9. The influence of fault geometry and frictional contact properties on slip surface behavior and off-fault damage: insights from quasi-static modeling of small strike-slip faults from the Sierra Nevada, CA (United States)

    Ritz, E.; Pollard, D. D.


    Geological and geophysical investigations demonstrate that faults are geometrically complex structures, and that the nature and intensity of off-fault damage is spatially correlated with geometric irregularities of the slip surfaces. Geologic observations of exhumed meter-scale strike-slip faults in the Bear Creek drainage, central Sierra Nevada, CA, provide insight into the relationship between non-planar fault geometry and frictional slip at depth. We investigate natural fault geometries in an otherwise homogeneous and isotropic elastic material with a two-dimensional displacement discontinuity method (DDM). Although the DDM is a powerful tool, frictional contact problems are beyond the scope of the elementary implementation because it allows interpenetration of the crack surfaces. By incorporating a complementarity algorithm, we are able to enforce appropriate contact boundary conditions along the model faults and include variable friction and frictional strength. This tool allows us to model quasi-static slip on non-planar faults and the resulting deformation of the surrounding rock. Both field observations and numerical investigations indicate that sliding along geometrically discontinuous or irregular faults may lead to opening of the fault and the formation of new fractures, affecting permeability in the nearby rock mass and consequently impacting pore fluid pressure. Numerical simulations of natural fault geometries provide local stress fields that are correlated to the style and spatial distribution of off-fault damage. We also show how varying the friction and frictional strength along the model faults affects slip surface behavior and consequently influences the stress distributions in the adjacent material.

  10. Development of optical surface profiling instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yao; Takacs, P.; Tsang, T.; Furenlid, K. [Brookhaven National Lab., Upton, NY (United States); Runwen Wang [Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Optics and Fine Mechanics


    A novel non-contact optical profiler described in this paper is designed and made for measuring the surface characteristics of optical parts. Measurements are based on a combination of an optical heterodyne technique and a precise phase measurement procedure without the need of a inference surface. A Zeeman-split He-Ne laser is employed as the light source which offers two common-path polarized beams. The frequency difference between the beams is 1.8 MHz. A special optical head is designed and fashioned as a beam splitter which contains a birefringent lens and an objective. The whole optical system is completely common-path. This allows the optical common-mode injection technique to be applied in the system for minimizing the environmental effects in measurements such as air turbulence, vibrations and temperature variations. To keep the sample surface focused to the ordinary rays in the optical head, an astigmatic autofocus system is employed. A stepping micro-stepping system can move the optical head in the range of 25 mm with 0.1 {mu}m resolution. A data acquisition system is made to control the auto-focus system, data receiving and analyses. This makes the measurement automatically while the sample is being scanned. The characteristics of the surface can be displayed on the computer screen. The theoretical and experimental analyses of the profiler are completed. The profiler measures samples with 1.1 {Angstrom} height accuracy and 4 {mu}m lateral resolution when a 4OX objective is used in the optical head. The accuracy comparisons of the profiler with different objectives 5X, 1OX, 2OX and 4OX are shown in a good agreement. The advantages of the present profiler am presented. Based on the autofocus system, the profiler optical system will be designed to mount on a large linear air-bearing slide, so that it is capable of scanning over a distance covering from 4 {mu}m to 1 m.

  11. Determining the Critical Slip Surface of Three-Dimensional Soil Slopes from the Stress Fields Solved Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-chuan Yang


    Full Text Available The slope stability problem is an important issue for the safety of human beings and structures. The stability analysis of the three-dimensional (3D slope is essential to prevent landslides, but the most important and difficult problem is how to determine the 3D critical slip surface with the minimum factor of safety in earth slopes. Basing on the slope stress field with the finite element method, a stability analysis method is proposed to determine the critical slip surface and the corresponding safety factor of 3D soil slopes. Spherical and ellipsoidal slip surfaces are considered through the analysis. The moment equilibrium is used to compute the safety factor combined with the Mohr-Coulomb criteria and the limit equilibrium principle. Some assumptions are introduced to reduce the search range of center points and the radius of spheres or ellipsoids. The proposed method is validated by a classical 3D benchmark soil slope. Simulated results indicate that the safety factor of the benchmark slope is 2.14 using the spherical slip surface and 2.19 using the ellipsoidal slip surface, which is close to the results of previous methods. The simulated results indicate that the proposed method can be used for the stability analysis of a 3D soil slope.

  12. Thermo-responsive stick-slip behavior of advancing water contact angle on the surfaces of poly(N-isopropylacrylamide)-grafted polypropylene membranes

    Institute of Scientific and Technical Information of China (English)


    Wettability of a solid surface is highly important to its practical application,especially for the surface that shows thermoresponsive properties.In this paper,we describe a thermo-responsive stick-slip behavior of water droplets on the surfaces of poly(N-isopropylacrylamide)(PNIPAM)-grafted polypropylene membranes.Field emission scanning electron microscope(FESEM) images elucidate that the morphology of PNIPAM-grafted membrane surface is thermo-responsive,i.e.,the surface becomes rougher above the lower critical solution temperature(LCST) of PNIPAM.On the surface of nascent polypropylene membranes,the water droplet shows a smooth motion resulting in advancing and receding water contact angles of 111° and ~65°,respectively.On the PNIPAM-grafted membrane surfaces,the water droplet shows a stick-slip pattern above the LCST,whereas it advances smoothly below the LCST.This phenomenon is reproducible and can be ascribed to the energy barriers enhanced by the shrink of PNIPAM chains above the LCST.We also find that the slip contact angle decreases from 102° to 92° after several stick-slip cycles.This decrease is attributed to the water adsorption on the grafted PNIPAM layer,which is confirmed by the continuous decrease of the receding water contact angle.

  13. Long-term slip rate of the southern San Andreas Fault, from 10Be-26Al surface exposure dating of an offset alluvial fan

    Energy Technology Data Exchange (ETDEWEB)

    der Woerd, J v; Klinger, Y; Sieh, K; Tapponnier, P; Ryerson, F; M?riaux, A


    We determine the long-term slip rate of the southern San Andreas Fault in the southeastern Indio Hills using {sup 10}Be and {sup 26}Al isotopes to date an offset alluvial fan surface. Field mapping complemented with topographic data, air photos and satellite images allow to precisely determine piercing points across the fault zone that are used to measure an offset of 565 {+-} 80 m. A total of twenty-six quartz-rich cobbles from three different fan surfaces were collected and dated. The tight cluster of nuclide concentrations from 19 samples out of 20 from the offset fan surface implies a simple exposure history, negligible prior exposure and erosion, and yield an age of 35.5 {+-} 2.5 ka. The long-term slip rate of the San Andreas Fault south of Biskra Palms is thus 15.9 {+-} 3.4 mm/yr. This rate is about 10 mm/yr slower than geological (0-14 ka) and short-term geodetic estimates for this part of the San Andreas Fault implying changes in slip rate or in faulting behavior. This result puts new constraints on the slip rate of the San Jacinto and on the Eastern California Shear Zone for the last 35 ka. Our study shows that more sites along the major faults of southern California need to be targeted to better constrain the slip-rates over different time scales.

  14. Longitudinal pressure-driven flows between superhydrophobic grooved surfaces: Large effective slip in the narrow-channel limit (United States)

    Schnitzer, Ory; Yariv, Ehud


    The gross amplification of the fluid velocity in pressure-driven flows due to the introduction of superhydrophobic walls is commonly quantified by an effective slip length. The canonical duct-flow geometry involves a periodic structure of longitudinal shear-free stripes at either one or both of the bounding walls, corresponding to flat-meniscus gas bubbles trapped within a periodic array of grooves. This grating configuration is characterized by two geometric parameters, namely the ratio κ of channel width to microstructure period and the areal fraction Δ of the shear-free stripes. For wide channels, κ ≫1 , this geometry is known to possess an approximate solution where the dimensionless slip length λ , normalized by the duct semiwidth, is small, indicating a weak superhydrophobic effect. We here address the other extreme of narrow channels, κ ≪1 , identifying large O (κ-2) values of λ for the symmetric configuration, where both bounding walls are superhydrophobic. This velocity enhancement is associated with an unconventional Poiseuille-like flow profile where the parabolic velocity variation takes place in a direction parallel (rather than perpendicular) to the boundaries. Use of matched asymptotic expansions and conformal-mapping techniques provides λ up to O (κ-1) , establishing the approximationλ ˜κ-2Δ/33 +κ-1Δ/2π ln4 +⋯, which is in excellent agreement with a semianalytic solution of the dual equations governing the respective coefficients of a Fourier-series representation of the fluid velocity. No similar singularity occurs in the corresponding asymmetric configuration, involving a single superhydrophobic wall; in that geometry, a Hele-Shaw approximation shows that λ =O (1 ) .

  15. Tensorial hydrodynamic slip

    CERN Document Server

    Bazant, Martin Z


    We describe a tensorial generalization of the Navier slip boundary condition and illustrate its use in solving for flows around anisotropic textured surfaces. Tensorial slip can be derived from molecular or microstructural theories or simply postulated as an constitutive relation, subject to certain general constraints on the interfacial mobility. The power of the tensor formalism is to capture complicated effects of surface anisotropy, while preserving a simple fluid domain. This is demonstrated by exact solutions for laminar shear flow and pressure-driven flow between parallel plates of arbitrary and different textures. From such solutions, the effects of rotating a texture follow from simple matrix algebra. Our results may be useful to extracting local slip tensors from global measurements, such as the permeability of a textured channel or the force required to move a patterned surface, in experiments or simulations.

  16. Corrected second-order slip boundary condition for fluid flows in nanochannels. (United States)

    Zhang, Hongwu; Zhang, Zhongqiang; Zheng, Yonggang; Ye, Hongfei


    A corrected second-order slip boundary condition is proposed to solve the Navier-Stokes equations for fluid flows confined in parallel-plate nanochannels. Compared with the classical second-order slip boundary condition proposed by Beskok and Karniadakis, the corrected slip boundary condition is not only dependent on the Knudsen number and the tangential momentum accommodation coefficient, but also dependent on the relative position of the slip surface in the Knudsen layer. For the fluid flows in slip-flow regime with the Knudsen number less than 0.3, Couette cell is investigated using molecular-dynamics simulations to verify Newtonian flow behaviors by examining the constitutive relationship between shear stress and strain rate. By comparing the velocity profiles of Poiseuille flows predicted from the Navier-Stokes equations with the corrected slip boundary condition with that from molecular-dynamics simulations, it is found that the flow behaviors in our models can be effectively captured.

  17. Sustained frictional instabilities on nanodomed surfaces: Stick-slip amplitude coefficient

    DEFF Research Database (Denmark)

    Quignon, Benoit; Pilkington, Georgia A.; Thormann, Esben


    of the nanodomed surfaces cannot be fully described by the framework of Amontons' laws of friction and that additional parameters (e.g., σf and SSAC) are required, when their friction, lubrication, and wear properties are important considerations in related nanodevices. © 2013 American Chemical Society....

  18. Slip flow in graphene nanochannels (United States)

    Kannam, Sridhar Kumar; Todd, B. D.; Hansen, J. S.; Daivis, Peter J.


    We investigate the hydrodynamic boundary condition for simple nanofluidic systems such as argon and methane flowing in graphene nanochannels using equilibrium molecular dynamics simulations (EMD) in conjunction with our recently proposed method [J. S. Hansen, B. D. Todd, and P. J. Daivis, Phys. Rev. E 84, 016313 (2011), 10.1103/PhysRevE.84.016313]. We first calculate the fluid-graphene interfacial friction coefficient, from which we can predict the slip length and the average velocity of the first fluid layer close to the wall (referred to as the slip velocity). Using direct nonequilibrium molecular dynamics simulations (NEMD) we then calculate the slip length and slip velocity from the streaming velocity profiles in Poiseuille and Couette flows. The slip lengths and slip velocities from the NEMD simulations are found to be in excellent agreement with our EMD predictions. Our EMD method therefore enables one to directly calculate this intrinsic friction coefficient between fluid and solid and the slip length for a given fluid and solid, which is otherwise tedious to calculate using direct NEMD simulations at low pressure gradients or shear rates. The advantages of the EMD method over the NEMD method to calculate the slip lengths/flow rates for nanofluidic systems are discussed, and we finally examine the dynamic behaviour of slip due to an externally applied field and shear rate.

  19. Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler

    CERN Document Server

    Gidoni, Paolo


    We formulate and solve the locomotion problem for a bio-inspired crawler consisting of two active elastic segments (i.e., capable of changing their rest lengths), resting on three supports providing directional frictional interactions. The problem consists in finding the motion produced by a given, slow actuation history. By focusing on the tensions in the elastic segments, we show that the evolution laws for the system are entirely analogous to the flow rules of elasto-plasticity. In particular, sliding of the supports and hence motion cannot occur when the tensions are in the interior of certain convex regions (stasis domains), while support sliding (and hence motion) can only take place when the tensions are on the boundary of such regions (slip surfaces). We solve the locomotion problem explicitly in a few interesting examples. In particular, we show that, for a suitable range of the friction parameters, specific choices of the actuation strategy can lead to net displacements also in the direction of high...

  20. Study on design of the regular concave surface profiles

    Institute of Scientific and Technical Information of China (English)


    Regular concave surface profiles are adopted in many friction surfaces. But up to now,this is seldom tutored by the theory of lubrication. To design them, a model of the regular depthoptimization was provided. To determine the other size, two propositions are given. At same time,two main effect factors on lubrication were discussed in detail. A lubrication test for different regu-lar concave surface profiles was performed on a pin and ring tester. On the basis of theory analy-sis and experiment, a principle to design regular concave surface profiles is provided.

  1. Slip distribution of the 2014 Mw = 8.1 Pisagua, northern Chile, earthquake sequence estimated from coseismic fore-arc surface cracks (United States)

    Loveless, John P.; Scott, Chelsea P.; Allmendinger, Richard W.; González, Gabriel


    The 2014 Mw = 8.1 Iquique (Pisagua), Chile, earthquake sequence ruptured a segment of the Nazca-South America subduction zone that last hosted a great earthquake in 1877. The sequence opened >3700 surface cracks in the fore arc of decameter-scale length and millimeter-to centimeter-scale aperture. We use the strikes of measured cracks, inferred to be perpendicular to coseismically applied tension, to estimate the slip distribution of the main shock and largest aftershock. The slip estimates are compatible with those based on seismic, geodetic, and tsunami data, indicating that geologic observations can also place quantitative constraints on rupture properties. The earthquake sequence ruptured between two asperities inferred from a regional-scale distribution of surface cracks, interpreted to represent a modal or most common rupture scenario for the northern Chile subduction zone. We suggest that past events, including the 1877 earthquake, broke the 2014 Pisagua source area together with adjacent sections in a throughgoing rupture.

  2. Surface, segregation profile for Ni50Pd50(100)

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Ruban, Andrei; Skriver, Hans Lomholt


    A recent dynamical LEED study [G.N. Derry, C.B. McVey, P.J. Rous, Surf. Sci. 326 (1995) 59] reported an oscillatory surface segregation profile in the Ni50Pd50(100) system with the surface layer enriched by Pd. We have performed ab-initio total-energy calculations for the surface of this alloy...... system using the coherent potential approximation and obtain an oscillatory segregation profile, in agreement with experiments. We discuss the energetic origin of the oscillatory segregation profile in terms of effective cluster interactions. We include relaxation effects by means of the semi...

  3. Profiling of aspherical surfaces using moire deflectometry (United States)

    Uitterdijk, T.; Frankena, Hans J.; Smorenburg, Kees


    An elegant measuring setup for contouring strong aspherical surfaces is introduced. Moire deflectometry is chosen as the measuring method because the configuration is simple, robust, and variable in sensitivity. The instrument is capable of measuring height deviations between an aspherical surface and its best fitting sphere ranging from minimally 1 micrometers to maximally 30 micrometers with a relative accuracy of 10%, which is useful for the production of surfaces in infrared optics. It is possible to measure transparent as well as reflecting surfaces, both convex and concave. A CCD-camera and a PC make part of the setup to automate the measurements. The short measurement time of less than 60 seconds makes the instrument useful in the manual production of aspherical surfaces.

  4. Mass removal and clay mineral dehydration/rehydration in carbonate‐rich surface exposures of the 2008 Wenchuan Earthquake fault: Geochemical evidence and implications for fault zone evolution and coseismic slip

    National Research Council Canada - National Science Library

    Chen, Jianye; Yang, Xiaosong; Ma, Shengli; Spiers, Christopher J


    ...‐rich fault core and principal slip surface cuts through carbonate‐rich strata. Pervasive fluid infiltration was found to modify the mineralogical and geochemical architecture of the fault zones studied...

  5. Magma influence on propagation of normal faults: Evidence from cumulative slip profiles along Dabbahu-Manda-Hararo rift segment (Afar, Ethiopia) (United States)

    Dumont, Stéphanie; Klinger, Yann; Socquet, Anne; Doubre, Cécile; Jacques, Eric


    Measuring displacement-length profiles along normal faults provides crucial information on fault growth processes. Here, based on satellite imagery and topography we analyze 357 normal faults distributed along the active rift of Dabbahu-Manda-Hararo (DMH), Afar, which offers a unique opportunity to investigate the influence of magmatism on fault growth processes. Our measurements reveal a large variety of slip profiles that are not consistent with elastic deformation. Their analysis contributes towards a better understanding of the lateral propagation of faults, especially when nucleation points and existence of barriers are included. Using the fault growth model of Manighetti et al. (2001), we determine the preferred direction of lateral propagation for each fault. Our results suggest that lateral propagation of faults is easier away from areas where magma has been stored for long time at crustal depth, and has thus modified the thermo-mechanical properties of the host-rock. However, these areas correspond also to areas where the initiation of fault growth appears as easiest along the rift. In combining these results with the analysis of rift width and the position of magma reservoirs along DMH rift, we show that fault growth keeps track of the magma presence and/or movement in the crust.

  6. Onshore-offshore seismic reflection profiling across the southern margin of the Sea of Japan: back-arc opening, shortening and active strike-slip deformation (United States)

    Sato, Hiroshi; Ishiyama, Tatsuya; Kato, Naoko; Toda, Shigeru; Kawasaki, Shinji; Fujiwara, Akira; Tanaka, Yasuhisa; Abe, Susumu


    Pliocene to early Pleistocene along the limited fault system. The change in the direction of the motion of PHS at 1 Ma produced major change in stress regime from NS compression to EW compression in the back-arc. Following the change of stress regime, former reverse faults reactivated as strike-slip fault. Reuse of pre-existing faults are common, and crustal deformation concentrates relatively narrow zone in the back-arc failed rifts. Two-months after from our survey, Mw 6.2 Tottoriken-chubu earthquake occurred just beneath the onshore part of the seismic line. The source fault corresponds to the boundary of abrupt change in P-wave velocity, however there were no surface ruptures and distinctive geologic faults. The bottom of seismogenic layer corresponds to TWT 4.5 sec., which is almost the top horizon of reflective middle crust.

  7. Interpreting Central Surface Brightness and Color Profiles in Elliptical Galaxies (United States)

    Silva, David R.; Wise, Michael W.


    Hubble Space Telescope imagery has revealed dust features in the central regions of many (50%--80%) nearby bright elliptical galaxies. If these features are an indication of an underlying smooth diffuse dust distribution, then the interpretation of central surface brightness and color profiles in elliptical galaxies becomes significantly more difficult. In this Letter, diagnostics for constraining the presence of such an underlying central dust distribution are presented. We show that easily detectable central color gradients and flattened central surface brightness profiles can be induced by even small amounts of smoothly distributed dust (~100 M⊙). Conversely, combinations of flat surface brightness profiles and flat color gradients or steep surface brightness profiles and steep color gradients are unlikely to be caused by dust. Taken as a whole, these results provide a simple observational tautology for constraining the existence of smooth diffuse dust distributions in the central regions of elliptical galaxies.

  8. Magnetohydrodynamic Viscous Flow Over a Shrinking Sheet With Second Order Slip Flow Model

    CERN Document Server

    Mahmood, T; Abbas, G


    In this paper, we investigate the magnetohydrodynamic viscous flow with second order slip flow model over a permeable shrinking surface. We have obtained the closed form of exact solution of Navier-Stokes equations by using similarity variable technique. The effects of slip, suction and magnetic parameter have been investigated in detail. The results show that there are two solution branches, namely lower and upper solution branch. The behavior of velocity and shear stress profiles for different values of slip, suction and magnetic parameters has been discussed through graphs.

  9. A study of photoemission using CW and pulsed UV light sources to probe surface slip band structure evolution of single crystal aluminium (United States)

    Cai, Mingdong; Langford, Stephen; Dickinson, J. Thomas


    We report measurements of photoelectron emission from high-purity single crystal aluminum during uniaxial tensile deformation. A 248 nm pulsed excimer laser was used as a light source and the generated photoemission data was compared with that using a filtered mercury lamp. Time-of-flight curves of photoelectrons generated by pulsed excimer laser irradiation were observed showing a two peaked structure. These two peaks correspond to photoelectrons of two energy levels. It was also found that real time total photoelectron charge increases linearly with strain; and the increment is heterogeneous. Photoemission using low-energy photons is sensitive to changes in surface morphology accompanying deformation, including slip line and band formation. The discontinuity in photoelectron intensity and the heterogeneous surface slip band structure prove the production of fresh surface area is not continuous, which is predicted by a recent dislocation dynamics theory based on percolation process. Except for differences in instrumentation and data analysis, the photoemission data from a filtered mercury lamp and from the excimer laser are comparable. Current studies extend the application of the excimer laser into surface dynamics analysis.

  10. Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles (United States)

    Brown, M. D.; Nikitichev, D. I.; Treeby, B. E.; Cox, B. T.


    Acoustic fields with multiple foci have many applications in physical acoustics ranging from particle manipulation to neural modulation. However, the generation of multiple foci at arbitrary locations in three-dimensional is challenging using conventional transducer technology. In this work, the optical generation of acoustic fields focused at multiple points using a single optical pulse is demonstrated. This is achieved using optically absorbing surface profiles designed to generate specific, user-defined, wavefields. An optimisation approach for the design of these tailored surface profiles is developed. This searches for a smoothly varying surface that will generate a high peak pressure at a set of target focal points. The designed surface profiles are then realised via a combination of additive manufacturing and absorber deposition techniques. Acoustic field measurements from a sample designed to generate the numeral "7" are used to demonstrate the design method.

  11. Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall (United States)

    Patlazhan, Stanislav; Vagner, Sergei


    The peculiarities of simple shear flow of shear thinning fluids over a superhydrophobic wall consisting of a set of parallel gas-filled grooves and solid stripes (domains with slip and stick boundary conditions) are studied numerically. The Carreau-Yasuda model is used to provide further insight into the problem of the slip behavior of non-Newtonian fluids having a decreasing viscosity with a shear rate increase. This feature is demonstrated to cause a nonlinear velocity profile leading to the apparent slip. The corresponding transverse and longitudinal apparent slip lengths of a striped texture are found to be noticeably larger than the respective effective slip lengths of Newtonian liquids in microchannels of various thicknesses and surface fractions of the slip domains. The viscosity distribution of the shear thinning fluid over the superhydrophobic wall is carefully investigated to describe the mechanism of the apparent slip. Nonmonotonic behavior of the apparent slip length as a function of the applied shear rate is revealed. This important property of shear thinning fluids is considered to be sensitive to the steepness of the viscosity flow curve, thus providing a way to decrease considerably the flow resistance in microchannels.

  12. Optical surface profiling of orb-web spider capture silks

    Energy Technology Data Exchange (ETDEWEB)

    Kane, D M; Joyce, A M; Staib, G R [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia); Herberstein, M E, E-mail: [Department of Biological Sciences, Macquarie University, Sydney, NSW 2109 (Australia)


    Much spider silk research to date has focused on its mechanical properties. However, the webs of many orb-web spiders have evolved for over 136 million years to evade visual detection by insect prey. It is therefore a photonic device in addition to being a mechanical device. Herein we use optical surface profiling of capture silks from the webs of adult female St Andrews cross spiders (Argiope keyserlingi) to successfully measure the geometry of adhesive silk droplets and to show a bowing in the aqueous layer on the spider capture silk between adhesive droplets. Optical surface profiling shows geometric features of the capture silk that have not been previously measured and contributes to understanding the links between the physical form and biological function. The research also demonstrates non-standard use of an optical surface profiler to measure the maximum width of a transparent micro-sized droplet (microlens).

  13. Simple laser vision sensor calibration for surface profiling applications (United States)

    Abu-Nabah, Bassam A.; ElSoussi, Adnane O.; Al Alami, Abed ElRahman K.


    Due to the relatively large structures in the Oil and Gas industry, original equipment manufacturers (OEMs) have been implementing custom-designed laser vision sensor (LVS) surface profiling systems as part of quality control in their manufacturing processes. The rough manufacturing environment and the continuous movement and misalignment of these custom-designed tools adversely affect the accuracy of laser-based vision surface profiling applications. Accordingly, Oil and Gas businesses have been raising the demand from the OEMs to implement practical and robust LVS calibration techniques prior to running any visual inspections. This effort introduces an LVS calibration technique representing a simplified version of two known calibration techniques, which are commonly implemented to obtain a calibrated LVS system for surface profiling applications. Both calibration techniques are implemented virtually and experimentally to scan simulated and three-dimensional (3D) printed features of known profiles, respectively. Scanned data is transformed from the camera frame to points in the world coordinate system and compared with the input profiles to validate the introduced calibration technique capability against the more complex approach and preliminarily assess the measurement technique for weld profiling applications. Moreover, the sensitivity to stand-off distances is analyzed to illustrate the practicality of the presented technique.


    Institute of Scientific and Technical Information of China (English)


    The profile error evaluation of complex curves and surfaces expressed in parametric form is considered. The linear error model is established on the base of two hypotheses firstly. Then the profile error evaluation is converted into one of these optimal formulations:MINIMAX, MAXMIN and MINIDEX problems, which are easier to be solved than the initial form. To each one of them, geometric condition and algebraic condition are presented to arbitrate whether the ideal element reaches to the optimal position. Exchange algorithm is proven highly effective in searching for solutions to these optimization problems. At last some key problems in tolerance evaluation of freeform surfaces and curves in B spline method are discussed.


    Institute of Scientific and Technical Information of China (English)

    Y.G. Cao; S.F. Xue; K.Tanaka


    To investigate the causes that led to the formation of cracks in materials, a novel method that only considered the fracture surfaces for determining the fracture toughness parameters of J-integral for plain strain was proposed. The principle of the fracture-surface topography analysis (FRASTA) was used. In FRASTA, the fracture surfaces were scanned by laser microscope and the elevation data was recorded for analysis. The relationship between J-integral and fracture surface average profile for plain strain was deduced. It was also verified that the J-integral determined by the novel method and by the compliance method matches each other well.

  16. PROFFIT: Analysis of X-ray surface-brightness profiles (United States)

    Eckert, Dominique


    PROFFIT analyzes X-ray surface-brightness profiles for data from any X-ray instrument. It can extract surface-brightness profiles in circular or elliptical annuli, using constant or logarithmic bin size, from the image centroid, the surface-brightness peak, or any user-given center, and provides surface-brightness profiles in any circular or elliptical sectors. It offers background map support to extract background profiles, can excise areas using SAO DS9-compatible (ascl:0003.002) region files to exclude point sources, provides fitting with a number of built-in models, including the popular beta model, double beta, cusp beta, power law, and projected broken power law, uses chi-squared or C statistic, and can fit on the surface-brightness or counts data. It has a command-line interface similar to HEASOFT’s XSPEC (ascl:9910.005) package, provides interactive help with a description of all the commands, and results can be saved in FITS, ROOT or TXT format.

  17. Surface activity, lipid profiles and their implications in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Preetha A


    Full Text Available Background: The profiles of lipids in normal and cancerous tissues may differ revealing information about cancer development and progression. Lipids being surface active, changes in lipid profiles can manifest as altered surface activity profiles. Langmuir monolayers offer a convenient model for evaluating surface activity of biological membranes. Aims: The aims of this study were to quantify phospholipids and their effects on surface activity of normal and cancerous human cervical tissues as well as to evaluate the role of phosphatidylcholine (PC and sphingomyelin (SM in cervical cancer using Langmuir monolayers. Methods and Materials: Lipid quantification was done using thin layer chromatography and phosphorus assay. Surface activity was evaluated using Langmuir monolayers. Monolayers were formed on the surface of deionized water by spreading tissue organic phase corresponding to 1 mg of tissue and studying their surface pressure-area isotherms at body temperature. The PC and SM contents of cancerous human cervical tissues were higher than those of the normal human cervical tissues. Role of PC and SM were evaluated by adding varying amounts of these lipids to normal cervical pooled organic phase. Statistical analysis: Student′s t-test (p < 0.05 and one-way analysis of variance (ANOVA was used. Results: Our results reveals that the phosphatidylglycerol level in cancerous cervical tissue was nearly five folds higher than that in normal cervical tissue. Also PC and sphingomyelin SM were found to be the major phospholipid components in cancerous and normal cervical tissues respectively. The addition of either 1.5 µg DPPC or 0.5 µg SM /mg of tissue to the normal organic phase changed its surface activity profile to that of the cancerous tissues. Statistically significant surface activity parameters showed that PC and SM have remarkable roles in shifting the normal cervical lipophilic surface activity towards that of cancerous lipophilic

  18. Observation of slip flow in thermophoresis. (United States)

    Weinert, Franz M; Braun, Dieter


    Two differing theories aim to describe fluidic thermophoresis, the movement of particles along a temperature gradient. While thermodynamic approaches rely on local equilibrium, hydrodynamic descriptions assume a quasi-slip-flow boundary condition at the particle's surface. Evidence for slip flow is presented for the case of thermal gradients exceeding (aS_(T)(-1) with particle radius a and Soret coefficient S_(T). Thermophoretic slip flow at spheres near a surface attracts or repels tracer particles perpendicular to the thermal gradient. Moreover, particles mutually attract and form colloidal crystals. Fluid dynamic slip explains the latter quantitatively.

  19. Geomorphic features of surface ruptures associated with the 2016 Kumamoto earthquake in and around the downtown of Kumamoto City, and implications on triggered slip along active faults (United States)

    Goto, Hideaki; Tsutsumi, Hiroyuki; Toda, Shinji; Kumahara, Yasuhiro


    The 30-km-long surface ruptures associated with the M w 7.0 ( M j 7.3) earthquake at 01:25 JST on April 16 in Kumamoto Prefecture appeared along the previously mapped 100-km-long active fault called the Futagawa-Hinagu fault zone (FHFZ). The surface ruptures appeared to have extended further west out of the main FHFZ into the Kumamoto Plain. Although InSAR analysis by Geospatial Information Authority of Japan (GSI) indicated coseismic surface deformation in and around the downtown of Kumamoto City, the surface ruptures have not been clearly mapped in the central part of the Kumamoto Plain, and whether there are other active faults other than the Futagawa fault in the Kumamoto Plain remained unclear. We produced topographical stereo images (anaglyph) from 5-m-mesh digital elevation model of GSI, which was generated from light detection and ranging data. We interpreted them and identified that several SW-sloping river terraces formed after the deposition of the pyroclastic flow deposits related to the latest large eruption of the Aso caldera (86.8-87.3 ka) are cut and deformed by several NW-trending flexure scarps down to the southwest. These 5.4-km-long scarps that cut across downtown Kumamoto were identified for the first time, and we name them as the Suizenji fault zone. Surface deformation such as continuous cracks, tilts, and monoclinal folding associated with the main shock of the 2016 Kumamoto earthquake was observed in the field along the fault zone. The amount of vertical deformation ( 0.1 m) along this fault associated with the 2016 Kumamoto earthquake was quite small compared to the empirically calculated coseismic slip (0.5 m) based on the fault length. We thus suggest that the slip on this fault zone was triggered by the Kumamoto earthquake, but the fault zone has potential to generate an earthquake with larger slip that poses a high seismic risk in downtown Kumamoto area.[Figure not available: see fulltext.

  20. Morphological surface profile extraction with multiple range sensors

    NARCIS (Netherlands)

    Barshan, B; Baskent, D


    A novel method is described for surface profile extraction based on morphological processing of multiple range sensor data. The approach taken is extremely flexible and robust, in addition to being simple and straightforward. It can deal with arbitrary numbers and configurations of sensors as well a

  1. Carbon nanotube oscillator surface profiling device and method of use (United States)

    Popescu, Adrian [Tampa, FL; Woods, Lilia M [Tampa, FL; Bondarev, Igor V [Fuquay Varina, NC


    The proposed device is based on a carbon nanotube oscillator consisting of a finite length outer stationary nanotube and a finite length inner oscillating nanotube. Its main function is to measure changes in the characteristics of the motion of the carbon nanotube oscillating near a sample surface, and profile the roughness of this surface. The device operates in a non-contact mode, thus it can be virtually non-wear and non-fatigued system. It is an alternative to the existing atomic force microscope (AFM) tips used to scan surfaces to determine their roughness.

  2. The TR method: the use of slip preference to separate heterogeneous fault-slip data in compressional stress regimes. The surface rupture of the 1999 Chi-Chi Taiwan earthquake as a case study (United States)

    Tranos, Markos D.


    Synthetic contractional fault-slip data have been considered in order to examine the validity of widely applied criteria such as the slip preference, slip tendency, kinematic (P and T) axes, transport orientation and strain compatibility in different Andersonian compressional stress regimes. Radial compression (RC), radial-pure compression (RC-PC), pure compression (PC), pure compression-transpression (PC-TRP), and transpression (TRP) are examined with the aid of the Win-Tensor stress inversion software. Furthermore, the validity of the recently proposed graphical TR method, which uses the concept of slip preference for the separation of heterogeneous fault-slip data, is also examined for compressional stress regimes. In these regimes only contractional faults can be activated, and their slip preferences imply the distinction between “real”, i.e., RC, RC-PC and PC, and “hybrid”, i.e., PC-TRP and TRP stress regimes. For slip tendency values larger than 0.6, the activated faults dip at angles from 10° to 50°, but in the “hybrid” regimes faults can dip with even higher angles. The application of the TR method is here refined by introducing two controlling parameters, the coefficient of determination (R2) of the Final Tensor Ratio Line (FTRL) and the “normal” or “inverse” distribution of the faults plotted within the Final Tensor Ratio Belt (FTRB). The application of the TR method on fault-slip data of the 1999 Chi-Chi earthquake, Taiwan, allowed the meaningful separation of complex heterogeneous contractional fault-slip data into homogeneous groups. In turn, this allowed the identification of different compressional stress regimes and the determination of local stress perturbations of the regional or far-stress field generated by the 1999 Chi-Chi earthquake. This includes clear examples of “stress permutation” and “stress partitioning” caused by pre-existing fault structures, such as the N-S trending Chelungpu thrust and the NE

  3. Fatty acid methyl ester profiles of bat wing surface lipids. (United States)

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S


    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  4. Approximate solutions of the equation of motion’s of the rigid rod which rocks on the circular surface without slipping

    Directory of Open Access Journals (Sweden)

    Md. Alal Hosen


    Full Text Available In this paper, a modified harmonic balance method based an analytical technique has been developed to determine approximate solutions for a strongly nonlinear oscillator with a discontinuous term which is arising from the motion of rigid rod on the surface without slipping. Usually, a set of nonlinear algebraic equations is solved in this method. However, analytical solutions of these algebraic equations are not always possible, especially in the case of a large oscillation. We have been compared the solution results of this method with the numerical solution in order to validate the approach and assess the accuracy of the solutions has been demonstrated and discussed. We found that, a second order modified harmonic balance method works very well for the whole range of initial amplitudes. The advantage of the using method is its simple procedure and gives almost similar results in comparison with the exact solution.

  5. Surface 3D Micro Free Forms: Multifunctional Microstructured Mesoporous α-Alumina by in Situ Slip Casting Using Excimer Laser Ablated Polycarbonate Molds. (United States)

    Rowthu, Sriharitha; Böhlen, Karl; Bowen, Paul; Hoffmann, Patrik


    Ceramic surface microstructuring is a rapidly growing field with a variety of applications in tribology, wetting, biology, and so on. However, there are limitations to large-area microstructuring and fabrication of three-dimensional (3D) micro free forms. Here, we present a route to obtain intricate surface structures through in situ slip casting using polydimethylsiloxane (PDMS) negative molds which are replicated from excimer laser ablated polycarbonate (PC) master molds. PC sheets are ablated with a nanosecond KrF (λ = 248 nm) excimer laser mask projection system to obtain micron-scale 3D surface features over a large area of up to 3 m(2). Complex surface structures that include 3D free forms such as 3D topography of Switzerland, shallow structures such as diffractive optical elements (60 nm step) and conical micropillars have been obtained. The samples are defect-free produced with thicknesses of up to 10 mm and 120 mm diameter. The drying process of the slip cast alumina slurry takes place as a one-dimensional process, through surface evaporation and water permeation through the PDMS membrane. This allows homogeneous one-dimensional shrinkage during the drying process, independent of the sample's lateral dimensions. A linear mass diffusion model has been proposed to predict and explain the drying process of these ceramic colloidal suspensions. The calculated drying time is linearly proportional to the height of the slurry and the thickness of the negatively structured PDMS and is validated by the experimental results. An experimentally observed optimum Sylgard PDMS thickness range of ∼400 μm to 1 mm has achieved the best quality microstructured green compacts. Further, the model predicts that the drying time is independent of the microstructured areas and was validated using experimental observations carried out with microstructured areas of 300 mm(2), 1200 mm(2), and 120 cm(2). Therefore, in principle, the structures can be further replicated in areas up

  6. Pre-correction of projected gratings for surface profile measurement (United States)

    Sun, Cuiru; Lu, Hua


    This paper discusses errors caused by unequal grating pitch in applying the phase-shifted digital grating projection method for object profile measurement. To address the related issues, a new scheme is proposed to effectively improve the uniformity of the projected grating pitch across the object surface with no additional hardware cost. The improvement is mainly realized via a grating pitch pre-correction algorithm assisted by Digital Speckle/Image Correlation (DSC/DIC). DIC is utilized to accurately determine the surface grating pitch variation when an originally equal-pitched grating pattern is slant projected to the surface. With the actual pitch distribution function determined, a pre-corrected grating with unequal pitch is generated and projected, and the iterative algorithm reaches a constant pitched surface grating. The mapping relationship between the object surface profile (or out-of-plane displacement) and the fringe phase changes is obtained with a real-time subtraction based calibration. A quality guide phase unwrapping method is also adopted in the fringe processing. Finally, a virtual reference phase plane obtained by a 3-point plane fitting algorithm is subtracted to eliminate the carrier phase. The study shows that a simple optical system implemented with the mentioned improvements remarkably increase the accuracy and the efficiency of the measurement.

  7. Effect of surfactant concentration and interfacial slip on the flow past a viscous drop at low surface P\\'eclet number

    CERN Document Server

    Sekhar, G P Raja; Rohde, Christian


    The motion of a viscous drop is investigated when the interface is fully covered with a stagnant layer of surfactant in an arbitrary unsteady Stokes flow for the low surface P\\'eclet number limit. The effect of the interfacial slip coefficient on the behavior of the flow field is also considered. The hydrodynamic problem is solved by the solenoidal decomposition method and the drag force is computed in terms of Faxen's laws using a perturbation ansatz in powers of the surface P\\'eclet number. The analytical expressions for the migration velocity of the drop are also obtained in powers of the surface P\\'eclet number. Further instances corresponding to a given ambient flow as uniform flow, Couette flow, Poiseuille flow are analyzed. Moreover, it is observed that, a surfactant-induced cross-stream migration of the drop occur towards the centre-line in both Couette flow and Poiseuille flow cases. The variation of the drag force and migration velocity is computed for different parameters such as P\\'eclet number, M...

  8. Surface rupture and slip distribution of the 2016 Mw7.8 Kaikoura earthquake (New Zealand) from optical satellite image correlation using MicMac (United States)

    Champenois, Johann; Klinger, Yann; Grandin, Raphaël; Satriano, Claudio; Baize, Stéphane; Delorme, Arthur; Scotti, Oona


    Remote sensing techniques, like optical satellite image correlation, are very efficient methods to localize and quantify surface displacements due to earthquakes. In this study, we use the french sub-pixel correlator MicMac (Multi Images Correspondances par Méthodes Automatiques de Corrélation). This free open-source software, developed by IGN, was recently adapted to process satellite images. This correlator uses regularization, and that provides good results especially in near-fault area with a high spatial resolution. We use co-seismic pair of ortho-images to measure the horizontal displacement field during the recent 2016 Mw7.8 Kaikoura earthquake. Optical satellite images from different satellites are processed (Sentinel-2A, Landsat8, etc.) to present a dense map of the surface ruptures and to analyze high density slip distribution along all major ruptures. We also provide a detail pattern of deformation along these main surface ruptures. Moreover, 2D displacement from optical correlation is compared to co-seismic measurements from GPS, static displacement from accelerometric records, geodetic marks and field investigations. Last but not least, we investigate the reconstruction of 3D displacement from combining InSAR, GPS and optic.

  9. Effects of chemical reaction and partial slip on the three-dimensional flow of a nanofluid impinging on an exponentially stretching surface (United States)

    Mahanthesh, B.; Mabood, F.; Gireesha, B. J.; Gorla, R. S. R.


    The three-dimensional mixed convection boundary layer flow of a nanofluid induced by an exponentially stretching sheet is numerically investigated in the presence of thermal radiation, heat source/sink and first-order chemical reaction effects. The adopted nanofluid model incorporates the effects of Brownian motion and thermophoresis into the mathematical model. The first-order velocity slip boundary conditions are also taken into account. The governing boundary layer equations are transformed into a set of nonlinear ordinary differential equations by employing suitable similarity variables. The resultant equations are solved numerically using the Runge-Kutta-Fehlberg method. Obtained solutions are compared with previous results in a limiting sense from the literature, demonstrating an excellent agreement. To show the typical trend of the solutions, a parametric study is conducted. The axial velocity, transverse velocity, temperature and nanoparticle volume fraction profiles as well as the skin-friction coefficient, Nusselt and Sherwood numbers are demonstrated graphically as a representative set of numerical results and discussed comprehensively.

  10. The Distribution of Fault Slip Rates and Oblique Slip Patterns in the Greater Los Angeles, CA Region (United States)

    Harper, H.; Marshall, S. T.


    The Los Angeles basin is host to a complex network of active strike-slip, reverse, and oblique slip faults. Because of the large metropolitan region occupying the basin, even moderately large earthquakes (M6+) pose a significant natural hazard. Since geologic estimates have not fully characterized the distribution of active fault slip rates in the region, we use a mechanical model driven by geodetically-measured shortening rates to calculate the full three-dimensional fault slip rate distributions in the region. The modeled nonplanar fault geometries are relatively well-constrained, and use data from the SCEC community fault model. Area-weighted average fault slip rates predicted by the model match previously measured geologic slip rates in most cases; however, some geologic measurements were made in locations where the slip rate is non-characteristic of the fault (e.g. near a fault tip) and the geologic slip rate estimate disagrees with the model-predicted average slip rate. The largest discrepancy between the model predictions and geologic estimates occurs on the Sierra Madre fault, which has a model-predicted slip rate approximately 2 mm/yr greater than the geologic estimates. An advantage of the model is that it can predict the full three-dimensional mechanically compatible slip distribution along all modeled faults. The fault surface slip distribution maps show complex oblique slip patterns that arise due to the nonplanar geometries and mechanical interactions between intersecting and neighboring faults. For example, the Hollywood fault exhibits a net slip of 0.7 mm/yr at depth which increases to 1.6 mm/yr where it is intersected by the Santa Monica fault in the near-surface. Model results suggest that nearly all faults in the region have an oblique component of slip at depth, so slip rate estimates of only dip or strike-slip may underestimate the total net slip rates and seismic hazards in the region.

  11. Hydrodynamic slip in silicon nanochannels (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.


    Equilibrium and nonequilibrium molecular dynamics simulations were performed to better understand the hydrodynamic behavior of water flowing through silicon nanochannels. The water-silicon interaction potential was calibrated by means of size-independent molecular dynamics simulations of silicon wettability. The wettability of silicon was found to be dependent on the strength of the water-silicon interaction and the structure of the underlying surface. As a result, the anisotropy was found to be an important factor in the wettability of these types of crystalline solids. Using this premise as a fundamental starting point, the hydrodynamic slip in nanoconfined water was characterized using both equilibrium and nonequilibrium calculations of the slip length under low shear rate operating conditions. As was the case for the wettability analysis, the hydrodynamic slip was found to be dependent on the wetted solid surface atomic structure. Additionally, the interfacial water liquid structure was the most significant parameter to describe the hydrodynamic boundary condition. The calibration of the water-silicon interaction potential performed by matching the experimental contact angle of silicon led to the verification of the no-slip condition, experimentally reported for silicon nanochannels at low shear rates.

  12. Magnetohydrodynamic and Slip Effects on the Flow and Mass Transfer over a Microcantilever-Based Sensor

    Directory of Open Access Journals (Sweden)

    M. B. Akgül


    Full Text Available Hydromagnetic flow and mass transfer of a viscous incompressible fluid over a microcantilever sensor surface are studied in the presence of slip flow. In addition, chemical reaction at the sensor surface is taken into account. The governing equations for the flow are reduced to a local nonsimilarity form. Resulting equations are solved numerically for various values of flow parameters. Effects of physical quantities on the velocity and concentration profiles are discussed in detail.

  13. Flexural-slip during visco-elastic buckle folding (United States)

    Damasceno, Davi R.; Eckert, Andreas; Liu, Xiaolong


    Flexural-slip is considered as an important mechanism during folding and a general conceptual and qualitative understanding has been provided by various field studies. However, quantitative evidence of the importance of the flexural-slip mechanism during fold evolution is sparse due to the lack of suitable strain markers. In this study, 2D finite element analysis is used to overcome these disadvantages and to simulate flexural-slip during visco-elastic buckle folding. Variations of single and multilayer layer fold configurations are investigated, showing that flexural-slip is most likely to occur in effective single layer buckle folds, where slip occurs between contacts of competent layers. Based on effective single layer buckle folds, the influence of the number of slip surfaces, the degree of mechanical coupling (based on the friction coefficient), and layer thickness, on the resulting slip distribution are investigated. The results are in agreement with the conceptual flexural-slip model and show that slip is initiated sequentially during the deformation history and is maximum along the central slip surface of the fold limb. The cumulative amount of slip increases as the number of slip surfaces is increased. For a lower degree of mechanical coupling increased slip results in different fold shapes, such as box folds, during buckling. In comparison with laboratory experiments, geometrical relationships and field observations, the numerical modeling results show similar slip magnitudes. It is concluded that flexural-slip should represent a significant contribution during buckle folding, affecting the resulting fold shape for increased amounts of slip.

  14. Electrophoresis of particles with Navier velocity slip. (United States)

    Park, Hung Mok


    In the present investigation, it is found that the electrophoretic mobility of hydrophobic particles is affected not only by the zeta potential but also by the velocity slip at the particle surface. From a physicochemical viewpoint, zeta potential represents the surface charge properties and the slip coefficient indicates the hydrophobicity of the particle surface. Thus, it is necessary to separate the contribution of zeta potential from that of slip coefficient to the particle mobility, since zeta potential can be changed by varying the bulk ionic concentration while the slip coefficient can be modified by adjusting surfactant concentration. In the present investigation, a method is devised that allows a simultaneous estimation of zeta potential and slip coefficient of micro and nanoparticles using measurements of electrophoretic mobility at various bulk ionic concentrations. Employing a nonlinear curve-fitting technique and an analytic solution of electrophoresis for a particle with velocity slip, the present technique predicts both zeta potential and slip coefficient simultaneously with reasonable accuracy using the measured values of electrophoretic mobility at various bulk ionic concentrations.

  15. Geodetic estimates of fault slip rates in the San Francisco Bay area (United States)

    Savage, J. C.; Svarc, J. L.; Prescott, W. H.


    Bourne et al. [1998] have suggested that the interseismic velocity profile at the surface across a transform plate boundary is a replica of the secular velocity profile at depth in the plastosphere. On the other hand, in the viscoelastic coupling model the shape of the interseismic surface velocity profile is a consequence of plastosphere relaxation following the previous rupture of the faults that make up the plate boundary and is not directly related to the secular flow in the plastosphere. The two models appear to be incompatible. If the plate boundary is composed of several subparallel faults and the interseismic surface velocity profile across the boundary known, each model predicts the secular slip rates on the faults which make up the boundary. As suggested by Bourne et al., the models can then be tested by comparing the predicted secular slip rates to those estimated from long-term offsets inferred from geology. Here we apply that test to the secular slip rates predicted for the principal faults (San Andreas, San Gregorio, Hayward, Calaveras, Rodgers Creek, Green Valley and Greenville faults) in the San Andreas fault system in the San Francisco Bay area. The estimates from the two models generally agree with one another and to a lesser extent with the geologic estimate. Because the viscoelastic coupling model has been equally successful in estimating secular slip rates on the various fault strands at a diffuse plate boundary, the success of the model of Bourne et at. [1998] in doing the same thing should not be taken as proof that the interseismic velocity profile across the plate boundary at the surface is a replica of the velocity profile at depth in the plastosphere.

  16. Parameters of Coseismic Reverse- and Oblique-Slip Surface Ruptures of the 2008 Wenchuan Earthquake, Eastern Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    XU Xiwei; YU Guihua; CHEN Guihua; RAN Yongkang; LI Chenxia; CHEN Yuegau; CHANG Chungpai


    On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan plateau. Field investigations constrain the surface rupture pattern, length and offsets related to the Wenchuan earthquake. The Beichuan fault has a NE-trending right- lateral reverse rupture with a total length of 240 km. Reassessment yields a maximum vertical offset of 6.5±0.5 m and a maximum right-lateral offset of 4.9±0.5 m for its northern segment, which are the largest offsets found; the maximum vertical offset is 6.2±0.5 m for its southern segment. The Pengguan fault has a NE-trending pure reverse rupture about 72 km long with a maximum vertical offset of about 3.5 m. The Xiaoyudong fault has a NW-striking left-lateral reverse rupture about 7 km long between the Beichuan and Pengguan faults, with a maximum vertical offset of 3.4 m and left-lateral offset of 3.5 m. This pattern of multiple co-seismic surface ruptures is among the most complicated of recent great earthquakes and presents a much larger danger than if they ruptured individually. The rupture length is the longest for reverse faulting events ever reported.

  17. Slipping properties of ceramic tiles / Quantification of slip resistance (United States)

    Terjek, Anita


    Regarding the research and application of ceramic tiles there is a great importance of defining precisely the interaction and friction between surfaces. Measuring slip resistance of floor coverings is a complex problem; slipperiness is always interpreted relatively. In the lack of a consistent and clear EU standard, it is practical to use more method in combination. It is necessary to examine the structure of materials in order to get adequate correlation. That is why measuring techniques of surface roughness, an important contributor to slip resistance and cleaning, is fundamental in the research. By comparing the obtained test results, relationship between individual methods of analysis and values may be determined and based on these information recommendations shall be prepared concerning the selection and application of tiles.

  18. Surface Brightness Profiles of Dwarf Galaxies. II. Color Trends and Mass Profiles (United States)

    Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G.


    In this second paper of a series, we explore the B - V, U - B, and FUV-NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ˜1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of which mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (-9 > MB > -14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (-14 > MB > -19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1-2 M⊙ pc-2 for Type II dwarfs but higher at 5.9 M⊙ pc-2 or 27 M⊙ pc-2 for Type III BCDs and dIms, respectively.

  19. Surface Brightness Profiles of Dwarf Galaxies: II. Color Trends and Mass Profiles

    CERN Document Server

    Herrmann, Kimberly A; Elmegreen, Bruce G


    In this second paper of a series, we explore the B-V, U-B, and FUV-NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that colors of (1) Type I dwarfs generally become redder with increasing radius unlike spirals that have a blueing trend that flattens beyond ~1.5 disk scale lengths, (2) Type II dwarfs come in six different "flavors," one of which mimics the "U" shape of spirals, and (3) Type III dwarfs have a stretched "S" shape where central colors are flattish, become steeply redder to the surface brightness break, then remain roughly constant beyond, similar to spiral TypeIII color profiles, but without the central outward bluing. Faint (-9 > M_B > -14) Type II dwarfs tend to have continuously red or "U" shaped colors and steeper color slopes than bright (-14...

  20. Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ul Haq, Rizwan [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Mechanical and Materials Engineering, Spencer Engineering Building, Room 3055, University of Western Ontario, London, Ontario (Canada); Nadeem, Sohail [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Khan, Z.H. [School of Mathematical Sciences, Peking University, Beijing 100871 (China); Department of Mathematics, University of Malakand, Dir (Lower), Khyber Pakhtunkhwa (Pakistan); Noor, N.F.M., E-mail: [Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)


    In the present study, thermal conductivity and viscosity of both single-wall and multiple-wall Carbon Nanotubes (CNT) within the base fluids (water, engine oil and ethylene glycol) of similar volume have been investigated when the fluid is flowing over a stretching surface. The magnetohydrodynamic (MHD) and viscous dissipation effects are also incorporated in the present phenomena. Experimental data consists of thermo-physical properties of each base fluid and CNT have been considered. The mathematical model has been constructed and by employing similarity transformation, system of partial differential equations is rehabilitated into the system of non-linear ordinary differential equations. The results of local skin friction and local Nusselt number are plotted for each base fluid by considering both Single Wall Carbon Nanotube (SWCNT) and Multiple-Wall Carbon Nanotubes (MWCNT). The behavior of fluid flow for water based-SWCNT and MWCNT are analyzed through streamlines. Concluding remarks have been developed on behalf of the whole analysis and it is found that engine oil-based CNT have higher skin friction and heat transfer rate as compared to water and ethylene glycol-based CNT. - Graphical abstract: Comparison among three different base fluids in the presence of SWCNTs and MWCNTs for skin friction and local Nusselt number.

  1. Surface wave inversion for a p-wave velocity profile: Estimation of the squared slowness gradient

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.


    Surface waves can be used to obtain a near-surface shear wave profile. The inverse problem is usually solved for the locally 1-D problem of a set of homogeneous horizontal elastic layers. The output is a set of shear velocity values for each layer in the profile. P-wave velocity profile can be estim

  2. Field induced anomalous spreading, oscillation, ejection, spinning, and breaking of oil droplets on a strongly slipping water surface. (United States)

    Kumar, Sunny; Sarma, Bhaskarjyoti; Dasmahapatra, Ahsok Kumar; Dalal, Amaresh; Basu, Dipankar Narayan; Bandyopadhyay, Dipankar


    Application of an electric field on an oil droplet floating on the surface of a deionized water bath showed interesting motions such as spreading, oscillation, and ejection. The electric field was generated by connecting a pointed platinum cathode at the top of the oil droplet and a copper anode coated with polymer at the bottom of the water layer. The experimental setup mimicked a conventional electrowetting setup with the exception that the oil was spread on a soft and deformable water isolator. While at relatively lower field intensities we observed spreading of the droplet, at intermediate field intensities the droplet oscillated around the platinum cathode, before ejecting out at a speed as high as ∼5 body lengths per second at even stronger field intensities. The experiments suggested that when the electric field was ramped up abruptly to a particular voltage, any of the spreading, oscillation, or ejection motions of the droplet could be engendered at lower, intermediate and higher field intensities, respectively. However, when the field was ramped up progressively by increasing by a definite amount of voltage per unit time, all three aforementioned motions could be generated simultaneously with the increase in the field intensity. Interestingly, when the aforementioned setup was placed on a magnet, the droplet showed a rotational motion under the influence of the Lorentz force, which was generated because of the coupling of the weak leakage current with the externally applied magnetic field. The spreading, oscillation, ejection, and rotation of the droplet were found to be functions of the oil-water interfacial tension, viscosity, and size of the oil droplet. We developed simple theoretical models to explain the experimental results obtained. Importantly, rotating at a higher speed broke the droplet into a number of smaller ones, owing to the combined influence of the spreading due to the centripetal force and the shear at the oil-water interface. While

  3. Evidence for Truncated Exponential Probability Distribution of Earthquake Slip

    KAUST Repository

    Thingbaijam, Kiran K. S.


    Earthquake ruptures comprise spatially varying slip on the fault surface, where slip represents the displacement discontinuity between the two sides of the rupture plane. In this study, we analyze the probability distribution of coseismic slip, which provides important information to better understand earthquake source physics. Although the probability distribution of slip is crucial for generating realistic rupture scenarios for simulation-based seismic and tsunami-hazard analysis, the statistical properties of earthquake slip have received limited attention so far. Here, we use the online database of earthquake source models (SRCMOD) to show that the probability distribution of slip follows the truncated exponential law. This law agrees with rupture-specific physical constraints limiting the maximum possible slip on the fault, similar to physical constraints on maximum earthquake magnitudes.We show the parameters of the best-fitting truncated exponential distribution scale with average coseismic slip. This scaling property reflects the control of the underlying stress distribution and fault strength on the rupture dimensions, which determines the average slip. Thus, the scale-dependent behavior of slip heterogeneity is captured by the probability distribution of slip. We conclude that the truncated exponential law accurately quantifies coseismic slip distribution and therefore allows for more realistic modeling of rupture scenarios. © 2016, Seismological Society of America. All rights reserverd.

  4. Profile Curvature Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Profile curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Profile curvature describes the rate...

  5. Application of genetic algorithm in the evaluation of the profile error of archimedes helicoid surface (United States)

    Zhu, Lianqing; Chen, Yunfang; Chen, Qingshan; Meng, Hao


    According to minimum zone condition, a method for evaluating the profile error of Archimedes helicoid surface based on Genetic Algorithm (GA) is proposed. The mathematic model of the surface is provided and the unknown parameters in the equation of surface are acquired through least square method. Principle of GA is explained. Then, the profile error of Archimedes Helicoid surface is obtained through GA optimization method. To validate the proposed method, the profile error of an Archimedes helicoid surface, Archimedes Cylindrical worm (ZA worm) surface, is evaluated. The results show that the proposed method is capable of correctly evaluating the profile error of Archimedes helicoid surface and satisfy the evaluation standard of the Minimum Zone Method. It can be applied to deal with the measured data of profile error of complex surface obtained by three coordinate measurement machines (CMM).

  6. Influence of basal slip on the propagation and cooling of lava flows (United States)

    Melnik, Oleg; Vedeneeva, Elena; Utkin, Ivan


    A thin layer approximation is used for studying of viscous gravity currents on the horizontal topography from a point source. The main difference from a self-similar solution obtained in Huppert (1982) is the account for partial slip of lava on the ground surface. We assume that the slip velocity is proportional to the tangential stress in some positive power. This condition is widely used in polymer science and for the flows on superhydrophobic surfaces. This condition is also applicable for lava flows because of a large roughness of volcanic terrains and the presence of unconsolidated material (ash, lapilli). The system of Stokes equations was reduced to a non-linear parabolic differential equation. Its solution was found both numerically and by a reduction to an ODE that describes similarity solution. In the latter case there is a dependence between lava mass growth rate and the power exponent in the friction law. It was shown that the presence of basal slip allows much faster propagation of lava flows in comparison with no-slip condition at the ground surface. Analytical solutions were proved by a good comparison with fully 2D axisymmetric finite volume simulations. Based on the velocity field obtained from a thin layer theory the heat budget of a lava flow was studied for the case of constant lava viscosity. Heat equation was solved in the lava domain with no flux condition at the bottom, radiative and convective fluxes at the free surface and the influx of a fresh magma from a point source. It was shown that due to a strong difference in the velocity profile the distribution of the temperature inside the lava flow is different in the cases of no-slip and partial slip conditions.

  7. New geologic slip rates for the Agua Blanca Fault, northern Baja California, Mexico (United States)

    Gold, P. O.; Behr, W. M.; Fletcher, J. M.; Hinojosa-Corona, A.; Rockwell, T. K.


    , we collected surface and depth profile samples for 10Be cosmogenic exposure dating. We also identified sites for new paleoseismic excavations, and documented evidence of the last two earthquakes, each of which produced ~2.5 m of surface displacement. We expect new Holocene slip rates for the Agua Blanca Fault to be forthcoming in fall of 2015.

  8. Are non-slip socks really 'non-slip'? An analysis of slip resistance


    Haines Terrence; Chari Satyan; Varghese Paul; Economidis Alyssia


    Abstract Background Non-slip socks have been suggested as a means of preventing accidental falls due to slips. This study compared the relative slip resistance of commercially available non-slip socks with other foot conditions, namely bare feet, compression stockings and conventional socks, in order to determine any traction benefit. Methods Phase one involved slip resistance testing of two commercially available non-slip socks and one compression-stocking sample through an independent blind...

  9. Measuring protoplanetary disk gas surface density profiles with ALMA

    CERN Document Server

    McPartland, Jonathan P Williams Conor


    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams & Best (2014) to show that gas surface density profiles can be measured from high fidelity 13CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, Mgas = 0.048 solar masse, and accretion disk characteristic size Rc = 213au and gradient gamma = 0.39. The same parameters match the C18O 2--1 image and indicates an abundance ratio [13CO]/[C18O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large 13CO 2--1 image library and fit simulated data. For disks with gas masses 3-10 Jupiter masses at 150pc, ALMA observations with a resolutio...


    Institute of Scientific and Technical Information of China (English)

    Jin Yaqin; Li Zhongxin


    As a Gaussian beam is incident upon a rough surface at low grazing angle, the Helmholts scalar wave equation may be replaced by the parabolic approximate equation. As the incident field is known, the scattered field and surface current give the Volterra integral equation.Surface roughness profile can be formulated by the integral equation of the surface currents. These two coupled equations are applied to invert the roughness profile of heterogeneous fractal surface.Using Monte Carlo method, the fractal rough surfaces with a band-limited Weistrass-Manderbrot function are numerically simulated and the scattered fields along a line parallel to the mean surface are solved. The Gaussian beam incidence and scattered fields are used to progressively invert the surface roughness profile. Reconstructed profile and its inverted fractal dimension,roughness variance and correlation length are well matched with the simulated surfaces.

  11. Single-step spatial rotation error separation technique for the ultraprecision measurement of surface profiles. (United States)

    Hou, Maosheng; Qiu, Lirong; Zhao, Weiqian; Wang, Fan; Liu, Entao; Ji, Lin


    To improve the measurement accuracy of the profilometer for large optical surfaces, a new single-step spatial rotation error separation technique (SSEST) is proposed to separate the surface profile error and spindle spatial rotation error, and a novel SSEST-based system for surface profile measurement is developed. In the process of separation, two sets of measured results at the ith measurement circle are obtained before and after the rotation of error separation table, the surface profile error and spatial rotation error of spindle can be determined using discrete Fourier-transform and harmonic analysis. Theoretical analyses and experimental results indicate that SSEST can accurately separate spatial rotation error of spindle from the measured surface profile results within the range of 1-100 upr and improve the accuracy of surface profile measurements.

  12. Slipping of the foot on the floor when pulling a pallet truck. (United States)

    Li, Kai Way; Chang, Chien-Chi; Chang, Wen-Ruey


    Workers pulling pallet trucks are likely to slip when pulling and stepping on a low-friction floor. This study investigated the slipping of male participants when pulling a pallet truck, walking backward, and stepping on either a dry, wet, or glycerol-contaminated vinyl surface. The weight of the load on the truck was either low (0 kg), medium (295 kg), or high (568 kg). A motion-tracking system was used to collect the three-dimensional coordinates of the markers on the shoes. It was found that subjects might slip either upon landing of the leading foot on the toe (slip I) or before taking off of the lagging foot on the heel (slip II). The results indicated that the slip distances for both types of slip were significantly affected by the load and surface conditions and their interactions. Micro-slips (slips between 0.1 and 3 cm) and midi-slips (slips between 3 and 10 cm) were more common in slip I than in slip II. On glycerol-contaminated surfaces, the probabilities of a slide, or a slip more than 10 cm, for both slips I and II were over 40%. The implications of the results were discussed.

  13. Magnetic mineral characterization close to the Yingxiu-Beichuan fault surface rupture zone of the Wenchuan earthquake (Mw 7.9, 2008) and its implication for earthquake slip processes (United States)

    Liu, Dongliang; Li, Haibing; Lee, Teh-Quei; Sun, Zhiming; Liu, Jiang; Han, Liang; Chevalier, Marie-Luce


    The 2008 Mw 7.9 Wenchuan Earthquake produced two major rupture zones: one in the Yingxiu-Beichuan fault zone (YBF) and another in the Anxian-Guanxian fault zone (AGF). A shallow trench was dug in Bajiaomiao village, Dujiangyan, Sichuan Province, which experienced a ∼4.3 m vertical offset during this large earthquake. The hanging wall of the YBF in this trench includes fault gouge and breccia. Optical microscope observations and X-ray diffraction (XRD) measurements show obvious differences between the fault gouge and breccia. Moreover, rock magnetism measurements were collected and include mass magnetic susceptibility (MS), Isothermal Remnant Magnetization (IRM), Saturation Isothermal Remnant Magnetization (SIRM), high-temperature thermo-magnetism (K-T) and magnetic hysteresis loops. Several cm-thick magnetic mineral anomalies are observed close to the Wenchuan Earthquake surface rupture zone of the YBF. Magnetite and Fe-sulfide are the main magnetic carrier materials for the fault rocks close to the surface rupture zone, including 3 cm-thick fault gouge and 3 cm-thick fault breccia, while the other fault breccia, further from the surface rupture zone, contains the paramagnetic minerals. The possible magnetic change is attributed to newly-formed magnetite from paramagnetic minerals at high temperatures (>500 °C) during the large earthquake, implying that the YBF has ever experienced high-temperature thermal pressurization earthquake slip dynamics. Moreover, the YBF has also experienced high-temperature frictional melting earthquake slip dynamics, constrained by the multiple vein pseudotachylite. These high-temperature earthquake slip processes may be responsible for the high dip angle thrust characteristic of the YBF.

  14. Fault Scaling Relationships Depend on the Average Geological Slip Rate (United States)

    Anderson, J. G.; Biasi, G. P.; Wesnousky, S. G.


    This study addresses whether knowing the geological slip rates on a fault in addition to the rupture length improves estimates of magnitude (Mw) of continental earthquakes that rupture the surface, based on a database of 80 events that includes 57 strike-slip, 12 reverse, and 11 normal faulting events. Three functional forms are tested to relate rupture length L to magnitude Mw: linear, bilinear, and a shape with constant static stress drop. The slip rate dependence is tested as a perturbation to the estimates of magnitude from rupture length. When the data are subdivided by fault mechanism, magnitude predictions from rupture length are improved for strike-slip faults when slip rate is included, but not for reverse or normal faults. This conclusion is robust, independent of the functional form used to relate L to Mw. Our preferred model is the constant stress drop model, because teleseismic observations of earthquakes favor that result. Because a dependence on slip rate is only significant for strike-slip events, a combined relationship for all rupture mechanisms is not appropriate. The observed effect of slip rate for strike-slip faults implies that the static stress drop, on average, tends to decrease as the fault slip rate increases.

  15. Identification of surface contaminants using infrared micro-profiling

    Energy Technology Data Exchange (ETDEWEB)

    Blair, D.S.; Ward, K.J.


    Infrared micro-profiling is the combination of infrared microspectroscopy with precise microscope stage movements. It can provide molecular and spatial information for a variety of samples as small as 10 {mu}m in diameter. To illustrate the technique different contaminant materials, including a cellulose acetate fiber, oils deposited in a fingerprint, and a thin film of solder flux residue, were infrared micro-profiled. An integrated absorbance data reduction technique commonly used in gas chromatography/FT-IR applications was applied to the micro-profiling data. This technique organizes the vast amount of data generated, enabling the user to plot the results in 3-dimensional projections, allowing extraction of relevant spatial information. A method of coadding spectra from different pixel elements, providing higher quality spectra without increasing data acquisition time, is presented. This procedure improves spectral signal-to-noise which aids in the identification of unknown contaminants. 7 refs., 4 figs.

  16. Coseismic slip distribution of the 1923 Kanto earthquake, Japan (United States)

    Pollitz, F.F.; Nyst, M.; Nishimura, T.; Thatcher, W.


    The slip distribution associated with the 1923 M = 7.9 Kanto, Japan, earthquake is reexamined in light of new data and modeling. We utilize a combination of first-order triangulation, second-order triangulation, and leveling data in order to constrain the coseismic deformation. The second-order triangulation data, which have not been utilized in previous studies of 1923 coseismic deformation, are associated with only slightly smaller errors than the first-order triangulation data and expand the available triangulation data set by about a factor of 10. Interpretation of these data in terms of uniform-slip models in a companion study by Nyst et al. shows that a model involving uniform coseismic slip on two distinct rupture planes explains the data very well and matches or exceeds the fit obtained by previous studies, even one which involved distributed slip. Using the geometry of the Nyst et al. two-plane slip model, we perform inversions of the same geodetic data set for distributed slip. Our preferred model of distributed slip on the Philippine Sea plate interface has a moment magnitude of 7.86. We find slip maxima of ???8-9 m beneath Odawara and ???7-8 m beneath the Miura peninsula, with a roughly 2:1 ratio of strike-slip to dip-slip motion, in agreement with a previous study. However, the Miura slip maximum is imaged as a more broadly extended feature in our study, with the high-slip region continuing from the Miura peninsula to the southern Boso peninsula region. The second-order triangulation data provide good evidence for ???3 m right-lateral strike slip on a 35-km-long splay structure occupying the volume between the upper surface of the descending Philippine Sea plate and the southern Boso peninsula. Copyright 2005 by the American Geophysical Union.

  17. Imbricated slip rate processes during slow slip transients imaged by low-frequency earthquakes (United States)

    Lengliné, O.; Frank, W. B.; Marsan, D.; Ampuero, J.-P.


    Low Frequency Earthquakes (LFEs) often occur in conjunction with transient strain episodes, or Slow Slip Events (SSEs), in subduction zones. Their focal mechanism and location consistent with shear failure on the plate interface argue for a model where LFEs are discrete dynamic ruptures in an otherwise slowly slipping interface. SSEs are mostly observed by surface geodetic instruments with limited resolution and it is likely that only the largest ones are detected. The time synchronization of LFEs and SSEs suggests that we could use the recorded LFEs to constrain the evolution of SSEs, and notably of the geodetically-undetected small ones. However, inferring slow slip rate from the temporal evolution of LFE activity is complicated by the strong temporal clustering of LFEs. Here we apply dedicated statistical tools to retrieve the temporal evolution of SSE slip rates from the time history of LFE occurrences in two subduction zones, Mexico and Cascadia, and in the deep portion of the San Andreas fault at Parkfield. We find temporal characteristics of LFEs that are similar across these three different regions. The longer term episodic slip transients present in these datasets show a slip rate decay with time after the passage of the SSE front possibly as t - 1 / 4. They are composed of multiple short term transients with steeper slip rate decay as t-α with α between 1.4 and 2. We also find that the maximum slip rate of SSEs has a continuous distribution. Our results indicate that creeping faults host intermittent deformation at various scales resulting from the imbricated occurrence of numerous slow slip events of various amplitudes.

  18. Sinusoidal phase-modulating laser diode interferometer for real-time surface profile measurement

    Institute of Scientific and Technical Information of China (English)

    Guotian He; Xiangzhao Wang; Aijun Zeng; Feng Tang


    A sinusoidal phase-modulating (SPM) laser diode (LD) interferometer for real-time surface profile measurement is proposed and its principle is analyzed. The phase signal of the surface profile is detected from the sinusoidal phase-modulating interference signal using a real-time phase detection circuit. For 60 × 60 measurement points of the surface profile, the measuring time is 10 ms. A root mean square (RMS) measurement repeatability of 3.93 nm is realized, and the measurement resolution reaches 0.19 nm.

  19. Partial slip effect in flow of magnetite-Fe3O4 nanoparticles between rotating stretchable disks (United States)

    Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alzahrani, Faris; Alsaedi, Ahmed


    This paper addresses the flow of magnetic nanofluid (ferrofluid) between two parallel rotating stretchable disks with different rotating and stretching velocities. Water based fluid comprising magnetite-Fe3O4 nanoparticles is addressed. Velocity slip and temperature jump at solid-fluid interface are also taken into account. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are obtained. Effects of various pertinent parameters on the velocity and temperature profiles are shown and evaluated. Computations for skin friction coefficient and Nusselt number are presented and examined for the influence of involved parameters. It is noted that tangential velocity of fluid decreases for larger velocity slip parameter. Fluid temperature also reduces for increasing value of thermal slip parameter. Surface drag force and heat transfer rate at lower disk are enhanced when magnetic field strength is increased.

  20. Determination of surface electric charge profile in pyroelectric crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, R.; Davani, F. Abbasi, E-mail: [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)


    Pyroelectric crystals are used to produce high energy self-focused electron beams. Here, an experimental analysis in combination with simulation studies will be reported to investigate possible sources of this effect. In the experiments, the surface of crystal was divided into six separated parts and the rate of surface electric charge production was measured accordingly. A non-steady and spatially non-uniform distribution of the surface charge generation was observed, in which it tends to a uniform distribution in the course of experiment. The obtained surface electric charges from the experiments were used to simulate the electric field and potential around the crystal by COMSOL Multiphysics. It was observed that emitted electrons from the crystal surface were focused, and the non-uniformity in spatial charge is responsible for this phenomenon.

  1. Near-exponential surface densities as hydrostatic, nonequilibrium profiles in galaxy discs

    CERN Document Server

    Struck, Curtis


    Apparent exponential surface density profiles are nearly universal in galaxy discs across Hubble types, over a wide mass range, and a diversity of gravitational potential forms. Several processes have been found to produce exponential profiles, including the actions of bars and spirals, and clump scattering, with star scattering a common theme in these. Based on reasonable physical constraints, such as minimal entropy gradients, we propose steady state distribution functions for disc stars, applicable over a range of gravitational potentials. The resulting surface density profiles are generally a power-law term times a Sersic-type exponential. Over a modest range of Sersic index values, these profiles are often indistinguishable from Type I exponentials, except at the innermost radii. However, in certain parameter ranges these steady states can appear as broken, Type II or III profiles. The corresponding velocity dispersion profiles are low order power-laws. A chemical potential associated with scattering can...

  2. The Way We Measure: Comparison of Methods to Derive Radial Surface Brightness Profiles

    CERN Document Server

    Peters, S P C; de Jong, R S


    The breaks and truncations in the luminosity profile of face-on spiral galaxies offer valuable insights in their formation history. The traditional method of deriving the surface photometry profile for face-on galaxies is to use elliptical averaging. In this paper, we explore the question whether elliptical averaging is the best way to do this. We apply two additional surface photometry methods, one new: principle axis summation, and one old that has become seldom used: equivalent profiles. These are compared to elliptically averaged profiles using a set of 29 face-on galaxies. We find that the equivalent profiles match extremely well with elliptically averaged profiles, confirming the validity of using elliptical averaging. The principle axis summation offers a better comparison to edge-on galaxies.

  3. How well Can We Classify SWOT-derived Water Surface Profiles? (United States)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.


    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  4. Numerical simulation of wind wave surface profiles with tuned phase spectra

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    to nonlinear waves with vertical and horizontal asymmetries especially in the case of breaking and shoaling waves. Hence, the inverse method of computing the surface profile from a known autospectrum using transformed (tuned) phase spectrum with coupling...

  5. The outer disks of early-type galaxies. I. Surface-brightness profiles of barred galaxies

    NARCIS (Netherlands)

    Erwin, Peter; Pohlen, Michael; Beckman, John E.


    We present a study of 66 barred, early-type (S0-Sb) disk galaxies, focused on the disk surface brightness profile outside the bar region, with the aim of throwing light on the nature of Freeman type I and II profiles, their origins, and their possible relation to disk truncations. This paper discuss

  6. The outer disks of early-type galaxies. I. Surface-brightness profiles of barred galaxies

    NARCIS (Netherlands)

    Erwin, Peter; Pohlen, Michael; Beckman, John E.

    We present a study of 66 barred, early-type (S0-Sb) disk galaxies, focused on the disk surface brightness profile outside the bar region, with the aim of throwing light on the nature of Freeman type I and II profiles, their origins, and their possible relation to disk truncations. This paper

  7. Surface Depletion Correction to Carrier Profiles by Hall Measurements. (United States)


    electrically active carriers below the surface per unit surface area. Next, a thin layer of the implanted material is removed by a chemical etch. A...3Y 2 ) bo A’ 64 b -- (2j8 3 2 -6) 2 A where A = 10$ - 12)Y2 -18. Equation (3) may now be integrated to obtain an analitic V.-’.4 function, in terms of

  8. Dynamic weakening by nanoscale smoothing during high velocity fault slip (United States)

    Chen, X.; Madden, A. S.; Bickmore, B. R.; Reches, Z.


    the roughest, and the roughness of profiles parallel-and normal-to striations in-between. A systematic change of the PSD slope, beta, was observed. The un-sheared profiles have steep PSD curves, with beta = 2.3 ± 0.1, and profiles measured normal to the striations are smoother, but with similar slope. Profiles parallel to the striations are even smoother and with beta = 1.4 ± 0.4, indicating distinct roughness anisotropy. The RMS roughness was calculated along 1 micron segments either slip-parallel or slip-normal from the profile data. The relation between the AFM friction coefficients and the RMS indicate that at length scales of 0.01-10 microns, friction coefficients strongly correlate with roughness. We noted that surfaces with RMS > 0.1 micron, have FC approaching the "universal" friction coefficient of 0.6-0.85 (Byerlee law). We propose that fault smoothing under high velocity is an effective driving mechanism for dynamic weakening and earthquake instability.

  9. Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity. (United States)

    Beschorner, Kurt E; Albert, Devon L; Chambers, April J; Redfern, Mark S


    Previous research on slip and fall accidents has suggested that pressurized fluid between the shoe and floor is responsible for initiating slips yet this effect has not been verified experimentally. This study aimed to (1) measure hydrodynamic pressures during slipping for treaded and untreaded conditions; (2) determine the effects of fluid pressure on slip severity; and (3) quantify how fluid pressures vary with instantaneous resultant slipping speed, position on the shoe surface, and throughout the progression of the slip. Eighteen subjects walked on known dry and unexpected slippery floors, while wearing treaded and untreaded shoes. Fluid pressure sensors, embedded in the floor, recorded hydrodynamic pressures during slipping. The maximum fluid pressures (mean+/-standard deviation) were significantly higher for the untreaded conditions (124+/-75 kPa) than the treaded conditions (1.1+/-0.29 kPa). Maximum fluid pressures were positively correlated with peak slipping speed (r=0.87), suggesting that higher fluid pressures, which are associated with untreaded conditions, resulted in more severe slips. Instantaneous resultant slipping speed and position of sensor relative to the shoe sole and walking direction explained 41% of the fluid pressure variability. Fluid pressures were primarily observed for untreaded conditions. This study confirms that fluid pressures are relevant to slipping events, consistent with fluid dynamics theory (i.e. the Reynolds equation), and can be modified with shoe tread design. The results suggest that the occurrence and severity of unexpected slips can be reduced by designing shoes/floors that reduce underfoot fluid pressures. © 2013 Published by Elsevier Ltd.

  10. Novel use of a Dektak 150 surface profiler unmasks differences in resorption pit profiles between control and Charcot patient osteoclasts. (United States)

    Petrova, Nina L; Petrov, Peter K; Edmonds, Michael E; Shanahan, Catherine M


    We hypothesized that newly formed osteoclasts from patients with acute Charcot osteoarthropathy can resorb surfaces of bone more extensively compared with controls. Peripheral blood monocytes, isolated from eight Charcot patients and nine controls, were cultured in vitro on 24-well plates and bovine bone discs in duplicate with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast formation was assessed by tartrate-resistant acid phosphatase staining (TRAcP) at day 17. Resorption was measured at day 21 after toluidine blue staining by two methods: (1) area of resorption at the surface by image analysis (%) and (2) area of resorption under the surface (μm(2)) measured by a Dektak 150 Surface Profiler. Ten 1,000 μm-long scans were performed per disc. Pits were classified as unidented, bidented, and multidented according to their shape. Although the number of newly formed TRAcP positive multinucleated cells (>3 nuclei) was similar in M-CSF + RANKL-treated cultures between controls and Charcot patients, the latter exhibited increased resorbing activity. The area of resorption on the surface by image analysis was significantly greater in Charcot patients compared with controls (21.1 % [14.5-26.2] vs. 40.8 % [35.4-46.0], median [25-75th percentile], p Charcot patients pits were deeper and wider and more frequently presented as multidented pits. This application of the Dektak 150 Surface Profiler revealed novel differences in resorption pit profile from osteoclasts derived from Charcot patients compared with controls. Resorption in Charcot patients was mediated by highly aggressive newly formed osteoclasts from monocytes eroding large and deep areas of bone.

  11. Stick-slip to sliding transition of dynamic contact lines under AC electrowetting

    NARCIS (Netherlands)

    Mannetje, 't D.J.C.M.; Mugele, F.; Ende, van den D.


    We show that at low velocities the dynamics of a contact line of a water drop moving over a Teflon-like surface under ac electrowetting must be described as stick–slip motion, rather than one continuous movement. At high velocities we observe a transition to a slipping regime. In the slipping regime

  12. On Machine Capacitance Dimensional and Surface Profile Measurement System (United States)

    Resnick, Ralph


    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  13. The complementary graphical method used for profiling side mill for generation of helical surface (United States)

    Baroiu, N.; Berbinschi, S.; Teodor, V. G.; Susac, F.; Oancea, N.


    This paper presents a method developed in CATIA design environment, for profiling tools bounded by revolution peripheral surfaces — side mill tool. The graphical method is based on a complementary theorem of surface enveloping. They are presented specific algorithms and an example for profiling generating tools of helical flutes of compressors rotors with three lobes. The obtained results with graphical method are compared with those obtained by a classical method — the Nikolaev theorem. The graphical method is very intuitive and, at the same time, very rigorous. It is characterized by the simplicity of application and avoids the ambiguity case of solutions, which are frequently met in numerical methods, as profiles overlapping, generating of revolving surfaces or rotating a spatial curve around the tool’s axis. Other advantage of using graphical methods is that CNC machines tools, used for generating profiled tools, allows importing the files, which directly result from graphical modeling.

  14. Partial slip effect in flow of magnetite-Fe{sub 3}O{sub 4} nanoparticles between rotating stretchable disks

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Qayyum, Sumaira [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Imtiaz, Maria, E-mail: [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alzahrani, Faris; Alsaedi, Ahmed [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)


    This paper addresses the flow of magnetic nanofluid (ferrofluid) between two parallel rotating stretchable disks with different rotating and stretching velocities. Water based fluid comprising magnetite-Fe{sub 3}O{sub 4} nanoparticles is addressed. Velocity slip and temperature jump at solid–fluid interface are also taken into account. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are obtained. Effects of various pertinent parameters on the velocity and temperature profiles are shown and evaluated. Computations for skin friction coefficient and Nusselt number are presented and examined for the influence of involved parameters. It is noted that tangential velocity of fluid decreases for larger velocity slip parameter. Fluid temperature also reduces for increasing value of thermal slip parameter. Surface drag force and heat transfer rate at lower disk are enhanced when magnetic field strength is increased. - Highlights: • Flow and heat transfer of ferrofluid induced by two stretchable rotating disks with velocity and thermal slips are explored. • Fluid temperature increases for larger solid volume fraction of nanofluid. • Heat transfer rate decreases for increasing values of thermal slip parameter.

  15. Surface profiling in mating parts by combined nonabrasive finishing (United States)

    Smolentsev, EV; Fedonin, ON; Smolentsev, VP


    Nonabrasive finishing of precision mating surfaces in locking devices with the use of a combined erosion-chemical process at the first stage of the processing and with the use of anodic dissolution by alternating low-voltage current at the final stage of a refinement operation till gapless joints obtaining is considered. It is shown that the application of electro-erosion, electrochemical and combined nonabrasive finishing in mating parts opens up a possibility to ensure stable impermeability in locking devices on a macro- and micro-level through the method of a substantiated purpose of technological modes. A procedure is created for the development of such modes, and on their basis technological processes for the obtaining of gapless mating surfaces meeting the performance requirements for locking devices are developed. For this purpose, qualitative devices resistant to hostile environment are manufactured that is urgent for the mechanical engineering including repetition work for the equipment of petrochemical industry, transport and household machinery.

  16. Research on analytical method of multi-slip surfaces of landslide based on softening characteristics of geomaterial%基于岩土材料软化特性的滑坡多级滑动面分析方法研究

    Institute of Scientific and Technical Information of China (English)

    薛海斌; 党发宁; 尹小涛; 雷曼; 杨超


    在实际工程中,滑坡经常呈现出多级破坏的特征,而一般计算和设计中仅关注最危险的滑动面及对应的最小安全系数,这往往遗留安全隐患。在考虑岩土材料软化特性的基础上,借助FLAC3D和Matlab软件平台构建了无需人工干预便可有效模拟与评价滑坡多级破坏的理论框架。以旬阳县党家坝廉租房小区滑坡为例,通过对塑性剪应变、塑性拉应变、剪切应变增量等特征变量的渐进发展规律分析发现:滑坡多级滑动面的形成,其时间和空间顺序并不一定相对应。各级滑动面在时间上按产生的先后顺序依次为第1级主滑面、第2级主滑面、次级滑面;而在空间上按照从前到后的顺序依次为第1级主滑面、次级滑面、第2级主滑面。从计算所得的滑坡最终破坏形态中发现,坡体内部出现的滑动面条数与现场采集的拉裂缝数基本保持一致;第1级主滑面的入口位置与滑坡前缘拉裂缝位置基本吻合;而第2级主滑面及次级滑面的位置与现场勘查到的拉裂缝位置出现偏差。从材料参数的渐进发展规律中发现,滑面上强度参数的分布及大小均随着滑面的产生、发展而逐渐变化,其变化区间为峰值强度到残余强度,这是此方法可以有效模拟多级滑动面形成过程与各级滑动面之间相互影响的核心所在。借助矢量和法成功地实现了基于滑面上强度参数渐进发展规律的安全系数演化过程的确定。通过对安全系数演化过程的分析发现,在滑坡多级滑动面的形成过程中安全系数大小顺序呈现出3种不同的状态,这很好地揭示了各级滑动面在形成过程中的主、被动关系。%Landslide often exhibits characteristics of multi-stage destruction in practical engineering. However, the most dangerous slip surface and corresponding minimum safety factor are only concerned in general computing and

  17. Fault zone roughness controls slip stability (United States)

    Harbord, Christopher; Nielsen, Stefan; De Paola, Nicola


    Fault roughness is an important control factor in the mechanical behaviour of fault zones, in particular the frictional slip stability and subsequent earthquake nucleation. Despite this, there is little experimental quantification as to the effects of varying roughness upon rate- and state-dependant friction (RSF). Utilising a triaxial deformation apparatus and a novel adaptation of the direct shear methodology to simulate initially bare faults in Westerly Granite, we performed a series of velocity step frictional sliding experiments. Initial root mean square roughnesses (Sq) was varied in the range 6x10-7 - 2.4x10-5 m. We also investigated the effects upon slip stability of normal stress variation in the range σn = 30 - 200 MPa, and slip velocity between 0.1 - 10 μm s-1. A transition from stable sliding to unstable slip (manifested by stick-slip and slow slip events) was observed, depending on the parameter combination, thus covering the full spectrum of fault slip behaviours. At low normal stress (σn = 30MPa) smooth faults (Sqstress drops on slow slip events upon velocity increase), with strongly velocity weakening friction. When normal stress is increased to intermediate values (σn = 100 - 150 MPa), smooth faults (Sqstress (σn = 200 MPa) a transition from unstable to stable sliding is observed for smooth faults, which is not expected using RSF stability criteria. At all conditions sliding is stable for rough faults (Sq> 1x10-6 m). We find that instability can develop when the ratio of fault to critical stiffness kf kc > 10, or, alternatively, even when a - b > 0 at σn = 150MPa, suggesting that bare surfaces may not strictly obey the R+S stability condition. Additionally we present white light interferometry and SEM analysis of experimentally deformed samples which provide information about the distribution and physical nature of frictional contact. Significantly we suggest that bare fault surfaces may require a different stability criterion (based on

  18. Slip and fall risk on ice and snow:identification, evaluation and prevention


    Gao, Chuansi


    Slip and fall accidents and associated injuries on ice and snow are prevalent among outdoor workers and the general public in winter in many regions of the world. To understand and tackle this multi-factorial problem, a multidisciplinary approach was used to identify and evaluate slip and fall risks, and to propose recommendations for prevention of slips and falls on icy and snowy surfaces. Objectives were to present a systems perspective of slip and fall accidents and related risk factors; t...

  19. Mathematical simulation of a profile cutter as a surface of revolution (United States)

    Bubenchikov, A. M.; Kazakavitschyus, S. M.; Shcherbakov, N. R.


    Various types of cutters (spherical, toroidal, etc.) are used in surface processing of parts of a transmission mechanism. The cost of a special profile tool is somewhat higher than that of such cutters. But the increase in the cost of the tool is compensated by a significant reduction in the time of processing parts. The present paper deals with a mathematical model of a profile cutter surface (as a surface of revolution) for processing parts of a cylindrical transmission gear with an eccentrically cycloidal gearing (EC-gearing). A computer program for determining radii of the cutter's circular cross sections for a given set of axial displacements was created.

  20. Generating strain signals under consideration of road surface profiles (United States)

    Putra, T. E.; Abdullah, S.; Schramm, D.; Nuawi, M. Z.; Bruckmann, T.


    The current study aimed to develop the mechanism for generating strain signal utilising computer-based simulation. The strain data, caused by the acceleration, were undertaken from a fatigue data acquisition involving car movements. Using a mathematical model, the measured strain signals yielded to acceleration data used to describe the bumpiness of road surfaces. The acceleration signals were considered as an external disturbance on generating strain signals. Based on this comparison, both the actual and simulated strain data have similar pattern. The results are expected to provide new knowledge to generate a strain signal via a simulation.

  1. Surface matching method for profile inspection with touch probe

    Institute of Scientific and Technical Information of China (English)


    This paper presents an efficient method for rigid registration of 3-D point sets,which intends to match the feature points inspected using touch probe with the points on designed CAD surface.The alignment error is defined as the least square problem,and the sphere radius of the inspection probe is considered.In this framework,the matching problem is converted into acquiring six Euler variables problem by solving nonlinear equations.Thus,a matrix transformation of parameter separation is presented to get the...

  2. Surface profile and stress field evaluation using digital gradient sensing method (United States)

    Miao, C.; Sundaram, B. M.; Huang, L.; Tippur, H. V.


    Shape and surface topography evaluation from measured orthogonal slope/gradient data is of considerable engineering significance since many full-field optical sensors and interferometers readily output such a data accurately. This has applications ranging from metrology of optical and electronic elements (lenses, silicon wafers, thin film coatings), surface profile estimation, wave front and shape reconstruction, to name a few. In this context, a new methodology for surface profile and stress field determination based on a recently introduced non-contact, full-field optical method called digital gradient sensing (DGS) capable of measuring small angular deflections of light rays coupled with a robust finite-difference-based least-squares integration (HFLI) scheme in the Southwell configuration is advanced here. The method is demonstrated by evaluating (a) surface profiles of mechanically warped silicon wafers and (b) stress gradients near growing cracks in planar phase objects.

  3. Slip Validation and Prediction for Mars Exploration Rovers

    Directory of Open Access Journals (Sweden)

    Jeng Yen


    Full Text Available This paper presents a novel technique to validate and predict the rover slips on Martian surface for NASA’s Mars Exploration Rover mission (MER. Different from the traditional approach, the proposed method uses the actual velocity profile of the wheels and the digital elevation map (DEM from the stereo images of the terrain to formulate the equations of motion. The six wheel speed from the empirical encoder data comprises the vehicle's velocity, and the rover motion can be estimated using mixed differential and algebraic equations. Applying the discretization operator to these equations, the full kinematics state of the rover is then resolved by the configuration kinematics solution in the Rover Sequencing and Visualization Program (RSVP. This method, with the proper wheel slip and sliding factors, produces accurate simulation of the Mars Exploration rovers, which have been validated with the earth-testing vehicle. This computational technique has been deployed to the operation of the MER rovers in the extended mission period. Particularly, it yields high quality prediction of the rover motion on high slope areas. The simulated path of the rovers has been validated using the telemetry from the onboard Visual Odometry (VisOdom. Preliminary results indicate that the proposed simulation is very effective in planning the path of the rovers on the high-slope areas.

  4. Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows (United States)

    Jesinghausen, Steffen; Weiffen, Rene; Schmid, Hans-Joachim


    Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil-cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.

  5. Surface gradient integrated profiler for X-ray and EUV optics

    Directory of Open Access Journals (Sweden)

    Yasuo Higashi et al


    Full Text Available A new ultraprecise profiler has been developed to measure, for example, asymmetric and aspheric profiles. The principle of our measuring method is that the normal vector at each point on the surface is determined by making the incident light beam on the mirror surface and the reflected beam at that point of coincident. The gradient at each point is calculated from the normal vector, and the surface profile is then obtained by integrating the gradients. The measuring instrument was designed in accordance with the above principle. In the design, four ultraprecise goniometers were applied to adjust the light axis for normal vector measurement. The angle-positioning resolution and accuracy of each goniometer are, respectively, 0.018 and 0.2 μrad. Thus, in the measuring instrument, the most important factor is the accuracy of the normal vectors measured by the goniometers. Therefore, the rotating angle-positioning errors were measured and calibrated. An elliptical profile mirror for nanometer hard-X-ray focusing was measured, and compared with the measured profile using a stitching interferometer. The absolute measurement accuracy of approximately 5 nm (peak-to-valley was achieved. Then the measurements of 1000-mm-long flat, spherical and parabolic mirrors were demonstrated. The surface profiles of the mirrors were obtained by integrating the interpolated gradient.

  6. Near-exponential surface densities as hydrostatic, non-equilibrium profiles in galaxy discs (United States)

    Struck, Curtis; Elmegreen, Bruce G.


    Apparent exponential surface density profiles are nearly universal in galaxy discs across Hubble types, over a wide mass range, and a diversity of gravitational potential forms. Several processes have been found to produce exponential profiles, including the actions of bars and spirals, and clump scattering, with star scattering a common theme in these. Based on reasonable physical constraints, such as minimal entropy gradients, we propose steady-state distribution functions for disc stars, applicable over a range of gravitational potentials. The resulting surface density profiles are generally a power-law term times a Sérsic-type exponential. Over a modest range of Sérsic index values, these profiles are often indistinguishable from Type I exponentials, except at the innermost radii. However, in certain parameter ranges, these steady states can appear as broken, Type II or III profiles. The corresponding velocity dispersion profiles are low-order power laws. A chemical potential associated with scattering can help understand the effects of long-range scattering. The steady profiles are found to persist through constant velocity expansions or contractions in evolving discs. The proposed distributions and profiles are simple and solve the stellar hydrodynamic equations. They may be especially relevant to thick discs that have settled to a steady form via scattering.

  7. The Slip Hypothesis: Tactile Perception and its Neuronal Bases. (United States)

    Schwarz, Cornelius


    The slip hypothesis of epicritic tactile perception interprets actively moving sensor and touched objects as a frictional system, known to lead to jerky relative movements called 'slips'. These slips depend on object geometry, forces, material properties, and environmental factors, and, thus, have the power to incorporate coding of the perceptual target, as well as perceptual strategies (sensor movement). Tactile information as transferred by slips will be encoded discontinuously in space and time, because slips sometimes engage only parts of the touching surfaces and appear as discrete and rare events in time. This discontinuity may have forced tactile systems of vibrissae and fingertips to evolve special ways to convert touch signals to a tactile percept.

  8. Stick-slip substructure in rapid tape peeling

    KAUST Repository

    Thoroddsen, Sigurdur T.


    The peeling of adhesive tape is known to proceed with a stick-slip mechanism and produces a characteristic ripping sound. The peeling also produces light and when peeled in a vacuum, even X-rays have been observed, whose emissions are correlated with the slip events. Here we present direct imaging of the detachment zone when Scotch tape is peeled off at high speed from a solid surface, revealing a highly regular substructure, during the slip phase. The typical 4-mm-long slip region has a regular substructure of transverse 220 μm wide slip bands, which fracture sideways at speeds over 300 m/s. The fracture tip emits waves into the detached section of the tape at ∼100 m/s, which promotes the sound, so characteristic of this phenomenon.

  9. g-Jitter mixed convective slip flow of nanofluid past a permeable stretching sheet embedded in a Darcian porous media with variable viscosity.

    Directory of Open Access Journals (Sweden)

    Mohammed J Uddin

    Full Text Available The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results.

  10. Observations of premonitory acoustic emission and slip nucleation during a stick slip experiment in smooth faulted Westerly granite (United States)

    Thompson, B.D.; Young, R.P.; Lockner, D.A.


    To investigate laboratory earthquakes, stick-slip events were induced on a saw-cut Westerly granite sample by triaxial loading at 150 MPa confining pressure. Acoustic emissions (AE) were monitored using an innovative continuous waveform recorder. The first motion of each stick slip was recorded as a large-amplitude AE signal. These events source locate onto the saw-cut fault plane, implying that they represent the nucleation sites of the dynamic failure stick-slip events. The precise location of nucleation varied between events and was probably controlled by heterogeneity of stress or surface conditions on the fault. The initial nucleation diameter of each dynamic instability was inferred to be less than 3 mm. A small number of AE were recorded prior to each macro slip event. For the second and third slip events, premonitory AE source mechanisms mimic the large scale fault plane geometry. Copyright 2005 by the American Geophysical Union.

  11. Quantification of the advected CO2 concentration due to upstream surface fluxes in aircraft vertical profiles (United States)

    Font, A.; Morguí, J.-A.; Curcoll, R.; Rodó, X.


    A model framework which couples the Lagrangian Particle Dispersion Model FLEXPART (LPDM) with the new global surface flux inversion CarbonTracker from NOAA-ESRL (2007B release) is used to quantify the advected CO2 concentration from outbound surface fluxes to measured vertical profiles carried out during different seasons in 2006 at La Muela site in Spain (LMU; 41.60°N, 1.1°W). The Lagrangian Particle Dispersion Model FLEXPART (LPDM) calculates the influence of surface CO2 fluxes upwind of the study area, allowing us to identify those sources or sink areas that strongly modify the CO2 content of air masses that arrives at different altitudes of measured profiles. CarbonTracker is a new assimilation system that informs of global carbon fluxes at 1°x1° at 3 hours resolution. Coupling LPDM results with surface fluxes allows assessing the net CO2 contribution of identified areas to measured concentrations along the profiles above a reference or background concentration. Furthermore, it allows the quantification of the percentage of each component flux (biospheric, anthropogenic and oceanic) to each vertical layer. At LMU, biospheric fluxes account ~70% of total CO2 advection; fossil fuel ~25%; and ~5% is attributed to the oceanic ones. By far, late spring and summer profiles are largely influence by the biospheric component (~90%). Finally, the CO2 concentration above the background value of profiles measured on 22nd February, 13th October and 30th November 2006 are well explained by the advection of upstream surface fluxes. In other profiles examined, the variation of CO2 along the profile is partially explained by the advection of CO2 outbound fluxes.

  12. Interseismic and coseismic surface deformation deduced from space geodetic observations : with inferences on seismic hazard, tectonic processes, earthquake complexity, and slip distribution

    NARCIS (Netherlands)

    Bos, A.G. (Annemarie Gerredina)


    In this thesis I am concerned with modeling the kinematics of surface deformation using space geodetic observations in order to advance insight in both interseismic and coseismic surface response. To model the surface deformation field I adopt the method of Spakman and Nyst (2002) which resolves the

  13. Simulation of the frictional stick-slip instability (United States)

    Mora, Peter; Place, David


    A lattice solid model capable of simulating rock friction, fracture and the associated seismic wave radiation is developed in order to study the origin of the stick-slip instability that is responsible for earthquakes. The model consists of a lattice of interacting particles. In order to study the effect of surface roughness on the frictional behavior of elastic blocks being rubbed past one another, the simplest possible particle interactions were specified corresponding to radially dependent elastic-brittle bonds. The model material can therefore be considered as round elastic grains with negligible friction between their surfaces. Although breaking of the bonds can occur, fracturing energy is not considered. Stick-slip behavior is observed in a numerical experiment involving 2D blocks with rough surfaces being rubbed past one another at a constant rate. Slip is initiated when two interlocking asperities push past one another exciting a slip pulse. The pulse fronts propagate with speeds ranging from the Rayleigh wave speed up to a value between the shear and compressional wave speeds in agreement with field observations and theoretical analyses of mode-II rupture. Slip rates are comparable to seismic rates in the initial part of one slip pulse whose front propagates at the Rayleigh wave speed. However, the slip rate is an order of magnitude higher in the main part of pulses, possibly because of the simplified model description that neglected intrinsic friction and the high rates at which the blocks were driven, or alternatively, uncertainty in slip rates obtained through the inversion of seismograms. Particle trajectories during slip have motions normal to the fault, indicating that the fault surfaces jump apart during the passage of the slip pulse. Normal motion is expected as the asperities on the two surfaces ride over one another. The form of the particle trajectories is similar to those observed in stick-slip experiments involving foam rubber blocks ( Brune

  14. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    KAUST Repository

    Yu, Han


    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green\\'s function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  15. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles (United States)

    Yu, Han; Huang, Yunsong; Guo, Bowen


    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green's function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  16. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V; Barber, Samuel; Domning, Edward E.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Smith, Brian V; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf; Just, Andreas


    A new low budget slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought to operation at the ALS Optical Metrology Laboratory. The design, instrumental control and data acquisition system, initial alignment and calibration procedures, as well as the developed experimental precautions and procedures are described in detail. The capability of the DLTP to achieve sub-microradian surface slope metrology is verified via cross-comparison measurements with other high performance slope measuring instruments when measuring the same high quality test optics. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.

  17. Are non-slip socks really 'non-slip'? An analysis of slip resistance

    Directory of Open Access Journals (Sweden)

    Haines Terrence


    Full Text Available Abstract Background Non-slip socks have been suggested as a means of preventing accidental falls due to slips. This study compared the relative slip resistance of commercially available non-slip socks with other foot conditions, namely bare feet, compression stockings and conventional socks, in order to determine any traction benefit. Methods Phase one involved slip resistance testing of two commercially available non-slip socks and one compression-stocking sample through an independent blinded materials testing laboratory using a Wet Pendulum Test. Phase two of the study involved in-situ testing among healthy adult subjects (n = 3. Subjects stood unsupported on a variable angle, inclined platform topped with hospital grade vinyl, in a range of foot conditions (bare feet, non-slip socks, conventional socks and compression stockings. Inclination was increased incrementally for each condition until slippage of any magnitude was detected. The platform angle was monitored using a spatial orientation tracking sensor and slippage point was recorded on video. Results Phase one results generated through Wet Pendulum Test suggested that non-slip socks did not offer better traction than compression stockings. However, in phase two, slippage in compression stockings was detected at the lowest angles across all participants. Amongst the foot conditions tested, barefoot conditions produced the highest slip angles for all participants indicating that this foot condition provided the highest slip resistance. Conclusion It is evident that bare feet provide better slip resistance than non-slip socks and therefore might represent a safer foot condition. This study did not explore whether traction provided by bare feet was comparable to 'optimal' footwear such as shoes. However, previous studies have associated barefoot mobilisation with increased falls. Therefore, it is suggested that all patients continue to be encouraged to mobilise in appropriate, well

  18. Effective slip for flow in a rotating channel bounded by stick-slip walls (United States)

    Ng, Chiu-On


    This paper aims to look into how system rotation may modify the role played by boundary slip in controlling flow through a rotating channel bounded by stick-slip walls. A semianalytical model is developed for pressure-driven flow in a slit channel that rotates about an axis perpendicular to its walls, which are superhydrophobic surfaces patterned with periodic alternating no-shear and no-slip stripes. The cases where the flow is driven by a pressure gradient parallel or normal to the stripes are considered. The effects of the no-shear area fraction on the velocities and effective slip lengths for the primary and secondary flows are investigated as functions of the rotation rate and the channel height. It is mathematically proved that the secondary flow rate is exactly the same in the two cases, irrespective of whether the primary flow is parallel or normal to the wall stripes. For any rotation speed, there is an optimal value of the no-shear area fraction at which the primary flow rate is maximum. This is a consequence of two competing effects: the no-shear part of the wall may serve to reduce the wall resistance, thereby enhancing the flow especially at low rotation, but it also weakens the formation of the near-wall Ekman layer, which is responsible for pumping the flow especially at high rotation. Wall slip in a rotating environment is to affect flow in the Ekman layer, but not flow in the geostrophic core.

  19. PTHA Slip Models in the Aftermath of the 2011 Tohoku Earthquake and Tsunami (United States)

    Geist, E. L.; Parsons, T.; Oglesby, D. D.


    Inter-plate thrust slip models used in Probabilistic Tsunami Hazard Analysis (PTHA) are re-evaluated in light of the 2011 Tohoku earthquake and tsunami. Whereas recurrence is typically linked to seismic moment in PTHA, the magnitude and distribution of slip are the primary variables that affect tsunami generation. Because of the self-similar nature of rupture, the slip model is dependent on other scaling relationships, such as magnitude-area and magnitude-mean slip. In the past, various slip models have been used to calculate tsunami generation, ranging from uniform slip to stochastic models. Uniform slip models systematically underestimate the amplitude and leading-wave steepness for the local, broadside tsunami. Stochastic slip models, constrained by the seismic displacement spectrum, produce a range of possible slip distributions for a given seismic moment and slip spectrum and more accurately represent heterogeneous earthquake ruptures. Conventional stochastic slip models based on a k-2 slip spectrum and Gaussian random variables result in a coefficient of variation (c.v.) approximately equal to 0.5. However, slip inversion results of recent tsunamigenic earthquakes indicate that the observed c.v. is significantly greater than 0.5. This is particularly evident for the 2011 Tohoku earthquake, in which the c.v. for slip is approximately 1.0. Recent updates to the stochastic slip model can retain a k-2 slip spectrum, but use non-Gaussian distributed random variables. The updated stochastic slip model is more consistent with the observed fluctuations in slip. We investigate how these models can be applied in a PTHA framework. In addition, dynamic effects such as amplification of slip near the free surface, partitioning of slip between different overlapping fault segments, and dynamic overshoot can strongly modify the slip pattern in ways that may be correlated with geometrical and frictional properties on the fault; such effects potentially may be predictable prior

  20. MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Imtiaz, Maria, E-mail: [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, Ahmed; Kutbi, Marwan A. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)


    An analysis has been carried out for the three dimensional flow of viscous nanofluid in the presence of partial slip and thermal radiation effects. The flow is induced by a permeable stretching surface. Water is treated as a base fluid and alumina as a nanoparticle. Fluid is electrically conducting in the presence of applied magnetic field. Entire different concept of nonlinear thermal radiation is utilized in the heat transfer process. Different from the previous literature, the nonlinear system for temperature distribution is solved and analyzed. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are computed for the velocity and temperature. Effects of different parameters on the velocity, temperature, skin friction coefficient and Nusselt number are computed and examined. It is concluded that heat transfer rate increases when temperature and radiation parameters are increased. - Highlights: • Three-dimensional nanofluid flow with partial slip and nonlinear thermal radiation is studied. • Increasing values of velocity slip parameter decrease the velocity profiles. • The temperature increases via larger nanoparticle volume fraction. • Surface temperature gradient increases for higher temperature and radiation parameters.

  1. Pengurangan Hambatan Aliran pada Celah Silinder Koaksial Akibat Slip


    Yanuar; Gunawan; M. Baqi


    Slip effect which occurs at the wall due to the layer of water repellent wall can reduce the pressure drop. The highly water repellent wall coating on the inside coaxial viscometer slip will be occur. The aim of experiment is proving drag reducing of the torque on the cylinder and the coefficient of velocity slip due to the water repellent coating on the wall. Teflon and wax materials are used to coat the surface of the wall. Contact angle of water droplets with a Teflon-coated walls and waxe...

  2. Polydimethylsiloxane SlipChip for mammalian cell culture applications. (United States)

    Chang, Chia-Wen; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung


    This paper reports a polydimethylsiloxane (PDMS) SlipChip for in vitro cell culture applications, multiple-treatment assays, cell co-cultures, and cytokine detection assays. The PDMS SlipChip is composed of two PDMS layers with microfluidic channels on each surface that are separated by a thin silicone fluid (Si-fluid) layer. The integration of Si-fluid enables the two PDMS layers to be slid to different positions; therefore, the channel patterns can be re-arranged for various applications. The SlipChip design significantly reduces the complexity of sample handling, transportation, and treatment processes. To apply the developed SlipChip for cell culture applications, human lung adenocarcinoma epithelial cells (A549) and lung fibroblasts (MRC-5) were cultured to examine the biocompatibility of the developed PDMS SlipChip. Moreover, embryonic pluripotent stem cells (ES-D3) were also cultured in the device to evaluate the retention of their stemness in the device. The experimental results show that cell morphology, viability and proliferation are not affected when the cells are cultured in the SlipChip, indicating that the device is highly compatible with mammalian cell culture. In addition, the stemness of the ES-D3 cells was highly retained after they were cultured in the device, suggesting the feasibility of using the SlipChip for stem cell research. Various cell experiments, such as simultaneous triple staining of cells and co-culture of MRC-5 with A549 cells, were also performed to demonstrate the functionalities of the PDMS SlipChip. Furthermore, we used a cytokine detection assay to evaluate the effect of endotoxin (lipopolysaccharides, LPS) treatment on the cytokine secretion of A549 cells using the SlipChip. The developed PDMS SlipChip provides a straightforward and effective platform for various on-chip in vitro cell cultures and consequent analysis, which is promising for a number of cell biology studies and biomedical applications.

  3. Dynamics of a spreading thin film with gravitational counterflow using slip model

    Indian Academy of Sciences (India)

    Naveen Tiwari


    Thin liquid films can be made to spread along a solid surface by application of temperature gradients at the liquid–gas interface. The surface tension of usual liquids decreases linearly with temperature thus producing the driving thermocapillary stresses due to the applied temperature gradient. These spreading films are susceptible to a fingering instability at the advancing solid–liquid–vapor contact line, which is linked to the development of a capillary ridge near the advancing front. A thin film climbing up on a vertical substrate against gravity shows interesting dynamics due to strong opposing gravitational counterflow. At the contact-line of the spreading film, slip-model is used to alleviate the stress-singularity due to more usual no-slip boundary condition. It is shown that depending upon the magnitude of a gravitational drainage parameter the steady-profiles of the spreading films show qualitatively different dynamics. The dynamics is in agreement with the experimentally observed profiles in the literature as well as computed profiles using precursor-film model at the contact-line in some earlier theoretical studies. Briefly, their stability behavior is also discussed.

  4. Handling a slip | Smokefree 60+ (United States)

    Plan how you will recover from a slip—before it happens. You can recover from a slip If you do go back to smoking, you are not a failure. Don't toss aside your attempt as worthless. Use it to try and succeed. Think of your quit attempt as a learning experience, and if you do slip, try again.

  5. Determination of surface structure and the depth profile of silica glass by infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)



    The surface structure and properties are different from those of the bulk, depending on the substrate materials and deposition condition, and playing an important role in precise optical components. The conventional spectroscopic methods to monitor the surface structure are restricted only in several layers of molecules. It is known that the penetration depth of the incident light increases with its wavelength and decreases with the angle of incidence. Thus infrared spectroscopy provides a powerful means for determination of surface structure and the depth profile up to micrometers. By recording the reflection spectra at different angles of incidence, the surface structure and its depth profile can be monitored successively. Further, the incident field has the subcomponents parallel and perpendicular to the surface, which excite the transverse and longitudinal optic modes, respectively. Change of the polarization direction of the incident light provides a practical function to study anisotropic property of the surface and the interaction between the transverse and longitudinal optic modes. In this work, infrared spectrophotometer was applied to investigate the depth profile in microstructure of silica glass. Combining with the glass fiber system, this technique can be used for in-situ control of the deposition process. In comparing with ellipsometry, this method reveals both structural and constitutional information.

  6. Surface energy from order parameter profile: At the QCD phase transition (United States)

    Frei, Z.; Patkos, A.


    The order parameter profile between coexisting confined and plasma regions at the quantum chromodynamic (QCD) phase transition is constructed. The dimensionless combination of the surface energy (Sigma) and the correlation length (Zeta) is estimated to be Sigma Zeta 3 approximately equals 0.8.

  7. Notes on the Surface Velocity Profile and Horizontal Shear across the Width of the Gulf Stream


    Arx, William S. Von


    During a cruise across the Gulf Stream in October 1950 measurements of surface velocity were made both with the Loran-space-dead method and the electromagnetic method. A short account of the results is given with special reference to the velocity profile and the horizontal shear across the Gulf Stream.DOI: 10.1111/j.2153-3490.1952.tb01006.x

  8. Ionic profiles close to dielectric discontinuities: Specific ion-surface interactions

    CERN Document Server

    Markovich, Tomer; Orland, Henri


    We study, by incorporating short-range ion-surface interactions, ionic profiles of electrolyte solutions close to a non-charged interface between two dielectric media. In order to account for important correlation effects close to the interface, the ionic profiles are calculated beyond mean-field theory, using the loop expansion of the free energy. We show how it is possible to overcome the well-known deficiency of the regular loop expansion close to the dielectric jump, and treat the non-linear boundary conditions within the framework of field theory. The ionic profiles are obtained analytically to one-loop order in the free energy, and their dependence on different ion-surface interactions is investigated. The Gibbs adsorption isotherm, as well as the ionic profiles are used to calculate the surface tension, in agreement with the reverse Hofmeister series. Consequently, from the experimentally-measured surface tension, one can extract a single adhesivity parameter, which can be used within our model to quan...

  9. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; Barber, Samuel; Domning, Edward E.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Smith, Brian V.; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf; Just, Andreas


    Development of X-ray optics for 3rd and 4th generation X-ray light sources with a level of surface slope precision of 0.1-0.2 {micro}rad requires the development of adequate fabrication technologies and dedicated metrology instrumentation and methods. Currently, the best performance of surface slope measurement has been achieved with the NOM (Nanometer Optical Component Measuring Machine) slope profiler at BESSY (Germany) [1] and the ESAD (Extended Shear Angle Difference) profiler at the PTB (Germany) [2]. Both instruments are based on electronic autocollimators (AC) precisely calibrated for the specific application [3] with small apertures of 2.5-5 mm in diameter. In the present work, we describe the design, initial alignment and calibration procedures, the instrumental control and data acquisition system, as well as the measurement performance of the Developmental Long Trace Profiler (DLTP) slope measuring instrument recently brought into operation at the Advanced Light Source (ALS) Optical Metrology Laboratory (OML). Similar to the NOM and ESAD, the DLTP is based on a precisely calibrated autocollimator. However, this is a reasonably low budget instrument used at the ALS OML for the development and testing of new measuring techniques and methods. Some of the developed methods have been implemented into the ALS LTP-II (slope measuring long trace profiler [4]) which was recently upgraded and has demonstrated a capability for 0.25 {micro}rad surface metrology [5]. Performance of the DLTP was verified via a number of measurements with high quality reference mirrors. A comparison with the corresponding results obtained with the world's best slope measuring instrument, the BESSY NOM, proves the accuracy of the DLTP measurements on the level of 0.1-0.2 {micro}rad depending on the curvature of a surface under test. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.

  10. Suppression of strike-slip fault systems (United States)

    Curren, I. S.


    In orogens elongated parallel to a great circle about the Euler pole for the two bounding plates, theory requires simple-shear deformation in the form of distributed deformation or velocity discontinuities across strike-slip faults. This type of deformation, however, does not develop at all plate boundaries requiring toroidal motion. Using the global plate boundary model, PB2002 [Bird, 2003], as the basis for identifying areas where expected simple-shear deformation is absent or underdeveloped, it was also possible to identify two potential causes for this behavior: (1) the presence of extensive fracturing at right angles to the shear plane and (2) regional cover of flood basalts or andesites with columnar joints. To test this hypothesis, a new plane-stress finite-strain model was developed to study the effects of such pre-existing structures on the development of simple shear in a clay cake. A homogenous kaolinite-water mixture was poured into a deforming parallelogram box and partially dried to allow for brittle and plastic deformation at and below the surface of the clay, respectively. This was floated on a dense fluid foundation, effectively removing basal friction, and driven by a motor in a sinistral direction from the sides of the box. Control experiments produced classic Riedel model fault assemblages and discrete, through-going primary deformation zones (PDZs); experiments with pre-existing structures developed the same, though subdued and distributed, fault assemblages but did not develop through-going PDZs. Although formation of strike-slip faults was underdeveloped at the surface in clay with pre-existing structures, offset within the clay cake (measured, with respect to a fixed point, by markers on the clay surface) as a fraction of total offset of the box was consistently larger than that of the control experiments. This suggests that while the extent of surface faulting was lessened in clay with pre-existing structures, slip was still occurring at


    Directory of Open Access Journals (Sweden)

    Martin Novák


    Full Text Available Grinding is still an important method for surface finishing. At FPTM JEPU research, which deals with this issue is conducted. Experiments are carried out with grinding various materials under different conditions and then selected components of the surface integrity are evaluated. They include roughness Ra, Rm and Rz, Material ratio curve (Abbott Firestone curve and also the obtained roundness. This article deals with grinding nickel Inconel 718 alloy, when selected cutting grinding conditions were used and subsequently the surface profile and the material ratio curve were measured and evaluated.

  12. Modeling, error analysis, and compensation in phase-shifting surface profilers (United States)

    Hu, Qingying Jim


    Optical metrology techniques have been widely used in geometric dimension and shape measurements due to many features such as non-contact measurement, fast measurement speed, digital data format for computerized analysis and visualization, superior resolution, and high accuracy, etc. Among these techniques, phase-shifting based surface profilers have drawn more and more attention due to its full-field measurement and maturing wrapping/unwrapping analysis characteristics. This paper analyzes the error sources in phase-shifting surface profilers, including phaseshifting generation, non-linearity compensation, phase-shifting algorithms, surface contour extraction, modeling, and calibration, etc. Some methods to improve the measurement accuracy through coordinate error compensation are also proposed including transfer functions and look-up table (LUT) methods.

  13. Non-contact precision profile measurement to rough-surface objects with optical frequency combs (United States)

    Onoe, Taro; Takahashi, Satoru; Takamasu, Kiyoshi; Matsumoto, Hirokazu


    In this research, we developed a new method for the high precision and contactless profile measurement of rough-surfaced objects using optical frequency combs. The uncertainty of the frequency beats of an optical frequency comb is very small (relative uncertainty is 10-10 in our laboratory). In addition, the wavelengths corresponding to these frequency beats are long enough to measure rough-surfaced objects. We can conduct high-precision measurement because several GHz frequency beats can be used if the capability of the detector permits. Moreover, two optical frequency combs with Rb-stabilized repetition frequencies are used for the measurement instead of an RF frequency oscillator; thus, we can avoid the cyclic error caused by the RF frequency oscillator. We measured the profile of a wood cylinder with a rough surface (diameter is approximately 113.2 mm) and compared the result with that of coordinate measuring machine (CMM).

  14. Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar AOD measurements (United States)

    Chu, D. Allen; Tsai, Tzu-Chin; Chen, Jen-Ping; Chang, Shuenn-Chin; Jeng, Yung-Jyh; Chiang, Wei-Li; Lin, Neng-Hui


    Satellite aerosol optical depth (AOD) products have been used to estimate surface PM2.5 in different parts of the world. However, some revealed good but some relatively poorer relationship between AOD and PM2.5. The increasingly available lidar-based aerosol extinction profiles provide insights into the boundary layer as well as residual above it. Here we report a study in Taiwan using four-year (2006-2009) MPLNet data to characterize aerosol vertical distribution. We derived haze layer height (HLH) from MPLNet aerosol extinction profiles and classified profile differences by mean PBL extinction (MPE) and near-surface extinction (NSE). The former represents the mean extinction within boundary layer and the latter the closest extinction to surface. The comparison of MPE versus NSE leads to three distinct classifications of aerosol profiles to help interpret the relationship between AOD and PM2.5. The approximation of normalizing AODAERONET by HLH closely follows MPE in correlating with PM2.5 (≥0.8 with respect to season or ≥0.85 with respect to profile classification). The correlation resulted from AODMODIS/HLH is systematically lower than that derived by AODAERONET/HLH. PM2.5 values are overall better estimated by profile classification than those derived by season. Better performance of PM2.5 is obtained with the approximation (i.e., normalizing AOD by HLH) than that using AOD only. The performance metrics used in quantifying the relationship reveal improvements in uncertainty by 2.9 μg m-3 (or 20%) with AODAERONET/HLH and 2.3 μg m-3 (or 15%) with AODMODIS/HLH in comparison to using AOD only.

  15. Determination of the High Frequency Inductance Profile of Surface Mounted Permanent Magnet Synchronous Motors

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen


    Accurate knowledge of the high frequency inductance profile plays an important role in many designs of sensorless controllers for Surface inductance. A special algorithm is used to decouple the cross-coupling effects between the d-axis and the q-axis, which allows Mounted Permanent Magnet (SMPM......) synchronous motors. This paper presents an AC+DC measurement method for determination of the d-axis and q-axis high frequency inductance profiles of SMPM synchronous motors. This method uses DC currents to set a desired magnetic working point on the motor laminations, and then superimpose balanced small AC...

  16. Time Dependent Coupled Cluster Approach to Resonance Raman Excitation Profiles from General Anharmonic Surfaces

    Directory of Open Access Journals (Sweden)

    M. Durga Prasad


    Full Text Available Abstract: A time dependent coupled cluster approach to the calculation of Resonance Raman excitation profiles on general anharmonic surfaces is presented. The vibrational wave functions on the ground electronic surface are obtained by the coupled cluster method (CCM. It is shown that the propagation of the vibrational ground state on the upper surface is equivalent to propagation of the vacuum state by an effective hamiltonian generated by the similarity transformation of the vibrational hamiltonian of that surface by the CCM wave operator of the lower surface up to a normalization constant. This time propagation is carried out by the time-dependent coupled cluster method in a time dependent frame. Numerical studies are presented to asses the validity of the approach.

  17. Slip-behavior transitions of a heterogeneous linear fault (United States)

    Yabe, S.; Ide, S.


    Shear-slip behavior on the fault has diversity, such as ordinary earthquakes, afterslips, and shallow and deep slow earthquakes. Although the cause of this diversity is a hot topic in seismology, one possibility is the friction varying with tectonic environments (e.g., Blanpied et al., 1991). It is often explained that negative, neutral, and positive a-b of rate and state friction law corresponds to seismogenic zone, slow earthquake, and creeps in subduction zones, respectively. However, the frictional heterogeneity is expected to exist on the fault because of the fractal irregular fault surface in a wide scale range (Candela et al., 2012), which fluctuate rupture propagations. To understand the slip behavior of such heterogeneous fault, we have conducted the simplest numerical simulations with an infinite linear fault embedded in the 2D elastic medium, on which frictional parameters have cyclic bimodal distributions. As a result, we have observed several types of slip behavior changing with the density of velocity weakening zone (VWZ) on the fault. At low densities with VWZ smaller than the nucleation size (Rubin and Ampuero, 2005), the fault slips stably. At medium densities, where the spatial average of a-b is positive, seismic slip occurs in VWZ followed by an afterslip in velocity-strengthening zone (VSZ). At high densities where the spatial average of a-b is negative, the entire fault including VSZ slips seismically. When the spatial average of a-b is close to zero, the transitional behavior is observed, in which seismic slip in VWZ and fast aseismic slip in VSZ are strongly interacted, and relatively slower deformation dominates. We also provide some examples with more complex distributions of frictional parameter to explore the possibility that the frictional heterogeneity may explain not only the diverse seismic phenomena, but also the scaling of slip weakening distance of ordinary earthquakes.

  18. Spatial and Temporal Comparisons of Tremor and Slow Slip in Cascadia (United States)

    Hall, K.; Houston, H.; Schmidt, D. A.


    Tremor is often thought to be a proxy for slip during ETS events and has been shown to have a relatively abrupt updip boundary, implying an abrupt updip limit of slip. However, as shown by Houston (AGU abstract, 2012) and Hall and Houston (AGU abstract, 2014), slip inferred from GPS extended updip of the seismically-detected tremor in the 2010 M6.8 and 2012 M6.7 ETS events. If slip extending updip of tremor is a persistent phenomena, tremor cannot be directly used as a proxy for slip. Following the methods used on the 2010 and 2012 ETS event, we found that the August 2009 ETS around Portland, OR also showed slip updip of tremor. Principal Component Analysis was implemented to automatically select the direction and magnitude of the maximum displacement vector. Our Green's functions use the Okada formulation of buried rectangular faults in a halfspace for a grid of 8x8 km subfaults based on the McCrory slab model. We then performed static inversions with 2nd order Tikhonov regularization to find slip on the fault surface. We also compared two different inversions for 2009, one where slip was allowed on a broad regional grid and a tremor-restricted inversion (TRI) where slip was restricted to subfaults in which tremor occurred. We found the 2009 ETS event released the equivalent of a M6.8 in slip. We also found that, as in the previous ETSs, the TRI forced up to 10 cm of slip to the updip edge of the grid, which is exceeds the amount of plate convergence expected in the inter-ETS periods and is therefore physically unsustainable over several ETS events. The excess slip along the updip edge in the TRI models also suggests that the geodetic data prefer slip with a larger footprint than the spatial pattern of tremor, and supports our conclusion that tremor does not represent all of the slip during an ETS event. We see consistent and clear spatial relationship between tremor and slip with some slip occurring updip of tremor. Our static inversions show where slip is

  19. Interfacial slip on a transverse-shear mode acoustic wave device (United States)

    Ellis, Jonathan S.; Hayward, Gordon L.


    This article describes a mathematical relationship between the slip parameter α and the slip length b for a slip boundary condition applied to the transverse-shear model for a quartz-crystal acoustic wave device. The theory presented here reduces empirical determination of slip to a one-parameter fit. It shows that the magnitude and phase of the slip parameter, which describes the relative motion of the surface and liquid in the transverse-shear model, can be linked to the slip length. Furthermore, the magnitude and phase of the slip parameter are shown to depend on one another. An experiment is described to compare the effects of liquid-surface affinity on the resonant properties of a transverse-shear mode wave device by applying different polar and nonpolar liquids to surfaces of different polarity. The theory is validated with slip values determined from the transverse-shear model and compared to slip length values from literature. Agreement with literature values of slip length is within one order of magnitude.

  20. Handheld non-contact evaluation of fastener flushness and countersink surface profiles using optical coherence tomography (United States)

    Wang, James H.; Wang, Michael R.


    We report the use of spectral domain optical coherence tomography (SD-OCT) for non-contact optical evaluation of fastener flushness and countersink surface profile. Using a handheld galvanometer scanner of only 0.5 lb in weight the SD-OCT can perform line scan surface profile measurement of fastener and countersink without demanding accurate scan center alignment. It demonstrates fast measurement of fastener flushness, radius, slant angle, as well as countersink edge radius and surface angle within 90 ms suitable for handheld operation. With the use of a broadband light source at 840 nm center wavelength and 45 nm spectral bandwidth and a lens of 60 mm focal length, the low coherence interferometry based SD-OCT measurement offers axial depth resolution of 8.5 μm, lateral resolution of 19 μm, and measurement depth of 3.65 mm in the air. Multi-line scans can yield 3D surface profiles of fastener and countersink.

  1. Flow and heat transfer of nanofluid past stretching/shrinking sheet with partial slip boundary conditions

    Institute of Scientific and Technical Information of China (English)



    The boundary layer flow of a nanofluid past a stretching/shrinking sheet with hydrodynamic and thermal slip boundary conditions is studied. Numerical solutions to the governing equations are obtained using a shooting method. The results are found for the skin friction coefficient, the local Nusselt number, and the local Sherwood number as well as the velocity, temperature, and concentration profiles for some values of the velocity slip parameter, thermal slip parameter, stretching/shrinking parameter, thermophoresis parameter, and Brownian motion parameter. The results show that the local Nusselt number, which represents the heat transfer rate, is lower for higher values of thermal slip parameter, thermophoresis parameter, and Brownian motion parameter.

  2. Global Properties of M31's Stellar Halo from the SPLASH Survey. I. Surface Brightness Profile (United States)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.; Bullock, James; Geha, Marla C.; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Ostheimer, James C.; Patterson, Richard J.; Tollerud, Erik J.; Tanaka, Mikito; Chiba, Masashi


    We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 ± 0.2 and extends to a projected distance of at least ~175 kpc (~2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California

  3. Design and verification of the miniature optical system for small object surface profile fast scanning (United States)

    Chi, Sheng; Lee, Shu-Sheng; Huang, Jen, Jen-Yu; Lai, Ti-Yu; Jan, Chia-Ming; Hu, Po-Chi


    As the progress of optical technologies, different commercial 3D surface contour scanners are on the market nowadays. Most of them are used for reconstructing the surface profile of mold or mechanical objects which are larger than 50 mm×50 mm× 50 mm, and the scanning system size is about 300 mm×300 mm×100 mm. There are seldom optical systems commercialized for surface profile fast scanning for small object size less than 10 mm×10 mm×10 mm. Therefore, a miniature optical system has been designed and developed in this research work for this purpose. Since the most used scanning method of such system is line scan technology, we have developed pseudo-phase shifting digital projection technology by adopting projecting fringes and phase reconstruction method. A projector was used to project a digital fringe patterns on the object, and the fringes intensity images of the reference plane and of the sample object were recorded by a CMOS camera. The phase difference between the plane and object can be calculated from the fringes images, and the surface profile of the object was reconstructed by using the phase differences. The traditional phase shifting method was accomplished by using PZT actuator or precisely controlled motor to adjust the light source or grating and this is one of the limitations for high speed scanning. Compared with the traditional optical setup, we utilized a micro projector to project the digital fringe patterns on the sample. This diminished the phase shifting processing time and the controlled phase differences between the shifted phases become more precise. Besides, the optical path design based on a portable device scanning system was used to minimize the size and reduce the number of the system components. A screwdriver section about 7mm×5mm×5mm has been scanned and its surface profile was successfully restored. The experimental results showed that the measurement area of our system can be smaller than 10mm×10mm, the precision reached to

  4. Introduction of Enhanced Compressive Residual Stress Profiles in Aerospace Components Using Combined Mechanical Surface Treatments (United States)

    Gopinath, Abhay; Lim, Andre; Nagarajan, Balasubramanian; Cher Wong, Chow; Maiti, Rajarshi; Castagne, Sylvie


    Mechanical surface treatments such as Shot Peening (SP) and Deep Cold Rolling (DCR) are being used to introduce Compressive Residual Stress (CRS) at the surface and subsurface layers of aerospace components, respectively. This paper investigates the feasibility of a combined introduction of both the surface and sub-surface compressive residual stress on Ti6Al4V material through a successive application of the two aforementioned processes, one after the other. CRS profiles between individual processes were compared to that of combination of processes to validate the feasibility. It was found out that shot peening introduces surface compressive residual stress into the already deep cold rolled sample, resulting in both surface and sub-surface compressive residual stresses in the material. However the drawback of such a combination would be the increased surface roughness after shot peening a deep cold rolled sample which can be critical especially in compressor components. Hence, a new technology, Vibro-Peening (VP) may be used as an alternative to SP to introduce surface stress at reduced roughness.

  5. Slips of the Typewriter Key. (United States)

    Berg, Thomas


    Presents an analysis of 500 submorphemic slips of the typewriter key that escaped the notice of authors and other proofreaders and thereby made their way into the published records of scientific research. (Author/VWL)

  6. A graphical solution in CATIA for profiling end mill tool which generates a helical surface (United States)

    Teodor, V. G.; Baroiu, N.; Berbinschi, S.; Susac, F.; Oancea, N.


    The generation of a helical flute, which belongs to a helical cylindrical surface with constant pitch, can be made using end mill tools. The tools on this type are easiest to make than the side mills and represent a less expensive solution. The end mill profiling may be done using the classical theorems of surfaces enveloping, analytical expressed, as Olivier theorem or Nikolaev method. In this paper is proposed an algorithm, developed in the CATIA design environment, for profiling such tool’s type. The proposed solution is intuitive, rigorous and fast due to the utilization of the graphical design environment capabilities. Numerical examples are considered in order to validate the quality of this method.

  7. A Comparison Between Jerusalem Cross and Square Patch Frequency Selective Surfaces for Low Profile Antenna Applications (United States)

    Cure, David; Weller, Thomas; Miranda, Felix A.


    In this paper, a comparison between Jerusalem Cross (JC) and Square Patch (SP) based Frequency Selected Surfaces (FSS) for low profile antenna applications is presented. The comparison is aimed at understanding the performance of low profile antennas backed by high impedance surfaces. In particular, an end loaded planar open sleeve dipole (ELPOSD) antenna is examined due to the various parameters within its configuration, offering significant design flexibility and a wide operating bandwidth. Measured data of the antennas demonstrate that increasing the number of unit cells improves the fractional bandwidth. The antenna bandwidth increased from 0.8% to 1.8% and from 0.8% to 2.7% for the JC and SP structures, respectively. The number of unit cells was increased from 48 to 80 for the JC-FSS and from 24 to 48 for the SP-FSS.

  8. Surface Brightness Profiles for a sample of LMC, SMC and Fornax galaxy Globular Clusters

    CERN Document Server

    Noyola, Eva


    We use Hubble Space Telescope archival images to measure central surface brightness profiles of globular clusters around satellite galaxies of the Milky Way. We report results for 21 clusters around the LMC, 5 around the SMC, and 4 around the Fornax dwarf galaxy. The profiles are obtained using a recently developed technique based on measuring integrated light, which is tested on an extensive simulated dataset. Our results show that for 70% of the sample, the central photometric points of our profiles are brighter than previous measurements using star counts with deviations as large as 2 mag/arcsec^2. About 40% of the objects have central profiles deviating from a flat central core, with central logarithmic slopes continuously distributed between -0.2 and -1.2. These results are compared with those found for a sample of Galactic clusters using the same method. We confirm the known correlation in which younger clusters tend to have smaller core radii, and we find that they also have brighter central surface br...

  9. Hot, Fast Faults: Evidence for High-Temperature Slip on Exhumed Faults, and Insights into Seismic Slip Processes (United States)

    Evans, J. P.; Ault, A. K.; Janecke, S. U.; Prante, M. R.


    Microstructural and geochemical techniques combined with prior observations of naturally occurring faults provide insights into slip rates and slip dimensions of seismicity. We review four indicators for high coseismic paleotemperatures in brittle to semi-brittle faults from a wide range of tectonic settings with mm to km of slip. Thin, high-gloss, Fe-rich slip surfaces indicate high-temperature slip occurred on mm- to m-scales. Elliptical and circular zones of concentric iridescence indicate localized sites of elevated temperature that may be caused by heating at asperity contacts. The surface iridescence is associated with changes in Fe oxidation states detected by X-Ray photoelectron spectroscopy. Minimum temperature increases of 300 °C above ambient are supported by geochemical arguments and up to 800 °C are supported by analogs to high-speed friction experiments in steels and ceramics firing in reduced conditions. The presence of clay-rich foliated fault-related rocks, and the presence of nm- to mm-thick clay coatings indicate that syn-kinematic endothermic reactions occur at a range of scales. We suggest these features reflect temperature increases of ≥100-200 °C for activation energy required to drive the clay alteration is sourced from seismic energy and Schleicher-van der Pluijm-type slip surfaces to record instantaneous slip. Dense, low porosity planar porcelainite zones mm- to cm-thick along fault surfaces are the result of sintering of quartz-clay-feldspar mixtures and indicate T≥1000 °C localized along the surfaces, the result of post-slip cooling. Highly indurated, ultrafine fault-related rocks often consists of comminuted grains, vein fragments, and neocrystallized grains that represent retrograde cooling or alteration after peak heating. These observations and those of other recent workers indicate that many naturally occurring exhumed faults record elevated temperatures. In many cases, careful observations can delineate fault slip

  10. Phase-referenced probe interferometer for biological surface profiling and displacement measurements (United States)

    Fang-Yen, Christopher; Chu, Mark C.; Seung, H. Sebastian; Dasari, Ramachandra R.; Feld, Michael S.


    We present a probe-based, phase-referenced low coherence interferometer in which the reference field is provided by a fiber end reflection. A gradient-index microlens focuses light onto a sample and collects reflected light. We use the probe interferometer to measure surface profiles of the compound eye of a housefly (Musca domestica) and measure nanometer-scale vibrations in a test sample.

  11. Assessing the Updip Spatial Offset of Tremor and Slip during ETS Events in Cascadia (United States)

    Krogstad, R. D.; Schmidt, D. A.


    We investigate the updip spatial overlap of tremor and slip during recent episodic tremor and slip (ETS) events in Cascadia using a combination of forward and inverse models constrained by GPS, strainmeter, and tremor observations. Results from major ETS events in northern Cascadia suggest that, although there is significant spatial overlap, slow slip tends to extend further updip than tremor. ETS activity is thought to be dependent on a range of parameters, such as variable fluid pressures, temperature dependent physical properties, and facies changes. A spatial offset would indicant that tremor and slip are reflective of different physical conditions. While a clear offset of tremor and slip has been observed in multiple other subduction zones, a similar offset in Cascadia has remained difficult to constrain. Here we seek to establish whether the updip spatial offset is real in Cascadia and to quantify its extent. To complement GPS observations in Cascadia, we incorporate high fidelity strainmeter observations into inversions and sensitivity tests of iterative forward models. Tremor distributions are used as a proxy for slip and incorporated into slip models where parameters affecting the distribution and magnitude of slip are allowed to vary. These slip models are used to forward predict surface displacements and strains, which are then compared to the geodetic observations and inferred slip based on geodetic inversions. Results indicate that, while the tremor-derived slip distributions do a good job predicting the broad-scale surface deformation, the best-fit models have slip updip of the peak tremor activity. The fine-scale relationship of tremor and slip appears to vary on an event-by-event basis, where areas of high tremor density do not always correlate with increased surface displacements and vice-versa.

  12. A new method to retrieve salinity profiles from sea surface salinity observed by SMOS satellite

    Institute of Scientific and Technical Information of China (English)

    YANG Tingting; CHEN Zhongbiao; HE Yijun


    This paper proposes a new method to retrieve salinity profiles from the sea surface salinity (SSS) observed by the Soil Moisture and Ocean Salinity (SMOS) satellite. The main vertical patterns of the salinity profiles are firstly extracted from the salinity profiles measured by Argo using the empirical orthogonal function. To determine the time coefficients for each vertical pattern, two statistical models are developed. In the linear model, a transfer function is proposed to relate the SSS observed by SMOS (SMOS_SSS) with that measured by Argo, and then a linear relationship between the SMOS_SSS and the time coefficient is established. In the nonlinear model, the neural network is utilized to estimate the time coefficients from SMOS_SSS, months and positions of the salinity profiles. The two models are validated by comparing the salinity profiles retrieved from SMOS with those measured by Argo and the climatological salinities. The root-mean-square error (RMSE) of the linear and nonlinear model are 0.08–0.16 and 0.08–0.14 for the upper 400 m, which are 0.01–0.07 and 0.01–0.09 smaller than the RMSE of climatology. The error sources of the method are also discussed.

  13. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements (United States)

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.


    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  14. The Slip History and Source Statistics of Major Slow Slip Events along the Cascadia Subduction Zone from 1998 to 2008 (United States)

    Gao, H.; Schmidt, D. A.


    We estimate the time dependent slip distribution of 16 prominent slow slip events along the northern half of the Cascadia subduction zone from 1998 to 2008. We process continuous GPS data from the PBO, PANGA and WCDA networks from the past decade using GAMIT/GLOBK processing package. Transient surface displacements are interpreted as slip on the plate interface using the Extended Network Inversion Filter. Of these 16 events, 10 events are centered north of Puget Sound, 4 events are resolved around the Columbia River and 1 event is located near Cape Blanco. The February 2003 event is complex, extending from Portland to southern Vancouver Island. Other smaller events beneath Northern Vancouver Island, Oregon and Northern California are not well resolved because of the limited station coverage. We identify two characteristic segments based on the along-strike extent of individual transient slip events in northern Washington. One segment is centered around Port Angeles. Another segment is between the Columbia River and the southern end of Puget Sound. The propagation direction of slow slip events is variable from one event to the next. The maximum cumulative slip for these 16 events is ~ 27 cm, which is centered beneath Port Angeles. This indicates that the strain release by transient slip is not uniform along-strike. In northwestern Washington where cumulative slip is a maximum, the subduction zone bends along-strike and dip of the plate is lower compared to the north and south. We hypothesize that the geometry of the slab plays an important role for focusing transient strain release at this location along the subduction zone. We explore the relationship of source parameters of slow slip using our catalogue of 16 events. The estimated moment magnitude ranges between 6.1 and 6.7. The average stress drop of 0.06-0.1 MPa is nearly two orders of magnitude smaller than that found for normal earthquakes (1-10 MPa). Standard earthquakes follow a scaling relationship where

  15. Slow slip hidden in the noise: the intermittence of tectonic release (United States)

    Frank, W.


    Referred to as slow slip events, the transient aseismic slip that occurs along plate boundaries can be indirectly characterized through colocated seismicity, such as tectonic tremor and low-frequency earthquakes (LFEs). Using the timing of cataloged LFE and tremor activity in Guerrero, Mexico and northern Cascadia, I decompose the inter-aseismic GPS displacement, defined as the surface deformation between previously detected slow slip events, into separate regimes of tectonic loading and release. In such a way, previously undetected slow slip events that produce on average less than a millimeter of surface deformation are extracted from the geodetic noise. These new observations demonstrate that the inter-aseismic period is not quiescent and that slow slip occurs much more often than previously thought. This suggests that the plate interface where slow slip and tremor occur is in fact strongly coupled and undergoes rapid cycles of stress accumulation and release.

  16. Slip as the basic mechanism for formation of deformation relief structural elements (United States)

    Lychagin, D. V.; Alfyorova, E. A.


    The experimental results of investigation of the nickel single crystal surface morphology after compression deformation are presented. The quasi-periodic character of the deformation profile, common for shear deformation of different types of relief structural elements, is found. It is demonstrated that the morphological manifestation of these structural elements is determined by local shear systems along octahedral planes. The regularities of the deformation structure in these regions defining the material extrusion and intrusion regions and the specific features of disorientation accumulation are established. If reorientation of local regions takes part in the relief element formation, along with octahedral slip, much stronger growth of the surface area is observed. The possibility of application of two-dimensional and three-dimensional surface roughness parameters for description of deformation relief is considered.

  17. Slip effects on shearing flows in a porous medium

    Institute of Scientific and Technical Information of China (English)

    M.Khan; T.Hayat; Y.Wang


    This paper deals with the magnetohydrodynamic (MHD)flow of an Oldroyd 8-constant fluid in a porous mediam when no-slip condition is no longer valid.Modified Darcy's law is used in the flow modelling.The non-linear differential equation with non-linear boundary conditions is solved numerically using finite difference scheme in combination with an iterative technique.Numerical results are obtained for the Conette,Poiseuille and generalized Couette flows.The effects of slip parameters on the velocity profile are discussed.

  18. Probing the surface profile and friction behavior of heterogeneous polymers: a molecular dynamics study (United States)

    Dai, L.; Sorkin, V.; Zhang, Y. W.


    We perform molecular dynamics simulations to investigate molecular structure alternation and friction behavior of heterogeneous polymer (perfluoropolyether) surfaces using a nanoscale probing tip (tetrahedral amorphous carbon). It is found that depending on the magnitude of the applied normal force, three regimes exist: the shallow depth-sensing (SDS), deep depth-sensing (DDS), and transitional depth-sensing (TDS) regimes; TDS is between SDS and DDS. In SDS, the tip is floating on the polymer surface and there is insignificant permanent alternation in the polymer structure due to largely recoverable atomic deformations, and the surface roughness profile can be accurately measured. In DDS, the tip is plowing through the polymer surface and there is significant permanent alternation in the molecular structure. In this regime, the lateral friction force rises sharply and fluctuates violently when overcoming surface pile-ups. In SDS, the friction can be described by a modified Amonton’s law including the adhesion effect; meanwhile, in DDS, the adhesion effect is negligible but the friction coefficient is significantly higher. The underlying reason for the difference in these regimes rests upon different contributions by the repulsion and attraction forces between the tip and polymer surfaces to the friction force. Our findings here reveal important insights into lateral depth-sensing on heterogeneous polymer surfaces and may help improve the precision of depth-sensing devices.

  19. A Study of DC Surface Plasma Discharge in Absence of Free Airflow: Ionic Wind Velocity Profile

    Directory of Open Access Journals (Sweden)

    M. Rafika


    Full Text Available In our study we are interested with the DC (Direct Current electric corona discharge created between two wire electrodes. We present experimental results related to some electroaerodynamic actuators based on the DC corona discharge at the surface of a dielectric material. We used different geometrical forms of dielectric surface such as a plate, a cylinder and a wing of aircraft of type NACA 0015. We present the current density-electric filed characteristics for different cases in order to determine the discharge regimes. The corona discharge produces non-thermal plasma so that it is called plasma discharge. Plasma discharge creates a tangential ionic wind above the surface at the vicinity of the wall. We have measured the ionic wind induced by the corona discharge in absence of free external airflow, we give the ionic wind velocity profiles for different surface forms and we compare the actuators effect based on the span of the ionic wind velocity values. We notice that the maximum ionic wind velocity is obtained with the NACA profile, which shows the effectiveness of this actuator for the airflow control.

  20. Monte Carlo Simulations of Density Profiles for Hard-Sphere Chain Fluids Confined Between Surfaces

    Institute of Scientific and Technical Information of China (English)


    Covering a wide range of bulk densities, density profiles for hard-sphere chain fluids (HSCFs) with chain length of 3,4,8,20,32 and 64 confined between two surfaces were obtained by Monte Carlo simulations using extended continuum configurational-bias (ECCB) method. It is shown that the enrichment of beads near surfaces is happened at high densities due to the bulk packing effect, on the contrary, the depletion is revealed at low densities owing to the configurational entropic contribution. Comparisons with those calculated by density functional theory presented by Cai et al. indicate that the agreement between simulations and predictions is good. Compressibility factors of bulk HSCFs calculated using volume fractions at surfaces were also used to test the reliability of various equations of state of HSCFs by different authors.

  1. Smooth connection method of segment test data in road surface profile measurement (United States)

    Duan, Hu-Ming; Ma, Ying; Shi, Feng; Zhang, Kai-Bin; Xie, Fei


    It's reviewed that the measurement system of road surface profile and the calculation method of segment road test data have been introduced. Because of there are sudden vertical steps at the connection points of segment data which will influence the application of road surface data in automotive engineering. So a new smooth connection method of segment test data is proposed which revised the sudden vertical steps connection by the Signal Local Baseline Adjustment (SLBA) method. Besides, there is an actual example which mentioned the detailed process of the smooth connection of segment test data by the SLBA method and the adjusting results at these connection points. The application and calculation results show that the SLBA method is simple and has achieved obvious effect in smooth connection of the segment road test data. The method of SLBA can be widely applied to segment road surface data processing or the long period vibration signal processing.

  2. Surface profiling of X-ray mirrors for shaping focused beams. (United States)

    Laundy, David; Alianelli, Lucia; Sutter, John; Evans, Gwyndaf; Sawhney, Kawal


    Grazing incidence mirrors are a standard optic for focusing X-rays. Active mirrors, whose surface profile can be finely adjusted, allow control of beam shape and size at the sample. However, progress towards their routine use for beam shaping has been hampered by the strong striations in reflected beams away from the focal plane. Re-entrant (partly concave and partly convex) surface modifications are proposed for shaping X-ray beams to a top-hat in the focal plane while reducing the striations caused by unavoidable polishing errors. A method for constructing such surfaces with continuous height and slope (but only piecewise continuous curvature) will be provided. Ray tracing and wave propagation calculations confirm its effectiveness. A mirror system is proposed allowing vertical beam sizes in the range 0.5 to 10μm. A prototype will be fabricated and is expected to have applications on many synchrotron X-ray beamlines.

  3. An analysis of type F2 software measurement standards for profile surface texture parameters (United States)

    Todhunter, L. D.; Leach, R. K.; Lawes, S. D. A.; Blateyron, F.


    This paper reports on an in-depth analysis of ISO 5436 part 2 type F2 reference software for the calculation of profile surface texture parameters that has been performed on the input, implementation and output results of the reference software developed by the National Physical Laboratory (NPL), the National Institute of Standards and Technology (NIST) and Physikalisch-Technische Bundesanstalt (PTB). Surface texture parameters have been calculated for a selection of 17 test data files obtained from the type F1 reference data sets on offer from NPL and NIST. The surface texture parameter calculation results show some disagreements between the software methods of the National Metrology Institutes. These disagreements have been investigated further, and some potential explanations are given.

  4. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. (United States)

    Liu, Huimin; Xu, Wei; Tan, Wanyi; Zhu, Xuhui; Wang, Jian; Peng, Junbiao; Cao, Yong


    Line printing offers a feasible approach to remove the pixel well structure which is widely used to confine the ink-jet printed solution. In the study, a uniform line is printed by an ink-jet printer. To achieve a uniform surface profile of the printed line, 10vol% low-volatile solvent DMA (3,4-Dimethylanisole) is mixed with high-volatile solvent Pxy (p-xylene) as the solvent. After a solution-processable small molecule is dissolved, the surface tension of DMA solution becomes lower than that of Pxy solution, which creates an inward Marangoni flow during the solvent evaporation. The inward Marangoni flow balances out the outward capillary flow, thereby forming a flat film surface. The line width of the printed line depends on the contact angle of the solution on the hole injection layer.

  5. Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti (United States)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.; hide


    We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  6. On th meridional surface profile of the Gulf Stream at 55 deg W (United States)

    Hallock, Zachariah R.; Teague, William J.


    Nine-month records from nine inverted echo sounders (IESs) are analyzed to describe the mean baroclinic Gulf Stream at 55 deg W. IES acoustic travel times are converted to thermocline depth which is optimally interpolated. Kinematic and dynamic parameters (Gulf Stream meridional position, velocity, and vorticity) are calculated. Primary Gulf Stream variabiltiy is attributed to meandering and and changes in direction. A mean, stream-coordinate (relative to Gulf Stream instantaneous position and direction) meridional profile is derived and compared with results presented by other investigators. The mean velocity is estimated at 0.84 m/s directed 14 deg to the right eastward, and the thermocline (12 c) drops 657 m (north to south), corresponding to a baroclinic rise of the surface of 0.87 m. The effect of Gulf Stream curvature on temporal mean profiles is found to be unimportant and of minimal importance overall. The derived, downstream current profile is well represented by a Gaussian function and is about 190 km wide where it crosses zero. Surface baroclinic transport is estimated to be 8.5 x 10(exp 4) sq m/s, and maximum shear (flanking the maximum) is 1.2 x 10(exp -5). Results compare well with other in situ observational results from the same time period. On the other hand, analyses (by others) of concurrent satellite altimetry (Geosat) suggest a considerable narrower, more intense mean Gulf Stream.

  7. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. J. Sheridan


    Full Text Available Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1 measure the in situ aerosol properties and determine their vertical and temporal variability and (2 relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc., however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93–0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and

  8. Laboratory Scale Seismic Surface Wave Testing for the Determination of Soil Elastic Profiles

    Directory of Open Access Journals (Sweden)

    Aziman Madun


    Full Text Available Seismic surface wave testing is well-adapted to the study of elastic parameters and, hence, the elastic profile of soils in the field.  Knowledge of a ground’s stiffness profile enables the prediction of ground movement and, thus, the quality of the foundation.  The stiffness parameter obtained in this research corresponds to the measurement of the seismic surface wave phase velocity of materials, which relates to the very small strain shear modulus.  This paper describes a methodology for performing surface wave testing in the laboratory.  In comparison with field tests, a laboratory-scale experiment offers the advantage of allowing the process of data collection to be calibrated, and analytical studies can be carried out as the properties of the material under test are controllable and known a priori.  In addition, a laboratory scale experiment offers insight into the interaction between the seismic surface wave, the soil, the boundary and, hence, the constraints associated with the seismic surface wave technique.  Two simplified models of different sizes were developed using homogeneous remoulded Oxford Clay (from Midlands region of the UK.  The laboratory experimental methodology demonstrated that the seismic surface wave equipment used in the laboratory was directly influenced by the clay properties as well as the size of the test model.  The methodology also showed that the arrangement of the seismic source and the receivers had an impact on the range of reliable frequencies and wavelengths obtained.

  9. Near-surface Observations of Temperature and Salinity from Profiling Floats: The Diurnal Cycle, Precipitation, and Mixing (United States)

    Anderson, J. E.; Riser, S.


    Observations of near-surface temperature and salinity obtained from Argo-type profiling floats enhanced with an auxiliary Surface Temperature and Salinity (STS) CTD are presented. Using the STS unit, high vertical resolution (Price-Weller-Pinkel (PWP) one-dimensional mixed layer model. Additionally, the near-surface heat budget is examined.

  10. Cell surface profiling using high-throughput flow cytometry : a platform for biomarker discovery and analysis of cellular heterogeneity

    NARCIS (Netherlands)

    Gedye, Craig A; Hussain, Ali; Paterson, Joshua; Smrke, Alannah; Saini, Harleen; Sirskyj, Danylo; Pereira, Keira; Lobo, Nazleen; Stewart, Jocelyn; Go, Christopher; Ho, Jenny; Medrano, Mauricio; Hyatt, Elzbieta; Yuan, Julie; Lauriault, Stevan; Meyer, Mona; Kondratyev, Maria; van den Beucken, Twan; Jewett, Michael; Dirks, Peter; Guidos, Cynthia J; Danska, Jayne; Wang, Jean; Wouters, Bradly; Neel, Benjamin; Rottapel, Robert; Ailles, Laurie E


    Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profil

  11. Neotectonics of interior Alaska and the late Quaternary slip rate along the Denali fault system (United States)

    Haeussler, Peter J.; Matmon, Ari; Schwartz, David P.; Seitz, Gordon G.


    The neotectonics of southern Alaska (USA) are characterized by a several hundred kilometers–wide zone of dextral transpressional that spans the Alaska Range. The Denali fault system is the largest active strike-slip fault system in interior Alaska, and it produced a Mw 7.9 earthquake in 2002. To evaluate the late Quaternary slip rate on the Denali fault system, we collected samples for cosmogenic surface exposure dating from surfaces offset by the fault system. This study includes data from 107 samples at 19 sites, including 7 sites we previously reported, as well as an estimated slip rate at another site. We utilize the interpreted surface ages to provide estimated slip rates. These new slip rate data confirm that the highest late Quaternary slip rate is ∼13 mm/yr on the central Denali fault near its intersection with the eastern Denali and the Totschunda faults, with decreasing slip rate both to the east and west. The slip rate decreases westward along the central and western parts of the Denali fault system to 5 mm/yr over a length of ∼575 km. An additional site on the eastern Denali fault near Kluane Lake, Yukon, implies a slip rate of ∼2 mm/yr, based on geological considerations. The Totschunda fault has a maximum slip rate of ∼9 mm/yr. The Denali fault system is transpressional and there are active thrust faults on both the north and south sides of it. We explore four geometric models for southern Alaska tectonics to explain the slip rates along the Denali fault system and the active fault geometries: rotation, indentation, extrusion, and a combination of the three. We conclude that all three end-member models have strengths and shortcomings, and a combination of rotation, indentation, and extrusion best explains the slip rate observations.

  12. Modelling of composition and stress profiles in low temperature surface engineered stainless steel

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard; Hattel, Jesper Henri; Somers, Marcel A. J.


    stresses are introduced in the developing case, arising from the volume expansion that accompanies the dissolution of high interstitial contents in expanded austenite. Modelling of the composition and stress profiles developing during low temperature surface engineering from the processing parameters...... temperature, time and gas composition is a prerequisite for targeted process optimization. A realistic model to simulate the developing case has to take the following influences on composition and stress into account: - a concentration dependent diffusion coefficient - trapping of nitrogen by chromium atoms...... - the effect of residual stress on diffusive flux - the effect of residual stress on solubility of interstitials - plastic accommodation of residual stress. The effect of all these contributions on composition and stress profiles will be addressed....

  13. Precision Measurement of Cylinder Surface Profile on an Ultra-Precision Machine Tool (United States)

    Lee, J. C.; Noh, Y. J.; Arai, Y.; Gao, W.; Park, C. H.


    This paper describes the measurement of the surface straightness profile of a cylinder workpiece on an ultra-precision machine tool which has a T-base design with a spindle, an X-slide and a Z-slide. The movement range of the X-slide is 220 mm and that of the Z-slide is 150 mm, which have roller bearings in common. Two capacitive sensors are employed to scan a cylinder workpiece mounted on the spindle along the Z-axis. The straightness error motion of the Z-slide is measured to be approximately 100 nm by the reversal method. The straightness profile of the cylinder workpiece is evaluated to be approximately 400 nm by separation of the motion error, simultaneously.

  14. Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics

    Directory of Open Access Journals (Sweden)

    Bin Qian


    Full Text Available Additive manufacturing of alumina by laser is a delicate process and small changes of processing parameters might cause less controlled and understood consequences. The real-time monitoring of temperature profiles, spectrum profiles and surface morphologies were evaluated in off-axial set-up for controlling the laser sintering of alumina ceramics. The real-time spectrometer and pyrometer were used for rapid monitoring of the thermal stability during the laser sintering process. An active illumination imaging system successfully recorded the high temperature melt pool and surrounding area simultaneously. The captured images also showed how the defects form and progress during the laser sintering process. All of these real-time monitoring methods have shown a great potential for on-line quality control during laser sintering of ceramics.

  15. Flying spot laser triangulation scanner using lateral synchronization for surface profile precision measurement. (United States)

    Zhang, Hanlin; Ren, Yongjie; Liu, Changjie; Zhu, Jigui


    High-speed surface profile measurement with high precision is crucial for target inspection and quality control. In this study, a laser scanner based on a single point laser triangulation displacement sensor and a high-speed rotating polygon mirror is proposed. The autosynchronized scanning scheme is introduced to alleviate the trade-off between the field of view and the range precision, which is the inherent deficiency of the conventional triangulation. The lateral synchronized flying spot technology has excellent characteristics, such as programmable and larger field of view, high immunity to ambient light or secondary reflections, high optical signal-to-noise ratio, and minimum shadow effect. Owing to automatic point-to-point laser power control, high accuracy and superior data quality are possible when measuring objects featuring varying surface characteristics even in demanding applications. The proposed laser triangulation scanner is validated using a laboratory-built prototype and practical considerations for design and implementation of the system are described, including speckle noise reduction method and real-time signal processing. A method for rapid and accurate calibration of the laser triangulation scanner using lookup tables is also devised, and the system calibration accuracy is generally smaller than ±0.025  mm. Experimental results are presented and show a broad application prospect for fast surface profile precision measurement.

  16. Influence of shock pressure and profile on the microjetting from a grooved Pb surface (United States)

    Shao, Jian-Li; Wang, Pei; He, An-Min


    This work investigates the shock-induced microjetting from a grooved surface (10 nm, 120 degree) of low-melting metal Pb with molecular dynamics simulations. The microjetting processes under surface/release melting conditions are presented in detail, and some properties on the microjet mass and velocity are revealed for different shock pressure and profile cases. It is found that the increase of microjet mass with shock pressure experiences three stages: rapid increase (solid phase), slowdown increase (release melting) and almost no increase (shock melting). For all cases, the ratio of the maximal jetting velocity to the surface velocity approximately keeps a constant (1.5-1.55), but this value undergoes a degree of exponential decay with time for the solid release cases. In addition, the temperature of the microjet is found to be always above the melting point (zero pressure) and keep a continuous increase towards the microjet tip. When introducing slow decaying profiles, the microjet mass begins to increase with the decay rate, which is dominated by the deformation of bubble during pull-back. When the decay rate becomes fast enough, the microspall occurs as expected, meanwhile the microjet appears to reduce because of the shock energy reduction. But that cannot cut off the microjet completely. The velocity distribution along the loading direction shows two linear regions corresponding to the microspall and microjet, and the latter seems to have a greater velocity gradient.

  17. 基于PSO搜索潜在滑裂面非极限状态土压力计算%Computation of Earth Pressure under Non-limit State Based on PSO Search of Potential Slip Surface

    Institute of Scientific and Technical Information of China (English)

    陈昌富; 肖重阳; 唐仁华


    The computation of earth pressure against rigid retaining wall usually adopts classical Ran-kine or Coulomb's theory, which can only get limit state of earth pressure, but in many practical cases, the earth pressure against retaining wall is in the non-limit state. So, this paper presented an analysis of the backfill under the mode of translation based on the improved thin-layer element method and the relationship between friction angle and displacement variation. The distribution of earth pressure, resultant force and its action point of a retaining wall under non- limit state were obtained. The optimal solution of earth pressure was obtained by using PSO (particle swarm optimization) to search the potential slip surface, on which the inclination angle of the segment for the thin layer element was extracted as a valuable. Then, the effects of the internal frictional angle, wall displacement on the distribution of earth pressure, resultant force, action point and potential slip surface were discussed. Finally, the results of the proposed method were compared with laboratory test data, which shows that the calculated results have a good agreement with the experimental observations.%作用于刚性挡土墙侧土压力的计算一直沿用经典的朗肯或库仑土压力理论,这两种理论只能求得极限状态的土压力,而在许多实际情况下,挡土墙的土压力处于非极限状态,本文将潜在滑裂面视为一任意曲线,改进水平层分析法,同时基于摩擦角随位移的变化关系,对平动模式下墙后填土进行分析,推导出非极限状态下主动方向土压力分布、合力大小及作用点的理论公式.以各薄层微元的滑裂面倾角为变量,利用PSO(粒子群算法)对潜在滑裂面进行搜索从而获得土压力最优解.分析了内摩擦角、刚性挡土墙位移量对非极限状态主动方向土压力分布、土压力合力大小、土压力合力作用点高度以及潜在滑裂面的影响.本文

  18. Slipping rib syndrome in childhood. (United States)

    Mooney, D P; Shorter, N A


    Slipping rib syndrome is an unusual cause of lower chest and upper abdominal pain in children not mentioned in major pediatric surgical texts. The syndrome occurs when the medial fibrous attachments of the eighth, ninth, or tenth ribs are inadequate or ruptured, allowing their cartilage tip to slip superiorly and impinge on the intervening intercostal nerve. This may cause a variety of somatic and visceral complaints. Although the diagnosis may be made based on history and physical examination, lack of recognition of this disorder frequently leads to extensive diagnostic evaluations before definitive therapy. The authors report on four children who have this disorder.

  19. Slip flow in graphene nanochannels

    DEFF Research Database (Denmark)

    . Kannam, Sridhar; Billy, Todd; Hansen, Jesper Schmidt


    We investigate the hydrodynamic boundary condition for simple nanofluidic systems such as argon and methane flowing in graphene nanochannels using equilibrium molecular dynamics simulations (EMD) in conjunction with our recently proposed method [J. S. Hansen, B. D. Todd, and P. J. Daivis, Phys. Rev....... E 84, 016313 (2011)10.1103/PhysRevE.84.016313]. We first calculate the fluid-graphene interfacial friction coefficient, from which we can predict the slip length and the average velocity of the first fluid layer close to the wall (referred to as the slip velocity). Using direct nonequilibrium...

  20. Whillans Ice Plain Stick Slip (United States)

    Lipovsky, B.; Dunham, E. M.


    Concern about future sea level rise motivates the study of fast flowing ice. The Whillans Ice Plain (WIP) region of the West Antarctic Ice Sheet is notable for decelerating from previously fast motion during the instrumental record. Since most ice flux in Antarctica occurs through ice streams, understanding the conditions that cause ice stream stagnation is of basic importance in understanding the continent's contribution to future sea level rise. Although recent progress has been made in understanding the relationship between basal conditions and ice stream motion, direct observation of the temporal variation in subglacial conditions during ice stream stagnation has remained elusive. The Whillans Ice Plain flows to the sea mostly by way of stick-slip motion. We present numerical simulations of this stick-slip motion that capture the inertial dynamics, seismic waves, and the evolution of sliding with rate- and state-dependent basal friction. Large scale stick-slip behavior is tidally modulated and encompasses the entire WIP. Sliding initiates within one of several locked regions and then propagates outward with low average rupture velocity (~ 200 m/s). Sliding accelerates over a period of 200 s attain values as large as 65 m/d. From Newton's second law, this acceleration is ~ T / (rho H) for average shear stress drop T, ice thickness H, and ice density rho. This implies a 3 Pa stress drop that must be reconciled with the final stress drop of 300 Pa inferred from the total slip and fault dimensions. A possible explanation of this apparent discrepancy is that deceleration of the ice is associated with a substantial decrease in traction within rate-strengthening regions of the bed. During these large-scale sliding events, m-scale patches at the bed produce rapid (20 Hz) stick-slip motion. Each small event occurs over ~ 1/100 s, produces ~ 40 microns of slip, and gives rise to a spectacular form of seismic tremor. Variation between successive tremor episodes allows us

  1. Mobile depth profiling and sub-surface imaging techniques for historical paintings—A review

    Energy Technology Data Exchange (ETDEWEB)

    Alfeld, Matthias, E-mail: [University of Hamburg, Department of Chemistry, Martin-Luther-King Platz 6, D-20146 Hamburg (Germany); University of Antwerp, Department of Chemistry, Groenenbrogerlaan 171, B-2020 Antwerp (Belgium); Broekaert, José A.C., E-mail: [University of Hamburg, Department of Chemistry, Martin-Luther-King Platz 6, D-20146 Hamburg (Germany)


    Hidden, sub-surface paint layers and features contain valuable information for the art-historical investigation of a painting's past and for its conservation for coming generations. The number of techniques available for the study of these features has been considerably extended in the last decades and established techniques have been refined. This review focuses on mobile non-destructive subsurface imaging and depth profiling techniques, which allow for the in-situ investigation of easel paintings, i.e. paintings on a portable support. Among the techniques discussed are: X-ray radiography and infrared reflectography, which are long established methods and are in use for several decades. Their capabilities of element/species specific imaging have been extended by the introduction of energy/wavelength resolved measurements. Scanning macro-X-ray fluorescence analysis made it for the first time possible to acquire elemental distribution images in-situ and optical coherence tomography allows for the non-destructive study the surface paint layers in virtual cross-sections. These techniques and their variants are presented next to other techniques, such as Terahertz imaging, Nuclear Magnetic Resonance depth profiling and established techniques for non destructive testing (thermography, ultrasonic imaging and laser based interference methods) applied in the conservation of historical paintings. Next to selected case studies the capabilities and limitations of the techniques are discussed. - Highlights: • All mobile sub-surface and depth-profiling techniques for paintings are reviewed. • The number of techniques available has increased considerably in the last years. • X-ray radiography and infrared reflectography are still the most used techniques. • Scanning macro-XRF and optical coherence tomography begin to establish. • Industrial non destructive testing techniques support the preservation of paintings.

  2. Rayleigh beacon for measuring the surface profile of a radio telescope. (United States)

    Padin, S


    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  3. Study and Considerations of Nanometer and Nano-radian Surface Profiler

    Energy Technology Data Exchange (ETDEWEB)

    Qian, S.; Qian, K.


    A Nanometer and Nano-radian Surface Profiler (NSP) is under development at Brookhaven National Laboratory. Nanometer and nano-radian accuracy is required for newest state-of-the-art synchrotron radiation optics and highprecision optical measurement. This test accuracy must be maintained in larger angle test range. In order to reach this accuracy we have to remove all error sources as much as possible or to reduce them to nano-radian level. We present the approaches in optimized optical system designing, scanning optical head mode selection, non-tilted reference method, quality control of optical components, and temperature stabilization. Some considerations and preliminary measurements are presented.

  4. Compact Wideband and Low-Profile Antenna Mountable on Large Metallic Surfaces

    DEFF Research Database (Denmark)

    Zhang, Shuai; Pedersen, Gert F.


    This paper proposes a compact wideband and low-profile antenna mountable on large metallic surfaces. Six rows of coupled microstrip resonators with different lengths are printed on a Teflon block. The lengths of the microstrip resonators in different rows are gradually reduced along the end...... resonance at the lowest frequency. A trapezoid-shaped capacitive-feed (C-fed) strip is utilized and also printed on the Teflon block to globally optimize the wideband impedance matching. The proposed antenna covers a relative bandwidth of 109% for VSWR

  5. Estimation of the p-wave velocity profile of elastic real data based on surface wave inversion

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.


    Recently, we proposed an analytical approach to invert for a smoothly varying near-surface P-wave velocity profile that has a squared slowness linearly decreasing with depth. The exact solution for such a velocity profile in the acoustic approximation can be expressed in terms of Airy functions and

  6. Profiling the Near field of Nanoshells Using Surface Enhanced Raman Spectroscopy (United States)

    Lal, Surbhi


    There is tremendous interest in the enhancement of electromagnetic fields near metal surfaces. The spatial extent of the near field as a function of distance from the metal surface is of particular interest for applications such as surface enhanced Raman spectroscopy. By using specially designed molecular scaffolds with Raman-active constituents, we measure the profile of this fringing field at a nanoshell surface. Nanoshells are colloidal particles composed of a silica core covered by a gold shell, which exhibit a tunable plasmon resonance; close to this resonance there is a strong enhancement of the electromagnetic near field. The molecular scaffolds consist of polyadenine DNA strands as tethers with a terminal fluorescein molecule. By varying the length of the DNA strand, the fluorescein molecule is placed at controlled distances from the nanoshell surface. Both the DNA scaffold and the terminal fluorescein molecule provide us with independent SERS Stokes modes whose relative intensities permit us to map the average spatial decay length of the near field of the nanoparticle at its plasmon resonance.

  7. Offset of latest pleistocene shoreface reveals slip rate on the Hosgri strike-slip fault, offshore central California (United States)

    Johnson, Samuel Y.; Hartwell, Stephen R.; Dartnell, Peter


    The Hosgri fault is the southern part of the regional Hosgri–San Gregorio dextral strike‐slip fault system, which extends primarily in the offshore for about 400 km in central California. Between Morro Bay and San Simeon, high‐resolution multibeam bathymetry reveals that the eastern strand of the Hosgri fault is crossed by an ∼265  m wide slope interpreted as the shoreface of a latest Pleistocene sand spit. This sand spit crossed an embayment and connected a western fault‐bounded bedrock peninsula and an eastern bedrock highland, a paleogeography resembling modern coastal geomorphology along the San Andreas fault. Detailed analysis of the relict shoreface with slope profiles and slope maps indicates a lateral slip rate of 2.6±0.9  mm/yr, considered a minimum rate for the Hosgri given the presence of an active western strand. This slip rate indicates that the Hosgri system takes up the largest share of the strike‐slip fault budget and is the most active strike‐slip fault west of the San Andreas fault in central California. This result further demonstrates the value and potential of high‐resolution bathymetry in characterization of active offshore faults.

  8. On the question of whether lubricants fluidize in stick-slip friction. (United States)

    Rosenhek-Goldian, Irit; Kampf, Nir; Yeredor, Arie; Klein, Jacob


    Intermittent sliding (stick-slip motion) between solids is commonplace (e.g., squeaking hinges), even in the presence of lubricants, and is believed to occur by shear-induced fluidization of the lubricant film (slip), followed by its resolidification (stick). Using a surface force balance, we measure how the thickness of molecularly thin, model lubricant films (octamethylcyclotetrasiloxane) varies in stick-slip sliding between atomically smooth surfaces during the fleeting (ca. 20 ms) individual slip events. Shear fluidization of a film of five to six molecular layers during an individual slip event should result in film dilation of 0.4-0.5 nm, but our results show that, within our resolution of ca. 0.1 nm, slip of the surfaces is not correlated with any dilation of the intersurface gap. This reveals that, unlike what is commonly supposed, slip does not occur by such shear melting, and indicates that other mechanisms, such as intralayer slip within the lubricant film, or at its interface with the confining surfaces, may be the dominant dissipation modes.

  9. Depth Profiling of Melting and Metallization in Si(111) and Si(001) Surfaces (United States)

    Gunnella, R.; Ali, M.; Abbas, M.; D'Amico, F.; Principi, E.; di Cicco, A.


    An original approach for measuring the depth profile of melting and metallization of the Si(111) and Si(001) surfaces is proposed and applied. The different probing depths of the Auger electron and electron energy loss (EELS) spectroscopies are exploited to study the number of molten and metallic layers within 5-30 Å from the surface up to about 1650 K. Melting is limited to 3 atomic layers in Si(001) in the range 1400-1650 K while the number of molten layers grows much faster (5 layers at about 1500 K) in Si(111) as also indicated by the L3-edge shift observed by EELS. The relationship between melting and metallization is briefly discussed.

  10. An Active High Impedance Surface for Low Profile Tunable and Steerable Antennas

    CERN Document Server

    Costa, Filippo; Talarico, Salvatore; Valeri, Fabio M


    In this letter, an approach for designing a tunable and steerable antenna is presented. The antenna model is based on a wideband bow-tie radiating element mounted above an active Artificial Magnetic Conductor (AMC). The AMC geometry consists of a Frequency Selective Surface (FSS) printed on a thin grounded dielectric slab in which some chip-set varactor diodes are placed between the metallic elements and the backing plane through vias. The resulting antenna can be tuned over the S-Band by simply changing all varactor capacitances through an appropriate biasing voltage. Moreover, this structure can operate a beam scanning over each working frequency by applying an appropriate biasing voltage to the active elements of the AMC surface in accordance to leaky radiation principles. The low profile active antenna is characterized by an overall thickness of 5.32 mm, which corresponds to approximately lambda/24 at the centre of the operating band.

  11. Absolute and relative surface profile interferometry using multiple frequency-scanned lasers

    CERN Document Server

    Peca, Marek; Vojtíšek, Petr; Lédl, Vít


    An interferometer has been used to measure the surface profile of generic object. Frequency scanning interferometry has been employed to provide unambiguous phase readings, to suppress etalon fringes, and to supersede phase-shifting. The frequency scan has been performed in three narrow wavelength bands, each generated by a temperature tuned laser diode. It is shown, that for certain portions of measured object, it was possible to get absolute phase measurement, counting all wave periods from the point of zero path difference, yielding precision of 2.7nm RMS over 11.75mm total path difference. For the other areas where steep slopes were present in object geometry, a relative measurement is still possible, at measured surface roughness comparable to that of machining process (the same 2.7nm RMS). It is concluded, that areas containing steep slopes exhibit systematic error, attributed to a combined factors of dispersion and retrace error.

  12. Absolute and relative surface profile interferometry using multiple frequency-scanned lasers (United States)

    Peca, Marek; Psota, Pavel; Vojtíšek, Petr; Lédl, Vít.


    An interferometer has been used to measure the surface profile of generic object. Frequency scanning interferometry has been employed to provide unambiguous phase readings, to suppress etalon fringes, and to supersede phase-shifting. The frequency scan has been performed in three narrow wavelength bands, each generated by a temperature tuned laser diode. It is shown, that for certain portions of measured object, it was possible to get absolute phase measurement, counting all wave periods from the point of zero path difference, yielding precision of 2.7nm RMS over 11.75mm total path difference. For the other areas where steep slopes were present in object geometry, a relative measurement is still possible, at measured surface roughness comparable to that of machining process (the same 2.7nm RMS). It is concluded, that areas containing steep slopes exhibit systematic error, attributed to a combined factors of dispersion and retrace error.

  13. Surface profiling of normally responding and nonreleasing basophils by flow cytometry

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Lars Kærgaard; Jensen, Bettina Margrethe

    Background Human basophils are granulocytes with the capacity to play important roles in allergy for example by releasing histamine when activated by cross-linking of their high affinity IgE receptors (Fc¿RI). However, not all individuals have basophils responding with a histamine release after......c, C3aR, C5aR CCR3, FPR1, ST2, CRTH2 on anti-IgE respondsive and nonreleasing basophils by flow cytometry, thereby generating a surface profile of the two phenotypes. Methods Fresh buffy coat blood (histamine release and nonreleases were defined as having...... a maximum release basophils, defined as FceRIa+CD3-CD14-CD19-CD56-,were analysed for surface expression of relevant markers. All samples were compensated and analysed in logicle display. All gates...

  14. Parallel Imaging of 3D Surface Profile with Space-Division Multiplexing

    Directory of Open Access Journals (Sweden)

    Hyung Seok Lee


    Full Text Available We have developed a modified optical frequency domain imaging (OFDI system that performs parallel imaging of three-dimensional (3D surface profiles by using the space division multiplexing (SDM method with dual-area swept sourced beams. We have also demonstrated that 3D surface information for two different areas could be well obtained in a same time with only one camera by our method. In this study, double field of views (FOVs of 11.16 mm × 5.92 mm were achieved within 0.5 s. Height range for each FOV was 460 µm and axial and transverse resolutions were 3.6 and 5.52 µm, respectively.

  15. Exploring the Plant–Microbe Interface by Profiling the Surface-Associated Proteins of Barley Grains

    DEFF Research Database (Denmark)

    Sultan, Abida; Andersen, Birgit; Svensson, Birte


    Cereal grains are colonized by a microbial community that actively interacts with the plant via secretion of various enzymes, hormones, and metabolites. Microorganisms decompose plant tissues by a collection of depolymerizing enzymes, including β-1,4-xylanases, that are in turn inhibited by plant...... xylanase inhibitors. To gain insight into the importance of the microbial consortia and their interaction with barley grains, we used a combined gel-based (2-DE coupled to MALDI-TOF-TOF MS) and gel-free (LC–MS/MS) proteomics approach complemented with enzyme activity assays to profile the surface...... and included xylanases. The surface-associated proteomes showed elevated xylanolytic activity and contained several xylanases. Integration of proteomics with enzyme assays is a powerful tool for analysis and characterization of the interaction between microbial consortia and plants in their natural environment....

  16. Profile Prediction and Fabrication of Wet-Etched Gold Nanostructures for Localized Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Zhou Xiaodong


    Full Text Available Abstract Dispersed nanosphere lithography can be employed to fabricate gold nanostructures for localized surface plasmon resonance, in which the gold film evaporated on the nanospheres is anisotropically dry etched to obtain gold nanostructures. This paper reports that by wet etching of the gold film, various kinds of gold nanostructures can be fabricated in a cost-effective way. The shape of the nanostructures is predicted by profile simulation, and the localized surface plasmon resonance spectrum is observed to be shifting its extinction peak with the etching time. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9486-4 contains supplementary material, which is available to authorized users. Click here for file

  17. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Akiyoshi Uezumi


    Full Text Available Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases.

  18. Combined analysis of surface reflection imaging and vertical seismic profiling at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Daley, T.M.; Majer, E.L.; Karageorgi, E. [Lawrence Berkeley Lab., CA (United States). Earth Sciences Div.


    This report presents results from surface and borehole seismic profiling performed by the Lawrence Berkeley Laboratory (LBL) on Yucca Mountain. This work was performed as part of the site characterization effort for the potential high-level nuclear waste repository. Their objective was to provide seismic imaging from the near surface (200 to 300 ft. depth) to the repository horizon and below, if possible. Among the issues addressed by this seismic imaging work are location and depth of fracturing and faulting, geologic identification of reflecting horizons, and spatial continuity of reflecting horizons. The authors believe their results are generally positive, with tome specific successes. This was the first attempt at this scale using modem seismic imaging techniques to determine geologic features on Yucca Mountain. The principle purpose of this report is to present the interpretation of the seismic reflection section in a geologic context. Three surface reflection profiles were acquired and processed as part of this study. Because of environmental concerns, all three lines were on preexisting roads. Line 1 crossed the mapped surface trace of the Ghost Dance fault and it was intended to study the dip and depth extent of the fault system. Line 2 was acquired along Drill Hole wash and was intended to help the ESF north ramp design activities. Line 3 was acquired along Yucca Crest and was designed to image geologic horizons which were thought to be less faulted along the ridge. Unfortunately, line 3 proved to have poor data quality, in part because of winds, poor field conditions and limited time. Their processing and interpretation efforts were focused on lines 1 and 2 and their associated VSP studies.

  19. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.


    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  20. Characterizing the Relationship of Tremor and Slip during Recent ETS Events in Northern Cascadia using Strainmeters, GPS, and Tremor Observations (United States)

    Krogstad, R. D.; Schmidt, D. A.


    We investigate the relationship between slip and tremor during multiple recent slow slip events in northern Cascadia. While the relationship of geodetically detectable slow slip and nonvolcanic tremor appears to be broadly coincident, the exact spatial and temporal characteristics remain unclear at a finer scale. Typical GPS derived slip distributions tend to be spatially and temporally smoothed and offset slightly updip of tremor distributions. These discrepancies may be real, or they may be a consequence of the resolution of GPS data or an artifact of the inversion methodology. Borehole strainmeters provide additional independent geodetic constraints for characterizing slip, provide greater temporal resolution, and greater precision than GPS. However, various non-tectonic artifacts and other sources of error have limited the number of usable stations and made deriving reliable information from strainmeters during slip events difficult. We utilize strainmeters with low levels of noise and minimal observable artifacts to constrain forward models and to provide additional independent observations in joint geodetic inversions with GPS data. A series of slip distributions are derived by inverting strainmeter and GPS data using the Kalman-filter-based Extended Network Inversion Filter. To compare the tremor distributions to the geodetically derived slip we also construct slip distributions using tremor occurrences as a proxy for localized slip on the plate interface. The magnitude of slip per tremor occurrence is then scaled to best match the observed surface displacements. Separate slip distributions informed by GPS and tremor are then used to predict strain time series. The comparisons between strain predictions and observations produce mixed results. This may indicate that that tremor and slip are not always coincident. This is particularly evident during the Aug. 2010 event, where the peak GPS-derived slip is located in a region with decreased tremor activity

  1. Dual-detection confocal microscopy: high-speed surface profiling without depth scanning (United States)

    Lee, Dong-Ryoung; Gweon, Dae-Gab; Yoo, Hongki


    We propose a new method for three-dimensional (3-D) imaging without depth scanning that we refer to as the dual-detection confocal microscopy (DDCM). Compared to conventional confocal microscopy, DDCM utilizes two pinholes of different sizes. DDCM generates two axial response curves which have different stiffness according to the pinhole diameters. The two axial response curves can draw the characteristics curve of the system which shows the relationship between the axial position of the sample and the intensity ratio. Utilizing the characteristic curve, the DDCM reconstructs a 3-D surface profile with a single 2-D scanning. The height of each pixel is calculated by the intensity ratio of the pixel and the intensity ratio curve. Since the height information can be obtained directly from the characteristic curve without depth scanning, a major advantage of DDCM over the conventional confocal microscopy is a speed. The 3-D surface profiling time is dramatically reduced. Furthermore, DDCM can measure 3-D images without the influence of the sample condition since the intensity ratio is independent of the quantum yield and reflectance. We present two types of DDCM, such as a fluorescence microscopy and a reflectance microscopy. In addition, we extend the measurement range axially by varying the pupil function. Here, we demonstrate the working principle of DDCM and the feasibility of the proposed methods.

  2. Searching for Critical Slip Surface of Slops Based on Artificial Bee Colony Algorithm%基于人工蜂群算法的边坡最危险滑动面搜索

    Institute of Scientific and Technical Information of China (English)

    康飞; 李俊杰; 马震岳


    An artificial bee colony algorithm (ABC) for continuous numerical optisization was introduced into searching for the most dangerous failure surface in slope stability analysis. ABC is a global search algorithm, which models the cooperative foraging process of honeybees, and the disadvantage of being easily trapped into local optima of traditional algorithms may be overcome. To improve the performance of ABC on complex slopes, Hooke-Jeeves pattern search operators were introduced into ABC and a Hooke-Jeeves ABC was proposed for stability analysis of complex slopes. Results of four examples show that the proposed method has higher convergence accuracy and reliability. Thus, a concise effective global strategy is provided for searching the critical slip surface and calculating the minimum factor of safety in slope stability.%将用于连续数值优化问题的人工蜂群算法引入边坡稳定分析临界滑动面搜索领域.该方法模拟了蜂群的群体协作采蜜过程,具有自适应收敛的特点,克服了传统方法容易陷入局部最优的缺点,是一种全局优化算法.为进一步改善其在复杂边坡搜索中的效果,将Hooke-Jeeves模式搜索操作引入人工蜂群算法,提出一种用于边坡临界滑动面搜索的模式搜索人工蜂群算法.对土石坝、海堤等4个实例边坡的计算结果表明,人工蜂群算法是一种简洁、高效的边坡临界滑动面搜索方法;对于复杂边坡,所提出算法具有更高的收敛精度和可靠性,为边坡稳定分析临界滑动面搜索和最小安全系数的计算提供了一种新的全局求解策略.

  3. Slip rate and tremor genesis in Cascadia (United States)

    Wech, Aaron G.; Bartlow, Noel M.


    At many plate boundaries, conditions in the transition zone between seismogenic and stable slip produce slow earthquakes. In the Cascadia subduction zone, these events are consistently observed as slow, aseismic slip on the plate interface accompanied by persistent tectonic tremor. However, not all slow slip at other plate boundaries coincides spatially and temporally with tremor, leaving the physics of tremor genesis poorly understood. Here we analyze seismic, geodetic, and strainmeter data in Cascadia to observe for the first time a large, tremor-generating slow earthquake change from tremor-genic to silent and back again. The tremor falls silent at reduced slip speeds when the migrating slip front pauses as it loads the stronger adjacent fault segment to failure. The finding suggests that rheology and slip-speed-regulated stressing rate control tremor genesis, and the same section of fault can slip both with and without detectable tremor, limiting tremor's use as a proxy for slip.

  4. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    CERN Document Server

    McGaugh, Stacy S


    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For $R_0 = 8$ kpc, the models have stellar mass $5 < M_* < 6 \\times 10^{10}$ M$_{\\odot}$, scale length $2.0 \\le R_d \\le 2.9$ kpc, LSR circular velocity $222 \\le \\Theta_0 \\le 233$ km s$^{-1}$, and solar circle stellar surface density $34 \\le \\Sigma_d(R_0) \\le 61$ M$_{\\odot}$ pc$^{-2}$. The present inter-arm location of the solar neighborhood may have a somewhat lower stellar surface density than average for the solar circle. The Milky Way appears to be a normal spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus A...

  5. DEM simulation of growth normal fault slip (United States)

    Chu, Sheng-Shin; Lin, Ming-Lang; Nien, Wie-Tung; Chan, Pei-Chen


    Slip of the fault can cause deformation of shallower soil layers and lead to the destruction of infrastructures. Shanchiao fault on the west side of the Taipei basin is categorized. The activities of Shanchiao fault will cause the quaternary sediments underneath the Taipei basin to become deformed. This will cause damage to structures, traffic construction, and utility lines within the area. It is determined from data of geological drilling and dating, Shanchiao fault has growth fault. In experiment, a sand box model was built with non-cohesive sand soil to simulate the existence of growth fault in Shanchiao Fault and forecast the effect on scope of shear band development and ground differential deformation. The results of the experiment showed that when a normal fault containing growth fault, at the offset of base rock the shear band will develop upward along with the weak side of shear band of the original topped soil layer, and this shear band will develop to surface much faster than that of single top layer. The offset ratio (basement slip / lower top soil thickness) required is only about 1/3 of that of single cover soil layer. In this research, it is tried to conduct numerical simulation of sand box experiment with a Discrete Element Method program, PFC2D, to simulate the upper covering sand layer shear band development pace and scope of normal growth fault slip. Results of simulation indicated, it is very close to the outcome of sand box experiment. It can be extended to application in water pipeline project design around fault zone in the future. Keywords: Taipei Basin, Shanchiao fault, growth fault, PFC2D

  6. OCT-based profiler for automating ocular surface prosthetic fitting (Conference Presentation) (United States)

    Mujat, Mircea; Patel, Ankit H.; Maguluri, Gopi N.; Iftimia, Nicusor V.; Patel, Chirag; Agranat, Josh; Tomashevskaya, Olga; Bonte, Eugene; Ferguson, R. Daniel


    The use of a Prosthetic Replacement of the Ocular Surface Environment (PROSE) device is a revolutionary treatment for military patients that have lost their eyelids due to 3rd degree facial burns and for civilians who suffer from a host of corneal diseases. However, custom manual fitting is often a protracted painful, inexact process that requires multiple fitting sessions. Training for new practitioners is a long process. Automated methods to measure the complete corneal and scleral topology would provide a valuable tool for both clinicians and PROSE device manufacturers and would help streamline the fitting process. PSI has developed an ocular anterior-segment profiler based on Optical Coherence Tomography (OCT), which provides a 3D measure of the surface of the sclera and cornea. This device will provide topography data that will be used to expedite and improve the fabrication process for PROSE devices. OCT has been used to image portions of the cornea and sclera and to measure surface topology for smaller contact lenses [1-3]. However, current state-of-the-art anterior eye OCT systems can only scan about 16 mm of the eye's anterior surface, which is not sufficient for covering the sclera around the cornea. In addition, there is no systematic method for scanning and aligning/stitching the full scleral/corneal surface and commercial segmentation software is not optimized for the PROSE application. Although preliminary, our results demonstrate the capability of PSI's approach to generate accurate surface plots over relatively large areas of the eye, which is not currently possible with any other existing platform. Testing the technology on human volunteers is currently underway at Boston Foundation for Sight.

  7. Vertical profiles of the specific surface area of the snow at Dome C, Antarctica

    Directory of Open Access Journals (Sweden)

    J.-C. Gallet


    Full Text Available The specific surface area (SSA of snow determines in Part the albedo of snow surfaces and the capacity of the snow to adsorb chemical species and catalyze reactions. Despite these crucial roles, almost no value of snow SSA are available for the largest permanent snow expanse on Earth, the Antarctic. We have measured the first vertical profiles of snow SSA near Dome C (DC: 75°06´ S, 123°20´ E, 3233 m a.s.l. on the Antarctic plateau, and at seven sites during the logistical traverse between Dome C and the French coastal base Dumont D'Urville (DDU: 66°40´ S, 140°01´ E during the Austral summer 2008–2009. We used the DUFISSS system, which measures the IR reflectance of snow at 1310 nm with an integrating sphere. At DC, the mean SSA of the snow in the top 1 cm is 38 m2 kg−1, decreasing monotonically to 14 m2 kg−1 at a depth of 15 cm. Along the traverse, the snow SSA profile is similar to that at DC in the first 600 km from DC. Closer to DDU, the SSA of the top 5 cm is 23 m2 kg−1, decreasing to 19 m2 kg−1 at 50 cm depth. This is attributed to wind, which causes a rapid decrease of surface snow SSA, but forms hard windpacks whose SSA decrease more slowly with time. Since light-absorbing impurities are not concentrated enough to affect albedo, the vertical profiles of SSA and density were used to calculate the spectral albedo of the snow for several realistic illumination conditions, using the DISORT radiative transfer model. A preliminary comparison with MODIS data is presented for use in energy balance calculations and for comparison with other satellite retrievals. These calculated albedos are compared to the few existing measurements on the Antarctic plateau. The interest of postulating a submillimetric, high-SSA layer at the snow surface to explain measured albedos is discussed.

  8. Influence of wall slip on the hydrodynamic behavior of a two-dimensional slider bearing

    Institute of Scientific and Technical Information of China (English)

    G.J.Ma; C.W.Wu; P.Zhou


    In the present paper, a multi-linearity method is used to address the nonlinear slip control equation for the hydrodynamic analysis of a two-dimensional (2-D) slip gap flow. Numerical analysis of a finite length slider beating with wall slip shows that the surface limiting shear stress exerts complicated influences on the hydrodynamic behavior of the gap flow. If the slip occurs at either the stationary surface or the moving surface (especially at the stationary surface),there is a transition point in the initial limiting shear stress for the proportional coefficient to affect the hydrodynamic load support in two opposite ways: it increases the hydrody-namic load support at higher initial limiting shear stresses, but decreases the hydrodynamic load support at lower ini-tial limiting shear stresses. If the slip occurs at the moving surface only, no fluid pressure is generated in the case of null initial limiting shear stress. If the slip occurs at both the surfaces with the same slip property, the hydrodynamic load support goes off after a critical sliding speed is reached. A small initial limiting shear stress and a small proportionality coefficient always give rise to a low friction drag.

  9. Determination of a Holocene Slip Rate on the Puente Hills Blind-Thrust Fault, Los Angeles Basin, California (United States)

    Christofferson, S. A.; Dolan, J. F.; Shaw, J. H.; Pratt, T. L.


    Paleoseismologic observations of slip histories and slip rates of faults that break the surface are available at an ever-increasing rate, but the nature of blind-thrust faults has kept paleoearthquake information on these faults out of reach. The complex network of blind thrust faults beneath the Los Angeles metropolitan region includes the Puente Hills thrust fault (PHT), which extends southeastward for >35 km from beneath downtown Los Angeles into northern Orange County. This thrust is active, as demonstrated by the occurrence of the 1987 Mw 6.0 Whittier Narrows earthquake (Shaw and Shearer 1999). Despite our awareness of the hazard posed by this fault, we do not know its current slip rate or its earthquake history prior to the 1987 event. To determine these critical data, we have begun a two-phase project in which we will acquire high-resolution seismic reflection data and excavate paleoseismologic boreholes and trenches across the zone of active folding associated with major earthquakes on the PHT. We have acquired high-resolution seismic reflection profiles along two transects across the zone of active folding. In our eastern most profile, along Trojan Way in La Mirada, the seismic reflection data show that the locus of active folding extends to 1.5- 2-m-thick reddish-brown argillic horizon. This soil indicates that the geomorphic surface atop the scarp is late Pleistocene in age. The 9 m height of the scarp provides a minimum estimate of total structural relief since stabilization of the ground surface. These observations yield an approximate uplift rate on the order of a few tenths of a mm/yr. Assuming simple hangingwall block translation and given the 19° -22° N dip of the PHT beneath the site, we calculate a minimum average late Pleistocene-Recent dip-slip rate of \\sim 0.2 to 1.1 mm/yr. This slip-rate range is based on our crude age estimates of the late Pleistocene soil. 14C dating of detrital charcoal recovered from the borehole will allow us to

  10. Probabilistic fault displacement hazards for the southern san andreas fault using scenarios and empirical slips (United States)

    Chen, R.; Petersen, M.D.


    We apply a probabilistic method to develop fault displacement hazard maps and profiles for the southern San Andreas Fault. Two slip models are applied: (1) scenario slip, defined by the ShakeOut rupture model, and (2) empirical slip, calculated using regression equations relating global slip to earthquake magnitude and distance along the fault. The hazard is assessed using a range of magnitudes defined by the Uniform California Earthquake Rupture Forecast and the ShakeOut. For hazard mapping we develop a methodology to partition displacement among multiple fault branches basedon geological observations. Estimated displacement hazard extends a few kilometers wide in areas of multiple mapped fault branches and poor mapping accuracy. Scenario and empirical displacement hazard differs by a factor of two or three, particularly along the southernmost section of the San Andreas Fault. We recommend the empirical slip model with site-specific geological data to constrain uncertainties for engineering applications. ?? 2011, Earthquake Engineering Research Institute.

  11. Effects of Velocity-Slip and Viscosity Variation in Squeeze Film Lubrication of Two Circular Plates

    Directory of Open Access Journals (Sweden)

    R.R. Rao


    Full Text Available A generalized form of Reynolds equation for two symmetrical surfaces is taken by considering velocity-slip at the bearing surfaces. This equation is applied to study the effects of velocity-slip and viscosity variation for the lubrication of squeeze films between two circular plates. Expressions for the load capacity and squeezing time obtained are also studied theoretically for various parameters. The load capacity and squeezing time decreases due to slip. They increase due to the presence of high viscous layer near the surface and decrease due to low viscous layer.

  12. Aseismic slip on the San Andreas Fault south of Loma Prieta (United States)

    Behr, J.; Bilham, R.; Bodin, P.; Burfoid, R. O.; Bürgmann, R.

    Two digital creepmeters installed within the San Andreas fault zone after the 18 Oct 1989 Loma Prieta main shock show less than 1 cm of post seismic right-lateral slip in the four months following the earthquake. At Mt. Madonna road a 23 mm coseismic fracture slipped a further 3 mm after heavy rain, and at Nyland Ranch near San Juan Bautista the fault slipped approximately 9 mm starting 42 days after the main shock. If the current trend at Nyland Ranch persists, more than 2 cm of post seismic slip will develop by 1991. At both sites minor left-lateral displacements occurred which are attributed to near-surface soil effects. The abutments of the railroad bridge across the Pajaro River at Chittenden, which were extended by the 1906 earthquake, were not extended during the Loma Prieta event although they have evidently moved apart by more than 7 cm since bridge reconstruction in 1940. This corresponds to 10 cm of right-lateral slip which could be related to M>5 events in mid-century or could be due to aseismic slip at a mean rate of 2.1 mm/a. The absence of significant surface slip within the fault zone in the decades before and the months following the Loma Prieta event suggests either that near-surface deformation is distributed over a wide zone or that a slip deficit remains. Several authors have proposed this region as a future location for M≈5 events.

  13. 3D Surface Profile and Color Stability of Tooth Colored Filling Materials after Bleaching

    Directory of Open Access Journals (Sweden)

    Bryant Anthony Irawan


    Full Text Available This study aims to evaluate the effects of vital tooth bleaching with carbamide peroxide home bleaching and in-office bleaching on the color stability and 3D surface profile of dental restorative filling materials. Thirty discs (n=30 measure 6 mm in diameter and 2 mm thick for each of three restorative materials. These are nanofilled composite Filtek Z350 XT, the submicron composite Estelite Σ Quick, and nanofilled glass ionomer Ketac N100 nanoionomer and were fabricated in shade A2. Each group was further divided into three subgroups (n=10: subgroup A (Opalescence PF, subgroup B (Opalescence Boost in-office bleaching, and subgroup C (distilled water serving as control. Samples were bleached according to the manufacturer’s instructions for a period of two weeks. The Commission Internationale de L’Eclairage (CIE L*, a*, b* system was chosen for image processing, while 3D surface profile was tested with atomic force microscopy (AFM. Statistical analyses were performed with the Mann-Whitney tests and Krusal-Wallis with a P value of ≤0.05. The three restorative materials showed significant color changes (ΔE; P≤0.05. In diminishing order, the mean color changes recorded were Estelite Σ (3.82 ± 1.6 > Ketac Nano (2.97 ± 1.2 > Filtek Z350 XT (2.25 ± 1.0. However, none of the tested materials showed statistically significant changes in surface roughness; P>0.05.

  14. Groundwater Surface Trends at Van Norden Meadow, California, from Ground Penetrating Radar Profiles (United States)

    Tadrick, N. I.; Blacic, T. M.; Yarnell, S. M.


    Van Norden meadow in the Donner Summit area west of Lake Tahoe is one of the largest sub-alpine meadows in the Sierra Nevada mountain range. As natural water retention basins, meadows attenuate floods, improve water quality and support vegetation that stabilizes stream banks and promotes high biodiversity. Like most meadows in the Sierras however, over-grazing, road-building, and development has resulted in localized stream incision, degradation, and partial conversion from wet to dry conditions in Van Norden. Additionally, a small dam at the base of the meadow has partially flooded the lower meadow creating reservoir conditions. Privately owned since the late 1800s, Van Norden was recently purchased by a local land trust to prevent further development and return the area to public ownership. Restoration of the natural meadow conditions will involve notching the dam in 2016 to reduce currently impounded water volumes from 250 to less than 50 acre-feet. To monitor the effects of notching the dam on the upstream meadow conditions, better understanding of the surface and groundwater hydrology both pre- and post-restoration is required. We surveyed the meadow in summer 2014 with ground penetrating radar (GPR) to map the groundwater surface prior to restoration activities using a 270MHz antenna to obtain a suite of longitudinal and transverse transects. Groundwater level within the meadow was assessed using both piezometer readings and sweeps of the GPR antenna. Seventeen piezometers were added this year to the 13 already in place to monitor temporal changes in the groundwater surface, while the GPR profiles provided information about lateral variations. Our results provide an estimate of the groundwater depth variations across the upper portion of the meadow before notching. We plan to return in 2015 to collect GPR profiles during wetter conditions, which will provide a more complete assessment of the pre-notching groundwater hydrology.

  15. On the effectiveness of surface assimilation in probabilistic nowcasts of planetary boundary layer profiles (United States)

    Rostkier-Edelstein, Dorita; Hacker, Joshua


    Surface observations comprise a wide, non-expensive and reliable source of information about the state of the near-surface planetary boundary layer (PBL). Operational data assimilation systems have encountered several difficulties in effectively assimilating them, among others due to their local-scale representativeness, the transient coupling between the surface and the atmosphere aloft and the balance constraints usually used. A long-term goal of this work is to find an efficient system for probabilistic PBL nowcasting that can be employed wherever surface observations are present. Earlier work showed that surface observations can be an important source of information with a single column model (SCM) and an ensemble filter (EF). Here we extend that work to quantify the probabilistic skill of ensemble SCM predictions with a model including added complexity. We adopt a factor separation analysis to quantify the contribution of surface assimilation relative to that of selected model components (parameterized radiation and externally imposed horizontal advection) to the probabilistic skill of the system, and of any beneficial or detrimental interactions between them. To assess the real utility of the flow-dependent covariances estimated with the EF and of the SCM of the PBL we compare the skill of the SCM/EF system to that of a reference one based on climatological covariances and a 30-min persistence model. It consists of a dressing technique, whereby a deterministic 3D mesoscale forecast (e.g. from WRF model) is adjusted and dressed with uncertainty using a seasonal sample of mesoscale forecasts and surface forecast errors. Results show that assimilation of surface observations can improve deterministic and probabilistic profile predictions more significantly than major model improvements. Flow-dependent covariances estimated with the SCM/EF show clear advantage over the use of climatological covariances when the flow is characterized by wide variability, when

  16. What causes an icy fault to slip? Investigating strike-slip failure conditions on Ganymede at Dardanus and Tiamat Sulcus. (United States)

    Cameron, M. E.; Smith-Konter, B. R.; Burkhard, L. M.; Collins, G. C.; Seifert, F.; Pappalardo, R. T.


    Ganymede exhibits two geologically distinct terrains known as dark and light (grooved) terrain. The mechanism for a transition from dark to light terrain remains unclear; however, inferences of strike-slip faulting and distributed shear zones suggest that strike-slip tectonism may be important to the structural development of Ganymede's surface and in this transition. Here we investigate the role of tidal stresses on Ganymede in the formation and evolution of strike-slip structures in both dark and grooved terrains. Using numerical code SatStress, we calculate both diurnal and non-synchronous rotation (NSR) tidal stresses at Ganymede's surface. Specifically, we investigate the role of fault friction and orbital eccentricity in the development of ~45 km of right-lateral offset at Dardanus Sulcus and a possible case of Sulcus. We compute Coulomb failure conditions for these target fractures and consider tidal stress scenarios for both present eccentricity (0.0013) and possible past high (~0.05) eccentricity of Ganymede. We find that while diurnal stresses are not large enough to support strike-slip failure at present or past eccentricities, models that include both diurnal and NSR stress readily generate shear and normal stress magnitudes that could give rise to shear failure. Results for a past high eccentricity assuming a low coefficient of friction (μf = 0.2) suggest shear failure is possible down to depths of 1-2 km along both Dardanus and Tiamat. For a high coefficient of friction (μf = 0.6), failure is limited to about 1 km depth at Dardanus and Tiamat, although confined to small episodic slip windows for the latter. Moreover, our models predict a right-lateral sense of slip, in agreement with inferred offset observed at both regions. Based on these results, we infer that past shear failure on Ganymede is possible when NSR is a driving stress mechanism. We complement this study with a detailed morphological mapping of strike-slip morphologies (en echelon

  17. Research on improved design of airfoil profiles based on the continuity of airfoil surface curvature of wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Cheng, Jiangtao; Shen, Wenzhong


    Aerodynamic of airfoil performance is closely related to the continuity of its surface curvature, and airfoil profiles with a better aerodynamic performance plays an important role in the design of wind turbine. The surface curvature distribution along the chord direction and pressure distributio...

  18. Nucleation and growth of strike slip faults in granite. (United States)

    Segall, P.; Pollard, D.P.


    Fractures within granodiorite of the central Sierra Nevada, California, were studied to elucidate the mechanics of faulting in crystalline rocks, with emphasis on the nucleation of new fault surfaces and their subsequent propagation and growth. Within the study area the fractures form a single, subparallel array which strikes N50o-70oE and dips steeply to the S. Some of these fractures are identified as joints because displacements across the fracture surfaces exhibit dilation but no slip. The joints are filled with undeformed minerals, including epidote and chlorite. Other fractures are identified as small faults because they display left-lateral strike slip separations of up to 2m. Slickensides, developed on fault surfaces, plunge 0o-20o to the E. The faults occur parallel to, and in the same outcrop with, the joints. The faults are filled with epidote, chlorite, and quartz, which exhibit textural evidence of shear deformation. These observations indicate that the strike slip faults nucleated on earlier formed, mineral filled joints. Secondary, dilational fractures propagated from near the ends of some small faults contemporaneously with the left-lateral slip on the faults. These fractures trend 25o+ or -10o from the fault planes, parallel to the direction of inferred local maximum compressive stress. The faults did not propagate into intact rock in their own planes as shear fractures. -from Authors

  19. Towards the development of a hybrid-integrated chip interferometer for online surface profile measurements. (United States)

    Kumar, P; Martin, H; Jiang, X


    Non-destructive testing and online measurement of surface features are pressing demands in manufacturing. Thus optical techniques are gaining importance for characterization of complex engineering surfaces. Harnessing integrated optics for miniaturization of interferometry systems onto a silicon wafer and incorporating a compact optical probe would enable the development of a handheld sensor for embedded metrology applications. In this work, we present the progress in the development of a hybrid photonics based metrology sensor device for online surface profile measurements. The measurement principle along with test and measurement results of individual components has been presented. For non-contact measurement, a spectrally encoded lateral scanning probe based on the laser scanning microscopy has been developed to provide fast measurement with lateral resolution limited to the diffraction limit. The probe demonstrates a lateral resolution of ∼3.6 μm while high axial resolution (sub-nanometre) is inherently achieved by interferometry. Further the performance of the hybrid tuneable laser and the scanning probe was evaluated by measuring a standard step height sample of 100 nm.

  20. Exploring the Plant-Microbe Interface by Profiling the Surface-Associated Proteins of Barley Grains. (United States)

    Sultan, Abida; Andersen, Birgit; Svensson, Birte; Finnie, Christine


    Cereal grains are colonized by a microbial community that actively interacts with the plant via secretion of various enzymes, hormones, and metabolites. Microorganisms decompose plant tissues by a collection of depolymerizing enzymes, including β-1,4-xylanases, that are in turn inhibited by plant xylanase inhibitors. To gain insight into the importance of the microbial consortia and their interaction with barley grains, we used a combined gel-based (2-DE coupled to MALDI-TOF-TOF MS) and gel-free (LC-MS/MS) proteomics approach complemented with enzyme activity assays to profile the surface-associated proteins and xylanolytic activities of two barley cultivars. The surface-associated proteome was dominated by plant proteins with roles in defense and stress-responses, while the relatively less abundant microbial (bacterial and fungal) proteins were involved in cell-wall and polysaccharide degradation and included xylanases. The surface-associated proteomes showed elevated xylanolytic activity and contained several xylanases. Integration of proteomics with enzyme assays is a powerful tool for analysis and characterization of the interaction between microbial consortia and plants in their natural environment.

  1. Analysis of slope stability of circular arc slip surface based on nonlocal elastic model%基于非局部弹性模型的圆弧滑裂面土坡稳定性分析

    Institute of Scientific and Technical Information of China (English)

    谢帮华; 扶名福; 李云生


    According to the proposed two kinds of nonlocal computing element,established two different nonlocal elastic model.Combining with the principle of minimum potential energy is studied based on the nonlocal elastic model of circular slip surface in slope stability,and the nonlocal material parameters are discussed and analyzed.Studied the influnce of material parameter on the stability safety factor of slope, from microscopic point analysis the action mechanism problems of the macro engineering,found the change of nonlocal material parameters which have the microscopic properties,the slope safety factor change obvi-ously.When discussing the influence of related parameters on the slope safety factor,the slope stability safety factor based on the nonlocal model is very sensitive on the internal friction angle.It is shown that u-sing the nonlocal elastic model analysis the slope stability is more reliable,this research can provide the ref-erence for engineering of soil management.%根据提出的两种非局部计算元件,建立两种非局部弹性模型。结合最小势能原理研究了基于非局部弹性模型下圆弧滑裂面土坡的稳定性,并对非局部材料参数进行了讨论与分析。研究了材料参数对土坡安全数的影响,从微观的角度分析了宏观工程的作用机理,发现带微观性质的非局部材料参数变化时,土坡安全系数变化很明显。当讨论土体相关参数对安全系数的影响时,基于非局部模型的土坡稳定安全系数对内摩擦角的变化比较敏感。结果表明,采用非局部弹性模型分析土坡的稳定性更可靠,该研究可为工程中土坡治理提供参考依据。

  2. Offset of Latest Pleistocene Shoreface Reveals Slip Rate on the Hosgri Strike-Slip Fault, Offshore Central California (United States)

    Johnson, S. Y.; Hartwell, S. R.; Dartnell, P.


    The Hosgri fault is the southern part of the regional Hosgri-San Gregorio dextral strike-slip fault system, which extends primarily in the offshore region for about 400 km in central California. Between Morro Bay and San Simeon, high-resolution multibeam bathymetry reveals that the eastern strand of the Hosgri fault is crossed by a ~265-m-wide slope interpreted as the shoreface of a relict sand spit that formed during a period of relatively slower sea-level rise (Younger Dryas stadial) in the latest Pleistocene. This sand spit crossed an embayment and connected a western fault-bounded bedrock peninsula and an eastern bedrock highland, a paleogeography similar to modern geomorphology along coastal segments of the San Andreas fault. Detailed analysis of the relict shoreface with slope profiles and slope maps indicates a lateral slip rate of 2.6 ± 0.9 mm/yr. Because the Hosgri fault locally includes an active western strand, and regionally converges with several other faults, this slip rate should be considered a minimum for the Hosgri fault in central California and should not be applied for the entire Hosgri-San Gregorio fault system. This slip rate indicates that the Hosgri system takes up the largest share of the strike-slip fault budget and is the most active strike-slip fault west of the San Andreas fault in central California. This result further demonstrates the value and potential of high-resolution bathymetry in earthquake-hazard characterization of active offshore faults.

  3. Tropospheric ozonesonde profiles at long-term U.S. monitoring sites: 2. Links between Trinidad Head, CA, profile clusters and inland surface ozone measurements (United States)

    Stauffer, Ryan M.; Thompson, Anne M.; Oltmans, Samuel J.; Johnson, Bryan J.


    Much attention has been focused on the transport of ozone (O3) to the western U.S., particularly given the latest revision of the National Ambient Air Quality Standard to 70 parts per billion by volume (ppbv) of O3. This makes quantifying the contributions of stratosphere-to-troposphere exchange, local pollution, and pollution transport to this region essential. To evaluate free-tropospheric and surface O3 in the western U.S., we use self-organizing maps to cluster 18 years of ozonesonde profiles from Trinidad Head, CA. Three of nine O3 mixing ratio profile clusters exhibit thin laminae of high O3 above Trinidad Head. The high O3 layers are located between 1 and 6 km above mean sea level and reside above an inversion associated with a northern location of the Pacific subtropical high. Ancillary data (reanalyses, trajectories, and remotely sensed carbon monoxide) help identify the high O3 sources in one cluster, but distinguishing mixed influences on the elevated O3 in other clusters is difficult. Correlations between the elevated tropospheric O3 and surface O3 at high-altitude monitors at Lassen Volcanic and Yosemite National Parks, and Truckee, CA, are marked and long lasting. The temporal correlations likely result from a combination of transport of baseline O3 and covarying meteorological parameters. Days corresponding to the high O3 clusters exhibit hourly surface O3 anomalies of +5-10 ppbv compared to a climatology; the positive anomalies can last up to 3 days after the ozonesonde profile. The profile and surface O3 links demonstrate the importance of regular ozonesonde profiling at Trinidad Head.

  4. Tropospheric Ozonesonde Profiles at Long-Term U.S. Monitoring Sites: 2. Links Between Trinidad Head, CA, Profile Clusters and Inland Surface Ozone Measurements (United States)

    Stauffer, Ryan M.; Thompson, Anne M.; Oltmans, Samual J.; Johnson, Bryan J.


    Much attention has been focused on the transport of ozone (O3) to the western U.S., particularly given the latest revision of the National Ambient Air Quality Standard to 70 parts per billion by volume (ppbv) of O3. This makes quantifying the contributions of stratosphere-to-troposphere exchange, local pollution, and pollution transport to this region essential. To evaluate free-tropospheric and surface O3 in the western U.S., we use self-organizing maps to cluster 18 years of ozonesonde profiles from Trinidad Head, CA. Three of nine O3 mixing ratio profile clusters exhibit thin laminae of high O3 above Trinidad Head. The high O3 layers are located between 1 and 6 km above mean sea level and reside above an inversion associated with a northern location of the Pacific subtropical high. Ancillary data (reanalyses, trajectories, and remotely sensed carbon monoxide) help identify the high O3 sources in one cluster, but distinguishing mixed influences on the elevated O3 in other clusters is difficult. Correlations between the elevated tropospheric O3 and surface O3 at high-altitude monitors at Lassen Volcanic and Yosemite National Parks, and Truckee, CA, are marked and long lasting. The temporal correlations likely result from a combination of transport of baseline O3 and covarying meteorological parameters. Days corresponding to the high O3 clusters exhibit hourly surface O3 anomalies of +5-10 ppbv compared to a climatology; the positive anomalies can last up to 3 days after the ozonesonde profile. The profile and surface O3 links demonstrate the importance of regular ozonesonde profiling at Trinidad Head.

  5. Influence of boundary slip on the dynamics and stability of thermocapillary spreading with a significant gravitational counterflow (United States)

    Tiwari, Naveen; Davis, Jeffrey M.


    Applied temperature gradients produce thermocapillary stresses that can force liquid films to spread along solid surfaces. These films are susceptible to a rivulet instability at the advancing solid-liquid-vapor contact line, which is linked to the development of a capillary ridge near the advancing front. The application of a sufficiently strong gravitational counterflow has been shown to drain fluid from the ridge and stabilize the film against rivulet formation and lead to interesting spreading dynamics. In this work, the dynamics and stability of thermocapillary driven films are analyzed for the entire range of drainage. Boundary slip is allowed at the solid-liquid interface, which introduces the static contact angle and slip coefficient as parameters that can typically be specified independently. The contact angle of the spreading film is allowed to depend on the velocity of the contact line, and the effects of this dependence on the film profile, linear stability, and transient response of perturbations are examined. Increasing the influence of gravitational drainage relative to the thermocapillary stress from zero has a stabilizing influence on the traveling wave solutions but is accompanied by an increase in the amplitude of the capillary ridge, which is contrary to stability results for spreading films with only one driving force. Results for the different spreading regimes are generally consistent with predictions based on the more extensively used precursor film model of the contact line, although some differences are observed due to the additional parameters in the slip model that are relevant to partially wetting fluids.

  6. Optimization for sinusoidal profiles in surface relief gratings recorded on photoresist

    Indian Academy of Sciences (India)

    Sanjiva Kumar; Amrita Debnath; R B Tokas; K Divakar Rao; D V Udupa; N K Sahoo


    The formations of sinusoidal surface relief structures recorded in positive photoresist (Allresist AR-P 3120) have been studied and optimized for different recording parameters of gratings with spatial frequency of∼1200 grooves/mm.Astable sinusoidal pattern generated using a two-beam laser interferometric technique was recorded in thin films of positive photoresist deposited on glass substrates. Several gratings were generated by varying the exposure time of interference pattern and time of chemical development of exposed media. Time duration of exposure for 90 s and chemical development for 15 s were observed to be optimum for the translation of the sinusoidal interference pattern into nearly-sinusoidal profiled grooves in the gratings for a developer AR-300-26 of dilution of 2:1 (developer:de-ionized water).

  7. White light interferometer with color CCD for 3D-surface profiling of microsystems (United States)

    Upputuri, Paul K.; Pramanik, Manojit; Nandigana, Krishna M.; Kothiyal, Mahendra P.


    White light interferometry (WLI) is a state-of-the-art technique for high resolution full-filed 3-D surface profiling of Microsystems. However, the WLI is rather slow, because the number of frames to be recorded and evaluated is large compared to the single wavelength phase shifting interferometry. In this paper, we combine white light interferometer with a single-chip color CCD camera which makes the measurement faster, simpler, and cost-effective. The red-bluegreen (RGB) color interferogram stored in a computer is then decomposed into its individual components and corresponding phase maps for red, green, and blue components are calculated independently. The usefulness of the technique is demonstrated on reflective micro-scale-samples.

  8. Compact Wideband and Low-Profile Antenna Mountable on Large Metallic Surfaces

    DEFF Research Database (Denmark)

    Zhang, Shuai; Pedersen, Gert F.


    resonance at the lowest frequency. A trapezoid-shaped capacitive-feed (C-fed) strip is utilized and also printed on the Teflon block to globally optimize the wideband impedance matching. The proposed antenna covers a relative bandwidth of 109% for VSWR...This paper proposes a compact wideband and low-profile antenna mountable on large metallic surfaces. Six rows of coupled microstrip resonators with different lengths are printed on a Teflon block. The lengths of the microstrip resonators in different rows are gradually reduced along the end......-fire direction. The first four rows of resonators provide four resonances at different frequencies for bandwidth enhancement. The last two rows of resonators are used as two directors to suppress sidelobe levels at high frequencies. A trapezoidal launcher is applied to serve as a reflector and provide one...

  9. A chemical and toxicological profile of Dutch North Sea surface sediments. (United States)

    Klamer, Hans J C; Leonards, Pim E G; Lamoree, Marja H; Villerius, Leen A; Åkerman, Johan E; Bakker, Joop F


    Chemical and toxicological profiles were assessed in surface sediments (fraction ER-CALUX assay for estrogenicity showed no response, with the exception of one near-shore location (IJmuiden outer harbour, ER-CALUX). Highest dioxin-like toxicity (DR-CALUX) was found at near-shore locations, in the outflow of the Rhine/Meuse estuary including a dumping site of harbour sludge. At the Oyster Grounds, DR-CALUX responses appeared to be linked to the occurrence of larger PAHs (4-6 rings). A new, non-destructive clean up procedure resulted in significantly higher DR-CALUX responses than the current protocol. The Dutch legislation on disposal of harbour sludge at sea, dictates the use of the conventional clean up procedure. Our results therefore indicate that probably more dioxin-like toxicity associated with harbour sludge is disposed off at sea than assumed.

  10. Fast and Accurate Accessible Surface Area Prediction Without a Sequence Profile. (United States)

    Faraggi, Eshel; Kouza, Maksim; Zhou, Yaoqi; Kloczkowski, Andrzej


    A fast accessible surface area (ASA) predictor is presented. In this new approach no residue mutation profiles generated by multiple sequence alignments are used as inputs. Instead, we use only single sequence information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for ASAquick are available from Research and Information Systems at and from the Battelle Center for Mathematical Medicine at .

  11. Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter

    CERN Document Server

    Robles, Victor H


    The scalar field dark matter (SFDM) model proposes that galaxies form by condensation of a scalar field (SF) very early in the universe forming Bose-Einstein Condensates (BEC) drops, i.e., in this model haloes of galaxies are gigantic drops of SF. Here big structures form like in the LCDM model, by hierarchy, thus all the predictions of the LCDM model at big scales are reproduced by SFDM. This model predicts that all galaxies must be very similar and exist for bigger redshifts than in the LCDM model. In this work we show that BEC dark matter haloes fit high-resolution rotation curves of a sample of thirteen low surface brightness galaxies. We compare our fits to those obtained using a Navarro-Frenk-White and Pseudo-Isothermal (PI) profiles and found a better agreement with the SFDM and PI profiles. The mean value of the logarithmic inner density slopes is -0.27 +/- 0.18. As a second result we find a natural way to define the core radius with the advantage of being model-independent. Using this new definition ...

  12. Lithological effects in soil formation and soil slips on weathering-limited slopes underlain by granitic bedrocks in Japan


    Wakatsuki, Tsuyoshi; Matsukura, Yukinori


    Soil slips occur every few years due to heavy rains on biotite granite (Gb) and hornblende biotite granite (Ghb) slopes in the Taga Mountains, Ibaraki Prefecture, Japan. The occurrence density of soil slips per unit area is 2.7 times greater in the Gb slopes than that in Ghb slopes. We examined the chemical, mineral, physical, and mechanical properties of two soil profiles on soil-slip scars in these slopes to study the effect of bedrock mineral composition on the density of soil slips. For a...

  13. Application specific beam profiles: new surface and thin-film refinement processes using beam shaping technologies (United States)

    Hauschild, Dirk


    Today, the use of laser photons for materials processing is a key technology in nearly all industries. Most of the applications use circular beam shapes with Gaussian intensity distribution that is given by the resonator of the laser or by the power delivery via optical fibre. These beam shapes can be typically used for material removal with cutting or drilling and for selective removal of material layers with ablation processes. In addition to the removal of materials, it is possible to modify and improve the material properties in case the dose of laser photons and the resulting light-material interaction addresses a defined window of energy and dwell-time. These process windows have typically dwell-times between µs and s because of using sintering, melting, thermal diffusion or photon induced chemical and physical reaction mechanisms. Using beam shaping technologies the laser beam profiles can be adapted to the material properties and time-temperature and the space-temperature envelopes can be modified to enable selective annealing or crystallization of layers or surfaces. Especially the control of the process energy inside the beam and at its edges opens a large area of laser applications that can be addressed only with an optimized spatial and angular beam profile with down to sub-percent intensity variation used in e.g. immersion lithography tools with ArF laser sources. LIMO will present examples for new beam shapes and related material refinement processes even on large surfaces and give an overview about new mechanisms in laser material processing for current and coming industrial applications.

  14. Homogenization of seismic surface wave profiling in highly heterogeneous improved ground (United States)

    Lin, C.; Chien, C.


    Seismic surface wave profiling is gaining popularity in engineering practice for determining shear-wave velocity profile since the two-station SASW (Spectral Analysis of Surface Wave) was introduced. Recent developments in the multi-station approach (Multi-station Analysis of Surface Wave, MASW) result in several convenient commercial tools. Unlike other geophysical tomography methods, the surface wave method is essentially a 1-D method assuming horizontally-layered medium. Nevertheless, MASW is increasingly used to map lateral variation of S-wave velocity by multiple surveys overlooking the effect of lateral heterogeneity. MASW typically requires long receiver spread in order to have enough depth coverage. The accuracy and lateral resolution of 2-D S-wave velocity imaging by surface wave is not clear. Many geotechnical applications involves lateral variation in a scale smaller than the geophone spread and wave length. For example, soft ground is often improved to increase strength and stiffness by methods such as jet grouting and stone column which result in heterogeneous ground with improved columns. Experimental methods (Standard Penetration Test, sampling and laboratory testing, etc.) used to assess such ground improvement are subjected to several limitations such as small sampling volume, time-consuming, and cost ineffectiveness. It's difficult to assess the average property of the improved ground and the actual replacement ratio of ground improvement. The use of seismic surface wave method for such a purpose seems to be a good alternative. But what MASW measures in such highly heterogeneous improved ground remains to be investigated. This study evaluated the feasibility of MASW in highly heterogeneous ground with improved columns and investigated the homogenization of shear wave velocity measured by MASW. Field experiments show that MASW testing in such a composite ground behaves similar to testing in horizontally layered medium. It seems to measure some sort

  15. Detection of flaws on surface of civil infrastructures and their profiling using imaging system with laser displacement sensor (United States)

    Giri, Paritosh; Kharkovsky, Sergey


    Civil infrastructures such as buildings, bridges, roads and pipelines are the integral part of people's lives and their failure can have large public safety and economic consequences. Early detection of flaws in civil infrastructures and their appropriate retrofitting will aid in preventing this failure. Flaws such as cracks and impact damages initially occur on the surface and propagate inside the materials causing further degradation. There is a need to develop systems that can detect these surface flaws. Developing a system with one sensing technique which can detect the flaws is a challenging task since infrastructures are made up of diverse materials such as concrete, metal, plastics, composite and timber that have different electrical and mechanical properties. It is also desired that non-plain surfaces with complex profiles can be interrogated and surface flaws can be detected. We have proposed an imaging system capable of interrogating structures with complex surface profiles for the purpose of detection and evaluation of surface flaws such as cracks and impact damages using laser displacement sensor (LDS). The developed system consists of LDS mounted on the scanner which is able to perform raster scan over the specimen under test. The reading of displacement from the sensor head to the laser spot on the surface of the test material is then used to generate images which can be used to detect the surface flaws. The proof of concept is given by testing specimens made of metal, concrete and plastics with complex surface profiles.

  16. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    Directory of Open Access Journals (Sweden)

    A. Cherkasheva


    Full Text Available Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database for the years 1957–2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL exceeding 0.7 mg C m−3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll


    Institute of Scientific and Technical Information of China (English)

    JIANG Hong; WANG Xiaochun


    A type of three-pitch fluctuating speed ratio limited-slip differential (TPLSD) is presented for the first time, analyzed its working principle, introduced the tooth profile design method of using non-involute tooth profile and separated tooth profile design along the pitch line. Performance comparison between vehicles equipped with three-pitch fluctuating speed ratio limited-slip differential and common open differential is finished. The data from experiments prove that three-pitch fluctuating speed ratio limited-slip differential can increase the traction of a vehicle, improve its acceleration performance, decrease braking distance and limit sideslip. The basic structure of new differential is the same of open differential, the only difference is that they have different tooth profile, so the new differential has a high performance price.


    Directory of Open Access Journals (Sweden)

    O. V. Karmanova


    Full Text Available Influence the degree of dispersion of the carbon black on the rheological characteristics of the surface appearance and rubber mixtures based on ethylene-propylene rubber EPDM-50 was investigated. Effect of mixing time on the degree of dispersion of the carbon black elastic-viscous and extrusion characteristics of rubber compounds were found. Component tangent of the angle of mechanical losses tgδ to evaluate the rheological and technological properties of the rubber compounds used. Relationship changes tgδ valuesand properties of rubber compounds in the preparation of the compositions of rubber with carbon black was shown. On the curves of the length of the mixing tgδ rubber filler identified three main areas of change in the rheological and techno-logical properties of rubber compounds. This allows you to monitor and make adjustments to the mode of preparation of the compositions in the real world of production. evaluation of the quality of mixing in surface appearance characteristics unshaped profiles was conducted. The resulting patterns formed the basis for the development of recommendations for the selection of optimal blending modes in the production and quality control of production of rubber compounds.

  19. Genetic Profile of IS1004 among Environmental Vibrio cholerae Isolated from Surface Water Sources in Iran

    Directory of Open Access Journals (Sweden)

    Bita Bakhshi B


    Full Text Available AbstractBackground and objective: Vibrio cholerae includes toxigenic and non-toxigenic serotypes. Non O1-non O139 serotypes are non toxigenic and do not have any role in cholera epidemics or pandemics all over the world. Different typing methods are widely used for molecular epidemiological investigations of clinical and environmental V. cholerae. The aim of this study is to investigate the genetic relatedness of environmental isolates of this bacterium using IS1004 profiling as an epidemiological marker. Materials and methods: Environmental samples collected from surface water sources in Tehran and cultured of TCBS agar after filtration. One single colony on TCBS was selected and cultured on BHI agar after which the cultures were used for biochemical diagnostic tests and serogroupings. DNA was isolated and used for PCR confirmation of V. cholerae isolates and wbeT gene. Genetic relatedness of isolates was determined using southern blot analysis. Results: From total 20 environmental V. cholerae identified in this study no wbeT gene was detected for the isolates. A total of 7 different banding patterns were obtained for the isolates while other 13 isolates identified as non-typeable by this method. Comparison with our previous studies indicated no identical pattern with clinical V. cholerae isolates. Conclusion: Differences in the banding pattern of IS1004 revealed a high heterogeneity among the isolates from surface water sources in Iran while these heterogenic isolates do not have any genetic relatedness with clinical isolates.

  20. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zhaoxia [Univ. of Utah, Salt Lake City, UT (United States)


    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  1. The Initial Mass Function and the Surface Density Profile of NGC 6231

    CERN Document Server

    Sung, Hwankyung; Bessell, M S


    We have performed new wide-field photometry of the young open cluster NGC 6231 to study the shape of the initial mass function (IMF) and mass segregation. We also investigated the reddening law toward NGC 6231 from optical to mid-infrared color excess ratios, and found that the total-to-selective extinction ratio is Rv = 3.2, which is very close to the normal value. But many early-type stars in the cluster center show large color excess ratios. We derived the surface density profiles of four member groups, and found that they reach the surface density of field stars at about 10', regardless of stellar mass. The IMF of NGC 6231 is derived for the mass range 0.8 -- 45 Msun. The slope of the IMF of NGC 6231 (Gamma = -1.1 +/- 0.1) is slightly shallower than the canonical value, but the difference is marginal. In addition, the mass function varies systematically, and is a strong function of radius - it is is very shallow at the center, and very steep at the outer ring suggesting the cluster is mass segregated. We ...

  2. Front surface field formation and diffusion profiles for industrial interdigitated back contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cascant, M.; Morecroft, D.; Boulif, K.; Vauche, L.; Yuste, H.; Castano, F.J. [Siliken, High efficiency solar cell pilot line, R and D department, Ciudad Politecnica de la Innovacion- UPV Camino de Vera 14, 46022 Valencia, (Spain); Bende, E.E. [ECN Solar Energy, Petten (Netherlands)


    Optimization of the Front Surface Field (FSF) for IBC cells is important for passivation, lowering series resistance and reducing UV light degradation. This work presents results for optimizing the FSF diffusion from an industrial perspective, focusing on optimizing the process flow to achieve excellent FSF performance, whilst at the same time reducing the number of process steps. The ideal FSF profile is a compromise since a lightly doped deep diffusion reduces recombination losses close the cell surface where the light is captured, whilst increased doping reduces series resistance. This work investigates diffusing the FSF (1) at the beginning, (2) in the middle and (3) towards the end of the IBC process flow. The advantage of the first option is that the diffusion depth can be increased by subsequent thermal steps. However a diffusion barrier is required to protect the FSF throughout the subsequent processing, which increases the number of process steps and results in increased costs. By placing the FSF diffusion later in the process flow it is possible to simplify the process reducing the number of steps. Experimental results show excellent FSF diffusion passivation performance over 156mm, with lifetime values of over 500 {mu}s. Simulations confirm that high current generation can be achieved with a short circuit current of over 40 mA cm-{sup 2}.

  3. A series of transient slip events on Kilauea volcano, Hawaii. (United States)

    Desmarais, E. K.; Segall, P.; Miklius, A.; Cervelli, P.


    Deformation on Kilauea volcano, Hawaii is monitored by a network of continuously recording GPS stations, among other methds. Since its installation in 1996, the GPS network has detected four spatially coherent accelerations on Kilauea's south flank that are not caused by either intrusions or earthquakes. These events, each lasting several hours to two days, occurred in September 1998, November 2000, July 2003, and January 2005. Previously, Cervelli et al., (Nature, 2002) interpreted the 2000 event as a silent earthquake due to slip on a sub-horizontal fault beneath Kilauea's south flank. We inverted the cumulative displacements ( less than 2 cm) using a simulated annealing algorithm for each event and found similarly sized, near horizontal, uniform slip source locations for all four events at depths of ~6 km. The estimated slip magnitudes are between 9 and 15 cm, with the upper block moving seaward. The 2005 event is the largest detected to date. Volcano-tectonic (VT) earthquakes on the south flank of Kilauea are typically restricted to the volume between the East Rift Zone and the Hilina and Poliokeawe Palis. Seismicity in this volume increased significantly during the silent events at depths of 5-10 km. However, all of the VT earthquakes were small ( less than M3) and their cumulative moment does not account for the moment released during the silent slip events. We are currently examining seismic waveform data for evidence of other signals, such as non-volcanic tremor, that might be associated with the slip events. To determine the exact onset and duration of the silent earthquakes, we invert for slip as a function of time directly from raw GPS phase and pseudorange observations. The November 2000 silent earthquake was preceded 9 days earlier by nearly 1 m of rainfall, which was speculated in Cervelli et al., (Nature, 2002) to have reduced fault stability through surface loading or pore pressure increase. In contrast, both the 2003 and 2005 events occurred

  4. Volcano instability induced by strike-slip faulting (United States)

    Lagmay, A. M. F.; van Wyk de Vries, B.; Kerle, N.; Pyle, D. M.


    Analogue sand cone experiments were conducted to study instability generated on volcanic cones by basal strike-slip movement. The results of the analogue models demonstrate that edifice instability may be generated when strike-slip faults underlying a volcano move as a result of tectonic adjustment. This instability occurs on flanks of the volcano above the strike-slip shear. On the surface of the volcano this appears as a pair of sigmoids composed of one reverse and one normal fault. In the interior of the cone the faults form a flower structure. Two destabilised regions are created on the cone flanks between the traces of the sigmoidal faults. Bulging, intense fracturing and landsliding characterise these unstable flanks. Additional analogue experiments conducted to model magmatic intrusion show that fractures and faults developed within the volcanic cone due to basal strike-slip motions strongly control the path of the intruding magma. Intrusion is diverted towards the areas where previous development of reverse and normal faults have occurred, thus causing further instability. We compare our model results to two examples of volcanoes on strike-slip faults: Iriga volcano (Philippines), which underwent non-magmatic collapse, and Mount St. Helens (USA), where a cryptodome was emplaced prior to failure. In the analogue and natural examples, the direction of collapse takes place roughly parallel to the orientation of the underlying shear. The model presented proposes one mechanism for strike-parallel breaching of volcanoes, recently recognised as a common failure direction of volcanoes found in regions with transcurrent and transtensional deformation. The recognition of the effect of basal shearing on volcano stability enables prediction of the likely direction of eventual flank failure in volcanoes overlying strike-slip faults.

  5. Phase-field slip-line theory of plasticity (United States)

    Freddi, Francesco; Royer-Carfagni, Gianni


    A variational approach to determine the deformation of an ideally plastic substance is proposed by solving a sequence of energy minimization problems under proper conditions to account for the irreversible character of plasticity. The flow is driven by the local transformation of elastic strain energy into plastic work on slip surfaces, once that a certain energetic barrier for slip activation has been overcome. The distinction of the elastic strain energy into spherical and deviatoric parts is used to incorporate in the model the idea of von Mises plasticity and isochoric plastic strain. This is a "phase field model" because the matching condition at the slip interfaces is substituted by the evolution of an auxiliary phase field that, similar to a damage field, is unitary on the elastic phase and null on the yielded phase. The slip lines diffuse in bands, whose width depends upon a material length-scale parameter. Numerical experiments on representative problems in plane strain give solutions with noteworthy similarities with the results from classical slip-line field theory, but the proposed model is much richer because, accounting for elastic deformations, it can describe the formation of slip bands at the local level, which can nucleate, propagate, widen and diffuse by varying the boundary conditions. In particular, the solution for a long pipe under internal pressure is very different from the one obtainable from the classical macroscopic theory of plasticity. For this case, the location of the plastic bands may be an insight to explain the premature failures that are sometimes encountered during the manufacturing process. This practical example enhances the importance of this new theory based on the mathematical sciences.

  6. Slip Effects in Compressible Turbulent Channel Flow

    CERN Document Server

    Skovorodko, P A


    The direct numerical simulation of compressible fully developed turbulent Couette flow between two parallel plates with equal temperatures moving in opposite directions with some velocity was performed. The algorithm was tested on well known numerical solution for incompressible Poiseuille channel flow and found to provide its well description. The slip effects in studied flow are found to be negligibly small at the values of accommodation coefficients for velocity and temperature of the order of unity. The considerable increase of mean temperature with decreasing the accommodation coefficient for temperature was discovered. The effect may be important in the problems of heat exchange in compressible turbulent boundary layer for some combinations of flowing gas, surface and adsorbing gas.

  7. Slip effects in compressible turbulent channel flow (United States)

    Skovorodko, P. A.


    The direct numerical simulation of compressible fully developed turbulent Couette flow between two parallel plates with temperature Tw moving with velocities ±Uw was performed. The algorithm was tested on well known numerical solution for incompressible Poiseuille channel flow and found to provide its well description. The slip effects in studied flow are found to be negligibly small at the values of accommodation coefficients αu and αT of the order of unity. The considerable increase of mean temperature with decreasing the accommodation coefficient αT for fixed value of αu = 1 was discovered. The effect may be important in the problems of heat exchange in compressible turbulent boundary layer for some combinations of flowing gas, surface and adsorbing gas.

  8. Novel multiparametric approach to elucidate the surface amine-silanization reaction profile on fluorescent silica nanoparticles. (United States)

    Roy, Shibsekhar; Dixit, Chandra K; Woolley, Robert; MacCraith, Brian D; O'Kennedy, Richard; McDonagh, Colette


    This Article addresses the important issue of the characterization of surface functional groups for optical bioassay applications. We use a model system consisting of spherical dye-doped silica nanoparticles (NPs) that have been functionalized with amine groups whereby the encapsulated cyanine-based near-infrared dye fluorescence acts as a probe of the NP surface environment. This facilitates the identification of the optimum deposition parameters for the formation of a stable ordered amine monolayer and also elucidates the functionalization profile of the amine-silanization process. Specifically, we use a novel approach where the techniques of fluorescence correlation spectroscopy (FCS) and fluorescence lifetime measurement (FL) are used in conjunction with the more conventional analytical techniques of zeta potential measurement and Fourier transfer infrared spectroscopy (FTIR). The dynamics of the ordering of the amine layer in different stages of the reaction have been characterized by FTIR, FL, and FCS. The results indicate an optimum reaction time for the formation of a stable amine layer, which is optimized for further biomolecular conjugation, whereas extended reaction times lead to a disordered cross-linked layer. The results have been validated using an immunoglobulin (IgG) plate-based direct binding assay where the maximum number of IgG-conjugated aminated NPs were captured by immobilized anti-IgG antibodies for the NP sample corresponding to the optimized amine-silanization condition. Importantly, these results point to the potential of FCS and FL as useful analytical tools in diverse fields such as characterization of surface functionalization.

  9. Predicting the probability of slip in gait: methodology and distribution study. (United States)

    Gragg, Jared; Yang, James


    The likelihood of a slip is related to the available and required friction for a certain activity, here gait. Classical slip and fall analysis presumed that a walking surface was safe if the difference between the mean available and required friction coefficients exceeded a certain threshold. Previous research was dedicated to reformulating the classical slip and fall theory to include the stochastic variation of the available and required friction when predicting the probability of slip in gait. However, when predicting the probability of a slip, previous researchers have either ignored the variation in the required friction or assumed the available and required friction to be normally distributed. Also, there are no published results that actually give the probability of slip for various combinations of required and available frictions. This study proposes a modification to the equation for predicting the probability of slip, reducing the previous equation from a double-integral to a more convenient single-integral form. Also, a simple numerical integration technique is provided to predict the probability of slip in gait: the trapezoidal method. The effect of the random variable distributions on the probability of slip is also studied. It is shown that both the required and available friction distributions cannot automatically be assumed as being normally distributed. The proposed methods allow for any combination of distributions for the available and required friction, and numerical results are compared to analytical solutions for an error analysis. The trapezoidal method is shown to be highly accurate and efficient. The probability of slip is also shown to be sensitive to the input distributions of the required and available friction. Lastly, a critical value for the probability of slip is proposed based on the number of steps taken by an average person in a single day.

  10. Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone (United States)

    Dragert, H.; Wang, K.; Rogers, G.


    Slip events with an average duration of about 10 days and effective total slip displacements of severalc entimetres have been detected on the deeper (25 to 45 km) part of the northern Cascadia subduction zone interface by observing transient surface deformation on a network of continuously recording Global Positioning System (GPS) sites. The slip events occur down-dip from the currently locked, seismogenic portion of the subduction zone, and, for the geographic region around Victoria, British Columbia, repeat at 13 to 16 month intervals. These episodes of slip are accompanied by distinct, low-frequency tremors, similar to those reported in the forearc region of southern Japan. Although the processes which generate this phenomenon of episodic tremor and slip (ETS) are not well understood, it is possible that the ETS zone may constrain the landward extent of megathrust rupture, and conceivable that an ETS event could precede the next great thrust earthquake.

  11. Nonlinear Acoustic Landmine Detection: Profiling Soil Surface Vibrations and Modeling Mesoscopic Elastic Behavior (United States)


    amplitude of oscillation, 01 0, kF ox <<−=− and A kF ox <<−=+ 02 , , where 12 kk < . If 02 =k , the elastoplastic case of Iwan’s model for...curve identifies the system as potentially mesoscopic elastic. The elasto-slip model of elastoplastic hysteresis presented by Iwan exhibits damaged concrete: Quantitative analysis of slow and fast dynamics,” Phys. Rev. B, 73, 014116 (2006). Bolton, M.D., and Wilson, J.M.R, “An

  12. The ATLAS3D Project - XXIII. Angular momentum and nuclear surface brightness profiles : XXIII. Angular momentum and nuclear surface brightness profiles

    NARCIS (Netherlands)

    Krajnovic, Davor; Karick, A. M.; Davies, Roger L.; Naab, Thorsten; Sarzi, Marc; Emsellem, Eric; Cappellari, Michele; Serra, Paolo; de Zeeuw, P. T.; Scott, Nicholas; McDermid, Richard M.; Weijmans, Anne-Marie; Davis, Timothy A.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bureau, Martin; Bournaud, Frederic; Crocker, Alison; Duc, Pierre-Alain; Khochfar, Sadegh; Kuntschner, Harald; Morganti, Raffaella; Oosterloo, Tom; Young, Lisa M.


    We investigate nuclear light profiles in 135 ATLAS3D galaxies for which the Hubble Space Telescope (HST) imaging is available and compare them to the large-scale kinematics obtained with the SAURON integral-field spectrograph. Specific angular momentum, λR, correlates with the shape of nuclear light

  13. Misbheaving Faults: The Expanding Role of Geodetic Imaging in Unraveling Unexpected Fault Slip Behavior (United States)

    Barnhart, W. D.; Briggs, R.


    Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons

  14. Phase slips in superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.


    Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires and slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.

  15. Pedestrian fall safety assessments improved understanding on slip resistance measurements and investigations

    CERN Document Server

    Kim, In-Ju


    This book examines pedestrian shoe-floor slip resistance from an engineering standpoint in order to better understand friction and wear behavior. This analysis includes an extensive investigation into the surface properties of shoes and flow, and the measurement of dynamic friction and other mechanical and physical aspects of shoe-floor tribology. Lastly, the book proposes a measurement concept for the identification and classification of operational floor surfaces under a range of different conditions. Novel techniques and methods are proposed that can improve the reliability of slip resistance assessments. The current state of knowledge is critically examined and discussed from a tribological perspective, including aspects like friction, wear, lubrication and the mechanical behavior of shoes, floors and their wider environment. Further, the book reports on extensive experimental investigations into the topographical characteristics of shoe and floor surfaces and how they affect slip resistance. Slips result...

  16. Periodontal Bioengineering: A Discourse in Surface Topographies, Progenitor Cells and Molecular Profiles (United States)

    Dangaria, Smit J.


    Stem/progenitor cells are a population of cells capable of providing replacement cells for a given differentiated cell type. We have applied progenitor cell-based technologies to generate novel tissue-engineered implants that use biomimetic strategies with the ultimate goal of achieving full regeneration of lost periodontal tissues. Mesenchymal periodontal tissues such as cementum, alveolar bone (AB), and periodontal ligament (PDL) are neural crest-derived entities that emerge from the dental follicle (DF) at the onset of tooth root formation. Using a systems biology approach we have identified key differences between these periodontal progenitors on the basis of global gene expression profiles, gene cohort expression levels, and epigenetic modifications, in addition to differences in cellular morphologies. On an epigenetic level, DF progenitors featured high levels of the euchromatin marker H3K4me3, whereas PDL cells, AB osteoblasts, and cementoblasts contained high levels of the transcriptional repressor H3K9me3. Secondly, we have tested the influence of natural extracellular hydroxyapatite matrices on periodontal progenitor differentiation. Dimension and structure of extracellular matrix surfaces have powerful influences on cell shape, adhesion, and gene expression. Here we show that natural tooth root topographies induce integrin-mediated extracellular matrix signaling cascades in tandem with cell elongation and polarization to generate physiological periodontium-like tissues. In this study we replanted surface topography instructed periodontal ligament progenitors (PDLPs) into rat alveolar bone sockets for 8 and 16 weeks, resulting in complete attachment of tooth roots to the surrounding alveolar bone with a periodontal ligament fiber apparatus closely matching physiological controls along the entire root surface. Displacement studies and biochemical analyses confirmed that progenitor-based engineered periodontal tissues were similar to control teeth and

  17. Learning to predict slip for ground robots (United States)

    Angelova, Anelia; Matthies, Larry; Helmick, Daniel; Sibley, Gabe; Perona, Pietro


    In this paper we predict the amount of slip an exploration rover would experience using stereo imagery by learning from previous examples of traversing similar terrain. To do that, the information of terrain appearance and geometry regarding some location is correlated to the slip measured by the rover while this location is being traversed. This relationship is learned from previous experience, so slip can be predicted later at a distance from visual information only.

  18. Slip resistance testing - Zones of uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, R.


    This paper considers recent and current potential developments in the international standardisation of slip resistance. It identifies some limitations of the wet barefoot ramp test, such that changes should be made if it is to be more widely used. It also identifies some limitations of the new European SlipSTD Publicly Available Specification, such as insufficient allowance for the deterioration of slip resistance as tiles inevitably wear. (Author) 22 refs.

  19. Self-consistent electronic structure and segregation profiles of the Cu-Ni (001) random-alloy surface

    DEFF Research Database (Denmark)

    Ruban, Andrei; Abrikosov, I. A.; Kats, D. Ya.


    We have calculated the electronic structure and segregation profiles of the (001) surface of random Cu-Ni alloys with varying bulk concentrations by means of the coherent potential approximation and the linear muffin-tin-orbitals method. Exchange and correlation were included within the local-den...... to be oscillatory with a strong preference for Cu to segregate towards the surface of the alloy....

  20. Error in Radar-Derived Soil Moisture due to Roughness Parameterization: An Analysis Based on Synthetical Surface Profiles

    Directory of Open Access Journals (Sweden)

    Bernard De Baets


    Full Text Available In the past decades, many studies on soil moisture retrieval from SAR demonstrated a poor correlation between the top layer soil moisture content and observed backscatter coefficients, which mainly has been attributed to difficulties involved in the parameterization of surface roughness. The present paper describes a theoretical study, performed on synthetical surface profiles, which investigates how errors on roughness parameters are introduced by standard measurement techniques, and how they will propagate through the commonly used Integral Equation Model (IEM into a corresponding soil moisture retrieval error for some of the currently most used SAR configurations. Key aspects influencing the error on the roughness parameterization and consequently on soil moisture retrieval are: the length of the surface profile, the number of profile measurements, the horizontal and vertical accuracy of profile measurements and the removal of trends along profiles. Moreover, it is found that soil moisture retrieval with C-band configuration generally is less sensitive to inaccuracies in roughness parameterization than retrieval with L-band configuration.

  1. Cycle slipping in phase synchronization systems (United States)

    Yang, Ying; Huang, Lin


    Cycle slipping is a characteristically nonlinear phenomenon in phase synchronization systems, which is highly dependent of the initial state of the system. Slipping a cycle means that the phase error is increased to such an extent that the generator to be synchronized slips one complete cycle with respect to the input phase. In this Letter, a linear matrix inequality (LMI) based approach is proposed and the estimation of the number of cycles which slips a solution of the system is obtained by solving a quasi-convex optimization problem of LMI. Applications to phase locked loops demonstrate the validity of the proposed approach.

  2. Steepening of the 820 micron continuum surface-brightness profile signals dust evolution in TW Hya's disk

    CERN Document Server

    Hogerheijde, Michiel R; Pinilla, Paola; Salinas, Vachail N; Kama, Mihkel; Andrews, Sean M; Qi, Chunhua; Wilner, David J


    Grain growth in planet-forming disks is the first step toward the formation of planets. The growth of grains and their inward drift leaves a distinct imprint on the dust surface-density distribution and the resulting surface-brightness profile of the thermal continuum emission. We determine the surface-brightness profile of the continuum emission using resolved observations at millimeter wavelengths of the disk around TW Hya, and infer the signature of dust evolution on the surface density and dust opacity. Archival ALMA observations at 820 micron on baselines up to 410 kilolambda are compared to parametrized disk models to determine the surface-brightness profile. Under the assumption of a constant dust opacity, a broken radial power law best describes the dust surface density, with a slope of -0.53 +/- 0.01 from the 4.1 au radius of the (already known) inner hole to a turn-over radius of 47.1 +/- 0.2 au, steepening to -8.0 +/- 0.1 at larger radii. The emission drops below the detection limit beyond ~60 au. ...

  3. Slip resistance of non-slip socks--an accelerometer-based approach. (United States)

    Hübscher, Markus; Thiel, Christian; Schmidt, Jens; Bach, Matthias; Banzer, Winfried; Vogt, Lutz


    The present study investigated the relative slip resistance of commercially available non-slip socks during gait. Twenty-four healthy subjects (29.3±10.4 years) participated in the study. Each subject completed 4 different test conditions (barefoot, non-slip socks, conventional socks, backless slippers) in a randomized, balanced order. The slip resistance was estimated by measuring the heel deceleration time using a heel-mounted accelerometer. Repeated measures ANOVA and post hoc paired-sample t-test with Bonferroni correction were used for statistical analysis. Compared to barefoot walking absolute deceleration times [ms] were significantly increased when wearing conventional socks or slippers. No significant differences were observed between the barefoot and non-slip socks conditions. The present study shows that non-slip socks improved slip-resistance during gait when compared to conventional socks and slippers. Future investigations should verify the present findings in hospital populations prone to slip-related falls.

  4. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline. (United States)

    Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff


    Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.

  5. Interfacial Slip in Soap Films with Hydrosoluble Polymer (United States)

    Adelizzi, E. A.; Berg, S.; Troian, S. M.


    The thickness of a Newtonian soap film entrained at small capillary number should scale as Ca^2/3 provided the bounding surfaces are rigid. Previous studies show that soap films containing associating, low concentration, high molecular weight (M_w) polymer exhibit strong deviations from this scaling. We report results by laser interferometry of the entrained film thickness for the associating pair SDS/PEO over a large range in polymer molecular weight. Direct comparison to predictions of hydrodynamic models based on viscoelastic behavior shows poor agreement.Modification of the Frankel analysis to account for mobile films through a Navier slip condition yields good agreement. In addition, the slip length Ls increases as M_w^3/5, consistent with a correlation based on a polymer chain size for freely jointed chains with excluded volume effects. Although developed to explain slip at liquid-solid interfaces, the Tolstoi-Larson prediction that Ls scales as the polymer size agrees favorably with our results. Whether the slip behavior is due to Marangoni effects cannot be ruled out.

  6. Slip and flow dynamics of polydisperse thin polystyrene films. (United States)

    Sabzevari, Seyed Mostafa; McGraw, Joshua D.; Jacobs, Karin; Wood-Adams, Paula M.


    We investigate the slip of binary and ternary mixtures of nearly monodisperse polystyrene samples on Teflon-coated (AF2400) silicon wafers using dewetting experiments. Binary mixtures of long and short chains along with ternary mixtures with a fixed weight-average molecular weight Mw but different number-average molecular weight Mn were prepared. Thin films of ca. 200 nm were spin coated on mica from polymer solutions and transferred to Teflon substrates. Above the glass transition temperature Tg the films break up via nucleation and growth of holes. The hole growth rate and rim morphology are monitored as a function of Mn and annealing protocol of the films before transfer to Teflon substrates. Slip properties, accessed using hydrodynamic models, and flow dynamics are then examined and compared. We found that the rim morphology and slip of polystyrene blends on Teflon depends on the molecular weight distribution. Similarly, flow dynamics is affected by the presence of short chains in mixture. Moreover, we can provoke differences in slip by choosing appropriate annealing and film transfer protocols for PS films that have first been spin cast on mica surfaces.

  7. Scaling of the critical slip distance in granular layers

    CERN Document Server

    Hatano, Takahiro


    We investigate the nature of friction in granular layers by means of numerical simulation focusing on the critical slip distance, over which the system relaxes to a new stationary state. Analyzing a transient process in which the sliding velocity is instantaneously changed, we find that the critical slip distance is proportional to the sliding velocity. We thus define the relaxation time, which is independent of the sliding velocity. It is found that the relaxation time is proportional to the layer thickness and inversely proportional to the square root of the pressure. An evolution law for the relaxation process is proposed, which does not contain any length constants describing the surface geometry but the relaxation time of the bulk granular matter. As a result, the critical slip distance is scaled with a typical length scale of a system. It is proportional to the layer thickness in an instantaneous velocity change experiment, whereas it is scaled with the total slip distance in a spring-block system on gr...

  8. The surface density profile of NGC 6388 : a good candidate for harboring an intermediate-mass black hole

    CERN Document Server

    Lanzoni, B; Ferraro, F R; Miocchi, P; Valenti, E; Rood, R T


    We have used a combination of high resolution (HST ACS-HRC, ACS-WFC, and WFPC2) and wide-field (ESO-WFI) observations of the galactic globular cluster NGC 6388 to derive its center of gravity, projected density profile, and central surface brightness profile. While the overall projected profiles are well fit by a King model with intermediate concentration (c=1.8) and sizable core radius (rc=7"), a significant power law (with slope \\alpha=-0.2) deviation from a flat core behavior has been detected within the inner 1 arcsecond. These properties suggest the presence of a central intermediate mass black hole. The observed profiles are well reproduced by a multi-mass isotropic, spherical model including a black hole with a mass of ~5.7x10^3 Msol.

  9. A new dual-plate slipometer for measuring slip between molten polymers and extrusion die materials. (United States)

    Schmalzer, A M; Giacomin, A J


    In this work, we study the slip behaviors common to plastics die extrusion metals or platings using a new instrument called a dual-plate slipometer. By dual-plate, we mean that whereas the stationary plate incorporates a local shear stress transducer, the moving plate does not. The stationary plate and transducer are made of one stainless steel, but the moving plate is made from, or plated with, different extrusion die materials under study. This new instrument allows slip velocity to be measured without having to build a new shear stress transducer from each extrusion metal or plating under study. We explore the effect of extrusion die composition and die metal surface morphology on the slip properties of polyolefins using a sliding plate rheometer. In this work, we studied the slip behaviors of polyolefins on four common plastics die extrusion metals or platings, without having to build a new shear stress transducer from each. Specifically, our new method replaces the moving plate; with each of the four die metals or platings under study without changing the stainless steel material of the shear stress transducer and its stationary plate. Our experiments include high-density polyethylene, low-density polyethylene, and polypropylene (PP) on four different die metals or platings. We use steady simple shear to obtain shear stress versus nominal shear rate for different gaps, from which we can then deduce the slip velocity using the Mooney analysis. We then fit four slip models to our experimental measurements, and we find the Hatzikiriakos hyperbolic sine model to be accurate, even for the measured inflections in the slip velocity as a function of shear stress curves. Our analysis includes detailed characterization of the die metal plating surfaces, including measurements of the composition of the sliding plates by energy dispersive spectroscopy, surface energy by contact angle goniometry, and surface roughness by both white light interference and stylus

  10. Slip distribution, strain accumulation and aseismic slip on the Chaman Fault system (United States)

    Amelug, F.


    The Chaman fault system is a transcurrent fault system developed due to the oblique convergence of the India and Eurasia plates in the western boundary of the India plate. To evaluate the contemporary rates of strain accumulation along and across the Chaman Fault system, we use 2003-2011 Envisat SAR imagery and InSAR time-series methods to obtain a ground velocity field in radar line-of-sight (LOS) direction. We correct the InSAR data for different sources of systematic biases including the phase unwrapping errors, local oscillator drift, topographic residuals and stratified tropospheric delay and evaluate the uncertainty due to the residual delay using time-series of MODIS observations of precipitable water vapor. The InSAR velocity field and modeling demonstrates the distribution of deformation across the Chaman fault system. In the central Chaman fault system, the InSAR velocity shows clear strain localization on the Chaman and Ghazaband faults and modeling suggests a total slip rate of ~24 mm/yr distributed on the two faults with rates of 8 and 16 mm/yr, respectively corresponding to the 80% of the total ~3 cm/yr plate motion between India and Eurasia at these latitudes and consistent with the kinematic models which have predicted a slip rate of ~17-24 mm/yr for the Chaman Fault. In the northern Chaman fault system (north of 30.5N), ~6 mm/yr of the relative plate motion is accommodated across Chaman fault. North of 30.5 N where the topographic expression of the Ghazaband fault vanishes, its slip does not transfer to the Chaman fault but rather distributes among different faults in the Kirthar range and Sulaiman lobe. Observed surface creep on the southern Chaman fault between Nushki and north of City of Chaman, indicates that the fault is partially locked, consistent with the recorded MBalochistan and the populated areas such as the city of Quetta.

  11. Soft matter dynamics: Accelerated fluid squeeze-out during slip (United States)

    Hutt, W.; Persson, B. N. J.


    Using a Leonardo da Vinci experimental setup (constant driving force), we study the dependency of lubricated rubber friction on the time of stationary contact and on the sliding distance. We slide rectangular rubber blocks on smooth polymer surfaces lubricated by glycerol or by a grease. We observe a remarkable effect: during stationary contact the lubricant is only very slowly removed from the rubber-polymer interface, while during slip it is very rapidly removed resulting (for the grease lubricated surface) in complete stop of motion after a short time period, corresponding to a slip distance typically of order only a few times the length of the rubber block in the sliding direction. For an elastically stiff material, poly(methyl methacrylate), we observe the opposite effect: the sliding speed increases with time (acceleration), and the lubricant film thickness appears to increase. We propose an explanation for the observed effect based on transient elastohydrodynamics, which may be relevant also for other soft contacts.

  12. Orientation dependence of the plastic slip near notches in ductile FCC single crystals (United States)

    Crone, W. C.; Shield, T. W.; Creuziger, A.; Henneman, B.


    Results from experiments conducted on copper FCC single crystals are reported. Two symmetric crystallographic orientations and four nonsymmetric crystallographic orientations were tested. The slip line fields that form near a pre-existing notch in these specimens were observed. The changes in these patterns as the orientation of the notch in the crystal is rotated in an {101} plane are discussed. Sectors of similar slip line patterns are identified and the type of boundaries between these sectors are discussed. A type of sector boundary called mixed kink is identified. Specimen orientations that differ by 90° are found to have different slip line patterns, contrary to the predictions of perfectly plastic slip line theory. The locations of the first slip lines to form are compared to the predictions obtained using anisotropic linear elastic stress field solutions and the initial plane-strain yield surfaces. It is found that comparison of these surface slip line fields to plane strain crack tip solutions in the annular region between 350 and 750 μm is justified. The differences in anisotropic elastic solutions for orientations that are 90° apart explain the lack of agreement with perfectly plastic slip line theory.

  13. Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching (United States)

    Kendrick, Katherine J.; Matti, Jonathan; Mahan, Shannon


    The fault history of the Mill Creek strand of the San Andreas fault (SAF) in the San Gorgonio Pass region, along with the reconstructed geomorphology surrounding this fault strand, reveals the important role of the left-lateral Pinto Mountain fault in the regional fault strand switching. The Mill Creek strand has 7.1–8.7 km total slip. Following this displacement, the Pinto Mountain fault offset the Mill Creek strand 1–1.25 km, as SAF slip transferred to the San Bernardino, Banning, and Garnet Hill strands. An alluvial complex within the Mission Creek watershed can be linked to palinspastic reconstruction of drainage segments to constrain slip history of the Mill Creek strand. We investigated surface remnants through detailed geologic mapping, morphometric and stratigraphic analysis, geochronology, and pedogenic analysis. The degree of soil development constrains the duration of surface stability when correlated to other regional, independently dated pedons. This correlation indicates that the oldest surfaces are significantly older than 500 ka. Luminescence dates of 106 ka and 95 ka from (respectively) 5 and 4 m beneath a younger fan surface are consistent with age estimates based on soil-profile development. Offset of the Mill Creek strand by the Pinto Mountain fault suggests a short-term slip rate of ∼10–12.5 mm/yr for the Pinto Mountain fault, and a lower long-term slip rate. Uplift of the Yucaipa Ridge block during the period of Mill Creek strand activity is consistent with thermochronologic modeled uplift estimates.

  14. Blasius flow and heat transfer of fourth-grade fluid with slip

    Institute of Scientific and Technical Information of China (English)



    This investigation deals with the effects of slip, magnetic field, and non-Newtonian flow parameters on the flow and heat transfer of an incompressible, electrically conducting fourth-grade fluid past an infinite porous plate. The heat transfer analysis is carried out for two heating processes. The system of highly non-linear differential equations is solved by the shooting method with the fourth-order Runge-Kutta method for moderate values of the parameters. The effective Broyden technique is adopted in order to improve the initial guesses and to satisfy the boundary conditions at infinity. An exceptional cross-over is obtained in the velocity profile in the presence of slip. The fourth-grade fluid parameter is found to increase the momentum boundary layer thickness, whereas the slip parameter substantially decreases it. Similarly, the non-Newtonian fluid parameters and the slip have opposite effects on the thermal boundary layer thickness.

  15. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries (United States)

    Silva, Goncalo; Semiao, Viriato


    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over

  16. A Long-term Slip Model for the San Ramón Fault, Santiago de Chile, from Tectonically Reconcilable Boundary Conditions (United States)

    Aron, F.; Estay, N.; Cembrano, J. M.; Yanez, G. A.


    We constructed a 3D Boundary Elements model simulating subduction of the Nazca plate underneath South America, from 29° to 38° S, to compute long-term surface deformation and slip rates on crustal faults imbedded in the upper-plate wedge of the Andean orogen. We tested our model on the San Ramón Fault (SRF), a major E-dipping, thrust structure limiting the western front of the Main Cordillera with surface expression along the entire, 40 km long, extension of the Santiago de Chile basin. Long-lived thrusting has produced more than 2 km of differential uplift of the mountains. Given its proximity to the country's largest city, this potentially seismogenic fault —dormant during historic times— has drawn increasing public attention. We used earthquake hypocenters captured over a one-year seismic deployment, 2D resistivity profiles, and published geologic cross-sections to determine the geometry of the SRF. The base of the lithosphere and plate interface surfaces were defined based on average Andean values and the Slab1.0 model. The simulation reproduces plate convergence and mechanic decoupling of the lithospheric plates across the subduction seismic cycle using mixed boundary conditions. Relative plate motion is achieved prescribing uniform, far-field horizontal displacement over the depth extension of both the oceanic and continental lithospheric plates. Long-term deformation is carried out in two steps. First, the modeled surfaces are allowed to slip freely emulating continuous slip on the subduction megathrust; subsequently, zero displacement is prescribed on the locking zone of the megathrust down to 40 km depth, while keeping the rest of the surfaces traction free, mimicking interseismic conditions. Long-term slip rate fields obtained for the SRF range between 0.1 and 1% the plate convergence rate, with maximum values near the surface. Interestingly, at an estimated 76-77 mm/yr relative plate motion velocity, those rates agree well with what has been

  17. Simulations on the influence of lunar surface temperature profiles on CE-1 lunar microwave sounder brightness temperature

    Institute of Scientific and Technical Information of China (English)


    Surface temperature profile is an important parameter in lunar microwave remote sensing. Based on the analysis of physical properties of the lunar samples brought back by the Apollo and Luna missions, we modeled temporal and spatial variation of lunar surface temperature with the heat conduction equation, and produced temperature distribution in top 6.0 m of lunar regolith of the whole Moon surface. Our simulation results show that the profile of lunar surface temperature varies mainly within the top 20 cm, except at the lunar polar regions where the changes can reach to about 1.0 m depth. The temperature is stable beyond that depth. The variations of lunar surface temperature lead to main changes in brightness temperature (TB) at different channels of the lunar microwave sounder (CELMS) on Chang’E-1 (CE-1). The results of this paper show that the temperature profile influenced CELMS TB, which provides strong validation on the CELMS data, and lays a solid basis for future interpretation and utilization of the CELMS data.

  18. Estimating the Soil Moisture Profile by Assimilating Near-Surface Observations with the Ensemble Kalman Filter (EnKF)

    Institute of Scientific and Technical Information of China (English)


    The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kalman filter (EnKF) assimilation scheme,including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The "true"soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.

  19. In-Situ Observation of Undisturbed Surface Layer Scaler Profiles for Characterizing Evaporative Duct Properties (United States)


    The PJ model uses the potential refractivity quantity, which calculates refractivity index using “potential temperature, potential water vapor...identify the characteristics of evaporation duct and to make diagnostic model calculations of the evaporation duct. A prototype of the profiling...a small meteorological mast. For each profiling set at a given location, 10–15 profiles were made to allow sufficient samples to derive the mean

  20. The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer

    DEFF Research Database (Denmark)

    Paulson, C.A.


    Analytical expressions which specify non-dimensionalized wind speed and potential temperature gradients as functions of stability are integrated. The integrated equations are tested against Swinhank's wind and temperature profiles measured at Kerang, Australia. It is found that a representation s...... suggested independently by Businger and by Dyer gives the best fit to temperature profiles and describes the wind profiles equally as well as a relation suggested by Panofsky et al....

  1. Testing the Universality of the TIS Model on Cluster Scales from the X-ray Surface Brightness Profiles

    Institute of Scientific and Technical Information of China (English)


    The truncated isothermal sphere (TIS) model has been recently suggested as an alternative for virialized dark halos (Shapiro et al. 1999). Both its profound theoretical motivation and its successful explanations for the galactic rotation curves and the gravitational scaling laws of clusters indicate that the TIS model is a promising candidate among other prevailing models such as the NFW profile and the Burkert profile. This promotes us to re-examine the universality of the TIS model on cluster scales from a different angle. Using an ensemble of X-ray surface brightness profiles of 45 clusters, we test the goodness of fit of the TIS predicted gas distributions to the X-ray data under the assumption of isothermal, hydrostatic equilibrium. Unlike the conventional β model or the NFW/Burkert profile, for which about half of the clusters have the reduced x2v values smaller than 2,the TIS model fails in the fitting of the X-ray surface brightness profiles of clusters in the sense that 38 out of the 45 clusters show x2v > 2. This may constitute a challenge for the universality of the TIS model unless the present analysis is seriously contaminated by other uncertainties including the negligence of non-gravitational heating processes and the unconventional sampling of the X-ray data.

  2. Surface defects and temperature on atomic friction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, O Y; Mazo, J J, E-mail: [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)


    We present a theoretical study of the effect of surface defects on atomic friction in the stick-slip dynamical regime of a minimalistic model. We focus on how the presence of defects and temperature change the average properties of the system. We have identified two main mechanisms which modify the mean friction force of the system when defects are considered. As expected, defects change the potential profile locally and thus affect the friction force. But the presence of defects also changes the probability distribution function of the tip slip length and thus the mean friction force. We corroborated both effects for different values of temperature, external load, dragging velocity and damping. We also show a comparison of the effects of surface defects and surface disorder on the dynamics of the system. (paper)

  3. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans (United States)

    Zhu, Tingting; Lu, Xiancai; Liu, Huan; Li, Juan; Zhu, Xiangyu; Lu, Jianjun; Wang, Rucheng


    In supergene environments, microbial activities significantly enhance sulfide oxidation and result in the release of heavy metals, causing serious contamination of soils and waters. As the most commonly encountered arsenic mineral in nature, arsenopyrite (FeAsS) accounts for arsenic contaminants in various environments. In order to investigate the geochemical behavior of arsenic during microbial oxidation of arsenopyrite, (2 3 0) surfaces of arsenopyrite slices were characterized after acidic (pH 2.00) and oxidative decomposition with or without an acidophilic microorganism Acidithiobacillus ferrooxidans. The morphology as well as chemical and elemental depth profiles of the oxidized arsenopyrite surface were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. With the mediation of bacteria, cell-shaped and acicular pits were observed on the reacted arsenopyrite surface, and the concentration of released arsenic species in solution was 50 times as high as that of the abiotic reaction after 10 days reaction. Fine-scale XPS depth profiles of the reacted arsenopyrite surfaces after both microbial and abiotic oxidation provided insights into the changes in chemical states of the elements in arsenopyrite surface layers. Within the 450 nm surface layer of abiotically oxidized arsenopyrite, Fe(III)-oxides appeared and gradually increased towards the surface, and detectable sulfite and monovalent arsenic appeared above 50 nm. In comparison, higher contents of ferric sulfate, sulfite, and arsenite were found in the surface layer of approximately 3 μm of the microbially oxidized arsenopyrite. Intermediates, such as Fe(III)-AsS and S0, were detectable in the presence of bacteria. Changes of oxidative species derived from XPS depth profiles show the oxidation sequence is Fe > As = S in abiotic oxidation, and Fe > S > As in microbial oxidation. Based on these results, a possible reaction path of microbial oxidation was proposed in a concept model.

  4. A Brief Analysis on Slips of Tongue

    Institute of Scientific and Technical Information of China (English)



    The phenomenon of slips of tongue is very common in our daily life.And it is closely related to some psychological reasons.This paper aims to introduce the research about this phenomenon, to present the types of slips of tongue and some analysis on it.

  5. Slip versus Friction : Modifying the Navier condition (United States)

    Kotsalis, Evangelos; Walther, Jens; Koumoutsakos, Petros


    The modeling of fluid-solid interfaces remains one of the key challenges in fluid mechanics. The prevailing model, attributed to Navier, defines the fluid ``slip'' velocity as proportional to the wall shear and a parameter defined as the slip length. Several works have in turn proposed models for this slip length but no universal model for the slip velocity has been accepted. We present results from large scale molecular dynamics simulations of canonical flow problems, indicating, that the inadequacy of this classic model, stems from not properly accounting for the pressure field. We propose and validate a new model, based on the fundamental observation that the finite ``slip'' velocity is a result of an imbalance between fluid and solid intermolecular forces. An excess force on the fluid elements will lead to their acceleration which in turn may result in a slip velocity at the interface. We formulate the slip velocity in terms of fluid-solid friction Ff and propose a generalized boundary condition: Ff= Fs+ Fp= λuus+ λpp where p denotes the pressure, and λuand λp the viscous and static friction coefficients, for which universal constants are presented. We demonstrate that the present model can overcome difficulties encountered by the classical slip model in canonical flow configurations.

  6. Friction and slip at solid/liquid interface in vibrational systems

    CERN Document Server

    Huang, Kai


    Molecular dynamics simulations have been performed to study frictional slip and its influence on energy dissipation and momentum transfer at atomically smooth solid/water interfaces. By modifying surface chemistry, we investigate the relationship between slip and the mechanical response of a vibrating solid for both hydrophilic and hydrophobic surfaces. We discover physical phenomena that emerge at high frequencies and that have significant contributions to energy dissipation. A new analytical model is developed to describe mechanical response of the resonators in this high frequency regime, which is relevant in such applications as MEMS-based biosensors. We find a linear relationship between the slip length and the ratio of the damping rate shift to resonant frequency shift, which provides a new way to obtain information about slip length from experiments.

  7. A simple model for the short-time evolution of near-surface current and temperature profiles

    CERN Document Server

    Jenkins, A D; Jenkins, Alastair D.; Ward, Brian


    A simple analytical/numerical model has been developed for computing the evolution, over periods of up to a few hours, of the current and temperature profile in the upper layer of the ocean. The model is based upon conservation laws for heat and momentum, and employs an eddy diffusion parameterisation which is dependent on both the wind speed and the wind stress applied at the sea surface. Other parameters such as the bulk-skin surface temperature difference and CO$_2$ flux are determined by application of the Molecular Oceanic Boundary Layer Model (MOBLAM) of Schluessel and Soloviev. A similar model, for the current profile only, predicts a temporary increase in wave breaking intensity and decrease in wave height under conditions where the wind speed increases suddenly, such as, for example, during gusts and squalls. The model results are compared with measurements from the lagrangian Skin Depth Experimental Profiler (SkinDeEP) surface profiling instrument made during the 1999 MOCE-5 field experiment in the ...

  8. Modeling of Slow Slip Events at the Hikurangi Subduction Margin (United States)

    Williams, C. A.; Wallace, L. M.; Beavan, R. J.; Lohman, R. B.; Ellis, S. M.; Marson-Pidgeon, K.; Eberhart-Phillips, D. M.; Reyners, M.; Henrys, S. A.; Bell, R. E.


    Slow slip events (SSEs) occur along nearly the entire Hikurangi subduction margin adjacent to the North Island, New Zealand. Long duration (1-2 years), deep (40- 60 km depth), large events (equivalent to Mw ~7.0) occur at the southern Hikurangi margin, while shallow (10-15 km depth), short (1-2 weeks), smaller events (equivalent to Mw ~6.5) occur at the northern and central Hikurangi margin. A recently-initiated shallow event (Castle Point) lies further to the south than previous shallow events and appears to be rupturing a portion of the plate interface that was previously thought to be locked. Since 2000, three major slow slip events have been identified at the southern Hikurangi margin; the 2003 Kapiti SSE, the 2004/2005 Manawatu SSE, and the 2007/2008 Kapiti SSE (which ended in early 2009). A repeat of the 2004/2005 Manawatu event is presently underway. In some cases, these SSEs may have triggered moderate seismicity within the subducting Pacific plate (e.g., Reyners and Bannister, 2007). To date, all of the inferred slip distributions for the SSEs have been obtained using elastic half-space dislocation models. Numerous recent studies of coseismic displacement fields have shown that variations in elastic properties and surface topography can influence the predicted deformation. In our initial work, we used a finite element model to evaluate the influence of material property variations on the predicted surface deformation field. Elastic properties were assigned based on a seismic velocity model, and slip distributions inferred from an elastic half-space model were applied. When compared to the elastic half- space model, we found that the heterogeneous models generally predict larger amounts of surface deformation, indicating that the half-space models may be overestimating the amount of slip. As the next phase in our study, we are using finite element models that include material property variations and topography to generate Green's functions for use in an

  9. Flash Heating of Crustal Rocks at Seismic Slip Rates (United States)

    Goldsby, D. L.; Spagnuolo, E.; Smith, S. A.; Beeler, N. M.; Tullis, T. E.; Di Toro, G.; Nielsen, S. B.


    Recent experiments have demonstrated that rocks undergo extreme frictional weakening at near-earthquake slip rates due to the thermal degradation of the strength, or even melting, of microscopic asperity contacts on their sliding surfaces (Goldsby and Tullis, 2012). These previous experiments, conducted at constant normal stress and slip rates of up to ~0.4 m/s, revealed a 1/V dependence of friction on slip rate above a characteristic weakening velocity, Vw, in accord with theories of flash heating (e.g., Rice, 2006). The weakening velocity obtains values of ~0.1 m/s for many crustal silicate rocks (Goldsby and Tullis, 2012). Here we test two further predictions of flash-heating theory - that the degree of weakening saturates at slip rates approaching 1 m/s, and that the weakening behavior due to flash heating is independent of normal stress - by testing samples at slip rates of up to 1 m/s at different normal stresses. Experiments were conducted in a 1-atm, high-velocity friction apparatus at the Istituto Nazionale di Geofisica e Vulcanologia in Rome. A sample consisted of a pair of hollow cylinders of Westerly granite or Frederick diabase subjected to a nominally constant normal stress of from 1 to 30 MPa and subjected to a variety of rate-stepping sequences. Data were acquired at rates of up to 1 MHz. As predicted, the experiments demonstrate that the degree of weakening due to flash heating saturates at slip rates approaching 1 m/s; in a few cases, friction even increases slightly with increasing slip rate near 1 m/s. The experiments also demonstrate that, within the scatter of the data, the value of Vw and the friction coefficient in the weakened state is independent of normal stress, the expected result if average contact sizes and contact stresses are independent of normal stress. The data thus further corroborate existing theories and experimental data for flash heating, allowing for a more reliable determination of the conditions under which flash heating

  10. Transcriptional profiling differences for articular cartilage and repair tissue in equine joint surface lesions

    Directory of Open Access Journals (Sweden)

    Stromberg Arnold J


    Full Text Available Abstract Background Full-thickness articular cartilage lesions that reach to the subchondral bone yet are restricted to the chondral compartment usually fill with a fibrocartilage-like repair tissue which is structurally and biomechanically compromised relative to normal articular cartilage. The objective of this study was to evaluate transcriptional differences between chondrocytes of normal articular cartilage and repair tissue cells four months post-microfracture. Methods Bilateral one-cm2 full-thickness defects were made in the articular surface of both distal femurs of four adult horses followed by subchondral microfracture. Four months postoperatively, repair tissue from the lesion site and grossly normal articular cartilage from within the same femorotibial joint were collected. Total RNA was isolated from the tissue samples, linearly amplified, and applied to a 9,413-probe set equine-specific cDNA microarray. Eight paired comparisons matched by limb and horse were made with a dye-swap experimental design with validation by histological analyses and quantitative real-time polymerase chain reaction (RT-qPCR. Results Statistical analyses revealed 3,327 (35.3% differentially expressed probe sets. Expression of biomarkers typically associated with normal articular cartilage and fibrocartilage repair tissue corroborate earlier studies. Other changes in gene expression previously unassociated with cartilage repair were also revealed and validated by RT-qPCR. Conclusion The magnitude of divergence in transcriptional profiles between normal chondrocytes and the cells that populate repair tissue reveal substantial functional differences between these two cell populations. At the four-month postoperative time point, the relative deficiency within repair tissue of gene transcripts which typically define articular cartilage indicate that while cells occupying the lesion might be of mesenchymal origin, they have not recapitulated differentiation to

  11. Tectonic geomorphology, deformation history, and slip-rate estimate along the Palos Verdes Fault, offshore Southern California (United States)

    Brothers, D. S.; Conrad, J. E.; Maier, K. L.; Paull, C. K.; McGann, M.


    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. Despite its proximity to metropolitan Los Angeles, the recent activity and earthquake hazards associated with the PVF are poorly constrained. To characterize the near seafloor fault morphology, Late Pleistocene-Holocene slip-rate and tectonic influences on slope sedimentary processes, a grid of high-resolution multibeam bathymetry and chirp sub-bottom profiles were acquired with the Monterey Bay Aquarium Research Institute's (MBARI) Autonomous Underwater Vehicle (AUV). The AUV surveys were focused along the continental slope ~25 km south of Long Beach in water depths between 250 and 600 m, where the PVF crosses the slope. AUV multibeam bathymetry data gridded at 2-m resolution and chirp profiles are merged with 25-m resolution ship-based multibeam bathymetry and seismic-reflection profiles. Vibracores collected with the MBARI Remotely Operated Vehicle (ROV) and ship-based USGS gravity cores provided radiocarbon dates for stratigraphic horizons offset by the PVF. Recent deformation is expressed as a well-defined seafloor lineation and offset Late Pleistocene-Holocene sub-bottom reflections. Curvilinear scarps associated with an upper submarine landslide (~450 m water depth), a buried slump block, and a lower submarine landslide (~525 m water depth) have been right-laterally offset by 55±3, 55±5, and 40±5 meters, respectively. The age of the upper scarp is bracketed between 23-31 kyr BP, which yields an average slip rate across the PVF of 1.6-2.4 mm/yr. However, our best estimate for the age of the upper landslide is ~ 31 kyr BP, which yields a right-lateral slip-rate of 1.8 mm/yr. Vertical growth faulting observed along a subtle transtensional fault-bend suggests that at least two surface ruptures occurred during the Holocene. In summary, these results indicate that the offshore

  12. Microstructure and Slip Character in Titanium Alloys

    Directory of Open Access Journals (Sweden)

    D. Banerjee


    Full Text Available Influence of microstructures in titanium alloys on the basic parameters of deformation behaviour such as slip character, slip length and slip intensity have been explored. Commercial titanium alloys contain the hexagonal close packed (alpha and body centred cubic (bita phases. Slip in these individual phases is shown to be dependent on the nature of alloying elements through their effect on phase stability as related to decomposition into ordered or w structures. When alpha and bita coexist, their relative crystallographic orientations, size, shape and volume fraction, control the nature of slip. For a given composition, structure may be manipulated through appropriate thermomechanical treatment to obtain the desired deformation behaviour and therefore fracture mode.


    Institute of Scientific and Technical Information of China (English)

    GU Chun-yuan; DI Qin-feng; FANG Hai-ping


    According to new slip effects on nanopatterned interfaces,the mechanism of enhancing water injection into hydrophobic nanomaterial SiO2 was proposed. When Hydrophobic Nanoparticles(HNPs)are adsorbed on surfaces of porous walls,hydrophobic nanoparticles layers are formed instead of hydrated layer, and slip effects appear on the pore wall when a driving pressure is applied to the rock cores sample. It makes fluid to move more quickly and the flow capacity increases greatly. Experiments on changing wettability of porous walls were conducted, and the phenomenon that porous walls surfaces were adsorbed by nanoparticles was validated with the Environment Scan Electron Microscopy(ESEM). The results of displacement experiments show that flowing resistance is greatly reduced,and water-phase effective permeability is increased by 47% averagely after being treated by nanofluid. These results indicate that the slip effect may occur on nanoparticle film of porous walls. Based on this new mechanism of enhancing water injection about hydrophobic nanomaterial SiO2,a slip velocity model in uniform porous media was introduced, and some formulas for the ratio of slip length to radius, slip length ,stream slip velocity and flux increment were deduced. and calculated results indicate that the ratio of slip length to radius is about 3.54%-6.97%, and the slip length is about 0.024μm -0.063μm. The proposed model can give a good interpretation for the mechanisms of enhancing water injection with the HNPs.

  14. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip. (United States)

    Park, H M; Kim, T W


    Electrokinetic flows through hydrophobic microchannels experience velocity slip at the microchannel wall, which affects volumetric flow rate and solute retention time. The usual method of predicting the volumetric flow rate and velocity profile for hydrophobic microchannels is to solve the Navier-Stokes equation and the Poisson-Boltzmann equation for the electric potential with the boundary condition of velocity slip expressed by the Navier slip coefficient, which is computationally demanding and defies analytic solutions. In the present investigation, we have devised a simple method of predicting the velocity profiles and volumetric flow rates of electrokinetic flows by extending the concept of the Helmholtz-Smoluchowski velocity to microchannels with Navier slip. The extended Helmholtz-Smoluchowski velocity is simple to use and yields accurate results as compared to the exact solutions. Employing the extended Helmholtz-Smoluchowski velocity, the analytical expressions for volumetric flow rate and velocity profile for electrokinetic flows through rectangular microchannels with Navier slip have been obtained at high values of zeta potential. The range of validity of the extended Helmholtz-Smoluchowski velocity is also investigated.

  15. Implications of Fault Curvature for Slip Distributions, Opening, and Damage (United States)

    Ritz, E.; Pollard, D. D.; Griffith, W. A.


    In his seminal 1905 paper on the dynamics of faulting, E.M. Anderson idealized faults as planar structures. Although the theory of fault mechanics has developed from this idealization, abundant evidence from geological and geophysical investigations shows that fault surfaces exhibit geometric irregularities on many scales. Understanding the mechanical behavior of non-planar fault surfaces is a fundamental problem for scientists working on the brittle deformation of Earth’s crust and is of practical importance to disciplines such as rock mechanics, geotechnical engineering, and earthquake science. Geologic observations of exhumed meter-scale strike-slip faults in the Bear Creek drainage, Sierra Nevada, CA, provide insights into the relationship between non-planar fault geometry and frictional slip at depth. These faults have smoothly curving surface expressions which may be approximated as sinusoidal curves. We numerically investigate both the natural fault geometries and model sinusoidal faults. Earlier models for the stress and deformation near a sinusoidal fault assume boundary conditions and fault characteristics that are not observed in nature. The 2D displacement discontinuity boundary element method is combined with a complementarity algorithm to model quasi-static slip on non-planar faults, and the resulting deformation of the nearby rock. This numerical technique can provide an accurate solution for any boundary value problem regarding crack-like features in an otherwise homogeneous and isotropic elastic material. Both field and numerical investigations indicate that non-planar fault geometry perturbs the along-fault slip form the distribution predicted for planar faults. In addition, both field observations and numerical modeling show that sliding along curved faults at depth may lead to localized fault opening, affecting local permeability and fluid migration.

  16. Investigation of Range Profiles from a Simplified Ship on Rough Sea Surface and Its Multipath Imaging Mechanisms

    Directory of Open Access Journals (Sweden)

    Siyuan He


    Full Text Available The range profiles of a two-dimension (2 D perfect electric conductor (PEC ship on a wind-driven rough sea surface are derived by performing an inverse discrete Fourier transform (IDFT on the wide band backscattered field. The rough sea surface is assuming to be a PEC surface. The back scattered field is computed based on EM numerical simulation when the frequencies are sampled between 100 MHz and 700 MHz. Considering the strong coupling interactions between the ship and sea, the complicated multipath effect to the range profile characteristics is fully analyzed based on the multipath imaging mechanisms. The coupling mechanisms could be explained by means of ray theory prediction and numerical extraction of the coupling currents. The comparison of the range profile locations between ray theory prediction and surface current simulation is implemented and analyzed in this paper. Finally, the influence of different sea states on the radar target signatures has been examined and discussed.

  17. Effect of progressive wear on the contact mechanics of hip replacements--does the realistic surface profile matter? (United States)

    Wang, Ling; Yang, Wenjian; Peng, Xifeng; Li, Dichen; Dong, Shuangpeng; Zhang, Shu; Zhu, Jinyu; Jin, Zhongmin


    The contact mechanics of artificial metal-on-polyethylene hip joints are believed to affect the lubrication, wear and friction of the articulating surfaces and may lead to the joint loosening. Finite element analysis has been widely used for contact mechanics studies and good agreements have been achieved with current experimental data; however, most studies were carried out with idealist spherical geometries of the hip prostheses rather than the realistic worn surfaces, either for simplification reason or lacking of worn surface profile. In this study, the worn surfaces of the samples from various stages of hip simulator testing (0 to 5 million cycles) were reconstructed as solid models and were applied in the contact mechanics study. The simulator testing results suggested that the center of the head has various departure value from that of the cup and the value of the departure varies with progressively increased wear. This finding was adopted into the finite element study for better evaluation accuracy. Results indicated that the realistic model provided different evaluation from that of the ideal spherical model. Moreover, with the progressively increased wear, large increase of the contact pressure (from 12 to 31 MPa) was predicted on the articulating surface, and the predicted maximum von Mises stress was increased from 7.47 to 13.26 MPa, indicating the marked effect of the worn surface profiles on the contact mechanics of the joint. This study seeks to emphasize the importance of realistic worn surface profile of the acetabular cup especially following large wear volume. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Slow slip generated by dehydration reaction coupled with slip-induced dilatancy and thermal pressurization (United States)

    Yamashita, Teruo; Schubnel, Alexandre


    Sustained slow slip, which is a distinctive feature of slow slip events (SSEs), is investigated theoretically, assuming a fault embedded within a fluid-saturated 1D thermo-poro-elastic medium. The object of study is specifically SSEs occurring at the down-dip edge of seismogenic zone in hot subduction zones, where mineral dehydrations (antigorite, lawsonite, chlorite, and glaucophane) are expected to occur near locations where deep slow slip events are observed. In the modeling, we introduce dehydration reactions, coupled with slip-induced dilatancy and thermal pressurization, and slip evolution is assumed to interact with fluid pressure change through Coulomb's frictional stress. Our calculations show that sustained slow slip events occur when the dehydration reaction is coupled with slip-induced dilatancy. Specifically, slow slip is favored by a low initial stress drop, an initial temperature of the medium close to that of the dehydration reaction equilibrium temperature, a low permeability, and overall negative volume change associated with the reaction (i.e., void space created by the reaction larger than the space occupied by the fluid released). Importantly, if we do not assume slip-induced dilatancy, slip is accelerated with time soon after the slip onset even if the dehydration reaction is assumed. This suggests that slow slip is sustained for a long time at hot subduction zones because dehydration reaction is coupled with slip-induced dilatancy. Such slip-induced dilatancy may occur at the down-dip edge of seismogenic zone at hot subduction zones because of repetitive occurrence of dehydration reaction there.

  19. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions (United States)

    Steinberger, R.; Celedón, C. E.; Bruckner, B.; Roth, D.; Duchoslav, J.; Arndt, M.; Kürnsteiner, P.; Steck, T.; Faderl, J.; Riener, C. K.; Angeli, G.; Bauer, P.; Stifter, D.


    Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  20. Slip Flow in Elliptic Microducts with Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Marco Spiga


    Full Text Available This paper outlines a numerical model for determining the dynamic and thermal performances of a rarefied fluid flowing in a microduct with elliptical cross-section. A slip flow is considered, in laminar steady state condition, in fully developed forced convection, with Knudsen number in the range 0.001−0.1, in H1 boundary conditions. The velocity and temperature distributions are determined in the elliptic cross-section, for different values of both aspect ratio γ and Knudsen number, resorting to the Comsol Multiphysics software, to solve the momentum and energy equations. The friction factors (or Poiseuille numbers and the convective heat transfer coefficients (or Nusselt numbers are calculated and presented in graphs and tables. The numerical solution is validated resorting to data available in literature for continuum flow in elliptic cross-sections (Kn = 0 and for slip flow in circular ducts (γ=1. A further benchmark is carried out for the velocity profile for slip flow in ellipticalcross-sections, thanks to a recent analytical solution obtained using elliptic cylinder coordinates and the separation of variables method. The Poiseuille and Nusselt numbers for elliptic cross-sections are discussed. The results may be used to predict pressure drop and heat transfer performance in metallic microducts with elliptic cross-section, produced by microfabrication for microelectromechanical systems (MEMS.

  1. Optimal Density Profile of the Plasma Layer Shielded by a Conducting Surface for the Absorption of Electromagnetic Waves

    Institute of Scientific and Technical Information of China (English)

    王舸; 曹金祥; 宋法伦


    Based on the Born approximation, we reduce the approximate analysis solution to the normal and oblique incident electromagnetic wave scattering from the weakly ionized plasma layer shielded by a conducting surface. The solution is closely related to the density profile of the plasma layer. Employing the self-consistent base function, we yield the optimal density profile for the nonuniform plasma layer with the frequencies of incident electromagnetic waves ranging from 4-10 GHz. Numerical studies illustrate the optimal density profile can "survive" wide ranges of the plasma parameters. Different from the validity condition for the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation, the Born approximation is feasible even if the scale length is smaller than the wavelength.Therefore, the Born approximation is universal against the scattering problem from the weakly ionized plasma.

  2. Stick-slip at soft adhesive interfaces mediated by slow frictional waves. (United States)

    Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan


    Stick-slip is a friction instability that governs diverse phenomena from squealing automobile brakes to earthquakes. At soft adhesive interfaces, this instability has long been attributed to Schallamach waves, which are a type of slow frictional wave. We use a contact configuration capable of isolating single wave events, coupled with high speed in situ imaging, to demonstrate the existence of two new stick-slip modes. It is shown that these modes also correspond to the passage of slow waves-separation pulse and slip pulse-with distinct nucleation and propagation characteristics. The slip pulse, characterized by a sharp stress front, propagates in the same direction as the Schallamach wave. In contrast, the separation pulse, involving local interface detachment and resembling a tensile neck, travels in exactly the opposite direction. A change in the stick-slip mode from the separation to the slip pulse is effected simply by increasing the normal force. Taken together, the three waves constitute all possible stick-slip modes in low-velocity sliding. The detailed observations enable us to present a phase diagram delineating the domains of occurrence of these waves. We suggest a direct analogy between the observed slow frictional waves and well known muscular locomotory waves in soft bodied organisms. Our work answers basic questions about adhesive mechanisms of frictional instabilities in natural and engineered systems, with broader implications for slow surface wave phenomena.

  3. The Hills are Alive: Dynamic Ridges and Valleys in a Strike-Slip Environment (United States)

    Duvall, A. R.; Tucker, G. E.


    Strike-slip fault zones have long been known for characteristic landforms such as offset and deflected rivers, linear strike-parallel valleys, and shutter ridges. Despite their common presence, questions remain about the mechanics of how these landforms arise or how their form varies as a function of slip rate, geomorphic process, or material properties. We know even less about what happens far from the fault, in drainage basin headwaters, as a result of strike-slip motion. Here we explore the effects of horizontal fault slip rate, bedrock erodibility, and hillslope diffusivity on river catchments that drain across an active strike-slip fault using the CHILD landscape evolution model. Model calculations demonstrate that lateral fault motion induces a permanent state of landscape disequilibrium brought about by fault offset-generated river lengthening alternating with abrupt shortening due to stream capture. This cycle of shifting drainage patterns and base level change continues until fault motion ceases thus creating a perpetual state of transience unique to strike-slip systems. Our models also make the surprising prediction that, in some cases, hillslope ridges oriented perpendicular to the fault migrate laterally in conjunction with fault motion. Ridge migration happens when slip rate is slow enough and/or diffusion and river incision are fast enough that the hillslopes can respond to the disequilibrium brought about by strike-slip motion. In models with faster slip rates, stronger rocks or less-diffusive hillslopes, ridge mobility is limited or arrested despite the fact that the process of river lengthening and capture continues. Fast-slip cases also develop prominent steep fault-facing hillslope facets proximal to the fault valley and along-strike topographic profiles with reduced local relief between ridges and valleys. Our results demonstrate the dynamic nature of strike-slip landscapes that vary systematically with a ratio of bedrock erodibility (K) and

  4. Characterization of slow slip rate faults in humid areas: Cimandiri fault zone, Indonesia (United States)

    Marliyani, G. I.; Arrowsmith, J. R.; Whipple, K. X.


    In areas where regional tectonic strain is accommodated by broad zones of short and low slip rate faults, geomorphic and paleoseismic characterization of faults is difficult because of poor surface expression and long earthquake recurrence intervals. In humid areas, faults can be buried by thick sediments or soils; their geomorphic expression subdued and sometimes undetectable until the next earthquake. In Java, active faults are diffused, and their characterization is challenging. Among them is the ENE striking Cimandiri fault zone. Cumulative displacement produces prominent ENE oriented ranges with the southeast side moving relatively upward and to the northeast. The fault zone is expressed in the bedrock by numerous NE, west, and NW trending thrust- and strike-slip faults and folds. However, it is unclear which of these structures are active. We performed a morphometric analysis of the fault zone using 30 m resolution Shuttle Radar Topography Mission digital elevation model. We constructed longitudinal profiles of 601 bedrock rivers along the upthrown ranges along the fault zone, calculated the normalized channel steepness index, identified knickpoints and use their distribution to infer relative magnitudes of rock uplift and locate boundaries that may indicate active fault traces. We compare the rock uplift distribution to surface displacement predicted by elastic dislocation model to determine the plausible fault kinematics. The active Cimandiri fault zone consists of six segments with predominant sense of reverse motion. Our analysis reveals considerable geometric complexity, strongly suggesting segmentation of the fault, and thus smaller maximum earthquakes, consistent with the limited historical record of upper plate earthquakes in Java.

  5. Absolute interferometric characterization of an x-ray mirror surface profile (United States)

    Vannoni, Maurizio; Freijo Martìn, Idoia


    An approach to achieve absolute planarity characterization of an x-ray mirror through an interferometric method is presented. With three measurements and two nominally flat auxiliary mirrors, the radius of curvature and the slope profile of a nominally flat x-ray mirror are retrieved. The height profile is then calculated through integration of the slope profile and merging this information with the radius of curvature knowledge. The method is explained in detail and a measurement example is provided. A comparison with a state-of-the-art deflectometric method is shown, with an agreement level of about 0.14 nm rms.

  6. Water slip flow in superhydrophobic microtubes within laminar flow region

    Institute of Scientific and Technical Information of China (English)

    Zhijia Yu; Xinghua Liu; Guozhu Kuang


    The fabrication of superhydrophobic surfaces and the studies on water flow characteristics therein are of great significance to many industrial areas as wel as to science and technology development. Experiments were car-ried out to investigate slip characteristics of water flowing in circular superhydrophobic microtubes within lam-inar flow region. The superhydrophobic microtubes of stainless steel were fabricated with chemical etching–fluorination treatment. An experimental setup was designed to measure the pressure drop as function of water flow rate. For comparison, superhydrophilic tubes were also tested. Poiseuille number Po was found to be smaller for the superhydrophobic microtubes than that for superhydrophilic ones. The pressure drop reduc-tion ranges from 8%to 31%. It decreases with increasing Reynolds number when Re b 900, owing to the transition from Cassie state to Wenzel state. However, it is almost unchanged with further increasing Re after Re N 900. The slip length in superhydrophobic microtubes also exhibits a Reynolds number dependence similarly to the pressure drop reduction. The relation between slip length and Darcy friction factor is theoretically analyzed with consideration of surface roughness effect, which was testified with the experimental results.

  7. Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model (United States)

    Decharme, Bertrand; Brun, Eric; Boone, Aaron; Delire, Christine; Le Moigne, Patrick; Morin, Samuel


    In this study we analyzed how an improved representation of snowpack processes and soil properties in the multilayer snow and soil schemes of the Interaction Soil-Biosphere-Atmosphere (ISBA) land surface model impacts the simulation of soil temperature profiles over northern Eurasian regions. For this purpose, we refine ISBA's snow layering algorithm and propose a parameterization of snow albedo and snow compaction/densification adapted from the detailed Crocus snowpack model. We also include a dependency on soil organic carbon content for ISBA's hydraulic and thermal soil properties. First, changes in the snowpack parameterization are evaluated against snow depth, snow water equivalent, surface albedo, and soil temperature at a 10 cm depth observed at the Col de Porte field site in the French Alps. Next, the new model version including all of the changes is used over northern Eurasia to evaluate the model's ability to simulate the snow depth, the soil temperature profile, and the permafrost characteristics. The results confirm that an adequate simulation of snow layering and snow compaction/densification significantly impacts the snowpack characteristics and the soil temperature profile during winter, while the impact of the more accurate snow albedo computation is dominant during the spring. In summer, the accounting for the effect of soil organic carbon on hydraulic and thermal soil properties improves the simulation of the soil temperature profile. Finally, the results confirm that this last process strongly influences the simulation of the permafrost active layer thickness and its spatial distribution.

  8. Water generation and transport below Europa's strike-slip faults (United States)

    Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej


    Jupiter's moon Europa has a very young surface with the abundance of unique terrains that indicate recent endogenic activity. Morphological models as well as spectral observations suggest that it might possess shallow lenses of liquid water within its outer ice shell. Here we investigate the generation and possible accumulation of liquid water below the tidally activated strike-slip faults using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. Our results suggest that generation of shallow partially molten regions underneath Europa's active strike-slip faults is possible, but their lifetime is constrained by the formation of Rayleigh-Taylor instabilities due to the negative buoyancy of the melt. Once formed, typically within a few million years, these instabilities efficiently transport the meltwater through the shell. Consequently, the maximum water content in the partially molten regions never exceeds 10% which challenges their possible detection by future exploration mission.

  9. Extreme multi-millennial slip rate variations on the Garlock fault, California: geomorphology and geochronology of slip rate constraints (United States)

    Rhodes, Edward; Dolan, James; McGill, Sally; McAuliffe, Lee; Zinke, Robert


    Combining existing paleoseismology with new geomorphic constraints for the same part of the Central Garlock fault in California, USA, allows us to demonstrate pronounced variations in slip rate during the Holocene for this left-lateral strike-slip system. Our results have basic implications for understanding how faults store and release strain energy in large earthquakes, and for Probabilistic Seismic Hazard Assessment (PSHA). A series of well-preserved fluvial terraces within alluvial fans provide offset markers, and newly developed single grain K-feldspar IRSL dating allows us to constrain depositional ages and subsequent erosion of terrace risers with good precision, using multiple samples from several different locations. This new dating approach has wide applicability for paleoseismology and slip rate studies, besides understanding environmental response to climatic events; agreement with independent age control provided by C-14 and Be-10 profiles comes from sites in the USA, Mexico, Tibet and Mongolia. Sediments dominated by a range of grain sizes from silt to boulders can be dated, and the technique is often applicable in locations where quartz OSL does not work well. We examine the interplay and coupling between climate and tectonics at millennial timescales, along with sedimentary and geomorphic responses, and consider how our understanding of fault dynamics can be improved with the benefit of these new approaches.

  10. Origin and structure of major orogen-scale exhumed strike-slip (United States)

    Cao, Shuyun; Neubauer, Franz


    The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San

  11. Modeling the Effects of Tool Shoulder and Probe Profile Geometries on Friction Stirred Aluminum Welds Using Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    H.K.Mohanty; M.M.Mahapatra; P.Kumar; P.Biswas; N.R.Mandal


    The present paper discusses the modeling of tool geometry effects on the friction stir aluminum welds using response surface methodology.The friction stir welding tools were designed with different shoulder and tool probe geometries based on a design matrix.The matrix for the tool designing was made for three types of tools,based on three types of probes,with three levels each for defining the shoulder surface type and probe profile geometries.Then,the effects of tool shoulder and probe geometries on friction stirred aluminum welds were experimentally investigated with respect to weld strength,weld cross section area,grain size of weld and grain size of thermo-mechanically affected zone.These effects were modeled using multiple and response surface regression analysis.The response surface regression modeling were found to be appropriate for defining the friction stir weldment characteristics.

  12. The asymptotic profile of $\\chi_y$-genera of Hilbert schemes of points on K3 surfaces

    CERN Document Server

    Manschot, Jan


    The Hodge numbers of the Hilbert schemes of points on algebraic surfaces are given by G\\"ottsche's formula, which expresses the generating functions of the Hodge numbers in terms of theta and eta functions. We specialize in this paper to generating functions of the $\\chi_y(\\mathrm{K3}^{[n]})$ genera of Hilbert schemes of $n$ points on K3 surfaces. We determine asymptotic values of the coefficients of the $\\chi_y$-genus for $n\\to \\infty$ as well as their asymptotic profile.

  13. Dynamical Stability of Slip-stacking Particles

    CERN Document Server

    Eldred, Jeffrey


    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97\\% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  14. Tsunami Hazards From Strike-Slip Earthquakes (United States)

    Legg, M. R.; Borrero, J. C.; Synolakis, C. E.


    Strike-slip faulting is often considered unfavorable for tsunami generation during large earthquakes. Although large strike-slip earthquakes triggering landslides and then generating substantial tsunamis are now recognized hazards, many continue to ignore the threat from submarine tectonic displacement during strike-slip earthquakes. Historical data record the occurrence of tsunamis from strike-slip earthquakes, for example, 1906 San Francisco, California, 1994 Mindoro, Philippines, and 1999 Izmit, Turkey. Recognizing that strike-slip fault zones are often curved and comprise numerous en echelon step-overs, we model tsunami generation from realistic strike-slip faulting scenarios. We find that tectonic seafloor uplift, at a restraining bend or"pop-up" structure, provides an efficient mechanism to generate destructive local tsunamis; likewise for subsidence at divergent pull-apart basin structures. Large earthquakes on complex strike-slip fault systems may involve both types of structures. The California Continental Borderland is a high-relief submarine part of the active Pacific-North America transform plate boundary. Natural harbors and bays created by long term vertical motion associated with strike-slip structural irregularities are now sites of burgeoning population and major coastal infrastructure. Significant local tsunamis generated by large strike-slip earthquakes pose a serious, and previously unrecognized threat. We model several restraining bend pop-up structures offshore southern California to quantify the local tsunami hazard. Maximum runup derived in our scenarios ranges from one to several meters, similar to runup observed from the 1994 Mindoro, Philippines, (M=7.1) earthquake. The runup pattern is highly variable, with local extremes along the coast. We only model the static displacement field for the strike-slip earthquake source; dynamic effects of moving large island or submerged banks laterally during strike-slip events remains to be examined

  15. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert


    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  16. Slow slip event at Kilauea Volcano (United States)

    Poland, Michael P.; Miklius, Asta; Wilson, J. David; Okubo, Paul G.; Montgomery-Brown, Emily; Segall, Paul; Brooks, Benjamin; Foster, James; Wolfe, Cecily; Syracuse, Ellen; Thurbe, Clifford


    Early in the morning of 1 February 2010 (UTC; early afternoon 31 January 2010 local time), continuous Global Positioning System (GPS) and tilt instruments detected a slow slip event (SSE) on the south flank of Kilauea volcano, Hawaii. The SSE lasted at least 36 hours and resulted in a maximum of about 3 centimeters of seaward displacement. About 10 hours after the start of the slip, a flurry of small earthquakes began (Figure 1) in an area of the south flank recognized as having been seismically active during past SSEs [Wolfe et al., 2007], suggesting that the February earthquakes were triggered by stress associated with slip [Segall et al., 2006].

  17. Dynamical Stability of Slip-stacking Particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Zwaska, Robert [Fermilab


    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  18. A Network Inversion Filter combining GNSS and InSAR for tectonic slip modeling (United States)

    Bekaert, D. P.; Segall, P.; Wright, T. J.; Hooper, A. J.


    Time-dependent slip modeling can be a powerful tool to improve our understanding of the interaction of earthquake cycle processes such as interseismic, coseismic, postseismic, and aseismic slip. Interferometric Synthetic Aperture Radar (InSAR) observations allow us to model slip at depth with a higher spatial resolution than when using GNSS alone. Typically the temporal resolution of InSAR has been limited. However, the recent generation of SAR satellites including Sentinel-1, COSMO-SkyMED, and RADARSAT-2 permits the use of InSAR for time-dependent slip modeling, at intervals of a few days when combined. The increasing amount of SAR data makes a simultaneous data inversion of all epochs challenging. Here, we expanded the original Network Inversion Filter (Segall and Matthews, 1997) to include InSAR observations of surface displacements in addition to GNSS. In the NIF framework, geodetic observations are limited to those of a given epoch, where a physical model describes the slip evolution over time. The combination of the Kalman forward filtering and backward smoothing allows all geodetic observations to constrain the complete observation period. Combining GNSS and InSAR allows us to model time-dependent slip at an unprecedented spatial resolution. We validate the approach with a simulation of the 2006 Guerrero slow slip event. In our study, we emphasize the importance of including the InSAR covariance information, and demonstrate that InSAR provides an additional constraint on the spatial extent of the slow slip. References: Segall, P., and M. Matthews (1997), Time dependent inversion of geodetic data, J. Geophys. Res., 102 (B10), 22,391 - 22,409, doi:10.1029/97JB01795. Bekaert, D., P. Segall, T.J. Wright, and A. Hooper (2016), A Network Inversion Filter combining GNSS and InSAR for tectonic slip modeling, JGR, doi:10.1002/2015JB012638 (open access).

  19. Connecting Aseismic Slip and Microseismicity on the Central San Andreas Fault (United States)

    Johanson, I. A.; Bürgmann, R.


    High precision micro-earthquake relocations have revealed seismicity structures that may be an indicator of the fault's slip characteristics. Characteristically repeating micro-earthquakes and aligned streaks of micro-seismicity suggest that these structures are associated with areas of active aseismic fault slip. A general inverse correspondence between zones of abundant micro-seismicity and the coseismic slip area of large earthquakes also implies a relationship between creep and micro-earthquakes. We test this relationship using geodetic measurements of near-fault deformation. Modeling of such measurements allow for determination of locked and creeping sections of the fault. We focus on the central San Andreas fault near San Juan Bautista; a segment which experiences both aseismic and seismic fault slip and where there is a long history of geodetic measurements. Aseismic slip on the central San Andreas is time dependent and has varied in response to regional earthquakes and in the form of slow earthquakes. Dislocations in an elastic half space are used to evaluate a range of scenario fault slip models whose geometry is guided by the locations of micro-seismic streaks. The inversions for distributed sub-surface slip are constrained by range-change data from InSAR and GPS site velocities. The InSAR data (ERS1&2 track 299 frame 2861) spans from 1996-2000 and were processed using ROI_Pac with the SNAPHU unwrapper and combined in a patchwork stack to reduce atmospheric errors. Campaign and continuous GPS data were processed using GAMIT/GLOBK and form part of the regional BA¯VU¯ dataset. To minimize the effect on our analysis of transient slip induced by the 1989 Loma Prieta earthquake, we limit our dataset to GPS observations from 1994 to 2003. Preliminary results confirm that the presence of seismicity streaks and characteristically repeating micro-earthquakes are indicative of aseismic slip. However, the absence of such seismicity patterns does not necessarily

  20. Lattice Boltzmann simulations of apparent slip and contact angle in hydrophobic micro-channels

    CERN Document Server

    Zhang, Renliang; Gao, Guohua; Wang, Xinliang; Ding, Weipeng; Gong, Wei


    In this paper, we applied the Shan-Chen multiphase Lattice Boltzmann method to simulate two different parameters, contact angle (a static parameter) and slip length (a dynamic parameter), and we proposed a relationship between them by fitting those numerical simulation results. By changing the values of the strength of interaction between fluid particles (SIF) and the strength of interaction between fluid and solid surface (SIFS), we simulated a series of contact angles and slip lengths. Our numerical simulation results show that both SIF and SIFS have little effects on the relationship between contact angle and slip length. Using the proposed relationship between slip length and contact angle, we further derived an equation to determine the upper limit of nano-particles' diameter under which drag-reduction can be achieved when using nano-particles adsorbing method.

  1. Holocene slip-rate of the western Altyn Tagh fault (Kuyake basin) (United States)

    Pan, J.; Li, H.; van der Woerd, J.; Sun, Z.; Yun, K.; Chevalier, M. L.; Kali, E.


    As one of the largest strike-slip faults in Asia, the Altyn Tagh fault (ATF) defines the northern boundary of the Tibetan Plateau and plays a significant role in accommodating the deformation resulting from the India-Asia collision. Many studies have been conducted along the eastern and central segment of the ATF, whereas the western segment of the ATF is poorly constrained. Quaternary slip-rates along the central segment of the ATF have been constrained at 10 mm/yr, which is consistent with geodetic results. Slip-rates along the eastern segment of the ATF gradually decrease eastwards. Regarding the western segment, our recent study along one splay yields a late Quaternary slip-rate of 2 mm/yr. What is the total slip-rate along the western segment of the ATF? Does the slip-rate vary between the central and western segments, and how does it vary? To answer these questions, we performed detailed field investigation at an offset river terrace site near Kuyake, which is considered to be the boundary place between the western and central segments of the ATF. High-resolution terrestrial LiDAR survey was performed at this site, and cosmogenic nuclide 10Be depth profile samples were taken from the offset terrace riser. Our preliminary results indicate that the Holocene slip-rate along the western ATF at this site is 12.3±0.7 mm/yr, which is consistent with previous studies along the central segment of the ATF. West of the studied site, the ATF splits into several strands, and the total slip rate most likely decreases westward.

  2. Probabilistic nowcast of PBL profiles with a single column model and ensemble filter assimilation of surface observations (United States)

    Rostkier-Edelstein, D.; Hacker, J. P.


    A long-term goal of this work is to find an efficient system for probabilistic planetary boundary layer (PBL) nowcasting that can be deployed wherever surface observations are present. One approach showing promise is the use of a single column model (SCM) and ensemble filter (EF) data assimilation techniques. Earlier work showed that surface observations can be an important source of information with an SCM and an EF. Here we extend that work to quantify the deterministic and probabilistic skill of ensemble SCM predictions with added complexity. Although it is appealing to add additional physics and dynamics to the SCM model it is not immediately clear that additional complexity will improve the performance of a PBL nowcasting system based on a simple model. We address this question with regard to treatment of surface assimilation, radiation in the column, and also advection to account for realistic 3D dynamics (a timely WRF prediction). We adopt factor separation analysis to quantify the individual contribution of each model component to the deterministic and probabilistic skill of the system, as well as any beneficial or detrimental interactions between them. Deterministic skill of the system is evaluated through the mean absolute error, and probabilistic skill through the Brier Skill Score (BSS) and the area under the relative operating characteristic (ROC) curve (AUR). The BSS is further decomposed into both a reliability and resolution term to understand the trade-offs in different components of probabilistic skill. An alternative system based on climatological covariances and surface observations is used as a reference to assess the real utility of the flow-dependent covariances estimated with the ensemble system. In essence it is a dressing technique, whereby a deterministic 3D mesoscale forecast (e.g. WRF) is corrected with surface forecast errors and covariances computed from a distribution of available historical mesoscale forecasts. The adjusted profile

  3. Electromagnetic response of the protective pellicle of Euglenoids: influence of the surface profile (United States)

    Inchaussandague, Marina E.; Gigli, Miriam L.; Skigin, Diana C.; Tolivia, Analía.; Conforti, Visitación


    In a recent paper we have investigated, from an electromagnetic point of view, the role played by the pellicle of Euglenoids -unicellular aquatic organisms- in the protection of the cell against UV radiation.14 By modelling the pellicle as a diffraction grating, we computed the electromagnetic response of different species that exhibit different behaviors against UV radiation. In this previous study, the pellicle profile was approximated by a sinusoidal grating. However, it has been observed in the transversal cut images that the profiles are not exactly sinusoidal, and also vary from sample to sample. Since the electromagnetic response depends on the geometry of the grating, reflectance calculations that take into account a more accurate representation of the actual profile could provide more insight into this problem. In this paper we investigate the electromagnetic response of the pellicle of Euglenoids for different grating profiles. The diffraction problem is solved by using the Chandezon method, which has demonstrated a successful performance for deep gratings of arbitrary profiles. We analyze the influence of the shape, depth and period of the grating on the UV reflectance. We show that the pellicle characteristics are critical parameters to increase the reflectance, thus reducing the penetration of the UV radiation within the cell and therefore, minimizing the damage and increasing the survival of these organisms.

  4. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Craig A Gedye

    Full Text Available Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell

  5. Falls study: Proprioception, postural stability, and slips. (United States)

    Sohn, Jeehoon; Kim, Sukwon


    The present study evaluated effects of exercise training on the proprioception sensitivity, postural stability, and the likelihood of slip-induced falls. Eighteen older adults (6 in balance, 6 in weight, and 6 in control groups) participated in this study. Three groups met three times per week over the course of eight weeks. Ankle and knee proprioception sensitivities and postural stability were measured. Slip-induced events were introduced for all participants before and after training. The results indicated that, overall, strength and postural stability were improved only in the training group, although proprioception sensitivity was improved in all groups. Training for older adults resulted in decreased likelihood of slip-induced falls. The study suggested that proprioception can be improved by simply being active, however, the results suggested that training would aid older adults in reducing the likelihood of slip-induced falls.

  6. Action slips during whole-body vibration. (United States)

    Ishimatsu, Kazuma; Meland, Anders; Hansen, Tor Are S; Kåsin, Jan Ivar; Wagstaff, Anthony S


    Helicopter aircrew members engage in highly demanding cognitive tasks in an environment subject to whole-body vibration (WBV). Sometimes their actions may not be according to plan (e.g. action slips and lapses). This study used a Sustained Attention to Response Task (SART) to examine whether action slips were more frequent during exposure to WBV. Nineteen participants performed the SART in two blocks. In the WBV block participants were exposed to 17 Hz vertical WBV, which is typical of larger helicopter working environments. In the No-WBV block there was no WBV. There were more responses to the rare no-go digit 3 (i.e. action slips) in the WBV block, and participants responded faster in the WBV block. These results suggest that WBV influences response inhibition, and can induce impulsive responding. WBV may increase the likelihood of action slips, mainly due to failure of response inhibition.

  7. Deterministic phase slips in mesoscopic superconducting rings (United States)

    Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.


    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.

  8. The Slumgullion Natural Laboratory for Observing Slip Phenomena (United States)

    Gomberg, J. S.; Schulz, W. H.; Bodin, P.; Kean, J. W.; Wang, G.; Coe, J. A.; MacQueen, P.; Foster, K.; Creager, K.


    Many natural systems release stresses by failure and sliding across surfaces; examples include landslides, glaciers, crustal- and plate-scale faults. Observational advances continue to reveal diversity in the seismic signals associated with fault slip and how such stress relaxation can occur, even on a single fault system. A particularly rich example are the episodes of slow fault slip near major subduction and transform plate boundaries that manifest as geodetically observed aseismic deformation abetted by a family of seismic signals depleted in high-frequencies relative to those from earthquakes (named ‘episodic tremor and slip’ or ETS). While the driving forces and scales differ, there are striking parallels between some observations and models of ETS and of landslide behaviors; e.g. in both, postulated key controls include rate-dependent friction and strength modulated by pore-pressure changes, dilatancy during rapid shear, and subsequent consolidation. To explore common features and the underlying processes we are studying the Slumgullion landslide, an ideal natural laboratory for observing fault slip and associated seismic and aseismic phenomena. Unlike crustal- or plate-scale studies significant deformation can be measured within a single field season, because the Slumgullion moves at average rates of cm/day. Moreover, pore pressures, displacements, material properties, and environmental variables may be measured directly and continuously at several locations on the landslide (albeit not at the basal sliding surface). We have just completed a field experiment on the Slumgullion to test several hypotheses, particularly that slip along the basal surface and side-bounding faults occurs with comparable richness of aseismic and seismic modes as crustal- and plate-scale boundaries. To do so from August 18-26, 2009 we continuously monitored the displacement-field using a robotic electronic displacement meter and the seismic radiation with 88 vertical

  9. Daily carbon surface fluxes in the West Ebre (Ebro) watershed from aircraft profiling on late June 2007 (United States)

    Font, A.; Morguí, J.-A.; Curcoll, R.; Pouchet, I.; Casals, I.; Rodó, X.


    ABSTRACT An intensive aircraft campaign measuring atmospheric CO2 mixing ratios was carried out in the central part of the Ebre watershed on late June 2007 to characterize the CO2 dynamics in the Ebre basin and to calculate the regional cumulative carbon surface flux. CO2 concentrations were obtained from vertical profiles over La Muela (LMU; 41.60°N, 1.1°W) from 900 to 4000 m above the sea level (masl), horizontal transects at ~2000 m 100 km west from LMU, and continuous measurements at ~650 masl. Different estimates of surface flux from changes in the convective boundary layer (CBL) CO2 concentration were obtained following the Integral CBL budgeting equation (ICBL) and the carbon content integration (CCI) method. Values of the mean surface flux calculated from the different approaches range from -2.4 to -7.9 μmolCO2/m2s. Regional surface flux calculated from vertical profiling appears to be consistent in a distance of 70 km away from the measurement site. The ICBL method is very sensitive to the accurate determination of the concentration in the entrainment zone. The overall uncertainty from fluxes calculated from the ICBL method rises to a value of 70%, whereas the uncertainty linked to the CCI method is 55%.

  10. Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors. (United States)

    Sutter, John P; Alcock, Simon G; Kashyap, Yogesh; Nistea, Ioana; Wang, Hongchang; Sawhney, Kawal


    Beam shaping is becoming increasingly important for synchrotron X-ray applications. Although routine for visible light lasers, this is challenging for X-rays due to the limited source coherence and extreme optical tolerances required for the shaping mirrors. In deliberate defocusing, even surface errors piezo bimorph mirrors permit a continuous range of X-ray beam sizes and shapes. A new theory is developed for applying non-periodic modifications of alternating curvature to optical surfaces. The position and length of the segments may be freely chosen. For the first time, surface modifications of alternating curvature are applied to bimorph mirrors to generate non-Gaussian X-ray beam profiles of specified width. The new theory's freedom is exploited to choose the segments to match the polishing errors of medium wavelength (>10 mm) and the piezos' influence on the mirror's figure. Five- and seven-segment modifications of alternating curvature are calculated and verified by visible light and X-ray metrology. The latter yields beam profiles with less striation than those made by defocusing. Remaining beam striations are explained by applying geometrical optics to the deviations from the ideal surface modifications of alternating curvature.

  11. Stability of viscosity stratified flows down an incline: Role of miscibility and wall slip (United States)

    Ghosh, Sukhendu; Usha, R.


    The effects of wall velocity slip on the linear stability of a gravity-driven miscible two-fluid flow down an incline are examined. The fluids have the matched density but different viscosity. A smooth viscosity stratification is achieved due to the presence of a thin mixed layer between the fluids. The results show that the presence of slip exhibits a promise for stabilizing the miscible flow system by raising the critical Reynolds number at the onset and decreasing the bandwidth of unstable wave numbers beyond the threshold of the dominant instability. This is different from its role in the case of a single fluid down a slippery substrate where slip destabilizes the flow system at the onset. Though the stability properties are analogous to the same flow system down a rigid substrate, slip is shown to delay the surface mode instability for any viscosity contrast. It has a damping/promoting effect on the overlap modes (which exist due to the overlap of critical layer of dominant disturbance with the mixed layer) when the mixed layer is away/close from/to the slippery inclined wall. The trend of slip effect is influenced by the location of the mixed layer, the location of more viscous fluid, and the mass diffusivity of the two fluids. The stabilizing characteristics of slip can be favourably used to suppress the non-linear breakdown which may happen due to the coexistence of the unstable modes in a flow over a substrate with no slip. The results of the present study suggest that it is desirable to design a slippery surface with appropriate slip sensitivity in order to meet a particular need for a specific application.

  12. Analysis of Fracture Pattern of Pulverized Quartz Formed by Stick Slip Experiment (United States)

    Nishikawa, Osamu; Muto, Jun; Otsuki, Kenshiro; Kano, Harumasa; Sasaki, Osamu


    In order to clarify how wall rocks of faults are damaged, fracture pattern analysis was performed imaging experimentally pulverized rocks by a micro-focus X-ray CT. Analyzed samples are core (diameter of 2cm) of single crystals of synthetic quartz and natural quartzites, which were pre-cut 50° to the core axis and mirror-polished. Experiments were conducted with axial strain rate of 10-3/s under the confining pressure of 180 MPa and room temperature using gas apparatus. Intense fracturing of the core occurred during the stick-slip with very large stress drop. Although thin melt layer is formed on the slip plane, the core is pulverized overall by tensile fracturing characterized by apparent lack of shear deformation. X-ray CT images demonstrate the fracture pattern being strongly controlled by slip direction and shear sense. Cracks are exponentially increased toward the slip plane and concentrated in the central portion rather than outer margin of core. Cracks tend to develop parallel to core axis and at high to moderate angles (90° ~ ±50°) with the plane including both core axis and slip direction, and lean to be higher angle to the surface near the slip plane. Due to this fracture pattern, the pulverized fragments show polygonal column or needle in shape with sharp and curving edges irrespective of their sizes, and the intensely fractured slip surface exhibit distinct rugged topography of an array of ridges developed perpendicular to slip direction. Mode and distribution pattern of fractures indicate that the stress concentration at the rupture front during dynamic rupture propagation or the constructive interference of reflected seismic waves focused at the center of core are possible mechanisms of pulverization.

  13. E24 profile slope stability analysis in Haizhou Opencast Coal Mine of Fuxin

    Institute of Scientific and Technical Information of China (English)

    Simplice F. BOBY; Jianping CHEN


    The E24 profile slope analyzed belongs to a series of excavated slopes of the Haizhou Opencast Coal Mine. It seems to be divided into Downslope Part and Upslope Part. Its profile comprises two noticeable coal seams, called the 8# and 9# weak layers, considered as the potential failure surfaces. In consideration of the actual configuration as in the perspective of any modification, assessing the stability of this slope with various profile forms under given conditions, and assessing the risk of instability and quantifying the influence of earthworks or other modifications to the stability of this slope, have constituted the primordial objectives carried out. From assumed potential failure surfaces, any specific profiles and specified slip surfaces are defined. A factor of safety (FoS) is computed for each specified slip surface; the smallest FoS found corresponds to the least favorable slip surface. The safety factor values obtained are compared to the suggested safety factor. Limit equilibrium methods of vertical slices implemented in Slope/W, computer program for slope stability analyses, have been adopted to perform the E24 slope stability analysis. The safety factor values computed with 9# weak layer are lower than for 8#; the factors of safety obtained with Sarma's method are the smallest; more, without groundwater (long term) overall values are greater than those determined under groundwater condition (short term). The lowest safety factor value is found for a profile depending on an adopted earthwork sequence. The E24 profile slope stability analysis shows the instability risk for the deepest weak layer, and also shows the short and long term stability of this slope for the envisaged earth movements. However it demonstrates the existence of instability risk for any earthwork firstly affecting the downslope part.

  14. The slipping rib syndrome in children. (United States)

    Saltzman, D A; Schmitz, M L; Smith, S D; Wagner, C W; Jackson, R J; Harp, S


    The slipping rib syndrome is an infrequent cause of thoracic and upper abdominal pain and is thought to arise from the inadequacy or rupture of the interchondral fibrous attachments of the anterior ribs. This disruption allows the costal cartilage tips to sublux, impinging on the intercostal nerves. Children with this entity are seldom described in the literature. We present a retrospective review of 12 children and young adults with slipping rib syndrome and a systematic approach for evaluation and treatment.

  15. 以一敌百Slip-on

    Institute of Scientific and Technical Information of China (English)



    在运动鞋爆红的当下,一种不系带的Slip-on Sneakers成为了时尚人士的必备单品。Slip-on Sneakers就是把脚放进去即可的休闲鞋,由于穿脱方便,有了一个可爱的别名——"一脚蹬"。

  16. Phase Slips in Topological Superconductor Wire Devices (United States)

    Goldberg, Samuel; Bergman, Doron; Pekker, David; Refael, Gil


    We make a detailed study of phase slips in topological superconducting wires and devices based on topological wires. We begin by investigating a device composed of a topological superconducting wire connected to a non-topological wire (T-S). In the T-segment only slips of the phase by multiples of 4π are allowed, while in the S-segment slips by 2π are also allowed. We show that near the interface, 2π phase slips are also allowed and we comment on the consequences of such phase slips for the Aharonov-Casher effect. We also consider an implementation of a q-bit consisting of a T-S-T device, where the quantum information is stored in the parity of the two topological segments via the four Majorana modes. We show that the central S-segment of this type of device can support 2π phase-slips which result in the decoherence of the q-bit.

  17. Mw7.7 2013 Balochistan Earthquake. Slip-Distribution and Deformation Field in Oblique Tectonic Context (United States)

    Klinger, Y.; Vallage, A.; Grandin, R.; Delorme, A.; Rosu, A. M.; Pierro-Deseilligny, M.


    The Mw7.7 2013 Balochistan earthquake ruptured 200 km of the Hoshab fault, the southern end of the Chaman fault. Azimuth of the fault changes by more than 30° along rupture, from a well-oriented strike-slip fault to a more thrust prone direction. We use the MicMac optical image software to correlate pairs of Landsat images taken before and after the earthquake to access to the horizontal displacement field associated with the earthquake. We combine the horizontal displacement with radar image correlation in range and radar interferometry to derive the co-seismic slip on the fault. The combination of these different datasets actually provides the 3D displacement field. We note that although the earthquake was mainly strike-slip all along the rupture length, some vertical motion patches exist, which locations seem to be controlled by kilometric-scale variations of the fault geometry. 5 pairs of SPOT images were also correlated to derive a 2.5m pixel-size horizontal displacement field, providing unique opportunity to look at deformation in the near field and to obtain high-resolution strike-slip and normal slip-distributions. We note a significant difference, especially in the normal component, between the slip localized at depth on the fault plane and the slip localized closer to the surface, with more apparent slip at the surface. A high-resolution map of ground rupture allows us to locate the distribution of the deformation over the whole rupture length. The rupture map also highlights multiple fault geometric complexities where we could quantify details of the slip distribution. At the rupture length-scale, the local azimuth variations between segments have a large impact on the expression of the localized slip at the surface. The combination of those datasets gives an overview of the large distribution of the deformation in the near field, corresponding to the co-seismic damage zone.

  18. Empirical slip and viscosity model performance for microscale gas flows.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Boyd, Iain D. (University of Michigan, Ann Arbor, MI); McNenly, Matthew J. (University of Michigan, Ann Arbor, MI)


    For the simple geometries of Couette and Poiseuille flows, the velocity profile maintains a similar shape from continuum to free molecular flow. Therefore, modifications to the fluid viscosity and slip boundary conditions can improve the continuum based Navier-Stokes solution in the non-continuum non-equilibrium regime. In this investigation, the optimal modifications are found by a linear least-squares fit of the Navier-Stokes solution to the non-equilibrium solution obtained using the direct simulation Monte Carlo (DSMC) method. Models are then constructed for the Knudsen number dependence of the viscosity correction and the slip model from a database of DSMC solutions for Couette and Poiseuille flows of argon and nitrogen gas, with Knudsen numbers ranging from 0.01 to 10. Finally, the accuracy of the models is measured for non-equilibrium cases both in and outside the DSMC database. Flows outside the database include: combined Couette and Poiseuille flow, partial wall accommodation, helium gas, and non-zero convective acceleration. The models reproduce the velocity profiles in the DSMC database within an L{sub 2} error norm of 3% for Couette flows and 7% for Poiseuille flows. However, the errors in the model predictions outside the database are up to five times larger.

  19. 不同下垫面近地层风速廓线特征%Characteristics of Surface layer Wind Speed Profiles over Different Underlying Surfaces

    Institute of Scientific and Technical Information of China (English)

    李鹏; 田景奎


    China’s wind-rich areas are primarily distributed in coastal areas and the Three North region. In order to reasonably assess wind resources and effectively exploit wind energy over these regions, 668,572 surface layer wind profiles from thirteen tall wind towers were collected. The wind towers are 70 m high and there are 4~5 layers for measurement wind velocity. Underlying surface characteristics of these wind towers are different. In general, there are three types of terrain, i.e., coastal areas, mountainous areas, and plains. Vegetation varies greatly with terrain, resulting in varying roughness. This study investigated characteristics of surface layer wind profiles over different underlying surfaces. Results show that the structure of the surface layer wind speed profiles is different. There are seven types of wind speed profiles. The wind speed decreases with height at some levels, but the wind speed increasing with height is predominate, with 70% of profiles pertaining to the increasing type. Each wind profile can be fitted using the simplified power exponential function. The exponent is named shear exponent. The annual average shear exponent (α-) and the shear exponent of annual average profile ( αv-) were derived,that means there's two shear exponents at one wind tower. The former is used in wind power projects and the latter is used in meteorology. [α] is similar for the same type of underlying surfaces, but [αv] varies with the underlying surface. For example, the shear exponent of the annual average profile will vary from 0.15 to 0.23 at five wind towers in Inner Mongolia, located at the same latitude, and the underlying surface is grassland. Only for the strong wind ( 8m/s) segment, there is no obvious difference between two shear exponents. In general, the shear exponents vary with surface roughness, topography, and wind speed magnitude as well as its instability. The shear exponent of plains is generally larger than mountainous

  20. The ATLAS3D Project - XXIII. Angular momentum and nuclear surface brightness profiles

    NARCIS (Netherlands)

    Krajnović, Davor; Karick, A. M.; Davies, Roger L.; Naab, Thorsten; Sarzi, Marc; Emsellem, Eric; Cappellari, Michele; Serra, Paolo; de Zeeuw, P. T.; Scott, Nicholas; McDermid, Richard M.; Weijmans, Anne-Marie; Davis, Timothy A.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bureau, Martin; Bournaud, Frederic; Crocker, Alison; Duc, Pierre-Alain; Khochfar, Sadegh; Kuntschner, Harald; Morganti, Raffaella; Oosterloo, Tom; Young, Lisa M.


    We investigate nuclear light profiles in 135 ATLAS3D galaxies for which the Hubble Space Telescope (HST) imaging is available and compare them to the large-scale kinematics obtained with the SAURON integral-field spectrograph. Specific angular momentum, λR, correlates with the shape of nuclear light

  1. Identification of air and sea-surface targets with a laser range profiler

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Schoemaker, R.M.; Schleijpen, H.M.A.


    Current coastal operations have to deal with threats at short range in complex environments with both neutral and hostile targets. There is a need for fast identification, which is possible with a laser range profiler. A number of field trials have been conducted to validate the concept of identific

  2. Identification of air and sea-surface targets with a laser range profiler

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Schoemaker, R.M.; Schleijpen, H.M.A.


    Current coastal operations have to deal with threats at short range in complex environments with both neutral and hostile targets. There is a need for fast identification, which is possible with a laser range profiler. A number of field trials have been conducted to validate the concept of

  3. Profiles of optical surface waves formed at the metal - photorefractive crystal interface

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedzhanov, I M [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)


    Photorefractive surface waves propagating in a stationary regime along the surface of the metal - photorefractive crystal (SBN-75) interface are considered. The transverse structure of the optical field distribution is calculated in the near- and far-field zones, depending on the angle of incidence of the exciting wave. The calculation results are in good agreement with the published experimental results. It is shown that the photorefractive effect leads to a splitting of the spectrum of a surface plasmon polariton excited at the metal - photorefractive crystal interface. (surface waves)

  4. Dating upper plate normal fault slip events in Late Pleistocene and Holocene sediments of northern Chile (United States)

    Robinson, R. A.; Binnie, S.; Gonzalez, G.; Cortés, J.


    In order to understand how subduction earthquakes along the Nazca-South America plate boundary affect upper plate faults in the coastal forearc of northern Chile, we are developing the first detailed paleoseismological study to characterize the Late Quaternary activity of the Mejillones and Salar del Carmen faults, located around 40 km north and 15 km east of Antofagasta, respectively. There is currently a lack of basic palaeo-seismological data on these and other upper plate faults, such as long term slip rates, amount of slip per event, palaeo-earthquake magnitude and recurrence intervals. This lack of knowledge impedes understanding of how large subduction earthquakes, occurring at depths of around 50 km in this region, relate to upper plate seismicity and deformation. We have used OSL dating of fault-related sediments, and cosmogenic-ray nuclide dating of terrace surfaces, to constrain slips rates over the last 45 ka. Several trenches were excavated across both faults in order to expose and log the most recent fault-related sediments. In the hanging wall of these normal faults, vertically stacked colluvial wedges and hillslope deposits are the product of discrete slip events and post-slip fault scarp degradation. Multiple trenches along each fault permit the spatial variability in slip amount and fault-related sedimentation to be investigated. Long-term slip rates have been measured using cosmogenic-ray nuclide exposure dating of the alluvial terraces offset by the Mejillones Fault. OSL dating of the fault-related sediments in the trenches has been used to compare the ages of individual slip events on both faults, and the age of events recorded along the trace of each fault. The application of both cosmogenic-ray nuclide and OSL methods in this type of setting (hyper-arid with low erosion rates, yet tectonically active) is non-trivial, due to cosmogenic inheritance accumulated in cobbles on the terrace surfaces, low sensitivity of the quartz for OSL dating, and

  5. Slip Development and Instability on a Heterogeneously Loaded Fault with Power-Law Slip-Weakening (United States)

    Rice, J. R.; Uenishi, K.


    We consider slip initiation and rupture instability on planar faults that follow a non-linear slip-weakening relation and are subjected to a locally peaked loading stress, the level of which changes quasi-statically in time. For the case in which strength weakens linearly with slip, Uenishi and Rice [2002] ( have shown there exists a universal length of the slipping region at instability, independent of any length scales entering into the description of the shape of the loading stress distribution. Here we study slip development and its (in)stability for a power-law slip-weakening relation, giving fault strength as τ = τ p - Aδn where τ p is the peak strength at which slip initiates, δ is the slip, and A is a constant. Such a form with n ≈ 0.2-0.4 has been inferred, for slips from 1 to 500 mm, as an interpretation of seismological observations on the scaling of radiated energy with slip [Abercrombie and Rice, EOS, 2001; SCEC, 2002]. It is also consistent with laboratory experiments involving large rotary shear [Chambon et al., GRL, 2002]. We first employed an energy approach to give a Rayleigh-Ritz approximation for the dependence of slipping length and maximum slip on the level and shape of the loading stress distribution. That was done for a loading stress distribution τ p + Rt - κ x2 / 2 where x is distance along the fault, κ is a constant, and Rt is the stress change from that for which the peak in the loading stress distribution equals the strength τ p. Results show there is no longer a universal nucleation length, independent of κ , when n != 1, and that qualitative features of the slip development are significantly controlled by n. We also obtained full numerical solutions for the slip development. Remarkably, predictions of the simple energy approach are in reasonable quantitative agreement with them and give all qualitative features correctly. Principal results are as follows: If n > 2/3, the

  6. Nonlinear dynamical triggering of slow slip

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Knuth, Matthew W [WISCONSIN; Kaproth, Bryan M [PENN STATE; Carpenter, Brett [PENN STATE; Guyer, Robert A [Los Alamos National Laboratory; Le Bas, Pierre - Yves [Los Alamos National Laboratory; Daub, Eric G [Los Alamos National Laboratory; Marone, Chris [PENN STATE


    Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads ({approx}1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred

  7. Label-free detection of proteins in ternary mixtures using surface-enhanced Raman scattering and protein melting profiles (United States)

    Keskin, Sercan; Efeoğlu, Esen; Keçeci, Kaan; Çulha, Mustafa


    The multiplex detection of biologically important molecules such as proteins in complex mixtures has critical importance not only in disease diagnosis but also in other fields such as proteomics and biotechnology. Surface-enhanced Raman scattering (SERS) is a powerful technique for multiplex identification of molecular components in a mixture. We combined the multiplexing power of SERS and heat denaturation of proteins to identify proteins in ternary protein mixtures. The heat denaturation profiles of four model blood proteins, transferrin, human serum albumin, fibrinogen, and hemoglobin, were studied with SERS. Then, two ternary mixtures of these four proteins were used to test the feasibility of the approach. It was demonstrated that unique denaturation profiles of each protein could be used for their identification in the mixture.

  8. The Palos Verdes Fault offshore southern California: late Pleistocene to present tectonic geomorphology, seascape evolution and slip rate estimate based on AUV and ROV surveys (United States)

    Brothers, Daniel S.; Conrad, James E.; Maier, Katherine L.; Paull, Charles K.; McGann, Mary L.; Caress, David W.


    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. To characterize the near-seafloor fault morphology, tectonic influences on continental slope sedimentary processes and late Pleistocene to present slip rate, a grid of high-resolution multibeam bathymetric data, and chirp subbottom profiles were acquired with an autonomous underwater vehicle (AUV) along the main trace of PVF in water depths between 250 and 600 m. Radiocarbon dates were obtained from vibracores collected using a remotely operated vehicle (ROV) and ship-based gravity cores. The PVF is expressed as a well-defined seafloor lineation marked by subtle along-strike bends. Right-stepping transtensional bends exert first-order control on sediment flow dynamics and the spatial distribution of Holocene depocenters; deformed strata within a small pull-apart basin record punctuated growth faulting associated with at least three Holocene surface ruptures. An upper (shallower) landslide scarp, a buried sedimentary mound, and a deeper scarp have been right-laterally offset across the PVF by 55 ± 5, 52 ± 4 , and 39 ± 8 m, respectively. The ages of the upper scarp and buried mound are approximately 31 ka; the age of the deeper scarp is bracketed to 17–24 ka. These three piercing points bracket the late Pleistocene to present slip rate to 1.3–2.8 mm/yr and provide a best estimate of 1.6–1.9 mm/yr. The deformation observed along the PVF is characteristic of strike-slip faulting and accounts for 20–30% of the total right-lateral slip budget accommodated offshore Southern California.

  9. Improving Soil Moisture and Temperature Profile and Surface Turbulent Fluxes Estimations in Irrigated Field by Assimilating Multi-source Data into Land Surface Model (United States)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen


    The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is

  10. GPS dynamic cycle slip detection and correction with baseline constraint

    Institute of Scientific and Technical Information of China (English)

    Liu Zhenkun; Huang Ahunji


    When the cycle slips take place in the attitude determination of a moving platform, the precision of the attitude will be impaired badly. A method of cycle slip detection and correction is proposed, which is suitable to the dynamic measurement using GPS carrier phase: the cycle slips detection is first achieved by triple difference observables, then the cycle slips correction is performed with baseline length constraint. The simulation results show that the proposed method is effective to the dynamic cycle slips problem.

  11. Effects of the Artificial Skin Thickness on the Subsurface Pressure Profiles of Flat, Curved, and Braille Surfaces

    CERN Document Server

    Cabibihan, John-John; Suresh, Shruthi


    The primary interface of contact between a robotic or prosthetic hand and the external world is through the artificial skin. To make sense of that contact, tactile sensors are needed. These sensors are normally embedded in soft, synthetic materials for protecting the subsurface sensor from damage or for better hand-to-object contact. It is important to understand how the mechanical signals transmit from the artificial skin to the embedded tactile sensors. In this paper, we made use of a finite element model of an artificial fingertip with viscoelastic and hyperelastic behaviors to investigate the subsurface pressure profiles when flat, curved, and Braille surfaces were indented on the surface of the model. Furthermore, we investigated the effects of 1, 3 and 5 mm thickness of the skin on the subsurface pressure profiles. The simulation results were experimentally validated using a 25.4 {\\mu}m thin pressure detecting film that was able to follow the contours of a non-planar surface, which is analogous to an ar...

  12. NEXAFS Depth Profiling of Surface Segregation in Block Copolymer Thin Films (United States)


    scanning probe microscope was used in the tapping mode for AFM measurements. Dynamicwater contact angle values were determined using the sessile drop ...analysis (NRA), and dynamic secondary ionmass spectrometry (SIMS) have the advantage of a direct, model-independent determination of depth profiles, and...of eq 8 drops out, resulting in the equation that we derived previously.7 4. Results and Discussion 4.1. Homopolymer Thin Films. Figure 3 shows the

  13. Profiling river surface velocities and volume flow estimation with bistatic UHF RiverSonde radar (United States)

    Barrick, D.; Teague, C.; Lilleboe, P.; Cheng, R.; Gartner, J.; ,


    From the velocity profiles across the river, estimates of total volume flow for the four methods were calculated based on a knowledge of the bottom depth vs position across the river. It was found that the flow comparisons for the American River were much closer, within 2% of each other among all of the methods. Sources of positional biases and anomalies in the RiverSonde measurement patterns along the river were identified and discussed.

  14. Modeling the effect of surface forces on the equilibrium liquid profile of a capillary meniscus. (United States)

    Kuchin, Igor V; Matar, Omar K; Craster, Richard V; Starov, Victor M


    The equilibrium profile of a capillary meniscus formed under combined action of disjoining/conjoining and capillarity pressures is investigated. Attention is focused on the shape of a transition zone between a spherical meniscus and a thin liquid film in front of the meniscus. The Poisson-Boltzmann equation is used for calculations of electrostatic contribution to the disjoining/conjoining pressure and the liquid shape inside the transition zone. Both complete and partial wetting conditions are investigated.

  15. Development of a method of ICP algorithm accuracy improvement during shaped profiles and surfaces control

    Directory of Open Access Journals (Sweden)

    V.A. Pechenin


    Full Text Available In this paper we propose a method of improvement of operating accuracy of iterative closest point algorithm used for metrology problems solving when determining a location deviation. Compressor blade profiles of a gas turbine engine (GTE were used as an object for application of the method of deviation determining. It is proposed to formulate the problem of the best alignment in the developed method as a multiobjective problem including criteria of minimum of squared distances, normal vectors differences and depth of camber differences at corresponding points of aligned profiles. Variants of resolving the task using an integral criterion including the above-mentioned were considered. Optimization problems were solved using a quasi- Newton method of sequential quadratic programming. The proposed new method of improvement of the registration algorithm based on geometric features showed greater accuracy in comparison with the discussed methods of optimization of a distance between fitting points, especially if a small quantity of measurement points on the profiles was used.

  16. On the locally self-similar solution of the surface quasi-geostrophic equation with decaying or non-decaying profiles (United States)

    Xue, Liutang


    Motivated by the numerical simulation and the study on several 1D models, we consider the locally self-similar singular solutions for the surface quasi-geostrophic equation with decaying or non-decaying blowup profiles. Based on a suitable local Lp-inequality in terms of the profile and the bootstrapping method, we show some exclusion results and derive the asymptotic behavior of the possible blowup profiles.

  17. Bilateral additional slips of triceps brachii forming osseo-musculo-fibrous tunnels for ulnar nerves. (United States)

    Swamy, Rs; Rao, Mkg; Somayaji, Sn; Raghu, J; Pamidi, N


    Rare additional slips of triceps brachii muscle was found bilaterally in a sixty two year old South Indian male cadaver during routine dissection of upper limb for undergraduate students at Melaka-Manipal Medical College, Manipal University, Manipal, India. On left side, the variant additional muscle slip took origin from the lower part of the medial intermuscular septum about 4 cm proximal to the medial humeral epicondyle. From its origin, the muscle fibres were passing over the ulnar nerve and were joining the triceps muscle to get inserted to the upper surface of olecranon process of ulna. On right side, the additional muscle slip was larger and bulkier and was arising from the lower part of the medial border of the humerus about 4 cm proximal to the medial epicondyle in addition to its attachment to the medial intermuscular septum. On both sides, the additional slips were supplied by twigs from the radial nerve. On both sides, the ulnar nerve was passing between variant additional slip and the lower part of the shaft of the humerus in an osseo-musculo-fibrous tunnel. Such variant additional muscle slips may affect the function of triceps muscle and can lead to snapping of medial head of triceps and ulnar nerve over medial epicondyle and also can dynamically compress the ulnar nerve during the contraction of triceps leading to ulnar neuropathy around the elbow.

  18. Thenature of marbled Terra Sigillata slips: a combined mu XRF and mu XRD investigation

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Yoanna; Sciau, Philippe; Goudeau, Philippe; Tamura, Nobumichi; Webb, Sam; Mehta, Apurva


    In addition to the red terra sigillata production, the largest Gallic workshop (La Graufesenque) made a special type of terra sigillata, called 'marbled' by the archaeologists. Produced exclusively on this site, this pottery is characterized by a surface finish made of a mixture of yellow and red slips. Because the two slips are intimately mixed, it is difficult to obtain the precise composition of one of the two constituents without contamination by the other. In order to obtain very precise correlation at the appropriate scale between the color aspect and the element and mineralogical phase distributions in the slip, combined electron microprobe, x-ray micro spectroscopies and micro diffraction on cross sectional samples were performed. The aim is to discover how potters were able to produce this unique type of terra sigillata and especially this slip showing an intense yellow color. Results show that the yellow component of marbled sigillata was made from a titanium-rich clay preparation. The color is related to the formation of a pseudobrookite (TiFe2O5) phase in the yellow part of the slip, the main characteristics of that structure being considered nowadays as essential for the fabrication of stable yellow ceramic pigments. Its physical properties such as high refractive indices and a melting point higher than that of most silicates widely used as ceramic colorants are indeed determinant for this kind of applications. Finally, the red parts have a similar composition (elementary and mineralogical) to the one of standard red slip.

  19. Progressive slip after removal of screw fixation in slipped capital femoral epiphysis: two case reports

    Directory of Open Access Journals (Sweden)

    Engelsma Yde


    Full Text Available Abstract Introduction In slipped capital femoral epiphysis the femoral neck displaces relative to the head due to weakening of the epiphysis. Early recognition and adequate surgical fixation is essential for a good functional outcome. The fixation should be secured until the closure of the epiphysis to prevent further slippage. A slipped capital femoral epiphysis should not be confused with a femoral neck fracture. Case presentation Case 1 concerns a 15-year-old boy with an adequate initial screw fixation of his slipped capital femoral epiphysis. Unfortunately, it was thought that the epiphysis had healed and the screw was removed after 11 weeks. This caused new instability with a progressive slip of the femoral epiphysis and subsequently re-fixation and a subtrochanteric correction osteotomy was obligatory. Case 2 concerns a 13-year-old girl with persistent hip pain after screw fixation for slipped capital femoral epiphysis. The screw was removed as lysis was seen around the screw on the hip X-ray. This operation created a new unstable situation and the slip progressed resulting in poor hip function. A correction osteotomy with re-screw fixation was performed with a good functional result. Conclusion A slipped epiphysis of the hip is not considered ‘healed’ after a few months. Given the risk of progression of the slip the fixation material cannot be removed before closure of the growth plate.

  20. A Network Inversion Filter combining GNSS and InSAR for tectonic slip modeling (United States)

    Bekaert, D. P. S.; Segall, P.; Wright, T. J.; Hooper, A. J.


    Studies of the earthquake cycle benefit from long-term time-dependent slip modeling, as it can be a powerful means to improve our understanding on the interaction of earthquake cycle processes such as interseismic, coseismic, post seismic, and aseismic slip. Observations from Interferometric Synthetic Aperture Radar (InSAR) allow us to model slip at depth with a higher spatial resolution than when using Global Navigation Satellite Systems (GNSS) alone. While the temporal resolution of InSAR has typically been limited, the recent fleet of SAR satellites including Sentinel-1, COSMO-SkyMED, and RADARSAT-2 permits the use of InSAR for time-dependent slip modeling at intervals of a few days when combined. With the vast amount of SAR data available, simultaneous data inversion of all epochs becomes challenging. Here we expanded the original network inversion filter to include InSAR observations of surface displacements in addition to GNSS. In the Network Inversion Filter (NIF) framework, geodetic observations are limited to those of a given epoch, with a stochastic model describing slip evolution over time. The combination of the Kalman forward filtering and backward smoothing allows all geodetic observations to constrain the complete observation period. Combining GNSS and InSAR allows modeling of time-dependent slip at unprecedented spatial resolution. We validate the approach with a simulation of the 2006 Guerrero slow slip event. We highlight the importance of including InSAR covariance information and demonstrate that InSAR provides an additional constraint on the spatial extent of the slow slip.

  1. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf


    Understanding earthquake (EQ) recurrence relies on information about the timing and size of past EQ ruptures along a given fault. Knowledge of a fault\\'s rupture history provides valuable information on its potential future behavior, enabling seismic hazard estimates and loss mitigation. Stratigraphic and geomorphic evidence of faulting is used to constrain the recurrence of surface rupturing EQs. Analysis of the latter data sets culminated during the mid-1980s in the formulation of now classical EQ recurrence models, now routinely used to assess seismic hazard. Within the last decade, Light Detection and Ranging (lidar) surveying technology and other high-resolution data sets became increasingly available to tectono-geomorphic studies, promising to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault\\'s offset accumulation pattern from geomorphic evidence. We address sources of uncertainty affecting offset measurement and advocate approaches to minimize them. A number of recent studies focus on single-EQ slip distributions and along-fault slip accumulation patterns. We put them in context with paleoseismic studies along the respective faults by comparing coefficients of variation CV for EQ inter-event time and slip-per-event and find that a) single-event offsets vary over a wide range of length-scales and the sources for offset variability differ with length-scale, b) at fault-segment length-scales, single-event offsets are essentially constant, c) along-fault offset accumulation as resolved in the geomorphic record is dominated by essentially same-size, large offset increments, and d) there is generally no one-to-one correlation between the offset accumulation pattern constrained in the geomorphic record and EQ occurrence as identified in the stratigraphic record, revealing the higher resolution and preservation potential of

  2. Improvement of two-dimension AR model and application in simulation on surface profiles of steel plates

    Institute of Scientific and Technical Information of China (English)

    汪家道; 陈大融; 孔宪梅


    The order and parameter estimation is always difficult in two-dimension AR model because the two-dimension Yule-Walker equation does not have the property of uniqueness and identifiability as the one-dimension AR model.This paper provides an AR order estimation method for a two-dimension AR model, and an AR model parameter estimation method on the basis of an autocorrelation function. A simulation example on surface profiles of some kinds of steel plates is given using this improved AR model with positive results.

  3. Temperature profile data from bucket, surface seawater intake, and XBT casts in a world wide distribution from 07 December 1995 to 18 October 1996 (NODC Accession 9600167) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bucket, surface seawater intake, and XBT casts from several vessels in a world wide distribution from December 07, 1995...

  4. High-resolution seismic profiling: development of acquisition, processing, and interpretation for the practical implementation of the method in shallow sub-surface exploration and engineering

    NARCIS (Netherlands)

    Brouwer, J.


    In the last few years there has been a general increase in the activities in the field of high-resolution seismic profiling. A growing interest in shallow sub-surface exploration probably underlies this development. Major attention is paid to the adaptation of highresolution seismic profiling for en

  5. High-resolution seismic profiling : development of acquisition, processing, and interpretation for the practical implementation of the method in shallow sub-surface exploration and engineering

    NARCIS (Netherlands)

    Brouwer, J.


    In the last few years there has been a general increase in the activities in the field of high-resolution seismic profiling. A growing interest in shallow sub-surface exploration probably underlies this development. Major attention is paid to the adaptation of highresolution seismic profiling for en

  6. Investigation of wall-slip effect on lead-free solder paste and isotropic conductive adhesives

    Indian Academy of Sciences (India)

    R Durairaj; S Mallik; A Seman; N N Ekere


    Slippage due to wall depletion effect is well-known in rheological investigation. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of different flow geometries, gap heights and surface roughness on the paste viscosity was investigated. The utilisation of different measuring geometries has not clearly showed the presence of wall-slip in the paste samples. The existence of wall-slip was found to be pronounced when gap heights were varied using the parallel plate geometry. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall-slip as expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates and to a certain extent inducing structural breakdown in the paste. Most importantly, the study also demonstrated on how the wall-slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour.

  7. Microstructural evidence for seismic and aseismic slips along clay-bearing, carbonate faults (United States)

    Smeraglia, Luca; Bettucci, Andrea; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Di Toro, Giulio; Natali, Marco; Passeri, Daniele; Rossi, Marco; Spagnuolo, Elena


    In this multimethodological study, microstructural observations of fault rocks are combined with micromechanical property analyses (contact resonance atomic force microscopy (CR-AFM)) and with rotary friction experiments (Slow- to High-Velocity rotary-shear friction Apparatus apparatus) to find evidence of seismic to aseismic slip and understand the nanoscale rheology of clay-bearing, carbonate-hosted faults. Fluidized structures, truncated clasts, pores and vesicles, and phyllosilicate nanosized spherules and tubes suggest fast deformation events occurred during seismic slip, whereas clay-assisted pressure-solution processes, clumped clasts, foliation surfaces, and mantled clasts indicate slow deformation events occurred during postseismic/interseismic periods. CR-AFM measurements show that the occurrence of 5 wt % of clay within the carbonate-hosted gouges can significantly reduce the fault core stiffness at nanoscale. In addition, during high-velocity friction experiments simulating seismic slip conditions, the presence of ultrathin phyllosilicate-bearing (≤3 wt %) layers within calcite gouges, as those observed in the natural fault, show faster dynamic weakening than that of pure calcite gouges. The weak behavior of such layers could facilitate the upward propagation of seismic slip during earthquakes, thus possibly enhancing surface faulting. Microstructural observations and experimental evidence fit some well-known geophysical and geodetic observations on the short- to long-term mechanical behavior of faults such as postseismic/interseismic aseismic creep, interseismic fault locking, and seismic slip propagation up to the Earth's surface.

  8. Wettability transparency and the quasiuniversal relationship between hydrodynamic slip and contact angle (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.


    The universality of the scaling laws that correlate the hydrodynamic slip length and static contact angle was investigated by introducing the concept of the wettability transparency of graphene-coated surfaces. Equilibrium molecular dynamics simulations of droplet wettability for Si(111), Si(100), and graphene-coated silicon surfaces were performed to determine the conditions required to obtain similar contact angles between bare and graphene-coated surfaces (wettability transparency). The hydrodynamic slip length was determined by means of equilibrium calculations for silicon and graphene-coated silicon nanochannels. The results indicate that the slip-wettability scaling laws can be used to describe the slip behavior of the bare silicon nanochannels in general terms; however, clear departures from a general universal description were observed for hydrophobic conditions. In addition, a significant difference in the hydrodynamic slippage was observed under wettability transparency conditions. Alternatively, the hydrodynamic boundary condition for silicon and graphene-coated silicon nanochannels was more accurately predicted by observing the density depletion length, posing this parameter as a better alternative than the contact angle to correlate with the slip length.

  9. Streamline Patterns and their Bifurcations near a wall with Navier slip Boundary Conditions

    DEFF Research Database (Denmark)

    Tophøj, Laust; Møller, Søren; Brøns, Morten


    We consider the two-dimensional topology of streamlines near a surface where the Navier slip boundary condition applies. Using transformations to bring the streamfunction in a simple normal form, we obtain bifurcation diagrams of streamline patterns under variation of one or two external parameters....... Topologically, these are identical with the ones previously found for no-slip surfaces. We use the theory to analyze the Stokes flow inside a circle, and show how it can be used to predict new bifurcation phenomena. ©2006 American Institute of Physics...

  10. Experimental Modeling of Dynamic Shallow Dip-Slip Faulting (United States)

    Uenishi, K.


    In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland

  11. Recent Findings on the Nature of Episodic Tremor and Slip Along the Northern Cascadia Margin (United States)

    Dragert, H.; Wang, K.; Kao, H.


    Episodic Tremor and Slip (ETS), as observed along the northern Cascadia margin, has been defined empirically as repeated, transient ground motions at a plate margin, roughly opposite to longer-term interseismic deformation, occurring synchronously with low-frequency, emergent seismic signals. Although the exact causal processes are still a matter of debate, recent improvements in the monitoring of these transient events provide clearer constraints for the location and the migration of both tremor and slip. In areal distribution, the tremors continue to occur in a band overlying the 25 to 55 km depth contours of the nominal subducting plate interface. The previously reported extended depth distribution of tremor is also observed for the most recent tremor episodes, as is the coincidence of peak tremor activity with a band of seismic reflectors that is commonly interpreted to be positioned above the plate interface. In these episodes, tremors migrate along strike of the subduction zone from the southeast to the northwest at speeds ranging from 5 to 13 km/day. Tremor data also show changes in migration speed during the course of a single episode. No systematic migration in depth has yet been resolved. Denser GPS monitoring and the introduction of borehole strainmeters have also led to a better definition of the ETS surface deformations patterns, including those derived from the vertical GPS component. Inversion of the GPS data, constrained by limiting slip to the currently accepted plate interface, results in an area of slip that parallels the strike of the subduction zone, overlapping with but narrower than the band of tremor distribution and displaced slightly seaward. Inversion constrained by a shallower occurrence of slip, on or near the reflector band, results in a broader distribution of slip with reduced magnitudes. This would be more commensurate with the wider distribution of tremor. The current GPS deformation data are unable to tell whether the slip could

  12. Slip in viscous contact-line movement (United States)

    van Lengerich, Henrik; Steen, Paul; Breuer, Kenneth


    The typical continuum fluid dynamics formulation cannot be used to model the spreading of a liquid on a solid because a stress singularity prevents contact-line motion. It is well known that this situation can be remedied by introducing a slip. We perform Stokes-flow simulations with slip and compare these with experiments. In the experiment, liquid (squalane) is forced through two parallel sapphire plates (roughness 0.6nm), and the meniscus shape and its speed are measured. The slip-length for this liquid/solid pair has been measured previously in an independent experiment absent of contact lines (T. Schmatko et. al. PRL 94, 244501). The same geometry is used in a boundary integral method simulation, accurate to within a few molecular diameters in the vicinity of the contact-line. The slip-length in the simulations can be varied such that the meniscus shape matches the experiment. Preliminary results suggest this slip-length is an order of magnitude lower than that reported by Schmatko. Now at the University of Minnesota TC

  13. Gait abnormalities following slipped capital femoral epiphysis. (United States)

    Song, Kit M; Halliday, Suzanne; Reilly, Chris; Keezel, William


    The authors evaluated 30 subjects with treated unilateral slipped capital femoral epiphysis and a range of severity from mild to severe to characterize gait and strength abnormalities using instrumented three-dimensional gait analysis and isokinetic muscle testing. For slip angles less than 30 degrees, kinematic, kinetic, and strength variables were not significantly different from age- and weight-matched controls. For moderate to severe slips, as slip angle increased, passive hip flexion, hip abduction, and internal rotation in the flexed and extended positions decreased significantly. Persistent pelvic obliquity, medial lateral trunk sway, and trunk obliquity in stance increased, as did extension, adduction, and external rotation during gait. Gait velocity and step length decreased with increased amount of time spent in double limb stance. Hip abductor moment, hip extension moment, knee flexion moment, and ankle dorsiflexion moment were all decreased on the involved side. Hip and knee strength also decreased with increasing slip severity. All of these changes were present on the affected and to a lesser degree the unaffected side. Body center of mass translation or pelvic obliquity in mid-stance greater than one standard deviation above normal correlated well with the impression of compensated or uncompensated Trendelenburg gait.

  14. [An experimental study on freudian slips]. (United States)

    Köhler, Thomas; Simon, Patrick


    We attempted to replicate findings of a frequently cited study by Motley. This author had used a tachistoskope to present his participants pairs of words which had a meaning after exchanging the initial letters of each word ("spoonerisms"). In accordance with the psychoanalytic theory of Freudian slips, Motley was able to show that under the impression of a sexually stimulating situation more sexual words were read; under the threat of electric shock spoonerisms appeared more often in words with reference to electricity. In our study we tried to induce spoonerisms by presentation of short written texts of erotic, aggressive and neutral content. It could be shown that after reading the erotic and the aggressive text, slips were produced more often than following the text of neutral content. In addition, significantly more slips of erotic kind occurred after reading the erotic text, whereas more aggressive slips were observed immediately after lecture of the text with aggressive content. We were therefore able to replicate Motley's findings and thus also corroborated assumptions made by Freud on the origin of slips of the tongue.

  15. Slip patterns and preferred dislocation boundary planes

    DEFF Research Database (Denmark)

    Winther, G.


    The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single and polycryst......The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single...... and polycrystals of fcc metals in three deformation modes (rolling, tension and torsion). In the macroscopic system, boundaries lie close to the macroscopically most stressed planes. In the crystallographic system, the boundary plane depends on the grain/crystal orientation. The boundary planes in both co......-ordinate systems are rationalised based on the slip. The more the slip is concentrated on a slip plane, the closer the boundaries lie to this. The macroscopic preference arises from the macroscopic directionality of the slip. The established relations are applied to (a) prediction of boundary planes from slip...

  16. Constraining the roughness degree of slip heterogeneity

    KAUST Repository

    Causse, Mathieu


    This article investigates different approaches for assessing the degree of roughness of the slip distribution of future earthquakes. First, we analyze a database of slip images extracted from a suite of 152 finite-source rupture models from 80 events (Mw = 4.1–8.9). This results in an empirical model defining the distribution of the slip spectrum corner wave numbers (kc) as a function of moment magnitude. To reduce the “epistemic” uncertainty, we select a single slip model per event and screen out poorly resolved models. The number of remaining models (30) is thus rather small. In addition, the robustness of the empirical model rests on a reliable estimation of kc by kinematic inversion methods. We address this issue by performing tests on synthetic data with a frequency domain inversion method. These tests reveal that due to smoothing constraints used to stabilize the inversion process, kc tends to be underestimated. We then develop an alternative approach: (1) we establish a proportionality relationship between kc and the peak ground acceleration (PGA), using a k−2 kinematic source model, and (2) we analyze the PGA distribution, which is believed to be better constrained than slip images. These two methods reveal that kc follows a lognormal distribution, with similar standard deviations for both methods.

  17. Breddin's Graph For Fault and Slip Data (United States)

    Célérier, B.

    A simple plot of rake versus strike of fault and slip or earthquake focal mechanism data provides insight into the stress regime that caused slippage on these faults provided one of the principal stress direction is near vertical. By overlaying an abacus on this plot, one can evaluate both the orientation of the horizontal principal stress directions and the stress tensor aspect ratio, (s1-s2)/(s1-s3), where s1, s2, s3 are the principal stress magnitudes ranked in decreasing order. The underlying geometrical properties are that the slip data that are near strike-slip, and that are mainly found on steeply dipping planes, constrain the horizontal principal stress directions whereas the slip data that are near dip-slip and that occur on shallow dipping planes striking away from the principal stress directions constrain the stress tensor aspect ratio. This abacus is an extension of the Breddin's abacus used to analyze two dimensional deformation in structural geology and it is used in a similar fashion. Its application to synthetic and natural monophase data show both its usefulness and limitation. It is not intended to replace stress inversion techniques because of limiting assumptions, but it is expected to provide insight into the complexity of natural data set from a simple viewpoint.

  18. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng


    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  19. Spin-wave mode profiles versus surface/interface conditions in ferromagnetic Fe/Ni layered composites

    CERN Document Server

    Krawczyk, M; Levy, J C S; Mercier, D


    Spin-wave excitations in ferromagnetic layered composite (AB centre dot centre dot centre dot BA; A and B being different homogeneous ferromagnetic materials) are analysed theoretically, by means of the transfer matrix approach. The properties of multilayer spin-wave mode profiles are discussed in relation to multilayer characteristics, such as the filling fraction and the exchange or magnetization contrast; also, surface spin pinning conditions and dipolar interactions are taken into account. The interface conditions are satisfied by introducing an effective exchange field expressed by interface gradients of the exchange constant and the magnetization. This approach provides an easy way to find frequencies and amplitudes of standing spin waves in the multilayer. The developed theory is applied to interpretation of spin wave resonance (SWR) spectra obtained experimentally by Chambers et al in two systems: a bilayer Fe/Ni and a trilayer Ni/Fe/Ni, in perpendicular (to the multilayer surface) configuration of th...

  20. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Nisar, Z. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Yasmin, H., E-mail: [Department of Mathematics, COMSATS Institute of Information Technology, G.T. Road, Wah Cantt 47040 (Pakistan)


    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number.

  1. Peristaltic motion of Johnson-Segalman fluid in a curved channel with slip conditions.

    Directory of Open Access Journals (Sweden)

    Sadia Hina

    Full Text Available Slip effects on the peristaltic transport of Johnson-Segalman fluid through a curved channel have been addressed. The influence of wall properties is also analyzed. Long wavelength and low Reynolds number assumptions have been utilized in the mathematical formulation of the problem. The equations so formed have been solved numerically by shooting method through computational software Mathematica 8. In addition the analytic solution for small Weissenberg number (elastic parameter is computed through a regular perturbation method. An excellent agreement is noticed between the two solutions. The results indicate an increase in the magnitude of velocity with an intensification in the slip effect. Moreover the size and circulation of the trapped boluses increase with an increase in the slip parameter. Unlike the planar channel, the profiles of axial velocity are not symmetric about the central line of the channel.

  2. Peristaltic motion of Johnson-Segalman fluid in a curved channel with slip conditions. (United States)

    Hina, Sadia; Mustafa, Meraj; Hayat, Tasawar


    Slip effects on the peristaltic transport of Johnson-Segalman fluid through a curved channel have been addressed. The influence of wall properties is also analyzed. Long wavelength and low Reynolds number assumptions have been utilized in the mathematical formulation of the problem. The equations so formed have been solved numerically by shooting method through computational software Mathematica 8. In addition the analytic solution for small Weissenberg number (elastic parameter) is computed through a regular perturbation method. An excellent agreement is noticed between the two solutions. The results indicate an increase in the magnitude of velocity with an intensification in the slip effect. Moreover the size and circulation of the trapped boluses increase with an increase in the slip parameter. Unlike the planar channel, the profiles of axial velocity are not symmetric about the central line of the channel.

  3. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia) (United States)

    Prentice, Carol S.; Rizza, M.; Ritz, J.F.; Baucher, R.; Vassallo, R.; Mahan, S.


    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans—particularly well preserved in the arid environment of the Gobi region—allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is∼1 mm yr–1 along the WIB and EIB segments and∼0.5 mm yr–1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78–7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of∼2500

  4. X-ray Surface Brightness Profiles of Active Galactic Nuclei in the Extended Groth Strip: Implications for AGN Feedback

    CERN Document Server

    Chatterjee, Suchetana; Jeltema, Tesla; Myers, Adam D; Aird, James; Coil, Alison L; Cooper, Michael; Finoguenov, Alexis; Laird, Elise; Montero-Dorta, Antonio; Nandra, Kripal; Willmer, Christopher; Yan, Renbin


    Using data from the All Wavelength Extended Groth Strip International Survey (AEGIS) we statistically detect the extended X-ray emission in the interstellar medium (ISM) in both active and normal galaxies at 0.3 < z < 1.3 at a scale of 40-60 kpc. We study the effect of feedback from active galactic nuclei (AGN) on the diffuse interstellar gas by comparing the stacked X-ray surface brightness profiles of active and normal galaxies in the same redshift range with identical properties in optical color--magnitude space. In accordance with theoretical studies we detect a slight deficit (< 1.5 \\sigma) of X-ray photons when averaged over a scale of 0-30 kpc in the profile of AGN host galaxies at 0.3 < z < 0.7. The equivalent flux deficit is (1.25 +/- 0.75) X 10^(-19) ergs/s/cm^(-2). When averaged over a scale of 30-60 kpc, beyond the PSF scales of our AGN sources, we observe a (~ 2 \\sigma) photon excess in the profile of the AGN host galaxies with an equivalent flux excess of (1.1 +/- 0.5) X 10^{-19} ...

  5. Episodic tremor and slip in Northern Sumatra subduction zone (United States)

    Sianipar, Dimas; Subakti, Hendri


    The first reported observation of non-volcanic tremor in Sunda Arc in Sumbawa, Indonesia open a possibility of discovery of episodic tremor and slip (ETS) from out of Pacific Rim. Non-volcanic tremor gives some important information about dynamic of plate boundaries. The characteristics of these tremors are visually as non-impulsive, high frequency, long-duration and low-amplitude signals. Tectonic tremor occurred in a transition part of brittle-ductile of a fault and frequently associated with the shearing mechanism of slow slip. Tectonic tremor is a seismic case that also very interested, because it shows strong sensitivity to stress changes. Deep non-volcanic tremor is usually associated with episodic slow-slip events. Tectonic tremor is found in close association with geodetically observed slow-slip events (SSE) in subduction zones. One research found that there is possibility of SSE occurrence on Banyak Islands, North Sumatra revealed from coral observation. The SSE occurred on the Banyak Islands portion of the megathrust at 30-55 km depth, within the downdip transition zone. We do a systematic search of episodic tremor and its possible relationship with slow-slip phenomena in Northern Sumatra subduction zone. The spectrogram analysis is done to analyze the potential tremor signals. We use three component broadband seismic stations with 20, 25, and 50 sampling per second (BH* and SH* channels). We apply a butterworth 5 Hz highpass filter to separate the signal as local tremor and teleseismic/regional earthquakes. Before computing spectrogram to avoid high-frequency artifacts to remote triggering, we apply a 0.5 Hz filter. We also convert the binary seismic data into sound waves to make sure that these events meet the tectonic tremor criterion. We successfully examine 3 seismic stations with good recording i.e. GSI, SNSI and KCSI. We find there are many evidences of high frequency episodic tremor like signals. This include an analysis of potential triggered

  6. The Favourable Choice of the Shape of Billet's Contact Surface to Quality of Extruded Aluminium Profiles

    Directory of Open Access Journals (Sweden)

    G. Skorulski


    Full Text Available The theoretical and experimental method of optimization the aluminium billet’s contact surface during extrusion have been presented inthis paper. The theoretical assumption, based on welding criteria, have been confirmed by experimental researches. The technique ofmeasurement has been shown as well. Experiments are made using plasticine as a substiute material. Some kind of different variants have been investigated. The theory and experiments have been provided to optimize the modeling shape and may help in design and technology.The theory has been tested experimentally using a plasticine as a substitute material and a plexiglass die such that the velocity fields at the surfaces could be observed and measured during plastic flow, allowing the empirical coefficients in the mathematical formulation to be estimated. On the basis of the theory and experiments an optimal billet’s contact surface was proposed.

  7. Polycyclic aromatic hydrocarbons in urban street dust and surface soil: comparisons of concentration, profile, and source. (United States)

    Wang, De-Gao; Yang, Meng; Jia, Hong-Liang; Zhou, Lei; Li, Yi-Fan


    Street dust and surface soil samples in urban areas of Dalian, a coastal city in Liaoning Province, China, were collected and analyzed for 25 polycyclic aromatic hydrocarbons (PAHs). The concentrations, distribution, and sources of PAHs in dust and soil were determined. The concentrations of total PAHs in street dust ranged between 1890 and 17,070 ng/g (dry weight), with an average of 7460 ng/g, whereas the concentrations