WorldWideScience

Sample records for surface silicon solar

  1. Surface etching technologies for monocrystalline silicon wafer solar cells

    Science.gov (United States)

    Tang, Muzhi

    With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.

  2. Study of double porous silicon surfaces for enhancement of silicon solar cell performance

    Science.gov (United States)

    Razali, N. S. M.; Rahim, A. F. A.; Radzali, R.; Mahmood, A.

    2017-09-01

    In this work, design and simulation of double porous silicon surfaces for enhancement of silicon solar cell is carried out. Both single and double porous structures are constructed by using TCAD ATHENA and TCAD DEVEDIT tools of the SILVACO software respectively. After the structures were created, I-V characteristics and spectral response of the solar cell were extracted using ATLAS device simulator. Finally, the performance of the simulated double porous solar cell is compared with the performance of both single porous and bulk-Si solar cell. The results showed that double porous silicon solar cell exhibited 1.8% efficiency compared to 1.3% and 1.2% for single porous silicon and bulk-Si solar cell.

  3. Nanolayer surface passivation schemes for silicon solar cells

    NARCIS (Netherlands)

    Dingemans, G.

    2011-01-01

    This thesis is concerned with nanolayer surface passivation schemes and corresponding deposition processes, for envisaged applications in crystalline silicon solar cells. Surface passivation, i.e. the reduction of electronic recombination processes at semiconductor surfaces, is essential for

  4. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  5. A high volume cost efficient production macrostructuring process. [for silicon solar cell surface treatment

    Science.gov (United States)

    Chitre, S. R.

    1978-01-01

    The paper presents an experimentally developed surface macro-structuring process suitable for high volume production of silicon solar cells. The process lends itself easily to automation for high throughput to meet low-cost solar array goals. The tetrahedron structure observed is 0.5 - 12 micron high. The surface has minimal pitting with virtually no or very few undeveloped areas across the surface. This process has been developed for (100) oriented as cut silicon. Chemi-etched, hydrophobic and lapped surfaces were successfully texturized. A cost analysis as per Samics is presented.

  6. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuang-Tung Cheng

    2010-01-01

    Full Text Available The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD. The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been discussed in this research. Using our optimal acid etching solution ratio, we are able to fabricate mc-Si solar cells of 16.34% conversion efficiency with double layers silicon nitride (Si3N4 coating. From our experiment, we find that depositing double layers silicon nitride coating on mc-Si solar cells can get the optimal performance parameters. Open circuit (Voc is 616 mV, short circuit current (Jsc is 34.1 mA/cm2, and minority carrier diffusion length is 474.16 μm. The isotropic texturing and silicon nitride layers coating approach contribute to lowering cost and achieving high efficiency in mass production.

  7. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  8. Low temperature surface passivation of crystalline silicon and its application to interdigitated back contact silicon heterojunction (ibc-shj) solar cell

    Science.gov (United States)

    Shu, Zhan

    With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRVSi surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental injection level dependent SRV curves of the stack passivated c-Si samples were successfully reproduced and

  9. High-efficient solar cells with porous silicon

    International Nuclear Information System (INIS)

    Migunova, A.A.

    2002-01-01

    It has been shown that the porous silicon is multifunctional high-efficient coating on silicon solar cells, modifies its surface and combines in it self antireflection and passivation properties., The different optoelectronic effects in solar cells with porous silicon were considered. The comparative parameters of uncovered photodetectors also solar cells with porous silicon and other coatings were resulted. (author)

  10. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  11. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    OpenAIRE

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Lee, William J.; Tsai, Song-Yeu; Lu, Yung-An; Liou, Jia-Jhe; Chang, Shun-Hsyung; Wang, Kang L.

    2010-01-01

    The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si) wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD). The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been d...

  12. Radiation resistant passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Swanson, R.M.; Gan, J.Y.; Gruenbaum, P.E.

    1991-01-01

    This patent describes a silicon solar cell having improved stability when exposed to concentrated solar radiation. It comprises a body of silicon material having a major surface for receiving radiation, a plurality of p and n conductivity regions in the body for collecting electrons and holes created by impinging radiation, and a passivation layer on the major surface including a first layer of silicon oxide in contact with the body and a polycrystalline silicon layer on the first layer of silicon oxide

  13. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe; Andrä, Gudrun [Leibniz-Institut für Photonische Technologien, PF 100239, 07702 Jena (Germany); Himmerlich, Marcel; Krischok, Stefan [Institut für Mikro-und Nanotechnologien, Technische Universität Ilmenau, PF 100565, 98684 Ilmenau (Germany)

    2016-01-28

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) or silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  14. Low cost silicon-on-ceramic photovoltaic solar cells

    Science.gov (United States)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  15. Modulated surface textures for enhanced scattering in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.; Battaglia, C.; Ballif, C.; Zeman, M.

    2012-01-01

    Nano-scale randomly textured front transparent oxides are superposed on micro-scale etched glass substrates to form modulated surface textures. The resulting enhanced light scattering is implemented in single and double junction thin-film silicon solar cells.

  16. Industrial Silicon Wafer Solar Cells

    OpenAIRE

    Neuhaus, Dirk-Holger; Münzer, Adolf

    2007-01-01

    In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future e...

  17. Inverted amorphous silicon solar cell utilizing cermet layers

    Science.gov (United States)

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  18. Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon

    International Nuclear Information System (INIS)

    Chen, H. Y.; Peng, Y.; Hong, M.; Zhang, Y. B.; Cai, Bin; Zhu, Y. M.; Yuan, G. D.; Zhang, Y.; Liu, Z. Q.; Wang, J. X.; Li, J. M.

    2014-01-01

    We report an enhanced conversion efficiency of femtosecond-laser treated silicon solar cells by surface modification of anisotropic-etching. The etching improves minority carrier lifetime inside modified black silicon area substantially; moreover, after the etching, an inverted pyramids/upright pyramids mixed texture surface is obtained, which shows better photon capturing capability than that of conventional pyramid texture. Combing of these two merits, the reformed solar cells show higher conversion efficiency than that of conventional pyramid textured cells. This work presents a way for fabricating high performance silicon solar cells, which can be easily applied to mass-production

  19. Fabricating solar cells with silicon nanoparticles

    Science.gov (United States)

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  20. Sunlight-thin nanophotonic monocrystalline silicon solar cells

    Science.gov (United States)

    Depauw, Valérie; Trompoukis, Christos; Massiot, Inès; Chen, Wanghua; Dmitriev, Alexandre; Cabarrocas, Pere Roca i.; Gordon, Ivan; Poortmans, Jef

    2017-09-01

    Introducing nanophotonics into photovoltaics sets the path for scaling down the surface texture of crystalline-silicon solar cells from the micro- to the nanoscale, allowing to further boost the photon absorption while reducing silicon material loss. However, keeping excellent electrical performance has proven to be very challenging, as the absorber is damaged by the nanotexturing and the sensitivity to the surface recombination is dramatically increased. Here we realize a light-wavelength-scale nanotextured monocrystalline silicon cell with the confirmed efficiency of 8.6% and an effective thickness of only 830 nm. For this we adopt a self-assembled large-area and industry-compatible amorphous ordered nanopatterning, combined with an advanced surface passivation, earning strongly enhanced solar light absorption while retaining efficient electron collection. This prompts the development of highly efficient flexible and semitransparent photovoltaics, based on the industrially mature monocrystalline silicon technology.

  1. Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%

    Science.gov (United States)

    Kim, Ki Hyung; Park, Chang Sub; Doo Lee, Jae; Youb Lim, Jong; Yeon, Je Min; Kim, Il Hwan; Lee, Eun Joo; Cho, Young Hyun

    2017-08-01

    We have achieved a record high cell efficiency of 20.29% for an industrial 6-in. p-type monocrystalline silicon solar cell with a full-area aluminum back surface field (Al-BSF) by simply modifying the cell structure and optimizing the process with the existing cell production line. The cell efficiency was independently confirmed by the Solar Energy Research Institute of Singapore (SERIS). To increase the cell efficiency, for example, in four busbars, double printing, a lightly doped emitter with a sheet resistance of 90 to 100 Ω/□, and front surface passivation by using silicon oxynitride (SiON) on top of a silicon nitride (SiN x ) antireflection layer were adopted. To optimize front side processing, PC1D simulation was carried out prior to cell fabrication. The resulting efficiency gain is 0.64% compared with that in the reference cells with three busbars, a single antireflection coating layer, and a low-sheet-resistance emitter.

  2. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    International Nuclear Information System (INIS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-01-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  3. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Derbali, L., E-mail: rayan.slat@yahoo.fr [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia); Ezzaouia, H. [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. Black-Right-Pointing-Pointer An efficient surface passivation can be obtained after thermal treatment of obtained films. Black-Right-Pointing-Pointer Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 Degree-Sign C. Vanadium pentoxide (V{sub 2}O{sub 5}) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 Degree-Sign C and 800 Degree-Sign C, under O{sub 2} atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  4. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2012-01-01

    Highlights: ► Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. ► An efficient surface passivation can be obtained after thermal treatment of obtained films. ► Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 °C. Vanadium pentoxide (V 2 O 5 ) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 °C and 800 °C, under O 2 atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  5. Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations

    International Nuclear Information System (INIS)

    Jiang Shuai; Jia Rui; Tao Ke; Hou Caixia; Sun Hengchao; Li Yongtao; Yu Zhiyong

    2017-01-01

    Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO 2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO 2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO 2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. (paper)

  6. Simulation and Optimization of Silicon Solar Cell Back Surface Field

    Directory of Open Access Journals (Sweden)

    Souad TOBBECHE

    2015-11-01

    Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9565

  7. Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells.

    Science.gov (United States)

    Lin, Wenjie; Wu, Weiliang; Liu, Zongtao; Qiu, Kaifu; Cai, Lun; Yao, Zhirong; Ai, Bin; Liang, Zongcun; Shen, Hui

    2018-04-25

    A high recombination rate and high thermal budget for aluminum (Al) back surface field are found in the industrial p-type silicon solar cells. Direct metallization on lightly doped p-type silicon, however, exhibits a large Schottky barrier for the holes on the silicon surface because of Fermi-level pinning effect. As a result, low-temperature-deposited, dopant-free chromium trioxide (CrO x , x solar cell as a hole-selective contact at the rear surface. By using 4 nm CrO x between the p-type silicon and Ag, we achieve a reduction of the contact resistivity for the contact of Ag directly on p-type silicon. For further improvement, we utilize a CrO x (2 nm)/Ag (30 nm)/CrO x (2 nm) multilayer film on the contact between Ag and p-type crystalline silicon (c-Si) to achieve a lower contact resistance (40 mΩ·cm 2 ). The low-resistivity Ohmic contact is attributed to the high work function of the uniform CrO x film and the depinning of the Fermi level of the SiO x layer at the silicon interface. Implementing the advanced hole-selective contacts with CrO x /Ag/CrO x on the p-type silicon solar cell results in a power conversion efficiency of 20.3%, which is 0.1% higher than that of the cell utilizing 4 nm CrO x . Compared with the commercialized p-type solar cell, the novel CrO x -based hole-selective transport material opens up a new possibility for c-Si solar cells using high-efficiency, low-temperature, and dopant-free deposition techniques.

  8. Industrial Silicon Wafer Solar Cells

    Directory of Open Access Journals (Sweden)

    Dirk-Holger Neuhaus

    2007-01-01

    Full Text Available In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future efficiency potential of this technology. In research and development, more various advanced solar cell concepts have demonstrated higher efficiencies. The question which arises is “why are new solar cell concepts not transferred into industrial production more frequently?”. We look into the requirements a new solar cell technology has to fulfill to have an advantage over the current approach. Finally, we give an overview of high-efficiency concepts which have already been transferred into industrial production.

  9. Application of porous silicon in solar cell

    Science.gov (United States)

    Maniya, Nalin H.; Ashokan, Jibinlal; Srivastava, Divesh N.

    2018-05-01

    Silicon is widely used in solar cell applications with over 95% of all solar cells produced worldwide composed of silicon. Nanostructured thin porous silicon (PSi) layer acting as anti-reflecting coating is used in photovoltaic solar cells due to its advantages including simple and low cost fabrication, highly textured surfaces enabling lowering of reflectance, controllability of thickness and porosity of layer, and high surface area. PSi layers have previously been reported to reduce the reflection of light and replaced the conventional anti-reflective coating layers on solar cells. This can essentially improve the efficiency and decrease the cost of silicon solar cells. Here, we investigate the reflectance of different PSi layers formed by varying current density and etching time. PSi layers were formed by a combination of current density including 60 and 80 mA/cm2 and time for fabrication as 2, 4, 6, and 8 seconds. The fabricated PSi layers were characterized using reflectance spectroscopy and field emission scanning electron microscopy. Thickness and pore size of PSi layer were increased with increase in etching time and current density, respectively. The reflectance of PSi layers was decreased with increase in etching time until 6 seconds and increased again after 6 seconds, which was observed across both the current density. Reduction in reflectance indicates the increase of absorption of light by silicon due to the thin PSi layer. In comparison with the reflectance of silicon wafer, PSi layer fabricated at 80 mA/cm2 for 6 seconds gave the best result with reduction in reflectance up to 57%. Thus, the application of PSi layer as an effective anti-reflecting coating for the fabrication of solar cell has been demonstrated.

  10. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  11. Optoelectronic enhancement of monocrystalline silicon solar cells by porous silicon-assisted mechanical grooving

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, Mohamed; Mohamed, Seifeddine Belhadj; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-03-15

    One of the most important factors influencing silicon solar cells performances is the front side reflectivity. Consequently, new methods for efficient reduction of this reflectivity are searched. This has always been done by creating a rough surface that enables incident light of being absorbed within the solar cell. Combination of texturization-porous silicon surface treatment was found to be an attractive technical solution for lowering the reflectivity of monocrystalline silicon (c-Si). The texturization of the monocrystalline silicon wafer was carried out by means of mechanical grooving. A specific etching procedure was then applied to form a thin porous silicon layer enabling to remove mechanical damages. This simple and low cost method reduces the total reflectivity from 29% to 7% in the 300 - 950 nm wavelength range and enhances the diffusion length of the minority carriers from 100 {mu}m to 790 {mu}m (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Phosphorus-doped Amorphous Silicon Nitride Films Applied to Crystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Feinäugle, Matthias

    2008-01-01

    The Photovoltaics Group at the Universitat Politècnica de Catalunya is investigating silicon carbide (SiC) for the electronic passivation of the surface of crystalline silicon solar cells. The doping of SiC passivation layers with phosphorus resulted in a clear improvement of the minority carrier

  13. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  14. Key Success Factors and Future Perspective of Silicon-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    S. Binetti

    2013-01-01

    Full Text Available Today, after more than 70 years of continued progress on silicon technology, about 85% of cumulative installed photovolatic (PV modules are based on crystalline silicon (c-Si. PV devices based on silicon are the most common solar cells currently being produced, and it is mainly due to silicon technology that the PV has grown by 40% per year over the last decade. An additional step in the silicon solar cell development is ongoing, and it is related to a further efficiency improvement through defect control, device optimization, surface modification, and nanotechnology approaches. This paper attempts to briefly review the most important advances and current technologies used to produce crystalline silicon solar devices and in the meantime the most challenging and promising strategies acting to increase the efficiency to cost/ratio of silicon solar cells. Eventually, the impact and the potentiality of using a nanotechnology approach in a silicon-based solar cell are also described.

  15. Elite silicon and solar power

    International Nuclear Information System (INIS)

    Yasamanov, N.A.

    2000-01-01

    The article is of popular character, the following issues being considered: conversion of solar energy into electric one, solar batteries in space and on the Earth, growing of silicon large-size crystals, source material problems relating to silicon monocrystals production, outlooks of solar silicon batteries production [ru

  16. Molecular Monolayers for Electrical Passivation and Functionalization of Silicon-Based Solar Energy Devices.

    Science.gov (United States)

    Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan

    2017-01-11

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.

  17. Black Silicon formation using dry etching for solar cells applications

    International Nuclear Information System (INIS)

    Murias, D.; Reyes-Betanzo, C.; Moreno, M.; Torres, A.; Itzmoyotl, A.; Ambrosio, R.; Soriano, M.; Lucas, J.; Cabarrocas, P. Roca i

    2012-01-01

    A study on the formation of Black Silicon on crystalline silicon surface using SF 6 /O 2 and SF 6 /O 2 /CH 4 based plasmas in a reactive ion etching (RIE) system is presented. The effect of the RF power, chamber pressure, process time, gas flow rates, and gas mixtures on the texture of silicon surface has been analyzed. Completely Black Silicon surfaces containing pyramid like structures have been obtained, using an optimized mask-free plasma process. Moreover, the Black Silicon surfaces have demonstrated average values of 1% and 4% for specular and diffuse reflectance respectively, feature that is suitable for the fabrication of low cost solar cells.

  18. Tantalum Nitride Electron-Selective Contact for Crystalline Silicon Solar Cells

    KAUST Repository

    Yang, Xinbo

    2018-04-19

    Minimizing carrier recombination at contact regions by using carrier‐selective contact materials, instead of heavily doping the silicon, has attracted considerable attention for high‐efficiency, low‐cost crystalline silicon (c‐Si) solar cells. A novel electron‐selective, passivating contact for c‐Si solar cells is presented. Tantalum nitride (TaN x ) thin films deposited by atomic layer deposition are demonstrated to provide excellent electron‐transporting and hole‐blocking properties to the silicon surface, due to their small conduction band offset and large valence band offset. Thin TaNx interlayers provide moderate passivation of the silicon surfaces while simultaneously allowing a low contact resistivity to n‐type silicon. A power conversion efficiency (PCE) of over 20% is demonstrated with c‐Si solar cells featuring a simple full‐area electron‐selective TaNx contact, which significantly improves the fill factor and the open circuit voltage (Voc) and hence provides the higher PCE. The work opens up the possibility of using metal nitrides, instead of metal oxides, as carrier‐selective contacts or electron transport layers for photovoltaic devices.

  19. Study on the fabrication of back surface reflectors in nano-crystalline silicon thin-film solar cells by using random texturing aluminum anodization

    Science.gov (United States)

    Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.

    2015-09-01

    In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The

  20. Enhancement in photovoltaic properties of silicon solar cells by surface plasmon effect of palladium nanoparticles

    Science.gov (United States)

    Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem

    2016-04-01

    This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.

  1. Low surface damage dry etched black silicon

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym M.; Gaudig, Maria; Davidsen, Rasmus Schmidt

    2017-01-01

    Black silicon (bSi) is promising for integration into silicon solar cell fabrication flow due to its excellent light trapping and low reflectance, and a continuously improving passivation. However, intensive ion bombardment during the reactive ion etching used to fabricate bSi induces surface dam...

  2. Fabricating 40 µm-thin silicon solar cells with different orientations by using SLiM-cut method

    Science.gov (United States)

    Wang, Teng-Yu; Chen, Chien-Hsun; Shiao, Jui-Chung; Chen, Sung-Yu; Du, Chen-Hsun

    2017-10-01

    Thin silicon foils with different crystal orientations were fabricated using the stress induced lift-off (SLiM-cut) method. The thickness of the silicon foils was approximately 40 µm. The ≤ft foil had a smoother surface than the ≤ft foil. With surface passivation, the minority carrier lifetimes of the ≤ft and ≤ft silicon foil were 1.0 µs and 1.6 µs, respectively. In this study, 4 cm2-thin silicon solar cells with heterojunction structures were fabricated. The energy conversion efficiencies were determined to be 10.74% and 14.74% for the ≤ft and ≤ft solar cells, respectively. The surface quality of the silicon foils was determined to affect the solar cell character. This study demonstrated that fabricating the solar cell by using silicon foil obtained from the SLiM-cut method is feasible.

  3. Engineered porous silicon counter electrodes for high efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Erwin, William R; Oakes, Landon; Chatterjee, Shahana; Zarick, Holly F; Pint, Cary L; Bardhan, Rizia

    2014-06-25

    In this work, we demonstrate for the first time, the use of porous silicon (P-Si) as counter electrodes in dye-sensitized solar cells (DSSCs) with efficiencies (5.38%) comparable to that achieved with platinum counter electrodes (5.80%). To activate the P-Si for triiodide reduction, few layer carbon passivation is utilized to enable electrochemical stability of the silicon surface. Our results suggest porous silicon as a promising sustainable and manufacturable alternative to rare metals for electrochemical solar cells, following appropriate surface modification.

  4. Optimization of the Surface Structure on Black Silicon for Surface Passivation.

    Science.gov (United States)

    Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing

    2017-12-01

    Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al 2 O 3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH 4 OH/H 2 O 2 /H 2 O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.

  5. Dry Phosphorus silicate glass etching and surface conditioning and cleaning for multi-crystalline silicon solar cell processing

    International Nuclear Information System (INIS)

    Kagilik, Ahmed S.

    2014-01-01

    As an alternative to the wet chemical etching method, dry chemical etching processes for Phosphorus silicate glass [PSG} layer removal using Trifluormethane/Sulfur Hexafluoride (CHF 3 / SF 6 ) gas mixture in commercial silicon-nitride plasma enhanced chemical vapour deposition (SiN-PECVD) system is applied. The dependence of the solar cell performance on the etching temperature is investigated and optimized. It is found that the SiN-PECVD system temperature variation has a significant impact on the whole solar cell characteristics. A dry plasma cleaning treatment of the Si wafer surface after the PSG removal step is also investigated and developed. The cleaning step is used to remove the polymer film which is formed during the PSG etching using both oxygen and hydrogen gases. By applying an additional cleaning step, the polymer film deposited on the silicon wafer surface after PSG etching is eliminated. The effect of different plasma cleaning conditions on solar cell performance is investigated. After optimization of the plasma operating conditions, the performance of the solar cell is improved and the overall gain in efficiency of 0.6% absolute is yielded compared to a cell without any further cleaning step. On the other hand, the best solar cell characteristics can reach values close to that achieved by the conventional wet chemical etching processes demonstrating the effectiveness of the additional O 2 /H 2 post cleaning treatment.(author)

  6. Extrinsic passivation of silicon surfaces for solar cells

    OpenAIRE

    Bonilla, R.S.; Reichel, C.; Hermle, M.; Martins, G.; Wilshaw, P.R.

    2015-01-01

    In the present work we study the extent to which extrinsic chemical and field effect passivation can improve the overall electrical passivation quality of silicon dioxide on silicon. Here we demonstrate that, when optimally applied, extrinsic passivation can produce surface recombination velocities below 1.2 cm/s in planar 1 Omega cm n-type Si. This is largely due to the additional field effect passivation component which reduces the recombination velocity below 2.13 cm/s. On textured surface...

  7. Silicon nanowire-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Stelzner, Th; Pietsch, M; Andrae, G; Falk, F; Ose, E; Christiansen, S [Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena (Germany)], E-mail: thomas.stelzner@ipht-jena.de

    2008-07-23

    The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm{sup 2} open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm{sup -2} were obtained.

  8. Silicon nanowire-based solar cells

    International Nuclear Information System (INIS)

    Stelzner, Th; Pietsch, M; Andrae, G; Falk, F; Ose, E; Christiansen, S

    2008-01-01

    The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm 2 open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm -2 were obtained

  9. Performance comparison between silicon solar panel and dye-sensitized solar panel in Malaysia

    Science.gov (United States)

    Hamed, N. K. A.; Ahmad, M. K.; Urus, N. S. T.; Mohamad, F.; Nafarizal, N.; Ahmad, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.

    2017-09-01

    In carrying out experimental research in performance between silicon solar panel and dye-sensitive solar panel, we have been developing a device and a system. This system has been developed consisting of controllers, hardware and software. This system is capable to get most of the input sources. If only need to change the main circuit and coding for a different source input value. This device is able to get the ambient temperature, surface temperature, surrounding humidity, voltage with load, current with load, voltage without load and current without load and save the data into external memory. This device is able to withstand the heat and rain as it was fabricated in a waterproof box. This experiment was conducted to examine the performance of both the solar panels which are capable to maintain their stability and performance. A conclusion based on data populated, the distribution of data for dye-sensitized solar panel is much better than silicon solar panel as dye-sensitized solar panel is very sensitive to heat and not depend only on midday where is that is the maximum ambient temperature for both solar panel as silicon solar panel only can give maximum and high output only when midday.

  10. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    Science.gov (United States)

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  11. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martini, R., E-mail: roberto.martini@imec.be [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Kepa, J.; Stesmans, A. [Department of Physics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Poortmans, J. [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt (Belgium)

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  12. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    International Nuclear Information System (INIS)

    Martini, R.; Kepa, J.; Stesmans, A.; Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I.; Poortmans, J.

    2014-01-01

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  13. Crystalline Silicon Solar Cells with Thin Silicon Passivation Film Deposited prior to Phosphorous Diffusion

    Directory of Open Access Journals (Sweden)

    Ching-Tao Li

    2014-01-01

    Full Text Available We demonstrate the performance improvement of p-type single-crystalline silicon (sc-Si solar cells resulting from front surface passivation by a thin amorphous silicon (a-Si film deposited prior to phosphorus diffusion. The conversion efficiency was improved for the sample with an a-Si film of ~5 nm thickness deposited on the front surface prior to high-temperature phosphorus diffusion, with respect to the samples with an a-Si film deposited on the front surface after phosphorus diffusion. The improvement in conversion efficiency is 0.4% absolute with respect to a-Si film passivated cells, that is, the cells with an a-Si film deposited on the front surface after phosphorus diffusion. The new technique provided a 0.5% improvement in conversion efficiency compared to the cells without a-Si passivation. Such performance improvements result from reduced surface recombination as well as lowered contact resistance, the latter of which induces a high fill factor of the solar cell.

  14. Efficiency Enhancement of Silicon Solar Cells by Porous Silicon Technology

    Directory of Open Access Journals (Sweden)

    Eugenijus SHATKOVSKIS

    2012-09-01

    Full Text Available Silicon solar cells produced by a usual technology in p-type, crystalline silicon wafer were investigated. The manufactured solar cells were of total thickness 450 mm, the junction depth was of 0.5 mm – 0.7 mm. Porous silicon technologies were adapted to enhance cell efficiency. The production of porous silicon layer was carried out in HF: ethanol = 1 : 2 volume ratio electrolytes, illuminating by 50 W halogen lamps at the time of processing. The etching current was computer-controlled in the limits of (6 ÷ 14 mA/cm2, etching time was set in the interval of (10 ÷ 20 s. The characteristics and performance of the solar cells samples was carried out illuminating by Xenon 5000 K lamp light. Current-voltage characteristic studies have shown that porous silicon structures produced affect the extent of dark and lighting parameters of the samples. Exactly it affects current-voltage characteristic and serial resistance of the cells. It has shown, the formation of porous silicon structure causes an increase in the electric power created of solar cell. Conversion efficiency increases also respectively to the initial efficiency of cell. Increase of solar cell maximum power in 15 or even more percent is found. The highest increase in power have been observed in the spectral range of Dl @ (450 ÷ 850 nm, where ~ 60 % of the A1.5 spectra solar energy is located. It has been demonstrated that porous silicon technology is effective tool to improve the silicon solar cells performance.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2428

  15. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    Directory of Open Access Journals (Sweden)

    Yulong Zhang

    2018-05-01

    Full Text Available High performance silicon combined structure (micropillar with Cu nanoparticles solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  16. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    Science.gov (United States)

    Zhang, Yulong; Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Jiang, Zhaoyi; Ma, Denghao

    2018-05-01

    High performance silicon combined structure (micropillar with Cu nanoparticles) solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  17. Silicon Solar Cell Process Development, Fabrication and Analysis, Phase 1

    Science.gov (United States)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1979-01-01

    Solar cells from RTR ribbons, EFG (RF and RH) ribbons, dendritic webs, Silso wafers, cast silicon by HEM, silicon on ceramic, and continuous Czochralski ingots were fabricated using a standard process typical of those used currently in the silicon solar cell industry. Back surface field (BSF) processing and other process modifications were included to give preliminary indications of possible improved performance. The parameters measured included open circuit voltage, short circuit current, curve fill factor, and conversion efficiency (all taken under AM0 illumination). Also measured for typical cells were spectral response, dark I-V characteristics, minority carrier diffusion length, and photoresponse by fine light spot scanning. the results were compared to the properties of cells made from conventional single crystalline Czochralski silicon with an emphasis on statistical evaluation. Limited efforts were made to identify growth defects which will influence solar cell performance.

  18. Graphene Quantum Dot Layers with Energy-Down-Shift Effect on Crystalline-Silicon Solar Cells.

    Science.gov (United States)

    Lee, Kyung D; Park, Myung J; Kim, Do-Yeon; Kim, Soo M; Kang, Byungjun; Kim, Seongtak; Kim, Hyunho; Lee, Hae-Seok; Kang, Yoonmook; Yoon, Sam S; Hong, Byung H; Kim, Donghwan

    2015-09-02

    Graphene quantum dot (GQD) layers were deposited as an energy-down-shift layer on crystalline-silicon solar cell surfaces by kinetic spraying of GQD suspensions. A supersonic air jet was used to accelerate the GQDs onto the surfaces. Here, we report the coating results on a silicon substrate and the GQDs' application as an energy-down-shift layer in crystalline-silicon solar cells, which enhanced the power conversion efficiency (PCE). GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density was enhanced by about 2.94% (0.9 mA/cm(2)) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  19. Surface Passivation and Antireflection Behavior of ALD on n-Type Silicon for Solar Cells

    Directory of Open Access Journals (Sweden)

    Ing-Song Yu

    2013-01-01

    Full Text Available Atomic layer deposition, a method of excellent step coverage and conformal deposition, was used to deposit TiO2 thin films for the surface passivation and antireflection coating of silicon solar cells. TiO2 thin films deposited at different temperatures (200°C, 300°C, 400°C, and 500°C on FZ n-type silicon wafers are in the thickness of 66.4 nm ± 1.1 nm and in the form of self-limiting growth. For the properties of surface passivation, Si surface is effectively passivated by the 200°C deposition TiO2 thin film. Its effective minority carrier lifetime, measured by the photoconductance decay method, is improved 133% at the injection level of  cm−3. Depending on different deposition parameters and annealing processes, we can control the crystallinity of TiO2 and find low-temperature TiO2 phase (anatase better passivation performance than the high-temperature one (rutile, which is consistent with the results of work function measured by Kelvin probe. In addition, TiO2 thin films on polished Si wafer serve as good ARC layers with refractive index between 2.13 and 2.44 at 632.8 nm. Weighted average reflectance at AM1.5G reduces more than half after the deposition of TiO2. Finally, surface passivation and antireflection properties of TiO2 are stable after the cofire process of conventional crystalline Si solar cells.

  20. UV radiation hardness of silicon inversion layer solar cells

    International Nuclear Information System (INIS)

    Hezel, R.

    1990-01-01

    For full utilization of the high spectral response of inversion layer solar cells in the very-short-wavelength range of the solar spectrum sufficient ultraviolet-radiation hardness is required. In addition to the charge-induced passivation achieved by cesium incorporation into the silicon nitride AR coating, in this paper the following means for further drastic reduction of UV light-induced effects in inversion layer solar cells without encapsulation are introduced and interpretations are given: increasing the nitride deposition temperature, silicon surface oxidation at low temperatures, and texture etching and using higher substrate resistivities. High UV radiation tolerance and improvement of the cell efficiency could be obtained simultaneously

  1. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  2. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cudzinovic, M.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  3. Amorphous silicon passivation for 23.3% laser processed back contact solar cells

    Science.gov (United States)

    Carstens, Kai; Dahlinger, Morris; Hoffmann, Erik; Zapf-Gottwick, Renate; Werner, Jürgen H.

    2017-08-01

    This paper presents amorphous silicon deposited at temperatures below 200 °C, leading to an excellent passivation layer for boron doped emitter and phosphorus doped back surface field areas in interdigitated back contact solar cells. A higher deposition temperature degrades the passivation of the boron emitter by an increased hydrogen effusion due to lower silicon hydrogen bond energy, proved by hydrogen effusion measurements. The high boron surface doping in crystalline silicon causes a band bending in the amorphous silicon. Under these conditions, at the interface, the intentionally undoped amorphous silicon becomes p-type conducting, with the consequence of an increased dangling bond defect density. For bulk amorphous silicon this effect is described by the defect pool model. We demonstrate, that the defect pool model is also applicable to the interface between amorphous and crystalline silicon. Our simulation shows the shift of the Fermi energy towards the valence band edge to be more pronounced for high temperature deposited amorphous silicon having a small bandgap. Application of optimized amorphous silicon as passivation layer for the boron doped emitter and phosphorus doped back surface field on the rear side of laser processed back contact solar cells, fabricated using four laser processing steps, yields an efficiency of 23.3%.

  4. Comparison of Light Trapping in Silicon Nanowire and Surface Textured Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Rion Parsons

    2017-04-01

    Full Text Available The optics of axial silicon nanowire solar cells is investigated and compared to silicon thin-film solar cells with textured contact layers. The quantum efficiency and short circuit current density are calculated taking a device geometry into account, which can be fabricated by using standard semiconductor processing. The solar cells with textured absorber and textured contact layers provide a gain of short circuit current density of 4.4 mA/cm2 and 6.1 mA/cm2 compared to a solar cell on a flat substrate, respectively. The influence of the device dimensions on the quantum efficiency and short circuit current density will be discussed.

  5. Alloyed Aluminum Contacts for Silicon Solar Cells

    International Nuclear Information System (INIS)

    Tin Tin Aye

    2010-12-01

    Aluminium is usually deposited and alloyed at the back of p-p silicon solar cell for making a good ohmic contact and establishing a back electric field which avoids carrier recombination of the back surface. It was the deposition of aluminum on multicrystalline silicon (mc-Si) substrate at various annealing temperature. Physical and elemental analysis was carried out by using scanning electron microscopy (SEM) and X-rays diffraction (XRD). The electrical (I-V) characteristic of the photovoltaic cell was also measured.

  6. Electrical properties improvement of multicrystalline silicon solar cells using a combination of porous silicon and vanadium oxide treatment

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2013-01-01

    In this paper, we will report the enhancement of the conversion efficiency of multicrystalline silicon solar cells after coating the front surface with a porous silicon layer treated with vanadium oxide. The incorporation of vanadium oxide into the porous silicon (PS) structure, followed by a thermal treatment under oxygen ambient, leads to an important decrease of the surface reflectivity, a significant enhancement of the effective minority carrier lifetime (τ eff ) and a significant enhancement of the photoluminescence (PL) of the PS structure. We Obtained a noticeable increase of (τ eff ) from 3.11 μs to 134.74 μs and the surface recombination velocity (S eff ) have decreased from 8441 cm s −1 to 195 cm s −1 . The reflectivity spectra of obtained films, performed in the 300–1200 nm wavelength range, show an important decrease of the average reflectivity from 40% to 5%. We notice a significant improvement of the internal quantum efficiency (IQE) in the used multicrystalline silicon substrates. Results are analyzed and compared to those carried out on a reference (untreated) sample. The electrical properties of the treated silicon solar cells were improved noticeably as regard to the reference (untreated) sample.

  7. Passivated emitters in silicon solar cells

    International Nuclear Information System (INIS)

    King, R.R.; Gruenbaum, P.E.; Sinton, R.A.; Swanson, R.M.

    1990-01-01

    In high-efficiency silicon solar cells with low metal contact coverage fractions and high bulk lifetimes, cell performance is often dominated by recombination in the oxide-passivated diffusions on the cell surface. Measurements of the emitter saturation current density, J o , of oxide-passivated, boron and phosphorus diffusions are presented, and from these measurements, the dependence of surface recombination velocity on dopant concentration was extracted. The lowest observed values of J o which are stable under UV light are given for both boron- and phosphorus-doped, oxide-passivated diffusions, for both textured and untextured surfaces. Contour plots which incorporate the above data have been applied to two types of backside-contact solar cells with large area (37.5 cm 2 ) and one-sun efficiencies up to 22.7%

  8. Silicon web process development. [for low cost solar cells

    Science.gov (United States)

    Duncan, C. S.; Hopkins, R. H.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, a single crystal ribbon shaped during growth by crystallographic forces and surface tension (rather than dies), is a highly promising base material for efficient low cost solar cells. The form of the product smooth, flexible strips 100 to 200 microns thick, conserves expensive silicon and facilitates automation of crystal growth and the subsequent manufacturing of solar cells. These characteristics, coupled with the highest demonstrated ribbon solar cell efficiency-15.5%-make silicon web a leading candidate to achieve, or better, the 1986 Low Cost Solar Array (LSA) Project cost objective of 50 cents per peak watt of photovoltaic output power. The main objective of the Web Program, technology development to significantly increase web output rate, and to show the feasibility for simultaneous melt replenishment and growth, have largely been accomplished. Recently, web output rates of 23.6 sq cm/min, nearly three times the 8 sq cm/min maximum rate of a year ago, were achieved. Webs 4 cm wide or greater were grown on a number of occassions.

  9. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  10. Solar cells with gallium phosphide/silicon heterojunction

    Science.gov (United States)

    Darnon, Maxime; Varache, Renaud; Descazeaux, Médéric; Quinci, Thomas; Martin, Mickaël; Baron, Thierry; Muñoz, Delfina

    2015-09-01

    One of the limitations of current amorphous silicon/crystalline silicon heterojunction solar cells is electrical and optical losses in the front transparent conductive oxide and amorphous silicon layers that limit the short circuit current. We propose to grow a thin (5 to 20 nm) crystalline Gallium Phosphide (GaP) by epitaxy on silicon to form a more transparent and more conducting emitter in place of the front amorphous silicon layers. We show that a transparent conducting oxide (TCO) is still necessary to laterally collect the current with thin GaP emitter. Larger contact resistance of GaP/TCO increases the series resistance compared to amorphous silicon. With the current process, losses in the IR region associated with silicon degradation during the surface preparation preceding GaP deposition counterbalance the gain from the UV region. A first cell efficiency of 9% has been obtained on ˜5×5 cm2 polished samples.

  11. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  12. Wide-bandgap epitaxial heterojunction windows for silicon solar cells

    Science.gov (United States)

    Landis, Geoffrey A.; Loferski, Joseph J.; Beaulieu, Roland; Sekula-Moise, Patricia A.; Vernon, Stanley M.

    1990-01-01

    It is shown that the efficiency of a solar cell can be improved if minority carriers are confined by use of a wide-bandgap heterojunction window. For silicon (lattice constant a = 5.43 A), nearly lattice-matched wide-bandgap materials are ZnS (a = 5.41 A) and GaP (a = 5.45 A). Isotype n-n heterojuntions of both ZnS/Si and GaP/Si were grown on silicon n-p homojunction solar cells. Successful deposition processes used were metalorganic chemical vapor deposition (MO-CVD) for GaP and ZnS, and vacuum evaporation of ZnS. Planar (100) and (111) and texture-etched - (111)-faceted - surfaces were used. A decrease in minority-carrier surface recombination compared to a bare surface was seen from increased short-wavelength spectral response, increased open-circuit voltage, and reduced dark saturation current, with no degradation of the minority carrier diffusion length.

  13. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2016-05-01

    Full Text Available Plasmonic metal nanoparticles supporting localized surface plasmon resonances have attracted a great deal of interest in boosting the light absorption in solar cells. Among the various plasmonic materials, the aluminium nanoparticles recently have become a rising star due to their unique ultraviolet plasmonic resonances, low cost, earth-abundance and high compatibility with the complementary metal-oxide semiconductor (CMOS manufacturing process. Here, we report some key factors that determine the light incoupling of aluminium nanoparticles located on the front side of silicon solar cells. We first numerically study the scattering and absorption properties of the aluminium nanoparticles and the influence of the nanoparticle shape, size, surface coverage and the spacing layer on the light incoupling using the finite difference time domain method. Then, we experimentally integrate 100-nm aluminium nanoparticles on the front side of silicon solar cells with varying silicon nitride thicknesses. This study provides the fundamental insights for designing aluminium nanoparticle-based light trapping on solar cells.

  14. Tunnel Oxides Formed by Field-Induced Anodisation for Passivated Contacts of Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Jingnan Tong

    2018-02-01

    Full Text Available Tunnel silicon oxides form a critical component for passivated contacts for silicon solar cells. They need to be sufficiently thin to allow carriers to tunnel through and to be uniform both in thickness and stoichiometry across the silicon wafer surface, to ensure uniform and low recombination velocities if high conversion efficiencies are to be achieved. This paper reports on the formation of ultra-thin silicon oxide layers by field-induced anodisation (FIA, a process that ensures uniform oxide thickness by passing the anodisation current perpendicularly through the wafer to the silicon surface that is anodised. Spectroscopical analyses show that the FIA oxides contain a lower fraction of Si-rich sub-oxides compared to wet-chemical oxides, resulting in lower recombination velocities at the silicon and oxide interface. This property along with its low temperature formation highlights the potential for FIA to be used to form low-cost tunnel oxide layers for passivated contacts of silicon solar cells.

  15. The use of electro-deoxidation in molten salts to reduce the energy consumption of solar grade silicon and increase the output of PV solar cells

    Directory of Open Access Journals (Sweden)

    Paul R. Coxon

    2015-12-01

    Full Text Available Solar photovoltaics, based upon silicon, are the most popular form of solar cell with efficiencies around 20%. These efficiencies can be further increased by employing light trapping schemes to minimise optical losses through scattering and reflection which enhances the amount of light absorbed and number of photo-carriers generated. Typical approaches employ antireflection coatings (ARCs or texturise the surface of the silicon disks, so that the structure consists of an array of needles which can absorb most of the light. Usually, these structures are created by leaching the silicon with hydrofluoric-based acids or by reactive ion etching (RIE methods. This paper reviews some of the methods for improving the energy efficiency of silicon production, and describes the use of electro-deoxidation of SiO2 layers, on silicon, in molten calcium chloride to form nano-porous black silicon (b-Si structures. By coating b-Si surface with TiO2, a common ARC, extremely black surfaces with negligible reflectance of about 0.1%, are produced, which can have applications for low-cost high efficiency solar cells.

  16. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  17. Investigation of Near-Surface Defects Induced by Spike Rapid Thermal Annealing in c-SILICON Solar Cells

    Science.gov (United States)

    Liu, Guodong; Ren, Pan; Zhang, Dayong; Wang, Weiping; Li, Jianfeng

    2016-01-01

    The defects induced by a spike rapid thermal annealing (RTA) process in crystalline silicon (c-Si) solar cells were investigated by the photoluminescence (PL) technique and the transmission electron microscopy (TEM), respectively. Dislocation defects were found to form in the near-surface junction region of the monocrystalline Si solar cell after a spike RTA process was performed at 1100∘C. Photo J-V characteristics were measured on the Si solar cell before and after the spike RTA treatments to reveal the effects of defects on the Si cell performances. In addition, the Silvaco device simulation program was used to study the effects of defects density on the cell performances by fitting the experimental data of RTA-treated cells. The results demonstrate that there was an obvious degradation in the Si solar cell performances when the defect density after the spike RTA treatment was above 1×1013cm-3.

  18. Challenges in amorphous silicon solar cell technology

    NARCIS (Netherlands)

    Swaaij, van R.A.C.M.M.; Zeman, M.; Korevaar, B.A.; Smit, C.; Metselaar, J.W.; Sanden, van de M.C.M.

    2000-01-01

    Hydrogenated amorphous silicon is nowadays extensively used for a range of devices, amongst others solar cells, Solar cell technology has matured over the last two decades and resulted in conversion efficiencies in excess of 15%. In this paper the operation of amorphous silicon solar cells is

  19. Relation of lifetime to surface passivation for atomic-layer-deposited Al2O3 on crystalline silicon solar cell

    International Nuclear Information System (INIS)

    Cho, Young Joon; Song, Hee Eun; Chang, Hyo Sik

    2015-01-01

    Highlights: • We investigated the relation of potassium contamination on Si solar wafer to lifetime. • We deposited Al 2 O 3 layer by atomic layer deposition (ALD) on Si solar wafer after several cleaning process. • Potassium can be left on Si surface by incomplete cleaning process and degrade the Al 2 O 3 passivation quality. - Abstract: We investigated the relation of potassium contamination on a crystalline silicon (c-Si) surface after potassium hydroxide (KOH) etching to the lifetime of the c-Si solar cell. Alkaline solution was employed for saw damage removal (SDR), texturing, and planarization of a textured c-Si solar wafer prior to atomic layer deposition (ALD) Al 2 O 3 growth. In the solar-cell manufacturing process, ALD Al 2 O 3 passivation is utilized to obtain higher conversion efficiency. ALD Al 2 O 3 shows excellent surface passivation, though minority carrier lifetime varies with cleaning conditions. In the present study, we investigated the relation of potassium contamination to lifetime in solar-cell processing. The results showed that the potassium-contaminated samples, due to incomplete cleaning of KOH, had a short lifetime, thus establishing that residual potassium can degrade Al 2 O 3 surface passivation

  20. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    International Nuclear Information System (INIS)

    Li, Da; Kunz, Thomas; Wolf, Nadine; Liebig, Jan Philipp; Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard; Göken, Mathias; Brabec, Christoph J.

    2015-01-01

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm 2 aperture area on the graphite substrate. The optical properties of the SiN x /a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN x /a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN x /a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance

  1. Light-induced performance increase of silicon heterojunction solar cells

    KAUST Repository

    Kobayashi, Eiji; De Wolf, Stefaan; Levrat, Jacques; Christmann, Gabriel; Descoeudres, Antoine; Nicolay, Sylvain; Despeisse, Matthieu; Watabe, Yoshimi; Ballif, Christophe

    2016-01-01

    Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si:H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si:H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented.

  2. Light-induced performance increase of silicon heterojunction solar cells

    KAUST Repository

    Kobayashi, Eiji

    2016-10-11

    Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si:H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si:H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented.

  3. Combination of silicon nitride and porous silicon induced optoelectronic features enhancement of multicrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, Mohamed Ben; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-06-15

    The effects of antireflection (ARC) and surface passivation films on optoelectronic features of multicrystalline silicon (mc-Si) were investigated in order to perform high efficiency solar cells. A double layer consisting of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride (SiN{sub x}) on porous silicon (PS) was achieved on mc-Si surfaces. It was found that this treatment decreases the total surface reflectivity from about 25% to around 6% in the 450-1100 nm wavelength range. As a result, the effective minority carrier diffusion length, estimated from the Laser-beam-induced current (LBIC) method, was found to increase from 312 {mu}m for PS-treated cells to about 798 {mu}m for SiN{sub x}/PS-treated ones. The deposition of SiN{sub x} was found to impressively enhance the minority carrier diffusion length probably due to hydrogen passivation of surface, grain boundaries and bulk defects. Fourier Transform Infrared Spectroscopy (FTIR) shows that the vibration modes of the highly suitable passivating Si-H bonds exhibit frequency shifts toward higher wavenumber, depending on the x ratio of the introduced N atoms neighbors. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  5. Plasma texturing on large-area industrial grade CZ silicon solar cells

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Nordseth, Ørnulf; Schmidt, Michael Stenbæk

    2013-01-01

    We report on an experimental study of nanostructuring of silicon solar cells using reactive ion etching (RIE). A simple mask-less, scalable RIE nanostructuring of the solar cell surface is shown to reduce the AM1.5-weighted average reflectance to a level below 1 % in a fully optimized RIE texturi...

  6. Dry Etch Black Silicon with Low Surface Damage: Effect of Low Capacitively Coupled Plasma Power

    DEFF Research Database (Denmark)

    Iandolo, Beniamino; Plakhotnyuk, Maksym; Gaudig, Maria

    2017-01-01

    Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we pr...... carrier lifetime thanks to reduced ion energy. Surface passivation using atomic layer deposition of Al2O3 improves the effective lifetime to 7.5 ms and 0.8 ms for black silicon n- and p-type wafers, respectively.......Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we...... present a RIE optimization leading to reduced surface damage while retaining excellent light trapping and low reflectivity. In particular, we demonstrate that the reduction of the capacitively coupled power during reactive ion etching preserves a reflectance below 1% and improves the effective minority...

  7. A review of recent progress in heterogeneous silicon tandem solar cells

    Science.gov (United States)

    Yamaguchi, Masafumi; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki

    2018-04-01

    Silicon solar cells are the most established solar cell technology and are expected to dominate the market in the near future. As state-of-the-art silicon solar cells are approaching the Shockley-Queisser limit, stacking silicon solar cells with other photovoltaic materials to form multi-junction devices is an obvious pathway to further raise the efficiency. However, many challenges stand in the way of fully realizing the potential of silicon tandem solar cells because heterogeneously integrating silicon with other materials often degrades their qualities. Recently, above or near 30% silicon tandem solar cell has been demonstrated, showing the promise of achieving high-efficiency and low-cost solar cells via silicon tandem. This paper reviews the recent progress of integrating solar cell with other mainstream solar cell materials. The first part of this review focuses on the integration of silicon with III-V semiconductor solar cells, which is a long-researched topic since the emergence of III-V semiconductors. We will describe the main approaches—heteroepitaxy, wafer bonding and mechanical stacking—as well as other novel approaches. The second part introduces the integration of silicon with polycrystalline thin-film solar cells, mainly perovskites on silicon solar cells because of its rapid progress recently. We will also use an analytical model to compare the material qualities of different types of silicon tandem solar cells and project their practical efficiency limits.

  8. Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth

    KAUST Repository

    Tomasi, Andrea; Paviet-Salomon, Bertrand; Jeangros, Quentin; Haschke, Jan; Christmann, Gabriel; Barraud, Loris; Descoeudres, Antoine; Seif, Johannes Peter; Nicolay, Sylvain; Despeisse, Matthieu; De Wolf, Stefaan; Ballif, Christophe

    2017-01-01

    For crystalline-silicon solar cells, voltages close to the theoretical limit are nowadays readily achievable when using passivating contacts. Conversely, maximal current generation requires the integration of the electron and hole contacts at the back of the solar cell to liberate its front from any shadowing loss. Recently, the world-record efficiency for crystalline-silicon single-junction solar cells was achieved by merging these two approaches in a single device; however, the complexity of fabricating this class of devices raises concerns about their commercial potential. Here we show a contacting method that substantially simplifies the architecture and fabrication of back-contacted silicon solar cells. We exploit the surface-dependent growth of silicon thin films, deposited by plasma processes, to eliminate the patterning of one of the doped carrier-collecting layers. Then, using only one alignment step for electrode definition, we fabricate a proof-of-concept 9-cm2 tunnel-interdigitated back-contact solar cell with a certified conversion efficiency >22.5%.

  9. Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth

    KAUST Repository

    Tomasi, Andrea

    2017-04-24

    For crystalline-silicon solar cells, voltages close to the theoretical limit are nowadays readily achievable when using passivating contacts. Conversely, maximal current generation requires the integration of the electron and hole contacts at the back of the solar cell to liberate its front from any shadowing loss. Recently, the world-record efficiency for crystalline-silicon single-junction solar cells was achieved by merging these two approaches in a single device; however, the complexity of fabricating this class of devices raises concerns about their commercial potential. Here we show a contacting method that substantially simplifies the architecture and fabrication of back-contacted silicon solar cells. We exploit the surface-dependent growth of silicon thin films, deposited by plasma processes, to eliminate the patterning of one of the doped carrier-collecting layers. Then, using only one alignment step for electrode definition, we fabricate a proof-of-concept 9-cm2 tunnel-interdigitated back-contact solar cell with a certified conversion efficiency >22.5%.

  10. Study of an Amorphous Silicon Oxide Buffer Layer for p-Type Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells and Their Temperature Dependence

    Directory of Open Access Journals (Sweden)

    Taweewat Krajangsang

    2014-01-01

    Full Text Available Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2/SiH4 ratios in the films. Using i-a-SiO:H as the front and rear buffer layers in c-Si-HJ solar cells was investigated. The front i-a-SiO:H buffer layer thickness and the CO2/SiH4 ratio influenced the open-circuit voltage (Voc, fill factor (FF, and temperature coefficient (TC of the c-Si-HJ solar cells. The highest total area efficiency obtained was 18.5% (Voc=700 mV, Jsc=33.5 mA/cm2, and FF=0.79. The TC normalized for this c-Si-HJ solar cell efficiency was −0.301%/°C.

  11. Comprehensive Study of SF_6/O_2 Plasma Etching for Mc-Silicon Solar Cells

    International Nuclear Information System (INIS)

    Li Tao; Zhou Chun-Lan; Wang Wen-Jing

    2016-01-01

    The mask-free SF_6/O_2 plasma etching technique is used to produce surface texturization of mc-silicon solar cells for efficient light trapping in this work. The SEM images and mc-silicon etching rate show the influence of plasma power, SF_6/O_2 flow ratios and etching time on textured surface. With the acidic-texturing samples as a reference, the reflection and IQE spectra are obtained under different experimental conditions. The IQE spectrum measurement shows an evident increase in the visible and infrared responses. By using the optimized plasma power, SF_6/O_2 flow ratios and etching time, the optimal efficiency of 15.7% on 50 × 50 mm"2 reactive ion etching textured mc-silicon silicon solar cells is achieved, mostly due to the improvement in the short-circuit current density. The corresponding open-circuit voltage, short-circuit current density and fill factor are 611 mV, 33.6 mA/cm"2, 76.5%, respectively. It is believed that such a low-cost and high-performance texturization process is promising for large-scale industrial silicon solar cell manufacturing. (paper)

  12. Investigation of back surface fields effect on bifacial solar cells

    Science.gov (United States)

    Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.

    2012-11-01

    A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.

  13. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Youngseok Lee

    2012-01-01

    Full Text Available It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0 which improves the efficiency of HIT solar cell. The ultrathin thermal passivation silicon oxide (SiO2 layer was deposited by RTO system in the temperature range 500–950°C for 2 to 6 minutes. The thickness of the silicon oxide layer was affected by RTO annealing temperature and treatment time. The best value of surface recombination velocity was recorded for the sample treated at a temperature of 850°C for 6 minutes at O2 flow rate of 3 Lpm. A surface recombination velocity below 25 cm/s was obtained for the silicon oxide layer of 4 nm thickness. This ultrathin SiO2 layer was employed for the fabrication of HIT solar cell structure instead of a-Si:H, (i layer and the passivation and tunneling effects of the silicon oxide layer were exploited. The photocurrent was decreased with the increase of illumination intensity and SiO2 thickness.

  14. Recent Optical and SEM Characterization of Genesis Solar Wind Concentrator Diamond on Silicon Collector

    Science.gov (United States)

    Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.

    2013-01-01

    One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.

  15. PECVD-ONO: A New Deposited Firing Stable Rear Surface Passivation Layer System for Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    M. Hofmann

    2008-01-01

    Full Text Available A novel plasma-enhanced chemical vapour deposited (PECVD stack layer system consisting of a-SiOx:H, a-SiNx:H, and a-SiOx:H is presented for silicon solar cell rear side passivation. Surface recombination velocities below 60 cm/s (after firing and below 30 cm/s (after forming gas anneal were achieved. Solar cell precursors without front and rear metallisation showed implied open-circuit voltages Voc values extracted from quasi-steady-state photoconductance (QSSPC measurements above 680 mV. Fully finished solar cells with up to 20.0% energy conversion efficiency are presented. A fit of the cell's internal quantum efficiency using software tool PC1D and a comparison to a full-area aluminium-back surface field (Al-BSF and thermal SiO2 is shown. PECVD-ONO was found to be clearly superior to Al-BSF. A separation of recombination at the metallised and the passivated area at the solar cell's rear is presented using the equations of Fischer and Kray. Nuclear reaction analysis (NRA has been used to evaluate the hydrogen depth profile of the passivation layer system at different stages.

  16. A cost roadmap for silicon heterojunction solar cells

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W.; Schropp, R.E.I.; Faaij, A.

    2016-01-01

    Research and development of silicon heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. SHJ solar cells are expected to offer various cost benefits compared to conventional crystalline silicon solar cells. This paper analyses

  17. A Cost Roadmap for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W.G.J.H.M.; Schropp, Ruud; Faaij, A.

    Research and development of silicon heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. SHJ solar cells are expected to offer various cost benefits compared to conventional crystalline silicon solar cells. This paper analyses

  18. Silicon Solar Cell Turns 50

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, J.

    2004-08-01

    This short brochure describes a milestone in solar (or photovoltaic, PV) research-namely, the 50th anniversary of the invention of the first viable silicon solar cell by three researchers at Bell Laboratories.

  19. Solar energy innovation and Silicon Valley

    Science.gov (United States)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  20. Lanthanide-Doped Ceria Nanoparticles as Backside Coaters to Improve Silicon Solar Cell Efficiency.

    Science.gov (United States)

    Hajjiah, Ali; Samir, Effat; Shehata, Nader; Salah, Mohamed

    2018-05-23

    This paper introduces lanthanide-doped ceria nanoparticles as silicon solar cell back-side coaters, showing their influence on the solar cell efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce 4+ state ions to the Ce 3+ ones. These O-vacancies follow the rule of improving silicon solar cell conductivity through a hopping mechanism. Besides, under near-ultra violet (near-UV) excitation, the reduced trivalent cerium Ce 3+ ions are directly responsible for down converting the un-absorbed UV wavelengths to a resultant green photo-luminescence emission at ~520 nm, which is absorbed through the silicon solar cell’s active layer. Adding lanthanide elements such as Neodymium “Nd” as ceria nanoparticle dopants helps in forming extra oxygen vacancies (O-vacancies), followed by an increase in the number of Ce 4+ to Ce 3+ ion reductions, thus enhancing the conductivity and photoluminescence down conversion mechanisms. After introducing lanthanide-doped ceria nanoparticles on a silicon solar cell surface, a promising enhancement in the behavior of the solar cell current-voltage curve is observed, and the efficiency is improved by about 25% of its initial value due to the mutual impact of improving both electric conductivity and optical conversions.

  1. Back-contacted back-junction silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mangersnes, Krister

    2010-10-15

    Conventional silicon solar cells have a front-side contacted emitter. Back-contacted back-junction (BC-BJ) silicon solar cells, on the other hand, have both the complete metallization and the active diffused regions of both polarities on the backside. World-record efficiencies have already been demonstrated for this type of cell design in production, both on cell and module level. However, the production of these cells is both complex and costly, and a further cost reduction in fabrication is needed to make electricity from BC-BJ silicon solar cells cost-competitive with electricity on the grid ('grid-parity'). During the work with this thesis, we have investigated several important issues regarding BC-BJ silicon solar cells. The aim has been to reduce production cost and complexity while at the same time maintaining, or increasing, the already high conversion efficiencies demonstrated elsewhere. This has been pursued through experimental work as well as through numerical simulations and modeling. Six papers are appended to this thesis, two of which are still under review in scientific journals. In addition, two patents have been filed based on the work presented herein. Experimentally, we have focused on investigating and optimizing single, central processing steps. A laser has been the key processing tool during most of the work. We have used the same laser both to structure the backside of the cell and to make holes in a double-layer of passivating amorphous silicon and silicon oxide, where the holes were opened with the aim of making local contact to the underlying silicon. The processes developed have the possibility of using a relatively cheap and industrially proven laser and obtain results better than most state-of-the-art laser technologies. During the work with the laser, we also developed a thermodynamic model that was able to predict the outcome from laser interaction with amorphous and crystalline silicon. Alongside the experimental work, we

  2. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  3. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Science.gov (United States)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-01

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×1016 atoms/cm3) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  4. Flexible silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Blakers, A.W.; Armour, T. [Centre for Sustainable Energy Systems, The Australian National University, Canberra ACT 0200 (Australia)

    2009-08-15

    In order to be useful for certain niche applications, crystalline silicon solar cells must be able to sustain either one-time flexure or multiple non-critical flexures without significant loss of strength or efficiency. This paper describes experimental characterisation of the behaviour of thin crystalline silicon solar cells, under either static or repeated flexure, by flexing samples and recording any resulting changes in performance. Thin SLIVER cells were used for the experiment. Mechanical strength was found to be unaffected after 100,000 flexures. Solar conversion efficiency remained at greater than 95% of the initial value after 100,000 flexures. Prolonged one-time flexure close to, but not below, the fracture radius resulted in no significant change of properties. For every sample, fracture occurred either on the first flexure to a given radius of curvature, or not at all when using that radius. In summary, for a given radius of curvature, either the flexed solar cells broke immediately, or they were essentially unaffected by prolonged or multiple flexing. (author)

  5. Electroplated contacts and porous silicon for silicon based solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Kholostov, Konstantin, E-mail: kholostov@diet.uniroma1.it [Department of information engineering, electronics and telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome (Italy); Serenelli, Luca; Izzi, Massimo; Tucci, Mario [Enea Casaccia Research Centre Rome, via Anguillarese 301, 00123 Rome (Italy); Balucani, Marco [Department of information engineering, electronics and telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome (Italy); Rise Technology S.r.l., Lungomare Paolo Toscanelli 170, 00121 Rome (Italy)

    2015-04-15

    Highlights: • Uniformity of the Ni–Si interface is crucial for performance of Cu–Ni contacts on Si. • Uniformly filled PS is the key to obtain the best performance of Cu–Ni contacts on Si. • Optimization of anodization and electroplating allows complete filling of PS layer. • Highly adhesive and low contact resistance Cu–Ni contacts are obtained on Si. - Abstract: In this paper, a two-layer metallization for silicon based solar cells is presented. The metallization consists of thin nickel barrier and thick copper conductive layers, both obtained by electrodeposition technique suitable for phosphorus-doped 70–90 Ω/sq solar cell emitter formed on p-type silicon substrate. To ensure the adhesion between metal contact and emitter a very thin layer of mesoporous silicon is introduced on the emitter surface before metal deposition. This approach allows metal anchoring inside pores and improves silicon–nickel interface uniformity. Optimization of metal contact parameters is achieved varying the anodization and electrodeposition conditions. Characterization of contacts between metal and emitter is carried out by scanning electron microscopy, specific contact resistance and current–voltage measurements. Mechanical strength of nickel–copper contacts is evaluated by the peel test. Adhesion strength of more than 4.5 N/mm and contact resistance of 350 μΩ cm{sup 2} on 80 Ω/sq emitter are achieved.

  6. Enhancement of photovoltaic properties of multicrystalline silicon solar cells by combination of buried metallic contacts and thin porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, M.; Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2010-03-15

    Photovoltaic properties of buried metallic contacts (BMCs) with and without application of a front porous silicon (PS) layer on multicrystalline silicon (mc-Si) solar cells were investigated. A Chemical Vapor Etching (CVE) method was used to perform front PS layer and BMCs of mc-Si solar cells. Good electrical performance for the mc-Si solar cells was observed after combination of BMCs and thin PS films. As a result the current-voltage (I-V) characteristics and the internal quantum efficiency (IQE) were improved, and the effective minority carrier diffusion length (Ln) increases from 75 to 110 {mu}m after BMCs achievement. The reflectivity was reduced to 8% in the 450-950 nm wavelength range. This simple and low cost technology induces a 12% conversion efficiency (surface area = 3.2 cm{sup 2}). The obtained results indicate that the BMCs improve charge carrier collection while the PS layer passivates the front surface. (author)

  7. Wet-Chemical Preparation of Silicon Tunnel Oxides for Transparent Passivated Contacts in Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Köhler, Malte; Pomaska, Manuel; Lentz, Florian; Finger, Friedhelm; Rau, Uwe; Ding, Kaining

    2018-05-02

    Transparent passivated contacts (TPCs) using a wide band gap microcrystalline silicon carbide (μc-SiC:H(n)), silicon tunnel oxide (SiO 2 ) stack are an alternative to amorphous silicon-based contacts for the front side of silicon heterojunction solar cells. In a systematic study of the μc-SiC:H(n)/SiO 2 /c-Si contact, we investigated selected wet-chemical oxidation methods for the formation of ultrathin SiO 2 , in order to passivate the silicon surface while ensuring a low contact resistivity. By tuning the SiO 2 properties, implied open-circuit voltages of 714 mV and contact resistivities of 32 mΩ cm 2 were achieved using μc-SiC:H(n)/SiO 2 /c-Si as transparent passivated contacts.

  8. Development of low cost silicon solar cells by reusing the silicon saw dust collected during wafering process

    International Nuclear Information System (INIS)

    Zaidi, Z.I.; Raza, B.; Ahmed, M.; Sheikh, H.; Qazi, I.A.

    2002-01-01

    Silicon material due to its abundance in nature and maximum conversion efficiency has been successfully being used for the fabrication of electronic and photovoltaic devices such as ICs, diodes, transistors and solar cells. The 80% of the semiconductor industry is ruled by silicon material. Single crystal silicon solar cells are in use for both space and terrestrial application, due to the well developed technology and better efficiency than polycrystalline and amorphous silicon solar cells. The current research work is an attempt to reduce the cost of single crystal silicon solar cells by reusing the silicon saw dust obtained during the watering process. During the watering process about 45% Si material is wasted in the form of Si powder dust. Various waste powder silicon samples were analyzed using inductively Coupled Plasma (ICP) technique, for metallic impurities critical for solar grade silicon material. The results were evaluated from impurity and cost point of view. (author)

  9. Formation of silicon carbide by laser ablation in graphene oxide-N-methyl-2-pyrrolidone suspension on silicon surface

    Science.gov (United States)

    Jaleh, Babak; Ghasemi, Samaneh; Torkamany, Mohammad Javad; Salehzadeh, Sadegh; Maleki, Farahnaz

    2018-01-01

    Laser ablation of a silicon wafer in graphene oxide-N-methyl-2-pyrrolidone (GO-NMP) suspension was carried out with a pulsed Nd:YAG laser (pulse duration = 250 ns, wavelength = 1064 nm). The surface of silicon wafer before and after laser ablation was studied using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the ablation of silicon surface in liquid by pulsed laser was done by the process of melt expulsion under the influence of the confined plasma-induced pressure or shock wave trapped between the silicon wafer and the liquid. The X-ray diffraction‌ (XRD) pattern of Si wafer after laser ablation showed that 4H-SiC layer is formed on its surface. The formation of the above layer was also confirmed by Raman spectroscopy, and X-ray photoelectron spectroscopy‌ (XPS), as well as EDX was utilized. The reflectance of samples decreased with increasing pulse energy. Therefore, the morphological alteration and the formation of SiC layer at high energy increase absorption intensity in the UV‌-vis regions. Theoretical calculations confirm that the formation of silicon carbide from graphene oxide and silicon wafer is considerably endothermic. Development of new methods for increasing the reflectance without causing harmful effects is still an important issue for crystalline Si solar cells. By using the method described in this paper, the optical properties of solar cells can be improved.

  10. Boron profiles in doped amorphous-silicon solar cells formed by plasma ion deposition

    International Nuclear Information System (INIS)

    Stoddart, C.T.H.; Hunt, C.P.; Coleman, J.H.

    1979-01-01

    Amorphous silicon p-n junction solar cells of large area (100 cm 2 ) and having a quantum efficiency approaching 100% in the blue region have been prepared by plasma ion-plating, the p layer being formed from diborane and silane gases in a cathode glow-discharge. Surface secondary ion mass spectrometry combined with ion beam etching was found to be a very sensitive method with high in-depth resolution for obtaining the initial boron-silicon profile of the solar cell p-n junction. (author)

  11. Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Seif, J.; Descoeudres, A.; Nogay, G.; Hänni, S.; de Nicolas, S.M.; Holm, N.; Geissbühler, J.; Hessler-Wyser, A.; Duchamp, M.; Dunin-Borkowski, R.E.; Ledinský, Martin; De Wolf, S.; Ballif, C.

    2016-01-01

    Roč. 6, č. 5 (2016), s. 1132-1140 ISSN 2156-3381 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : microcrystalline silicon * nanocrystalline silicon * silicon heterojunctions (SHJs) * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.712, year: 2016

  12. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  13. Angle resolved characterization of nanostructured and conventionally textured silicon solar cells

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Ormstrup, Jeppe; Ommen, Martin Lind

    2015-01-01

    current, open circuit voltage, fill factor (FF) and power conversion efficiency are each measured as function of the relative incident angle between the solar cell and the light source. The relative incident angle is varied from 0° to 90° in steps of 10° in orthogonal axes, such that each solar cell......We report angle resolved characterization of nanostructured and conventionally textured silicon solar cells. The nanostructured solar cells are realized through a single step, mask-less, scalable reactive ion etching (RIE) texturing of the surface. Photovoltaic properties including short circuit...

  14. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    Science.gov (United States)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  15. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...

  16. Development of high efficiency solar cells on silicon web

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Schmidt, D. N.; Rai-Choudhury, P.

    1984-01-01

    Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated.

  17. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  18. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  19. Silicon solar cells: Past, present and the future

    Science.gov (United States)

    Lee, Youn-Jung; Kim, Byung-Sung; Ifitiquar, S. M.; Park, Cheolmin; Yi, Junsin

    2014-08-01

    There has been a great demand for renewable energy for the last few years. However, the solar cell industry is currently experiencing a temporary plateau due to a sluggish economy and an oversupply of low-quality cells. The current situation can be overcome by reducing the production cost and by improving the cell is conversion efficiency. New materials such as compound semiconductor thin films have been explored to reduce the fabrication cost, and structural changes have been explored to improve the cell's efficiency. Although a record efficiency of 24.7% is held by a PERL — structured silicon solar cell and 13.44% has been realized using a thin silicon film, the mass production of these cells is still too expensive. Crystalline and amorphous silicon — based solar cells have led the solar industry and have occupied more than half of the market so far. They will remain so in the future photovoltaic (PV) market by playing a pivotal role in the solar industry. In this paper, we discuss two primary approaches that may boost the silicon — based solar cell market; one is a high efficiency approach and the other is a low cost approach. We also discuss the future prospects of various solar cells.

  20. Silicon solar cells: past, present and the future

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. J.; Kim, B. S.; Ifitiquar, S. M.; Park, C. M.; Yi, J. S. [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-08-15

    There has been a great demand for renewable energy for the last few years. However, the solar cell industry is currently experiencing a temporary plateau due to a sluggish economy and an over supply of low-quality cells. The current situation can be overcome by reducing the production cost and by improving the cell is conversion efficiency. New materials such as compound semiconductor thin films have been explored to reduce the fabrication cost, and structural changes have been explored to improve the cell's efficiency. Although a record efficiency of 24.7% is held by a PERL - structured silicon solar cell and 13.44% has been realized using a thin silicon film, the mass production of these cells is still too expensive. Crystalline and amorphous silicon - based solar cells have led the solar industry and have occupied more than half of the market so far. They will remain so in the future photovoltaic (PV) market by playing a pivotal role in the solar industry. In this paper, we discuss two primary approaches that may boost the silicon - based solar cell market; one is a high efficiency approach and the other is a low cost approach. We also discuss the future prospects of various solar cells.

  1. Laser wafering for silicon solar

    International Nuclear Information System (INIS)

    Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

    2011-01-01

    Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W p (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs (∼20%), embodied energy, and green-house gas GHG emissions (∼50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 (micro)m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

  2. Laser wafering for silicon solar.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

    2011-03-01

    Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

  3. Thin-film polycrystalline silicon solar cells

    Science.gov (United States)

    Funghnan, B. W.; Blanc, J.; Phillips, W.; Redfield, D.

    1980-08-01

    Thirty-four new solar cells were fabricated on Wacker Sislo substrates and the AM-1 parameters were measured. A detailed comparison was made between the measurement of minority carrier diffusion length by the OE method and the penetrating light laser scan grain boundary photoresponse linewidth method. The laser scan method has more experimental uncertainty and agrees within 10 to 50% with the QE method. It allows determination of L over a large area. Atomic hydrogen passivation studies continued on Wacker material by three techniques. A method of determining surface recombination velocity, s, from laser scan data was developed. No change in s in completed solar cells after H-plasma treatment was observed within experimental error. H-passivation of bare silicon cars as measured by the new laser scan photoconductivity technique showed very large effects.

  4. Simple processing of high efficiency silicon solar cells

    International Nuclear Information System (INIS)

    Hamammu, I.M.; Ibrahim, K.

    2006-01-01

    Cost effective photovoltaic devices have been an area research since the development of the first solar cells, as cost is the major factor in their usage. Silicon solar cells have the biggest share in the photovoltaic market, though silicon os not the optimal material for solar cells. This work introduces a simplified approach for high efficiency silicon solar cell processing, by minimizing the processing steps and thereby reducing cost. The suggested procedure might also allow for the usage of lower quality materials compared to the one used today. The main features of the present work fall into: simplifying the diffusion process, edge shunt isolation and using acidic texturing instead of the standard alkaline processing. Solar cells of 17% efficiency have been produced using this procedure. Investigations on the possibility of improving the efficiency and using less quality material are still underway

  5. Plasma immersion ion implantation of boron for ribbon silicon solar cells

    Directory of Open Access Journals (Sweden)

    Derbouz K.

    2013-09-01

    Full Text Available In this work, we report for the first time on the solar cell fabrication on n-type silicon RST (for Ribbon on Sacrificial Template using plasma immersion ion implantation. The experiments were also carried out on FZ silicon as a reference. Boron was implanted at energies from 10 to 15 kV and doses from 1015 to 1016 cm-2, then activated by a thermal annealing in a conventional furnace at 900 and 950 °C for 30 min. The n+ region acting as a back surface field was achieved by phosphorus spin-coating. The frontside boron emitter was passivated either by applying a 10 nm deposited SiOX plasma-enhanced chemical vapor deposition (PECVD or with a 10 nm grown thermal oxide. The anti-reflection coating layer formed a 60 nm thick SiNX layer. We show that energies less than 15 kV and doses around 5 × 1015 cm-2 are appropriate to achieve open circuit voltage higher than 590 mV and efficiency around 16.7% on FZ-Si. The photovoltaic performances on ribbon silicon are so far limited by the bulk quality of the material and by the quality of the junction through the presence of silicon carbide precipitates at the surface. Nevertheless, we demonstrate that plasma immersion ion implantation is very promising for solar cell fabrication on ultrathin silicon wafers such as ribbons.

  6. Monocrystalline silicon solar cells applied in photovoltaic system

    OpenAIRE

    L.A. Dobrzański; A. Drygała; M. Giedroć; M. Macek

    2012-01-01

    Purpose: The aim of the paper is to fabricate the monocrystalline silicon solar cells using the conventional technology by means of screen printing process and to make of them photovoltaic system.Design/methodology/approach: The investigation of current – voltage characteristic to determinate basic electrical properties of monocrystalline silicon solar cells were investigated under Standard Test Condition. Photovoltaic module was produced from solar cells with the largest short-circuit curren...

  7. Porous silicon-based passivation and gettering in polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Dimassi, W.; Bouaiecha, M.; Saadoun, M.; Bessaies, B.; Ezzaouia, H.; Bennaceur, R.

    2002-01-01

    In this work, we report on the effect of introducing a superficial porous silicon (PS) layer on the electrical characteristics of polycrystalline silicon solar cells. The PS layer was formed using a vapour etching (VE)-based method. In addition to its known anti-reflecting action, the forming hydrogen-rich PS layer acts as a passivating agent for the surface of the cell. As a result we found an improvement of the I-V characteristics in dark conditions and AM1 illumination. We show that when the formation of a superficial PS layer is followed by a heat treatment, gettering of impurities from the polycrystalline silicon material is possible. After the removal of the PS layer and the formation of the photovoltaic (PV) structure, we observed an increase of the light-beam-induced-current (LBIC) for treatment temperatures not exceeding 900 deg. C. An improvement of the bulk minority carrier diffusion length and the grain boundary (GB) recombination velocity were observed as the temperature rises, although a global decrease of the LBIC current was observed for temperatures greater than 900 deg. C

  8. Optimization of hybrid organic/inorganic poly(3-hexylthiophene-2,5-diyl)/silicon solar cells

    Science.gov (United States)

    Weingarten, Martin; Sanders, Simon; Stümmler, Dominik; Pfeiffer, Pascal; Vescan, Andrei; Kalisch, Holger

    2016-04-01

    In the last years, hybrid organic/silicon solar cells have attracted great interest in photovoltaic research due to their potential to become a low-cost alternative for the conventionally used silicon pn-junction solar cells. This work is focused on hybrid solar cells based on the polymer poly(3-hexylthiophene-2,5-diyl), which was deposited on n-doped crystalline silicon via spin-coating under ambient conditions. By employing an anisotropic etching step with potassium hydroxide (KOH), the reflection losses at the silicon surface were reduced. Hereby, the short-circuit current density of the hybrid devices was increased by 31%, leading to a maximum power conversion efficiency (PCE) of 13.1% compared to a PCE of 10.7% for the devices without KOH etching. In addition, the contacts were improved by replacing gold with the more conductive silver as top grid material to reduce the contact resistance and by introducing a thin (˜0.5 nm) lithium fluoride layer between the silicon and the aluminum backside contact to improve electron collection and hole blocking. Hereby, the open-circuit voltage and the fill factor of the hybrid solar cells were further improved and devices with very high PCE up to 14.2% have been realized.

  9. Light trapping with plasmonic back contacts in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, Ulrich Wilhelm

    2013-02-08

    Trapping light in silicon solar cells is essential as it allows an increase in the absorption of incident sunlight in optically thin silicon absorber layers. This way, the costs of the solar cells can be reduced by lowering the material consumption and decreasing the physical constraints on the material quality. In this work, plasmonic light trapping with Ag back contacts in thin-film silicon solar cells is studied. Solar cell prototypes with plasmonic back contacts are presented along with optical simulations of these devices and general design considerations of plasmonic back contacts. Based on three-dimensional electromagnetic simulations, the conceptual design of plasmonic nanostructures on Ag back contacts in thin-film silicon solar cells is studied in this work. Optimizations of the nanostructures regarding their ability to scatter incident light at low optical losses into large angles in the silicon absorber layers of the thin-film silicon solar cells are presented. Geometrical parameters as well as the embedding dielectric layer stack of the nanostructures on Ag layers are varied. Periodic as well as isolated hemispherical Ag nanostructures of dimensions above 200 nm are found to scatter incident light at high efficiencies and low optical losses. Hence, these nanostructures are of interest for light trapping in solar cells. In contrast, small Ag nanostructures of dimension below 100 nm are found to induce optical losses. At the surface of randomly textured Ag back contacts small Ag nanostructures exist which induce optical losses. In this work, the relevance of these localized plasmon induced optical losses as well as optical losses caused by propagating plasmons are investigated with regard to the reflectance of the textured back contacts. In state-of-the-art solar cells, the plasmon-induced optical losses are shifted out of the relevant wavelength range by incorporating a ZnO:Al interlayer of low refractive index at the back contact. The additional but

  10. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  11. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  12. Indium oxide/n-silicon heterojunction solar cells

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  13. Carrier population control and surface passivation in solar cells

    KAUST Repository

    Cuevas, Andres

    2018-05-02

    Controlling the concentration of charge carriers near the surface is essential for solar cells. It permits to form regions with selective conductivity for either electrons or holes and it also helps to reduce the rate at which they recombine. Chemical passivation of the surfaces is equally important, and it can be combined with population control to implement carrier-selective, passivating contacts for solar cells. This paper discusses different approaches to suppress surface recombination and to manipulate the concentration of carriers by means of doping, work function and charge. It also describes some of the many surface-passivating contacts that are being developed for silicon solar cells, restricted to experiments performed by the authors.

  14. Black silicon solar cells with black bus-bar strings

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by maskless reactive ion etching resulting in total, average reflectance...... below 0.5% across a 156x156 mm2 silicon wafer. Four different methods to obtain blackened bus-bar strings were compared with respect to reflectance, and two of these methods (i.e., oxidized copper and etched solder) were used to fabricate functional allblack solar 9-cell panels. The black bus-bars (e.......g., by oxidized copper) have a reflectance below 3% in the entire visible wavelength range. The combination of black silicon cells and blackened bus-bars results in aesthetic, all-black panels based on conventional, front-contacted solar cells without compromising efficiency....

  15. Impact of microcrystalline silicon carbide growth using hot-wire chemical vapor deposition on crystalline silicon surface passivation

    International Nuclear Information System (INIS)

    Pomaska, M.; Beyer, W.; Neumann, E.; Finger, F.; Ding, K.

    2015-01-01

    Highly crystalline microcrystalline silicon carbide (μc-SiC:H) with excellent optoelectronic material properties is a promising candidate as highly transparent doped layer in silicon heterojunction (SHJ) solar cells. These high quality materials are usually produced using hot wire chemical vapor deposition under aggressive growth conditions giving rise to the removal of the underlying passivation layer and thus the deterioration of the crystalline silicon (c-Si) surface passivation. In this work, we introduced the n-type μc-SiC:H/n-type μc-SiO x :H/intrinsic a-SiO x :H stack as a front layer configuration for p-type SHJ solar cells with the μc-SiO x :H layer acting as an etch-resistant layer against the reactive deposition conditions during the μc-SiC:H growth. We observed that the unfavorable expansion of micro-voids at the c-Si interface due to the in-diffusion of hydrogen atoms through the layer stack might be responsible for the deterioration of surface passivation. Excellent lifetime values were achieved under deposition conditions which are needed to grow high quality μc-SiC:H layers for SHJ solar cells. - Highlights: • High surface passivation quality was preserved after μc-SiC:H deposition. • μc-SiC:H/μc-SiO x :H/a-SiO x :H stack a promising front layer configuration • Void expansion at a-SiO x :H/c-Si interface for deteriorated surface passivation • μc-SiC:H provides a high transparency and electrical conductivity.

  16. Recovery of indium-tin-oxide/silicon heterojunction solar cells by thermal annealing

    OpenAIRE

    Morales Vilches, Ana Belén; Voz Sánchez, Cristóbal; Colina Brito, Mónica Alejandra; López Rodríguez, Gema; Martín García, Isidro; Ortega Villasclaras, Pablo Rafael; Orpella García, Alberto; Alcubilla González, Ramón

    2014-01-01

    The emitter of silicon heterojunction solar cells consists of very thin hydrogenated amorphous silicon layers deposited at low temperature. The high sheet resistance of this type of emitter requires a transparent conductive oxide layer, which also acts as an effective antireflection coating. The deposition of this front electrode, typically by Sputtering, involves a relatively high energy ion bombardment at the surface that could degrade the emitter quality. The work function of the tra...

  17. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells.

    Science.gov (United States)

    Rahman, Atikur; Ashraf, Ahsan; Xin, Huolin; Tong, Xiao; Sutter, Peter; Eisaman, Matthew D; Black, Charles T

    2015-01-21

    Materials providing broadband light antireflection have applications as highly transparent window coatings, military camouflage, and coatings for efficiently coupling light into solar cells and out of light-emitting diodes. In this work, densely packed silicon nanotextures with feature sizes smaller than 50 nm enhance the broadband antireflection compared with that predicted by their geometry alone. A significant fraction of the nanotexture volume comprises a surface layer whose optical properties differ substantially from those of the bulk, providing the key to improved performance. The nanotexture reflectivity is quantitatively well-modelled after accounting for both its profile and changes in refractive index at the surface. We employ block copolymer self-assembly for precise and tunable nanotexture design in the range of ~10-70 nm across macroscopic solar cell areas. Implementing this efficient antireflection approach in crystalline silicon solar cells significantly betters the performance gain compared with an optimized, planar antireflection coating.

  18. Acceptable contamination levels in solar grade silicon: From feedstock to solar cell

    International Nuclear Information System (INIS)

    Hofstetter, J.; Lelievre, J.F.; Canizo, C.; Luque, A. del

    2009-01-01

    Ultimately, alternative ways of silicon purification for photovoltaic applications are developed and applied. There is an ongoing debate about what are the acceptable contamination levels within the purified silicon feedstock to specify the material as solar grade silicon. Applying a simple model and making some additional assumptions, we calculate the acceptable contamination levels of different characteristic impurities for each fabrication step of a typical industrial mc-Si solar cell. The acceptable impurity concentrations within the finished solar cell are calculated for SRH recombination exclusively and under low injection conditions. It is assumed that during solar cell fabrication impurity concentrations are only altered by a gettering step. During the crystallization process, impurity segregation at the solid-liquid interface and at extended defects are taken into account. Finally, the initial contamination levels allowed within the feedstock are deduced. The acceptable concentration of iron in the finished solar cell is determined to be 9.7x10 -3 ppma whereas the concentration in the silicon feedstock can be as high as 12.5 ppma. In comparison, the titanium concentration admitted in the solar cell is calculated to be 2.7x10 -4 ppma and the allowed concentration of 2.2x10 -2 ppma in the feedstock is only two orders of magnitude higher. Finally, it is shown theoretically and experimentally that slow cooling rates can lead to a decrease of the interstitial Fe concentration and thus relax the purity requirements in the feedstock.

  19. Low surface damage dry etched black silicon

    Science.gov (United States)

    Plakhotnyuk, Maksym M.; Gaudig, Maria; Davidsen, Rasmus Schmidt; Lindhard, Jonas Michael; Hirsch, Jens; Lausch, Dominik; Schmidt, Michael Stenbæk; Stamate, Eugen; Hansen, Ole

    2017-10-01

    Black silicon (bSi) is promising for integration into silicon solar cell fabrication flow due to its excellent light trapping and low reflectance, and a continuously improving passivation. However, intensive ion bombardment during the reactive ion etching used to fabricate bSi induces surface damage that causes significant recombination. Here, we present a process optimization strategy for bSi, where surface damage is reduced and surface passivation is improved while excellent light trapping and low reflectance are maintained. We demonstrate that reduction of the capacitively coupled plasma power, during reactive ion etching at non-cryogenic temperature (-20 °C), preserves the reflectivity below 1% and improves the effective minority carrier lifetime due to reduced ion energy. We investigate the effect of the etching process on the surface morphology, light trapping, reflectance, transmittance, and effective lifetime of bSi. Additional surface passivation using atomic layer deposition of Al2O3 significantly improves the effective lifetime. For n-type wafers, the lifetime reaches 12 ms for polished and 7.5 ms for bSi surfaces. For p-type wafers, the lifetime reaches 800 μs for both polished and bSi surfaces.

  20. Study of the processes of degradation of the optical properties of mesoporous and macroporous silicon upon exposure to simulated solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Levitskii, V. S., E-mail: lev-vladimir@yandex.ru [St. Petersburg State Electrotechnical University “LETI” (Russian Federation); Lenshin, A. S., E-mail: lenshinas@phys.vsu.ru; Seredin, P. V. [Voronezh State University (Russian Federation); Terukov, E. I. [St. Petersburg State Electrotechnical University “LETI” (Russian Federation)

    2015-11-15

    The effect of solar radiation on the surface composition of mesoporous and macroporous silicon is studied by infrared spectroscopy, Raman spectroscopy, and photoluminescence measurements in order to analyze the possibility of using these materials as a material for solar-power engineering. The studies are conducted in the laboratory environment, with the use of a solar-radiation simulator operating under conditions close to the working conditions of standard silicon solar cells. The studies show that, in general, the materials meet the requirements of solar-power engineering, if it is possible to preclude harmful effects associated with the presence of heat-sensitive and photosensitive bonds at the nanomaterial surface by standard processing methods.

  1. Flat-plate solar array project. Volume 2: Silicon material

    Science.gov (United States)

    Lutwack, R.

    1986-10-01

    The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.

  2. Flat-plate solar array project. Volume 2: Silicon material

    Science.gov (United States)

    Lutwack, R.

    1986-01-01

    The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.

  3. AZO-Ag-AZO transparent electrode for amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Theuring, Martin; Vehse, Martin; Maydell, Karsten von; Agert, Carsten

    2014-01-01

    Metal-based transparent electrodes can be fabricated at low temperatures, which is crucial for various substrate materials and solar cells. In this work, an oxide-metal-oxide (OMO) transparent electrode based on aluminum zinc oxide (AZO) and silver is compared to AZO layers, fabricated at different temperatures and indium tin oxides. With the OMO structure, a sheet resistance of 7.1/square and a transparency above 80% for almost the entire visible spectrum were achieved. The possible application of such electrodes on a textured solar cell was demonstrated on the example of a rough ZnO substrate. An OMO structure is benchmarked in a n-i-p amorphous silicon solar cell against an AZO front contact fabricated at 200 °C. In the experiment, the OMO electrode shows a superior performance with an efficiency gain of 30%. - Highlights: • Multilayer transparent electrode based on aluminum zinc oxide (AZO) and Ag • Comparison of AZO-Ag-AZO transparent electrode to AZO and indium tin oxide • Performance of AZO-Ag-AZO transparent electrodes on textured surfaces • Comparison of amorphous silicon solar cells with different transparent electrodes

  4. Studying of Perovskite Nanoparticles in PMMA Matrix Used As Light Converter for Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    Lipiński M.

    2017-09-01

    Full Text Available The nanoparticles of CH3NH3PbBr3 hybrid perovskites were synthesized. These perovskite nanoparticles we embedded in polymethyl methacrylate (PMMA in order to obtain the composite, which we used as light converter for silicon solar cells. It was shown that the composite emit the light with the intensity maximum at about 527 nm when exited by a short wavelength (300÷450 nm of light. The silicon solar cells were used to examine the effect of down-conversion (DC process by perovskite nanoparticles embedded in PMMA. For experiments, two groups of monocrystalline silicon solar cells were used. The first one included the solar cells without surface texturization and antireflection coating. The second one included the commercial cells with surface texturization and antireflection coating. In every series of the cells one part of the cells were covered by composite (CH3NH3PbBr3 in PMMA layer and second part of cells by pure PMMA for comparison. It was shown that External Quantum Efficiency EQE of the photovoltaic cells covered by composite (CH3NH3PbBr3 in PMMA layer was improved in both group of the cells but unfortunately the Internal Quantum Efficiency was reduced. This reduction was caused by high absorption of the short wavelength light and reabsorption of the luminescence light. Therefore, the CH3NH3PbBr3 perovskite nanoparticles embedded in PMMA matrix were unable to increase silicon solar cell efficiency in the tested systems.

  5. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Min; Dhar, Purnim; Chen, Huandong; Montenegro, Angelo; Liaw, Lauren; Kang, Dongseok; Gai, Boju; Benderskii, Alexander V.; Yoon, Jongseung

    2017-04-12

    Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF4:Yb3+,Er3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (~40.1 mA/cm2) and energy conversion efficiency (~12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ~13.6 mA/cm2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.

  6. Mechanical grooving of oxidized porous silicon to reduce the reflectivity of monocrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zarroug, A.; Dimassi, W.; Ouertani, R.; Ezzaouia, H. [Laboratoire de Photovoltaique, Centre des Recherches et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)

    2012-10-15

    In this work, we are interested to use oxidized porous silicon (ox-PS) as a mask. So, we display the creating of a rough surface which enhances the absorption of incident light by solar cells and reduces the reflectivity of monocrystalline silicon (c-Si). It clearly can be seen that the mechanical grooving enables us to elaborate the texturing of monocrystalline silicon wafer. Results demonstrated that the application of a PS layer followed by a thermal treatment under O2 ambient easily gives us an oxide layer of uniform size which can vary from a nanometer to about ten microns. In addition, the Fourier transform infrared (FTIR) spectroscopy investigations of the PS layer illustrates the possibility to realize oxide layer as a mask for porous silicon. We found also that this simple and low cost method decreases the total reflectivity (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. The performance of silicon solar cells operated in liquids

    International Nuclear Information System (INIS)

    Wang Yiping; Fang Zhenlei; Zhu Li; Huang Qunwu; Zhang Yan; Zhang Zhiying

    2009-01-01

    Better performance can be achieved when the bare silicon solar cells are immersed into liquids for the enhanced heat removing. In this study, the performance of solar cells immersed in liquids was examined under simulated sunlight. To distinguish the effects of the liquid optic and electric properties on the solar cells, a comparison between immersion of the solar module and the bare solar cells was carried out. It was found that the optic properties of the liquids can cause minor efficiency changes on the solar cells, while the electric properties of the liquids, the molecular polarizable and ions, are responsible for the most of the changes. The bare solar cells immersed in the non-polar silicon oil have the best performance. The accelerated life tests were carried out at 150 deg. C high temperature and under 200 W/m 2 ultraviolet light irradiation, respectively. It was found that the silicon oil has good stability. This study can give support on the cooling of the concentrated photovoltaic systems by immersing the solar cells in the liquids directly

  8. Silicon is in short supply for the growth in solar cell production

    International Nuclear Information System (INIS)

    Halvorsen, Finn

    2003-01-01

    Polycrystalline silicon will be in short supply by 2006. This is the conclusion of two independent studies, one done for the European Union and one for the Photovoltaic Industry Association. The most important reason is the rapid growth in the solar cell market, which is expected to be about 15 per cent per year until 2010. If so, the world's solar cell manufacturers will need 8,000 tonnes of pure silicon at that time. This growth presupposes that the price of silicon does not rise, but it readily might. Because the general situation for the semiconductor industry has been difficult, silicon has been readily available to the manufacturers of solar cells in recent years. This is true of discard, which has always been used for solar cells, but also of silicon that was intended to become microprocessors, storage chips and other advanced semiconductor devices. As the semiconductor market improves, the amount of silicon from this source will shrink. Manufacturers of solar cells cannot afford to pay as much as the semiconductor manufacturers, and some consider making solar cell grade silicon themselves

  9. Hydrogen Incorporation during Aluminium Anodisation on Silicon Wafer Surfaces

    International Nuclear Information System (INIS)

    Lu, Pei Hsuan Doris; Strutzberg, Hartmuth; Wenham, Stuart; Lennon, Alison

    2014-01-01

    Hydrogen can act to reduce recombination at silicon surfaces for solar cell devices and consequently the ability of dielectric layers to provide a source of hydrogen for this purpose is of interest. However, due to the ubiquitous nature of hydrogen and its mobility, direct measurements of hydrogen incorporation in dielectric layers are challenging. In this paper, we report the use of secondary ion mass spectrometry measurements to show that deuterium from an electrolyte can be incorporated in an anodic aluminium oxide (AAO) layer and be introduced into an underlying amorphous silicon layer during anodisation of aluminium on silicon wafers. After annealing at 400 °C, the concentration of deuterium in the AAO was reduced by a factor of two, as the deuterium was re-distributed to the interface between the amorphous silicon and AAO and to the amorphous silicon. The assumption that hydrogen, from an aqueous electrolyte, could be similarly incorporated in AAO, is supported by the observation that the hydrogen content in the underlying amorphous silicon was increased by a factor of ∼ 3 after anodisation. Evidence for hydrogen being introduced into crystalline silicon after aluminium anodisation was provided by electrochemical capacitance voltage measurements indicating boron electrical deactivation in the underlying crystalline silicon. If introduced hydrogen can electrically deactivate dopant atoms at the surface, then it is reasonable to assume that it could also deactivate recombination-active states at the crystalline silicon interface therefore enabling higher minority carrier lifetimes in the silicon wafer

  10. Transmutation doping of silicon solar cells

    Science.gov (United States)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  11. Using silicon nanostructures for the improvement of silicon solar cells' efficiency

    International Nuclear Information System (INIS)

    Torre, J. de la; Bremond, G.; Lemiti, M.; Guillot, G.; Mur, P.; Buffet, N.

    2006-01-01

    Silicon nanostructures (ns-Si) show interesting optical and electrical properties as a result of the band gap widening caused by quantum confinement effects. Along with their potential utilization for silicon-based light emitters' fabrication, they could also represent an appealing option for the improvement of energy conversion efficiency in silicon-based solar cells whether by using their luminescence properties (photon down-conversion) or the excess photocurrent produced by an improved high-energy photon's absorption. In this work, we report on the morphological and optical studies of non-stoichiometric silica (SiO x ) and silicon nitride (SiN x ) layers containing silicon nanostructures (ns-Si) in view of their application for solar cell's efficiency improvement. The morphological studies of the samples performed by transmission electron microscopy (TEM) unambiguously show the presence of ns-Si in a crystalline form for high temperature-annealed SiO x layers and for low temperature deposition of SiN x layers. The photoluminescence emission (PL) shows a rather high efficiency in both kind of layers with an intensity of only a factor ∼ 100 lower than that of porous silicon (pi-Si). The photocurrent spectroscopy (PC) shows a significant increase of absorption at high photon energy excitation most probably related to photon absorption within ns-Si quantized states. Moreover, the absorption characteristics obtained from PC spectra show a good agreement with the PL emission states unambiguously demonstrating a same origin, related to Q-confined excitons within ns-Si. Finally, the major asset of this material is the possibility to incorporate it to solar cells manufacturing processing for an insignificant cost

  12. Characterization of thin-film silicon materials and solar cells through numerical modeling

    NARCIS (Netherlands)

    Pieters, B.E.

    2008-01-01

    At present most commercially available solar cells are made of crystalline silicon (c-Si). The disadvantages of crystalline silicon solar cells are the high material cost and energy consumption during production. A cheaper alternative can be found in thin-film silicon solar cells. The thin-film

  13. Effects of impurities on silicon solar-cell performance

    Science.gov (United States)

    Hopkins, R. H.

    1986-01-01

    Model analyses indicate that sophisticated solar cell designs (back surface fields, optical reflectors, surface passivation, and double layer antireflective coatings) can produce devices with conversion efficiencies above 20%. To realize this potential, the quality of the silicon from which the cells are made must be improved; and these excellent electrical properties must be maintained during device processing. As the cell efficiency rises, the sensitivity to trace contaminants also increases. For example, the threshold Ti impurity concentraion at which cell performance degrades is more than an order of magnitude lower for an 18% cell than for a 16% cell. Similar behavior occurs for numerous other metal species which introduce deep level traps that stimulate the recombination of photogenerated carriers in silicon. Purification via crystal growth in conjunction with gettering steps to preserve the large diffusion length of the as grown material can lead to the production of devices with efficiencies above 18%, as verified experimentally.

  14. Doping profile measurement on textured silicon surface

    Science.gov (United States)

    Essa, Zahi; Taleb, Nadjib; Sermage, Bernard; Broussillou, Cédric; Bazer-Bachi, Barbara; Quillec, Maurice

    2018-04-01

    In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.

  15. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  16. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.; Peters, Craig; Brongersma, Mark; Cui, Yi; McGehee, Mike

    2010-01-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  17. Environmentally benign silicon solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S. [National Renewable Energy Lab., Golden, CO (United States); Gee, J.M. [Sandia National Labs., Albuquerque, NM (United States); Menna, P. [National Agency for New Technologies Energy and Environment, Portici (Italy); Strebkov, D.S.; Pinov, A.; Zadde, V. [Intersolarcenter, Moscow (Russian Federation)

    1998-09-01

    The manufacturing of silicon devices--from polysilicon production, crystal growth, ingot slicing, wafer cleaning, device processing, to encapsulation--requires many steps that are energy intensive and use large amounts of water and toxic chemicals. In the past two years, the silicon integrated-circuit (IC) industry has initiated several programs to promote environmentally benign manufacturing, i.e., manufacturing practices that recover, recycle, and reuse materials resources with a minimal consumption of energy. Crystalline-silicon solar photovoltaic (PV) modules, which accounted for 87% of the worldwide module shipments in 1997, are large-area devices with many manufacturing steps similar to those used in the IC industry. Obviously, there are significant opportunities for the PV industry to implement more environmentally benign manufacturing approaches. Such approaches often have the potential for significant cost reduction by reducing energy use and/or the purchase volume of new chemicals and by cutting the amount of used chemicals that must be discarded. This paper will review recent accomplishments of the IC industry initiatives and discuss new processes for environmentally benign silicon solar-cell manufacturing.

  18. Application of various surface passivation layers in solar cells

    International Nuclear Information System (INIS)

    Lee, Ji Youn; Lee, Soo Hong

    2004-01-01

    In this work, we have used different techniques for surface passivation: conventional thermal oxidation (CTO), rapid thermal oxidation (RTO), and plasma-enhanced chemical vapour deposition (PECVD). The surface passivation qualities of eight different single and combined double layers have been investigated both on phosphorus non-diffused p-type Float Zone (FZ) silicon wafers and on diffused emitters (100 Ω/□ and 40 Ω/□). CTO/SiN 1 passivates very well not only on a non-diffused surface (τ eff = 1361 μs) but also on an emitter (τ eff = 414 μs). However, we concluded that RTO/SiN 1 and RTO/SiN 2 stacks were more suitable than CTO/SiN stacks for surface passivation in solar cells since those stacks had relatively good passivation qualities and suitable optical reflections. RTO/SiN 1 for rear-surface passivation and RTO/SiN 2 for front-surface passivation were applied to the fabrication of solar cells. We achieved efficiencies of 18.5 % and 18.8 % on 0.5 Ω-cm (FZ) silicon with planar and textured front surfaces, respectively. An excellent open circuit voltage (V oc ) of 675.6 mV was obtained for the planar cell.

  19. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    Science.gov (United States)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  20. Characterization of Al2O3 surface passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Albadri, Abdulrahman M.

    2014-01-01

    A study of the passivation of silicon surface by aluminum oxide (Al 2 O 3 ) is reported. A correlation of fixed oxide charge density (Q f ) and interface trap density (D it ) on passivation efficiency is presented. Low surface recombination velocity (SRV) was obtained even by as-deposited Al 2 O 3 films and this was found to be associated to the passivation of interface states. Fourier transfer infrared spectroscopy spectra show the existence of an interfacial silicon oxide thin layer in both as-deposited and annealed Al 2 O 3 films. Q f is found positive in as-deposited films and changing to negative upon subsequent annealing, providing thus an enhancement of the passivation in p-type silicon wafers, associated to field effects. Secondary ion mass spectrometry analysis confirms the correlation between D it and hydrogen concentration at the Al 2 O 3 /Si interface. A lowest SRV of 15 cm/s was obtained after an anneal at 400 °C in nitrogen atmosphere. - Highlights: • Al 2 O 3 provides superior passivation for silicon surfaces. • Atomic layer deposition-Al 2 O 3 was deposited at a low temperature of 200 °C. • A lowest surface passivation velocity of 15 cm/s was obtained after an anneal at 400 °C in nitrogen. • As-deposited Al 2 O 3 films form very thin SiO 2 layer responsible of low interface trap densities. • High negative fixed charge density of (− 2 × 10 12 cm −2 ) was achieved upon annealing at 400 °C

  1. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  2. Process development for high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.; Basore, P.A.; Buck, M.E.; Ruby, D.S.; Schubert, W.K.; Silva, B.L.; Tingley, J.W.

    1991-12-31

    Fabrication of high-efficiency silicon solar cells in an industrial environment requires a different optimization than in a laboratory environment. Strategies are presented for process development of high-efficiency silicon solar cells, with a goal of simplifying technology transfer into an industrial setting. The strategies emphasize the use of statistical experimental design for process optimization, and the use of baseline processes and cells for process monitoring and quality control. 8 refs.

  3. Fabrication and doping methods for silicon nano- and micropillar arrays for solar cell applications: a review

    NARCIS (Netherlands)

    Elbersen, R.; Vijselaar, Wouter Jan, Cornelis; Tiggelaar, Roald M.; Gardeniers, Johannes G.E.; Huskens, Jurriaan

    2015-01-01

    Silicon is one of the main components of commercial solar cells and is used in many other solar-light-harvesting devices. The overall efficiency of these devices can be increased by the use of structured surfaces that contain nanometer- to micrometer-sized pillars with radial p/n junctions. High

  4. Grazing incidence X-ray fluorescence analysis of buried interfaces in periodically structured crystalline silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhauer, David; Preidel, Veit; Becker, Christiane [Young Investigator Group Nanostructured Silicon for Photovoltaic and Photonic Implementations (Nano-SIPPE), Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Pollakowski, Beatrix; Beckhoff, Burkhard [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Baumann, Jonas; Kanngiesser, Birgit [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin (Germany); Amkreutz, Daniel; Rech, Bernd [Institut Silizium Photovoltaik, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Back, Franziska; Rudigier-Voigt, Eveline [SCHOTT AG, Mainz (Germany)

    2015-03-01

    We present grazing incidence X-ray fluorescence (GIXRF) experiments on 3D periodically textured interfaces of liquid phase crystallized silicon thin-film solar cells on glass. The influence of functional layers (SiO{sub x} or SiO{sub x}/SiC{sub x}) - placed between glass substrate and silicon during crystallization - on the final carbon and oxygen contaminations inside the silicon was analyzed. Baring of the buried structured silicon surface prior to GIXRF measurement was achieved by removal of the original nano-imprinted glass substrate by wet-chemical etching. A broad angle of incidence distribution was determined for the X-ray radiation impinging on this textured surface. Optical simulations were performed in order to estimate the incident radiation intensity on the structured surface profile considering total reflection and attenuation effects. The results indicate a much lower contamination level for SiO{sub x} compared to the SiO{sub x}/SiC{sub x} interlayers, and about 25% increased contamination when comparing structured with planar silicon layers, both correlating with the corresponding solar cell performances. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Optimization of oxidation processes to improve crystalline silicon solar cell emitters

    Directory of Open Access Journals (Sweden)

    L. Shen

    2014-02-01

    Full Text Available Control of the oxidation process is one key issue in producing high-quality emitters for crystalline silicon solar cells. In this paper, the oxidation parameters of pre-oxidation time, oxygen concentration during pre-oxidation and pre-deposition and drive-in time were optimized by using orthogonal experiments. By analyzing experimental measurements of short-circuit current, open circuit voltage, series resistance and solar cell efficiency in solar cells with different sheet resistances which were produced by using different diffusion processes, we inferred that an emitter with a sheet resistance of approximately 70 Ω/□ performed best under the existing standard solar cell process. Further investigations were conducted on emitters with sheet resistances of approximately 70 Ω/□ that were obtained from different preparation processes. The results indicate that emitters with surface phosphorus concentrations between 4.96 × 1020 cm−3 and 7.78 × 1020 cm−3 and with junction depths between 0.46 μm and 0.55 μm possessed the best quality. With no extra processing, the final preparation of the crystalline silicon solar cell efficiency can reach 18.41%, which is an increase of 0.4%abs compared to conventional emitters with 50 Ω/□ sheet resistance.

  6. Front buried metallic contacts and thin porous silicon combination for efficient polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Ben Rabha, M.; Boujmil, M.F.; Meddeb, N.; Saadoun, M.; Bessais, B.

    2006-01-01

    We investigate the impacts of achieving buried grid metallic contacts (BGMC), with and without application of a front porous silicon (PS) layer, on the photovoltaic properties of polycrystalline silicon (pc-Si) solar cells. A grooving method based on Chemical Vapor Etching (CVE) was used to perform buried grid contacts on the emitter of pc-Si solar cells. After realizing the n + /p junction using a phosphorus diffusion source, BGMCs were realized using the screen printing technique. We found that the buried metallic contacts improve the short circuit current from 16 mA/cm 2 (for reference cell without buried contacts) to about 19 mA/cm 2 . After application of a front PS layer on the n + emitter, we observe an enhancement of the short circuit current from 19 to 24 mA/cm 2 with a decrease of the reflectivity by about 40% of its initial value. The dark I-V characteristics of the pc-Si cells with PS-based emitter show an important reduction of the reverse current together with an improvement of the rectifying behaviour. Spectral response measurements performed at a wavelength range of 400-1100 nm showed a significant increase in the quantum efficiency, particularly at shorter wavelength (400-650 nm). These results indicate that the BGMCs improve the carrier collection and that the PS layer acts as an antireflective coating that reduces reflection losses and passivates the front surface. This low cost and simple technology based on the CVE technique could enable preparing efficient polycrystalline silicon solar cells

  7. Hot wire deposited hydrogenated amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  8. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Jens, E-mail: J.Hirsch@emw.hs-anhalt.de [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany); Gaudig, Maria; Bernhard, Norbert [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Lausch, Dominik [Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany)

    2016-06-30

    Highlights: • Fabrication of black silicon through inductively coupled plasma (ICP) processing. • Suppressed formation a self-bias and therefore a reduced ion bombardment of the silicon sample. • Reduction of the average hemispherical reflection between 300 and 1120 nm up to 8% within 5 min ICP process time. • Reflection is almost independent of the angle of incidence up to 60°. • 2.5 ms effective lifetime at 10{sup 15} cm{sup −3} MCD after ALD Al{sub 2}O{sub 3} surface passivation. - Abstract: The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF{sub 6} and O{sub 2} are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 10{sup 15} cm{sup −3} minority carrier density (MCD) after an atomic layer deposition (ALD) with Al{sub 2}O{sub 3}. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique

  9. Hydrogen-terminated mesoporous silicon monoliths with huge surface area as alternative Si-based visible light-active photocatalysts

    KAUST Repository

    Li, Ting; Li, Jun; Zhang, Qiang; Blazeby, Emma; Shang, Congxiao; Xu, Hualong; Zhang, Xixiang; Chao, Yimin

    2016-01-01

    Silicon-based nanostructures and their related composites have drawn tremendous research interest in solar energy storage and conversion. Mesoporous silicon with a huge surface area of 400-900 m2 g-1 developed by electrochemical etching exhibits

  10. Effect of silicon solar cell processing parameters and crystallinity on mechanical strength

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, V.A.; Yunus, A.; Janssen, M.; Richardson, I.M. [Delft University of Technology, Department of Materials Science and Engineering, Delft (Netherlands); Bennett, I.J. [Energy Research Centre of the Netherlands, Solar Energy, PV Module Technology, Petten (Netherlands)

    2011-01-15

    Silicon wafer thickness reduction without increasing the wafer strength leads to a high breakage rate during subsequent handling and processing steps. Cracking of solar cells has become one of the major sources of solar module failure and rejection. Hence, it is important to evaluate the mechanical strength of solar cells and influencing factors. The purpose of this work is to understand the fracture behavior of silicon solar cells and to provide information regarding the bending strength of the cells. Triple junctions, grain size and grain boundaries are considered to investigate the effect of crystallinity features on silicon wafer strength. Significant changes in fracture strength are found as a result of metallization morphology and crystallinity of silicon solar cells. It is observed that aluminum paste type influences the strength of the solar cells. (author)

  11. Argon plasma treatment of silicon nitride (SiN) for improved antireflection coating on c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Hemanta; Mitra, Suchismita; Saha, Hiranmay; Datta, Swapan Kumar; Banerjee, Chandan, E-mail: chandanbanerjee74@gmail.com

    2017-01-15

    Highlights: • Antireflection properties of argon plasma treated silicon nitride layer and its effect on crystalline silicon solar cell. • The reduction in reflection due to the formation of a silicon oxynitride/silicon nitride double layer. • EQE reveals a relative increase of 2.72% in J{sub sc} and 4.46% in conversion efficiency. - Abstract: Antireflection properties of argon plasma treated silicon nitride layer and its effect on crystalline silicon solar cell is presented here. Hydrogenated silicon nitride (a-SiN:H) layer has been deposited on a silicon substrate by Plasma Enhanced Chemical Vapour Deposition (PECVD) using a mixture of silane (SiH{sub 4}), ammonia (NH{sub 3}) and hydrogen (H{sub 2}) gases followed by a argon plasma treatment. Optical analysis reveals a significant reduction in reflectance after argon plasma treatment of silicon nitride layer. While FESEM shows nanostructures on the surface of the silicon nitride film, FTIR reveals a change in Si−N, Si−O and N−H bonds. On the other hand, ellipsometry shows the variation of refractive index and formation of double layer. Finally, a c-Si solar cell has been fabricated with the said anti-reflection coating. External quantum efficiency reveals a relative increase of 2.72% in the short circuit current density and 4.46% in conversion efficiency over a baseline efficiency of 16.58%.

  12. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    International Nuclear Information System (INIS)

    Lafford, T A; Villanova, J; Plassat, N; Dubois, S; Camel, D

    2013-01-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  13. Silver Nanoparticle Enhanced Freestanding Thin-Film Silicon Solar Cells

    Science.gov (United States)

    Winans, Joshua David

    As the supply of fossil fuels diminishes in quantity the demand for alternative energy sources will consistently increase. Solar cells are an environmentally friendly and proven technology that suffer in sales due to a large upfront cost. In order to help facilitate the transition from fossil fuels to photovoltaics, module costs must be reduced to prices well below $1/Watt. Thin-film solar cells are more affordable because of the reduced materials costs, but lower in efficiency because less light is absorbed before passing through the cell. Silver nanoparticles placed at the front surface of the solar cell absorb and reradiate the energy of the light in ways such that more of the light ends being captured by the silicon. Silver nanoparticles can do this because they have free electron clouds that can take on the energy of an incident photon through collective action. This bulk action of the electrons is called a plasmon. This work begins by discussing the economics driving the need for reduced material use, and the pros and cons of taking this step. Next, the fundamental theory of light-matter interaction is briefly described followed by an introduction to the study of plasmonics. Following that we discuss a traditional method of silver nanoparticle formation and the initial experimental studies of their effects on the ability of thin-film silicon to absorb light. Then, Finite-Difference Time-Domain simulation software is used to simulate the effects of nanoparticle morphology and size on the scattering of light at the surface of the thin-film.

  14. Plasma deposition of microcrystalline silicon solar cells. Looking beyond the glass

    Energy Technology Data Exchange (ETDEWEB)

    Donker, M.N. van den

    2006-07-01

    Microcrystalline silicon emerged in the past decade as highly interesting material for application in efficient and stable thin film silicon solar cells. It consists of nanometer-sized crystallites embedded in a micrometer-sized columnar structure, which gradually evolves during the SiH{sub 4} based deposition process starting from an amorphous incubation layer. Understanding of and control over this transient and multi-scale growth process is essential in the route towards low-cost microcrystalline silicon solar cells. This thesis presents an experimental study on the technologically relevant high rate (5-10 Aa s{sup -1}) parallel plate plasma deposition process of state-of-the-art microcrystalline silicon solar cells. The objective of the work was to explore and understand the physical limits of the plasma deposition process as well as to develop diagnostics suitable for process control in eventual solar cell production. Among the developed non-invasive process diagnostics were a pyrometer, an optical spectrometer, a mass spectrometer and a voltage probe. Complete thin film silicon solar cells and modules were deposited and characterized. (orig.)

  15. Phosphorus Diffusion Gettering Efficacy in Upgraded Metallurgical-Grade Solar Silicon

    Science.gov (United States)

    Jiménez, A.; del Cañizo, C.; Cid, C.; Peral, A.

    2018-05-01

    In the context of the continuous price reduction in photovoltaics (PV) in recent years, Si feedstock continues to be a relevant component in the cost breakdown of a PV module, highlighting the need for low-cost, low-capital expenditure (CAPEX) silicon technologies to further reduce this cost component. Upgraded metallurgical-grade silicon (UMG Si) has recently received much attention, improving its quality and even attaining, in some cases, solar cell efficiencies similar to those of conventional material. However, some technical challenges still have to be addressed when processing this material to compensate efficiently for the high content of impurities and contaminants. Adaptation of a conventional solar cell process to monocrystalline UMG Si wafers has been studied in this work. In particular, a tailored phosphorus diffusion gettering step followed by a low-temperature anneal at 700°C was implemented, resulting in enhanced bulk lifetime and emitter recombination properties. In spite of the need for further research and material optimization, UMG Si wafers were successfully processed, achieving efficiencies in the range of 15% for a standard laboratory solar cell process with aluminum back surface field.

  16. Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells

    Czech Academy of Sciences Publication Activity Database

    Löper, P.; Moon, S.J.; de Nicolas, S.M.; Niesen, B.; Ledinský, Martin; Nicolay, S.; Bailat, J.; Yum, J. H.; De Wolf, S.; Ballif, C.

    2015-01-01

    Roč. 17, č. 3 (2015), s. 1619-1629 ISSN 1463-9076 R&D Projects: GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : perovskites * solar cells * silicon solar cells * silicon heterojunction solar cells * photovoltaics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.449, year: 2015

  17. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    U. Gangopadhyay

    2007-01-01

    Full Text Available The low-cost chemical bath deposition (CBD technique is used to prepare CBD-ZnS films as antireflective (AR coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize reflection loss by proper optimization of molar percentage of different chemical constituents and deposition conditions. Reasonable values of film deposition rate (12.13 Å′/min., good film uniformity (standard deviation <1, and refractive index (2.35 along with a low percentage of average reflection (6-7% on a textured mc-Si surface are achieved with proper optimization of ZnS bath. 12.24% efficiency on large area (125 mm × 125 mm multicrystalline silicon solar cells with CBD-ZnS antireflection coating has been successfully fabricated. The viability of low-cost CBD-ZnS antireflection coating on large area multicrystalline silicon solar cell in the industrial production level is emphasized.

  18. Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector

    Science.gov (United States)

    Ren, Rui; Zhong, Zheng

    2018-06-01

    This paper investigates the light absorption property of nanostructured dielectric reflectors in silicon thin film solar cells using numerical simulation. Flat thin film solar cell with ZnO nanostructured back reflector can produce comparable photocurrent to the control model with Ag nanostructured back reflector. Furthermore, when it is integrated with nano-pillar surface decoration, a photocurrent density of 29.5 mA/cm2 can be achieved, demonstrating a photocurrent enhancement of 5% as compared to the model with Ag nanostructured back reflector.

  19. Impurities in silicon and their impact on solar cell performance

    NARCIS (Netherlands)

    Coletti, Gianluca

    2011-01-01

    Photovoltaic conversion of solar energy is a rapidly growing technology. More than 80% of global solar cell production is currently based on silicon. The aim of this thesis is to understand the complex relation between impurity content of silicon starting material (“feedstock”) and the resulting

  20. TCAD analysis of graphene silicon Schottky junction solar cell

    Science.gov (United States)

    Kuang, Yawei; Liu, Yushen; Ma, Yulong; Xu, Jing; Yang, Xifeng; Feng, Jinfu

    2015-08-01

    The performance of graphene based Schottky junction solar cell on silicon substrate is studied theoretically by TCAD Silvaco tools. We calculate the current-voltage curves and internal quantum efficiency of this device at different conditions using tow dimensional model. The results show that the power conversion efficiency of Schottky solar cell dependents on the work function of graphene and the physical properties of silicon such as thickness and doping concentration. At higher concentration of 1e17cm-3 for n-type silicon, the dark current got a sharp rise compared with lower doping concentration which implies a convert of electron emission mechanism. The biggest fill factor got at higher phos doping predicts a new direction for higher performance graphene Schottky solar cell design.

  1. Hydrogen passivation of silicon sheet solar cells

    International Nuclear Information System (INIS)

    Tsuo, Y.S.; Milstein, J.B.

    1984-01-01

    Significant improvements in the efficiencies of dendritic web and edge-supported-pulling silicon sheet solar cells have been obtained after hydrogen ion beam passivation for a period of ten minutes or less. We have studied the effects of the hydrogen ion beam treatment with respect to silicon material damage, silicon sputter rate, introduction of impurities, and changes in reflectance. The silicon sputter rate for constant ion beam flux of 0.60 +- 0.05 mA/cm 2 exhibits a maximum at approximately 1400-eV ion beam energy

  2. Light-Induced Degradation of Thin Film Silicon Solar Cells

    International Nuclear Information System (INIS)

    Hamelmann, F U; Weicht, J A; Behrens, G

    2016-01-01

    Silicon-wafer based solar cells are still domination the market for photovoltaic energy conversion. However, most of the silicon is used only for mechanical stability, while only a small percentage of the material is needed for the light absorption. Thin film silicon technology reduces the material demand to just some hundred nanometer thickness. But even in a tandem stack (amorphous and microcrystalline silicon) the efficiencies are lower, and light-induced degradation is an important issue. The established standard tests for characterisation are not precise enough to predict the performance of thin film silicon solar cells under real conditions, since many factors do have an influence on the degradation. We will show some results of laboratory and outdoor measurements that we are going to use as a base for advanced modelling and simulation methods. (paper)

  3. Impurity effects in silicon for high efficiency solar cells

    Science.gov (United States)

    Hopkins, R. H.; Rohatgi, A.

    1986-01-01

    Model analyses indicate that sophisticated solar cell designs including, e.g., back surface fields, optical reflectors, surface passivation, and double layer antireflective coatings can produce devices with conversion efficiencies above 20 percent (AM1). To realize this potential, the quality of the silicon from which the cells are made must be improved; and these excellent electrical properties must be maintained during device processing. As the cell efficiency rises, the sensitivity to trace contaminants also increases. For example, the threshold Ti impurity concentration at which cell performance degrades is more than an order of magnitude lower for an 18-percent cell. Similar behavior occurs for numerous other metal species which introduce deep level traps that stimulate the recombination of photogenerated carriers in silicon. Purification via crystal growth in conjunction with gettering steps to preserve the large diffusion length of the as-grown material can lead to the production of devices with efficiencies aboved 18 percent, as has been verified experimentally.

  4. The silicon-silicon oxide multilayers utilization as intrinsic layer on pin solar cells

    International Nuclear Information System (INIS)

    Colder, H.; Marie, P.; Gourbilleau, F.

    2008-01-01

    Silicon nanostructures are promising candidate for the intrinsic layer on pin solar cells. In this work we report on new material: silicon-rich silicon oxide (SRSO) deposited by reactive magnetron sputtering of a pure silica target and an interesting structure: multilayers consisting of a stack of SRSO and pure silicon oxide layers. Two thicknesses of the SRSO sublayer, t SRSO , are studied 3 nm and 5 nm whereas the thickness of silica sublayer is maintaining at 3 nm. The presence of nanocrystallites of silicon, evidenced by X-Ray diffraction (XRD), leads to photoluminescence (PL) emission at room temperature due to the quantum confinement of the carriers. The PL peak shifts from 1.3 eV to 1.5 eV is correlated to the decreasing of t SRSO from 5 nm down to 3 nm. In the purpose of their potential utilization for i-layer, the optical properties are studied by absorption spectroscopy. The achievement a such structures at promising absorption properties. Moreover by favouring the carriers injection by the tunnel effect between silicon nanograins and silica sublayers, the multilayers seem to be interesting for solar cells

  5. Research and development of photovoltaic power system. Research on surface passivation for high-efficiency silicon solar cells; Taiyoko hatsuden system no kenkyu kaihatsu. Hyomen passivation no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan). Faculty of Technology

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on surface passivation of high-efficiency silicon solar cells. In research on carrier recombination on SiO2/doped silicon interface, measurements were carried out on minority carrier life with respect to p-type silicon substrates with which phosphorus with high and low concentrations are diffused uniformly on the surface and non-uniformly on the back and then oxidized. The measurements were performed for the purpose of evaluating the carrier recombination at p-n junctions. Effective life time of oxidized test samples increased longer than that of prior to the oxidization as a result of effect of surface passivation contributing remarkably. In research on reduction in carrier recombination on SiO2/Si interface by using H radical annealing, experiments were conducted by using a method that uses more active H-atoms. As a result, it was revealed that the reduction effect is recognized at as low temperature as 200{degree}C, and photo-bias effect is also noticeable. Other research activities included analytic research on minority carrier recombination on micro crystalline silicon/crystalline silicon interface, and experimental research on evaluation of minority carrier life of poly-crystalline silicon wafers. 6 figs.

  6. Upgraded metallurgical-grade silicon solar cells with efficiency above 20%

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, P.; Rougieux, F. E.; Samundsett, C.; Yang, Xinbo; Wan, Yimao; Macdonald, D. [Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Terrritory 2601 (Australia); Degoulange, J.; Einhaus, R. [Apollon Solar, 66 Cours Charlemagne, Lyon 69002 (France); Rivat, P. [FerroPem, 517 Avenue de la Boisse, Chambery Cedex 73025 (France)

    2016-03-21

    We present solar cells fabricated with n-type Czochralski–silicon wafers grown with strongly compensated 100% upgraded metallurgical-grade feedstock, with efficiencies above 20%. The cells have a passivated boron-diffused front surface, and a rear locally phosphorus-diffused structure fabricated using an etch-back process. The local heavy phosphorus diffusion on the rear helps to maintain a high bulk lifetime in the substrates via phosphorus gettering, whilst also reducing recombination under the rear-side metal contacts. The independently measured results yield a peak efficiency of 20.9% for the best upgraded metallurgical-grade silicon cell and 21.9% for a control device made with electronic-grade float-zone silicon. The presence of boron-oxygen related defects in the cells is also investigated, and we confirm that these defects can be partially deactivated permanently by annealing under illumination.

  7. Bi facial silicon solar cell study in modelling in frequency dynamic regime under multispectral illumination: Recombination parameters determination methods

    International Nuclear Information System (INIS)

    ZERBO Issa

    2010-01-01

    A bibliographic study on the techniques of characterization of silicon solar cell, diodes, massifs and silicon wafer are presented. The influence of the modulation frequency and recombination in volume and in surface phenomena of on the profiles of carriers' densities, photocurrent and photovoltage has been put in evidence. The study of surface recombination velocities permitted to show that the bi facial silicon solar cell of Back Surface Field type behaves like an ohmic contacts solar cell for modulation frequencies above 40 khz. pplicability in frequency dynamic regime in the frequency range [0 - 40 khz] of three techniques of steady state recombination parameters determination is shown. A technique of diffusion length determination, in the range of (200 Hz - 40 khz] is proposed. It rests on the measurement of the short circuit current phase that is compared with the theoretical curve of short circuit current phase. The intersection of the experimental short circuit current phase and the theoretical curve of short circuit current phase permits to get the minority carriers effective diffusion length. An equivalent electric model of a solar cell in frequency dynamic regime is proposed. A study in modelling of the bi facial solar cell shunt resistance and space charge zone capacity is led from a determination method of these parameters proposed in steady state. (Author [fr

  8. Quadruple-Junction Thin-Film Silicon-Based Solar Cells

    NARCIS (Netherlands)

    Si, F.T.

    2017-01-01

    The direct utilization of sunlight is a critical energy source in a sustainable future. One of the options is to convert the solar energy into electricity using thin-film silicon-based solar cells (TFSSCs). Solar cells in a triple-junction configuration have exhibited the highest energy conversion

  9. Silicon heterojunction solar cell passivation in combination with nanocrystalline silicon oxide emitters

    NARCIS (Netherlands)

    Gatz, H.A.; Rath, J.K.; Verheijen, M.A.; Kessels, W.M.M.; Schropp, R.E.I.

    2016-01-01

    Silicon heterojunction solar cells (SHJ) are well known for their high efficiencies, enabled by their remarkably high open-circuit voltages (VOC). A key factor in achieving these values is a good passivation of the crystalline wafer interface. One of the restrictions during SHJ solar cell production

  10. The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube-silicon solar cells.

    Science.gov (United States)

    Stolz, Benedikt W; Tune, Daniel D; Flavel, Benjamin S

    2016-01-01

    Recent results in the field of carbon nanotube-silicon solar cells have suggested that the best performance is obtained when the nanotube film provides good coverage of the silicon surface and when the nanotubes in the film are aligned parallel to the surface. The recently developed process of dry shear aligning - in which shear force is applied to the surface of carbon nanotube thin films in the dry state, has been shown to yield nanotube films that are very flat and in which the surface nanotubes are very well aligned in the direction of shear. It is thus reasonable to expect that nanotube films subjected to dry shear aligning should outperform otherwise identical films formed by other processes. In this work, the fabrication and characterisation of carbon nanotube-silicon solar cells using such films is reported, and the photovoltaic performance of devices produced with and without dry shear aligning is compared.

  11. Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking

    KAUST Repository

    Kobayashi, Eiji

    2017-06-24

    Silicon heterojunction solar cells use crystalline silicon (c-Si) wafers as optical absorbers and employ bilayers of doped/intrinsic hydrogenated amorphous silicon (a-Si:H) to form passivating contacts. Recently, we demonstrated that such solar cells increase their operating voltages and thus their conversion efficiencies during light exposure. We found that this performance increase is due to improved passivation of the a-Si:H/c-Si interface and is induced by injected charge carriers (either by light soaking or forward-voltage biasing of the device). Here, we discuss this counterintuitive behavior and establish that: (i) the performance increase is observed in solar cells as well as modules; (ii) this phenomenon requires the presence of doped a-Si:H films, but is independent from whether light is incident from the a-Si:H(p) or the a-Si:H(n) side; (iii) UV and blue photons do not play a role in this effect; (iv) the performance increase can be observed under illumination intensities as low as 20Wm (0.02-sun) and appears to be almost identical in strength when under 1-sun (1000Wm); (v) the underlying physical mechanism likely differs from annealing-induced surface passivation.

  12. Opto-electrical magnetic-field studies on solar silicon; Optoelektrische Magnetfelduntersuchungen an Solarsilizium

    Energy Technology Data Exchange (ETDEWEB)

    Buchwald, Rajko

    2010-05-21

    In the framework of this thesis opto-electrical studies on polycrystalline (pc) solar cells and solar materials have been performed. For this by magnetic-field topographical measurements the current distributions of the silicon samples were determined. For this the new, highly position-resolving magnetic-field measuring method CAIC has been developed and applied. The arrangement, the measurement principle, and the particularities of the method are explained. The results of the CAIC measurements have been compared with results of optical and electrical characterization methods, like the IR transmission-light microscopy, the LBIC, and the LIT method and evaluated. Special grain boundaries in the pc silicon samples with and without pn junction show photocurrent fluxes to the grain boundaries. On the base of the performed studies and the assumption of the existence of a grain-boundary decoration the current-flow model of an electrically active grain boundary is shown for a sample with pn junction as well as for a sample without pn junction. Furthermore macroscopical SiC and Si{sub 3}N{sub 4} precipitations in pc silicon were studied. By means of CAIC measurements hereby the position and the orientation of the conducting and near-surface precipitations could be determined. A current-flow model for macroscopic precipitations in silicon samples without pn junction is presented. Furthermore cell microcracks, failures in the contact structure and layout differences of the contact structure are uniquely detected by CAIC measurements on solar cells.

  13. Transparent conducting oxide contacts and textured metal back reflectors for thin film silicon solar cells

    Science.gov (United States)

    Franken, R. H.-J.

    2006-09-01

    With the growing population and the increasing environmental problems of the 'common' fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic (PV) systems, can play a major role in the urgently needed energy transition in electricity production. At the present time PV module production is dominated by the crystalline wafer technology. Thin film silicon technology is an alternative solar energy technology that operates at lower efficiencies, however, it has several significant advantages, such as the possibility of deposition on cheap (flexible) substrates and the much smaller silicon material consumption. Because of the small thickness of the solar cells, light trapping schemes are needed in order to obtain enough light absorption and current generation. This thesis describes the research on thin film silicon solar cells with the focus on the optimization of the transparent conducting oxide (TCO) layers and textured metal Ag substrate layers for the use as enhanced light scattering back reflectors in n-i-p type of solar cells. First we analyzed ZnO:Al (TCO) layers deposited in an radio frequent (rf) magnetron deposition system equipped with a 7 inch target. We have focused on the improvement of the electrical properties without sacrificing the optical properties by increasing the mobility and decreasing the grain boundary density. Furthermore, we described some of the effects on light trapping of ZnO:Al enhanced back reflectors. The described effects are able to explain the observed experimental data. Furthermore, we present a relation between the surface morphology of the Ag back contact and the current enhancement in microcrystalline (muc-Si:H) solar cells. We show the importance of the lateral feature sizes of the Ag surface on the light scattering and introduce a method to characterize the quality of the back reflector by combining the vertical and lateral feature sizes

  14. Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking

    KAUST Repository

    Kobayashi, Eiji; De Wolf, Stefaan; Levrat, Jacques; Descoeudres, Antoine; Despeisse, Matthieu; Haug, Franz-Josef; Ballif, Christophe

    2017-01-01

    Silicon heterojunction solar cells use crystalline silicon (c-Si) wafers as optical absorbers and employ bilayers of doped/intrinsic hydrogenated amorphous silicon (a-Si:H) to form passivating contacts. Recently, we demonstrated that such solar

  15. Design and Photovoltaic Properties of Graphene/Silicon Solar Cell

    Science.gov (United States)

    Xu, Dikai; Yu, Xuegong; Yang, Lifei; Yang, Deren

    2018-04-01

    Graphene/silicon (Gr/Si) Schottky junction solar cells have attracted widespread attention for the fabrication of high-efficiency and low-cost solar cells. However, their performance is still limited by the working principles of Schottky junctions. Modulating the working mechanism of the solar cells into a quasi p-n junction has advantages, including higher open-circuit voltage (V OC) and less carrier recombination. In this study, Gr/Si quasi p-n junction solar cells were formed by inserting a tunneling Al2O3 interlayer in-between graphene and silicon, which led to obtain the PCE up to 8.48% without antireflection or chemical doping techniques. Our findings could pave a new way for the development of Gr/Si solar cells.

  16. Optimization of Controllable Factors in the Aluminum Silicon Eutectic Paste and Rear Silicon Nitride Mono-Passivation Layer of PERC Solar Cells

    Science.gov (United States)

    Park, Sungeun; Park, Hyomin; Kim, Dongseop; Yang, JungYup; Lee, Dongho; Kim, Young-Su; Kim, Hyun-Jong; Suh, Dongchul; Min, Byoung Koun; Kim, Kyung Nam; Park, Se Jin; Kim, Donghwan; Lee, Hae-Seok; Nam, Junggyu; Kang, Yoonmook

    2018-05-01

    Passivated emitter and rear contact (PERC) is a promising technology owing to high efficiency can be achieved with p-type wafer and their easily applicable to existing lines. In case of using p-type mono wafer, 0.5-1% efficiency increase is expected with PERC technologies compared to existing Al BSF solar cells, while for multi-wafer solar cells it is 0.5-0.8%. We addressed the optimization of PERC solar cells using the Al paste. The paste was prepared from the aluminum-silicon alloy with eutectic composition to avoid the formation of voids that degrade the open-circuit voltage. The glass frit of the paste was changed to improve adhesion. Scanning electron microscopy revealed voids and local back surface field between the aluminum electrode and silicon base. We confirmed the conditions on the SiNx passivation layer for achieving higher efficiency and better adhesion for long-term stability. The cell characteristics were compared across cells containing different pastes. PERC solar cells with the Al/Si eutectic paste exhibited the efficiency of 19.6%.

  17. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    Science.gov (United States)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  18. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    International Nuclear Information System (INIS)

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-01-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing, between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection

  19. Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

    Directory of Open Access Journals (Sweden)

    Zahra Ostadmahmoodi Do

    2016-06-01

    Full Text Available Nanowires (NWs are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW, is synthesized and characterized for application in photovoltaic device. Si NWs are prepared using wet chemical etching method which is commonly used as a simple and low cost method for producing nanowires of the same substrate material. The process conditions are adjusted to find the best quality of Si NWs. Morphology of Si NWs is studied using a field emission scanning electron microscopic technique. An energy dispersive X-Ray analyzer is also used to provide elemental identification and quantitative compositional information. Subsequently, Schottky type solar cell samples are fabricated on Si and Si NWs using ITO and Ag contacts. The junction properties are calculated using I-V curves in dark condition and the solar cell I-V characteristics are obtained under incident of the standardized light of AM1.5. The results for the two mentioned Schottky solar cell samples are compared and discussed. An improvement in short circuit current and efficiency of Schottky solar cell is found when Si nanowires are employed.

  20. Improvement of solar cells performances by surface passivation using porous silicon chemically treated with LiBr solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddadi, Ikbel; Dimassi, Wissem; Bousbih, Rabaa; Hajji, Massoud; Kanzari, M. Ali; Ezzaouia, Hatem [Laboratoire de Photovoltaique, Centre de Recherche et des Technologies de l' Energie, Hammam Lif (Tunisia)

    2011-03-15

    Solar cells need efficient light absorption to achieve high efficiencies. In this paper, we present a study on the immersion effect of porous silicon (PS) in a Lithium Bromide (LiBr) aqueous solution, followed by thermal annealing at 100 C for 30 min under nitrogen atmosphere on solar cells performances. The surface morphology was studied by Atomic Force Microscopy (AFM). All samples were analyzed by Fourier transmission infrared spectroscopy (FTIR) before and after LiBr immersion. Good electrical properties were observed after thermal annealing at 100 C for 30 min under nitrogen atmosphere. The reflection spectra of PS, before and after LiBr treatment, performed in the 300-1200 nm wavelength range, showed an important decrease of the reflectivity by this new treatment. A significant increase of the photoluminescence (PL) intensity was obtained after LiBr treatment. An enhancement of the light beam induced current (LBIC) as well as the internal quantum efficiency (IQE) were shown after LiBr treatment. I-V characteristics, under AM1.5 illumination, were improved owing to the increase of the minority carrier diffusion length (L) and an excellent enhancement of the surface recombination velocity (V{sub s}) (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Solar cell fabricated on welded thin flexible silicon

    Directory of Open Access Journals (Sweden)

    Hessmann Maik Thomas

    2015-01-01

    Full Text Available We present a thin-film crystalline silicon solar cell with an AM1.5 efficiency of 11.5% fabricated on welded 50 μm thin silicon foils. The aperture area of the cell is 1.00 cm2. The cell has an open-circuit voltage of 570 mV, a short-circuit current density of 29.9 mA cm-2 and a fill factor of 67.6%. These are the first results ever presented for solar cells on welded silicon foils. The foils were welded together in order to create the first thin flexible monocrystalline band substrate. A flexible band substrate offers the possibility to overcome the area restriction of ingot-based monocrystalline silicon wafers and the feasibility of a roll-to-roll manufacturing. In combination with an epitaxial and layer transfer process a decrease in production costs can be achieved.

  2. Optical modelling of thin-film silicon solar cells deposited on textured substrates

    International Nuclear Information System (INIS)

    Krc, J.; Zeman, M.; Smole, F.; Topic, M.

    2004-01-01

    Optical modelling is used to investigate effects of light scattering in amorphous silicon and microcrystalline silicon solar cells. The role of enhanced haze parameter and different angular distribution function of scattered light is analyzed. Results of optical simulation show that enhanced haze parameter compared to that of Asahi U-type SnO 2 :F does not improve external quantum efficiency and short-circuit current density of amorphous silicon solar cell significantly, whereas for microcrystalline silicon solar cell the improvement is larger. Angular distribution function affects the external quantum efficiency and the short-circuit current density significantly

  3. Silicon nanocrystals embedded in silicon carbide for tandem solar cell applications

    International Nuclear Information System (INIS)

    Schnabel, Manuel

    2015-01-01

    Tandem solar cells consist of multiple individual solar cells stacked in order of increasing bandgap, with the cell with highest bandgap towards the incident light. This allows photons to be absorbed in the cell that will convert them to electricity with the greatest efficiency, and is the only solar cell concept to surpass the theoretical efficiency limit of a conventional solar cell so far. This work is concerned with the development of silicon nanocrystals (Si NCs) embedded in silicon carbide, which are expected to have a higher bandgap than bulk Si due to quantum confinement, for use in the top cell of a two-junction tandem cell. Charge carrier transport and recombination were investigated as a function of various parameters. Distortion of luminescence spectra by optical interference was highlighted and a robust model to describe transport of majority carriers was developed. Furthermore, a range of processing steps required to produce a Si NC-based tandem cell were studied, culminating in the preparation of the first Si NC-based tandem cells. The resulting cells exhibited open-circuit voltages of 900 mV, demonstrating tandem cell functionality.

  4. Laser-beam-induced current mapping evaluation of porous silicon-based passivation in polycrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, M. Ben; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia); Dimassi, W.; Bouaicha, M.; Ezzaouia, H. [Laboratoire de photovoltaique, des semiconducteurs et des nanostructures, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia)

    2009-05-15

    In the present work, we report on the effect of introducing a superficial porous silicon (PS) layer on the performance of polycrystalline silicon (pc-Si) solar cells. Laser-beam-induced current (LBIC) mapping shows that the PS treatment on the emitter of pc-Si solar cells improves their quantum response and reduce the grain boundaries (GBs) activity. After the porous silicon treatment, mapping investigation shows an enhancement of the LBIC and the internal quantum efficiency (IQE), due to an improvement of the minority carrier diffusion length and the passivation of recombination centers at the GBs as compared to the reference substrate. It was quantitatively shown that porous silicon treatment can passivate both the grains and GBs. (author)

  5. Spectral response of a polycrystalline silicon solar cell

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1994-10-01

    A theoretical study of the spectral response of a polycrystalline silicon n-p junction solar cell is presented. The case of a fibrously oriented grain structure, involving grain boundary recombination velocity and grain size effects is discussed. The contribution of the base region on the internal quantum efficiency Q int is computed for different grain sizes and grain boundary recombination velocities in order to examine their influence. Suggestions are also made for the determination of base diffusion length in polycrystalline silicon solar cells using the spectral response method. (author). 15 refs, 4 figs

  6. Electrically active defects in solar grade multicrystalline silicon

    DEFF Research Database (Denmark)

    Dahl, Espen

    2013-01-01

    Shortage in high purity silicon feedstock, as a result of the formidable increased demand for solar cell devices during the last two decades, can be mitigated by the introduction of cheaper feedstock of solar grade (So-G) quality. Silicon produced through the metallurgical process route has shown...... the potential to be such a feedstock. However, this feedstock has only few years of active commercial history and the detailed understanding of the nature of structural defects in this material still has fundamental shortcomings. In this thesis the electrical activity of structural defects, commonly associated...

  7. Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells.

    Science.gov (United States)

    Xie, Shouyi; Ouyang, Zi; Jia, Baohua; Gu, Min

    2013-05-06

    Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.

  8. Production of electronic grade lunar silicon by disproportionation of silicon difluoride

    Science.gov (United States)

    Agosto, William N.

    1993-01-01

    Waldron has proposed to extract lunar silicon by sodium reduction of sodium fluorosilicate derived from reacting sodium fluoride with lunar silicon tetrafluoride. Silicon tetrafluoride is obtained by the action of hydrofluoric acid on lunar silicates. While these reactions are well understood, the resulting lunar silicon is not likely to meet electronic specifications of 5 nines purity. Dale and Margrave have shown that silicon difluoride can be obtained by the action of silicon tetrafluoride on elemental silicon at elevated temperatures (1100-1200 C) and low pressures (1-2 torr). The resulting silicon difluoride will then spontaneously disproportionate into hyperpure silicon and silicon tetrafluoride in vacuum at approximately 400 C. On its own merits, silicon difluoride polymerizes into a tough waxy solid in the temperature range from liquid nitrogen to about 100 C. It is the silicon analog of teflon. Silicon difluoride ignites in moist air but is stable under lunar surface conditions and may prove to be a valuable industrial material that is largely lunar derived for lunar surface applications. The most effective driver for lunar industrialization may be the prospects for industrial space solar power systems in orbit or on the moon that are built with lunar materials. Such systems would require large quantities of electronic grade silicon or compound semiconductors for photovoltaics and electronic controls. Since silicon is the most abundant semimetal in the silicate portion of any solar system rock (approximately 20 wt percent), lunar silicon production is bound to be an important process in such a solar power project. The lunar silicon extraction process is discussed.

  9. Damage-free laser patterning of silicon nitride on textured crystalline silicon using an amorphous silicon etch mask for Ni/Cu plated silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, Mark S., E-mail: mbailly@asu.edu; Karas, Joseph; Jain, Harsh; Dauksher, William J.; Bowden, Stuart

    2016-08-01

    We investigate the optimization of laser ablation with a femtosecond laser for direct and indirect removal of SiN{sub x} on alkaline textured c-Si. Our proposed resist-free indirect removal process uses an a-Si:H etch mask and is demonstrated to have a drastically improved surface quality of the laser processed areas when compared to our direct removal process. Scanning electron microscope images of ablated sites show the existence of substantial surface defects for the standard direct removal process, and the reduction of those defects with our proposed process. Opening of SiN{sub x} and SiO{sub x} passivating layers with laser ablation is a promising alternative to the standard screen print and fire process for making contact to Si solar cells. The potential for small contacts from laser openings of dielectrics coupled with the selective deposition of metal from light induced plating allows for high-aspect-ratio metal contacts for front grid metallization. The minimization of defects generated in this process would serve to enhance the performance of the device and provides the motivation for our work. - Highlights: • Direct laser removal of silicon nitride (SiN{sub x}) damages textured silicon. • Direct laser removal of amorphous silicon (a-Si) does not damage textured silicon. • a-Si can be used as a laser patterned etch mask for SiN{sub x}. • Chemically patterned SiN{sub x} sites allow for Ni/Cu plating.

  10. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...... texturing of different Si solar cells. Theoretically the nanostructure topology may be described as a graded refractive index in a mean-field approximation between air and Si. The optical properties of the developed black Si were simulated and experimentally measured. Total AM1.5G-weighted average...

  11. Principles and operation of crystalline and amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Chambouleyron, I.

    1983-01-01

    This paper deals with the fundamental aspects of photovoltaic energy conversion. Crystalline silicon solar cell physics together with design criteria and conversion losses are discussed. The general properties of hydrogenated amorphous silicon and the principles of a-Si:H solar cell operation are briefly reviewed. New trends in amorphous materials of photovoltaic interest and novel device structures are finally presented. (Author) [pt

  12. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  13. Development and basic photovoltaic characteristics of a solar generator with double-sided silicon cells

    International Nuclear Information System (INIS)

    Aliev, R.; Mansurov, Kh.

    2015-01-01

    A new solar generator consisting of double-sided silicon sensing elements is described. The basic photovoltaic parameters of solar generators are made of mono- and polycrystalline silicon solar cells. (author)

  14. Wet-Chemical Surface Texturing of Sputter-Deposited ZnO:Al Films as Front Electrode for Thin-Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Xia Yan

    2015-01-01

    Full Text Available Transparent conductive oxides (TCOs play a major role as the front electrodes of thin-film silicon (Si solar cells, as they can provide optical scattering and hence improved photon absorption inside the devices. In this paper we report on the surface texturing of aluminium-doped zinc oxide (ZnO:Al or AZO films for improved light trapping in thin-film Si solar cells. The AZO films are deposited onto soda-lime glass sheets via pulsed DC magnetron sputtering. Several promising AZO texturing methods are investigated using diluted hydrochloric (HCl and hydrofluoric acid (HF, through a two-step etching process. The developed texturing procedure combines the advantages of the HCl-induced craters and the smaller and jagged—but laterally more uniform—features created by HF etching. In the two-step process, the second etching step further enhances the optical haze, while simultaneously improving the uniformity of the texture features created by the HCl etch. The resulting AZO films show large haze values of above 40%, good scattering into large angles, and a surface angle distribution that is centred at around 30°, which is known from the literature to provide efficient light trapping for thin-film Si solar cells.

  15. The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates

    KAUST Repository

    Haschke, Jan; Seif, Johannes P.; Riesen, Yannick; Tomasi, Andrea; Cattin, Jean; Tous, Loï c; Choulat, Patrick; Aleman, Monica; Cornagliotti, Emanuele; Uruena, Angel; Russell, Richard; Duerinckx, Filip; Champliaud, Jonathan; Levrat, Jacques; Abdallah, Amir A.; Aï ssa, Brahim; Tabet, Nouar; Wyrsch, Nicolas; Despeisse, Matthieu; Szlufcik, Jozef; De Wolf, Stefaan; Ballif, Christophe

    2017-01-01

    architectures, including so-called Aluminum back-surface-field (BSF), passivated emitter and rear cell (PERC), passivated emitter rear totally diffused (PERT), and silicon heterojunction (SHJ) solar cells. We compare measured temperature coefficients (TC

  16. Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

    KAUST Repository

    Bahabry, Rabab R.

    2018-01-02

    Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.

  17. Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

    KAUST Repository

    Bahabry, Rabab R.; Kutbee, Arwa T.; Khan, Sherjeel M.; Sepulveda, Adrian C.; Wicaksono, Irmandy; Nour, Maha A.; Wehbe, Nimer; Almislem, Amani Saleh Saad; Ghoneim, Mohamed T.; Sevilla, Galo T.; Syed, Ahad; Shaikh, Sohail F.; Hussain, Muhammad Mustafa

    2018-01-01

    Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.

  18. Effect of the back surface topography on the efficiency in silicon solar cells

    International Nuclear Information System (INIS)

    Guo Aijuan; Ye Famin; Feng Shimeng; Guo Lihui; Ji Dong

    2009-01-01

    Different processes are used on the back surface of silicon wafers to form cells falling into three groups: textured, planar, and sawed-off pyramid back surface. The characteristic parameters of the cells, I SC , V OC , FF, Pm, and E ff , are measured. All these parameters of the planar back surface cells are the best. The FF, Pm, and E ff of sawed-off pyramid back surface cells are superior to textured back surface cells, although I SC and V OC are lower. The parasitic resistance is analyzed to explain the higher FF of the sawed-off pyramid back surface cells. The cross-section scanning electron microscopy (SEM) pictures show the uniformity of the aluminum-silicon alloy, which has an important effect on the back surface recombination velocity and the ohmic contact. The measured value of the aluminum back surface field thickness in the SEM picture is in good agreement with the theoretical value deduced from the Al-Si phase diagram. It is shown in an external quantum efficiency (EQE) diagram that the planar back surface has the best response to a wavelength between 440 and 1000 nm and the sawed-off back surface has a better long wavelength response.

  19. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    Science.gov (United States)

    van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.

    2017-06-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.

  20. Development of high-efficiency solar cells on silicon web

    Science.gov (United States)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  1. Low-cost multicrystalline back-contact silicon solar cells with screen printed metallization

    International Nuclear Information System (INIS)

    Neu, W.; Kress, A.; Jooss, W.; Fath, P.; Bucher, E.

    2002-01-01

    Adaptation to market requirements is a permanent challenge in industrial solar-cell production. Both increase of cell efficiency as well as lowering costs is demanded. Back-contacted solar cells offer multiple advantages in terms of reducing module assembling costs and enhanced cell efficiency. The investigated emitter-wrap-through (EWT) design [1] has a collecting emitter on front and rear side. These emitter areas are electrically connected by small holes. Due to the double-sided collecting junction, this cell design is favourable for materials with a low-minority charge carrier diffusion length leading to a higher short circuit current density. Until now most investigations on EWT solar cells were performed on Cz or even FZ silicon. This was justified as long as different processing techniques had to be developed and compared. But as an industrially applicable process sequence has recently been developed [2], the advantages of the EWT concept compared to conventionally processed cells have to be shown on multicrystalline material. In the following, a manufacturing process of EWT solar cells is presented which is especially adapted to the requirements of multicrystalline silicon. Effective surface texturization was reached by mechanical V-texturization and bulk passivation by a hydrogen plasma treatment. The efficiency of the best solar cells within this process reached 14.2% which is the highest efficiency reported so far for mc-Si 10x10 cm 2 EWT solar cells [3]. (author)

  2. Method for forming indium oxide/n-silicon heterojunction solar cells

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  3. Development of processing procedures for advanced silicon solar cells. [antireflection coatings and short circuit currents

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1975-01-01

    Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing.

  4. 24% efficient PERL structure silicon solar cells

    International Nuclear Information System (INIS)

    Zhao, J.; Wang, A.; Green, M.A.

    1990-01-01

    This paper reports that the performance of silicon solar cells have been significantly improved using an improved PERL (passivated emitter, rear locally-diffused) cell structure. This structure overcomes deficiencies in an earlier PERC (passivated emitter and rear cell) cell structure by locally diffusing boron into contact areas at the rear of the cells. Terrestrial energy conversion efficiencies up to 24% are reported for silicon cells for the first time. Air Mass O efficiencies approach 21%. The first batches of concentrator cells using the new structure have demonstrated significant improvement with 29% efficient concentrator silicon cells expected in the near future

  5. Three-dimensional atomic mapping of hydrogenated polymorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanghua, E-mail: wanghua.chen@polytechnique.edu; Roca i Cabarrocas, Pere [LPICM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Pareige, Philippe [GPM, CNRS, Université et INSA de Rouen, Normandie Université, 76801 Saint Etienne du Rouvray (France)

    2016-06-20

    Hydrogenated polymorphous silicon (pm-Si:H) is a nanostructured material consisting of silicon nanocrystals embedded in an amorphous silicon matrix. Its use as the intrinsic layer in thin film p-i-n solar cells has led to good cell properties in terms of stability and efficiency. Here, we have been able to assess directly the concentration and distribution of nanocrystals and impurities (dopants) in p-i-n solar cells, by using femtosecond laser-assisted atom probe tomography (APT). An effective sample preparation method for APT characterization is developed. Based on the difference in atomic density between hydrogenated amorphous and crystalline silicon, we are able to distinguish the nanocrystals from the amorphous matrix by using APT. Moreover, thanks to the three-dimensional reconstruction, we demonstrate that Si nanocrystals are homogeneously distributed in the entire intrinsic layer of the solar cell. The influence of the process pressure on the incorporation of nanocrystals and their distribution is also investigated. Thanks to APT we could determine crystalline fractions as low as 4.2% in the pm-Si:H films, which is very difficult to determine by standard techniques, such as X-ray diffraction, Raman spectroscopy, and spectroscopic ellipsometry. Moreover, we also demonstrate a sharp p/i interface in our solar cells.

  6. Realization of dual-heterojunction solar cells on ultra-thin ∼25 μm, flexible silicon substrates

    KAUST Repository

    Onyegam, Emmanuel U.; Sarkar, Dabraj; Hilali, Mohamed M.; Saha, Sayan; Mathew, Leo; Rao, Rajesh A.; Smith, Ryan S.; Xu, Dewei; Jawarani, Dharmesh; Garcia, Ricardo; Ainom, Moses; Banerjee, Sanjay K.

    2014-01-01

    Silicon heterojunction (HJ) solar cells with different rear passivation and contact designs were fabricated on ∼ 25 μ m semiconductor-on-metal (SOM) exfoliated substrates. It was found that the performance of these cells is limited by recombination at the rear-surface. Employing the dual-HJ architecture resulted in the improvement of open-circuit voltage (Voc) from 605 mV (single-HJ) to 645 mV with no front side intrinsic amorphous silicon (i-layer) passivation. Addition of un-optimized front side i-layer passivation resulted in further enhancement in Voc to 662 mV. Pathways to achieving further improvement in the performance of HJ solar cells on ultra-thin SOM substrates are discussed. © 2014 AIP Publishing LLC.

  7. Realization of dual-heterojunction solar cells on ultra-thin ∼25 μm, flexible silicon substrates

    KAUST Repository

    Onyegam, Emmanuel U.

    2014-04-14

    Silicon heterojunction (HJ) solar cells with different rear passivation and contact designs were fabricated on ∼ 25 μ m semiconductor-on-metal (SOM) exfoliated substrates. It was found that the performance of these cells is limited by recombination at the rear-surface. Employing the dual-HJ architecture resulted in the improvement of open-circuit voltage (Voc) from 605 mV (single-HJ) to 645 mV with no front side intrinsic amorphous silicon (i-layer) passivation. Addition of un-optimized front side i-layer passivation resulted in further enhancement in Voc to 662 mV. Pathways to achieving further improvement in the performance of HJ solar cells on ultra-thin SOM substrates are discussed. © 2014 AIP Publishing LLC.

  8. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    NARCIS (Netherlands)

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  9. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    OpenAIRE

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of photovoltaic (PV) devices which deploy the chemical-vapor-deposited hydrogenated amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si:H) and their alloys as the absorber layers and doped ...

  10. III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration

    Science.gov (United States)

    Cariou, Romain; Benick, Jan; Feldmann, Frank; Höhn, Oliver; Hauser, Hubert; Beutel, Paul; Razek, Nasser; Wimplinger, Markus; Bläsi, Benedikt; Lackner, David; Hermle, Martin; Siefer, Gerald; Glunz, Stefan W.; Bett, Andreas W.; Dimroth, Frank

    2018-04-01

    Silicon dominates the photovoltaic industry but the conversion efficiency of silicon single-junction solar cells is intrinsically constrained to 29.4%, and practically limited to around 27%. It is possible to overcome this limit by combining silicon with high-bandgap materials, such as III-V semiconductors, in a multi-junction device. Significant challenges associated with this material combination have hindered the development of highly efficient III-V/Si solar cells. Here, we demonstrate a III-V/Si cell reaching similar performances to standard III-V/Ge triple-junction solar cells. This device is fabricated using wafer bonding to permanently join a GaInP/GaAs top cell with a silicon bottom cell. The key issues of III-V/Si interface recombination and silicon's weak absorption are addressed using poly-silicon/SiOx passivating contacts and a novel rear-side diffraction grating for the silicon bottom cell. With these combined features, we demonstrate a two-terminal GaInP/GaAs//Si solar cell reaching a 1-sun AM1.5G conversion efficiency of 33.3%.

  11. Influence of stain etching on low minority carrier lifetime areas of multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Montesdeoca-Santana, A. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38206 La Laguna (Spain); Fraunhofer Institute for Solar Energy Systems, Laboratory and Servicecenter Gelsenkirchen, Auf der Reihe 2, 45884 Gelsenkirchen (Germany); Gonzalez-Diaz, B. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38206 La Laguna (Spain); Departamento de Energia Fotovoltaica, Instituto Tecnologico y de Energias Renovables. Poligono Industrial de Granadilla s/n, 38600 San Isidro-Granadilla de Abona (Spain); Jimenez-Rodriguez, E. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38206 La Laguna (Spain); Ziegler, J. [Fraunhofer Institute for Solar Energy Systems, Laboratory- and Servicecenter Gelsenkirchen. Auf der Reihe 2, 45884 Gelsenkirchen (Germany); Velazquez, J.J. [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna. Avda. Astrofisico Francisco Sanchez, 38206 La Laguna (Spain); Hohage, S.; Borchert, D. [Fraunhofer Institute for Solar Energy Systems, Laboratory and Servicecenter Gelsenkirchen. Auf der Reihe 2, 45884 Gelsenkirchen (Germany); Guerrero-Lemus, R., E-mail: rglemus@ull.es [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38206 La Laguna (Spain)

    2011-11-15

    Highlights: > An enhanced minority carrier lifetime at extended defects in multicrystalline silicon is observed with the use of HF/HNO{sub 3} stain etching to texture the surface. > FTIR analysis shows no influence of oxide passivation in this effect. > SEM images show a preferential etching at extended defects suggesting smoothing at defects as one of the causes for the reduced recombination activity. > LBIC images show a reduction in IQE at extended defects in HF/HNO{sub 3} textured multicrystalline solar cells. - Abstract: In this work the use of HF/HNO{sub 3} solutions for texturing silicon-based solar cell substrates by stain etching and the influence of texturing on minority carrier lifetimes are studied. Stain etching is currently used to decrease the reflectance and, subsequently improve the photogenerated current of the cells, but also produces nanostructures on the silicon surface. In the textured samples it has been observed that an improvement on the minority carrier lifetime with respect to the samples treated with a conventional saw damage etching process is produced on grain boundaries and defects, and the origin of this effect has been discussed.

  12. Influence of stain etching on low minority carrier lifetime areas of multicrystalline silicon for solar cells

    International Nuclear Information System (INIS)

    Montesdeoca-Santana, A.; Gonzalez-Diaz, B.; Jimenez-Rodriguez, E.; Ziegler, J.; Velazquez, J.J.; Hohage, S.; Borchert, D.; Guerrero-Lemus, R.

    2011-01-01

    Highlights: → An enhanced minority carrier lifetime at extended defects in multicrystalline silicon is observed with the use of HF/HNO 3 stain etching to texture the surface. → FTIR analysis shows no influence of oxide passivation in this effect. → SEM images show a preferential etching at extended defects suggesting smoothing at defects as one of the causes for the reduced recombination activity. → LBIC images show a reduction in IQE at extended defects in HF/HNO 3 textured multicrystalline solar cells. - Abstract: In this work the use of HF/HNO 3 solutions for texturing silicon-based solar cell substrates by stain etching and the influence of texturing on minority carrier lifetimes are studied. Stain etching is currently used to decrease the reflectance and, subsequently improve the photogenerated current of the cells, but also produces nanostructures on the silicon surface. In the textured samples it has been observed that an improvement on the minority carrier lifetime with respect to the samples treated with a conventional saw damage etching process is produced on grain boundaries and defects, and the origin of this effect has been discussed.

  13. Dephosphorization of Levitated Silicon-Iron Droplets for Production of Solar-Grade Silicon

    Science.gov (United States)

    Le, Katherine; Yang, Yindong; Barati, Mansoor; McLean, Alexander

    2018-05-01

    The treatment of relatively inexpensive silicon-iron alloys is a potential refining route in order to generate solar-grade silicon. Phosphorus is one of the more difficult impurity elements to remove by conventional processing. In this study, electromagnetic levitation was used to investigate phosphorus behavior in silicon-iron alloy droplets exposed to H2-Ar gas mixtures under various experimental conditions including, refining time, temperature (1723 K to 1993 K), gas flow rate, iron content, and initial phosphorus concentration in the alloy. Thermodynamic modeling of the dephosphorization reaction permitted prediction of the various gaseous products and indicated that diatomic phosphorus is the dominant species formed.

  14. Silicon nanowires for photovoltaic solar energy conversion.

    Science.gov (United States)

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  15. Effect of UV irradiations on the structural and optical features of porous silicon: application in silicon solar cells

    International Nuclear Information System (INIS)

    Aouida, S.; Saadoun, M.; Boujmil, M.F.; Ben Rabha, M.; Bessaies, B.

    2004-01-01

    The aim of this paper is to investigate the structural and optical stability of porous silicon layers (PSLs) planned to be used in silicon solar cells technology. The PSLs were prepared by a HNO 3 /HF vapor etching (VE) based method. Fourier transform infrared (FT-IR) spectroscopy shows that fresh VE-based PSLs contain N-H and Si-F bonds related to a ammonium hexafluorosilicate (NH 4 ) 2 SiF 6 minor phase, and conventional Si-H x and Si-O x bonds. Free air exposures of PSLs without and with UV irradiation lead to oxidation or photo-oxidation of the porous layer, respectively. FT-IR characterisation of the PSLs shows that UV irradiations modify the transformation kinetics replacing instable Si-H x by Si-O x or Si-O-H bonds. When fresh PSLs undergo free air oxidation within 7 days, the surface reflectivity decreases from 10 to about 8%, while it drops to about 4% when a 10 min free air UV irradiation is applied. Long periods of free air oxidation do not ensure the reflectivity to be stable, whereas it becomes stable after only 10 min of UV irradiation. This behaviour was explained taking into account the kinetic differences between oxidation with and without UV irradiation. Fresh VE-based PSLs were found to improve efficiently the photovoltaic (PV) characteristics of crystalline silicon solar cells. The passivating action of VE-based PSLs was discussed. An improvement of the PV performances was observed solely for stable oxidized porous silicon (PS) structures obtained from UV irradiations

  16. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    Science.gov (United States)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  17. Silicon Web Process Development. [for solar cell fabrication

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.

  18. Molecular monolayers for electrical passivation and functionalization of silicon-based solar energy devices

    NARCIS (Netherlands)

    Veerbeek, Janneke; Firet, Nienke J.; Vijselaar, Wouter; Elbersen, R.; Gardeniers, Han; Huskens, Jurriaan

    2017-01-01

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based

  19. Solar Grade Silicon from Agricultural By-products

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Richard M

    2012-08-20

    In this project, Mayaterials developed a low cost, low energy and low temperature method of purifying rice hull ash to high purity (5-6Ns) and converting it by carbothermal reduction to solar grade quality silicon (Sipv) using a self-designed and built electric arc furnace (EAF). Outside evaluation of our process by an independent engineering firm confirms that our technology greatly lowers estimated operating expenses (OPEX) to $5/kg and capital expenses (CAPEX) to $24/kg for Sipv production, which is well below best-in-class plants using a Siemens process approach (OPEX of 14/kg and CAPEX of $87/kg, respectively). The primary limiting factor in the widespread use of photovoltaic (PV) cells is the high cost of manufacturing, compared to more traditional sources to reach 6 g Sipv/watt (with averages closer to 8+g/watt). In 2008, the spot price of Sipv rose to $450/kg. While prices have since dropped to a more reasonable $25/kg; this low price level is not sustainable, meaning the longer-term price will likely return to $35/kg. The 6-8 g Si/watt implies that the Sipv used in a module will cost $0.21-0.28/watt for the best producers (45% of the cost of a traditional solar panel), a major improvement from the cost/wafer driven by the $50/kg Si costs of early 2011, but still a major hindrance in fulfilling DOE goal of lowering the cost of solar energy below $1/watt. The solar cell industry has grown by 40% yearly for the past eight years, increasing the demand for Sipv. As such, future solar silicon price spikes are expected in the next few years. Although industry has invested billions of dollars to meet this ever-increasing demand, the technology to produce Sipv remains largely unchanged requiring the energy intensive, and chlorine dependent Siemens process or variations thereof. While huge improvements have been made, current state-of-the-art industrial plant still use 65 kWh/kg of silicon purified. Our technology offers a key distinction to other technologies as it

  20. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  1. Application of plasma silicon nitride to crystalline thin-film silicon solar cells. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Oberbeck, L.; Rinke, T.J.; Berge, C.; Bergmann, R.B.

    2002-07-01

    We use plasma-enhanced chemical vapour deposition to deposit silicon nitride (SiN{sub x}) films at low temperature(400 C) onto the front surface of two different types of crystalline thin-film Si solar cells. The silicon nitride acts as an excellent antireflection coating on Si and provides a very high degree of electronic surface passivation over a wide range of compositions, including near-stoichiometric and Si-rich SiN{sub x}. Application of stoichiometric SiN{sub x} to non-textured thin-film cells, epitaxially grown at low temperature by ion-assisted deposition onto a monocrystalline Si substrate, results in an open-circuit voltage of 622 mV, a short-circuit current density of 26.6 mA/cm{sup 2} and an efficiency of 12.7%. It is shown that the SiN{sub x}-passivated in-situ grown n{sup +}-emitter of this cell type allows to reach open-circuit voltages of up to 667 mV. Silicon-rich SiN{sub x} is applied to the phosphorus-diffused n{sup +}-emitter of a textured thin-film cell on a glass superstrate fabricated by layer-transfer. The emitter saturation current density of these cells is only 40-64 fA/cm{sup 2}, which allows for open-circuit voltages of up to 699 mV. An impressively high open-circuit voltage of 638 mV and a short-circuit current density of 32.0 mA/cm{sup 2} are obtained for a 25 {mu}m thick SiN{sub x}-passivated, random pyramid-textured transfer cell. A transfer cell efficiency of 15.3% is independently confirmed.

  2. Eliminating Light-Induced Degradation in Commercial p-Type Czochralski Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Brett Hallam

    2017-12-01

    Full Text Available This paper discusses developments in the mitigation of light-induced degradation caused by boron-oxygen defects in boron-doped Czochralski grown silicon. Particular attention is paid to the fabrication of industrial silicon solar cells with treatments for sensitive materials using illuminated annealing. It highlights the importance and desirability of using hydrogen-containing dielectric layers and a subsequent firing process to inject hydrogen throughout the bulk of the silicon solar cell and subsequent illuminated annealing processes for the formation of the boron-oxygen defects and simultaneously manipulate the charge states of hydrogen to enable defect passivation. For the photovoltaic industry with a current capacity of approximately 100 GW peak, the mitigation of boron-oxygen related light-induced degradation is a necessity to use cost-effective B-doped silicon while benefitting from the high-efficiency potential of new solar cell concepts.

  3. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  4. Microstructure and Mechanical Aspects of Multicrystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Popovich, V.A.

    2013-01-01

    Due to pressure from the photovoltaic industry to decrease the cost of solar cell production, there is a tendency to reduce the thickness of silicon wafers. Unfortunately, wafers contain defects created by the various processing steps involved in solar cell production, which significantly reduce the

  5. Silicon-Light: a European FP7 Project Aiming at High Efficiency Thin Film Silicon Solar Cells on Foil

    DEFF Research Database (Denmark)

    Soppe, W.; Haug, F.-J.; Couty, P.

    2011-01-01

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano...... calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils...

  6. The effect of texture unit shape on silicon surface on the absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xiao-She; Zhang, Yi-Jie; Wang, Hao-Wei [Institute of Ecological and Environmental Materials, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-02-15

    Improving the utilization ratio of sunlight is a key factor for the development of solar cell. In this work, different structures including triangular pyramid, rectangular pyramid, hexangular pyramid and cone structure are established to investigate the influences of many factors, like geometrical shape, density and the top angle of the texture unit on silicon front surface to sunlight absorption. Ray-tracing technology is used for simulation. The simulation results indicate that the triangular pyramid texture on silicon front surface performs the best, and its total absorption rate is more than 90% for the light with wavelength between 640 and 1080 nm when the top angle of pyramid is less than 100 . (author)

  7. Increased radiation resistance in lithium-counterdoped silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Mehta, S.

    1984-01-01

    Lithium-counterdoped n(+)p silicon solar cells are found to exhibit significantly increased radiation resistance to 1-MeV electron irradiation when compared to boron-doped n(+)p silicon solar cells. In addition to improved radiation resistance, considerable damage recovery by annealing is observed in the counterdoped cells at T less than or equal to 100 C. Deep level transient spectroscopy measurements are used to identify the defect whose removal results in the low-temperature aneal. It is suggested that the increased radiation resistance of the counterdoped cells is primarily due to interaction of the lithium with interstitial oxygen.

  8. Potential of ITO nanoparticles formed by hydrogen treatment in PECVD for improved performance of back grid contact crystalline silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sourav; Mitra, Suchismita; Dhar, Sukanta; Ghosh, Hemanta; Banerjee, Chandan, E-mail: chandanbanerjee74@gmail.com; Datta, Swapan K.; Saha, Hiranmoy

    2015-09-15

    Highlights: • Indium tin oxide (ITO) nanoparticles as back scatterers in c-Si solar cells. • ITO NP have comparatively low dissipative losses and tunable optical properties. • ITO NP formed by hydrogen plasma treatment on sputtered ITO film. • Enhanced absorption and carrier collection at longer wavelengths due to enhanced light trapping. - Abstract: This paper discusses the prospect of using indium tin oxide (ITO) nanoparticles as back scatterers in crystalline silicon solar cells instead of commonly used metal nanoparticles as ITO nanoparticles have comparatively low dissipative losses and tunable optical properties. ITO nanoparticles of ∼5–10 nm size is developed on the rear side of the solar cell by deposition of ∼5–10 nm thick ITO layer by DC magnetron sputtering followed by hydrogen treatment in PECVD. The silicon solar cell is fabricated in the laboratory using conventional method with grid metal contact at the back surface. Various characterizations like FESEM, TEM, AFM, XRD, EQE and IV characteristics are performed to analyze the morphology, chemical composition, optical characteristics and electrical performance of the device. ITO nanoparticles at the back surface of the solar cell significantly enhances the short circuit current, open circuit voltage and efficiency of the solar cell. These enhancements may be attributed to the increased absorption and carrier collection at longer wavelengths of solar spectrum due to enhanced light trapping by the ITO nanoparticles and surface passivation by the hydrogen treatment of the back surface.

  9. Towards Cost-Effective Crystalline Silicon Based Flexible Solar Cells: Integration Strategy by Rational Design of Materials, Process, and Devices

    KAUST Repository

    Bahabry, Rabab R.

    2017-11-30

    The solar cells market has an annual growth of more than 30 percent over the past 15 years. At the same time, the cost of the solar modules diminished to meet both of the rapid global demand and the technological improvements. In particular for the crystalline silicon solar cells, the workhorse of this technology. The objective of this doctoral thesis is enhancing the efficiency of c-Si solar cells while exploring the cost reduction via innovative techniques. Contact metallization and ultra-flexible wafer based c-Si solar cells are the main areas under investigation. First, Silicon-based solar cells typically utilize screen printed Silver (Ag) metal contacts which affect the optimal electrical performance. To date, metal silicide-based ohmic contacts are occasionally used for the front contact grid lines. In this work, investigation of the microstructure and the electrical characteristics of nickel monosilicide (NiSi) ohmic contacts on the rear side of c-Si solar cells has been carried out. Significant enhancement in the fill factor leading to increasing the total power conversion efficiency is observed. Second, advanced classes of modern application require a new generation of versatile solar cells showcasing extreme mechanical resilience. However, silicon is a brittle material with a fracture strains <1%. Highly flexible Si-based solar cells are available in the form thin films which seem to be disadvantageous over thick Si solar cells due to the reduction of the optical absorption with less active Si material. Here, a complementary metal oxide semiconductor (CMOS) technology based integration strategy is designed where corrugation architecture to enable an ultra-flexible solar cell module from bulk mono-crystalline silicon solar wafer with 17% efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness and achieves flexibility via interdigitated back contacts. These cells

  10. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss.

    Science.gov (United States)

    Zhang, Yinan; Stokes, Nicholas; Jia, Baohua; Fan, Shanhui; Gu, Min

    2014-05-13

    The cost-effectiveness of market-dominating silicon wafer solar cells plays a key role in determining the competiveness of solar energy with other exhaustible energy sources. Reducing the silicon wafer thickness at a minimized efficiency loss represents a mainstream trend in increasing the cost-effectiveness of wafer-based solar cells. In this paper we demonstrate that, using the advanced light trapping strategy with a properly designed nanoparticle architecture, the wafer thickness can be dramatically reduced to only around 1/10 of the current thickness (180 μm) without any solar cell efficiency loss at 18.2%. Nanoparticle integrated ultra-thin solar cells with only 3% of the current wafer thickness can potentially achieve 15.3% efficiency combining the absorption enhancement with the benefit of thinner wafer induced open circuit voltage increase. This represents a 97% material saving with only 15% relative efficiency loss. These results demonstrate the feasibility and prospect of achieving high-efficiency ultra-thin silicon wafer cells with plasmonic light trapping.

  11. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    OpenAIRE

    Lee, Youngseok; Oh, Woongkyo; Dao, Vinh Ai; Hussain, Shahzada Qamar; Yi, Junsin

    2012-01-01

    It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT) solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO) process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0) which improves the efficie...

  12. Converting sunlight into red light in fluorosilicate glass for amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Chengguo, E-mail: mingchengguo1978@163.com [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China); Song, Feng [Photonics Center, College of Physical Science, Nankai University, Tianjin 300071 (China); Ren, Xiaobin [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China); Yuan, Fengying; Qin, Yueting [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China); Photonics Center, College of Physical Science, Nankai University, Tianjin 300071 (China); An, Liqun; Cai, Yuanxue [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China)

    2017-03-15

    Fluorosilicate glass was prepared by high-temperature melting method to explore highly efficient luminescence materials for amorphous silicon solar cells. Absorption, excitation and emission spectra of the glass were measured. The optical characters of the glass were discussed in details. The glass can efficiently convert sunlight into red light. Our glass can be applied to amorphous silicon solar cells as a converter of solar spectrum.

  13. Controllable Nanoscale Inverted Pyramids for High-Efficient Quasi-Omnidirectional Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Xu, Haiyuan; Zhong, Sihua; Zhuang, Yufeng; Shen, Wenzhong

    2017-11-14

    Nanoscale inverted pyramid structures (NIPs) have always been regarded as one of the most paramount light management schemes to achieve the extraordinary performance in various devices, especially in solar cells, due to their outstanding antireflection ability with relative lower surface enhancement ratio. However, the current approaches to fabricating the NIPs are complicated and not cost-effective for the massive cell production in the photovoltaic industry. Here, controllable NIPs are fabricated on crystalline silicon (c-Si) wafers by Ag catalyzed chemical etching and alkaline modification, which is a preferable all-solution-processed method. Through applying the NIPs to c-Si solar cells and optimizing the cell design, we have successfully achieved highly efficient NIPs textured solar cells with the champion efficiency of 20.5%. Importantly, the NIPs textured solar cells are further demonstrated to possess the quasi-omnidirectional property over the broad sunlight incident angles of approximately 0°-60°. Moreover, the NIPs are theoretically revealed to offer light trapping advantage for ultrathin c-Si solar cells. Hence, the NIPs formed by the controllable method exhibit a great potential to be used in the future photovoltaic industry as surface texture. © 2017 IOP Publishing Ltd.

  14. Development of Doped Microcrystalline Silicon Oxide and its Application to Thin‑Film Silicon Solar Cells

    NARCIS (Netherlands)

    Lambertz, A.

    2015-01-01

    The aim of the present study is the development of doped microcrystalline silicon oxide (µc‑SiOx:H) alloys and its application in thin‑film silicon solar cells. The doped µc‑SiOx:H material was prepared from carbon dioxide (CO2), silane (SiH4), hydrogen (H2) gas mixtures using plasma enhanced

  15. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    Energy Technology Data Exchange (ETDEWEB)

    Geissbühler, Jonas, E-mail: jonas.geissbuehler@epfl.ch; Werner, Jérémie; Martin de Nicolas, Silvia; Hessler-Wyser, Aïcha; Tomasi, Andrea; Niesen, Bjoern; De Wolf, Stefaan [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); Barraud, Loris; Despeisse, Matthieu; Nicolay, Sylvain [CSEM PV-Center, Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland); Ballif, Christophe [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); CSEM PV-Center, Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland)

    2015-08-24

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  16. Crystalline silicon thin film growth by ECR plasma CVD for solar cells

    International Nuclear Information System (INIS)

    Licai Wang

    1999-07-01

    This thesis describes the background, motivation and work carried out towards this PhD programme entitled 'Crystalline Silicon Thin Film Growth by ECR Plasma CVD for Solar Cells'. The fundamental principles of silicon solar cells are introduced with a review of silicon thin film and bulk solar cells. The development and prospects for thin film silicon solar cells are described. Some results of a modelling study on thin film single crystalline solar cells are given which has been carried out using a commercially available solar cell simulation package (PC-1D). This is followed by a description of thin film deposition techniques. These include Chemical Vapour Deposition (CVD) and Plasma-Assisted CVD (PACVD). The basic theory and technology of the emerging technique of Electron Cyclotron Resonance (ECR) PACVD, which was used in this research, are introduced and the potential advantages summarised. Some of the basic methods of material and cell characterisation are briefly described, together with the work carried out in this research. The growth by ECR PACVD at temperatures 2 illumination. The best efficiency in the ECR grown structures was 13.76% using an epitaxial emitter. Cell performance was analysed in detail and the factors controlling performance identified by fitting self-consistently the fight and dark current-voltage and spectral response data using PC-1D. Finally, the conclusions for this research and suggestions for further work are outlined. (author)

  17. Efficiency enhancement of silicon nanowire solar cells by using UV/Ozone treatments and micro-grid electrodes

    Science.gov (United States)

    Chen, Junyi; Subramani, Thiyagu; Sun, Yonglie; Jevasuwan, Wipakorn; Fukata, Naoki

    2018-05-01

    Silicon nanowire solar cells were fabricated by metal catalyzed electroless etching (MCEE) followed by thermal chemical vapor deposition (CVD). In this study, we investigated two effects, a UV/ozone treatment and the use of a micro-grid electrodes, to enhance light absorption and reduce the optic losses in the solar cell device. The UV/ozone treatment successfully improved the conversion efficiency. The micro-grid electrodes were then applied in solar cell devices subjected to a back surface field (BSF) treatment and rapid thermal annealing (RTA). These effects improved the conversion efficiency from 9.4% to 10.9%. Moreover, to reduce surface recombination and improve the continuity of front electrodes, we optimized the etching time of the MCEE process, giving a high efficiency of 12.3%.

  18. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic

  19. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    Energy Technology Data Exchange (ETDEWEB)

    Seif, Johannes Peter, E-mail: johannes.seif@alumni.epfl.ch; Ballif, Christophe; De Wolf, Stefaan [Photovoltaics and Thin-Film Electronics Laboratory, Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2002 Neuchâtel (Switzerland); Menda, Deneb; Özdemir, Orhan [Department of Physics, Yıldız Technical University, Davutpasa Campus, TR-34210 Esenler, Istanbul (Turkey); Descoeudres, Antoine; Barraud, Loris [CSEM, PV-Center, Jaquet-Droz 1, CH-2002 Neuchâtel (Switzerland)

    2016-08-07

    Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation of such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.

  20. Increasing the efficiency of polymer solar cells by silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07743 Jena (Germany); Sensfuss, S, E-mail: bjoern.eisenhawer@ipht-jena.de [Thuringian Institute for Textile and Plastics Research, Breitscheidstrasse 97, 07407 Rudolstadt (Germany)

    2011-08-05

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  1. Increasing the efficiency of polymer solar cells by silicon nanowires

    International Nuclear Information System (INIS)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F; Sensfuss, S

    2011-01-01

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  2. Atomic and electronic structures of novel silicon surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  3. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo

    2017-05-31

    Dopant-free, carrier-selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron-selective titanium dioxide (TiO) contacts, one of the most promising dopant-free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long-term stability. Our findings underscore the great appeal of TiO contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost.

  4. Light scattering effect of ITO:Zr/AZO films deposited on periodic textured glass surface morphologies for silicon thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahzada Qamar [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan); Kwon, Gi Duk; Kim, Sunbo; Balaji, Nagarajan; Shin, Chonghoon; Kim, Sangho; Khan, Shahbaz; Pribat, Didier [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Raja, Jayapal; Lee, Youn-Jung [Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of); Razaq, Aamir [COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan); Velumani, S. [Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of); Department of Electrical Engineering (SEES), Mexico City (Mexico); Yi, Junsin [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of)

    2015-09-15

    Various SF{sub 6}/Ar plasma-textured periodic glass surface morphologies for high transmittance, haze ratio and low sheet resistance of ITO:Zr films are reported. The SF{sub 6}/Ar plasma-textured glass surface morphologies were changed from low aspect ratio to high aspect ratio with the increase in RF power from 500 to 600 W. The micro- and nano-size features of textured glass surface morphologies enhanced the haze ratio in visible as well as NIR wavelength region. Micro-size textured features also influenced the sheet resistance and electrical characteristics of ITO:Zr films due to step coverage. The ITO:Zr/AZO bilayer was used as front TCO electrode for p-i-n amorphous silicon thin film solar cells with current density-voltage characteristics as: V{sub oc} = 875 mV, FF = 70.90 %, J{sub sc} = 11.31 mA/cm{sup 2}, η = 7.02 %. (orig.)

  5. Electroluminescence analysis for spatial characterization of parasitic optical losses in silicon heterojunction solar cells

    Science.gov (United States)

    Ahmed, Nuha; Zhang, Lei; Sriramagiri, Gowri; Das, Ujjwal; Hegedus, Steven

    2018-04-01

    Electroluminescence (EL) coupled with reflection measurements are used to spatially quantify optical losses in silicon heterojunction solar cells due to plasmonic absorption in the metal back contacts. The effect of indium tin oxide back reflector in decreasing this plasmonic absorption is found to increase the reflection from the back nickel (Ni)-aluminum (Al) and Al metals by ˜12% and ˜41%, respectively, in both bifacial and front junction silicon solar cells. Losses due to back reflection are calculated by comparison between the EL emission signals in high and low back reflection samples and are shown to be in agreement with standard reflection measurements. We conclude that the optical properties of the back contact can significantly influence the EL intensity which complicates the interpretation of EL as being primarily due to recombination especially when comparing two different devices with spatially varying back surface structures.

  6. Enhanced light absorption in an ultrathin silicon solar cell utilizing plasmonic nanostructures

    Science.gov (United States)

    Xiao, Sanshui; Mortensen, Niels A.

    2012-10-01

    Nowadays, bringing photovoltaics to the market is mainly limited by high cost of electricity produced by the photovoltaic solar cell. Thin-film photovoltaics offers the potential for a significant cost reduction compared to traditional photovoltaics. However, the performance of thin-film solar cells is generally limited by poor light absorption. We propose an ultrathin-film silicon solar cell configuration based on SOI structure, where the light absorption is enhanced by use of plasmonic nanostructures. By placing a one-dimensional plasmonic nanograting on the bottom of the solar cell, the generated photocurrent for a 200 nm-thickness crystalline silicon solar cell can be enhanced by 90% in the considered wavelength range. These results are paving a promising way for the realization of high-efficiency thin-film solar cells.

  7. Simultaneous electron-proton irradiation of crucible grown and float-zone silicon solar cells

    International Nuclear Information System (INIS)

    Bernard, J.

    1974-01-01

    The realisation of an irradiation chamber which permits simultaneous irradiations by electrons, protons, photons and in-situ measurements of solar cells main parameters (diffusion length, I.V. characteristics) is described. Results obtained on 20 solar cells n/p 10Ωcm made in silicon pulled crystals and 20 solar cells n/p 10Ωcm made in silicon float-zone simultaneously irradiated with electrons and photons are given [fr

  8. Improvement in photovoltaic properties of silicon solar cells with a doped porous silicon layer with rare earth (Ce, La) as antireflection coatings

    International Nuclear Information System (INIS)

    Atyaoui, Malek; Dimassi, Wissem; Atyaoui, Atef; Elyagoubi, Jalel; Ouertani, Rachid; Ezzaouia, Hatem

    2013-01-01

    The performance improvement of solar cells due to the formation of a porous silicon layer treated with rare earth (Ce, La) in the n + emitter of silicon n + /p junctions has been investigated. The photovoltaic properties of the cells with and without treatment of the porous silicon layer are compared. From the reflection measurements, it was shown that the cells with treated PS layers have lower reflectivity value compared to cell with untreated PS layer. The main result is that the photovoltaic energy conversion efficiency of solar cells can be enhanced by using the treated porous silicon layers with the rare earth (Ce, La) as anti-reflection coatings. -- Highlights: • The reduction of optical loss in silicon (c-Si) solar cells attracts the attention of many researches to achieve high efficiencies. • To attain this aim, the treated PS layers with rare earth (La, Ce) are suggested to be used as an (ARC) of c-Si solar cell. • The result showed a decrease in the optical losses which can explain the improved photovoltaic properties

  9. Improvement in photovoltaic properties of silicon solar cells with a doped porous silicon layer with rare earth (Ce, La) as antireflection coatings

    Energy Technology Data Exchange (ETDEWEB)

    Atyaoui, Malek, E-mail: atyaoui.malek@yahoo.fr [Laboratoire de Photovoltaïque, Centre de recherches et des technologies de l' energie, technopole de Borj-Cédria, PB:95, Hammam Lif 2050 (Tunisia); Dimassi, Wissem [Laboratoire de Photovoltaïque, Centre de recherches et des technologies de l' energie, technopole de Borj-Cédria, PB:95,Hammam Lif 2050 (Tunisia); Atyaoui, Atef [Laboratoire de traitement des eaux usées, Centre de recherches et des technologies des eaux, technopole de Borj-Cédria, PB: 273, Soliman 8020 (Tunisia); Elyagoubi, Jalel; Ouertani, Rachid; Ezzaouia, Hatem [Laboratoire de Photovoltaïque, Centre de recherches et des technologies de l' energie, technopole de Borj-Cédria, PB:95,Hammam Lif 2050 (Tunisia)

    2013-09-15

    The performance improvement of solar cells due to the formation of a porous silicon layer treated with rare earth (Ce, La) in the n{sup +} emitter of silicon n{sup +}/p junctions has been investigated. The photovoltaic properties of the cells with and without treatment of the porous silicon layer are compared. From the reflection measurements, it was shown that the cells with treated PS layers have lower reflectivity value compared to cell with untreated PS layer. The main result is that the photovoltaic energy conversion efficiency of solar cells can be enhanced by using the treated porous silicon layers with the rare earth (Ce, La) as anti-reflection coatings. -- Highlights: • The reduction of optical loss in silicon (c-Si) solar cells attracts the attention of many researches to achieve high efficiencies. • To attain this aim, the treated PS layers with rare earth (La, Ce) are suggested to be used as an (ARC) of c-Si solar cell. • The result showed a decrease in the optical losses which can explain the improved photovoltaic properties.

  10. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  11. Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells

    International Nuclear Information System (INIS)

    Xu, Yuanpei; Xuan, Yimin

    2015-01-01

    The use of nanoparticles in solar cells has created many controversies. In this paper, different mechanisms of nanoparticles with different materials with diameters varying from 50 to 200 nm, surface coverage at 5, 20, and 60 %, and different locations are analyzed systematically for efficient light trapping in a thin-film c-Si solar cell. Mie theory and the finite difference time domain method are used for analysis to give a design principle with nanoparticles for the solar cell application. Metals exhibit plasmonic resonances and angular scattering, while dielectrics show anti-reflection and scattering in the incident direction. A table is given to summarize the advantages and disadvantages in different conditions. The silicon absorption enhancement with nanoparticles on top is mainly in the shorter wavelengths below 700 nm, and both Al and SiO 2 nanoparticles with diameter around 100 nm show the most significant enhancement. The silicon absorption enhancement with embedded nanoparticles takes place in the longer wavelengths over 700 nm, and Ag and SiO 2 nanoparticles with larger diameter around 200 nm perform better. However, the light absorbed by Ag nanoparticles will be converted to heat and will lead to decrease in cell efficiency; hence, the choice of metallic nanoparticles in applications to solar cells should be carefully considered. The design principle proposed in this work gives a guideline by choosing reasonable parameters for the different requirements in the application of thin-film solar cells

  12. Analysis of IV characteristics of solar cells made of hydrogenated amorphous, polymorphous and microcrystalline silicon

    International Nuclear Information System (INIS)

    Hamadeh, H.

    2009-03-01

    The IV characteristics of pin solar cells made of amorphous, polymorphous and microcrystalline silicon were investigated. The temperature dependence was measured in the temperature range between 150 K and 395 K. This range covers the most terrestrial applications condition. Using simplex procedure, the IV parameter of the cells were deduce using line fitting. It has been shown that polymorphous silicon shows electrical properties that are close to properties of microcrystalline silicon but as it is well known, polymorphous silicon shows higher absorption similar to amorphous silicon. The polymorphous silicon solar cells showed higher efficiencies, lower shunting and higher filling factors. In the above mentioned temperature range, polymorphous silicon is the better material for the manufacturing of thin film hydrogenated silicon pin solar cells. More investigations concerning the structural properties are necessary to make stronger conclusions in regards to the stability of the material, what we hope to do in the future. (author)

  13. Solar breeder: Energy payback time for silicon photovoltaic systems

    Science.gov (United States)

    Lindmayer, J.

    1977-01-01

    The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.

  14. Electrical characterization of MIS devices using PECVD SiN{sub x}:H films for application of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jin-Su; Cho, Jun-Sik; Park, Joo-Hyung; Ahn, Seung-Kyu; Shin, Kee-Shik; Yoon, Kyung-Hoon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yi, Jun-Sin [Sungkyunkwan University, Suwon (Korea, Republic of)

    2012-07-15

    The surface passivation of crystalline silicon solar cells using plasma enhanced chemical vapor deposition (PECVD), hydrogenated, silicon-nitride (SiN{sub x}:H) thin films has become significant due to a low-temperature, low-cost and very effective defect passivation process. Also, a good quality antireflection coating can be formed. In this work, SiN{sub x}:H thin films were deposited by varying the gas ratio R (=NH{sub 3}/SiH{sub 4}+NH{sub 3}) and were annealed by rapid thermal processing (RTP). Metal-insulator- semiconductor (MIS) devices were fabricated using SiN{sub x}:H thin films as insulator layers and they were analyzed in the temperature range of 100 - 400 K by using capacitance-voltage (C-V) and current-voltage (I-V) measurements. The annealed SiN{sub x}:H thin films were evaluated by using the electrical properties at different temperature to determine the effect of surface passivation. We achieved an energy conversion efficiency of 18.1% under one-sun standard testing conditions for large-area (156 mm x 156 mm) crystalline-silicon solar cells.

  15. Progress in thin-film silicon solar cells based on photonic-crystal structures

    Science.gov (United States)

    Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu

    2018-06-01

    We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.

  16. Origami-enabled deformable silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Tu, Hongen; Xu, Yong [Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Michigan 48202 (United States); Song, Zeming; Jiang, Hanqing, E-mail: hanqing.jiang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Yu, Hongyu, E-mail: hongyu.yu@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  17. Origami-enabled deformable silicon solar cells

    International Nuclear Information System (INIS)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-01-01

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics

  18. ZnO transparent conductive oxide for thin film silicon solar cells

    Science.gov (United States)

    Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.

    2010-03-01

    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.

  19. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Prathap Pathi

    2017-01-01

    Full Text Available Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm and is slightly lower (by ~5% at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm silicon and just 1%–2% for thicker (>100 μm cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  20. Effect of porous silicon on the performances of silicon solar cells during the porous silicon-based gettering procedure

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, H.; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Bouaicha, M. [Laboratoire de Photovoltaique, des Semi-conducteurs et des Nanostructures, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2009-10-15

    In this work we analyse the effect of porous silicon on the performances of multicrystalline silicon (mc-Si) solar cells during the porous silicon-based gettering procedure. This procedure consists of forming PS layers on both front and back sides of the mc-Si wafers followed by an annealing in an infrared furnace under a controlled atmosphere at different temperatures. Three sets of samples (A, B and C) have been prepared; for samples A and B, the PS films were removed before and after annealing, respectively. In order to optimize the annealing temperature, we measure the defect density at a selected grain boundary (GB) using the dark current-voltage (I-V) characteristics across the GB itself. The annealing temperature was optimized to 1000 C. The effect of these treatments on the performances of mc-Si solar cells was studied by means of the current-voltage characteristic (at AM 1.5) and the internal quantum efficiency (IQE). The results obtained for cell A and cell B were compared to those obtained on a reference cell (C). (author)

  1. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    Science.gov (United States)

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  2. Analysis of novel silicon and III-V solar cells by simulation and experiment; Analyse neuartiger Silizium- und III-V-Solarzellen mittels Simulation und Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hermle, Martin

    2008-11-27

    This work presents various simulation studies of silicon and III-V solar cells. For standard silicon solar cells, one of the critical parameters to obtain good performance, is the rear side recombination velocity. The optical and electrical differences of the different cell structures were determined. The optical differences and the effective recombination velocity Sback of the different rear side structures for 1 Ohmcm material were extracted. Beside standard silicon solar cells, back junction silicon solar cells were investigated. Especially the influence of the front surface field and the electrical shading due to the rear side, was investigated. In the last two chapters, III-V solar cells were analysed. For the simulation of III-V multi-junction solar cells, the simulation of the tunneldiode is the basic prerequisite. In this work, the numerical calibration of an GaAs tunneldiode was achieved by using an non-local tunnel model. Using this model, it was possible to successfully simulate a III-V tandem solar cell. The last chapter deals with an optimization of the III-V 3-junction cell for space applications. Especially the influence of the GaAs middle cell was investigated. Due to structural changes, the end-of-life efficiency was drastically increased.

  3. The effect of radiation intensity on diode characteristics of silicon solar cells

    International Nuclear Information System (INIS)

    Asgerov, Sh.Q; Agayev, M.N; Hasanov, M.H; Pashayev, I.G

    2008-01-01

    In order to explore electro-physical properties of silicon solar cells, diode characteristics and ohmic properties of Al - Ni / (n+) - Si contact has been studied. Diode characteristics have been studied on a wide temperature range and on various radiation intensity, so this gives us the ability to observe the effect of the radiation and the temperature on electro-physical properties of under study solar cells. Volt-Ampere characteristics of the ohmic contacts of the silicon solar cells have been presented. As well as contact resistance and mechanism of current transmission has been identified.

  4. Substrate and p-layer effects on polymorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Abolmasov S.N.

    2014-07-01

    Full Text Available The influence of textured transparent conducting oxide (TCO substrate and p-layer on the performance of single-junction hydrogenated polymorphous silicon (pm-Si:H solar cells has been addressed. Comparative studies were performed using p-i-n devices with identical i/n-layers and back reflectors fabricated on textured Asahi U-type fluorine-doped SnO2, low-pressure chemical vapor deposited (LPCVD boron-doped ZnO and sputtered/etched aluminum-doped ZnO substrates. The p-layers were hydrogenated amorphous silicon carbon and microcrystalline silicon oxide. As expected, the type of TCO and p-layer both have a great influence on the initial conversion efficiency of the solar cells. However they have no effect on the defect density of the pm-Si:H absorber layer.

  5. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  6. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Energy Technology Data Exchange (ETDEWEB)

    Mondon, A., E-mail: andrew.mondon@ise.fraunhofer.de [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany); Wang, D. [Karlsruhe Nano Micro Facility (KNMF), H.-von-Helmholz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Zuschlag, A. [Universität Konstanz FB Physik, Jacob-Burckhardt-Str. 27, D-78464 Konstanz (Germany); Bartsch, J.; Glatthaar, M.; Glunz, S.W. [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany)

    2014-12-30

    Highlights: • Adhesion of metallization of fully plated nickel–copper contacts on silicon solar cells can be achieved by formation of nickel silicide at the cost of degraded cell performance. • Understanding of silicide growth mechanisms and controlled growth may lead to high performance together with excellent adhesion. • Silicide formation is well known from CMOS production from PVD-Ni on flat surfaces. Yet the deposition methods and therefore layer characteristics and the surface topography are different for plated metallization. • TEM analysis is performed for differently processed samples. • A nickel silicide growth model is created for plated Ni on textured silicon solar cells. - Abstract: In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel–silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide

  7. Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect.

    Science.gov (United States)

    Zhu, Laipan; Wang, Longfei; Pan, Caofeng; Chen, Libo; Xue, Fei; Chen, Baodong; Yang, Leijing; Su, Li; Wang, Zhong Lin

    2017-02-28

    Although there are numerous approaches for fabricating solar cells, the silicon-based photovoltaics are still the most widely used in industry and around the world. A small increase in the efficiency of silicon-based solar cells has a huge economic impact and practical importance. We fabricate a silicon-based nanoheterostructure (p + -Si/p-Si/n + -Si (and n-Si)/n-ZnO nanowire (NW) array) photovoltaic device and demonstrate the enhanced device performance through significantly enhanced light absorption by NW array and effective charge carrier separation by the piezo-phototronic effect. The strain-induced piezoelectric polarization charges created at n-doped Si-ZnO interfaces can effectively modulate the corresponding band structure and electron gas trapped in the n + -Si/n-ZnO NW nanoheterostructure and thus enhance the transport process of local charge carriers. The efficiency of the solar cell was improved from 8.97% to 9.51% by simply applying a static compress strain. This study indicates that the piezo-phototronic effect can enhance the performance of a large-scale silicon-based solar cell, with great potential for industrial applications.

  8. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  9. Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application

    Science.gov (United States)

    Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.

    2008-04-01

    Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.

  10. Metallization of DNA on silicon surface

    International Nuclear Information System (INIS)

    Puchkova, Anastasiya Olegovna; Sokolov, Petr; Petrov, Yuri Vladimirovich; Kasyanenko, Nina Anatolievna

    2011-01-01

    New simple way for silver deoxyribonucleic acid (DNA)-based nanowires preparation on silicon surface was developed. The electrochemical reduction of silver ions fixed on DNA molecule provides the forming of tightly matched zonate silver clusters. Highly homogeneous metallic clusters have a size about 30 nm. So the thickness of nanowires does not exceed 30–50 nm. The surface of n-type silicon monocrystal is the most convenient substrate for this procedure. The comparative analysis of DNA metallization on of n-type silicon with a similar way for nanowires fabrication on p-type silicon, freshly cleaved mica, and glass surface shows the advantage of n-type silicon, which is not only the substrate for DNA fixation but also the source of electrons for silver reduction. Images of bound DNA molecules and fabricated nanowires have been obtained using an atomic force microscope and a scanning ion helium microscope. DNA interaction with silver ions in a solution was examined by the methods of ultraviolet spectroscopy and circular dichroism.

  11. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.

    2018-01-15

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent, with Kaneka setting the world\\'s silicon solar cell efficiency record of 26.63% using silicon heterojunction contacts in an interdigitated configuration. Although passivating-contact solar cells are remarkably efficient, their underlying device physics is not yet completely understood, not in the least because they are constructed from diverse materials that may introduce electronic barriers in the current flow. To bridge this gap in understanding, we explore the device physics of passivating contact silicon heterojunction (SHJ) solar cells. Here, we identify the key properties of heterojunctions that affect cell efficiency, analyze the dependence of key heterojunction properties on carrier transport under light and dark conditions, provide a self-consistent multiprobe approach to extract heterojunction parameters using several characterization techniques (including dark J-V, light J-V, C-V, admittance spectroscopy, and Suns-Voc), propose design guidelines to address bottlenecks in energy production in SHJ cells, and develop a process-to-module modeling framework to establish the module\\'s performance limits. We expect that our proposed guidelines resulting from this multiscale and self-consistent framework will improve the performance of future SHJ cells as well as other passivating contact-based solar cells.

  12. Mapping boron in silicon solar cells using electron energy-loss spectroscopy

    DEFF Research Database (Denmark)

    in the energies of plasmon peaks in the low loss region [5]. We use these approaches to characterize both a thick n-p junction and the 10-nm-thick p-doped layer of a working solar cell. [1] U. Kroll, C. Bucher, S. Benagli, I. Schönbächler, J. Meier, A. Shah, J. Ballutaud, A. Howling, Ch. Hollenstein, A. Büchel, M......Amorphous silicon solar cells typically consist of stacked layers deposited on plastic or metallic substrates making sample preparation for transmission electron microscopy (TEM) difficult. The amorphous silicon layer - the active part of the solar cell - is sandwiched between 10-nm-thick n- and p...... resolution using TEM is highly challenging [3]. Recently, scanning TEM (STEM) combined with electron energy-loss spectroscopy (EELS) and spherical aberration-correction has allowed the direct detection of dopant concentration of 10^20cm-3 in 65-nm-wide silicon devices [4]. Here, we prepare TEM samples...

  13. Copper-assisted, anti-reflection etching of silicon surfaces

    Science.gov (United States)

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  14. Combined Contamination and Space Environmental Effects on Solar Cells and Thermal Control Surfaces

    Science.gov (United States)

    Dever, Joyce A.; Bruckner, Eric J.; Scheiman, David A.; Stidham, Curtis R.

    1994-01-01

    For spacecraft in low Earth orbit (LEO), contamination can occur from thruster fuel, sputter contamination products and from products of silicone degradation. This paper describes laboratory testing in which solar cell materials and thermal control surfaces were exposed to simulated spacecraft environmental effects including contamination, atomic oxygen, ultraviolet radiation and thermal cycling. The objective of these experiments was to determine how the interaction of the natural LEO environmental effects with contaminated spacecraft surfaces impacts the performance of these materials. Optical properties of samples were measured and solar cell performance data was obtained. In general, exposure to contamination by thruster fuel resulted in degradation of solar absorptance for fused silica and various thermal control surfaces and degradation of solar cell performance. Fused silica samples which were subsequently exposed to an atomic oxygen/vacuum ultraviolet radiation environment showed reversal of this degradation. These results imply that solar cells and thermal control surfaces which are susceptible to thruster fuel contamination and which also receive atomic oxygen exposure may not undergo significant performance degradation. Materials which were exposed to only vacuum ultraviolet radiation subsequent to contamination showed slight additional degradation in solar absorptance.

  15. Impurity photovoltaic effect in silicon solar cell doped with sulphur: A numerical simulation

    International Nuclear Information System (INIS)

    Azzouzi, Ghania; Chegaar, Mohamed

    2011-01-01

    The impurity photovoltaic effect (IPV) has mostly been studied in various semiconductors such as silicon, silicon carbide and GaAs in order to increase infrared absorption and hence cell efficiency. In this work, sulphur is used as the IPV effect impurity incorporated in silicon solar cells. For our simulation we use the numerical device simulator (SCAPS). We calculate the solar cell performances (short circuit current density J sc , open circuit voltage V oc , conversion efficiency η and quantum efficiency QE). We study the influence of light trapping and certain impurity parameters like impurity concentration and position in the gap on the solar cell performances. Simulation results for IPV effect on silicon doped with sulphur show an improvement of the short circuit current and the efficiency for sulphur energy levels located far from the middle of the band gap especially at E c -E t =0.18 eV.

  16. Single crystalline silicon solar cells with rib structure

    Directory of Open Access Journals (Sweden)

    Shuhei Yoshiba

    2017-02-01

    Full Text Available To improve the conversion efficiency of Si solar cells, we have developed a thin Si wafer-based solar cell that uses a rib structure. The open-circuit voltage of a solar cell is known to increase with deceasing wafer thickness if the cell is adequately passivated. However, it is not easy to handle very thin wafers because they are brittle and are subject to warpage. We fabricated a lattice-shaped rib structure on the rear side of a thin Si wafer to improve the wafer’s strength. A silicon nitride film was deposited on the Si wafer surface and patterned to form a mask to fabricate the lattice-shaped rib, and the wafer was then etched using KOH to reduce the thickness of the active area, except for the rib region. Using this structure in a Si heterojunction cell, we demonstrated that a high open-circuit voltage (VOC could be obtained by thinning the wafer without sacrificing its strength. A wafer with thickness of 30 μm was prepared easily using this structure. We then fabricated Si heterojunction solar cells using these rib wafers, and measured their implied VOC as a function of wafer thickness. The measured values were compared with device simulation results, and we found that the measured VOC agrees well with the simulated results. To optimize the rib and cell design, we also performed device simulations using various wafer thicknesses and rib dimensions.

  17. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Kiraly, Brian; Yang, Shikuan; Huang, Tony Jun

    2013-01-01

    We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be <3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization, and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138°. Finally, the porous silicon nanopillar arrays were made into sensitive surface-enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring. (paper)

  18. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.

    Science.gov (United States)

    Zhang, Doudou; Shi, Jingying; Zi, Wei; Wang, Pengpeng; Liu, Shengzhong Frank

    2017-11-23

    Photoelectrochemical (PEC) technology for the conversion of solar energy into chemicals requires cost-effective photoelectrodes to efficiently and stably drive anodic and/or cathodic half-reactions to complete the overall reactions for storing solar energy in chemical bonds. The shared properties among semiconducting photoelectrodes and photovoltaic (PV) materials are light absorption, charge separation, and charge transfer. Earth-abundant silicon materials have been widely applied in the PV industry, and have demonstrated their efficiency as alternative photoabsorbers for photoelectrodes. Many efforts have been made to fabricate silicon photoelectrodes with enhanced performance, and significant progress has been achieved in recent years. Herein, recent developments in crystalline and thin-film silicon-based photoelectrodes (including amorphous, microcrystalline, and nanocrystalline silicon) immersed in aqueous solution for PEC hydrogen production from water splitting are summarized, as well as applications in PEC CO 2 reduction and PEC regeneration of discharged species in redox flow batteries. Silicon is an ideal material for the cost-effective production of solar chemicals through PEC methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells

    Science.gov (United States)

    Zhang, S. J.; Lin, S. S.; Li, X. Q.; Liu, X. Y.; Wu, H. A.; Xu, W. L.; Wang, P.; Wu, Z. Q.; Zhong, H. K.; Xu, Z. J.

    2015-12-01

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron

  20. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    Science.gov (United States)

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  1. Photo stability Assessment in Amorphous-Silicon Solar Cells

    International Nuclear Information System (INIS)

    Gandia, J. J.; Carabe, J.; Fabero, F.; Jimenez, R.; Rivero, J. M.

    1999-01-01

    The present status of amorphous-silicon-solar-cell research and development at CIEMAT requires the possibility to characterise the devices prepared from the point of view of their stability against sunlight exposure. Therefore a set of tools providing such a capacity has been developed. Together with an introduction to photovoltaic applications of amorphous silicon and to the photodegradation problem, the present work describes the process of setting up these tools. An indoor controlled photodegradation facility has been designed and built, and a procedure has been developed for the measurement of J-V characterisation in well established conditions. This method is suitable for all kinds of solar cells, even for those for which no model is still available. The photodegradation and characterisation of some cells has allowed to validate both the new testing facility and method. (Author) 14 refs

  2. Low cost thin film poly-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report presents the results of a project to design and develop a high density plasma based thin-film poly-silicon (TFPS) deposition system based on PQL proprietary advanced plasma technology to produce semiconductor quality TFPS for fabricating a TFPS solar cell. Details are given of the TFPS deposition system, the material development programme, solar cell structure, and cell efficiencies. The reproducibility of the deposition process and prospects for commercial exploitation are discussed.

  3. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    OpenAIRE

    U. Gangopadhyay; K. Kim; S. K. Dhungel; H. Saha; J. Yi

    2007-01-01

    The low-cost chemical bath deposition (CBD) technique is used to prepare CBD-ZnS films as antireflective (AR) coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize...

  4. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Film adhesion in amorphous silicon solar cells. A R M YUSOFF*, M N SYAHRUL and K HENKEL. Malaysia Energy Centre, 8th Floor, North Wing, Sapura @ Mines, 7, Jalan Tasik, The Mines Resort City,. 43300 Seri Kembangan, Selangor Darul Ehsan. MS received 11 April 2007. Abstract. A major issue encountered ...

  5. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...

  6. Fabrication and Doping Methods for Silicon Nano- and Micropillar Arrays for Solar-Cell Applications: A Review.

    Science.gov (United States)

    Elbersen, Rick; Vijselaar, Wouter; Tiggelaar, Roald M; Gardeniers, Han; Huskens, Jurriaan

    2015-11-18

    Silicon is one of the main components of commercial solar cells and is used in many other solar-light-harvesting devices. The overall efficiency of these devices can be increased by the use of structured surfaces that contain nanometer- to micrometer-sized pillars with radial p/n junctions. High densities of such structures greatly enhance the light-absorbing properties of the device, whereas the 3D p/n junction geometry shortens the diffusion length of minority carriers and diminishes recombination. Due to the vast silicon nano- and microfabrication toolbox that exists nowadays, many versatile methods for the preparation of such highly structured samples are available. Furthermore, the formation of p/n junctions on structured surfaces is possible by a variety of doping techniques, in large part transferred from microelectronic circuit technology. The right choice of doping method, to achieve good control of junction depth and doping level, can contribute to an improvement of the overall efficiency that can be obtained in devices for energy applications. A review of the state-of-the-art of the fabrication and doping of silicon micro and nanopillars is presented here, as well as of the analysis of the properties and geometry of thus-formed 3D-structured p/n junctions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. SiNTO EWT silicon solar cells

    OpenAIRE

    Fallisch, A.; Keding, R.; Kästner, G.; Bartsch, J.; Werner, S.; Stüwe, D.; Specht, J.; Preu, R.; Biro, D.

    2010-01-01

    In this work we combine the SiNTO cell process with the EWT cell concept. All masking steps are performed by inkjet printing technology. The via-holes and laser-fired contacts are created by high-speed laser drilling. A new polishing process, which is suitable for inkjet masking, to pattern the interdigitated grid on the rear side is developed. For passivation purposes a thermal silicon oxide is used for the rear surface and a silicon nitride antireflection coating for the front surface. An e...

  8. Superacid Passivation of Crystalline Silicon Surfaces.

    Science.gov (United States)

    Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali

    2016-09-14

    The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

  9. Application of the chemical vapor-etching in polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Ben Rabha, M.; Saadoun, M.; Boujmil, M.F.; Bessais, B.; Ezzaouia, H.; Bennaceur, R.

    2005-01-01

    This paper reports a study of the application of chemical vapor-etching (CVE) for the rear surface and in the emitter of polycrystalline silicon (pc-Si) solar cells. The CVE technique consists of exposing pc-Si wafers to a mixture of HF/HNO 3 . This technique is used to groove the rear surface of the pc-Si wafers for acid vapors rich in HNO 3 (HNO 3 /HF > 1/4), in order to realize rear-buried metallic contacts (RBMC) and the formation of a porous silicon (PS) layer on the frontal surface of the cell for volume ratio of HNO 3 /HF = 1/7. A significant increase of the spectral response in the long wavelength range was observed when a RBMC is formed. This increase was attributed to the reduction of the effective thickness of the base of the cells and grain boundary Al gettering. The achievement of a PS layer on the emitter of the pc-Si cells passivates the surface and reduces the reflectivity. The dark I-V characteristics of pc-Si cells with emitter-based PS show an important reduction of the reverse current together with an improvement of the rectifying behaviour. The I-V characteristic under AM1.5 illumination shows an enhancement of both short circuit current density and fill factor. The internal quantum efficiency is improved, particularly in the short wavelengths region

  10. High-Efficiency Silicon/Organic Heterojunction Solar Cells with Improved Junction Quality and Interface Passivation.

    Science.gov (United States)

    He, Jian; Gao, Pingqi; Ling, Zhaoheng; Ding, Li; Yang, Zhenhai; Ye, Jichun; Cui, Yi

    2016-12-27

    Silicon/organic heterojunction solar cells (HSCs) based on conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and n-type silicon (n-Si) have attracted wide attention due to their potential advantages of high efficiency and low cost. However, the state-of-the-art efficiencies are still far from satisfactory due to the inferior junction quality. Here, facile treatments were applied by pretreating the n-Si wafer in tetramethylammonium hydroxide (TMAH) solution and using a capping copper iodide (CuI) layer on the PEDOT:PSS layer to achieve a high-quality Schottky junction. Detailed photoelectric characteristics indicated that the surface recombination was greatly suppressed after TMAH pretreatment, which increased the thickness of the interfacial oxide layer. Furthermore, the CuI capping layer induced a strong inversion layer near the n-Si surface, resulting in an excellent field effect passivation. With the collaborative improvements in the interface chemical and electrical passivation, a competitive open-circuit voltage of 0.656 V and a high fill factor of 78.1% were achieved, leading to a stable efficiency of over 14.3% for the planar n-Si/PEDOT:PSS HSCs. Our findings suggest promising strategies to further exploit the full voltage as well as efficiency potentials for Si/organic solar cells.

  11. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-07

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.

  12. High-Performance Black Multicrystalline Silicon Solar Cells by a Highly Simplified Metal-Catalyzed Chemical Etching Method

    KAUST Repository

    Ying, Zhiqin

    2016-05-20

    A wet-chemical surface texturing technique, including a two-step metal-catalyzed chemical etching (MCCE) and an extra alkaline treatment, has been proven as an efficient way to fabricate high-efficiency black multicrystalline (mc) silicon solar cells, whereas it is limited by the production capacity and the cost cutting due to the complicated process. Here, we demonstrated that with careful control of the composition in etching solution, low-aspect-ratio bowl-like nanostructures with atomically smooth surfaces could be directly achieved by improved one-step MCCE and with no posttreatment, like alkali solution. The doublet surface texture of implementing this nanobowl structure upon the industrialized acidic-textured surface showed concurrent improvement in optical and electrical properties for realizing 18.23% efficiency mc-Si solar cells (156 mm × 156 mm), which is sufficiently higher than 17.7% of the solely acidic-textured cells in the same batch. The one-step MCCE method demonstrated in this study may provide a cost-effective way to manufacture high-performance mc-Si solar cells for the present photovoltaic industry. © 2016 IEEE.

  13. Advancements in n-type base crystalline silicon solar cells and their emergence in the photovoltaic industry.

    Science.gov (United States)

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed.

  14. Diffuse scattering from hemispherical nanoparticles at the air–silicon interface

    International Nuclear Information System (INIS)

    Centeno, Anthony; Ahmed, Badar; Reehal, Haricharan; Xie, Fang

    2013-01-01

    There has been much recent interest in the application of plasmonics to improve the efficiency of silicon solar cells. In this paper we use finite difference time domain calculations to investigate the placement of hemispherical gold nanoparticles on the rear surface of a silicon solar cell. The results indicate that nanoparticles protruding into the silicon, rather than into air, have a larger scattering efficiency and diffuse scattering into the semiconductor. This finding could lead to improved light trapping within a thin silicon solar cell device. (paper)

  15. Towards solar grade silicon: Challenges and benefits for low cost photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Pizzini, Sergio [Ned Silicon Spa, Via Th. Edison 6, 60027 Osimo (Ancona) (Italy)

    2010-09-15

    It is well known that silicon in its various structural configurations (single crystal, multicrystalline, amorphous, micro-nanocrystalline) supplies almost 90% of the substrates used in the photovoltaic industry. It is also known, since years, that the photovoltaic (PV) industry shows a marked growth trend, which demanded and demands a continuous, huge increase of the bulk silicon supply in the order of 30%/yr. In order to fulfill their today- and future needs, many companies worldwide took the decision to start the installation of many thousand tons/year plants, most of them using the Siemens process, some of them using the MG route, to produce the so called solar grade (SG) silicon. The advantages of the Siemens process are well known, as it provides ultrapure silicon, directly usable for growing either single crystalline Czochralski ingots or multicrystalline ingots using the directional solidification (DS) technique. The disadvantages are its high energetic cost (a minimum of 120 kWH/kg) and the possible losses of chlorinated gases in the atmosphere, with possible severe environmental problems. The advantages of the MG route are still potential, as there is no commercially available production of solar silicon as yet, and rely on its reduced energetic costs (a maximum of 25-30 kWh/kg) for a feedstock directly usable for growing multicrystalline ingots using the DS technique. The drawbacks of silicon of MG origin are its larger concentration of metallic impurities, as compared with the Siemens one, the higher B and P content, and the potentially high carbon content. The aim of this paper is to deal with some of the problems encountered so far with the silicon of MG origin with respect to the metallic and non-metallic impurities content, as well as to propose technologically feasible solar grade feedstock specifications. (author)

  16. Metrology of nanosize biopowders using porous silicon surface

    International Nuclear Information System (INIS)

    Zhuravel', L.V.; Latukhina, N.V.; Pisareva, E.V.; Vlasov, M.Yu.; Volkov, A.V.; Volodkin, B.O.

    2008-01-01

    Powders of hydroxyapatite deposited on porous silicon surface were investigated by TEM and STM methods. Thickness of porous lay was 1-100 micrometers; porous diameter was 0.01-10 micrometers. Images of porous silicon surface with deposited particles give possibility to estimate particles size and induce that only proportionate porous diameter particles have good adhesion to porous silicon surface.

  17. Hydrogen-terminated mesoporous silicon monoliths with huge surface area as alternative Si-based visible light-active photocatalysts

    KAUST Repository

    Li, Ting

    2016-07-21

    Silicon-based nanostructures and their related composites have drawn tremendous research interest in solar energy storage and conversion. Mesoporous silicon with a huge surface area of 400-900 m2 g-1 developed by electrochemical etching exhibits excellent photocatalytic ability and stability after 10 cycles in degrading methyl orange under visible light irradiation, owing to its unique mesoporous network, abundant surface hydrides and efficient light harvesting. This work showcases the profound effects of surface area, crystallinity, pore topology on charge migration/recombination and mass transportation. Therein the ordered 1D channel array has outperformed the interconnected 3D porous network by greatly accelerating the mass diffusion and enhancing the accessibility of the active sites on the extensive surfaces. © 2016 The Royal Society of Chemistry.

  18. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  19. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin; Blasi, Benedikt; Eisenlohr, Johannes; Kohlstadt, Markus; Lee, Seunghun; Mastroianni, Simone; Mundt, Laura; Mundus, Markus; Ndione, Paul; Reichel, Christian; Schubert, Martin; Schulze, Patricia S.; Tucher, Nico; Veit, Clemens; Veurman, Welmoed; Wienands, Karl; Winkler, Kristina; Wurfel, Uli; Glunz, Stefan W.; Hermle, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  20. Light-trapping optimization in wet-etched silicon photonic crystal solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Eyderman, Sergey, E-mail: sergey.eyderman@utoronto.ca [Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7 (Canada); John, Sajeev [Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7 (Canada); Department of Physics, King Abdul-Aziz University, Jeddah (Saudi Arabia); Hafez, M.; Al-Ameer, S. S.; Al-Harby, T. S.; Al-Hadeethi, Y. [Department of Physics, King Abdul-Aziz University, Jeddah (Saudi Arabia); Bouwes, D. M. [iX-factory GmbH, Konrad Adenauer–Allee 11, 44263 Dortmund (Germany)

    2015-07-14

    We demonstrate, by numerical solution of Maxwell's equations, near-perfect solar light-trapping and absorption over the 300–1100 nm wavelength band in silicon photonic crystal (PhC) architectures, amenable to fabrication by wet-etching and requiring less than 10 μm (equivalent bulk thickness) of crystalline silicon. These PhC's consist of square lattices of inverted pyramids with sides comprised of various (111) silicon facets and pyramid center-to-center spacing in the range of 1.3–2.5 μm. For a wet-etched slab with overall height H = 10 μm and lattice constant a = 2.5 μm, we find a maximum achievable photo-current density (MAPD) of 42.5 mA/cm{sup 2}, falling not far from 43.5 mA/cm{sup 2}, corresponding to 100% solar absorption in the range of 300–1100 nm. We also demonstrate a MAPD of 37.8 mA/cm{sup 2} for a thinner silicon PhC slab of overall height H = 5 μm and lattice constant a = 1.9 μm. When H is further reduced to 3 μm, the optimal lattice constant for inverted pyramids reduces to a = 1.3 μm and provides the MAPD of 35.5 mA/cm{sup 2}. These wet-etched structures require more than double the volume of silicon, in comparison to the overall mathematically optimum PhC structure (consisting of slanted conical pores), to achieve the same degree of solar absorption. It is suggested these 3–10 μm thick structures are valuable alternatives to currently utilized 300 μm-thick textured solar cells and are suitable for large-scale fabrication by wet-etching.

  1. Recombination via point defects and their complexes in solar silicon

    Energy Technology Data Exchange (ETDEWEB)

    Peaker, A.R.; Markevich, V.P.; Hamilton, B. [Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Parada, G.; Dudas, A.; Pap, A. [Semilab, 2 Prielle Kornelia Str, 1117 Budapest (Hungary); Don, E. [Semimetrics, PO Box 36, Kings Langley, Herts WD4 9WB (United Kingdom); Lim, B.; Schmidt, J. [Institute for Solar Energy Research (ISFH) Hamlen, 31860 Emmerthal (Germany); Yu, L.; Yoon, Y.; Rozgonyi, G. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907 (United States)

    2012-10-15

    Electronic grade Czochralski and float zone silicon in the as grown state have a very low concentration of recombination generation centers (typically <10{sup 10} cm{sup -3}). Consequently, in integrated circuit technologies using such material, electrically active inadvertent impurities and structural defects are rarely detectable. The quest for cheap photovoltaic cells has led to the use of less pure silicon, multi-crystalline material, and low cost processing for solar applications. Cells made in this way have significant extrinsic recombination mechanisms. In this paper we review recombination involving defects and impurities in single crystal and in multi-crystalline solar silicon. Our main techniques for this work are recombination lifetime mapping measurements using microwave detected photoconductivity decay and variants of deep level transient spectroscopy (DLTS). In particular, we use Laplace DLTS to distinguish between isolated point defects, small precipitate complexes and decorated extended defects. We compare the behavior of some common metallic contaminants in solar silicon in relation to their effect on carrier lifetime and cell efficiency. Finally, we consider the role of hydrogen passivation in relation to transition metal contaminants, grain boundaries and dislocations. We conclude that recombination via point defects can be significant but in most multi-crystalline material the dominant recombination path is via decorated dislocation clusters within grains with little contribution to the overall recombination from grain boundaries. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. On the origin of the changes in the opto-electrical properties of boron-doped zinc oxide films after plasma surface treatment for thin-film silicon solar cell applications

    Science.gov (United States)

    Le, Anh Huy Tuan; Kim, Youngkuk; Lee, Youn-Jung; Hussain, Shahzada Qamar; Nguyen, Cam Phu Thi; Lee, Jaehyung; Yi, Junsin

    2018-03-01

    The modification of the steep and sharp valleys on the surface of the boron-doped zinc oxide (BZO) front electrodes by plasma surface treatment is a critical process for avoiding a significant reduction in the electrical performance of thin-film silicon solar cells. In this work, we report the origin of the changes in the electrical and optical properties of the BZO films that occur after this process. On the basis of an analysis of the chemical states, we found an improvement of the carrier concentration along with the treatment time that was mainly due to an increase of the oxygen vacancy. This indicated a deficiency of the oxygen in the BZO films under argon-ion bombardment. The red-shift of the A1 longitudinal optical mode frequency in the Raman spectra that was attributed to the existence of vacancy point defects within the films also strengthened this argument. The significant reduction of the haze ratio as well as the appearance of interference peaks on the transmittance spectra as the treatment time was increased were mainly due to the smoothing of the film surface, which indicated a degradation of the light-scattering capability of the BZO films. We also observed a gain of the visible-region transmittance that was attributed to the decrease of the thickness of the BZO films after the plasma surface treatment, instead of the crystallinity improvement. On the basis of our findings, we have proposed a further design rule of the BZO front electrodes for thin-film silicon solar cell applications.

  3. Fabrication and Photovoltaic Characteristics of Coaxial Silicon Nanowire Solar Cells Prepared by Wet Chemical Etching

    Directory of Open Access Journals (Sweden)

    Chien-Wei Liu

    2012-01-01

    Full Text Available Nanostructured solar cells with coaxial p-n junction structures have strong potential to enhance the performances of the silicon-based solar cells. This study demonstrates a radial junction silicon nanowire (RJSNW solar cell that was fabricated simply and at low cost using wet chemical etching. Experimental results reveal that the reflectance of the silicon nanowires (SNWs declines as their length increases. The excellent light trapping was mainly associated with high aspect ratio of the SNW arrays. A conversion efficiency of ∼7.1% and an external quantum efficiency of ∼64.6% at 700 nm were demonstrated. Control of etching time and diffusion conditions holds great promise for the development of future RJSNW solar cells. Improving the electrode/RJSNW contact will promote the collection of carries in coaxial core-shell SNW array solar cells.

  4. Silicon solar cells made by ion implantation and glow discharge

    International Nuclear Information System (INIS)

    Ponpon, J.P.; Siffert, P.

    1975-01-01

    Three different methods of silicon solar cell preparation are considered and investigated: low energy implantation, glow discharge and prebombarded Schottky barriers. The properties of the contact layers realized by these processes are compared in terms of junction depth and sheet resistance. Preliminary results show the usefulness of these techniques for terrestrial solar cell realization [fr

  5. Comparison of the nonradiative deep levels in silicon solar cells made of monocrystalline, polycrystalline and amorphous silicon using deep level transient spectroscopy (DLTS)

    International Nuclear Information System (INIS)

    Hammadeh, H.; Darwich, R.

    2005-03-01

    The aim of this work is to study the defects in solar cells fabricated from crystalline, polycrystalline and amorphous silicon. Using Deep Level Transient Spectroscopy technique, (DLTS), we have determined their activation energies, concentrations and their effect on the solar cell efficiency. Our results show a DLTS peak in crystalline silicon which we could attribute to tow peaks originating from iron contamination. In the polycrystalline based solar cells we observed a series of non conventional DLTS peaks while in amorphous silicon we observed a peak using low measurement frequencies (between 8 kHz and 20 kHz). We studied these defects and determined their activation energies as well as the capture cross section for one of them. We suggest a possible configuration of these defects. We cannot able to study the effect of these defects on the solar cell efficiency because we have not the experimental set-up which measure the solar cell efficiency. (Authors)

  6. Hydrogen passivation of multi-crystalline silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    胡志华; 廖显伯; 刘祖明; 夏朝凤; 陈庭金

    2003-01-01

    The effects of hydrogen passivation on multi-crystalline silicon (mc-Si) solar cells are reported in this paper.Hydrogen plasma was generated by means of ac glow discharge in a hydrogen atmosphere. Hydrogen passivation was carried out with three different groups of mc-Si solar cells after finishing contacts. The experimental results demonstrated that the photovoltaic performances of the solar cell samples have been improved after hydrogen plasma treatment, with a relative increase in conversion efficiency up to 10.6%. A calculation modelling has been performed to interpret the experimental results using the model for analysis of microelectronic and photonic structures developed at Pennsylvania State University.

  7. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  8. Ultrathin silicon solar cells with enhanced photocurrents assisted by plasmonic nanostructures

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Stassen, Erik; Mortensen, N. Asger

    2012-01-01

    Thin-film photovoltaics offers the potential for a significant cost reduction compared to traditional photovoltaics. However, the performance of thin-film solar cells is limited by poor light absorption. We have devised an ultra-thin-film silicon solar cell configuration assisted by plasmonic nan...

  9. Process Research On Polycrystalline Silicon Material (PROPSM). [flat plate solar array project

    Science.gov (United States)

    Culik, J. S.

    1983-01-01

    The performance-limiting mechanisms in large-grain (greater than 1 to 2 mm in diameter) polycrystalline silicon solar cells were investigated by fabricating a matrix of 4 sq cm solar cells of various thickness from 10 cm x 10 cm polycrystalline silicon wafers of several bulk resistivities. Analysis of the illuminated I-V characteristics of these cells suggests that bulk recombination is the dominant factor limiting the short-circuit current. The average open-circuit voltage of the polycrystalline solar cells is 30 to 70 mV lower than that of co-processed single-crystal cells; the fill-factor is comparable. Both open-circuit voltage and fill-factor of the polycrystalline cells have substantial scatter that is not related to either thickness or resistivity. This implies that these characteristics are sensitive to an additional mechanism that is probably spatial in nature. A damage-gettering heat-treatment improved the minority-carrier diffusion length in low lifetime polycrystalline silicon, however, extended high temperature heat-treatment degraded the lifetime.

  10. Gettering improvements of minority-carrier lifetimesin solar grade silicon

    DEFF Research Database (Denmark)

    Osinniy, Viktor; Nylandsted Larsen, Arne; Dahl, Espen

    2012-01-01

    The minority-carrier lifetime in p-type solar-grade silicon (SoG-Si) produced by Elkem Solar was investigated after different types of heat treatment. Two groups of samples differing by the as-grown lifetimes were exposed to internal and phosphorus gettering using constant and variable temperature...... processes. Optimal heat-treatment parameters for each group of samples were then identified which improved the minority-carrier lifetimes to values higher than the minimum value needed for solar cells. Phosphorus gettering using a variable temperature process enhanced in particular the lifetime within each...

  11. Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces

    International Nuclear Information System (INIS)

    Bashiri, Hadi; Azim Karami, Mohammad; Mohammadnejad, Shahramm

    2017-01-01

    By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density. (paper)

  12. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  13. Surface Plasmon Enhanced Light Trapping in Metal/Silicon Nanobowl Arrays for Thin Film Photovoltaics

    Directory of Open Access Journals (Sweden)

    Ruinan Sun

    2017-01-01

    Full Text Available Enhancing the light absorption in thin film silicon solar cells with nanophotonic and plasmonic structures is important for the realization of high efficiency solar cells with significant cost reduction. In this work, we investigate periodic arrays of conformal metal/silicon nanobowl arrays (MSNBs for light trapping applications in silicon solar cells. They exhibited excellent light-harvesting ability across a wide range of wavelengths up to infrared regimes. The optimized structure (MSNBsH covered by SiO2 passivation layer and hemisphere Ag back reflection layer has a maximal short-circuit density (Jsc 25.5 mA/cm2, which is about 88.8% higher than flat structure counterpart, and the light-conversion efficiency (η is increased two times from 6.3% to 12.6%. The double-side textures offer a promising approach to high efficiency ultrathin silicon solar cells.

  14. A Reuse Evaluation for Solar-Cell Silicon Wafers via Shift Revolution and Tool Rotation Using Magnetic Assistance in Ultrasonic Electrochemical Micromachining

    Directory of Open Access Journals (Sweden)

    P. S. Pa

    2013-01-01

    Full Text Available A new reuse fabrication using a tool module with rotation and revolution through a process of magnetic assistance in ultrasonic electrochemical micromachining (UEMM for removal of the surface layers from silicon wafers of solar cells is demonstrated. The target of the proposed reuse fabrication method is to replace the current approach, which uses strong acid and grinding and may damage the physical structure of silicon wafers and pollute to the environment. A precisely engineered clean production approach to removal of surface microstructure layers from silicon wafers is to develop a mass production system for recycling defective or discarded silicon wafers of solar cells that can reduce pollution and cost. The high revolution speed of the shift with the high rotation speed of the designed tool increases the discharge mobility and improves the removal effect associated with the high feed rate of the workpiece. High frequency and high power of ultrasonic with large electrolyte flow rate and high magnetic strengths with a small distance between the two magnets provide a large discharge effect and good removal; only a short period of time is required to remove the epoxy film and Si3N4 layer easily and cleanly.

  15. Proof of concept of an epitaxy-free layer-transfer process for silicon solar cells based on the reorganisation of macropores upon annealing

    International Nuclear Information System (INIS)

    Depauw, V.; Gordon, I.; Beaucarne, G.; Poortmans, J.; Mertens, R.; Celis, J.-P.

    2009-01-01

    To answer the challenge of less expensive renewable electricity, the photovoltaics community is focusing on producing thinner silicon solar cells. A few years ago, in the field of silicon-on-nothing structures, micron-thick monocrystalline layers suspended over their parent wafer were produced by high-temperature annealing of specific arrays of macropores. Those macropores reorganise into one single void and leave a thin overlayer on top. Since this method may be an inexpensive way of fabricating high-quality silicon films, this paper investigates its potential for photovoltaic applications. In particular, we investigated if large surfaces can be produced and transferred to foreign substrates with this method. We fabricated basic solar cells, without rear-surface passivation, on 5 cm x 5 cm-large and 1-μm-thick films transferred to glass, that showed energy-conversion efficiencies up to 2.6%. These cells demonstrate the feasibility of the presented concept as a layer-transfer process for solar-cell application. After formation by annealing, the film is only barely attached to its parent wafer, but can still safely be handled provided that any abrupt gas flow or pumping to vacuum is avoided. After transfer and permanent bonding, the sample can be handled as any bulk wafer.

  16. Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells

    Science.gov (United States)

    Ben Rabha, M.; Hajji, M.; Belhadj Mohamed, S.; Hajjaji, A.; Gaidi, M.; Ezzaouia, H.; Bessais, B.

    2012-02-01

    In this paper, we study the optical, optoelectronic and photoluminescence properties of stain-etched porous silicon nanostructures obtained with different etching times. Special attention is given to the use of the stain-etched PS as an antireflection coating as well as for surface passivating capabilities. The surface morphology has been analyzed by scanning electron microscopy. The evolution of the Si-O and Si-H absorption bands was analyzed by Fourier transform infrared spectrometry before and after PS treatment. Results show that stain etching of the silicon surface drops the total reflectivity to about 7% in the 400-1100 nm wavelength range and the minority carrier lifetime enhances to about 48 μs.

  17. Silicon Heterojunction Solar Cells Using AlOx and Plasma-Immersion Ion Implantation

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2014-06-01

    Full Text Available Aluminum oxide (AlOx and plasma immersion ion implantation (PIII were studied in relation to passivated silicon heterojunction solar cells. When aluminum oxide (AlOx was deposited on the surface of a wafer; the electric field near the surface of wafer was enhanced; and the mobility of the carrier was improved; thus reducing carrier traps associated with dangling bonds. Using PIII enabled implanting nitrogen into the device to reduce dangling bonds and achieve the desired passivation effect. Depositing AlOx on the surface of a solar cell increased the short-circuit current density (Jsc; open-circuit voltage (Voc; and conversion efficiency from 27.84 mA/cm2; 0.52 V; and 8.97% to 29.34 mA/cm2; 0.54 V; and 9.68%; respectively. After controlling the depth and concentration of nitrogen by modulating the PIII energy; the ideal PIII condition was determined to be 2 keV and 10 min. As a result; a 15.42% conversion efficiency was thus achieved; and the Jsc; Voc; and fill factor were 37.78 mA/cm2; 0.55 V; and 0.742; respectively.

  18. Study on the fabrication of silicon nanoparticles in an amorphous silicon light absorbing layer for solar cell applications

    International Nuclear Information System (INIS)

    Park, Joo Hyung; Song, Jin Soo; Lee, Jae Hee; Lee, Jeong Chul

    2012-01-01

    Hydrogenated amorphous-silicon (a-Si:H) thin-film solar cells have advantages of relatively simple technology, less material consumption, higher absorption ratio compared to crystalline silicon, and low cost due to the use of cheaper substrates rather than silicon wafers. However, together with those advantages, amorphous-silicon thin-film solar cells face several issues such as a relatively lower efficiency, a relatively wider bandgap, and the Staebler-Wronski effect (SWE) compared to other competing materials (i.e., crystalline silicon, CdTe, Cu(In x Ga (1-x) )Se 2 (CIGS), etc.). As a remedy for those drawbacks and a way to enhance the cell conversion efficiency at the same time, the employment of crystalline silicon nanoparticles (Si-NPs) in the a-Si matrix is proposed to organize the quantum-dot (QD) structure as the light-absorbing layer. This structure of the light absorbing layer consists of single-crystal Si-NPs in an a-Si:H thin-film matrix. The single-crystal Si-NPs are synthesized by using SiH 4 gas decomposition with CO 2 laser pyrolysis, and the sizes of Si-NPs are calibrated to control their bandgaps. The synthesized size-controlled Si-NPs are directly transferred to another chamber to form a QD structure by using co-deposition of the Si-NPs and the a-Si:H matrix. Transmission electron microscopy (TEM) analyses are employed to verify the sizes and the crystalline properties of the Si-NPs alone and of the Si-NPs in the a-Si:H matrix. The TEM results show successful co-deposition of size-controlled Si-NPs in the a-Si:H matrix, which is meaningful because it suggests the possibility of further enhancement of the a-Si:H solar-cell structure and of tandem structure applications by using a single element.

  19. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  20. Evolution of a Native Oxide Layer at the a-Si:H/c-Si Interface and Its Influence on a Silicon Heterojunction Solar Cell.

    Science.gov (United States)

    Liu, Wenzhu; Meng, Fanying; Zhang, Xiaoyu; Liu, Zhengxin

    2015-12-09

    The interface microstructure of a silicon heterojunction (SHJ) solar cell was investigated. We found an ultrathin native oxide layer (NOL) with a thickness of several angstroms was formed on the crystalline silicon (c-Si) surface in a very short time (∼30 s) after being etched by HF solution. Although the NOL had a loose structure with defects that are detrimental for surface passivation, it acted as a barrier to restrain the epitaxial growth of hydrogenated amorphous silicon (a-Si:H) during the plasma-enhanced chemical vapor deposition (PECVD). The microstructure change of the NOL during the PECVD deposition of a-Si:H layers with different conditions and under different H2 plasma treatments were systemically investigated in detail. When a brief H2 plasma was applied to treat the a-Si:H layer after the PECVD deposition, interstitial oxygen and small-size SiO2 precipitates were transformed to hydrogenated amorphous silicon suboxide alloy (a-SiO(x):H, x ∼ 1.5). In the meantime, the interface defect density was reduced by about 50%, and the parameters of the SHJ solar cell were improved due to the post H2 plasma treatment.

  1. Surface Effects in Segmented Silicon Sensors

    OpenAIRE

    Kopsalis, Ioannis

    2017-01-01

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO2 layers at the surface, thus changing the sensor properties and limiting their...

  2. Effect of light intensity on the performance of silicon solar cell ...

    African Journals Online (AJOL)

    This work, presents the intense light effect on electrical parameters of silicon solar such as short circuit current, open circuit voltage, series and shunt resistances, maximum power, conversion efficiency, fill factor. After the resolution of the continuity equation which leads to the solar cell photocurrent and photovoltage ...

  3. Development of processes for the production of low cost silicon dendritic web for solar cells

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Skutch, M. E.; Driggers, J. M.; Hill, F. E.

    1980-01-01

    High area output rates and continuous, automated growth are two key technical requirements for the growth of low-cost silicon ribbons for solar cells. By means of computer-aided furnace design, silicon dendritic web output rates as high as 27 sq cm/min have been achieved, a value in excess of that projected to meet a $0.50 per peak watt solar array manufacturing cost. The feasibility of simultaneous web growth while the melt is replenished with pelletized silicon has also been demonstrated. This step is an important precursor to the development of an automated growth system. Solar cells made on the replenished material were just as efficient as devices fabricated on typical webs grown without replenishment. Moreover, web cells made on a less-refined, pelletized polycrystalline silicon synthesized by the Battelle process yielded efficiencies up to 13% (AM1).

  4. Silicon and Germanium (111) Surface Reconstruction

    Science.gov (United States)

    Hao, You Gong

    Silicon (111) surface (7 x 7) reconstruction has been a long standing puzzle. For the last twenty years, various models were put forward to explain this reconstruction, but so far the problem still remains unsolved. Recent ion scattering and channeling (ISC), scanning tunneling microscopy (STM) and transmission electron diffraction (TED) experiments reveal some new results about the surface which greatly help investigators to establish better models. This work proposes a silicon (111) surface reconstruction mechanism, the raising and lowering mechanism which leads to benzene -like ring and flower (raised atom) building units. Based on these building units a (7 x 7) model is proposed, which is capable of explaining the STM and ISC experiment and several others. Furthermore the building units of the model can be used naturally to account for the germanium (111) surface c(2 x 8) reconstruction and other observed structures including (2 x 2), (5 x 5) and (7 x 7) for germanium as well as the (/3 x /3)R30 and (/19 x /19)R23.5 impurity induced structures for silicon, and the higher temperature disordered (1 x 1) structure for silicon. The model is closely related to the silicon (111) surface (2 x 1) reconstruction pi-bonded chain model, which is the most successful model for the reconstruction now. This provides an explanation for the rather low conversion temperature (560K) of the (2 x 1) to the (7 x 7). The model seems to meet some problems in the explanation of the TED result, which is explained very well by the dimer, adatom and stacking fault (DAS) model proposed by Takayanagi. In order to explain the TED result, a variation of the atomic scattering factor is proposed. Comparing the benzene-like ring model with the DAS model, the former needs more work to explain the TED result and the later has to find a way to explain the silicon (111) surface (1 x 1) disorder experiment.

  5. Thermal system design and modeling of meniscus controlled silicon growth process for solar applications

    Science.gov (United States)

    Wang, Chenlei

    The direct conversion of solar radiation to electricity by photovoltaics has a number of significant advantages as an electricity generator. That is, solar photovoltaic conversion systems tap an inexhaustible resource which is free of charge and available anywhere in the world. Roofing tile photovoltaic generation, for example, saves excess thermal heat and preserves the local heat balance. This means that a considerable reduction of thermal pollution in densely populated city areas can be attained. A semiconductor can only convert photons with the energy of the band gap with good efficiency. It is known that silicon is not at the maximum efficiency but relatively close to it. There are several main parts for the photovoltaic materials, which include, single- and poly-crystalline silicon, ribbon silicon, crystalline thin-film silicon, amorphous silicon, copper indium diselenide and related compounds, cadmium telluride, et al. In this dissertation, we focus on melt growth of the single- and poly-crystalline silicon manufactured by Czochralski (Cz) crystal growth process, and ribbon silicon produced by the edge-defined film-fed growth (EFG) process. These two methods are the most commonly used techniques for growing photovoltaic semiconductors. For each crystal growth process, we introduce the growth mechanism, growth system design, general application, and progress in the numerical simulation. Simulation results are shown for both Czochralski and EFG systems including temperature distribution of the growth system, velocity field inside the silicon melt and electromagnetic field for the EFG growth system. Magnetic field is applied on Cz system to reduce the melt convection inside crucible and this has been simulated in our numerical model. Parametric studies are performed through numerical and analytical models to investigate the relationship between heater power levels and solidification interface movement and shape. An inverse problem control scheme is developed to

  6. Surface thiolation of silicon for antifouling application.

    Science.gov (United States)

    Zhang, Xiaoning; Gao, Pei; Hollimon, Valerie; Brodus, DaShan; Johnson, Arion; Hu, Hongmei

    2018-02-07

    Thiol groups grafted silicon surface was prepared as previously described. 1H,1H,2H,2H-perfluorodecanethiol (PFDT) molecules were then immobilized on such a surface through disulfide bonds formation. To investigate the contribution of PFDT coating to antifouling, the adhesion behaviors of Botryococcus braunii (B. braunii) and Escherichia coli (E. coli) were studied through biofouling assays in the laboratory. The representative microscope images suggest reduced B. braunii and E. coli accumulation densities on PFDT integrated silicon substrate. However, the antifouling performance of PFDT integrated silicon substrate decreased over time. By incubating the aged substrate in 10 mM TCEP·HCl solution for 1 h, the fouled PFDT coating could be removed as the disulfide bonds were cleaved, resulting in reduced absorption of algal cells and exposure of non-fouled silicon substrate surface. Our results indicate that the thiol-terminated substrate can be potentially useful for restoring the fouled surface, as well as maximizing the effective usage of the substrate.

  7. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  8. Twenty-fold plasmon-induced enhancement of radiative emission rate in silicon nanocrystals embedded in silicon dioxide

    International Nuclear Information System (INIS)

    Gardelis, S; Gianneta, V.; Nassiopoulou, A.G

    2016-01-01

    We report on a 20-fold enhancement of the integrated photoluminescence (PL) emission of silicon nanocrystals, embedded in a matrix of silicon dioxide, induced by excited surface plasmons from silver nanoparticles, which are located in the vicinity of the silicon nanocrystals and separated from them by a silicon dioxide layer of a few nanometers. The electric field enhancement provided by the excited surface plasmons increases the absorption cross section and the emission rate of the nearby silicon nanocrystals, resulting in the observed enhancement of the photoluminescence, mainly attributed to a 20-fold enhancement in the emission rate of the silicon nanocrystals. The observed remarkable improvement of the PL emission makes silicon nanocrystals very useful material for photonic, sensor and solar cell applications.

  9. The status of silicon ribbon growth technology for high-efficiency silicon solar cells

    Science.gov (United States)

    Ciszek, T. F.

    1985-01-01

    More than a dozen methods have been applied to the growth of silicon ribbons, beginning as early as 1963. The ribbon geometry has been particularly intriguing for photovoltaic applications, because it might provide large area, damage free, nearly continuous substrates without the material loss or cost of ingot wafering. In general, the efficiency of silicon ribbon solar cells has been lower than that of ingot cells. The status of some ribbon growth techniques that have achieved laboratory efficiencies greater than 13.5% are reviewed, i.e., edge-defined, film-fed growth (EFG), edge-supported pulling (ESP), ribbon against a drop (RAD), and dendritic web growth (web).

  10. Experimental study of liquid-immersion III–V multi-junction solar cells with dimethyl silicon oil under high concentrations

    International Nuclear Information System (INIS)

    Xin, Ganchao; Wang, Yiping; Sun, Yong; Huang, Qunwu; Zhu, Li

    2015-01-01

    Highlights: • Electrical performance of MJ solar cells immersed by silicon oil was studied under 500×. • Theoretical cell photocurrent losses caused by silicon oil absorption were estimated. • Cell performance changes operated in silicon oil (1.0–30.0 mm) were analyzed. • Critical silicon oil thickness on top of MJ solar cells was estimated to be 6.3 mm. - Abstract: In order to better apply direct liquid-immersion cooling (LIC) method in temperature control of solar cells in high concentrating photovoltaic (CPV) systems, electrical characteristics of GaInP/GaInAs/Ge triple-junction solar cells immersed in dimethyl silicon oil of 1.0–30.0 mm thickness were studied experimentally under 500 suns and 25 °C. Theoretical photocurrent losses caused by spectrum transmittance decrease from spectral absorption of silicon oil were estimated for three series sub-cells, and an in-depth analysis of the electrical performances changes of the operated cell in silicon oil was performed. Compared with cell performances without liquid-immersion, the conversion efficiency and the maximum output power of the immersed solar cell in silicon oil of 1.0 mm thickness has increased from 39.567% and 19.556 W to 40.572% and 20.083 W respectively. However, the cell electrical performances decrease with increasing silicon oil thickness in the range of 1.0–30.0 mm, and the efficiency and the maximum output power of the cell have become less than those without liquid-immersion when the silicon oil thickness exceeds 6.3 mm

  11. Silicon Nanowires for Solar Thermal Energy Harvesting: an Experimental Evaluation on the Trade-off Effects of the Spectral Optical Properties.

    Science.gov (United States)

    Sekone, Abdoul Karim; Chen, Yu-Bin; Lu, Ming-Chang; Chen, Wen-Kai; Liu, Chia-An; Lee, Ming-Tsang

    2016-12-01

    Silicon nanowire possesses great potential as the material for renewable energy harvesting and conversion. The significantly reduced spectral reflectivity of silicon nanowire to visible light makes it even more attractive in solar energy applications. However, the benefit of its use for solar thermal energy harvesting remains to be investigated and has so far not been clearly reported. The purpose of this study is to provide practical information and insight into the performance of silicon nanowires in solar thermal energy conversion systems. Spectral hemispherical reflectivity and transmissivity of the black silicon nanowire array on silicon wafer substrate were measured. It was observed that the reflectivity is lower in the visible range but higher in the infrared range compared to the plain silicon wafer. A drying experiment and a theoretical calculation were carried out to directly evaluate the effects of the trade-off between scattering properties at different wavelengths. It is clearly seen that silicon nanowires can improve the solar thermal energy harnessing. The results showed that a 17.8 % increase in the harvest and utilization of solar thermal energy could be achieved using a silicon nanowire array on silicon substrate as compared to that obtained with a plain silicon wafer.

  12. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: The Surface Topography.

    Science.gov (United States)

    Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal

    2015-07-01

    This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.

  13. Investigation of charges carrier density in phosphorus and boron doped SiNx:H layers for crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Paviet-Salomon, B.; Gall, S.; Slaoui, A.

    2013-01-01

    Highlights: ► We investigate the properties of phosphorus and boron-doped silicon nitride films. ► Phosphorus-doped layers yield higher lifetimes than undoped ones. ► The fixed charges density decreases when increasing the films phosphorus content. ► Boron-doped films feature very low lifetimes. ► These doped layers are of particular interest for crystalline silicon solar cells. -- Abstract: Dielectric layers are of major importance in crystalline silicon solar cells processing, especially as anti-reflection coatings and for surface passivation purposes. In this paper we investigate the fixed charge densities (Q fix ) and the effective lifetimes (τ eff ) of phosphorus (P) and boron (B) doped silicon nitride layers deposited by plasma-enhanced chemical vapour deposition. P-doped layers exhibit a higher τ eff than standard undoped layers. In contrast, B-doped layers exhibit lower τ eff . A strong Q fix decrease is to be seen when increasing the P content within the film. Based on numerical simulations we also demonstrate that the passivation obtained with P- and B-doped layers are limited by the interface states rather than by the fixed charges

  14. Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells.

    Science.gov (United States)

    Peters, M; Battaglia, C; Forberich, K; Bläsi, B; Sahraei, N; Aberle, A G

    2012-12-31

    Light trapping is of very high importance for silicon photovoltaics (PV) and especially for thin-film silicon solar cells. In this paper we investigate and compare theoretically the light trapping properties of periodic and stochastic structures having similar geometrical features. The theoretical investigations are based on the actual surface geometry of a scattering structure, characterized by an atomic force microscope. This structure is used for light trapping in thin-film microcrystalline silicon solar cells. Very good agreement is found in a first comparison between simulation and experimental results. The geometrical parameters of the stochastic structure are varied and it is found that the light trapping mainly depends on the aspect ratio (length/height). Furthermore, the maximum possible light trapping with this kind of stochastic structure geometry is investigated. In a second step, the stochastic structure is analysed and typical geometrical features are extracted, which are then arranged in a periodic structure. Investigating the light trapping properties of the periodic structure, we find that it performs very similar to the stochastic structure, in agreement with reports in literature. From the obtained results we conclude that a potential advantage of periodic structures for PV applications will very likely not be found in the absorption enhancement in the solar cell material. However, uniformity and higher definition in production of these structures can lead to potential improvements concerning electrical characteristics and parasitic absorption, e.g. in a back reflector.

  15. Silicon solar cell technology state of the art and a proposed double sided cell

    International Nuclear Information System (INIS)

    Seddik, M.M.

    1987-08-01

    A review of the silicon technology state of the art is given. It had been found that single crystal silicon efficiency was limitd to ≥ 20%. The reason was identified to be due to the recombination current loss mechanisms. However, use of new technologies such as back-surface field, surface passivation, double anti-reflection coatings and back-surface illumination demonstrated to achieve higher efficiencies. Experiments were carried out to evaluate the effect of back surfaces illumination on the cell efficiency enhancement. It was found that for single cell, back-surface illumination contribute a 12% increase in efficiency whereas for double cell illumination (back-to-back cells) the improvement was 59% increase in efficiency. A V-shaped flat mirror reflector with optimum angle of 45 deg. to the plane of the cell from both sides achieved the ultimate efficiency performance. Finally, a proposed high current - high efficiency solar cell called ''Double Drift'' - Double Sided Illumination Cell'' was presented. The new structures were in the form of n + pn + or p + np + double junctions. The expected efficiency ranges 50-60% with proper material design, double anti-reflection coatings and V-shaped irregular plane mirror reflector illumination. (author). 43 refs, 4 figs, 7 tabs

  16. Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Atteq ur Rehman

    2014-02-01

    Full Text Available Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed.

  17. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    International Nuclear Information System (INIS)

    Neumüller, A.; Sergeev, O.; Vehse, M.; Agert, C.; Bereznev, S.; Volobujeva, O.; Ewert, M.; Falta, J.

    2016-01-01

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatment at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.

  18. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Neumüller, A., E-mail: alex.neumueller@next-energy.de; Sergeev, O.; Vehse, M.; Agert, C. [NEXT ENERGY EWE Research Centre for Energy Technology at the University of Oldenburg, Carl-von-Ossietzky-Straße 15, 26129 Oldenburg (Germany); Bereznev, S.; Volobujeva, O. [Department of Materials Science, Tallinn University of Technology, Ehitajate Tee 5, Tallinn 19086 (Estonia); Ewert, M.; Falta, J. [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen (Germany)

    2016-07-25

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatment at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.

  19. Porosity-dependent fractal nature of the porous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of)

    2015-07-15

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.

  20. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.; De Wolf, Stefaan; Alam, Muhammad A.

    2018-01-01

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent

  1. Behavior of the potential-induced degradation of photovoltaic modules fabricated using flat mono-crystalline silicon cells with different surface orientations

    Science.gov (United States)

    Yamaguchi, Seira; Masuda, Atsushi; Ohdaira, Keisuke

    2016-04-01

    This paper deals with the dependence of the potential-induced degradation (PID) of flat, p-type mono-crystalline silicon solar cell modules on the surface orientation of solar cells. The investigated modules were fabricated from p-type mono-crystalline silicon cells with a (100) or (111) surface orientation using a module laminator. PID tests were performed by applying a voltage of -1000 V to shorted module interconnector ribbons with respect to an Al plate placed on the cover glass of the modules at 85 °C. A decrease in the parallel resistance of the (100)-oriented cell modules is more significant than that of the (111)-oriented cell modules. Hence, the performance of the (100)-oriented-cell modules drastically deteriorates, compared with that of the (111)-oriented-cell modules. This implies that (111)-oriented cells offer a higher PID resistance.

  2. Characterization of Transition Metal Oxide/Silicon Heterojunctions for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Luis G. Gerling

    2015-10-01

    Full Text Available During the last decade, transition metal oxides have been actively investigated as hole- and electron-selective materials in organic electronics due to their low-cost processing. In this study, four transition metal oxides (V2O5, MoO3, WO3, and ReO3 with high work functions (>5 eV were thermally evaporated as front p-type contacts in planar n-type crystalline silicon heterojunction solar cells. The concentration of oxygen vacancies in MoO3−x was found to be dependent on film thickness and redox conditions, as determined by X-ray Photoelectron Spectroscopy. Transfer length method measurements of oxide films deposited on glass yielded high sheet resistances (~109 Ω/sq, although lower values (~104 Ω/sq were measured for oxides deposited on silicon, indicating the presence of an inversion (hole rich layer. Of the four oxide/silicon solar cells, ReO3 was found to be unstable upon air exposure, while V2O5 achieved the highest open-circuit voltage (593 mV and conversion efficiency (12.7%, followed by MoO3 (581 mV, 12.6% and WO3 (570 mV, 11.8%. A short-circuit current gain of ~0.5 mA/cm2 was obtained when compared to a reference amorphous silicon contact, as expected from a wider energy bandgap. Overall, these results support the viability of a simplified solar cell design, processed at low temperature and without dopants.

  3. Surface chemistry of a hydrogenated mesoporous p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Media, El-Mahdi, E-mail: belhadidz@tahoo.fr; Outemzabet, Ratiba, E-mail: oratiba@hotmail.com

    2017-02-15

    Highlights: • Due to its large specific surface porous silicon is used as substrate for drug therapy and biosensors. • We highlight the evidency of the contribution of the hydrides (SiHx) in the formation of the porous silicon. • The responsible species in the porous silicon formation are identified and quantified at different conditions. • By some chemical treatments we show that silicon surface can be turn from hydrophobic to hydrophilic. - Abstract: The finality of this work is devoted to the grafting of organic molecules on hydrogen passivated mesoporous silicon surfaces. The study would aid in the development for the formation of organic monolayers on silicon surface to be exploited for different applications such as the realisation of biosensors and medical devices. The basic material is silicon which has been first investigated by FTIR at atomistic plane during the anodic forward and backward polarization (i.e. “go” and “return”). For this study, we applied a numerical program based on least squares method to infrared absorbance spectra obtained by an in situ attenuated total reflection on p-type silicon in diluted HF electrolyte. Our numerical treatment is based on the fitting of the different bands of IR absorbance into Gaussians corresponding to the different modes of vibration of molecular groups such as siloxanes and hydrides. An adjustment of these absorbance bands is done systematically. The areas under the fitted bands permit one to follow the intensity of the different modes of vibration that exist during the anodic forward and backward polarization in order to compare the reversibility of the phenomenon of the anodic dissolution of silicon. It permits also to follow the evolution between the hydrogen silicon termination at forward and backward scanning applied potential. Finally a comparison between the states of the initial and final surface was carried out. We confirm the presence of clearly four and three distinct vibration modes

  4. Cost analysis of two silicon heterojunction solar cell designs

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W.G.J.H.M.; Schropp, R.E.I.; Turkenburg, W.C.; Faaij, A.P.C.

    2013-01-01

    Research and Development of Silicon Heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. This paper investigates the production costs associated with two different SHJ cell designs investigated within the FLASH programme, a

  5. Single and multijunction silicon based thin film solar cells on a flexible substrate with absorber layers made by hot-wire CVD

    Science.gov (United States)

    Li, Hongbo

    2007-09-01

    With the worldwide growing concern about reliable energy supply and the environmental problems of fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic systems, can play a major role in the urgently needed energy transition in electricity production. Solar cells based on thin film silicon and its alloys are a promising candidate that is capable of fulfilling the fast increasing demand of a reliable solar cell supply. The conventional method to deposit silicon thin films is based on plasma enhanced chemical vapour deposition (PECVD) techniques, which have the disadvantage of increasing film inhomogeneity at a high deposition rate when scaling up for the industrial production. In this thesis, we study the possibility of making high efficiency single and multijunction thin film silicon solar cells with the so-called hot-wire CVD technique, in which no strong electromagnetic field is involved in the deposition. Therefore, the up-scaling for industrial production is straightforward. We report and discuss our findings on the correlation of substrate surface rms roughness and the main output parameter of a solar cell, the open circuit voltage Voc of c-Si:H n i p cells. By considering all the possible reasons that could influence the Voc of such cells, we conclude that the near linear correlation of Voc and substrate surface rms roughness is the result the two most probable reasons: the unintentional doping through the cracks originated near the valleys of the substrate surface due to the in-diffusion of impurities, and the high density electrical defects formed by the collision of columnar silicon structures. Both of them relate to the morphology of substrate surface. Therefore, to have the best cell performance on a rough substrate surface, a good control on the substrate surface morphology is necessary. Another issue influencing the performance of c-Si:H solar cells is the

  6. Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb,R (R=Er, Ho) phosphors

    Institute of Scientific and Technical Information of China (English)

    Yen-Chi Chen; Teng-Ming Chen

    2011-01-01

    The goal of this work was aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic cells by using the solar spectral conversion principle,which employs an up-conversion phosphor to convert a low energy infrared photon to the more energetic visible photons to improve the spectral response.In this study,the surface of multicrystalline silicon solar cells was coated with an up-conversion molybdate phosphor to improve the spectral response of the solar cell in the ncar-infiared spectral range.The short circuit current (Isc),open circuit voltage (Voc),and conversion efficiency (η) of spectral conversion cells were measured.Preliminary experimental results revealed that the light conversion efficiency of a 1.5%-2.7% increase in Si-based cell was achieved.

  7. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    OpenAIRE

    Geissbühler Jonas; Werner Jérémie; Martin de Nicolas Silvia; Barraud Loris; Hessler-Wyser Aïcha; Despeisse Matthieu; Nicolay Sylvain; Tomasi Andrea; Niesen Bjoern; De Wolf Stefaan; Ballif Christophe

    2015-01-01

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p type amorphous silicon with molybdenum oxide films. In this article we evidence that annealing above 130?°C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited c...

  8. Towards hybrid heterojunction silicon solar cells with organic charge carrier selective contacts

    OpenAIRE

    Jäckle, Sara Lisa

    2017-01-01

    Photovoltaic is an essential part of the needed global transition towards renewable energies. Even though many materials have good absorption and energy conversion properties, the market is dominated by technologies based on crystalline silicon. Silicon has the advantage of being neither toxic nor rare on earth and it is very well investigated due to its extensive use in microelectronics. The best power conversion efficiencies of silicon solar cells and modules are achieved by sophisticated d...

  9. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    NARCIS (Netherlands)

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of

  10. Metallisation Technology of Silicon Solar Cells Using the Convectional and Laser Technique

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzanski

    2013-07-01

    Full Text Available The aim of the paper was to optimize the Selective Laser Sintering (SLS and co-firing in the infrared conveyor furnace parameters in front Screen Printed (SP contacts. The co-firing in the infrared conveyor furnace was carried out at various temperature. The SLS was carried out at various a laser beam, scanning speed of the laser beam and front electrode thickness. The investigations were carried out on monocrystalline silicon wafers. During investigations was applied a silver powder with the grain size of 40 μm. The contacts parameters are obtained according to the Transmission Line Model (TLM measurements. Firstly, this paper shows the comparison between the convectional an unconventional method of manufacturing front contacts of monocrystalline silicon solar cells with the different morphology of silicon for comparative purposes. Secondly, the papers shows technological recommendations for both methods in relation to parameters such as: the optimal paste composition, the morphology of the silicon substrate to produce the front electrode of silicon solar cells, which were selected experimentally in order to produce a uniformly melted structure, well adhering to the substrate, with the low resistance of the front electrode-to-substrate joint zone.

  11. Silicon web process development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  12. Development of Novel Front Contract Pastes for Crystalline Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Jellison, D. G.E. P.; Joshi, P.

    2012-04-05

    In order to improve the efficiencies of silicon solar cells, paste to silicon contact formation mechanisms must be more thoroughly understood as a function of paste chemistry, wafer properties and firing conditions. Ferro Corporation has been involved in paste development for over 30 years and has extensive expertise in glass and paste formulations. This project has focused on the characterization of the interface between the top contact material (silver paste) and the underlying silicon wafer. It is believed that the interface between the front contact silver and the silicon wafer plays a dominant role in the electrical performance of the solar cell. Development of an improved front contact microstructure depends on the paste chemistry, paste interaction with the SiNx, and silicon (“Si”) substrate, silicon sheet resistivity, and the firing profile. Typical front contact ink contains silver metal powders and flakes, glass powder and other inorganic additives suspended in an organic medium of resin and solvent. During fast firing cycles glass melts, wets, corrodes the SiNx layer, and then interacts with underlying Si. Glass chemistry is also a critical factor in the development of an optimum front contact microstructure. Over the course of this project, several fundamental characteristics of the Ag/Si interface were documented, including a higher-than-expected distribution of voids along the interface, which could significantly impact electrical conductivity. Several techniques were also investigated for the interfacial analysis, including STEM, EDS, FIB, EBSD, and ellipsometry.

  13. The investigation of influence of accelerated electrons on SiO2 used in silicon solar cells

    International Nuclear Information System (INIS)

    Abdullaev, G.B.; Bakirov, M.Ya; Akhmedov, G.M.; Safarov, N.A.; Safarova, F.D.

    1994-01-01

    The process of radiation defects production in enlightened SiO 2 layers coated on silicon solar cells was studied. During irradiation the silicon solar cells with enlightened layers radiation defects are formed both in silicon and SiO 2 thus making worse photo energetic parameters of cells. For investigation of radiation effects formed under irradiation by electrons with 5 MeV energy and cobalt-60 gamma-rays photoluminescence, absorption spectra and electron spin resonance methods were used. It is supposed that main radiation defects in silicon dioxide are E'-centers and oxygen vacancies. (A.D. Avezov). 10 refs.; 2 figs

  14. Impact of Nickel silicide Rear Metallization on Series Resistance of Crystalline Silicon Solar Cells

    KAUST Repository

    Bahabry, Rabab R

    2018-01-11

    The Silicon-based solar cell is one of the most important enablers toward high efficiency and low-cost clean energy resource. Metallization of silicon-based solar cells typically utilizes screen printed silver-Aluminium (Ag-Al) which affects the optimal electrical performance. To date, metal silicide-based ohmic contacts are occasionally used as an alternative candidate only to the front contact grid lines in crystalline silicon (c-Si) based solar cells. In this paper, we investigate the electrical characteristics of nickel mono-silicide (NiSi)/Cu-Al ohmic contact on the rear side of c-Si solar cells. We observe a significant enhancement in the fill factor of around 6.5% for NiSi/Cu-Al rear contacts leading to increasing the efficiency by 1.2% compared to Ag-Al. This is attributed to the improvement of the parasitic resistance in which the series resistance decreased by 0.737 Ω.cm². Further, we complement experimental observation with a simulation of different contact resistance values, which manifests NiSi/Cu-Al rear contact as a promising low-cost metallization for c-Si solar cells with enhanced efficiency.

  15. Reflectance improvement by thermal annealing of sputtered Ag/ZnO back reflectors in a-Si:H thin film silicon solar cells

    DEFF Research Database (Denmark)

    Haug, Franz-Josef; Söderström, Karin; Pahud, Céline

    2011-01-01

    Silver can be used as the back contact and reflector in thin film silicon solar cells. When deposited on textured substrates, silver films often exhibit reduced reflectance due to absorption losses by the excitation of surface plasmon resonances. We show that thermal annealing of the silver back...

  16. Array Automated Assembly Task Low Cost Silicon Solar Array Project. Phase 2. Annual technical report, September 20, 1977-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Sang S.; Jones, Gregory T.; Allison, Kimberly L.

    1978-01-01

    This program was conducted to develop and demonstrate those solar cells and module process steps which have the technological readiness or capability to achieve the 1986 LSA goals. Results are reported. Seventeen process groups were investigated. Very promising results were achieved. A laserscribe computer program was developed. It demonstrated that silicon solar cells could be trimmed and holed by laser without causing mechanical defects (i.e., microcracks) nor any major degradation in solar cell electrical performance. The silicon wafer surface preparation task demonstrated a low-cost, high throughput texturizing process readily adaptable to automation. Performance verification tests of a laser scanning system showed a limited capability to detect hidden cracks or defects in solar cells. A general review of currently available thick film printing equipment provided the indication that state-of-the-art technology can adequately transform the capability of current printing machines to the elevated rate of 7200 wafers per hour. The LFE System 8000 silicon nitride plasma deposition system with the inclusion of minor equipment modifications was shown to be consistent with the 1986 LSA pricing goals. The performance verification test of the silicon nitride A.R. coating process provided the result that texturized, A.R. coated solar cells display a 14.1% improvement in electrical performance over identical solar cells without an A.R. coating. A new electroless nickel plating system was installed and demonstrated a low-cost, high throughput process readily adaptable to automation. A multiple wafer dipping method was investigated and operational parameters defined. A flux removal method consisting of a three stage D.I. water cascade rinse system with ultrasonic agitator was found to be very promising. Also, a SAMICS cost analysis was performed. (WHK)

  17. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    KAUST Repository

    Sahli, Florent

    2017-10-09

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  18. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    KAUST Repository

    Sahli, Florent; Kamino, Brett A.; Werner, Jé ré mie; Brä uninger, Matthias; Paviet-Salomon, Bertrand; Barraud, Loris; Monnard, Raphaë l; Seif, Johannes Peter; Tomasi, Andrea; Jeangros, Quentin; Hessler-Wyser, Aï cha; De Wolf, Stefaan; Despeisse, Matthieu; Nicolay, Sylvain; Niesen, Bjoern; Ballif, Christophe

    2017-01-01

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  19. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  20. Surface and interface characterization of thin-film silicon solar cell structures

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Dominic

    2013-02-21

    our Si L{sub 2,3} XES analysis. Spatially resolved x-ray photoelectron spectroscopy data support this and even suggest the formation of sub-oxides or zinc silicate as an interface species. The electronic structure of the buried a-SiO{sub x}:H(B)/ZnO:Al and {mu}c-Si:H(B)/ZnO:Al interfaces are unraveled with ''depth resolved'' hard x-ray photoelectron spectroscopy. A surface band bending limited to the very surface of the silicon layers is found. The valence band maxima for the Si cover layers and the ZnO:Al TCO are determined and interface induced band bending for both interfaces are derived. At the a-SiO{sub x}:H(B)/ZnO:Al interface a tunnel barrier of (0.22 {+-} 0.31) eV and at {mu}c-Si:H(B)/ZnO:Al interface a tunnel barrier of (-0.08 {+-} 0.31) eV is determined. This explains a previously empirically found solar cell efficiency increase produced by introducing a {mu}c-Si:H(B) buffer layer between an a-Si p-i-n cell and the ZnO:Al/glass substrate.

  1. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow......In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  2. Reduction of absorption loss in multicrystalline silicon via combination of mechanical grooving and porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, Mohamed; Mohamed, Seifeddine Belhadj; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-03-15

    Surface texturing of silicon wafer is a key step to enhance light absorption and to improve the solar cell performances. While alkaline-texturing of single crystalline silicon wafers was well established, no efficient chemical solution has been successfully developed for multicrystalline silicon wafers. Thus, the use of alternative new methods for effective texturization of multicrystalline silicon is worth to be investigated. One of the promising texturing techniques of multicrystalline silicon wafers is the use of mechanical grooves. However, most often, physical damages occur during mechanical grooves of the wafer surface, which in turn require an additional step of wet processing-removal damage. Electrochemical surface treatment seems to be an adequate solution for removing mechanical damage throughout porous silicon formation. The topography of untreated and porous silicon-treated mechanically textured surface was investigated using scanning electron microscopy (SEM). As a result of the electrochemical surface treatment, the total reflectivity drops to about 5% in the 400-1000 nm wavelength range and the effective minority carrier diffusion length enhances from 190 {mu}m to about 230 {mu}m (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Solar photovoltaic research and development program of the Air Force Aero Propulsion Laboratory. [silicon solar cell applicable to satellite power systems

    Science.gov (United States)

    Wise, J.

    1979-01-01

    Progress is reported in the following areas: laser weapon effects, solar silicon solar cell concepts, and high voltage hardened, high power system technology. Emphasis is placed on solar cells with increased energy conversion efficiency and radiation resistance characteristics for application to satellite power systems.

  4. Silicon heterojunction solar cell with passivated hole selective MoOx contact

    Science.gov (United States)

    Battaglia, Corsin; de Nicolás, Silvia Martín; De Wolf, Stefaan; Yin, Xingtian; Zheng, Maxwell; Ballif, Christophe; Javey, Ali

    2014-03-01

    We explore substoichiometric molybdenum trioxide (MoOx, x MoOx, we observe a substantial gain in photocurrent of 1.9 mA/cm2 in the ultraviolet and visible part of the solar spectrum, when compared to a p-type amorphous silicon emitter of a traditional silicon heterojunction cell. Our results emphasize the strong potential for oxides as carrier selective heterojunction partners to inorganic semiconductors.

  5. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  6. Experimental and Computer Modelling Studies of Metastability of Amorphous Silicon Based Solar Cells

    NARCIS (Netherlands)

    Munyeme, Geoffrey

    2003-01-01

    We present a combination of experimental and computer modelling studies of the light induced degradation in the performance of amorphous silicon based single junction solar cells. Of particular interest in this study is the degradation kinetics of different types of amorphous silicon single junction

  7. The performance of silicon solar cells prepared by screen-printing technique

    International Nuclear Information System (INIS)

    Mursyidah; Mohamed Yahaya; Muhammad Mohd Salleh

    2000-01-01

    Screen-printing technique is known to produce low cost solar cells. A study has been done to prepare silicon solar cells of n + -p and n + -p-p + structures. The p-type silicon wafers were used as substrates. The phosphorous layer was deposited on top of the substrate using the screen-printing technique. The wafer was then annealed at temperature 1000 degree C for 10 minutes, so that phosphorous atoms are thermally diffused into the wafer to form an n + -p junction. Meanwhile the boron film was deposited at the back surface of the substrate and annealed at temperature 900 degree C for 10 minutes to form a p + layer in the n + -p-p + device. The back and front metal contacts were made using screen-printing technique. The performance of the devices was evaluated from I-V curves measured in the dark and under illumination. It was found that the n + -p-p + device with short circuit current, I SC = 32 mA, open circuit voltage, V OC = 0.46 volt, fill factor, FF=0.63 and efficiency, η = 2.3%, was better than that of the n + -p device. The performance of the n + -p-p + device was successfully improved by depositing titanium dioxide on top of the device as anti-reflection coating using the screen-printing technique. The improved performance was I SC = 38 mA, V OC = 0.48 volt, FF = 0.67 and η = 3. 1%. (Author)

  8. Proceedings of the Flat-Plate Solar Array Project Workshop on Crystal Gowth for High-Efficiency Silicon Solar Cells

    Science.gov (United States)

    Dumas, K. A. (Editor)

    1985-01-01

    A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.

  9. Study of interaction among silicon, lithium, oxygen and radiation-induced defects for radiation-hardened solar cells

    Science.gov (United States)

    Berman, P. A.

    1973-01-01

    In order to improve reliability and the useful lifetime of solar cell arrays for space use, a program was undertaken to develop radiation-hardened lithium-doped silicon solar cells. These cells were shown to be significantly more resistant to degradation by ionized particles than the presently used n-p nonlithium-doped silicon solar cells. The results of various analyses performed to develop a more complete understanding of the physics of the interaction among lithium, silicon, oxygen, and radiation-induced defects are presented. A discussion is given of those portions of the previous model of radiation damage annealing which were found to be in error and those portions which were upheld by these extensive investigations.

  10. Performance of conversion efficiency of a crystalline silicon solar cell with base doping density

    Directory of Open Access Journals (Sweden)

    Gokhan Sahin

    Full Text Available In this study, we investigate theoretically the electrical parameters of a crystalline silicon solar cell in steady state. Based on a one-dimensional modeling of the cell, the short circuit current density, the open circuit voltage, the shunt and series resistances and the conversion efficiency are calculated, taking into account the base doping density. Either the I-V characteristic, series resistance, shunt resistance and conversion efficiency are determined and studied versus base doping density. The effects applied of base doping density on these parameters have been studied. The aim of this work is to show how short circuit current density, open circuit voltage and parasitic resistances are related to the base doping density and to exhibit the role played by those parasitic resistances on the conversion efficiency of the crystalline silicon solar. Keywords: Crystalline silicon solar cell, Base doping density, Series resistance, Shunt resistance, Conversion efficiency

  11. Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells

    Directory of Open Access Journals (Sweden)

    Subhash Chander

    2015-11-01

    Full Text Available This paper presents a study on impact of temperature on the performance of series and parallel connected mono-crystalline silicon (mono-Si solar cell employing solar simulator. The experiment was carried out at constant light intensity 550 W/m2with cell temperature in the range 25–60 oC for single, series and parallel connected mono-Si solar cells. The performance parameters like open circuit voltage, maximum power, fill factor and efficiency are found to decrease with cell temperature while the short circuit current is observed to increase. The experimental results reveal that silicon solar cells connected in series and parallel combinations follow the Kirchhoff’s laws and the temperature has a significant effect on the performance parameters of solar cell.

  12. Solar cells

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  13. Bio-inspired co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

    DEFF Research Database (Denmark)

    Hou, Yidong; Abrams, Billie; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    The production of fuels directly or indirectly from sunlight represents one of the major challenges to the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and while platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen...... at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10%. The experimental observations are supported by DFT calculations of the Mo3S4 cluster adsorbed on the hydrogen-terminated silicon surface providing insights...... deposited on various supports. It will be demonstrated how this overpotential can be eliminated by depositing the same type of hydrogen evolution catalyst on p-type Si which can harvest the red part of the solar spectrum. Such a system could constitute the cathode part of a tandem dream device where the red...

  14. The influence of silicon wafer thickness on characteristics of multijunction solar cells with vertical p—n-junctions

    Directory of Open Access Journals (Sweden)

    Gnilenko A. B.

    2012-02-01

    Full Text Available A multijunction silicon solar cell with vertical p–n junctions consisted of four serial n+–p–p+-structures was simulated using Silvaco TCAD software package. The dependence of solar cell characteristics on the silicon wafer thickness is investigated for a wide range of values.

  15. Formation of Various Pyramidal Structures on Monocrystalline Silicon Surface and Their Influence on the Solar Cells

    Directory of Open Access Journals (Sweden)

    Yangang Han

    2013-01-01

    Full Text Available Texturization is a useful method to enhance the optical absorption of monocrystalline silicon wafers by light-trapping effect in solar cell processing. In present study, a series of textured wafers with various pyramid sizes ranging from 200 nm to 10 μm were fabricated by modified wet-chemical method and characterized. The results show that there is little difference in the reflectance with the pyramid sizes from 1 to 10 μm, which is consistent with the ray-tracing simulation results. However, the light-trapping function of the 200 nm sample below the geometrical optics limit is much weaker. The solar cells fabricated from the 1 μm samples own the highest power conversion efficiency of 18.17% due to a better coverage of metal finger lines than the larger ones, and the 200 nm samples have the lowest efficiency of 10.53%.

  16. Surface wettability of silicon substrates enhanced by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Shih-Feng [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China); Hsiao, Wen-Tse; Huang, Kuo-Cheng; Hsiao, Sheng-Yi [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); Chen, Ming-Fei [National Changhua University of Education, Department of Mechatronics Engineering, Changhua (China); Lin, Yung-Sheng [Hungkuang University, Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Taichung (China); Chou, Chang-Pin [National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China)

    2010-11-15

    Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9 on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light. (orig.)

  17. Polymorphous silicon thin films produced in dusty plasmas: application to solar cells

    International Nuclear Information System (INIS)

    Roca i Cabarrocas, Pere; Chaabane, N; Kharchenko, A V; Tchakarov, S

    2004-01-01

    We summarize our current understanding of the optimization of PIN solar cells produced by plasma enhanced chemical vapour deposition from silane-hydrogen mixtures. To increase the deposition rate, the discharge is operated under plasma conditions close to powder formation, where silicon nanocrystals contribute to the deposition of so-called polymorphous silicon thin films. We show that the increase in deposition rate can be achieved via an accurate control of the plasma parameters. However, this also results in a highly defective interface in the solar cells due to the bombardment of the P-layer by positively charged nanocrystals during the deposition of the I-layer. We show that decreasing the ion energy by increasing the total pressure or by using silane-helium mixtures allows us to increase both the deposition rate and the solar cells efficiency, as required for cost effective thin film photovoltaics

  18. Black silicon laser-doped selective emitter solar cell with 18.1% efficiency

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Li, Hongzhao; To, Alexander

    2016-01-01

    We report fabrication of nanostructured, laser-doped selective emitter (LDSE) silicon solar cells with power conversion efficiency of 18.1% and a fill factor (FF) of 80.1%. The nanostructured solar cells were realized through a single step, mask-less, scalable reactive ion etch (RIE) texturing......-texturing as well as the LDSE process, we consider this specific combination a promising candidate for a cost-efficient process for future Si solar cells....

  19. Recent developments in low cost silicon solar cells for terrestrial applications. [sheet production methods

    Science.gov (United States)

    Leipold, M. H.

    1978-01-01

    A variety of techniques may be used for photovoltaic energy systems. Concentrated or not concentrated sunlight may be employed, and a number of materials can be used, including silicon, gallium arsenide, cadmium sulfide, and cadmium telluride. Most of the experience, however, has been obtained with silicon cells employed without sunlight concentration. An industrial base exists at present for producing solar cells at a price in the range from $15 to $30 per peak watt. A major federal program has the objective to reduce the price of power provided by silicon solar systems to approximately $1 per peak watt in the early 1980's and $0.50 per watt by 1986. The approaches considered for achieving this objective are discussed.

  20. Surface effects in segmented silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kopsalis, Ioannis

    2017-05-15

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO{sub 2} layers at the surface, thus changing the sensor properties and limiting their life time. Non-Ionizing Energy Loss (NIEL) of incident particles causes silicon crystal damage. Ionizing Energy Loss (IEL) of incident particles increases the densities of oxide charge and interface traps in the SiO{sub 2} and at the Si-SiO{sub 2} interface. In this thesis the surface radiation damage of the Si-SiO{sub 2} system on high-ohmic Si has been investigated using circular MOSFETs biased in accumulation and inversion at an electric field in the SiO{sub 2} of about 500 kV/cm. The MOSFETs have been irradiated by X-rays from an X-ray tube to a dose of about 17 kGy(SiO{sub 2}) in different irradiation steps. Before and after each irradiation step, the gate voltage has been cycled from inversion to accumulation conditions and back. From the dependence of the drain-source current on gate voltage the threshold voltage of the MOSFET and the hole and electron mobility at the Si-SiO{sub 2} interface were determined. In addition, from the measured drain-source current the change of the oxide charge density during irradiation has been determined. The interface trap density and the oxide charge has been determined separately using the subthreshold current technique based on the Brews charge sheet model which has been applied for first time on MOSFETs built on high-ohmic Si. The results show a significant field-direction dependence of the surface radiation parameters. The extracted parameters and the acquired knowledge can be used to improve simulations of the surface

  1. Surface effects in segmented silicon sensors

    International Nuclear Information System (INIS)

    Kopsalis, Ioannis

    2017-05-01

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO 2 layers at the surface, thus changing the sensor properties and limiting their life time. Non-Ionizing Energy Loss (NIEL) of incident particles causes silicon crystal damage. Ionizing Energy Loss (IEL) of incident particles increases the densities of oxide charge and interface traps in the SiO 2 and at the Si-SiO 2 interface. In this thesis the surface radiation damage of the Si-SiO 2 system on high-ohmic Si has been investigated using circular MOSFETs biased in accumulation and inversion at an electric field in the SiO 2 of about 500 kV/cm. The MOSFETs have been irradiated by X-rays from an X-ray tube to a dose of about 17 kGy(SiO 2 ) in different irradiation steps. Before and after each irradiation step, the gate voltage has been cycled from inversion to accumulation conditions and back. From the dependence of the drain-source current on gate voltage the threshold voltage of the MOSFET and the hole and electron mobility at the Si-SiO 2 interface were determined. In addition, from the measured drain-source current the change of the oxide charge density during irradiation has been determined. The interface trap density and the oxide charge has been determined separately using the subthreshold current technique based on the Brews charge sheet model which has been applied for first time on MOSFETs built on high-ohmic Si. The results show a significant field-direction dependence of the surface radiation parameters. The extracted parameters and the acquired knowledge can be used to improve simulations of the surface radiation damage of silicon sensors.

  2. Silicon-Film(TM) Solar Cells by a Flexible Manufacturing System: Final Report, 16 April 1998 -- 31 March 2001

    Energy Technology Data Exchange (ETDEWEB)

    Rand, J.

    2002-02-01

    This report describes the overall goal to engineer and develop flexible manufacturing methods and equipment to process Silicon-Film solar cells and modules. Three major thrusts of this three-year effort were to: develop a new larger-area (208 mm x 208 mm) Silicon-Film solar cell, the APx-8; construct and operate a new high-throughput wafer-making system; and develop a 15-MW single-thread manufacturing process. Specific technical accomplishments from this period are: Increase solar cell area by 80%, increase the generation capacity of a Silicon-Film wafer-making system by 350%, use a new in-line HF etch system in solar cell production, design and develop an in-line NaOH etch system, eliminate cassettes in solar cell processing, and design a new family of module products.

  3. Modeling and Design of a New Flexible Graphene-on-Silicon Schottky Junction Solar Cell

    Directory of Open Access Journals (Sweden)

    Francesco Dell’Olio

    2016-10-01

    Full Text Available A new graphene-based flexible solar cell with a power conversion efficiency >10% has been designed. The environmental stability and the low complexity of the fabrication process are the two main advantages of the proposed device with respect to other flexible solar cells. The designed solar cell is a graphene/silicon Schottky junction whose performance has been enhanced by a graphene oxide layer deposited on the graphene sheet. The effect of the graphene oxide is to dope the graphene and to act as anti-reflection coating. A silicon dioxide ultrathin layer interposed between the n-Si and the graphene increases the open-circuit voltage of the cell. The solar cell optimization has been achieved through a mathematical model, which has been validated by using experimental data reported in literature. The new flexible photovoltaic device can be integrated in a wide range of microsystems powered by solar energy.

  4. Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells

    Science.gov (United States)

    Ghosh, Hemanta; Mitra, Suchismita; Siddiqui, M. S.; Saxena, A. K.; Chaudhuri, Partha; Saha, Hiranmay; Banerjee, Chandan

    2018-04-01

    A novel material, structure and method of synthesis for dielectric light trapping have been presented in this paper. First, the light scattering behaviour of silicon nitride nanoparticles have been theoretically studied in order to find the optimized size for dielectric back scattering by FDTD simulations from Lumerical Inc. The optical results have been used in electrical analysis and thereby, estimate the effect of nanoparticles on efficiency of the solar cells depending on substrate thickness. Experimentally, silicon nitride (SiN) nanoparticles have been formed using hydrogen plasma treatment on SiN layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). The size and area coverage of the nanoparticles were controlled by varying the working pressure, power density and treatment duration. The nanoparticles were integrated with partial rear contact c-Si solar cells as dielectric back reflector structures for the light trapping in thin silicon solar cells. Experimental results revealed the increases of current density by 2.7% in presence of SiN nanoparticles.

  5. Introduction to solar cell production

    International Nuclear Information System (INIS)

    Kim, Gyeong Hae; Lee, Jun Sin

    2009-08-01

    This book introduces solar cell production. It is made up eight chapters, which are summary of solar cell with structure and prospect of the business, special variable of solar cell on light of the sun and factor causing variable of solar cell, production of solar cell with surface texturing, diffusion, metal printing dry and firing and edge isolation, process of solar cell on silicone wafer for solar cell, forming of electrodes, introduction of thin film solar cell on operating of solar cell, process of production and high efficiency of thin film solar cell, sorting of solar cell and production with background of silicone solar cell and thin film solar cell, structure and production of thin film solar cell and compound solar cell, introduction of solar cell module and the Industrial condition and prospect of solar cell.

  6. Photoinduced Field-Effect Passivation from Negative Carrier Accumulation for High-Efficiency Silicon/Organic Heterojunction Solar Cells.

    Science.gov (United States)

    Liu, Zhaolang; Yang, Zhenhai; Wu, Sudong; Zhu, Juye; Guo, Wei; Sheng, Jiang; Ye, Jichun; Cui, Yi

    2017-12-26

    Carrier recombination and light management of the dopant-free silicon/organic heterojunction solar cells (HSCs) based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are the critical factors in developing high-efficiency photovoltaic devices. However, the traditional passivation technologies can hardly provide efficient surface passivation on the front surface of Si. In this study, a photoinduced electric field was induced in a bilayer antireflective coating (ARC) of polydimethylsiloxane (PDMS) and titanium oxide (TiO 2 ) films, due to formation of an accumulation layer of negative carriers (O 2 - species) under UV (sunlight) illumination. This photoinduced field not only suppressed the silicon surface recombination but also enhanced the built-in potential of HSCs with 84 mV increment. In addition, this photoactive ARC also displayed the outstanding light-trapping capability. The front PEDOT:PSS/Si HSC with the saturated O 2 - received a champion PCE of 15.51% under AM 1.5 simulated sunlight illumination. It was clearly demonstrated that the photoinduced electric field was a simple, efficient, and low-cost method for the surface passivation and contributed to achieve a high efficiency when applied in the Si/PEDOT:PSS HSCs.

  7. Compensation of decreased ion energy by increased hydrogen dilution in plasma deposition of thin film silicon solar cells at low substrate temperatures

    NARCIS (Netherlands)

    Verkerk, A.D.; de Jong, M.M.; Rath, J.K.; Brinza, M.; Schropp, R.E.I.; Goedheer, W.J.; Krzhizhanovskaya, V.V.; Gorbachev, Y.E.; Orlov, K.E.; Khilkevitch, E.M.; Smirnov, A.S.

    2009-01-01

    In order to deposit thin film silicon solar cells on plastics and papers, the deposition process needs to be adapted for low deposition temperatures. In a very high frequency plasma-enhanced chemical vapor deposition (VHF PECVD) process, both the gas phase and the surface processes are affected by

  8. Effect of junction quality on the performance of a silicon solar cell ...

    African Journals Online (AJOL)

    In this work, a modeling study of the effect of the junction quality on the performance of a silicon solar cell is presented. Based on a one dimensional modeling of the solar cell, the continuity equation of excess minority carriers is solved with boundary conditions taking into account the intrinsic junction recombination velocity ...

  9. Low energy production processes in manufacturing of silicon solar cells

    Science.gov (United States)

    Kirkpatrick, A. R.

    1976-01-01

    Ion implantation and pulsed energy techniques are being combined for fabrication of silicon solar cells totally under vacuum and at room temperature. Simplified sequences allow very short processing times with small process energy consumption. Economic projections for fully automated production are excellent.

  10. Nanostructural optimization of silicon/PEDOT:PSS hybrid solar cells for performance improvement

    International Nuclear Information System (INIS)

    Wang, Yanzhou; Shao, Pengfei; Li, Yali; Li, Junshuai; He, Deyan; Chen, Qiang

    2017-01-01

    In this paper, an inverted silicon (Si) nanopyramid (iSiNP) surface structure with low aspect ratio and remarkable antireflection is developed through sequential treatments of NaOH and HF/CH 3 COOH/HNO 3 solutions to Si nanowire (SiNW)-textured Si wafers, which are prepared by traditional electroless chemical etching. The iSiNP/PEDOT:PSS hybrid solar cell is fabricated through conformally spin-coating poly(3.4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) onto the iSiNPs; it exhibits enhanced device performance owing to the improved junction and contact quality as compared to the SiNW/PEDOT:PSS counterpart. A power conversion efficiency (PCE) of 9.6% mainly contributed from an increased fill factor (FF) of 0.61 and improved open circuit voltage ( V oc ) of 0.53 V is delivered by the iSiNP/PEDOT:PSS solar cell. As a comparison, the SiNW/PEDOT:PSS structure delivers a 7.1% PCE with a FF of 0.45 and V oc of 0.46 V. Considering the submicro-scale characteristic dimensions, iSiNPs are expected to be applicable to highly efficient thin film Si/PEDOT:PSS hybrid solar cells. (paper)

  11. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    Science.gov (United States)

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  12. Bulk solar grade silicon: how chemistry and physics play to get a benevolent microstructured material

    Energy Technology Data Exchange (ETDEWEB)

    Pizzini, S. [University of Milano-Bicocca, Department of Materials Science, Milan (Italy); Nedsilicon SpA, Osimo, Ancona (Italy)

    2009-07-15

    The availability of low-cost alternatives to electronic grade silicon has been and still is the condition for the extensive use of photovoltaics as an efficient sun harvesting system. The first step towards this objective was positively carried out in the 1980s and resulted in the reduction in cost and energy of the growth process using as feedstock electronic grade scraps and a variety of solidification procedures, all of which deliver a multi-crystalline material of high photovoltaic quality. The second step was an intense R and D activity aiming at defining and developing at lab scale a new variety of silicon, called ''solar grade'' silicon, which should fulfil the requirement of both cost effectiveness and high conversion efficiency. The third step involved and still involves the development of cost-effective technologies for the manufacture of solar grade silicon, in alternative to the classical Siemens route, which relays, as is well-known, to the pyrolitic decomposition of high-purity trichlorosilane and which is, also in its more advanced versions, extremely energy intensive. Aim of this paper is to give the author's viewpoint about some open questions concerning bulk solar silicon for PV applications and about challenges and chances of novel feedstocks of direct metallurgical origin. (orig.)

  13. Research and development of photovoltaic power system. Characterization and control of surface/interface recombination velocity of crystalline silicon thin films; Taiyoko hatsuden system no kenkyu kaihatsu. Silicon kessho usumaku ni okeru hyomen kaimen saiketsugo sokudo no hyoka to seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H [Hokkaido University, Sapporo (Japan). Faculty of Engineering

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on characterization and control of surface/interface recombination velocity of crystalline silicon thin films. To optimize design and manufacture of solar cells, it is necessary to identify correctly resistance factor (or doping) of bulk of materials, bulk minority carrier life, and recombination velocity on surface, passivation interface and electrode interface. A group in the Hokkaido University has been working since a few years ago on development of non-contact and non-destructive photo-luminescence surface level spectroscopy (PLS{sup 3}). A new non-contact C-V method was also introduced. Using these methods, basic discussions were given on possibility of separate measurements on surface/interface and bulk characteristics of solar cell materials. The PLS{sup 3} method and the non-contact C-V method were used for experimental discussions on evaluation of silicon mono-crystalline and poly-crystalline materials. Discussions were given on separate evaluations by using the DLTS method. 10 figs., 2 tabs.

  14. Texture-Etched SnO2 Glasses Applied to Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Bing-Rui Wu

    2014-01-01

    Full Text Available Transparent electrodes of tin dioxide (SnO2 on glasses were further wet-etched in the diluted HCl:Cr solution to obtain larger surface roughness and better light-scattering characteristic for thin-film solar cell applications. The process parameters in terms of HCl/Cr mixture ratio, etching temperature, and etching time have been investigated. After etching process, the surface roughness, transmission haze, and sheet resistance of SnO2 glasses were measured. It was found that the etching rate was increased with the additions in etchant concentration of Cr and etching temperature. The optimum texture-etching parameters were 0.15 wt.% Cr in 49% HCl, temperature of 90°C, and time of 30 sec. Moreover, silicon thin-film solar cells with the p-i-n structure were fabricated on the textured SnO2 glasses using hot-wire chemical vapor deposition. By optimizing the texture-etching process, the cell efficiency was increased from 4.04% to 4.39%, resulting from the increment of short-circuit current density from 14.14 to 15.58 mA/cm2. This improvement in cell performances can be ascribed to the light-scattering effect induced by surface texturization of SnO2.

  15. Amorphous silicon thin-film solar cells on glass fiber textiles

    Energy Technology Data Exchange (ETDEWEB)

    Plentz, Jonathan, E-mail: jonathan.plentz@leibniz-ipht.de; Andrä, Gudrun; Pliewischkies, Torsten; Brückner, Uwe; Eisenhawer, Björn; Falk, Fritz

    2016-02-15

    Graphical abstract: - Highlights: • Amorphous silicon solar cells on textile glass fiber fabrics are demonstrated. • Open circuit voltages of 883 mV show shunt-free contacting on non-planar fabrics. • Short-circuit current densities of 3.7 mA/cm{sup 2} are limited by transmission losses. • Fill factors of 43.1% and pseudo fill factors of 70.2% show high series resistance. • Efficiencies of 1.4% and pseudo efficiencies of 2.1% realized on textile fabrics. - Abstract: In this contribution, amorphous silicon thin-film solar cells on textile glass fiber fabrics for smart textiles are prepared and the photovoltaic performance is characterized. These solar cells on fabrics delivered open circuit voltages up to 883 mV. This shows that shunt-free contacting of the solar cells was successful, even in case of non-planar fabrics. The short-circuit current densities up to 3.7 mA/cm{sup 2} are limited by transmission losses in a 10 nm thin titanium layer, which was used as a semi-transparent contact. The low conductivity of this layer limits the fill factor to 43.1%. Pseudo fill factors, neglecting the series resistance, up to 70.2% were measured. Efficiencies up to 1.4% and pseudo efficiencies up to 2.1% were realized on textile fabrics. A transparent conductive oxide could further improve the efficiency to above 5%.

  16. Serially Connected Micro Amorphous Silicon Solar Cells for Compact High-Voltage Sources

    Directory of Open Access Journals (Sweden)

    Jiyoon Nam

    2016-01-01

    Full Text Available We demonstrate a compact amorphous silicon (a-Si solar module to be used as high-voltage power supply. In comparison with the organic solar module, the main advantages of the a-Si solar module are its compatibility with photolithography techniques and relatively high power conversion efficiency. The open circuit voltage of a-Si solar cells can be easily controlled by serially interconnecting a-Si solar cells. Moreover, the a-Si solar module can be easily patterned by photolithography in any desired shapes with high areal densities. Using the photolithographic technique, we fabricate a compact a-Si solar module with noticeable photovoltaic characteristics as compared with the reported values for high-voltage power supplies.

  17. Surface topography and morphology characterization of PIII irradiated silicon surface

    International Nuclear Information System (INIS)

    Sharma, Satinder K.; Barthwal, Sumit

    2008-01-01

    The effect of plasma immersion ion implantation (PIII) treatment on silicon surfaces was investigated by micro-Raman and atomic force microscopy (AFM) technique. The surface damage was given by the implantation of carbon, nitrogen, oxygen and argon ions using an inductively coupled plasma (ICP) source at low pressure. AFM studies show that surface topography of the PIII treated silicon wafers depend on the physical and chemical nature of the implanted species. Micro-Raman spectra indicate that the significant reduction of intensity of Raman peak after PIII treatment. Plasma immersion ion implantation is a non-line-of-sight ion implantation method, which allows 3D treatment of materials. Therefore, PIII based surface modification and plasma immersion ion deposition (PIID) coatings are applied in a wide range of situations.

  18. Turning the Moon into a Solar Photovoltaic Paradise

    Science.gov (United States)

    Freundlich, Alex; Alemu, Andenet; Williams, Lawrence; Nakamura, Takashi; Sibille, Laurent; Curren, Peter

    2006-01-01

    Lunar resource utilization has focused principally on the extraction of oxygen from the lunar regolith. A number of schemes have been proposed for oxygen extraction from Ilmenite and Anorthite. Serendipitously, these schemes have as their by-products (or more directly as their "waste products"), materials needed for the fabrication of thin film silicon solar cells. Thus lunar surface possesses both the elemental components needed for the fabrication of silicon solar cells and a vacuum environment that allows for vacuum deposition of thin film solar cells directly on the surface of the Moon without the need for vacuum chambers. In support of the US space exploration initiative a new architecture for the production of thin film solar cells on directly on the lunar surface is proposed. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin films (anti-reflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith glass substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed.

  19. Effects of excitation intensity on the photocurrent response of thin film silicon solar modules

    Science.gov (United States)

    Kim, Q.; Shumka, A.; Trask, J.

    1986-01-01

    Photocurrent responses of amorphous thin film silicon solar modules at room temperature were studied at different excitation intensities using various monochromatic light sources. Photocurrent imaging techniques have been effectively used to locate rapidly, and non-destructively, failure and defect sites in the multilayer thin film device. Differences observed in the photocurrent response characteristics for two different cells in the same amorphous thin film silicon solar module suggest the possibility of the formation of dissimilarly active devices, even though the module is processed in the same fabrication process. Possible mechanisms are discussed.

  20. Silicon diffusion in aluminum for rear passivated solar cells

    International Nuclear Information System (INIS)

    Urrejola, Elias; Peter, Kristian; Plagwitz, Heiko; Schubert, Gunnar

    2011-01-01

    We show that the lateral spread of silicon in a screen-printed aluminum layer increases by (1.50±0.06) μm/ deg. C, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.

  1. Explicit analytical modeling of the low frequency a-Si:H/c-Si heterojunction capacitance: Analysis and application to silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Maslova, O. [Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya sq., 4, Moscow 125047 (Russian Federation); GeePs (Group of electrical engineering of Paris), CNRS UMR 8507, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France); Brézard-Oudot, A.; Gueunier-Farret, M.-E.; Alvarez, J.; Kleider, J.-P. [GeePs (Group of electrical engineering of Paris), CNRS UMR 8507, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France)

    2015-09-21

    We develop a fully analytical model in order to describe the temperature dependence of the low frequency capacitance of heterojunctions between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). We demonstrate that the slope of the capacitance-temperature (C-T) curve is strongly enhanced if the c-Si surface is under strong inversion conditions compared to the usually assumed depletion layer capacitance. We have extended our analytical model to integrate a very thin undoped (i) a-Si:H layer at the interface and the finite thickness of the doped a-Si:H layer that are used in high efficiency solar cells for the passivation of interface defects and to limit short circuit current losses. Finally, using our calculations, we analyze experimental data on high efficiency silicon heterojunction solar cells. The transition from the strong inversion limited behavior to the depletion layer behavior is discussed in terms of band offsets, density of states in a-Si:H, and work function of the indium tin oxide (ITO) front electrode. In particular, it is evidenced that strong inversion conditions prevail at the c-Si surface at high temperatures down to 250 K, which can only be reproduced if the ITO work function is larger than 4.7 eV.

  2. The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells

    NARCIS (Netherlands)

    Demontis, V.; Sanna, C.; Melskens, J.; Santbergen, R.; Smets, A.H.M.; Damiano, A.; Zeman, M.

    2013-01-01

    Thin oxide interlayers are commonly added to the back reflector of thin-film silicon solar cells to increase their current. To gain more insight in the enhancement mechanism, we tested different back reflector designs consisting of aluminium-doped zinc oxide (ZnO:Al) and/or hydrogenated silicon

  3. Graphene as a transparent electrode for amorphous silicon-based solar cells

    International Nuclear Information System (INIS)

    Vaianella, F.; Rosolen, G.; Maes, B.

    2015-01-01

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles

  4. Graphene as a transparent electrode for amorphous silicon-based solar cells

    Science.gov (United States)

    Vaianella, F.; Rosolen, G.; Maes, B.

    2015-06-01

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  5. Graphene as a transparent electrode for amorphous silicon-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vaianella, F., E-mail: Fabio.Vaianella@umons.ac.be; Rosolen, G.; Maes, B. [Micro- and Nanophotonic Materials Group, Faculty of Science, University of Mons, 20 place du Parc, B-7000 Mons (Belgium)

    2015-06-28

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  6. Review of New Technology for Preparing Crystalline Silicon Solar Cell Materials by Metallurgical Method

    Science.gov (United States)

    Li, Man; Dai, Yongnian; Ma, Wenhui; Yang, Bin; Chu, Qingmei

    2017-11-01

    The goals of greatly reducing the photovoltaic power cost and making it less than that of thermal power to realize photovoltaic power grid parity without state subsidies are focused on in this paper. The research status, key technologies and development of the new technology for preparing crystalline silicon solar cell materials by metallurgical method at home and abroad are reviewed. The important effects of impurities and defects in crystalline silicon on its properties are analysed. The importance of new technology on reducing production costs and improving its quality to increase the cell conversion efficiency are emphasized. The previous research results show that the raw materials of crystalline silicon are extremely abundant. The product of crystalline silicon can meet the quality requirements of solar cell materials: Si ≥ 6 N, P 1 Ω cm, minority carrier life > 25 μs cell conversion efficiency of about 19.3%, the product costs energy consumption energy consumption, low carbon and sustainable development are prospected.

  7. Comparative analysis of germanium-silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces

    Science.gov (United States)

    Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander

    2018-02-01

    In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.

  8. Indium tin oxide thin-films prepared by vapor phase pyrolysis for efficient silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Simashkevich, Alexei, E-mail: alexeisimashkevich@hotmail.com [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Serban, Dormidont; Bruc, Leonid; Curmei, Nicolai [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Hinrichs, Volker [Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Rusu, Marin [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2016-07-01

    The vapor phase pyrolysis deposition method was developed for the preparation of indium tin oxide (ITO) thin films with thicknesses ranging between 300 and 400 nm with the sheet resistance of 10–15 Ω/sq. and the transparency in the visible region of the spectrum over 80%. The layers were deposited on the (100) surface of the n-type silicon wafers with the charge carriers concentration of ~ 10{sup 15} cm{sup −3}. The morphology of the ITO layers deposited on Si wafers with different surface morphologies, e.g., smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) was investigated. The as-deposited ITO thin films consist of crystalline columns with the height of 300–400 nm and the width of 50–100 nm. Photovoltaic parameters of mono- and bifacial solar cells of Cu/ITO/SiO{sub 2}/n–n{sup +} Si/Cu prepared on Si (100) wafers with different surface structures were studied and compared. A maximum efficiency of 15.8% was achieved on monofacial solar cell devices with the textured Si surface. Bifacial photovoltaic devices from 100 μm thick Si wafers with the smooth surface have demonstrated efficiencies of 13.0% at frontal illumination and 10% at rear illumination. - Highlights: • ITO thin films prepared by vapor phase pyrolysis on Si (100) wafers with a smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) surface. • Monofacial ITO/SiO2/n-n+Si solar cells with an efficiency of 15.8% prepared and bifacial PV devices with front- and rear-side efficiencies up to 13% demonstrated. • Comparative studies of photovoltaic properties of solar cells with different morphologies of the Si wafer surface presented.

  9. Designing High-Efficiency Thin Silicon Solar Cells Using Parabolic-Pore Photonic Crystals

    Science.gov (United States)

    Bhattacharya, Sayak; John, Sajeev

    2018-04-01

    We demonstrate the efficacy of wave-interference-based light trapping and carrier transport in parabolic-pore photonic-crystal, thin-crystalline silicon (c -Si) solar cells to achieve above 29% power conversion efficiencies. Using a rigorous solution of Maxwell's equations through a standard finite-difference time domain scheme, we optimize the design of the vertical-parabolic-pore photonic crystal (PhC) on a 10 -μ m -thick c -Si solar cell to obtain a maximum achievable photocurrent density (MAPD) of 40.6 mA /cm2 beyond the ray-optical, Lambertian light-trapping limit. For a slanted-parabolic-pore PhC that breaks x -y symmetry, improved light trapping occurs due to better coupling into parallel-to-interface refraction modes. We achieve the optimum MAPD of 41.6 mA /cm2 for a tilt angle of 10° with respect to the vertical axis of the pores. This MAPD is further improved to 41.72 mA /cm2 by introducing a 75-nm SiO2 antireflective coating on top of the solar cell. We use this MAPD and the associated charge-carrier generation profile as input for a numerical solution of Poisson's equation coupled with semiconductor drift-diffusion equations using a Shockley-Read-Hall and Auger recombination model. Using experimentally achieved surface recombination velocities of 10 cm /s , we identify semiconductor doping profiles that yield power conversion efficiencies over 29%. Practical considerations of additional upper-contact losses suggest efficiencies close to 28%. This improvement beyond the current world record is largely due to an open-circuit voltage approaching 0.8 V enabled by reduced bulk recombination in our thin silicon architecture while maintaining a high short-circuit current through wave-interference-based light trapping.

  10. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    Science.gov (United States)

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  11. Review of status developments of high-efficiency crystalline silicon solar cells

    Science.gov (United States)

    Liu, Jingjing; Yao, Yao; Xiao, Shaoqing; Gu, Xiaofeng

    2018-03-01

    In order to further improve cell efficiency and reduce cost in achieving grid parity, a large number of PV manufacturing companies, universities and research institutes have been devoted to a variety of low-cost and high-efficiency crystalline Si solar cells. In this article, the cell structures, characteristics and efficiency progresses of several types of high-efficiency crystalline Si solar cells that have been in small scale production or are promising in mass production are presented, including passivated emitter rear cell, tunnel oxide passivated contact solar cell, interdigitated back contact cell, heterojunction with intrinsic thin-layer cell, and heterojunction solar cells with interdigitated back contacts. Both the industrialization status and future development trend of high-efficiency crystalline silicon solar cells are also pinpointed.

  12. Innovative technologies for emitter formation of crystalline silicon solar cells using in-line diffusion; Innovative Technologien zur Emittererzeugung fuer kristalline Silizium-Solarzellen mittels Durchlaufdiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Voyer, Catherine

    2009-04-20

    An in-line emitter formation process for crystalline silicon solar cells was developed. The wafers were coated at room temperature with dilute phosphoric acid (2.5 w/w% in water) using ultrasonic spraying and then heated up to temperatures around 900 C in a metal-contamination-free in-line furnace. In the first zones of the furnace, a phosphosilicate glass (PSG) is formed on the silicon surface and serves as the doping source. The PSG thickness was adjusted by varying the flow rate of dilute phosphoric acid to the spray nozzle and took on values appropriate for emitter formation, in the range of {proportional_to}40-120 nm. A surfactant mixture was added to the dilute phosphoric acid in order to obtain complete wetting of the silicon surface. The mixture, which was composed of a hydrocarbon surfactant and of a fluorosurfactant, achieved better wetting properties than would be possible when using only one of the two surfactants. The spray solution containing only the hydrocarbon surfactant achieved a faster drop flattening, while the spray solution containing only the fluorosurfactant achieved a lower static surface tension. The mixture allowed for a combination of these desired properties: The drops coalesced together sufficiently rapidly (before drying) on the silicon surface to form a complete dopant source liquid layer and this layer remains sufficiently homogeneous during the layer drying. The sprayed-on layer is thicker ({proportional_to}15 microns) than the height of the surface texture ({proportional_to}5-10 microns). The liquid strives for a state of equilibrium, a convex meniscus. The topography of the liquid surface at the time at which the increase in viscosity puts an end to the liquid flow is reflected in the topography of the PSG thickness. The corresponding variations in sheet resistance across a wafer are sufficiently small for solar cells. Furthermore, the liquid layer conforms itself, during the drying, to the surface texture on a microscopic scale

  13. In-line high-rate evaporation of aluminum for the metallization of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Christoph Paul

    2012-07-11

    This work focuses on the in-line high-rate evaporation of aluminum for contacting rear sides of silicon solar cells. The substrate temperature during the deposition process, the wafer bow after deposition, and the electrical properties of evaporated contacts are investigated. Furthermore, this work demonstrates for the first time the formation of aluminum-doped silicon regions by the in-line high-rate evaporation of aluminum without any further temperature treatment. The temperature of silicon wafers during in-line high-rate evaporation of aluminum is investigated in this work. The temperatures are found to depend on the wafer thickness W, the aluminum layer thickness d, and on the wafer emissivity {epsilon}. Two-dimensional finite-element simulations reproduce the measured peak temperatures with an accuracy of 97%. This work also investigates the wafer bow after in-line high-rate evaporation and shows that the elastic theory overestimates the wafer bow of planar Si wafers. The lower bow is explained with plastic deformation in the Al layer. Due to the plastic deformation only the first 79 K in temperature decrease result in a bow formation. Furthermore the electrical properties of evaporated point contacts are examined in this work. Parameterizations for the measured saturation currents of contacted p-type Si wafers and of contacted boron-diffused p{sup +}-type layers are presented. The contact resistivity of the deposited Al layers to silicon for various deposition processes and silicon surface concentrations are presented and the activation energy of the contact formation is determined. The measured saturation current densities and contact resistivities of the evaporated contacts are used in one-dimensional numerical Simulations and the impact on energy conversion efficiency of replacing a screen-printed rear side by an evaporated rear side is presented. For the first time the formation of aluminum-doped p{sup +}-type (Al-p{sup +}) silicon regions by the in

  14. Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M.D.; Barati, M. [Department of Materials Science and Engineering, The University of Toronto, 184 College Street, Toronto, Ont. (Canada)

    2010-12-15

    The possibility of refining metallurgical grade silicon to a high-purity product for solar cell applications by the slagging of impurity elements was investigated. Distribution coefficients were determined for B, Ca, Mg, Fe, K and P between magnesia or alumina saturated Al{sub 2}O{sub 3}-CaO-MgO-SiO{sub 2} and Al{sub 2}O{sub 3}-BaO-SiO{sub 2} slags and silicon at 1500 C. The partitioning of the impurity elements between molten silicon and slag was examined in terms of basicity and oxygen potential of the slag, with particular focus on the behaviour of boron and phosphorus. The experimental results showed that both of these aspects of slag chemistry have a significant influence on the distribution coefficient of B and P. Increasing the oxygen potential by additions of silica was found to increase the distribution coefficients for both B and P. Increasing the basicity of the slag was not always effective in achieving high removal of these elements from silicon as excess amounts of basic oxides lower the activity of silica and consequently the oxygen potential. The extent of this effect is such that increasing basicity can lead to a decrease in distribution coefficient. Increasing lime in the slag increased distribution coefficients for B and P, but this counterbalancing effect was such that distributions were the lowest in barium-containing slags, despite barium oxide being the most basic of the fluxes used in this study. The highest removal efficiencies achieved were of the order of 80% and 90% for B and P, respectively. It was demonstrated that for the removal of B and P from metallurgical-grade silicon to solar-grade levels, a slag mass about 5 times the mass of silicon would be required. (author)

  15. Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire.

    Science.gov (United States)

    Pan, Hui

    2014-01-01

    Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. We further show that codoping not only reduces the bandgap and introduces intermediate bands but also enhances the solubility of dopants in silicon nitride nanowires due to reduced formation energy of substitution. Importantly, the codoped nanowire is ferromagnetic, leading to the improvement of carrier mobility. The silicon nitride nanowires with direct bandgap, intermediate bands, and ferromagnetism may be applicable to solar energy harvesting.

  16. Anomalous effects in silicon solar cell irradiated by 1-MeV protons

    Science.gov (United States)

    Kachare, R.; Anspaugh, B. E.

    1989-01-01

    Several silicon solar cells having thicknesses of approximately 63 microns, with and without back-surface fields (BSF), were irradiated with 1-MeV protons having fluences between 10 to the 10th and 10 to the 12th sq cm. The irradiations were performed using both normal and isotropic incidence on the rear surfaces of the cells. It was observed that after irradiation with fluences greater than 10 to the 11th protons/sq cm, all BSF cells degraded at a faster rate than cells without BSF. The irradiation results are analyzed using a model in which irradiation-induced defects in the BSF region are taken into account. Tentatively, it is concluded that an increase in defect density due to the formation of aluminum and proton complexes in BSF cells is responsible for the higher-power loss in the BSF cells compared to the non-BSF cells.

  17. Photostability Assessment in Amorphous-Silicon Solar Cells; Determinacion de la Fotoestabilidad en Celulas Solares de Silicio Amorfo

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J. J.; Carabe, J.; Fabero, F.; Jimenez, R.; Rivero, J. M. [Ciemat, Madrid (Spain)

    2000-07-01

    The present status of amorphous-silicon-solar-cell research and development at CIEMAT requires the possibility to characterise the devices prepared from the point of view of their stability against sunlight exposure. Therefore a set of tools providing such a capacity has been developed. Together with an introduction to photovoltaic applications of amorphous silicon and to the photodegradation problem, the present work describes the process of setting up these tools. An indoor controlled-photodegradation facility has been designed and built, and a procedure has been developed for the measurement of J-V characteristics in well established conditions. This method is suitable for a kinds of solar cells, even for those for which no model is still available. The photodegradation and characterisation of some cells has allowed to validate both the new testing facility and method. (Author) 14 refs.

  18. The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates

    KAUST Repository

    Haschke, Jan

    2017-03-23

    Extensive knowledge of the dependence of solar cell and module performance on temperature and irradiance is essential for their optimal application in the field. Here we study such dependencies in the most common high-efficiency silicon solar cell architectures, including so-called Aluminum back-surface-field (BSF), passivated emitter and rear cell (PERC), passivated emitter rear totally diffused (PERT), and silicon heterojunction (SHJ) solar cells. We compare measured temperature coefficients (TC) of the different electrical parameters with values collected from commercial module data sheets. While similar TC values of the open-circuit voltage and the short circuit current density are obtained for cells and modules of a given technology, we systematically find that the TC under maximum power-point (MPP) conditions is lower in the modules. We attribute this discrepancy to additional series resistance in the modules from solar cell interconnections. This detrimental effect can be reduced by using a cell design that exhibits a high characteristic load resistance (defined by its voltage-over-current ratio at MPP), such as the SHJ architecture. We calculate the energy yield for moderate and hot climate conditions for each cell architecture, taking into account ohmic cell-to-module losses caused by cell interconnections. Our calculations allow us to conclude that maximizing energy production in hot and sunny environments requires not only a high open-circuit voltage, but also a minimal series-to-load-resistance ratio.

  19. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  20. Plasmonic silicon solar cells : Impact of material quality and geometry

    NARCIS (Netherlands)

    Pahud, C.; Isabella, O.; Naqavi, A.; Haug, F.J.; Zeman, M.; Herzig, H.P.; Ballif, C.

    2013-01-01

    We study n-i-p amorphous silicon solar cells with light-scattering nanoparticles in the back reflector. In one configuration, the particles are fully embedded in the zinc oxide buffer layer; In a second configuration, the particles are placed between the buffer layer and the flat back electrode. We

  1. Measurement of Minority-Carrier Lifetime in Silicon Solar Cells by ...

    African Journals Online (AJOL)

    This manuscript describes the measurement of minority - carrier lifetime of silicon solar cells, at room temperature, by photoconductive decay method. The Holobeam, Model 655 Double-Pulsed Holographic system, is used as the light source. This consists of a Q-switched, pulsed ruby laser oscillator with two ruby laser ...

  2. Analytical modeling of the temporal evolution of hot spot temperatures in silicon solar cells

    Science.gov (United States)

    Wasmer, Sven; Rajsrima, Narong; Geisemeyer, Ino; Fertig, Fabian; Greulich, Johannes Michael; Rein, Stefan

    2018-03-01

    We present an approach to predict the equilibrium temperature of hot spots in crystalline silicon solar cells based on the analysis of their temporal evolution right after turning on a reverse bias. For this end, we derive an analytical expression for the time-dependent heat diffusion of a breakdown channel that is assumed to be cylindrical. We validate this by means of thermography imaging of hot spots right after turning on a reverse bias. The expression allows to be used to extract hot spot powers and radii from short-term measurements, targeting application in inline solar cell characterization. The extracted hot spot powers are validated at the hands of long-term dark lock-in thermography imaging. Using a look-up table of expected equilibrium temperatures determined by numerical and analytical simulations, we utilize the determined hot spot properties to predict the equilibrium temperatures of about 100 industrial aluminum back-surface field solar cells and achieve a high correlation coefficient of 0.86 and a mean absolute error of only 3.3 K.

  3. Singlet oxygen sensitizing materials based on porous silicone: photochemical characterization, effect of dye reloading and application to water disinfection with solar reactors.

    Science.gov (United States)

    Manjón, Francisco; Santana-Magaña, Montserrat; García-Fresnadillo, David; Orellana, Guillermo

    2010-06-01

    Photogeneration of singlet molecular oxygen ((1)O(2)) is applied to organic synthesis (photooxidations), atmosphere/water treatment (disinfection), antibiofouling materials and in photodynamic therapy of cancer. In this paper, (1)O(2) photosensitizing materials containing the dyes tris(4,4'-diphenyl-2,2'-bipyridine)ruthenium(II) (1, RDB(2+)) or tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) (2, RDP(2+)), immobilized on porous silicone (abbreviated RDB/pSil and RDP/pSil), have been produced and tested for waterborne Enterococcus faecalis inactivation using a laboratory solar simulator and a compound parabolic collector (CPC)-based solar photoreactor. In order to investigate the feasibility of its reuse, the sunlight-exposed RDP/pSil sensitizing material (RDP/pSil-a) has been reloaded with RDP(2+) (RDP/pSil-r). Surprisingly, results for bacteria inactivation with the reloaded material have demonstrated a 4-fold higher efficiency compared to those of either RDP/pSil-a, unused RDB/pSil and the original RDP/pSil. Surface and bulk photochemical characterization of the new material (RDP/pSil-r) has shown that the bactericidal efficiency enhancement is due to aggregation of the silicone-supported photosensitizer on the surface of the polymer, as evidenced by confocal fluorescence lifetime imaging microscopy (FLIM). Photogenerated (1)O(2) lifetimes in the wet sensitizer-doped silicone have been determined to be ten times longer than in water. These facts, together with the water rheology in the solar reactor and the interfacial production of the biocidal species, account for the more effective disinfection observed with the reloaded photosensitizing material. These results extend and improve the operational lifetime of photocatalytic materials for point-of-use (1)O(2)-mediated solar water disinfection.

  4. Natural Contamination and Surface Flashover on Silicone Rubber Surface under Haze–Fog Environment

    Directory of Open Access Journals (Sweden)

    Ang Ren

    2017-10-01

    Full Text Available Anti-pollution flashover of insulator is important for power systems. In recent years, haze-fog weather occurs frequently, which makes discharge occurs easily on the insulator surface and accelerates insulation aging of insulator. In order to study the influence of haze-fog on the surface discharge of room temperature vulcanized silicone rubber, an artificial haze-fog lab was established. Based on four consecutive years of insulator contamination accumulation and atmospheric sampling in haze-fog environment, the contamination configuration appropriate for RTV-coated surface discharge test under simulation environment of haze-fog was put forward. ANSYS Maxwell was used to analyze the influence of room temperature vulcanized silicone rubber surface attachments on electric field distribution. The changes of droplet on the polluted room temperature vulcanized silicone rubber surface and the corresponding surface flashover voltage under alternating current (AC, direct current (DC positive polar (+, and DC negative polar (− power source were recorded by a high speed camera. The results are as follows: The main ion components from haze-fog atmospheric particles are NO3−, SO42−, NH4+, and Ca2+. In haze-fog environment, both the equivalent salt deposit density (ESDD and non-soluble deposit density (NSDD of insulators are higher than that under general environment. The amount of large particles on the AC transmission line is greater than that of the DC transmission line. The influence of DC polarity power source on the distribution of contamination particle size is not significant. After the deposition of haze-fog, the local conductivity of the room temperature vulcanized silicone rubber surface increased, which caused the flashover voltage reduce. Discharge is liable to occur at the triple junction point of droplet, air, and room temperature vulcanized silicone rubber surface. After the deformation or movement of droplets, a new triple junction

  5. Instrumental studies on silicone oil adsorption to the surface of intraocular lenses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Ho [Lab. of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Joo, Choun-Ki [Department of Ophthalmology and Visual Science, Medical College of Catholic University, Seoul 137-701 (Korea, Republic of); Chun, Heung Jae, E-mail: chunhj@catholic.ac.kr [Institute of Cell and Tissue Engineering, Medical College of Catholic University, Seoul 137-701 (Korea, Republic of); Yoo, Bok Ryul [Organosilicone Chemistry Laboratory, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Noh, Dong Il; Shim, Young Bock [Research Institute of Biomedical Engineering, Korea Bone Bank Co. Ltd., Seoul 153-782 (Korea, Republic of)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer It was found that PHEMA and Acrysof IOLs possess silicone oil repellant ability. Black-Right-Pointing-Pointer The residual silicone oil was detected on the surfaces of PMMA and silicone IOLs. Black-Right-Pointing-Pointer XPS studies showed that silicone oil coverage of PMMA lenses was 12%. Black-Right-Pointing-Pointer Silicone oil covered the entire surface of the silicone IOLs. - Abstract: The purpose of this study was to examine the degree of adherence of silicone oil to various intraocular lenses (IOLs) through comparison of the physico-chemical properties of the oil and IOLs. Four kinds of IOLs comprising various biomaterials were examined: PMMA (720A Trade-Mark-Sign ), PHEMA (IOGEL 1103 Trade-Mark-Sign ), Acrysof (MA60BM Trade-Mark-Sign ), and silicone (SI30NB Trade-Mark-Sign ). Each lens was immersed in silicone oil or carboxylated silicone (CS-PDMS) oil for 72 h. For determination of the changes in chemical and elemental compositions on the surfaces of IOLs caused by the contact with silicone oil, IOLs were washed and rinsed with n-pentane to remove as much of the adsorbed silicone oil as possible, then subjected to Fourier transform infrared spectroscopic (FTIR) and X-ray photoelectron spectroscopic (XPS) analyses. The results of FTIR studies strongly indicate that washing with n-pentane completely removed the adhered silicone oil on the surfaces of PHEMA and Acrysof IOLs, whereas the residual silicone oil was detected on the surfaces of PMMA and silicone IOLs. XPS studies showed that silicone oil coverage of PMMA lenses was 12%, even after washing with n-pentane. In the case of silicone IOLs, the relative O1s peak area of carboxyl group in the residual CS-PDMS oil was found to be {approx}2.7%. Considering that 2.8% carboxyl group-substituted silicone oil was used in the present study, CS-PDMS oil covered the entire surface of the silicone IOLs.

  6. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    KAUST Repository

    Bailie, Colin D.

    2015-01-01

    © 2015 The Royal Society of Chemistry. A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. This work paves the way for integrating perovskites into a low-cost and high-efficiency (>25%) tandem cell.

  7. Characterization of up-converter layers on bifacial silicon solar cells

    International Nuclear Information System (INIS)

    Pan, A.C.; Canizo, C. del; Luque, A.

    2009-01-01

    Photon converters can enhance the performance of solar cells as they have the ability to condition the solar spectrum, thus suiting the semiconductor bandgap better. This paper analyzes the implementation and characterization of rare earth-doped up-converters on bifacial silicon solar cells. The bifacial structures considered absorb the light emitted by the up-converter layer located at the rear of the cell. Two different ways of attaching the up-converter to the bifacial solar cell have been implemented: by dissolving the powder in a spin-on oxide and by dissolving it in a silicone gel. The characterization of this system through measurements of quantum efficiency and photocurrent is described. The measurement setup has been adapted to detect the device response in the NIR (near-infrared) range. A key aspect is the light power impinging on the cell; the system has a quartz-tungsten-halogen lamp as a source, and is capable of giving 240 mW m -2 . As the signals we want to detect are very small, an effort has been made to enhance the signal-to-noise ratio by using a low noise pre-amplifier, optimizing the power of the lamp and reducing the chopper frequency. The characterization of two commercial up-converter materials shows the functioning of the approach, as an increase in the photocurrent when illuminated in the 1500 nm wavelength range is detected in some of the cases.

  8. Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells

    Science.gov (United States)

    Reichel, Christian; Würfel, Uli; Winkler, Kristina; Schleiermacher, Hans-Frieder; Kohlstädt, Markus; Unmüssig, Moritz; Messmer, Christoph A.; Hermle, Martin; Glunz, Stefan W.

    2018-01-01

    In the last years, novel materials for the formation of electron-selective contacts on n-type crystalline silicon (c-Si) heterojunction solar cells were explored as an interfacial layer between the metal electrode and the c-Si wafer. Besides inorganic materials like transition metal oxides or alkali metal fluorides, also interfacial layers based on organic molecules with a permanent dipole moment are promising candidates to improve the contact properties. Here, the dipole effect plays an essential role in the modification of the interface and effective work function of the contact. The amino acids L-histidine, L-tryptophan, L-phenylalanine, glycine, and sarcosine, the nucleobase adenine, and the heterocycle 4-hydroxypyridine were investigated as dipole materials for an electron-selective contact on the back of p- and n-type c-Si with a metal electrode based on aluminum (Al). Furthermore, the effect of an added fluorosurfactant on the resulting contact properties was examined. The performance of n-type c-Si solar cells with a boron diffusion on the front was significantly increased when L-histidine and/or the fluorosurfactant was applied as a full-area back surface field. This improvement was attributed to the modification of the interface and the effective work function of the contact by the dipole material which was corroborated by numerical device simulations. For these solar cells, conversion efficiencies of 17.5% were obtained with open-circuit voltages (Voc) of 625 mV and fill factors of 76.3%, showing the potential of organic interface dipoles for silicon organic heterojunction solar cells due to their simple formation by solution processing and their low thermal budget requirements.

  9. Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells

    NARCIS (Netherlands)

    van Dijk, L.; van de Groep, J.; Veldhuizen, L.W.; Di Vece, M.; Polman, A.; Schropp, R.E.I.

    2016-01-01

    Most types of thin film solar cells require light management to achieve sufficient light absorptance. We demonstrate a novel process for fabricating a scattering back reflector for flat, thin film hydrogenated nanocrystalline silicon (nc-Si:H) solar cells. This scattering back reflector consists of

  10. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  11. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    Science.gov (United States)

    Kang, Jin Sung

    Inkjet printing of electrode using copper nanoparticle ink is presented. Electrode was printed on a flexible glass epoxy composite substrate using drop on demand piezoelectric dispenser and was sintered at 200°C in N 2 gas condition. The printed electrodes were made with various widths and thicknesses. Surface morphology of electrode was analyzed using scanning electron microscope (SEM) and atomic force microscope (AFM). Reliable dimensions for printed electronics were found from this study. Single-crystalline silicon solar cells were tested under four-point bending to find the feasibility of directly integrating them onto a carbon fiber/epoxy composite laminate. These solar cells were not able to withstand 0.2% strain. On the other hand, thin-film amorphous silicon solar cells were subjected to flexural fatigue loadings. The current density-voltage curves were analyzed at different cycles, and there was no noticeable degradation on its performance up to 100 cycles. A multifunctional composite laminate which can harvest and store solar energy was fabricated using printed electrodes. The integrated printed circuit board (PCB) was co-cured with a carbon/epoxy composite laminate by the vacuum bag molding process in an autoclave; an amorphous silicon solar cell and a thin-film solid state lithium-ion (Li-ion) battery were adhesively joined and electrically connected to a thin flexible PCB; and then the passive components such as resistors and diodes were electrically connected to the printed circuit board by silver pasting. Since a thin-film solid state Li-ion battery was not able to withstand tensile strain above 0.4%, thin Li-ion polymer batteries were tested under various mechanical loadings and environmental conditions to find the feasibility of using the polymer batteries for our multifunctional purpose. It was found that the Li-ion polymer batteries were stable under pressure and tensile loading without any noticeable degradation on its charge and discharge

  12. Light management in large area thin-film silicon solar modules

    Czech Academy of Sciences Publication Activity Database

    Losio, P.A.; Caglar, O.; Cashmore, J.S.; Hötzel, J.E.; Ristau, S.; Holovský, Jakub; Remeš, Zdeněk; Sinicco, I.

    2015-01-01

    Roč. 143, Dec (2015), s. 375-385 ISSN 0927-0248 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : micromorph * thin-film silicon solar cells * light management * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.732, year: 2015

  13. A new tevchnique for production of amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Andrade, A.M. de; Pereyra, I.; Sanematsu, M.S.; Corgnier, S.L.L.; Fonseca, F.J.

    1984-01-01

    It is presented a new technique for the production of amorphous silicon solar cells based on the development of thin films of a-Si in a reactor in which the decomposition of the sylane, induced by capacitively coupled RF, and the film deposition occur in separate chambers. (M.W.O.) [pt

  14. Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells

    International Nuclear Information System (INIS)

    Badawy, Waheed A.

    2008-01-01

    Photovoltaic and photoelectrochemical systems were prepared by the formation of a thin porous film on silicon. The porous silicon layer was formed on the top of a clean oxide free silicon wafer surface by anodic etching in HF/H 2 O/C 2 H 5 OH mixture (2:1:1). The silicon was then covered by an oxide film (tin oxide, ITO or titanium oxide). The oxide films were prepared by the spray/pyrolysis technique which enables doping of the oxide film by different atoms like In, Ru or Sb during the spray process. Doping of SnO 2 or TiO 2 films with Ru atoms improves the surface characteristics of the oxide film which improves the solar conversion efficiency. The prepared solar cells are stable against environmental attack due to the presence of the stable oxide film. It gives relatively high short circuit currents (I sc ), due to the presence of the porous silicon layer, which leads to the recorded high conversion efficiency. Although the open-circuit potential (V oc ) and fill factor (FF) were not affected by the thickness of the porous silicon film, the short circuit current was found to be sensitive to this thickness. An optimum thickness of the porous film and also the oxide layer is required to optimize the solar cell efficiency. The results represent a promising system for the application of porous silicon layers in solar energy converters. The use of porous silicon instead of silicon single crystals in solar cell fabrication and the optimization of the solar conversion efficiency will lead to the reduction of the cost as an important factor and also the increase of the solar cell efficiency making use of the large area of the porous structures

  15. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    Science.gov (United States)

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  16. Amorphous and microcrystalline silicon applied in very thin tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schicho, Sandra

    2011-07-28

    Thin-film solar cells are fabricated by low-cost production processes, and are therefore an alternative to conventionally used wafer solar cells based on crystalline silicon. Due to the different band gaps, tandem cells that consist of amorphous (a-Si:H) and microcrystalline ({mu}c-Si:H) single junction solar cells deposited on top of each other use the solar spectrum much more efficient than single junction solar cells. The silicon layers are usually deposited on TCO (Transparent Conductive Oxide)-coated glass and metal- or plastic foils. Compared to the CdTe and CIGS based thin-film technologies, silicon thin-film solar cells have the advantage that no limitation of raw material supply is expected and no toxic elements are used. Nevertheless, the production cost per Wattpeak is the decisive factor concerning competitiveness and can be reduced by, e.g., shorter deposition times or reduced material consumption. Both cost-reducing conceptions are simultaneously achieved by reducing the a-Si:H and {mu}c-Si:H absorber layer thicknesses in a tandem device. In the work on hand, the influence of an absorber layer thickness reduction up to 77% on the photovoltaic parameters of a-Si:H/{mu}c-Si:H tandem solar cells was investigated. An industry-oriented Radio Frequency Plasma-Enhanced Chemical Vapour Deposition (RF-PECVD) system was used to deposit the solar cells on glass substrates coated with randomly structured TCO layers. The thicknesses of top and bottom cell absorber layers were varied by adjusting the deposition time. Reduced layer thicknesses lead to lower absorption and, hence, to reduced short-circuit current densities which, however, are partially balanced by higher open-circuit voltages and fill factors. Furthermore, by using very thin amorphous top cells, the light-induced degradation decreases tremendously. Accordingly, a thickness reduction of 75% led to an efficiency loss of only 21 %. By adjusting the parameters for the deposition of a-Si:H top cells, a

  17. Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells

    KAUST Repository

    Song, Zhaoning

    2016-11-23

    Perovskite/silicon tandem solar cells with high power conversion efficiencies have the potential to become a commercially viable photovoltaic option in the near future. However, device design and optimization is challenging because conventional characterization methods do not give clear feedback on the localized chemical and physical factors that limit performance within individual subcells, especially when stability and degradation is a concern. In this study, we use light beam induced current (LBIC) to probe photocurrent collection nonuniformities in the individual subcells of perovskite/silicon tandems. The choices of lasers and light biasing conditions allow efficiency-limiting effects relating to processing defects, optical interference within the individual cells, and the evolution of water-induced device degradation to be spatially resolved. The results reveal several types of microscopic defects and demonstrate that eliminating these and managing the optical properties within the multilayer structures will be important for future optimization of perovskite/silicon tandem solar cells.

  18. Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity.

    Science.gov (United States)

    Li, Kun; Ng, Kar Wei; Tran, Thai-Truong D; Sun, Hao; Lu, Fanglu; Chang-Hasnain, Connie J

    2015-11-11

    The direct growth of III-V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology-the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 μm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 10(3) cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10(-10) cm(3)/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III-V semiconductor materials onto silicon platforms.

  19. Eighth Workshop on Crystalline Silicon Solar Cell Materials and Processes; Summary Discussion Sessions

    International Nuclear Information System (INIS)

    Sopori, B.; Swanson, D.; Sinton, R.; Stavola, M.; Tan, T.

    1998-01-01

    This report is a summary of the panel discussions included with the Eighth Workshop on Crystalline Silicon Solar Cell Materials and Processes. The theme of the workshop was ''Supporting the Transition to World Class Manufacturing.'' This workshop provided a forum for an informal exchange of information between researchers in the photovoltaic and nonphotovoltaic fields on various aspects of impurities and defects in silicon, their dynamics during device processing, and their application in defect engineering. This interaction helped establish a knowledge base that can be used for improving device-fabrication processes to enhance solar-cell performance and reduce cell costs. It also provided an excellent opportunity for researchers from industry and universities to recognize mutual needs for future joint research

  20. The challenge of screen printed Ag metallization on nano-scale poly-silicon passivated contacts for silicon solar cells

    Science.gov (United States)

    Jiang, Lin; Song, Lixin; Yan, Li; Becht, Gregory; Zhang, Yi; Hoerteis, Matthias

    2017-08-01

    Passivated contacts can be used to reduce metal-induced recombination for higher energy conversion efficiency for silicon solar cells, and are obtained increasing attentions by PV industries in recent years. The reported thicknesses of passivated contact layers are mostly within tens of nanometer range, and the corresponding metallization methods are realized mainly by plating/evaporation technology. This high cost metallization cannot compete with the screen printing technology, and may affect its market potential comparing with the presently dominant solar cell technology. Very few works have been reported on screen printing metallization on passivated contact solar cells. Hence, there is a rising demand to realize screen printing metallization technology on this topic. In this work, we investigate applying screen printing metallization pastes on poly-silicon passivated contacts. The critical challenge for us is to build low contact resistance that can be competitive to standard technology while restricting the paste penetrations within the thin nano-scale passivated contact layers. The contact resistivity of 1.1mohm-cm2 and the open circuit voltages > 660mV are achieved, and the most appropriate thickness range is estimated to be around 80 150nm.

  1. Large Area Thin Film Silicon: Synergy between Displays and Solar Cells

    NARCIS (Netherlands)

    Schropp, R.E.I.

    2012-01-01

    Thin-film silicon technology has changed our society, owing to the rapid advance of its two major application fields in communication (thin-film displays) and sustainable energy (thin-film solar cells). Throughout its development, advances in these application fields have always benefitted each

  2. Polycrystalline Silicon Gettered by Porous Silicon and Heavy Phosphorous Diffusion

    Institute of Scientific and Technical Information of China (English)

    LIU Zuming(刘祖明); Souleymane K Traore; ZHANG Zhongwen(张忠文); LUO Yi(罗毅)

    2004-01-01

    The biggest barrier for photovoltaic (PV) utilization is its high cost, so the key for scale PV utilization is to further decrease the cost of solar cells. One way to improve the efficiency, and therefore lower the cost, is to increase the minority carrier lifetime by controlling the material defects. The main defects in grain boundaries of polycrystalline silicon gettered by porous silicon and heavy phosphorous diffusion have been studied. The porous silicon was formed on the two surfaces of wafers by chemical etching. Phosphorous was then diffused into the wafers at high temperature (900℃). After the porous silicon and diffusion layers were removed, the minority carrier lifetime was measured by photo-conductor decay. The results show that the lifetime's minority carriers are increased greatly after such treatment.

  3. Report on achievements in fiscal 1998. Development of silicon manufacturing process to rationalize energy usage (Development of mass production technology for solar-grade silicon); 1998 nendo energy shiyo gorika silicon seizo process kaihatsu seika hokokusho. Taiyo denchiyo silicon ryosanka seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In the proliferation stage of solar cells, a technology is required to manufacture low-cost SOG-Si that can handle small quantity production. Development is being made on a manufacturing technology using high purity metallic silicon (99.5%) as the raw material. Considering that the subject impurities are P, B and metallic impurities (Fe, Ti and Al), a manufacturing method consisting of the following processes is being developed: metallic silicon/phosphorus removal, solidification and rough refining/boron removal, solidification and fine refining. Discussions are being advanced on phosphorus removal by using a large electron beam fusion equipment, and at the same time, the discussions are supported by fabricating and installing a large equipment intended of removing boron and the metallic impurities. Boron is removed by oxidizing it with steam. Therefore, the basic mechanism of the equipment is to spray argon plasma added with steam onto the molten silicon surface. In boron removal, diffusion of boron onto the reaction interface in the primary reaction determines the rate. A boron removal rate for B/10 to 0.1 ppm of 45 kg/h as maximum was achieved. The derived silicon has met the requirement. (NEDO)

  4. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  5. Improved performance of silicon-nanoparticle film-coated dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravindra Kumar; Bedja, Idriss M. [CRC, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433 (Saudi Arabia); Aldwayyan, Abdullah Saleh [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-11-15

    Silicon (Si) nanoparticles with average size of 13 nm and orange-red luminescence under UV absorption were synthesized using electrochemical etching of silicon wafers. A film of Si nanoparticles with thickness of 0.75 {mu}m to 2.6 {mu}m was coated on the glass (TiO{sub 2} side) of a dye-sensitized solar cell (DSSC). The cell exhibited nearly 9% enhancement in power conversion efficiency ({eta}) at film thickness of {proportional_to}2.4 {mu}m under solar irradiation of 100 mW/cm{sup 2} (AM 1.5) with improved fill factor and short-circuit current density. This study revealed for the first time that the Si-nanoparticle film converting UV into visible light and helping in homogeneous irradiation, can be utilized for improving the efficiency of the DSSCs. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Porous silicon structures with high surface area/specific pore size

    Science.gov (United States)

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  7. Photon-Enhanced Thermionic Emission in Cesiated p-Type and n-Type Silicon

    DEFF Research Database (Denmark)

    Reck, Kasper; Dionigi, Fabio; Hansen, Ole

    2014-01-01

    electrons. Efficiencies above 60% have been predicted theoretically for high solar concentration systems. Silicon is an interesting absorber material for high efficiency PETE solar cells, partly due to its mechanical and thermal properties and partly due to its electrical properties, including a close......Photon-enhanced thermionic emission (PETE) is a relatively new concept for high efficiency solar cells that utilize not only the energy of electrons excited across the band gap by photons, as in conventional photovoltaic solar cells, but also the energy usual lost to thermalization of the excited...... to ideal band gap. The work function of silicon is, however, too high for practical PETE implementations. A well-known method for lowering the work function of silicon (and other materials) is to apply approximately a monolayer of cesium to the silicon surface. We present the first measurements of PETE...

  8. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  9. Optimization of the silicon subcell for III-V on silicon multijunction solar cells: Key differences with conventional silicon technology

    Science.gov (United States)

    García-Tabarés, Elisa; Martín, Diego; García, Iván; Lelièvre, Jean François; Rey-Stolle, Ignacio

    2012-10-01

    Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon (Si) bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on Si for photovoltaic (PV) applications. Such integration would offer a cost breakthrough for PV technology, unifying the low cost of Si and the efficiency potential of III-V multijunction solar cells. The optimization of the Si solar cells properties in flat-plate PV technology is well-known; nevertheless, it has been proven that the behavior of Si substrates is different when processed in an MOVPE reactor In this study, we analyze several factors influencing the bottom subcell performance, namely, 1) the emitter formation as a result of phosphorus diffusion; 2) the passivation quality provided by the GaP nucleation layer; and 3) the process impact on the bottom subcell PV properties.

  10. Effects of pillar height and junction depth on the performance of radially doped silicon pillar arrays for solar energy applications

    NARCIS (Netherlands)

    Elbersen, R.; Vijselaar, Wouter Jan, Cornelis; Tiggelaar, Roald M.; Gardeniers, Johannes G.E.; Huskens, Jurriaan

    2016-01-01

    The effects of pillar height and junction depth on solar cell characteristics are investigated to provide design rules for arrays of such pillars in solar energy applications. Radially doped silicon pillar arrays are fabricated by deep reactive ion etching of silicon substrates followed by the

  11. Optimization of charge-carrier generation in amorphous-silicon thin-film tandem solar cell backed by two-dimensional metallic surface-relief grating

    Science.gov (United States)

    Civiletti, Benjamin J.; Anderson, Tom H.; Ahmad, Faiz; Monk, Peter B.; Lakhtakia, Akhlesh

    2017-08-01

    The rigorous coupled-wave approach was implemented in a three-dimensional setting to calculate the chargecarrier-generation rate in a thin-film solar cell with multiple amorphous-silicon p-i-n junctions. The solar cell comprised a front antireflection window; three electrically isolated p-i-n junctions in tandem; and a periodically corrugated silver back-reflector with hillock-shaped corrugations arranged on a hexagonal lattice. The differential evolution algorithm (DEA) was used to maximize the charge-carrier-generation rate over a set of selected optical and electrical parameters. This optimization exercise minimized the bandgap of the topmost i-layer but all other parameters turned out to be uninfluential. More importantly, the exercise led to a configuration that would very likely render the solar cell inefficient. Therefore, another optimization exercise was conducted to maximize power density. The resulting configuration was optimal over all parameters.

  12. High Surface Area of Porous Silicon Drives Desorption of Intact Molecules

    Science.gov (United States)

    Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary

    2007-01-01

    The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245

  13. Solar Cels With Reduced Contact Areas

    Science.gov (United States)

    Daud, T.; Crotty, G. T.; Kachare, A. H.; Lewis, J. T.

    1987-01-01

    Efficiency of silicon solar cells increased about 20 percent using smaller metal-contact area on silicon at front and back of each cell. Reduction in contact area reduces surface recombination velocity under contact and thus reduces reverse saturation current and increases opencircuit voltage..

  14. Silicon homo-heterojunction solar cells: A promising candidate to realize high performance more stably

    Directory of Open Access Journals (Sweden)

    Miao Tan

    2017-08-01

    Full Text Available We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i the work function of the transparent conductive oxide layer, (ii the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si interface, (iii the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H layer, and (iv the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.

  15. Silicon homo-heterojunction solar cells: A promising candidate to realize high performance more stably

    Science.gov (United States)

    Tan, Miao; Zhong, Sihua; Wang, Wenjie; Shen, Wenzhong

    2017-08-01

    We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H) solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i) the work function of the transparent conductive oxide layer, (ii) the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) interface, (iii) the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H) layer, and (iv) the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT) counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.

  16. Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells

    Czech Academy of Sciences Publication Activity Database

    Stuckelberger, J.; Nogay, G.; Wyss, P.; Jeangros, Q.; Allebe, Ch.; Debrot, F.; Niquille, X.; Ledinský, Martin; Fejfar, Antonín; Despeisse, M.; Haug, F.J.; Löper, P.; Ballif, C.

    2016-01-01

    Roč. 158, Dec (2016), s. 2-10 ISSN 0927-0248 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : surface passivation * passivating contact * nanostructure * silicon oxide * nanocrystalline * microcrystalline * poly-silicon * crystallization * Raman * transmission line measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.784, year: 2016

  17. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    Science.gov (United States)

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-04

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°.

  18. Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Chen Xinliang; Lin Quan; Ni Jian; Zhang Dekun; Sun Jian; Zhao Ying; Geng Xinhua

    2011-01-01

    Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ∼ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ∼ 80%) and excellent electrical properties (Rs ∼ 10 Ω at d ∼ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density J SC = 10.62 mA/cm 2 , open-circuit voltage V OC = 0.93 V and fill factor = 64%).

  19. Covalent biofunctionalization of silicon nitride surfaces

    NARCIS (Netherlands)

    Arafat, A.; Giesbers, M.; Rosso, M.; Sudhölter, E.J.R.; Schroën, C.G.P.H.; White, R.G.; Li Yang,; Linford, M.R.; Zuilhof, H.

    2007-01-01

    Covalently attached organic monolayers on etched silicon nitride (SixN4; x 3) surfaces were prepared by reaction of SixN4-coated wafers with neat or solutions of 1-alkenes and 1-alkynes in refluxing mesitylene. The surface modification was monitored by measurement of the static water contact angle,

  20. Influence of the transition region between p- and n-type polycrystalline silicon passivating contacts on the performance of interdigitated back contact silicon solar cells

    Science.gov (United States)

    Reichel, Christian; Müller, Ralph; Feldmann, Frank; Richter, Armin; Hermle, Martin; Glunz, Stefan W.

    2017-11-01

    Passivating contacts based on thin tunneling oxides (SiOx) and n- and p-type semi-crystalline or polycrystalline silicon (poly-Si) enable high passivation quality and low contact resistivity, but the integration of these p+/n emitter and n+/n back surface field junctions into interdigitated back contact silicon solar cells poses a challenge due to high recombination at the transition region from p-type to n-type poly-Si. Here, the transition region was created in different configurations—(a) p+ and n+ poly-Si regions are in direct contact with each other ("pn-junction"), using a local overcompensation (counterdoping) as a self-aligning process, (b) undoped (intrinsic) poly-Si remains between the p+ and n+ poly-Si regions ("pin-junction"), and (c) etched trenches separate the p+ and n+ poly-Si regions ("trench")—in order to investigate the recombination characteristics and the reverse breakdown behavior of these solar cells. Illumination- and injection-dependent quasi-steady state photoluminescence (suns-PL) and open-circuit voltage (suns-Voc) measurements revealed that non-ideal recombination in the space charge regions with high local ideality factors as well as recombination in shunted regions strongly limited the performance of solar cells without a trench. In contrast, solar cells with a trench allowed for open-circuit voltage (Voc) of 720 mV, fill factor of 79.6%, short-circuit current (Jsc) of 41.3 mA/cm2, and a conversion efficiencies (η) of 23.7%, showing that a lowly conducting and highly passivating intermediate layer between the p+ and n+ poly-Si regions is mandatory. Independent of the configuration, no hysteresis was observed upon multiple stresses in reverse direction, indicating a controlled and homogeneously distributed breakdown, but with different breakdown characteristics.

  1. Dominant rate process of silicon surface etching by hydrogen chloride gas

    International Nuclear Information System (INIS)

    Habuka, Hitoshi; Suzuki, Takahiro; Yamamoto, Sunao; Nakamura, Akio; Takeuchi, Takashi; Aihara, Masahiko

    2005-01-01

    Silicon surface etching and its dominant rate process are studied using hydrogen chloride gas in a wide concentration range of 1-100% in ambient hydrogen at atmospheric pressure in a temperature range of 1023-1423 K, linked with the numerical calculation accounting for the transport phenomena and the surface chemical reaction in the entire reactor. The etch rate, the gaseous products and the surface morphology are experimentally evaluated. The dominant rate equation accounting for the first-order successive reactions at silicon surface by hydrogen chloride gas is shown to be valid. The activation energy of the dominant surface process is evaluated to be 1.5 x 10 5 J mol - 1 . The silicon deposition by the gaseous by-product, trichlorosilane, is shown to have a negligible influence on the silicon etch rate

  2. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system/development of technology to manufacture thin film solar cells/development of technology to manufacture low-cost large-area modules/development of technology to manufacture next generation thin film solar cells (development of technology to manufacture applied type thin film solar cells with new construction); 1997 nendo tiayoko hatsuden system jitsuyoka gijutsu kaihatsu. Usumaku taiyo denchi no seizo gijutsu kaihatsu, tei cost daimenseki module esizo gijutsu kaihatsu (jisedai usumaku taiyo denchi no seizo gijutsu kaihatsu, oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A thin film single crystal silicon solar cell module is developed, in which a porous silicon layer is formed on the surface of a long-sized single crystal silicon substrate, a single crystal silicon film is integrated on the layer by epitaxially growing the film thereon to form a solar cell, and the solar cell is peeled off from the silicon substrate and transferred to a plastic film substrate. The achievements during this fiscal year may be summarized as follows: simultaneous formation of a porous silicon layer on a silicon substrate, reduction of anode formation current density from 200 mA/cm{sup 2} to 10 mA/cm{sup 2}, development of a silicon epitaxial device using a carbon heater, and attainment of aperture conversion efficiency of 11.8% in a thin film single crystal silicon solar cell. Three kinds of methods were developed to peel off the solar cell. A method was developed to grind silicon substrate surface from which the solar cell has been peeled off. A technology was developed to obtain a long-sized silicon substrate of about 30 cm times 10 cm times 0.1 cm from a 4-inch silicon ingot by using a wire saw. (NEDO)

  3. Grafting of functionalized polymer on porous silicon surface using Grignard reagent

    Science.gov (United States)

    Tighilt, F.-Z.; Belhousse, S.; Sam, S.; Hamdani, K.; Lasmi, K.; Chazalviel, J. N.; Gabouze, N.

    2017-11-01

    Recently, considerable attention has been paid to the manipulation and the control of the physicochemical properties of porous silicon surfaces because of their crucial importance to the modern microelectronics industry. Hybrid structures consisting of deposited polymer on porous silicon surfaces are important to applications in microelectronics, photovoltaics and sensors (Ensafi et al., 2016; Kashyout et al., 2015; Osorio et al.; 2015; Hejjo et al., 2002) [1-4]. In many cases, the polymer can provide excellent mechanical and chemical protection of the substrate, changes the electrochemical interface characteristics of the substrate, and provides new ways to the functionalization of porous silicon surfaces for molecular recognition and sensing. In this work, porous silicon surface was modified by anodic treatment in ethynylmagnesium bromide electrolyte leading to the formation of a polymeric layer bearing some bromine substituents. Subsequently, the formed polymer is functionalized with amine molecules containing functional groups (carboxylic acid or pyridine) by a substitution reaction between bromine sites and amine groups (Hofmann reaction). The chemical composition of the modified porous silicon surfaces was investigated and the grafting of polymeric chains and functional groups on the porous silicon surface was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) which displayed the principal characteristic peaks attributed to the different functional groups. Furthermore, the surface of the material was examined by scanning electron microscopy (SEM).

  4. A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells

    KAUST Repository

    Allen, Thomas G.; Bullock, James; Jeangros, Quentin; Samundsett, Christian; Wan, Yimao; Cui, Jie; Hessler-Wyser, Aï cha; De Wolf, Stefaan; Javey, Ali; Cuevas, Andres

    2017-01-01

    Recent advances in the efficiency of crystalline silicon (c-Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n-type c-Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.

  5. A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells

    KAUST Repository

    Allen, Thomas G.

    2017-02-04

    Recent advances in the efficiency of crystalline silicon (c-Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n-type c-Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.

  6. Evolutionary process development towards next generation crystalline silicon solar cells : a semiconductor process toolbox application

    Directory of Open Access Journals (Sweden)

    Tous L.

    2012-08-01

    Full Text Available Bulk crystalline Silicon solar cells are covering more than 85% of the world’s roof top module installation in 2010. With a growth rate of over 30% in the last 10 years this technology remains the working horse of solar cell industry. The full Aluminum back-side field (Al BSF technology has been developed in the 90’s and provides a production learning curve on module price of constant 20% in average. The main reason for the decrease of module prices with increasing production capacity is due to the effect of up scaling industrial production. For further decreasing of the price per wattpeak silicon consumption has to be reduced and efficiency has to be improved. In this paper we describe a successive efficiency improving process development starting from the existing full Al BSF cell concept. We propose an evolutionary development includes all parts of the solar cell process: optical enhancement (texturing, polishing, anti-reflection coating, junction formation and contacting. Novel processes are benchmarked on industrial like baseline flows using high-efficiency cell concepts like i-PERC (Passivated Emitter and Rear Cell. While the full Al BSF crystalline silicon solar cell technology provides efficiencies of up to 18% (on cz-Si in production, we are achieving up to 19.4% conversion efficiency for industrial fabricated, large area solar cells with copper based front side metallization and local Al BSF applying the semiconductor toolbox.

  7. effect of light intensity on the performance of silicon solar cell

    African Journals Online (AJOL)

    (Received 31 January 2017; Revision Accepted 7 April 2017). ABSTRACT. This work, presents the intense light effect on electrical parameters of silicon solar such as short circuit current, open circuit voltage, series and shunt ... level, which is a source of carrier photogeneration,. 123. Martial Zoungrana, Laboratory of ...

  8. Proposal of a neutron transmutation doping facility for n-type spherical silicon solar cell at high-temperature engineering test reactor.

    Science.gov (United States)

    Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo

    2018-05-01

    The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Study on Production of Silicon Nanoparticles from Quartz Sand for Hybrid Solar Cell Applications

    Science.gov (United States)

    Arunmetha, S.; Vinoth, M.; Srither, S. R.; Karthik, A.; Sridharpanday, M.; Suriyaprabha, R.; Manivasakan, P.; Rajendran, V.

    2018-01-01

    Nano silicon (nano Si) particles were directly prepared from natural mineral quartz sand and thereafter used to fabricate the hybrid silicon solar cells. Here, in this preparation technique, two process stages were involved. In the first stage, the alkaline extraction and acid precipitation processes were applied on quartz sand to fetch silica nanoparticles. In the second stage, magnesiothermic and modified magnesiothermic reduction reactions were applied on nano silica particles to prepare nano Si particles. The effect of two distinct reduction methodologies on nano Si particle preparation was compared. The magnesiothermic and modified magnesiothermic reductions in the silica to silicon conversion process were studied with the help of x-ray diffraction (XRD) with intent to study the phase changes during the reduction reaction as well as its crystalline nature in the pure silicon phase. The particles consist of a combination of fine particles with spherical morphology. In addition to this, the optical study indicated an increase in visible light absorption and also increases the performance of the solar cell. The obtained nano Si particles were used as an active layer to fabricate the hybrid solar cells (HSCs). The obtained results confirmed that the power conversion efficiency (PCE) of the magnesiothermically modified nano Si cells (1.06%) is much higher as compared to the nano Si cells that underwent magnesiothermic reduction (1.02%). Thus, this confirms the increased PCE of the investigated nano Si solar cell up to 1.06%. It also revealed that nano Si behaved as an electron acceptor and transport material. The present study provided valuable insights and direction for the preparation of nano Si particles from quartz sand, including the influence of process methods. The prepared nano Si particles can be utilized for HSCs and an array of portable electronic devices.

  10. Nanopatterned Silicon Substrate Use in Heterojunction Thin Film Solar Cells Made by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Shao-Ze Tseng

    2014-01-01

    Full Text Available This paper describes a method for fabricating silicon heterojunction thin film solar cells with an ITO/p-type a-Si : H/n-type c-Si structure by radiofrequency magnetron sputtering. A short-circuit current density and efficiency of 28.80 mA/cm2 and 8.67% were achieved. Novel nanopatterned silicon wafers for use in cells are presented. Improved heterojunction cells are formed on a nanopatterned silicon substrate that is prepared with a self-assembled monolayer of SiO2 nanospheres with a diameter of 550 nm used as an etching mask. The efficiency of the nanopattern silicon substrate heterojunction cells was 31.49% greater than that of heterojunction cells on a flat silicon wafer.

  11. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  12. Scattering properties of textured TCO substrates in thin-film silicon solar cells; Streuverhalten von texturierten TCO-Substraten in Silizium-Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Melanie

    2009-04-27

    In this PhD thesis the scattering properties of textured transparent conducting oxides (TCO) for the application in thin-film silicon solar cells are investigated. The main focus is the correlation between the nanotextured surface and its scattering behaviour. Therefore a ray tracing model based on geometric optics and atomic force microscopy data is developed. Simulation results are compared and discussed with measurements of angle resolved scattering in the far field and experimentally determined scanning near field microscopy data in the near field. Besides, simulation results obtained by applying geometric optics and solutions of the Maxwell equation in the near field are compared and discussed. The scattering properties of TCO-air and TCO-silicon interfaces are considered. (orig.)

  13. The enhanced efficiency of graphene-silicon solar cells by electric field doping.

    Science.gov (United States)

    Yu, Xuegong; Yang, Lifei; Lv, Qingmin; Xu, Mingsheng; Chen, Hongzheng; Yang, Deren

    2015-04-28

    The graphene-silicon (Gr-Si) Schottky junction solar cell has been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the low Gr-Si Schottky barrier height largely limits the power conversion efficiency of Gr-Si solar cells. Here, we demonstrate that electric field doping can be used to tune the work function of a Gr film and therefore improve the photovoltaic performance of the Gr-Si solar cell effectively. The electric field doping effects can be achieved either by connecting the Gr-Si solar cell to an external power supply or by polarizing a ferroelectric polymer layer integrated in the Gr-Si solar cell. Exploration of both of the device architecture designs showed that the power conversion efficiency of Gr-Si solar cells is more than twice of the control Gr-Si solar cells. Our study opens a new avenue for improving the performance of Gr-Si solar cells.

  14. Improving photovoltaic performance of silicon solar cells using a combination of plasmonic and luminescent downshifting effects

    Science.gov (United States)

    Ho, Wen-Jeng; Feng, Sheng-Kai; Liu, Jheng-Jie; Yang, Yun-Chie; Ho, Chun-Hung

    2018-05-01

    This paper reports on efforts to improve the photovoltaic performance of crystalline silicon solar cells by combining the plasmonic scattering of silver nanoparticles (Ag NPs) with the luminescent downshifting (LDS) effects of Eu-doped phosphors. The surface morphology was examined using a scanning electron microscope in conjunction with ImageJ software. Raman scattering and absorbance measurements were used to examine the surface plasmon resonance of Ag NPs of various dimensions in various dielectric environments. The fluorescence emission of the Eu-doped phosphors was characterized via photoluminescence measurements at room temperature. We examined the combination of plasmonic and LDS effects by measuring the optical reflectance and external quantum efficiency. Improvements in the photovoltaic performance of the solar cells were determined by photovoltaic current density-voltage under AM 1.5G illumination. A combination of plasmonic and LDS effects led to an impressive 26.17% improvement in efficiency, whereas plasmonic effects resulted in a 22.63% improvement compared to the cell with a SiO2 ARC of 17.33%.

  15. Silicon solar cell - from R and D to production

    International Nuclear Information System (INIS)

    Akhter, P.

    1995-01-01

    During last 30 years tremendous research and development efforts have concluded that tech-economically silicon is the most suitable material for the manufacturing of solar cells and a number of achievements have been made in the processing of both the materials nd devices. A number of novel structure have been designed and fabricated. The crystalline silicon technology has now become mature enough and is ready to take off from R/D laboratories to large scale fabrication. At laboratory scale the performance of monocrystalline silicon cells have already reached very close to the theoretical value. However the processing cost and efficiency being complimentary, the commercial cells, as a trade off, have to compromise at rather lower efficiencies. Further efforts of lowering the processing cost of both the material and devices are in progress. At the same time attempts are being made to understand the physics of all those factors that limit the efficiency; develop the technologies to eliminate or optimize such effects to reach limiting efficiency with lowest possible cost. All such factors, along with the development will be discussed. (author)

  16. Burst annealing of electron damage in silicon solar cells

    International Nuclear Information System (INIS)

    Day, A.C.; Horne, W.E.; Thompson, M.A.; Lancaster, C.A.

    1985-01-01

    A study has been performed of burst annealing of electron damage in silicon solar cells. Three groups of cells consisting of 3 and 0.3 ohm-cm silicon were exposed to fluences of 2 x 10 to the 14th power, 4 x 10 to the 14th power, and 8 x 10 to the 14th power 1-MeV electrons/sq cm, respectively. They were subsequently subjected to 1-minute bursts of annealing at 500 C. The 3 ohm-cm cells showed complete recovery from each fluence level. The 0.3 ohm-cm cells showed complete recovery from the 2 x 10 to the 14th power e/sq cm fluence; however, some of the 0.3 ohm-cm cells did not recover completely from the higher influences. From an analysis of the results it is concluded that burst annealing of moderate to high resistivity silicon cell arrays in space is feasible and that with more complete understanding, even the potentially higher efficiency low resistivity cells may be usable in annealable arrays in space

  17. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    Science.gov (United States)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  18. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures

    International Nuclear Information System (INIS)

    Hilali, Mohamed M; Banerjee, Sanjay; Sreenivasan, S V; Yang Shuqiang; Miller, Mike; Xu, Frank

    2012-01-01

    In this paper, we have explored manufacturable approaches to sub-wavelength controlled three-dimensional (3D) nano-patterns with the goal of significantly enhancing the photocurrent in amorphous silicon solar cells. Here we demonstrate efficiency enhancement of about 50% over typical flat a-Si thin-film solar cells, and report an enhancement of 20% in optical absorption over Asahi textured glass by fabricating sub-wavelength nano-patterned a-Si on glass substrates. External quantum efficiency showed superior results for the 3D nano-patterned thin-film solar cells due to enhancement of broadband optical absorption. The results further indicate that this enhanced light trapping is achieved with minimal parasitic absorption losses in the deposited transparent conductive oxide for the nano-patterned substrate thin-film amorphous silicon solar cell configuration. Optical simulations are in good agreement with experimental results, and also show a significant enhancement in optical absorption, quantum efficiency and photocurrent. (paper)

  19. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching

    Science.gov (United States)

    Weiying, Ou; Lei, Zhao; Hongwei, Diao; Jun, Zhang; Wenjing, Wang

    2011-05-01

    Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.

  20. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Ou Weiying; Zhao Lei; Diao Hongwei; Zhang Jun; Wang Wenjing, E-mail: wjwangwj@126.com [Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-05-15

    Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells. (semiconductor technology)