WorldWideScience

Sample records for surface silanol groups

  1. On the origin of near-IR luminescence in SiO{sub 2} glass with bismuth as the single dopant. Formation of the photoluminescent univalent bismuth silanolate by SiO{sub 2} surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A.N., E-mail: alexey.romanov@list.ru; Haula, E.V.; Shashkin, D.P.; Vtyurina, D.N.; Korchak, V.N.

    2017-03-15

    Near infrared photoluminescent bismuth(I) silanolate centers ((≡Si-O){sub 3}Si–O-Bi) were prepared on the surface of SiO{sub 2} xerogel, by the treatment in the vapors of bismuth(I) chloride. The optical properties of these groups are almost identical to that of photoluminescent centers in the bulk SiO{sub 2} glasses with bismuth as the single dopant. - Highlights: • univalent bismuth silanolate can be prepared on SiO{sub 2} surface by treatment in BiCl vapors. • univalent bismuth silanolate is responsible for NIR photoluminescence in Bi-doped SiO{sub 2} glass. • univalent bismuth silanolate is the active center in laser, operating on Bi-doped SiO{sub 2} fiber.

  2. Quantification of water and silanol species on various silicas by coupling IR spectroscopy and in-situ thermogravimetry.

    Science.gov (United States)

    Gallas, Jean-Paul; Goupil, Jean-Michel; Vimont, Alexandre; Lavalley, Jean-Claude; Gil, Barbara; Gilson, Jean-Pierre; Miserque, Olivier

    2009-05-19

    Five silica samples (four precipitated silicas provided by commercial suppliers and one with the MCM-41 structure) have been studied by infrared spectroscopy and by a homemade thermogravimetry-infrared spectrum (TG-IR) setup. The silanol amount, accessibility to water, and different alcohols, and the affinity to water of these various silicas were compared and quantified. TG-IR measurements allowed the precise determination of the integrated molar absorption coefficient of the (nu+delta)OH band, epsilon(nu+delta)OH=(0.16+/-0.01) cm micromol(-1). It is independent of the sample origin and the concentration of silanol groups on silicas. For the precipitated dried samples evacuated at room temperature, the silanol concentration COH varies between 3.6 and 7.0 mmol g(-1). It is 5.3 mmol g(-1) in the case of the MCM-41 sample. Exchange experiments with D2O, followed by back-exchanges with different alcohols (methanol, propan-2-ol, 2-methyl-propan-2-ol, and 3-ethyl-pentan-3-ol) have been followed by infrared spectroscopy. All of the silanols of the MCM-41 sample are accessible to water and alcohol molecules. By contrast, about 20% of the silanols in precipitated samples are not exchanged by D2O (internal silanols). Accessibility decreases with alcohol size; the main effect is relative to methanol. Taking into account the sample specific surface areas and the silanol accessibility to D2O, the surface silanol density of precipitated silicas is close to 8 OH per nm2, at maximum coverage. At variance, the silanol surface density of the MCM silica is much lower, 4 OH per nm2. The TG-IR setup has also been used to determine the amount of water adsorbed on silicas through the intensity of the deltaH2O band. It varies linearly with the concentration of adsorbed water, whatever the silica sample. The integrated molar absorption coefficient of two bands, epsilondeltaH2O=(1.53+/-0.03) cm micromol(-1) and epsilon(nu+delta)H2O=(0.22+/-0.01) cm micromol(-1), have been determined. The

  3. Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu(II) removal

    International Nuclear Information System (INIS)

    Wang Yangang; Huang Sujun; Kang Shifei; Zhang Chengli; Li Xi

    2012-01-01

    Graphical abstract: A simple and low-cost route to synthesize mesoporous silica materials with high silanol groups has been demonstrated by means of a sol–gel process using citric acid as the template and acid catalyst, further studies on the adsorption of Cu(II) onto the representative amine-functionalized mesoporous silica showed that it had a high Cu(II) removal efficiency. Highlights: ► A low-cost route to synthesize mesoporous silica with high silanol groups was demonstrated. ► Citric acid as the template and acid catalyst for the reaction of tetraethylorthosilicate. ► Water extraction method was an effective technique to remove template which can be recycled. ► The mesoporous silica with high silanol groups was easily modified by functional groups. ► A high Cu(II) removal efficiency on the amine-functionalized mesoporous silica. - Abstract: We report a simple and low-cost route for the synthesis of mesoporous silica materials with high silanol groups by means of a sol–gel process using citric acid as the template, tetraethylorthosilicate (TEOS) as the silica source under aqueous solution system. The citric acid can directly work as an acid catalyst for the hydrolysis of TEOS besides the function as a pore-forming agent in the synthesis. It was found that by using a water extraction method the citric acid template in as-prepared mesoporous silica composite can be easily removed and a high degree of silanol groups were retained in the mesopores, moreover, the citric acid template in the filtrate can be recycled after being dried. The structural properties of the obtained mesoporous silica materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption–desorption analysis. Furthermore, an adsorption of Cu(II) from aqueous solution on the representative amine-functionalized mesoporous silica was investigated

  4. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    Science.gov (United States)

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  5. Free silanols and ionic liquids as their suppressors in liquid chromatography.

    Science.gov (United States)

    Buszewska-Forajta, Magdalena; Markuszewski, Michał J; Kaliszan, Roman

    2018-07-20

    In this review, we will firstly discuss the types and the general properties of silica, focusing on the silica support used in chromatography and capillary electrophoresis. Additionally, the characterization of functional groups (silanols and siloxanes) will be considered in terms of activity of the stationary phases. We will then discuss physical chemistry of the stationary phases applied in liquid chromatography and capillary electrophoresis. The use of ionic liquids as a silanols' suppressors will be presented in the next parts of the study, along with the examples of specific applications. The review is completed with conclusions and an outlook for the future developments in the area of analytical applications of ionic liquids. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Clean Chlorination of Silica Surfaces by a Single-site Substitution Approach

    KAUST Repository

    Maity, Niladri; Barman, Samir; Abou-Hamad, Edy; D'Elia, Valerio; Basset, Jean-Marie

    2018-01-01

    A chlorination method for the selective substitution of well-defined isolated silanol groups of the silica surface has been developed using the catalytic Appel reaction. Spectroscopic analysis, complemented by elemental microanalysis studies, reveals that a quantitative chlorination could be achieved with highly dehydroxylated silica materials that exclusively possess non-hydrogen bonded silanol groups. The employed method did not leave any carbon or phosphorous residue on the silica surface and can be regarded as a promising tool for the future functionalization of metal oxide surfaces.

  7. Clean Chlorination of Silica Surfaces by a Single-site Substitution Approach

    KAUST Repository

    Maity, Niladri

    2018-02-12

    A chlorination method for the selective substitution of well-defined isolated silanol groups of the silica surface has been developed using the catalytic Appel reaction. Spectroscopic analysis, complemented by elemental microanalysis studies, reveals that a quantitative chlorination could be achieved with highly dehydroxylated silica materials that exclusively possess non-hydrogen bonded silanol groups. The employed method did not leave any carbon or phosphorous residue on the silica surface and can be regarded as a promising tool for the future functionalization of metal oxide surfaces.

  8. Deactivation of silica surfaces with a silanol-terminated polysiloxane; Structural characterization by inverse gas chromatography and solid-state NMR

    NARCIS (Netherlands)

    Scholten, A.B.; Haan, de J.W.; Janssen, J.G.M.; Ven, van de L.J.M.; Cramers, C.A.M.G.

    1997-01-01

    Retention gape deactivated with Silicone OV-1701-OH show good chromatographic performance and remarkable stability against water induced stationary phase degradrdation. In an attempt to better understand the findamentals off the deactivation process using silanol terminated polysiloxanes, a fumed

  9. The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study

    Science.gov (United States)

    Yuan, P.; Wu, D. Q.; He, H. P.; Lin, Z. Y.

    2004-04-01

    Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Raman spectroscopy of adsorbed pyridine molecules (Py-Raman) and in situ Py-IR have been used to investigate the hydroxyl species and acid sites on diatomite surfaces. The Lewis (L) and Brønsted (B) acid sites, and various hydroxyl species, including isolated hydroxyl groups, H-bonded hydroxyl groups and physically adsorbed water, are identified. The L acid sites in diatomite samples are resulted from the clay impurities, and the B acid sites are resulted from some moderate strength H-bonded hydroxyl groups. At room temperature, both of the isolated and H-bonded silanols associate with the physically adsorbed water by hydrogen bond. After calcination treatment, physically adsorbed water will be desorbed from the silanols, and the silanols will condense with the increase of temperature. Generally, the H-bonded silanols condense more easily than the isolated ones. The properties of surface hydroxyl species of diatomaceous silica are more similar to precipitated silica rather than fumed silica.

  10. Remodelamento da derme humana apos aplicação de salicilato de silanol

    OpenAIRE

    Fernanda Oliveira Camargo Herreros

    2007-01-01

    Resumo: A intradermoterapia é um processo terapêutico com poucas publicações científicas em revistas indexadas. Em 2005, um estudo duplo-cego randomizado demonstrou os benefícios proporcionados para a pele, cabelos e unhas de mulheres com fotoenvelhecimento pelo consumo de um suplemento oral de silanol. Frente a esses dados, realizou-se um estudo com o objetivo de comparar as alterações histológicas entre a pele humana que recebeu injeção intradérmica de silanol e as encontradas na pele em qu...

  11. Effect of surface silanol groups on the deposition of apatite onto silica surfaces: a computer simulation study

    CSIR Research Space (South Africa)

    Mkhonto, D

    2008-01-01

    Full Text Available the surface silicon and oxygen species rearrange to form O–Si–O links. Any dangling silicon and oxygen bonds at the silica surfaces are saturated by coordination to oxygen and calcium atoms in the apatite layer, but the extra reactivity afforded by these under...

  12. Fabrication of superhydrophobic wood surfaces via a solution-immersion process

    Science.gov (United States)

    Liu, Changyu; Wang, Shuliang; Shi, Junyou; Wang, Chengyu

    2011-11-01

    Superhydrophobic wood surfaces were fabricated from potassium methyl siliconate (PMS) through a convenient solution-immersion method. The reaction involves a hydrogen bond assembly and a polycondensation process. The silanol was formed by reacting PMS aqueous solution with CO2, which was assembled on the wood surface via hydrogen bonds with the wood surface -OH groups. The polymethylsilsesquioxane coating was obtained through the polycondensation reaction of the hydroxyl between wood and silanol. The morphology of products were characterized using a scanning electron microscope (SEM), the surface chemical composition was determined using energy dispersive X-ray analysis (EDXA), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA) and contact angle measurement. Analytical results revealed that rough protuberances uniformly covered the wood surface, thus transforming the wood surface from hydrophilic to superhydrophobic. The water contact angle of the superhydrophobic wood surface was about 153° and a sliding angle was 4.6°.

  13. An improved process for the surface modification of SiO2 nanoparticles

    KAUST Repository

    Livi, Sé bastien; Giannelis, Emmanuel P.

    2012-01-01

    A phosphonium ionic liquid is used as an activator of silanol groups to improve the surface functionalization of silica nanoparticles with fluorosilanes in supercritical CO 2. © 2012 The Royal Society of Chemistry.

  14. Hydrogenation of silyl formates: sustainable production of silanol and methanol from hydrosilane and carbon dioxide.

    Science.gov (United States)

    Koo, Jangwoo; Kim, Seung Hyo; Hong, Soon Hyeok

    2018-05-10

    A new process for simultaneously obtaining two chemical building blocks, methanol and silanol, was realized starting from silyl formates which can be derived from silane and carbon dioxide. Understanding the reaction mechanism enabled us to improve the reaction efficiency by the addition of a small amount of methanol.

  15. Accessible silanol sites - beneficial for the RP-HPLC separation of constitutional and diastereomeric azaspirovesamicol isomers.

    Science.gov (United States)

    Wenzel, Barbara; Fischer, Steffen; Brust, Peter; Steinbach, Jörg

    2010-12-10

    Different RP-HPLC columns (phenyl, conventional ODS, cross-linked C(18) and special end-capped C(8) and C(18) phases) were used to investigate the separation of four basic ionizable isomers. Using ACN/20mM NH(4)OAc aq., a separation was observed exclusively on RP columns with higher silanol activity at unusual high ACN concentration, indicating cation-exchange as main retention mechanism. Using MeOH/20mM NH(4)OAc aq., another separation at low MeOH concentrations was observed on both, RP columns with higher as well as RP columns with lower silanol activity, which is mainly based on hydrophobic interactions. The isomers were also separated on a bare silica column at higher MeOH content using NH(4)OAc. Since cation-exchange governs this retention, the elution order was different compared to the RP phases. A strong retention on the silica column was observed in ACN, which could be attributed to partition processes as additional retention mechanism. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Structural, electronic and mechanical properties of inner surface modified imogolite nanotubes

    Directory of Open Access Journals (Sweden)

    Maurício Chagas Da Silva

    2015-03-01

    Full Text Available The electronic, structural and mechanical properties of the modified imogolites have been investigated using self consistent charge-density functional-tight binding method with a posteriori treatment of the dispersion interaction (SCC-DFTB-D. The zigzag (12,0 imogolite has been used as the initial structure for the calculations. The functionalization of the interior (12,0 imogolite nanotubes by organosilanes and by heat treatment leading to the dehydroxylation of the silanols were investigated. The reaction of the silanols with the trimethylmethoxysilanes is favored and the arrangement of the different substitutions that leads to the most symmetrical structures are preferred. The Young moduli and band gaps are slightly decreased. However, the dehydroxylation of the silanol groups in the inner surface of the imogolite leads to the increase of the Young moduli and a drastic decrease of the band gap of about 4.4 eV. It has been shown that the degree of the dehydroxylation can be controlled by heat treatment and tune the band gap, eventually, leading to a semiconductor material with well defined nanotube structure.

  17. Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres.

    Science.gov (United States)

    Li, Cuiping; Li, Xueyuan; Duan, Xuelan; Li, Guangjie; Wang, Jiaqiang

    2014-12-15

    Halloysite nanotube supported Ag nanoparticles heteroarchitectures have been prepared through a very simple electroless plating method. Robust Ag nanocrystals can be reproducibly fabricated by soaking halloysite nanotubes in ethanolic solutions of AgNO3 and butylamine. By simply adjusting the molar ratio of AgNO3 and butylamine, Ag nanoparticles with tunable size and quantity on halloysite nanotube are achieved. It reveals that the Ag nanoparticles are well-dispersed on the surface of halloysite nanotubes. The halloysite nanotube supported Ag nanoparticles heteroarchitectures can serve as active catalysts for the polymerization of an alkylsilane C18H37SiH3 with water to form silanol/siloxane composite microspheres and exhibit interesting superhydrophobicity ascribed to the micro/nanobinary structure. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A well-defined mesoporous amine silica surface via a selective treatment of SBA-15 with ammonia

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa; Pelletier, Jeremie; Abou-Hamad, Edy; Emsley, Lyndon; Basset, Jean-Marie

    2012-01-01

    2D double-quantum 1H- 1H NMR unambiguously shows that the "isolated" Si-OH surface silanols of dehydroxylated SBA-15 are converted upon treatment with ammonia into single silylamine surface site Si-NH 2. The "gem" di-silanols (Si(OH) 2) remain intact. Treatment using HMDS produces (Si(OSiMe 3) 2) but leaves Si-NH 2 untouched. The resulting surface is hydrophobic and stable. © The Royal Society of Chemistry 2012.

  19. Poly(4-vinylpyridine) as a reagent with silanol-masking effect for silica and its specific selectivity for PAHs and dinitropyrenes in a reversed phase

    International Nuclear Information System (INIS)

    Ihara, Hirotaka; Fukui, Megumi; Mimaki, Takamasa; Shundo, Atsuomi; Dong, Wei; Derakhshan, Mahnaz; Sakurai, Toshihiko; Takafuji, Makoto; Nagaoka, Shoji

    2005-01-01

    This paper demonstrates that poly(4-vinylpyridine) is applicable as an effective masking reagent for silica to reduce undesirable side effects due to silanol groups. It also shows that this chemical modification brings about unique retention behaviors absolutely different from conventional ODS, which appear in molecular-shape selectivity for polycyclic aromatic hydrocarbons and in selectivity for position isomerism, especially for electron-withdrawing substitution compounds. Separation of 1,6- and 1,8-dinirtopyrenes as carcinogens is also described

  20. Generation of Well-Defined Pairs of Silylamine on Highly Dehydroxylated SBA-15: Application to the Surface Organometallic Chemistry of Zirconium

    KAUST Repository

    Azzi, Joachim

    2012-11-01

    Design of a new well-defined surface organometallic species [O-(=Si–NH)2Zr(IV)Np2] has been obtained by reaction of tetraneopentyl zirconium (ZrNp4) on SBA-15 surface displaying mainly silylamine pairs [O-(=Si–NH2)2]. These surface species have been achieved by an ammonia treatment of a highly dehydroxylated SBA-15 at 1000°C (SBA-151000). This support is known to contain mainly strained reactive siloxane bridges (≡Si-O-Si≡)[1] along with a small amount of isolated plus germinal silanols =Si(OH)2. Chemisorption of ammonia occurs primarily by opening these siloxane bridges[2] to generate silanol/silylamine pairs [O-(=Si–NH2)(=SiOH)] followed by substitution of the remaining silanol. Further treatment using hexamethyldisilazane (HMDS) results in the protection of the isolated remaining silanol groups by formation of ≡Si-O-SiMe3 and =Si(OSiMe3)2 but leaves ≡SiNH2 untouched. After reaction of this functionalized surface with ZrNp4, this latter displays mainly a bi-podal zirconium neopentyl organometallic complex [O-(=Si–NH)2Zr(IV)Np2] which has been fully characterized by diverse methods such as infrared transmission spectroscopy, magic angle spinning solid state nuclear magnetic resonance, surface elemental analysis, small angle X-ray powder diffraction (XRD), nitrogen adsorption and energy filtered transmission electron microscopy (EFTEM). These different characterization tools unambiguously prove that the zirconium organometallic complex reacts mostly with silylamine pairs to give a bi-podal zirconium bis-neopentyl complex, uniformly distributed into the channels of SBA-151000. Therefore this new material opens a new promising research area in Surface Organometallic Chemistry which, so far, was dealing mainly with O containing surface. It is expected that vicinal amine functions may play a very different role as compared with classical inorganic supports. Given the importance in the last decades of N containing ligands in catalysis, one may expect

  1. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    International Nuclear Information System (INIS)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-01-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  2. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany); Grunwald, Ingo, E-mail: ingo.grunwald@ifam.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany)

    2013-05-15

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  3. Surface-Casting Synthesis of Mesoporous Zirconia with a CMK-5-Like Structure and High Surface Area.

    Science.gov (United States)

    Gu, Dong; Schmidt, Wolfgang; Pichler, Christian M; Bongard, Hans-Josef; Spliethoff, Bernd; Asahina, Shunsuke; Cao, Zhengwen; Terasaki, Osamu; Schüth, Ferdi

    2017-09-04

    About 15 years ago, the Ryoo group described the synthesis of CMK-5, a material consisting of a hexagonal arrangement of carbon nanotubes. Extension of the surface casting synthesis to oxide compositions, however, was not possible so far, in spite of many attempts. Here it is demonstrated, that crystalline mesoporous hollow zirconia materials with very high surface areas up to 400 m 2  g -1 , and in selected cases in the form of CMK-5-like, are indeed accessible via such a surface casting process. The key for the successful synthesis is an increased interaction between the silica hard template surface and the zirconia precursor species by using silanol group-rich mesoporous silica as a hard template. The surface areas of the obtained zirconias exceed those of conventionally hard-templated ones by a factor of two to three. The surface casting process seems to be applicable also to other oxide materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of the nature of the surface on the reactivity of nanoporous silica under irradiation

    International Nuclear Information System (INIS)

    Le Caer, S.; Alam, M.S.; Chatelain, C.; Brunet, F.; Charpentier, T.; Renault, J.P.; Brodie-Linder, N.; Alba-Simionesco, C.

    2011-01-01

    Complete text of publication follows. Materials such as concrete, clays and zeolites which embed radioactive wastes adsorb in their pores significant amounts of water that can be decomposed under ionizing radiation leading to the formation of H 2 which is potentially explosive. It is well established that the H 2 production arises from chemi- or physi-sorbed OH groups at the surface of oxides. In this context, we have studied the behaviour of water confined in nanoporous silica. To distinguish the behavior of the two kinds of OH, we have performed different thermal treatments on SBA-15 materials prior to their irradiation. The IR analysis and H 2 measurements have proven that in the radiolysis of SBA-15 materials, silanol groups are only attacked when they are in the majority with respect to adsorbed water. However they are much less efficient at producing H 2 . The comparison between water content before and after electron irradiation and the corresponding H 2 production indicates that water desorption is the main route to adsorbed water loss. On the other hand, surface silanol groups are more susceptible to attack, leading to H 2 production when SBA-15 samples have undergone extensive thermal treatment. The surface of nanoporous glasses were then grafted using chloroaklyldimethylsilane. The effect of irradiation on these grafted surfaces was studied by means of mass spectrometry and NMR experiments. These different techniques reveal an original reactivity of the surface under irradiation.

  5. A new green methodology for surface modification of diatomite filler in elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Lamastra, F.R. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133, Rome (Italy); Mori, S.; Cherubini, V. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133, Rome (Italy); Department of Enterprise Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133, Rome (Italy); Scarselli, M. [Department of Physics, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133, Rome (Italy); Nanni, F., E-mail: fnanni@ing.uniroma2.it [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133, Rome (Italy); Department of Enterprise Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133, Rome (Italy)

    2017-06-15

    In this work a new, simple and green protocol to introduce a limited content of silanol groups on the surface of an hydrophobic diatomite, in order to be slightly hydrophilic and susceptible to be silanized by bifunctional, sulfur-containing organosilanes for rubber applications, is proposed. The chemical modification was carried out at 85 °C in a solution of H{sub 2}O:NaOH:H{sub 2}O{sub 2}. The modified diatomite was then silanized with bis(triethoxysilylpropyl) disulfide by a procedure that does not involve toxic solvent. Morphological features and elemental composition of diatomite were investigated by Field emission scanning electron microscopy coupled with Energy dispersive X-ray spectroscopy. The surface modification and silanization process were assessed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Diatomite was composed by micrometric frustules from different diatom species with pore size ranging from 25 nm to 1 μm. The spectroscopic characterizations confirmed the surface modification of diatomite with some silanols that acted as sites for silanization reaction. The silanized diatomite and the untreated one were used as filler in unvulcanized solvent-cast SBR films in order to verify that the modification does not negatively affect the polymer/filler interface and as consequence the mechanical properties. Mechanical properties of the realized samples were assessed by uniaxial tensile tests. Films filled with 10 wt% of diatomite (untreated or silanized) showed an increase of Elastic Modulus about of 50% and a decrease of the strain at break with respect to SBR samples, while the tensile strength was not significantly affected by the diatomite addition. SEM images of fracture surfaces of tested specimens showed a fine dispersion of both untreated and silanized diatomite in the polymeric matrix and the achieving of a good interfacial adhesion SBR/fillers. The silanized diatomite, as it is potentially able to bind

  6. A new green methodology for surface modification of diatomite filler in elastomers

    International Nuclear Information System (INIS)

    Lamastra, F.R.; Mori, S.; Cherubini, V.; Scarselli, M.; Nanni, F.

    2017-01-01

    In this work a new, simple and green protocol to introduce a limited content of silanol groups on the surface of an hydrophobic diatomite, in order to be slightly hydrophilic and susceptible to be silanized by bifunctional, sulfur-containing organosilanes for rubber applications, is proposed. The chemical modification was carried out at 85 °C in a solution of H_2O:NaOH:H_2O_2. The modified diatomite was then silanized with bis(triethoxysilylpropyl) disulfide by a procedure that does not involve toxic solvent. Morphological features and elemental composition of diatomite were investigated by Field emission scanning electron microscopy coupled with Energy dispersive X-ray spectroscopy. The surface modification and silanization process were assessed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Diatomite was composed by micrometric frustules from different diatom species with pore size ranging from 25 nm to 1 μm. The spectroscopic characterizations confirmed the surface modification of diatomite with some silanols that acted as sites for silanization reaction. The silanized diatomite and the untreated one were used as filler in unvulcanized solvent-cast SBR films in order to verify that the modification does not negatively affect the polymer/filler interface and as consequence the mechanical properties. Mechanical properties of the realized samples were assessed by uniaxial tensile tests. Films filled with 10 wt% of diatomite (untreated or silanized) showed an increase of Elastic Modulus about of 50% and a decrease of the strain at break with respect to SBR samples, while the tensile strength was not significantly affected by the diatomite addition. SEM images of fracture surfaces of tested specimens showed a fine dispersion of both untreated and silanized diatomite in the polymeric matrix and the achieving of a good interfacial adhesion SBR/fillers. The silanized diatomite, as it is potentially able to bind chemically to

  7. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  8. Water adsorption on amorphous silica surfaces: a Car-Parrinello simulation study

    International Nuclear Information System (INIS)

    Mischler, Claus; Horbach, Juergen; Kob, Walter; Binder, Kurt

    2005-01-01

    A combination of classical molecular dynamics (MD) and ab initio Car-Parrinello molecular dynamics (CPMD) simulations is used to investigate the adsorption of water on a free amorphous silica surface. From the classical MD, SiO 2 configurations with a free surface are generated which are then used as starting configurations for the CPMD. We study the reaction of a water molecule with a two-membered ring at the temperature T = 300 K. We show that the result of this reaction is the formation of two silanol groups on the surface. The activation energy of the reaction is estimated and it is shown that the reaction is exothermic

  9. H2 formation by electron irradiation of SBA-15 materials and the effect of Cu(II) grafting

    International Nuclear Information System (INIS)

    Brodie-Linder, N.; Le Caer, S.; Shahdo Alam, M.; Renault, J.P.; Alba-Simionesco, Ch.

    2010-01-01

    Measurement of H 2 production from electron irradiation (10 MeV) on SBA-15 materials has shown that adsorbed water is attacked preferentially. Silanol groups are only attacked when they are in the majority with respect to adsorbed water, however they are much less efficient at producing H 2 . The comparison between water content before and after electron irradiation and the corresponding H 2 production indicates that water desorption is the main route to adsorbed water loss for SBA-15 materials. On the other hand, surface silanol groups are more susceptible to attack,leading to H 2 production when SBA-15 samples have undergone extensive thermal treatment. Electron irradiation of SBA-15-Cu materials has shown that the presence of Cu(II) on the surface reduces and inhibits the production of H 2 . This inhibiting power affects adsorbed water bonded to grafted copper but not surface silanol groups. (authors)

  10. Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: the effect of silanol groups.

    Science.gov (United States)

    Rodrigues, Márcia T; Leonor, Isabel B; Gröen, Nathalie; Viegas, Carlos A; Dias, Isabel R; Caridade, Sofia G; Mano, João F; Gomes, Manuela E; Reis, Rui L

    2014-10-01

    Osteogenic differentiation is a tightly regulated process dependent on the stimuli provided by the micro-environment. Silicon-substituted materials are known to have an influence on the osteogenic phenotype of undifferentiated and bone-derived cells. This study aims to investigate the bioactivity profile as well as the mechanical properties of a blend of starch and poly-caprolactone (SPCL) polymeric fiber mesh scaffolds functionalized with silanol (Si-OH) groups as key features for bone tissue engineering strategies. The scaffolds were made from SPCL by a wet spinning technique. A calcium silicate solution was used as a non-solvent to develop an in situ functionalization with Si-OH groups in a single-step approach. We also explored the relevance of silicon incorporated in SPCL-Si scaffolds to the in vitro osteogenic process of goat bone marrow stromal cells (gBMSCs) with and without osteogenic supplements in the culture medium. We hypothesized that SPCL-Si scaffolds could act as physical and chemical millieus to induce per se the osteogenic differentiation of gBMSCs. Results show that osteogenic differentiation of gBMSCs and the production of a mineralized extracellular matrix on bioactive SPCL-Si scaffolds occur for up to 2weeks, even in the absence of osteogenic supplements in the culture medium. The omission of media supplements to induce osteogenic differentiation is a promising feature towards simplified and cost-effective cell culturing procedures of a potential bioengineered product, and concomitant translation into the clinical field. Thus, the present work demonstrates that SPCL-Si scaffolds and their intrinsic properties sustain gBMSC osteogenic features in vitro, even in the absence of osteogenic supplements to the culture medium, and show great potential for bone regeneration strategies. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Mapping the location of grafted PNIPAAM in mesoporous SBA-15 silica using gas adsorption analysis

    DEFF Research Database (Denmark)

    Reichhardt, Nina Viola; Guillet-Nicolas, Rémy; Thommes, Matthias

    2012-01-01

    The thermoresponsive polymer poly-N-isopropylacrylamide (PNIPAAM) was grafted in mesoporous SBA-15 silica. The grafting process consists of three steps: (i) increasing the amount of surface silanol groups of SBA-15 by hydroxylation, (ii) attachment of an anchor (1-(trichlorosilyl)-2-(m/p- (chloro......The thermoresponsive polymer poly-N-isopropylacrylamide (PNIPAAM) was grafted in mesoporous SBA-15 silica. The grafting process consists of three steps: (i) increasing the amount of surface silanol groups of SBA-15 by hydroxylation, (ii) attachment of an anchor (1-(trichlorosilyl)-2-(m...

  12. Photoluminescent silicon nanocrystals with chlorosilane surfaces - synthesis and reactivity

    Science.gov (United States)

    Höhlein, Ignaz M. D.; Kehrle, Julian; Purkait, Tapas K.; Veinot, Jonathan G. C.; Rieger, Bernhard

    2014-12-01

    We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place.We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place. Electronic supplementary information (ESI) available: Detailed experimental procedures and additional NMR, PL, EDX, DLS and TEM data. See DOI: 10.1039/C4NR05888G

  13. Characterisation of silica surfaces III: Characterisation of aerosil samples through ethanol adsorption and contact angle studies

    Directory of Open Access Journals (Sweden)

    M.S. Nadiye–Tabbiruka

    2009-12-01

    Full Text Available Aerosil samples, heat treated and then silylated with various silanes at various temperatures have been characterised by adsorption of ethanol at 293 K. Adsorption isotherms were plotted and the BET specific surface areas were determined. Contact angles were measured by the captive bubble method at the three phase contact line in ethanol, on glass slides similarly modified. Silylation was found to alter the ethanol adsorptive properties on aerosil and increase the contact angles on the glass slides to extents that depend on the silane used as well as the concentration of residual silanols and that of surface silyl groups.

  14. Stress Corrosion of Ceramic Materials.

    Science.gov (United States)

    1986-08-01

    rupture directly, or are hydrolyzed by the water in the environment. This type of reaction is known to be important to the corrosion of glass in basic...covered .ith silanol groups so that the surface is virtually uncharged. As the pH is increased, the surface gradually hydrolyzes forming silanolate...is plotted assuming a decay distance of 0.3 nm. The data on lecithin is obtained by a non-fracture technique in which the layer spacing is determined

  15. Possible mechanism of structural incorporation of Al into diatomite during the deposition process I. Via a condensation reaction of hydroxyl groups.

    Science.gov (United States)

    Liu, Dong; Yu, Wenbin; Deng, Liangliang; Yuan, Weiwei; Ma, Lingya; Yuan, Peng; Du, Peixin; He, Hongping

    2016-01-01

    The structural incorporation of aluminium (Al) into diatomite is investigated by preparing several Al-diatomite composites by loading an Al precursor, hydroxyl aluminum polymer (Al13), onto the surface of diatomite and heating at various temperatures. The results indicate that Al was incorporated and implanted into the structure of diatomite by the condensation reaction of the hydroxyl groups of Al13 and diatomite, and the Si-O-Al(OH) groups were formed during the condensation reaction. Al incorporation by the condensation reaction of hydroxyl groups of Al13 with single silanols of diatomite occurred more readily than that with geminal silanols. The Al incorporation increased solid acidity of diatomite after Al incorporation. The acidity improvement was various for different types of acid sites, depending on the preparation temperature of the Al-incorporated diatomite. Both Brønsted and Lewis acid sites increased greatly after heating at 250 and 350 °C, but only L acid sites significantly improved after heating at 500 °C. These results demonstrate that the structural incorporation of Al(3+) ions into diatomite can occur by the condensation reaction of the hydroxyl groups of the Al precursors and diatomite. Moreover, the rich solid acid sites of Al-incorporated diatomite show its promising application as a solid acid catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Supramolecular structures on silica surfaces and their adsorptive properties.

    Science.gov (United States)

    Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F

    2005-05-01

    The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.

  17. Metal Oxide Thin Films Grafted on Silica Gel Surfaces: Recent Advances on the Analytical Application of these Materials

    Directory of Open Access Journals (Sweden)

    Gushikem Yoshitaka

    2001-01-01

    Full Text Available In the highly dispersed MxOy monolayer film on a porous SiO2 surface, denoted as SiO2/MxOy, the Si-O-M covalent bond formed on the SiO2 surface restricts the mobility of the attached oxide resulting in coordinatively unsaturated metal oxides (LAS in addition to the Brønsted acid sites (BAS. The BAS arise from the MOH and SiOH groups, the latter due to the unreacted silanol groups. As the attached oxides are strongly immobilized on the surface, they are also thermally very stable. The amphoteric character of most of the attached oxides allows the immobilization of various chemical species, acid or bases, resulting in a wide application of these surface modified materials. In this work many of the recent applications of these MxOy coated silica surfaces are described, such as selective adsorbents, in preconcentration processes, as new packing material for use in HPLC, support for immobilization of enzymes, amperometric electrodes, sensors and biosensors

  18. Density functional theory based-study of 5-fluorouracil adsorption on β-cristobalite (1 1 1) hydroxylated surface: The importance of H-bonding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Universidad Nacional del Sur (UNS)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca (Argentina); Universidad Tecnológica Nacional (UTN), Bahía Blanca (Argentina); Compañy, A. Díaz [Comisión de Investigaciones Científicas (CIC), Buenos Aires (Argentina); Pronsato, E.; Juan, A.; Brizuela, G. [Universidad Nacional del Sur (UNS)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca (Argentina); Lam, A. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana (Cuba)

    2015-12-30

    Graphical abstract: - Highlights: • Favorable energies results in optimum four adsorption geometries. • Silanols are partially weakening and establish H-bonds with polar groups of 5-FU drug. • Dispersion forces approach the 5-FU molecule toward the surface. • Electron exchange is presented after adsorption. • H-bonds stabilize the molecule playing significant role in the adsorption mechanism. - Abstract: Silica-based mesoporous materials have been recently proposed as an efficient support for the controlled release of a popular anticancer drug, 5-fluorouracil (5-FU). Although the relevance of this topic, the atomistic details about the specific surface-drug interactions and the energy of adsorption are almost unknown. In this work, theoretical calculations using the Vienna Ab-initio Simulation Package (VASP) applying Grimme's—D2 correction were performed to elucidate the drug–silica interactions and the host properties that control 5-FU drug adsorption on β-cristobalite (1 1 1) hydroxylated surface. This study shows that hydrogen bonding, electron exchange, and dispersion forces are mainly involved to perform the 5-FU adsorption onto silica. This phenomenon, revealed by favorable energies, results in optimum four adsorption geometries that can be adopted for 5-FU on the hydroxylated silica surface. Silanols are weakening in response to the molecule approach and establish H-bonds with polar groups of 5-FU drug. The final geometry of 5-FU adopted on hydroxylated silica surface is the results of H-bonding interactions which stabilize and fix the molecule to the surface and dispersion forces which approach it toward silica (1 1 1) plane. The level of hydroxylation of the SiO{sub 2} (1 1 1) surface is reflected by the elevated number of hydrogen bonds that play a significant role in the adsorption mechanisms.

  19. BINAP-Ru and -Rh catalysts covalently immobilised on silica and their repeated application in asymmetric hydrogenation

    NARCIS (Netherlands)

    McDonald, A.R.|info:eu-repo/dai/nl/304832634; Müller, C.; Vogt, D.; van Klink, G.P.M.|info:eu-repo/dai/nl/170637964; van Koten, G.|info:eu-repo/dai/nl/073839191

    2008-01-01

    We present the facile immobilisation of a chiral diphosphine ligand, BINAP, on a silica (high pore volume, low surface area). The protected ligand has been immobilised as a phosphine oxide and deprotected on the surface to prevent side reactions of unprotected phosphines with surface silanol groups.

  20. Nonlinear dynamics in the perceptual grouping of connected surfaces.

    Science.gov (United States)

    Hock, Howard S; Schöner, Gregor

    2016-09-01

    Evidence obtained using the dynamic grouping method has shown that the grouping of an object's connected surfaces has properties characteristic of a nonlinear dynamical system. When a surface's luminance changes, one of its boundaries is perceived moving across the surface. The direction of this dynamic grouping (DG) motion indicates which of two flanking surfaces has been grouped with the changing surface. A quantitative measure of overall grouping strength (affinity) for adjacent surfaces is provided by the frequency of DG motion perception in directions promoted by the grouping variables. It was found that: (1) variables affecting surface grouping for three-surface objects evolve over time, settling at stable levels within a single fixation, (2) how often DG motion is perceived when a surface's luminance is perturbed (changed) depends on the pre-perturbation affinity state of the surface grouping, (3) grouping variables promoting the same surface grouping combine cooperatively and nonlinearly (super-additively) in determining the surface grouping's affinity, (4) different DG motion directions during different trials indicate that surface grouping can be bistable, which implies that inhibitory interactions have stabilized one of two alternative surface groupings, and (5) when alternative surface groupings have identical affinity, stochastic fluctuations can break the symmetry and inhibitory interactions can then stabilize one of the surface groupings, providing affinity levels are not too high (which results in bidirectional DG motion). A surface-grouping network is proposed within which boundaries vary in salience. Low salience or suppressed boundaries instantiate surface grouping, and DG motion results from changes in boundary salience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Amorphous silica in ultra-high performance concrete: First hour of hydration

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, Tina, E-mail: tina.oertel@isc.fraunhofer.de [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chair for Inorganic Chemistry I, Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth (Germany); Hutter, Frank [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Helbig, Uta, E-mail: uta.helbig@th-nuernberg.de [Chair for Crystallography and X-ray Methods, Technische Hochschule Nürnberg Georg Simon Ohm, Wassertorstraße 10, 90489 Nürnberg (Germany); Sextl, Gerhard [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chair for Chemical Technology of Advanced Materials, Julius Maximilian Universität, Röntgenring 11, 97070 Würzburg (Germany)

    2014-04-01

    Amorphous silica in the sub-micrometer size range is widely used to accelerate cement hydration. Investigations including properties of silica which differ from the specific surface area are rare. In this study, the reactivity of varying types of silica was evaluated based on their specific surface area, surface silanol group density, content of silanol groups and solubility in an alkaline suspension. Pyrogenic silica, silica fume and silica synthesized by hydrolysis and condensation of alkoxy silanes, so-called Stoeber particles, were employed. Influences of the silica within the first hour were further examined in pastes with water/cement ratios of 0.23 using in-situ X-ray diffraction, cryo scanning electron microscopy and pore solution analysis. It was shown that Stoeber particles change the composition of the pore solution. Na{sup +}, K{sup +}, Ca{sup 2+} and silicate ions seem to react to oligomers. The extent of this reaction might be highest for Stoeber particles due to their high reactivity.

  2. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

    International Nuclear Information System (INIS)

    Gaigeot, Marie-Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, ‘ice-like’ and ‘liquid-like’ features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water. (paper)

  3. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  4. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  5. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  6. Combinatorial materials research applied to the development of new surface coatings XIII: an investigation of polysiloxane antimicrobial coatings containing tethered quaternary ammonium salt groups.

    Science.gov (United States)

    Majumdar, Partha; Lee, Elizabeth; Gubbins, Nathan; Christianson, David A; Stafslien, Shane J; Daniels, Justin; Vanderwal, Lyndsi; Bahr, James; Chisholm, Bret J

    2009-01-01

    High-throughput biological assays were used to develop structure - antimicrobial relationships for polysiloxane coatings containing chemically bound (tethered) quaternary ammonium salt (QAS) moieties. The QAS-functional polysiloxanes were derived from solution blends of a silanol-terminated polydimethylsiloxane, a trimethoxysilane-functional QAS (QAS-TMS), and methylacetoxysilane. Since the QAS moieties provide antimicrobial activity through interaction with the microorganism cell wall, most of the compositional variables that were investigated were associated with the chemical structure of the QAS-TMS. Twenty different QAS-TMS were synthesized for the study and the antimicrobial activity of sixty unique polysiloxane coatings derived from these QAS-TMS determined toward Escherichia coli , Staphylococcus aureus , and Candida albicans . The results of the study showed that essentially all of the compositional variables significantly influenced antimicrobial activity. Surface characterization of these moisture-cured coatings using atomic force microscopy as well as water contact angle and water contact angle hysteresis measurements indicated that the compositional variables significantly affected coating surface morphology and surface chemistry. Overall, compositional variables that produced heterogeneous surface morphologies provided the highest antimicrobial activity suggesting that the antimicrobial activity was primarily derived from the relationship between coating chemical composition and self-assembly of QAS moieties at the coating/air interface. Using data modeling software, a narrow region of the compositional space was identified that provided broad-spectrum antimicrobial activity.

  7. Hydroxylated crystalline edingtonite silica faces as models for the amorphous silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Tosoni, S; Civalleri, B; Ugliengo, P [Dipartimento di Chimica IFM and NIS (Centre of Excellence), Universita di Torino, Via P. Giuria 7, 10125 Torino - ITALY (Italy); Pascale, F [Laboratoire de Cristallographie ed Modelisation des Materiaux Mineraux et Biologiques, UMR-CNRS-7036. Universite Henri Poincare - Nancy I, B.P. 239, 54506 Vandoeuvre-les-Nancy Cedex 05 - FRANCE (France)], E-mail: piero.ugliengo@unito.it

    2008-06-01

    Fully hydroxylated surfaces derived from crystalline edingtonite were adopted to model the variety of sites known to exist at the amorphous silica surface, namely isolated, geminal and interacting silanols. Structures, energetics and vibrational features of the surfaces either bare or in contact with water were modelled at DFT level using the B3LYP functional with a GTO basis set of double-zeta polarized quality using the periodic ab-initio CRYSTAL06 code. Simulated infrared spectra of both dry and water wet edingtonite surfaces were in excellent agreement with the experimental ones recorded on amorphous silica. Water interaction energies were compared with microcalorimetric differential heats of adsorption data showing good agreement, albeit computed ones being slightly underestimated due to the lack of dispersive forces in the B3LYP functional.

  8. Controlled interactions between anhydrous keggin-type heteropolyacids and silica support: Preparation and characterization of well-defined silica-supported polyoxometalate species

    KAUST Repository

    Grinenval, Eva

    2010-11-11

    Anhydrous Keggin-type phosphorus heteropolyacids were deposited on partially dehydroxylated silica by using the surface organometallic chemistry (SOMC) strategy. The resulting solids were characterized by a combination of physicochemical methods including IR, Raman, 1D and 2D 1H, and 31P MAS NMR, electron microscopy experiments and density functional theory (DFT) calculations. It is shown that the main surface species is [ - Si(OH...H+)]2[H+]1[PM 12O403-] where the polyoxometalate is linked to the support by proton interaction with two silanols. Two other minor species (10% each) are formed by coordination of the polyoxometalate to the surface via the interaction between all three protons with three silanol groups or via three covalent bonds formed by dehydroxylation of the above species. Comparison of the reactivity of these solids and of compounds prepared by a classical way shows that the samples prepared by the SOMC approach contain ca. 7 times more acid sites. © 2010 American Chemical Society.

  9. Surface-biofunctionalized multicore/shell CdTe@SiO2 composite particles for immunofluorescence assay

    Science.gov (United States)

    Jing, Lihong; Li, Yilin; Ding, Ke; Qiao, Ruirui; Rogach, Andrey L.; Gao, Mingyuan

    2011-12-01

    Strongly fluorescent multicore/shell structured CdTe@SiO2 composite particles of ~ 50 nm were synthesized via the reverse microemulsion method by using CdTe quantum dots co-stabilized by thioglycolic acid and thioglycerol. The optical stability of the CdTe@SiO2 composite particles in a wide pH range, under prolonged UV irradiation in pure water, or in different types of physiological buffers was systematically investigated. Towards immunofluorescence assay, both poly(ethylene glycol) (PEG) and carboxyl residues were simultaneously grafted on the surface of the silanol-terminated CdTe@SiO2 composite particles upon further reactions with silane reagents bearing a PEG segment and carboxyl group, respectively, in order to suppress the nonspecific interactions of the silica particles with proteins and meanwhile introduce reactive moieties to the fluorescent particles. Agarose gel electrophoresis, dynamic light scattering and conventional optical spectroscopy were combined to investigate the effectiveness of the surface modifications. Via the surface carboxyl residue, various antibodies were covalently conjugated to the fluorescent particles and the resultant fluorescent probes were used in detecting cancer cells through both direct fluorescent antibody and indirect fluorescent antibody assays, respectively.

  10. A Raman spectroscopy study on the effects of intermolecular hydrogen bonding on water molecules absorbed by borosilicate glass surface

    Science.gov (United States)

    Li, Fabing; Li, Zhanlong; Wang, Ying; Wang, Shenghan; Wang, Xiaojun; Sun, Chenglin; Men, Zhiwei

    2018-05-01

    The structural forms of water/deuterated water molecules located on the surface of borosilicate capillaries have been first investigated in this study on the basis of the Raman spectral data obtained at different temperatures and under atmospheric pressure for molecules in bulk and also for molecules absorbed by borosilicate glass surface. The strongest two fundamental bands locating at 3063 cm-1 (2438 cm-1) in the recorded Raman spectra are assigned here to the Osbnd H (Osbnd D) bond stretching vibrations and they are compared with the corresponding bands observed at 3124 cm-1 (2325 cm-1) in the Raman spectrum of ice Ih. Our spectroscopic observations have indicated that the structure of water and deuterated water molecules on borosilicate surface is similar to that of ice Ih (hexagonal phase of ice). These observations have also indicated that water molecules locate on the borosilicate surface so as to construct a bilayer structure and that strong and weak intermolecular hydrogen bonds are formed between water/deuterated molecules and silanol groups on borosilicate surface. In accordance with these findings, water and deuterated water molecules at the interface of capillary have a higher melting temperature.

  11. Sorption properties of bentonite clays towards Pu(IV), U(VI), Np(V) and Cs: experimental and surface complexation study

    Energy Technology Data Exchange (ETDEWEB)

    Sabodina, M.N. [Institute of Physical Chemistry of Russian Academy of Science, Moscow 119192 (Russian Federation); Kalmykov, St.N.; Sapozhnikov, Yu.A. [Radiochemistry div., Chemistry dept., Lomonosov Moscow State University, Moscow 119992, (Russian Federation); Gupalo, T.A.; Beigul, V.P. [VNIPI Promtechnology, Moscow (Russian Federation)

    2005-07-01

    Full text of publication follows: Sorption of radionuclides, their diffusion in bentonite as well as its solubility are the major factors that define bentonite as a geochemical barrier. Sorption of cations by bentonite could be governed by two mechanisms including ion exchange with interlayer cations and formation of surface complexes with either silanol or aluminol groups. The aim of this work was to study mechanisms of {sup 137}Cs, Pu(IV), Np(V) and U(VI) sorption by bentonite and their solubility in bentonite pore waters. Bentonite (Khakassiya deposit) used in the experiments was taken in Na-form and characterized by powder X-ray diffraction, scanning electron microscopy, potentiometric titration. The cation exchange capacities of bentonite at pH=6 were measured by isotopic exchange with {sup 22}Na{sup +} and Cs{sup +} saturation. Sorption experiments were performed in N{sub 2} atmosphere in plastic vials. Bentonite samples were left in the working solutions to swell for few days before sorption experiments were performed. After the desired concentration of radionuclide ({sup 137}Cs, {sup 238}Pu, {sup 239}Pu, {sup 237}Np, {sup 239}Np, {sup 238}U) was added to the suspension, the required pH values are established and samples were left until the equilibrium was reached. Separation of solution after the sorption was performed using micro- and ultrafiltration techniques. The sorption of Pu(IV), U(VI) and Np(V) was highly pH dependent that indicates predominant surface complexation mechanism of sorption. For {sup 137}Cs the pH dependence of sorption was less pronounced and significant decrease of sorption occurs at pH<1.7 that indicate the ion exchange as the major mechanism. The equilibrium constant of Na{sup +}/Cs{sup +} exchange was calculated form sorption isotherms and pH dependence of sorption. It is established using micro- and ultra-filtrations, that sorption of radionuclides onto bentonite nano colloids is essential. Surface complexation modeling exercises

  12. Ultra-thin films of polysilsesquioxanes possessing 3-methacryloxypropyl groups as gate insulator for organic field-effect transistors

    International Nuclear Information System (INIS)

    Nakahara, Yoshio; Kawa, Haruna; Yoshiki, Jun; Kumei, Maki; Yamamoto, Hiroyuki; Oi, Fumio; Yamakado, Hideo; Fukuda, Hisashi; Kimura, Keiichi

    2012-01-01

    Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups as an organic moiety of the side chain were synthesized by sol–gel condensation copolymerization of the corresponding trialkoxysilanes. The ultra-thin PSQ film with a radical initiator and a cross-linking agent was prepared by a spin-coating method, and the film was cured integrally at low temperatures of less than 120 °C through two different kinds of polymeric reactions, which were radical polymerization of vinyl groups and sol–gel condensation polymerization of terminated silanol and alkoxy groups. The obtained PSQ film showed the almost perfect solubilization resistance to acetone, which is a good solvent of PSQ before polymerization. It became clear by atomic force microscopy observation that the surface of the PSQ film was very smooth at a nano-meter level. Furthermore, pentacene-based organic field-effect transistor (OFET) with the PSQ film as a gate insulator showed typical p-channel enhancement mode operation characteristics and therefore the ultra-thin PSQ film has the potential to be applicable for solution-processed OFET systems. - Highlights: ► Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups were synthesized. ► The ultra-thin PSQ film could be cured at low temperatures of less than 120 °C. ► The PSQ film showed the almost perfect solubilization resistance to organic solvent. ► The surface of the PSQ film was very smooth at a nano-meter level. ► Pentacene-based organic field-effect transistor with the PSQ film was fabricated.

  13. Effect of hydration of sugar groups on adsorption of Quillaja bark saponin at air/water and Si/water interfaces.

    Science.gov (United States)

    Wojciechowski, Kamil; Orczyk, Marta; Marcinkowski, Kuba; Kobiela, Tomasz; Trapp, Marcus; Gutberlet, Thomas; Geue, Thomas

    2014-05-01

    Adsorption of a natural glycoside surfactant Quillaja bark saponin ("QBS", Sigma Aldrich 84510) was studied at the air/water and Si/water interfaces using a combination of surface pressure (SP), surface dilatational rheology, neutron reflectivity (NR), Infra-Red Attenuated Total Reflection Spectroscopy (IR ATR) and Quartz Crystal Microbalance (QCM). The adsorbed layers formed at the air/water interface are predominantly elastic, with the dilatational surface storage modulus reaching the maximum value of E'=184 mN/m. The NR results point to a strong hydration of the adsorbed layers (about 65% hydration, corresponding to about 60 molecules of water per one QBS molecule), most likely related to the presence of multiple sugar groups constituting the glycone part of the QBS molecules. With a layer thickness of 19 Å, the adsorbed amount obtained from NR seems largely underestimated in comparison to the value obtained from the surface tension isotherm. While this high extent of hydration does not prevent formation of dense and highly elastic layers at the air-water surface, QBS adsorption at the Si/water interface is much weaker. The adsorption isotherm of QBS on Si obtained from the QCM study reflects much lower affinity of highly hydrated and negatively charged saponin molecules to the Si/water interface. We postulate that at the air/water interface, QBS adsorbs through the triterpene aglycone moiety. In contrast, weak hydrogen bonding between the glycone part and the surface silanol groups of Si is responsible for QBS adsorption on more polar Si/water interface. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Sorption of nonpolar aromatic contaminants by chlorosilane surface modified natural minerals.

    Science.gov (United States)

    Huttenloch, P; Roehl, K E; Czurda, K

    2001-11-01

    The efficacy of the surface modification of natural diatomite and zeolite material by chlorosilanes is demonstrated. Chlorosilanes used were trimethylchlorosilane (TMSCI), tert-butyldimethylchlorosilane (TBDMSCI), dimethyloctadecylchlorosilane (DMODSCI), and diphenyldichlorosilane (DPDSCI) possessing different headgroups and chemical properties. Silanol groups of the diatomite and zeolite were modified by chemical reaction with the chlorosilanes resulting in a stable covalent attachment of the organosilanes to the mineral surface. The alteration of surface properties of the modified material was proved by measurements of water adsorption capacity, total organic carbon (TOC) content, and thermoanalytical data. The surface modified material showed great stability even when exposed to extremes in ionic strength, pH, and to pure organic solvents. Sorption of toluene, o-xylene, and naphthalene from water was greatly enhanced by the surface modification compared to the untreated materials which showed no measurable sorption of these compounds. The enhanced sorption was dependent on the organic carbon content as well as on chemical characteristics of the chlorosilanes used. Batch sorption experiments showed that the phenyl headgroups of DPDSCI have the best affinity for aromatic compounds. Removal from an aqueous solution of 10 mg/L of naphthalene, o-xylene, and toluene was 71%, 60%, and 30% for surface modified diatomite and 51%, 30%, and 16% for modified clinoptilolite, respectively. Sorption data were well described by the Freundlich isotherm equation, which indicated physical adsorption onto the lipophilic surface rather than partitioning into the surface organic phase. The chlorosilane modified materials have an apparent potential for application in environmental technologies such as permeable reactive barriers (PRB) or wastewater treatment.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... chemical bonds can be established between the SiO2 silanol surface groups and the MPR carboxylic chains, to render SiO2/MPR core-shell-type compounds. The presence of PFR or MPR resins during the sol–gel production of silica microspheres allows to control: the sizes of final SiO2 particles and; the transparency or ...

  16. Tailoring surface groups of carbon quantum dots to improve photoluminescence behaviors

    International Nuclear Information System (INIS)

    Tian, Ruixue; Hu, Shengliang; Wu, Lingling; Chang, Qing; Yang, Jinlong; Liu, Jun

    2014-01-01

    Highlights: • We develop a facile and green method to tailor surface groups. • Photoluminescence behaviors of carbon quantum dots are improved by tailoring their surface groups. • Highly luminescent efficiency is produced by amino-hydrothermal treatment of reduced carbon quantum dots. - Abstract: A facile and green method to tailor surface groups of carbon quantum dots (CQDs) is developed by hydrothermal treatment in an autoclave. The photoluminescence (PL) behaviors of CQDs depend on the types of surface groups. Highly efficient photoluminescence is obtained through amino-hydrothermal treatment of the CQDs reduced by NaBH 4 . The effects of surface groups on PL behavior are attributed to the degrees of energy band bending induced by surface groups

  17. A silica-supported double-decker silsesquioxane provides a second skin for the selective generation of bipodal surface organometallic complexes

    KAUST Repository

    Espinas, Jeff

    2012-11-12

    A well-defined silica-based material with a homogeneous nanolayer presenting identical pairs of vicinal silanols has been prepared by reaction of the surface organometallic species [≡SiOZr(CH 2CMe 3) 3], obtained on a silica dehydroxylated at 900 °C, with the double-decker-shaped silsesquioxane (OH) 2DD(OH) 2. The surface structure has been established using extensive NMR characterization ( 1H, 13C, 29Si, HETCOR, double-quantum, triple-quantum). Treatment with Zr(CH 2CMe 3) 4 leads to the first well-defined single-site bipodal grafted bis-neopentyl zirconium complex. © 2012 American Chemical Society.

  18. A silica-supported double-decker silsesquioxane provides a second skin for the selective generation of bipodal surface organometallic complexes

    KAUST Repository

    Espinas, Jeff; Pelletier, Jeremie; Abou-Hamad, Edy; Emsley, Lyndon; Basset, Jean-Marie

    2012-01-01

    A well-defined silica-based material with a homogeneous nanolayer presenting identical pairs of vicinal silanols has been prepared by reaction of the surface organometallic species [≡SiOZr(CH 2CMe 3) 3], obtained on a silica dehydroxylated at 900 °C, with the double-decker-shaped silsesquioxane (OH) 2DD(OH) 2. The surface structure has been established using extensive NMR characterization ( 1H, 13C, 29Si, HETCOR, double-quantum, triple-quantum). Treatment with Zr(CH 2CMe 3) 4 leads to the first well-defined single-site bipodal grafted bis-neopentyl zirconium complex. © 2012 American Chemical Society.

  19. Effects of curing conditions on the structure of sodium carboxymethyl starch/mineral matrix system: FT-IR investigation.

    Science.gov (United States)

    Kaczmarska, Karolina; Grabowska, Beata; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-04-24

    Strength properties of the microwave cured molding sands containing binders in a form of the aqueous solution of sodium carboxymethyl starch (CMS-Na) are higher than the same molding composition cured by conventional heating. Finding the reason of this effect was the main purpose in this study. Structural changes caused by both physical curing methods of molding sands systems containing mineral matrix (silica sand) and polymer water-soluble binder (CMS-Na) were compared. It was shown, by means of the FT-IR spectroscopic studies, that the activation of the polar groups in the polymer macromolecules structure as well as silanol groups on the mineral matrix surfaces was occurred in the microwave radiation. Binding process in microwave-cured samples was an effect of formation the hydrogen bonds network between hydroxyl and/or carbonyl groups present in polymer and silanol groups present in mineral matrix. FT-IR studies of structural changes in conventional and microwave cured samples confirm that participation of hydrogen bonds is greater after microwave curing than conventional heating. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A density functional theory study of the structure of pure-silica and aluminium-substituted MFI nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Tamargo, Carlos E.; Roldan, Alberto [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT (United Kingdom); Leeuw, Nora H. de, E-mail: deleeuwn@cardiff.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT (United Kingdom)

    2016-05-15

    The layered MFI zeolite allows a straightforward hierarchization of the pore system which accelerates mass transfer and increases its lifetime as a catalyst. Here, we present a theoretical study of the structural features of the pure-silica and aluminium-substituted MFI nanosheets. We have analysed the effects of aluminium substitution on the vibrational properties of silanols as well as the features of protons as counter-ions. The formation of the two-dimensional system did not lead to appreciable distortions within the framework. Moreover, the effects on the structure due to the aluminium dopants were the same in both the bulk and the slab. The principal differences were related to the silanol groups that form hydrogen-bonds with neighbouring aluminium-substituted silanols, whereas intra-framework hydrogen-bonds increase the stability of aluminium-substituted silanols toward dehydration. Thus, we have complemented previous experimental and theoretical studies, showing the lamellar MFI zeolite to be a very stable material of high crystallinity regardless of its very thin structure. - Graphical abstract: The structure of MFI zeolite nanosheet was investigated using Density Functional Theory. The results showed no differences against the bulk-type material upon aluminium doping. The aluminium-substituted silanol dehydrates toward a more stable configuration composed by a water molecule adsorbed on a Lewis centre. - Highlights: • MFI nanosheets with variable thicknesses were characterised using DFT calculations. • The distortions in the nanosheets after Al substitution reproduced those of the bulk. • H-bonds were only observed between silanol groups when the Al substitution took place. • The kinetic of the Al-silanol dehydration is dependent on intra-framework H-bonds. • Lewis acids with adsorbed water are more stable than Al-silanols. • The proton accessibility was related to the framework O atom binding the proton.

  1. The Nanoconfined Free Radical Polymerization: Reaction Kinetics and Thermodynamics

    Science.gov (United States)

    Zhao, Haoyu; Simon, Sindee

    The reaction kinetics and thermodynamics of nanoconfined free radical polymerizations are investigated for methyl methacrylate (MMA) and ethyl methacrylate (EMA) monomers using differential scanning calorimetry. Controlled pore glass is used as the confinement medium with pore diameters as small as 7.5 nm; the influence of both hydrophobic (silanized such that trimethylsilyl groups cover the surface) and hydrophilic (native silanol) surfaces is investigated. Propagation rates increase when monomers are reacted in the hydrophilic pores presumably due to the specific interactions between the carbonyl and silanol groups; however, the more flexible EMA monomer shows weaker effects. On the other hand, initial rates of polymerization in hydrophobic pores are unchanged from the bulk. In both pores, the onset of autoacceleration occurs earlier due to the reduced diffusivity of confined chains, which may be compensated at high temperatures. In addition to changes in kinetics, the reaction thermodynamics can be affected under nanoconfinement. Specifically, the ceiling temperature (Tc) is shifted to lower temperatures in nanopores, with pore surface chemistry showing no significant effects; the equilibrium conversion is also reduced at high temperatures below Tc. These observations are attributed to a larger negative change in entropy on propagation for the confined system, with the MMA system again showing greater effects. Funding from ACS PRF is gratefully acknowledged.

  2. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Alejandra J. Monsiváis-Barrón

    2014-10-01

    Full Text Available Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes.

  3. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites.

    Science.gov (United States)

    Monsiváis-Barrón, Alejandra J; Bonilla-Rios, Jaime; Sánchez-Fernández, Antonio

    2014-10-20

    Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes.

  4. Ultra-thin films of polysilsesquioxanes possessing 3-methacryloxypropyl groups as gate insulator for organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Yoshio; Kawa, Haruna [Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510 (Japan); Yoshiki, Jun [Division of Information and Electronic Engineering, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585 (Japan); Kumei, Maki; Yamamoto, Hiroyuki; Oi, Fumio [Konishi Chemical IND. Co., LTD., 3-4-77 Kozaika, Wakayama 641-0007 (Japan); Yamakado, Hideo [Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510 (Japan); Fukuda, Hisashi [Division of Engineering for Composite Functions, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585 (Japan); Kimura, Keiichi, E-mail: kkimura@center.wakayama-u.ac.jp [Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510 (Japan)

    2012-10-01

    Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups as an organic moiety of the side chain were synthesized by sol-gel condensation copolymerization of the corresponding trialkoxysilanes. The ultra-thin PSQ film with a radical initiator and a cross-linking agent was prepared by a spin-coating method, and the film was cured integrally at low temperatures of less than 120 Degree-Sign C through two different kinds of polymeric reactions, which were radical polymerization of vinyl groups and sol-gel condensation polymerization of terminated silanol and alkoxy groups. The obtained PSQ film showed the almost perfect solubilization resistance to acetone, which is a good solvent of PSQ before polymerization. It became clear by atomic force microscopy observation that the surface of the PSQ film was very smooth at a nano-meter level. Furthermore, pentacene-based organic field-effect transistor (OFET) with the PSQ film as a gate insulator showed typical p-channel enhancement mode operation characteristics and therefore the ultra-thin PSQ film has the potential to be applicable for solution-processed OFET systems. - Highlights: Black-Right-Pointing-Pointer Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups were synthesized. Black-Right-Pointing-Pointer The ultra-thin PSQ film could be cured at low temperatures of less than 120 Degree-Sign C. Black-Right-Pointing-Pointer The PSQ film showed the almost perfect solubilization resistance to organic solvent. Black-Right-Pointing-Pointer The surface of the PSQ film was very smooth at a nano-meter level. Black-Right-Pointing-Pointer Pentacene-based organic field-effect transistor with the PSQ film was fabricated.

  5. Riemann surfaces, Clifford algebras and infinite dimensional groups

    International Nuclear Information System (INIS)

    Carey, A.L.; Eastwood, M.G.; Hannabuss, K.C.

    1990-01-01

    We introduce of class of Riemann surfaces which possess a fixed point free involution and line bundles over these surfaces with which we can associate an infinite dimensional Clifford algebra. Acting by automorphisms of this algebra is a 'gauge' group of meromorphic functions on the Riemann surface. There is a natural Fock representation of the Clifford algebra and an associated projective representation of this group of meromorphic functions in close analogy with the construction of the basic representation of Kac-Moody algebras via a Fock representation of the Fermion algebra. In the genus one case we find a form of vertex operator construction which allows us to prove a version of the Boson-Fermion correspondence. These results are motivated by the analysis of soliton solutions of the Landau-Lifshitz equation and are rather distinct from recent developments in quantum field theory on Riemann surfaces. (orig.)

  6. The Effect of Nitrogen Surface Ligands on Propane Metathesis: Design and Characterizations of N-modified SBA15-Supported Schrock-type Tungsten Alkylidyne

    KAUST Repository

    Eid, Ahmed A.

    2014-04-01

    Catalysis, which is primarily a molecular phenomenon, is an important field of chemistry because it requires the chemical conversion of molecules into other molecules. It also has an effect on many fields, including, but not limited to, industry, environment and life Science[1]. Surface Organometallic Chemistry is an effective methodology for Catalysis as it imports the concept and mechanism of organometallic chemistry, to surface science and heterogeneous catalysis. So, it bridges the gap between homogenous and heterogeneous catalysis[1]. The aim of the present research work is to study the effect of Nitrogen surface ligands on the activity of Alkane, Propane in particular, metathesis. Our approach is based on the preparation of selectively well-defined group (VI) transition metal complexes supported onto mesoporous materials, SBA15 and bearing amido and/or imido ligands. We choose nitrogen ligands because, according to the literature, they showed in some cases better catalytic properties in homogenous catalysis in comparison with their oxygen counterparts[2]. The first section covers the modification of a highly dehydroxylated SBA15 surface using a controlled ammonia treatment. These will result in the preparation of two kind of Nitrogen surface ligands: -\\tOne with vicinal silylamine/silanol, (≡SiNH2)(≡SiOH), noted [N,O]SBA15 and, -\\tAnother\\tone\\twith\\tvicinal\\tbis-silylamine moieties (≡SiNH2)2, noted [N,N]SBA15[3]. The second section covers the reaction of Schrock type Tungsten Carbyne [W(≡C- tBu)(CH2-tBu)3] with those N-surface ligands and their characterizations by FT-IR, multiple quantum solid state NMR (1H, 13C), elemental analysis and gas phase analysis. The third section covers the generation of the active site, tungsten hydride species. Their performance toward propane metathesis reaction using the dynamic reactor technique PID compared toward previous well-known catalysts supported on silica oxide or mesoporous materials[4]. A fairly good

  7. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF)

    Science.gov (United States)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.

    2018-05-01

    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  8. Catalysis by Design Using Surface Organometallic Nitrogen-Containing Fragments

    KAUST Repository

    Hamzaoui, Bilel

    2016-01-01

    leading to opening strained siloxane bridges into acid-base paired functionalities (formation of N-phenylsilanamine-silanol pairs). This approach was successfully applied to the design of a series of aniline derivatives bifunctional SBA15. The efficiency

  9. Intersections of adelic groups on a surface

    International Nuclear Information System (INIS)

    Budylin, R Ya; Gorchinskiy, S O

    2013-01-01

    We solve a technical problem related to adeles on an algebraic surface. Given a finite set of natural numbers, one can associate with it an adelic group. We show that this operation commutes with taking intersections if the surface is defined over an uncountable field, and we provide a counterexample otherwise. Bibliography: 12 titles

  10. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto

    2012-02-01

    Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.

  11. An investigation of the functional groups on the surface of activated carbons

    Directory of Open Access Journals (Sweden)

    MARYTE DERVINYTE

    2004-05-01

    Full Text Available Activated carbons were produced in the laboratory from wood using a 20-run Plackett–Burman experimental design for 19 factors. The obtained batches of activated carbon were analysed by potentiometric titration and FTIR spectroscopy to determine the surface functional groups. The results obtained by potentiometric titration displayed the distribution of individual acidity constants of those groups in the pK range. Considering this parameter, the surface functional groups were divided into carboxyl, lactone and phenol. The linear regression equations reflecting the influence of each operation used for the synthesis on the amount of these functional groups in the obtained activated carbons were generated. The FTIR spectra were used in parallel for the evaluation of the amount and the type of the surface functional groups. Relationships between the two data sets obtained by potentiometric titration and FTIR spectroscopy were evaluated by correlation analysis. It was established that the amount of surface functional groups determined by potentiometric titration positively correlates with the intensity of the peaks of hydrophilic functional groups in the FTIR spectra. At the same time, the negative correlation between potentiometrically determined amount of surface functional groups and the intensity of peaks of hydrophobic functional groups was observed. Most probably, these non-polar formations can take part in the interaction of carbon surface with H+/OH- ions and diminish the strength of existent functional groups.

  12. Surface modification and characterization of basalt fibers as potential reinforcement of concretes

    Science.gov (United States)

    Iorio, M.; Santarelli, M. L.; González-Gaitano, G.; González-Benito, J.

    2018-01-01

    Basalt fibers were surface treated with silane coupling agents as a method to enhance the adhesion and durability of fiber-matrix interfaces in concrete based composite materials. In particular, this work has been focused on the study of basalt fibers chemical coatings with aminosilanes and their subsequent characterization. Surface treatments were carried out after removing the original sizing applied by manufacturer and pretreating them with an activation process of surface silanol regeneration. Different samples were considered to make convenient comparisons: as received fibers (commercial), calcinated fibers (without commercial sizing), activated samples (calcinated fibers subjected to an acid process for hydroxyl regeneration), and silanized fibers with γ-aminopropiltriethoxysilane, γ-aminopropilmethyldiethoxysilane and a mixture of 50% by weight of both silanes. A deep characterization was carried out in terms of structure using X-ray diffraction, XRD, and Fourier transform infrared spectroscopy, FTIR, thermal properties by thermogravimetric analysis, TGA, coupled with single differential thermal analysis, SDTA, and morphology by scanning electron microscopy, SEM, and atomic force microscopy, AFM.

  13. Nanoconfinement Effects in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Harold H. [Northwestern Univ., Evanston, IL (United States)

    2016-09-19

    neighboring Sn-O-Si bond. The resulting acidic silanol is active in epoxide ring opening and acetalization reactions. The open structure of the Sn center makes it accessible to larger molecules, including cellobiose which can be converted to 5-(hydroxymethyl)-furfural. The third structure is a support planted with functional group pairing of a known separation distance. Using a precursor molecule that contains a hydrolysable silyl ester bond, and making use of known chemistry to convert silanol groups into amino/pyridyl and phosphinyl groups, silica surfaces with carboxylic acid/silanol, carboxylic acid/amine, carboxylic acid/pyridine, and carboxylic acid/phosphine pairs can be constructed. The amino groups paired with carboxylic acid on such a surface is more active in the Henry reaction of 4-nitobenzaldehyde with nitromethane.

  14. Effective bounds for Brauer groups of Kummer surfaces over number fields

    DEFF Research Database (Denmark)

    Cantoral-Farfan, Victoria; Tang, Yunqing; Tanimoto, Sho

    2018-01-01

    We study effective bounds for Brauer groups of Kummer surfaces associated to the Jacobians of curves of genus 2.......We study effective bounds for Brauer groups of Kummer surfaces associated to the Jacobians of curves of genus 2....

  15. Comparative studies of Zr-based MCM-41 and MCM-48 mesoporous molecular sieves: Synthesis and physicochemical properties

    International Nuclear Information System (INIS)

    Chen, L.F.; Zhou, X.L.; Norena, L.E.; Wang, J.A.; Navarrete, J.; Salas, P.; Montoya, A.; Del Angel, P.; Llanos, M.E.

    2006-01-01

    Two surfactant-templated synthetic routes are developed for the preparation of new types of mesoporous molecular sieves, Zr-MCM-41 and Zr-MCM-48, using different Si sources but keeping the same zirconium precursor (zirconium-n-propoxide). When fumed silica was used as Si precursor, a Zr-MCM-48 material of cubic structure was formed with a surface area of 654.8 m 2 /g and an unimodal pore diameter distribution. It shows low stability: after calcination at 600 deg. C, the ordered structure was transformed into a relatively disordered worm-like mesostructure with many defects and silanol groups. The use of tetraethyl orthosilicate as Si source led to the formation of a Zr-MCM-41 mesoporous solid, which had good thermal stability and a highly ordered hexagonal arrangement, with a surface area 677.9 m 2 /g and an uniform pore diameter distribution. Fourier transform infrared (FT-IR) characterization and 29 Si NMR analysis confirm that zirconium ions indeed incorporated into the framework of the solid. The in situ FT-IR spectroscopy of pyridine adsorption reveals that both, Lewis and Broensted acid sites, were formed on the surface of these mesoporous materials. The strength and number of the Broensted acid sites of the Zr-MCM-48 solid were greater than those of the Zr-MCM-41, due to a lower degree of condensation reaction during the synthesis that led to more structural defects in the framework and more silanol groups stretching from the solid surface

  16. Elimination of ketone vapors by adsorption on spherical MCM-41 and MCM-48 silicas decorated with thermally activated poly(furfuryl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Machowski, Kamil [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Kuśtrowski, Piotr, E-mail: kustrows@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Dudek, Barbara [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Michalik, Marek [Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków (Poland)

    2015-09-01

    Spherical MCM-41 and MCM-48 silicas with different arrangements of mesopores were synthesized in a water–alcohol solution of surfactant by the hard-templating method. The pore structure and morphology of the obtained materials were confirmed by powder X-ray diffraction (XRD), low-temperature adsorption of nitrogen and scanning electron microscopy (SEM). The surface of mesoporous silicas was decorated with small amounts of poly(furfuryl alcohol) (PFA), which was introduced by the precipitation polymerization and subsequently thermally activated at 523 K to form stable C=O surface species detected by FTIR spectroscopy. The adsorption capacity of the PFA/silica composites in the elimination of various ketone (acetone, methyl-ethyl ketone and methyl-isobutyl ketone) vapors was compared to the effectiveness of pristine silicas. It was found that the modification of silicas by thermally degraded PFA enhanced their adsorption capacity. This effect was attributed to the appearance of another type of surface centers (namely carbonyl groups), which beside silanols interact with ketone molecules via hydrogen bonds. DRIFT spectra showed that a ketone molecule is bonded on silanol species in its keto form, whereas on carbonyl functionalities in enol one. - Highlights: • Surface of spherical MCM-type silicas was decorated with poly(furfuryl alcohol). • Thermal degradation of deposited polymer resulted in formation of C=O species. • Carbonyl groups enhanced adsorption capacity of MCM-41 and MCM-48 silicas. • Adsorption of ketones in enol or keto forms was revealed by DRIFT measurements.

  17. Elimination of ketone vapors by adsorption on spherical MCM-41 and MCM-48 silicas decorated with thermally activated poly(furfuryl alcohol)

    International Nuclear Information System (INIS)

    Machowski, Kamil; Kuśtrowski, Piotr; Dudek, Barbara; Michalik, Marek

    2015-01-01

    Spherical MCM-41 and MCM-48 silicas with different arrangements of mesopores were synthesized in a water–alcohol solution of surfactant by the hard-templating method. The pore structure and morphology of the obtained materials were confirmed by powder X-ray diffraction (XRD), low-temperature adsorption of nitrogen and scanning electron microscopy (SEM). The surface of mesoporous silicas was decorated with small amounts of poly(furfuryl alcohol) (PFA), which was introduced by the precipitation polymerization and subsequently thermally activated at 523 K to form stable C=O surface species detected by FTIR spectroscopy. The adsorption capacity of the PFA/silica composites in the elimination of various ketone (acetone, methyl-ethyl ketone and methyl-isobutyl ketone) vapors was compared to the effectiveness of pristine silicas. It was found that the modification of silicas by thermally degraded PFA enhanced their adsorption capacity. This effect was attributed to the appearance of another type of surface centers (namely carbonyl groups), which beside silanols interact with ketone molecules via hydrogen bonds. DRIFT spectra showed that a ketone molecule is bonded on silanol species in its keto form, whereas on carbonyl functionalities in enol one. - Highlights: • Surface of spherical MCM-type silicas was decorated with poly(furfuryl alcohol). • Thermal degradation of deposited polymer resulted in formation of C=O species. • Carbonyl groups enhanced adsorption capacity of MCM-41 and MCM-48 silicas. • Adsorption of ketones in enol or keto forms was revealed by DRIFT measurements.

  18. Surface functional group characterization using chemical derivatization X-ray photoelectron spectroscopy (CD-XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Jagst, Eda

    2011-03-18

    Chemical derivatization - X-ray photolectron spectroscopy (CD-XPS) was applied successfully in order to determine different functional groups on thin film surfaces. Different amino group carrying surfaces, prepared by spin coating, self-assembly and plasma polymerization, were successfully investigated by (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Amino groups were derivatized with the widely used primary amino group tags, pentafluorobenzaldehyde (PFB) and 4-(trifluoromethyl)-benzaldehyde (TFBA), prior to analysis. Primary amino group quantification was then carried out according to the spectroscopical data. Self-assembled monolayers (SAMs) of different terminal groups were prepared and investigated with XPS and spectra were compared with reference surfaces. An angle resolved NEXAFS measurement was applied to determine the orientation of SAMs. Plasma polymerized allylamine samples with different duty cycle, power and pressure values were prepared in order to study the effects of external plasma parameters on the primary amino group retention. CD-XPS was used to quantify the amino groups and experiments show, that the milder plasma conditions promote the retention of amino groups originating from the allylamine monomer. An interlaboratory comparison of OH group determination on plasma surfaces of polypropylene treated with oxygen plasma, was studied. The surfaces were investigated with XPS and the [OH] amount on the surfaces was calculated. (orig.)

  19. Peptide bond formation of alanine on silica and alumina surfaces as a catalyst

    Science.gov (United States)

    Sánchez Arenillas, M.; Mateo-Martí, E.

    2012-09-01

    Polymerization of amino acids has been important for the origin of life because the peptides may have been the first self-replicating systems. The amino acid concentrations in the oceans may have been too diluted in the early phases of the Earth. The formation of the biopolymers could have been due to the catalytic action of various minerals (such as silica or alumina). Our work is based on the comparison between alumina and silica minerals with and without prior activation of their silanol groups for the formation of peptide bonds using alanina like amino acid which it is the simplest quiral amino acid.

  20. Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by N-Donor SBA15 Surface Ligands: A Solid-State NMR and DFT Study

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2016-08-11

    Designing supported well-defined bis(carbene) complexes remains a key challenge in heterogeneous catalysis. The reaction of W(CtBu)(CH(2)tBu)(3) with amine-modified mesoporous SBA15 silica, which has vicinal silanol/silylamine pairs [(SiOH)(SiNH2)], leads to [(SiNH2-)(SiO-)W(CHtBu)(CH(2)tBu)(2)] and [(SiNH2-)(SiO-)W(=CHtBu)(2)(CH(2)tBu). Variable temperature, H-1-H-1 2D double-quantum, H-1-C-13 HETCOR, and HETCOR with spin diffusion solid-state NMR spectroscopy demonstrate tautomerization between the alkyl alkylidyne and the bis(alkylidene) on the SBA15 surface. Such equilibrium is possible through the coordination of W to the surface [(Si-OH)(Si-NH2)] groups, which act as a [N,O] pincer ligand. DFT calculations provide a rationalization for the surface-complex tautomerization and support the experimental results. This direct observation of such a process shows the strong similarity between molecular mechanisms in homogeneous and heterogeneous catalysis. In propane metathesis (at 150 degrees C), the tungsten bis(carbene) tautomer is favorable, with a turnover number (TON) of 262. It is the highest TON among all the tungsten alkyl-supported catalysts.

  1. Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by N-Donor SBA15 Surface Ligands: A Solid-State NMR and DFT Study

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa; Sofack-Kreutzer, Julien; Minenkov, Yury; Abou-Hamad, Edy; Hamzaoui, Bilel; Werghi, Baraa; Anjum, Dalaver H.; Cavallo, Luigi; Huang, Kuo-Wei; Basset, Jean-Marie

    2016-01-01

    Designing supported well-defined bis(carbene) complexes remains a key challenge in heterogeneous catalysis. The reaction of W(CtBu)(CH(2)tBu)(3) with amine-modified mesoporous SBA15 silica, which has vicinal silanol/silylamine pairs [(SiOH)(SiNH2)], leads to [(SiNH2-)(SiO-)W(CHtBu)(CH(2)tBu)(2)] and [(SiNH2-)(SiO-)W(=CHtBu)(2)(CH(2)tBu). Variable temperature, H-1-H-1 2D double-quantum, H-1-C-13 HETCOR, and HETCOR with spin diffusion solid-state NMR spectroscopy demonstrate tautomerization between the alkyl alkylidyne and the bis(alkylidene) on the SBA15 surface. Such equilibrium is possible through the coordination of W to the surface [(Si-OH)(Si-NH2)] groups, which act as a [N,O] pincer ligand. DFT calculations provide a rationalization for the surface-complex tautomerization and support the experimental results. This direct observation of such a process shows the strong similarity between molecular mechanisms in homogeneous and heterogeneous catalysis. In propane metathesis (at 150 degrees C), the tungsten bis(carbene) tautomer is favorable, with a turnover number (TON) of 262. It is the highest TON among all the tungsten alkyl-supported catalysts.

  2. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    Science.gov (United States)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  3. Surface functional groups in capacitive deionization with porous carbon electrodes

    Science.gov (United States)

    Hemmatifar, Ali; Oyarzun, Diego I.; Palko, James W.; Hawks, Steven A.; Stadermann, Michael; Santiago, Juan G.; Stanford Microfluidics Lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Capacitive deionization (CDI) is a promising technology for removal of toxic ions and salt from water. In CDI, an applied potential of about 1 V to pairs of porous electrodes (e.g. activated carbon) induces ion electromigration and electrostatic adsorption at electrode surfaces. Immobile surface functional groups play a critical role in the type and capacity of ion adsorption, and this can dramatically change desalination performance. We here use models and experiments to study weak electrolyte surface groups which protonate and/or depropotante based on their acid/base dissociation constants and local pore pH. Net chemical surface charge and differential capacitance can thus vary during CDI operation. In this work, we present a CDI model based on weak electrolyte acid/base equilibria theory. Our model incorporates preferential cation (anion) adsorption for activated carbon with acidic (basic) surface groups. We validated our model with experiments on custom built CDI cells with a variety of functionalizations. To this end, we varied electrolyte pH and measured adsorption of individual anionic and cationic ions using inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) techniques. Our model shows good agreement with experiments and provides a framework useful in the design of CDI control schemes.

  4. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto; Elimelech, Menachem

    2012-01-01

    groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact

  5. Overview on the Surface Functionalization Mechanism and Determination of Surface Functional Groups of Plasma Treated Carbon Nanotubes.

    Science.gov (United States)

    Saka, Cafer

    2018-01-02

    The use of carbon materials for many applications is due to the unique diversity of structures and properties ranging from chemical bonds between the carbon atoms of the materials to nanostructures, crystallite alignment, and microstructures. Carbon nanotubes and other nanoscale carbonaceous materials draw much attention due to their physical and chemical properties, such as high strength, high resistance to corrosion, electrical and thermal conductivity, stability and a qualified adsorbent. Carbon-based nanomaterials, which have a relatively large specific area and layered structure, can be used as an adsorbent for efficient removal of organic and inorganic contaminants. However, one of the biggest obstacles to the development of carbon-based nanomaterials adsorbents is insolubility and the lack of functional groups on the surface. There are several approaches to introduce functional groups on carbon nanotubes. One of these approaches, plasma applications, now has an important place in the creation of surface functional groups as a flexible, fast, and environmentally friendly method. This review focuses on recent information concerning the surface functionalization and modification of plasma treated carbon nanotube. This review considers the surface properties, advantages, and disadvantages of plasma-applied carbon nanotubes. It also examines the reaction mechanisms involved in the functional groups on the surface.

  6. Особенности адсорбции метиленового голубого на поверхности диатомита

    Directory of Open Access Journals (Sweden)

    K. Korzhynbayeva

    2013-09-01

    Full Text Available The adsorption of methylene blue dye on the surface of diatomite was studied. Adsorption takes place due to the electrostatic interaction of dye cations and silanolic groups of diatomite. Investigation of the influence of pH on the adsorption efficiency showed that the amount of adsorption increased with pH increasing. The possibility of heterocoagulation associates dye and particles of diatomite in the system methylene blue – diatomite along with the adsorption processes was considered.

  7. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bin [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@hotmail.com [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Lu, Jian; Zhang, Li; Zhao, Miao; Shi, Changcan; Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Guo, Jintang [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China)

    2013-07-01

    In order to improve the resistance of platelet adhesion on material surface, 2-methacryloyloxyethyl phosphorylcholine (MPC) was grafted onto polycarbonate urethane (PCU) surface via Michael reaction to create biomimetic structure. After introducing primary amine groups via coupling tris(2-aminoethyl)amine (TAEA) onto the polymer surface, the double bond of MPC reacted with the amino group to obtain MPC modified PCU. The modified surface was characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results verified that MPC was grafted onto PCU surface by Michael reaction method. The MPC grafted PCU surface had a low water contact angle and a high water uptake. This means that the hydrophilic PC functional groups improved the surface hydrophilicity significantly. In addition, surface morphology of MPC grafted PCU film was imaged by atomic force microscope (AFM). The results showed that the grafted surface was rougher than the blank PCU surface. In addition, platelet adhesion study was evaluated by scanning electron microscopy (SEM) observation. The PCU films after treated with platelet-rich plasma demonstrated that much fewer platelets adhered to the MPC-grafted PCU surface than to the blank PCU surface. The antithrombogenicity of the MPC-grafted PCU surface was determined by the activated partial thromboplastin time (APTT). The result suggested that the MPC modified PCU may have potential application as biomaterials in blood-contacting and some subcutaneously implanted devices. - Highlights: • MPC was successfully grafted onto polycarbonate urethane surface via Michael reaction. • High concentration of PC functional groups on the surface via TAEA molecule • Biomimetic surface modification • The modified surface showed high hydrophilicity and anti-platelet adhesion.

  8. Comparative studies of Zr-based MCM-41 and MCM-48 mesoporous molecular sieves: Synthesis and physicochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.F. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico)]. E-mail: chenlf2001@yahoo.com; Zhou, X.L. [Petroleum Processing Research Center, East China University of Science and Technology, 200237 Shanghai (China); Norena, L.E. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico)]. E-mail: lnf@correo.azc.uam.mx; Wang, J.A. [Laboratorio de Catalisis y Materiales, SEPI-ESIQIE, Instituto Politecnico Nacional, Av. Politecnico S/N, Col. Zacatenco, 07738 Mexico D.F. (Mexico); Navarrete, J. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico); Salas, P. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico); Montoya, A. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico); Del Angel, P. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico); Llanos, M.E. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico)

    2006-12-30

    Two surfactant-templated synthetic routes are developed for the preparation of new types of mesoporous molecular sieves, Zr-MCM-41 and Zr-MCM-48, using different Si sources but keeping the same zirconium precursor (zirconium-n-propoxide). When fumed silica was used as Si precursor, a Zr-MCM-48 material of cubic structure was formed with a surface area of 654.8 m{sup 2}/g and an unimodal pore diameter distribution. It shows low stability: after calcination at 600 deg. C, the ordered structure was transformed into a relatively disordered worm-like mesostructure with many defects and silanol groups. The use of tetraethyl orthosilicate as Si source led to the formation of a Zr-MCM-41 mesoporous solid, which had good thermal stability and a highly ordered hexagonal arrangement, with a surface area 677.9 m{sup 2}/g and an uniform pore diameter distribution. Fourier transform infrared (FT-IR) characterization and {sup 29}Si NMR analysis confirm that zirconium ions indeed incorporated into the framework of the solid. The in situ FT-IR spectroscopy of pyridine adsorption reveals that both, Lewis and Broensted acid sites, were formed on the surface of these mesoporous materials. The strength and number of the Broensted acid sites of the Zr-MCM-48 solid were greater than those of the Zr-MCM-41, due to a lower degree of condensation reaction during the synthesis that led to more structural defects in the framework and more silanol groups stretching from the solid surface.

  9. Surface-Level Diversity and Decision-Making in Groups: When Does Deep-Level Similarity Help?

    OpenAIRE

    2006-01-01

    Abstract We examined how surface-level diversity (based on race) and deep-level similarities influenced three-person decision-making groups on a hidden-profile task. Surface-level homogeneous groups perceived their information to be less unique and spent less time on the task than surface-level diverse groups. When the groups were given the opportunity to learn about their deep-level similarities prior to t...

  10. Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Alves, P., E-mail: palves@eq.uc.pt [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Ferreira, P. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Kaiser, Jean-Pierre [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Salk, Natalie [Mikrofertigung – Micro Engineering, Fraunhofer IFAM, Wiener Strasse 12, D-288359 Bremen (Germany); Bruinink, Arie [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Sousa, Hermínio C. de; Gil, M.H. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal)

    2013-10-15

    The interaction of polymers with other materials is an important issue, being their surface properties clearly crucial. For some important polymer applications, their surfaces have to be modified. Surface modification aims to tailor the surface characteristics of a material for a specific application without affecting its bulk properties. Materials can be surface modified by using biological, chemical or physical methods. The aim of this work was to improve the reactivity of the thermoplastic polyurethane (TPU) material (Elastollan{sup ®}) surface and to make its surface cell repellent by grafting carboxylic groups onto its surface. Two TPU materials were studied: a polyether-based TPU and a polyester-based TPU. The grafting efficiency was evaluated by contact angle measurements and by analytical determination of the COOH groups. Scanning electron microscopy (SEM) of the membranes surface was performed as well as cell adhesion tests. It was proved that the surfaces of the TPUs membranes were successfully modified and that cell adhesion was remarkably reduced.

  11. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Mierczynska-Vasilev, Agnieszka, E-mail: agnieszka.mierczynska-vasilev@awri.com.au; Smith, Paul A., E-mail: paul.smith@awri.com.au

    2016-11-15

    Highlights: • Chemical surface composition affects behaviour of wine adsorption. • SO{sub 3}H and COOH groups adsorb more of the wine nitrogen-containing compounds. • NH{sub 2} and NR{sub 3} groups encourage carbon-containing compounds adsorption. • Red wine constituents after filtration adsorbed more on NR{sub 3} and CHO surfaces. - Abstract: The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with −SO{sub 3}H and –COOH groups can adsorb more of the wine nitrogen-containing compounds whereas −NH{sub 2} and −NR{sub 3} groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on −NR{sub 3} and –CHO surfaces. The –OH modified surfaces had the lowest ability to absorb wine components.

  12. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    International Nuclear Information System (INIS)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-01-01

    Highlights: • Chemical surface composition affects behaviour of wine adsorption. • SO_3H and COOH groups adsorb more of the wine nitrogen-containing compounds. • NH_2 and NR_3 groups encourage carbon-containing compounds adsorption. • Red wine constituents after filtration adsorbed more on NR_3 and CHO surfaces. - Abstract: The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with −SO_3H and –COOH groups can adsorb more of the wine nitrogen-containing compounds whereas −NH_2 and −NR_3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on −NR_3 and –CHO surfaces. The –OH modified surfaces had the lowest ability to absorb wine components.

  13. Effect of the surface oxygen groups on methane adsorption on coals

    Energy Technology Data Exchange (ETDEWEB)

    Hao Shixiong [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Wen Jie [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu Xiaopeng [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Chu Wei, E-mail: chuwei1965_scu@yahoo.com [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We modified one coal with H{sub 2}O{sub 2}, (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and HNO{sub 3} respectively, to prepare coal samples with different surface properties. Black-Right-Pointing-Pointer The oxygen groups on coal surface were characterized by XPS. Black-Right-Pointing-Pointer The textures of the coal samples were investigated by N{sub 2} adsorption at 77 K. Black-Right-Pointing-Pointer The adsorption behaviors were measured by volumetric method. Black-Right-Pointing-Pointer There was a negative correlation between methane saturated adsorption capacity and the O{sub total}/C{sub total}. - Abstract: To investigate the influence of surface oxygen groups on methane adsorption on coals, one bituminous coal was modified with H{sub 2}O{sub 2}, (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and HNO{sub 3} respectively, to prepare coal samples with different surface properties. The oxygen groups on coal surface were characterized by X-ray photoelectron spectroscopy (XPS). The textures of the coal samples were investigated by N{sub 2} adsorption at 77 K. Their surface morphologies were analyzed by scanning electron microscopy (SEM). The methane adsorption behaviors of these coal samples were measured at 303 K in pressure range of 0-5.3 MPa by volumetric method. The adsorption data of methane were fitted to the Langmuir model and Dubinin-Astakhov (D-A) model. The fitting results showed that the D-A model fitted the isotherm data better than the Langmuir model. It was observed that there was, in general, a positive correlation between the methane saturated adsorption capacity and the micropore volume of coals while a negative correlation between methane saturated adsorption capacity and the O{sub total}/C{sub total}. The methane adsorption capacity was determined by the coal surface chemistry when the microporosity parameters of two samples were similar. Coal with a higher amount of oxygen surface groups, and consequently with a less

  14. Determination of surface functional groups on mechanochemically activated carbon cloth by Boehm method

    Directory of Open Access Journals (Sweden)

    Đukić Anđelka B.

    2014-01-01

    Full Text Available In order to improve sorption properties of activated carbon cloth that can be used for wastewater purification, mechanochemical activation was performed in both inert and air atmosphere. Boehm method was used to follow the changes in the number and types of surface groups induced by mechanical milling. The number of the base groups of 0,2493 mmol/g is significantly smaller than the total amount of acidic functional groups, 2,5093 mmol/g. Among the acidic groups present on the surface, the most represented are phenolic groups (2.3846 mmol/g , ie . > 95 % , the carboxylic groups are present far less (0.1173 mmol /g, ie. 4.5 %, while the presence of the lactone group on the surface of ACC is negligible (0.0074 mmol/g ie. under 0.3 %. Mechanochemical activation lead to an increase in the number of acidic and basic groups on the surface of the ACC. The milling in inert atmosphere has dominant effect with respect to the changes in the total number of basic functional groups (compared to milling in an air atmosphere: the number of basic groups of the ACC was 0.8153 mmol/g milled under argon, 0.7933 mmol/g in the air; the number of acidic groups is 2.9807 mmol/g for a sample milled under argon and 3.5313 mmol/g for one milled in the air.

  15. DEHYDRATION AND REHYDRATION OF AN ION-LEACHABLE GLASS USED IN GLASS-IONOMER CEMENTS

    Directory of Open Access Journals (Sweden)

    Jacek Klos

    2017-03-01

    Full Text Available Samples of the ionomer glass known as G338 have been heated at 240°C for 24 hours, after which they lost 1.19 % (Standard deviation 0.16% of their original mass. This loss was attributed to removal of water, as both molecular water and the product of reaction of silanol groups to form siloxane bridges. Exposing samples of glass either to air at ambient humidity or to air at 95% relative humidity showed a degree of rehydration, but mass uptake did not approach the original mass loss in either case. It is suggested that this is because of the relatively difficulty in forming new silanol groups from the siloxane bridges. Glass-ionomer cements prepared from these glass samples with aqueous poly(acrylic acid solution had different properties, depending on the glass used. Dehydrated glass gave cements which set faster but were weaker than those formed by as-received glass. The role of silanol groups in influencing reaction rate and promoting strength development is discussed.

  16. Abiotic Degradation and Toxicological Impacts of Pharmaceuticals and Personal Care Products (PPCPs) in Surface Waters: Roles of Mineral Sediments and Solar Radiation

    Science.gov (United States)

    Rubasinghege, G. R. S.; Rijal, H.; Maldonado-Torres, S.; Gurung, R.; Rogelj, S.; Piyasena, M.

    2017-12-01

    The growing medical and personal needs of human populations have escalated release of pharmaceuticals and personal care products into surface waters. This work investigates abiotic degradation pathways of a particular PPCP, ibuprofen, in the presence of a major mineral component of sedimentation (kaolinite clay), as well as the health effects of the primary compound and its degradation products. Results from these studies showed that the rate and extent of ibuprofen degradation is greatly influenced by the presence of sedimentation particles and solar radiation. In the absence of solar radiation, the dominant reaction mechanism was observed to be the adsorption of ibuprofen onto sedimentation particle surface where surface silanol groups play a key role. In contrast, under solar radiation and in the presence of clay particles, ibuprofen breaks down to several fractions. The decay rates were at least 6-fold higher for irradiated samples compared to those of dark conditions. Toxicity of primary ibuprofen and its secondary residues were tested on three microorganisms: Bacillus megaterium, Pseudoaltermonas atlantica; and algae from the Chlorella genus. The results from the biological assays show that primary PPCP is more toxic than the mixture of secondary products. Overall, however, biological assays carried out using only 4-acetylbenzoic acid, the most abundant secondary product, show a higher toxic effect on algae compared to its parent compound.

  17. Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups

    International Nuclear Information System (INIS)

    Kralj, Slavko; Drofenik, Miha; Makovec, Darko

    2011-01-01

    General and versatile methods for the functionalization of superparamagnetic, silica-coated, maghemite nanoparticles by surface amino and/or carboxyl groups have been established. The nanoparticles were synthesized using co-precipitation from aqueous solutions and coated with a thin layer of silica using the hydrolysis and condensation of tetraethoxysilane (TEOS). For the amino functionalization, 3-(2-aminoethylamino)propylmethyldimethoxysilane (APMS) was grafted onto the nanoparticle surfaces in their aqueous suspensions. The grafting process was followed by measurements of the ζ-potential and a determination of the concentration of the surface amino groups with conductometric titrations. The surface concentration of the amino groups could be varied by increasing the amount of APMS in the grafting process up to approximately 2.3 –NH 2 groups per nm 2 . The carboxyl functionalization was obtained in two ways: (i) by a ring-opening linker elongation reaction of the surface amines at the functionalized nanoparticles with succinic anhydride (SA) in non-aqueous medium, and (ii) by reacting the APMS and SA first, followed by grafting of the carboxyl-terminated reagent onto the nanoparticle surfaces. Using the first method, the SA only reacted with the terminal primary amino groups (–NH 2 ) of the surface-grafted APMS molecules. Infra-red spectroscopy (ATR FTIR) and mass spectrometry (HRMS) showed that the second method enables the bonding of up to two SA molecules per one APMS molecule, since the SA reacted with both the primary (–NH 2 ) and secondary amino (–NH–) groups of the APMS molecule. When using both methods, the ratio between the surface amino and carboxyl groups can be controlled.

  18. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    Science.gov (United States)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-11-01

    The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with -SO3H and -COOH groups can adsorb more of the wine nitrogen-containing compounds whereas -NH2 and -NR3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on -NR3 and -CHO surfaces. The -OH modified surfaces had the lowest ability to absorb wine components.

  19. Radioactive liquid waste processing method

    International Nuclear Information System (INIS)

    Nishi, Takashi; Baba, Tsutomu; Fukazawa, Tetsuo; Matsuda, Masami; Chino, Koichi; Ikeda, Takashi.

    1993-01-01

    As an adsorbent used for removing radioactive nuclides such as cesium and strontium from radioactive liquid wastes generated from a reprocessing plant, a silicon compound having siloxane bonds constituted by silicon and oxygen and having silanol groups constituted by silicon, oxygen and hydrogen, or an inorganic material mainly comprising aluminosilicate constituted with silicon, oxygen and aluminum is used. In the adsorbent of the present invention, since silica main skeletons are partially decomposed in an aqueous alkaline solution to newly form silanol groups having a cation adsorbing property, pretreatment such as pH adjustment is not necessary. (T.M.)

  20. QMX: A versatile environment for hybrid calculations applied to the grafting of Al 2 Cl 3 Me 3 on a silica surface

    KAUST Repository

    Kerber, Torsten

    2013-01-23

    We present a new software to easily perform QM:MM and QM:QM\\' calculations called QMX. It follows the subtraction scheme and it is implemented in the Atomic Simulation Environment (ASE). Special attention is paid to couple molecular calculations with periodic boundaries approaches. QMX inherits the flexibility and versatility of the ASE package: any combination of methods namely force field, semiempirical, first principle, and ab initio, can be used as hybrid potential energy surface (PES). Its ease of use is demonstrated by considering the adsorption of Al2Cl3Me3 on silica surface and by combining different levels of theory (from standard DFT to MP2 calculations) for the so-called High Level cluster with standard PW91 density functional theory calculations for the Low Level environment. It is shown that the High Level cluster must contain the silanol group close to the aluminum atoms. The bridging adsorption is favored by 58 kJ mol-1 at the MP2:PW91 level with respect to the terminal position. Using large clusters at the MP2:PW91 level, it is shown that PW91 calculations are sufficient for structure optimization but that embedded methods are required for accurate energy profiles. © 2013 Wiley Periodicals, Inc.

  1. Effect of surface ethoxy groups on photoactivity of TiO2 nanocrystals

    International Nuclear Information System (INIS)

    Tian Lihong; Deng Kejian; Ye Liqun; Zan Lin

    2011-01-01

    TiO 2 nanocrystals modified by ethoxy groups were prepared by a facile nonhydrolytic solvothermal method and characterized by XRD, TEM, TG-DTA and XPS, which showed an enhanced visible-light photocatalytic activity on the degradation of Rhodamine B compared with TiO 2 modified by benzyloxy groups and the 'naked' TiO 2 . The adsorption and degradation pathway of Rhodamine B on TiO 2 modified by ethoxy groups were also investigated. The zeta-potential (ζ) results showed that the TiO 2 modified by ethoxy groups had high negative surface charge, which incited the positive -N(Et) 2 group of RhB absorbing on the TiO 2 surface and preferably led the N-dealkylation pathway under visible light irradiation.

  2. The Picard group of the moduli space of r-Spin Riemann surfaces

    DEFF Research Database (Denmark)

    Randal-Williams, Oscar

    2012-01-01

    An r-Spin Riemann surface is a Riemann surface equipped with a choice of rth root of the (co)tangent bundle. We give a careful construction of the moduli space (orbifold) of r-Spin Riemann surfaces, and explain how to establish a Madsen–Weiss theorem for it. This allows us to prove the “Mumford...... conjecture” for these moduli spaces, but more interestingly allows us to compute their algebraic Picard groups (for g≥10, or g≥9 in the 2-Spin case). We give a complete description of these Picard groups, in terms of explicitly constructed line bundles....

  3. The role seemingly of amorphous silica gel layers in chiral separations by planar chromatography

    International Nuclear Information System (INIS)

    Sajewicz, M.; Kowalska, T.

    2007-01-01

    In planar chromatography, silica gel appears as the most frequently used adsorbent. Its preference as planar chromatographic stationary phase is due to its high specific surface area (ca. 700 m2 gl) and relatively simple active sites (silanol groups =Si-OH). The high specific surface area of silica gel and a high density of coverage of its surface with the silanol active sites contribute jointly to an excellent separation performance of this adsorbent. In our experiments on chiral separation of the enantiomer pairs by planar chromatography, contradictory behavior of the silica gel layers versus the chiral compounds was observed. The migration tracks of chiral compounds in the ascending planar chromatographic mode were not vertical but bent on either side being a function of analyte chirality. This deviation of the analytes migration track was noticed, when using the densitometric scanner to quantify the respective chromatograms. In order to confirm the hypothesis as to the microcrystalline nature of silica gel used in liquid chromatography, it was further investigated through circular dichroism (CD) and the data thereof confirmed that the chromatographic silica gels are not amorphous but microcrystalline, contributing to the (partial) horizontal enantioseparation of the antimer pairs. This paper summarizes the results of our investigation on the microcrystalline nature of silica gels used in planar chromatography and their impact on enantioseparation of the selected pairs of antimers. (author)

  4. Catalysis by Design Using Surface Organometallic Nitrogen-Containing Fragments

    KAUST Repository

    Hamzaoui, Bilel

    2016-06-14

    The aim of this thesis is to explore the chemistry of well-defined silica-supported group 4 and group 5 complexes that contain one or more multiply-bonded nitrogen atoms. Such species have been recognized as crucial intermediates in many catalytic reactions (e.g. hydroaminoalkylation, olefin hydrogenation, imine metathesis…). The first chapter provided a bibliographic overview of the preparation and the reactivity of group 4 and 5 complexes towards hydroaminoalkylation and imine metathesis catalysis. The second chapter deals with the isolation and the characterization of a series of well-defined group 4 ƞ2-imine complexes surfaces species. 2D solid-state NMR (1H–13C HETCOR, Multiple Quantum) experiments have revealed consistently a unique structural rearrangement, viz azametallacycle occurring on the immobilized metal-amido ligands. Hydrogenolysis of the sole Zr-C bond in such species gives selectively a silica-supported zirconium monohydride that can perform the catalytic hydrogenation of olefins. The third chapter examines the mechanistic studies of the intermolecular hydroaminoalkylation using SOMC to identify the key metallacyclic surface intermediates (silica-supported three-membred and five-membered). The catalyst was regenerated by protonolysis and afforded pure amine. Catalytic testing of a selection of amine compounds with variable electronic properties was carried out. The fourth chapter deals with the generation and the characterization of well-defined silica-supported zirconium-imido complexes. The resulting species effectively catalyzes imine/imine cross-metathesis and thus considered as the first heterogeneous catalysts active for imine metathesis reaction. The fifth chapter studies the reaction of SBA15.1100 ºC with dry aniline and derivatives leading to opening strained siloxane bridges into acid-base paired functionalities (formation of N-phenylsilanamine-silanol pairs). This approach was successfully applied to the design of a series of

  5. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing, E-mail: liujing27@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheney, Marcos A. [Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853 (United States); Wu Fan; Li Meng [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg{sup 0}. The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg{sup 0} adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg{sup 0}, and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  6. Supramolecular Complex Antioxidant Consisting of Vitamins C, E and Hydrophilic-Hydrophobic Silica Nanoparticles

    Science.gov (United States)

    Laguta, I. V.; Kuzema, P. O.; Stavinskaya, O. N.; Kazakova, O. A.

    Samples with varied amount of surface trimethylsilyl groups were obtained via gas-phase chemical modification of silica nanoparticles. The biocompatibility tests conducted in erythrocyte suspension have shown that hydrophobization of silica decreases its damaging effect to the cells. Being wettable in aqueous media, partially silylated silicas have higher affinity to hydrophobic bioactive molecules in comparison with the initial silica. Novel antioxidant consisting of vitamins C and E and silica with 40% of surface trimethylsilyl groups was formulated. It was found that supramolecular complexes are formed on the silica surface due to the affinity of water- and fat-soluble antioxidants to hydrophilic silanol and hydrophobic trimethylsilyl groups, respectively. Test reactions (total phenolic index determination, DPPH test) and in vitro studies (spectral analysis of erythrocyte suspensions undergoing UV irradiation) revealed the correlation between antioxidant activity of the complex antioxidant and the vitamins’ content. The antioxidant remained active during long-term storage under standard conditions.

  7. Comparison of the surface ion density of silica gel evaluated via spectral induced polarization versus acid-base titration

    Science.gov (United States)

    Hao, Na; Moysey, Stephen M. J.; Powell, Brian A.; Ntarlagiannis, Dimitrios

    2016-12-01

    Surface complexation models are widely used with batch adsorption experiments to characterize and predict surface geochemical processes in porous media. In contrast, the spectral induced polarization (SIP) method has recently been used to non-invasively monitor in situ subsurface chemical reactions in porous media, such as ion adsorption processes on mineral surfaces. Here we compare these tools for investigating surface site density changes during pH-dependent sodium adsorption on a silica gel. Continuous SIP measurements were conducted using a lab scale column packed with silica gel. A constant inflow of 0.05 M NaCl solution was introduced to the column while the influent pH was changed from 7.0 to 10.0 over the course of the experiment. The SIP measurements indicate that the pH change caused a 38.49 ± 0.30 μS cm- 1 increase in the imaginary conductivity of the silica gel. This increase is thought to result from deprotonation of silanol groups on the silica gel surface caused by the rise in pH, followed by sorption of Na+ cations. Fitting the SIP data using the mechanistic model of Leroy et al. (Leroyet al., 2008), which is based on the triple layer model of a mineral surface, we estimated an increase in the silica gel surface site density of 26.9 × 1016 sites m- 2. We independently used a potentiometric acid-base titration data for the silica gel to calibrate the triple layer model using the software FITEQL and observed a total increase in the surface site density for sodium sorption of 11.2 × 1016 sites m- 2, which is approximately 2.4 times smaller than the value estimated using the SIP model. By simulating the SIP response based on the calibrated surface complexation model, we found a moderate association between the measured and estimated imaginary conductivity (R2 = 0.65). These results suggest that the surface complexation model used here does not capture all mechanisms contributing to polarization of the silica gel captured by the SIP data.

  8. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release

    Science.gov (United States)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.

    2017-02-01

    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  9. Chemical vapor deposition of three aminosilanes on silicon dioxide: surface characterization, stability, effects of silane concentration, and cyanine dye adsorption.

    Science.gov (United States)

    Zhang, Feng; Sautter, Ken; Larsen, Adam M; Findley, Daniel A; Davis, Robert C; Samha, Hussein; Linford, Matthew R

    2010-09-21

    Covalently bonded monolayers of two monofunctional aminosilanes (3-aminopropyldimethylethoxysilane, APDMES, and 3-aminopropyldiisopropylethoxysilane, APDIPES) and one trifunctional aminosilane (3-aminopropyltriethoxysilane, APTES) have been deposited on dehydrated silicon substrates by chemical vapor deposition (CVD) at 150 °C and low pressure (a few Torr) using reproducible equipment. Standard surface analytical techniques such as x-ray photoelectron spectroscopy (XPS), contact angle goniometry, spectroscopic ellipsometry, atomic force microscopy, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) have been employed to characterize the resulting films. These methods indicate that essentially constant surface coverages are obtained over a wide range of gas phase concentrations of the aminosilanes. XPS data further indicate that the N1s/Si2p ratio is higher after CVD with the trifunctional silane (APTES) compared to the monofunctional ones, with a higher N1s/Si2p ratio for APDMES compared to that for APDIPES. AFM images show an average surface roughness of 0.12- 0.15 nm among all three aminosilane films. Stability tests indicate that APDIPES films retain most of their integrity at pH 10 for several hours and are more stable than APTES or APDMES layers. The films also showed good stability against storage in the laboratory. ToF-SIMS of these samples showed expected peaks, such as CN(-), as well as CNO(-), which may arise from an interaction between monolayer amine groups and silanols. Optical absorption measurements on adsorbed cyanine dye at the surface of the aminosilane films show the formation of dimer aggregates on the surface. This is further supported by ellipsometry measurements. The concentration of dye on each surface appears to be consistent with the density of the amines.

  10. The Role Seemingly of Amorphous Silica Gel Layers in Chiral Separations by Planar Chromatography

    Directory of Open Access Journals (Sweden)

    Teresa Kowalska

    2007-12-01

    Full Text Available In planar chromatography, silica gel appears as the most frequently used adsorbent. Its preference as planar chromatographic stationary phase is due to its high specific surface area (ca. 700 m2 g-1 and relatively simple active sites (silanol groups, Si-OH. The high specific surface area of silica gel and a high density of coverage of its surface with the silanol active sites contribute jointly to an excellent separation performance of this adsorbent. In our experiments on chiral separation of the enantiomer pairs by planar chromatography, contradictory behavior of the silica gel layers versus the chiral compounds was observed. The migration tracks of chiral compounds in the ascending planar chromatographic mode were not vertical but bent on either side being a function of analyte chirality. This deviation of the analyte’s migration track was noticed, when using the densitometric scanner to quantify the respective chromatograms. In order to confirm the hypothesis as to the microcrystalline nature of silica gel used in liquid chromatography, it was further investigated through circular dichroism (CD and the data thereof confirmed that the ‘chromatographic’ silica gels are not amorphous but microcrystalline, contributing to the (partial horizontal enantioseparation of the antimer pairs. This paper summarizes the results of our investigation on the microcrystalline nature of silica gels used in planar chromatography and their impact on enantioseparation of the selected pairs of antimers.

  11. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    Science.gov (United States)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2018-01-09

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  12. Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT

    Directory of Open Access Journals (Sweden)

    Khodakhast Bibak

    2016-09-01

    Full Text Available Graphs embedded into surfaces have many important applications, in particular, in combinatorics, geometry, and physics. For example, ribbon graphs and their counting is of great interest in string theory and quantum field theory (QFT. Recently, Koch et al. (2013 [12] gave a refined formula for counting ribbon graphs and discussed its applications to several physics problems. An important factor in this formula is the number of surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group. The aim of this paper is to give an explicit and practical formula for the number of such epimorphisms. As a consequence, we obtain an ‘equivalent’ form of Harvey's famous theorem on the cyclic groups of automorphisms of compact Riemann surfaces. Our main tool is an explicit formula for the number of solutions of restricted linear congruence recently proved by Bibak et al. using properties of Ramanujan sums and of the finite Fourier transform of arithmetic functions.

  13. Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT

    Energy Technology Data Exchange (ETDEWEB)

    Bibak, Khodakhast, E-mail: kbibak@uvic.ca; Kapron, Bruce M., E-mail: bmkapron@uvic.ca; Srinivasan, Venkatesh, E-mail: srinivas@uvic.ca

    2016-09-15

    Graphs embedded into surfaces have many important applications, in particular, in combinatorics, geometry, and physics. For example, ribbon graphs and their counting is of great interest in string theory and quantum field theory (QFT). Recently, Koch et al. (2013) gave a refined formula for counting ribbon graphs and discussed its applications to several physics problems. An important factor in this formula is the number of surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group. The aim of this paper is to give an explicit and practical formula for the number of such epimorphisms. As a consequence, we obtain an ‘equivalent’ form of Harvey's famous theorem on the cyclic groups of automorphisms of compact Riemann surfaces. Our main tool is an explicit formula for the number of solutions of restricted linear congruence recently proved by Bibak et al. using properties of Ramanujan sums and of the finite Fourier transform of arithmetic functions.

  14. Study on the surface hydroxyl group on solid breeding materials by infrared absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Satoru; Taniguchi, Masaki [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Hydroxyl groups on the surface of Li{sub 2}O were studied by using a diffuse reflectance method with Fourier transform infrared absorption spectroscopy at high temperature up to 973K under controlled D{sub 2}O or D{sub 2} partial pressure. It was found that hydroxyl groups could exist on Li{sub 2}O surface up to 973K under Ar atmosphere. Under D{sub 2}O containing atmosphere, only the sharp peak at 2520cm{sup -1} was observed at 973K in the O-D stretching vibration region. Below 973K, multiple peaks due to the surface -OD were observed and they showed different behavior with temperature or atmosphere. Multiple peaks mean that surface is not homogeneous for D{sub 2}O adsorption. Assignment of the observed peaks to the surface bonding structure was also discussed. (author)

  15. Integrable systems twistors, loop groups, and Riemann surfaces

    CERN Document Server

    Hitchin, NJ; Ward, RS

    2013-01-01

    This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all of whom are internationally known mathematicians and renowned expositors. It is written in an accessible and informal style, and fills a gap in the existing literature. The introduction by Nigel Hitchin addresses the meaning of integrability: how do werecognize an integrable system? His own contribution then develops connections with algebraic geometry, and inclu

  16. Coupling of carboxylic groups onto the surface of polystyrene parts during fused filament fabrication

    Science.gov (United States)

    Nagel, Jürgen; Zimmermann, Philipp; Schubert, Oliver; Simon, Frank; Schlenstedt, Kornelia

    2017-11-01

    A method for the fabrication of polystyrene parts, modified with carboxylic groups during Fused Filament Fabrication (FFF), is being introduced. This method is based on the application of a thin layer of a reactive polymer carrying carboxylic groups on a substrate surface. A polystyrene film is printed on top of this layer. During contact between the hot melt and the reactive layer, a Friedel-Crafts type acylation using a green catalyst takes place, which attaches the reactive polymer to the polystyrene surface. The modified surface is homogeneous, hydrophilic and able to bind copper ions. The method could be used to fabricate unique parts of polystyrene with tailored surface functionalisation. It could be applied for laboratory use, e.g. for the manufacture of lab-on-a-chip devices.

  17. Helioseismic measurements in the solar envelope using group velocities of surface waves

    Science.gov (United States)

    Vorontsov, S. V.; Baturin, V. A.; Ayukov, S. V.; Gryaznov, V. K.

    2014-07-01

    At intermediate- and high-degree l, solar p and f modes can be considered as surface waves. Using variational principle, we derive an integral expression for the group velocities of the surface waves in terms of adiabatic eigenfunctions of normal modes, and address the benefits of using group-velocity measurements as a supplementary diagnostic tool in solar seismology. The principal advantage of using group velocities, when compared with direct analysis of the oscillation frequencies, comes from their smaller sensitivity to the uncertainties in the near-photospheric layers. We address some numerical examples where group velocities are used to reveal inconsistencies between the solar models and the seismic data. Further, we implement the group-velocity measurements to the calibration of the specific entropy, helium abundance Y, and heavy-element abundance Z in the adiabatically stratified part of the solar convective envelope, using different recent versions of the equation of state. The results are in close agreement with our earlier measurements based on more sophisticated analysis of the solar oscillation frequencies. These results bring further support to the downward revision of the solar heavy-element abundances in recent spectroscopic measurements.

  18. Fluorescence properties of dansyl groups covalently bonded to the surface of oxidatively functionalized low-density polyethylene film

    Science.gov (United States)

    Holmes-Farley, S. R.; Whitesides, G. M.

    1985-12-01

    Brief oxidation of low-density polyethylene film with chromic acid in aqueous sulfuric acid introduced carboxylic acid and ketone and/or aldehyde groups onto the surface of the film. The carboxylic acid moieties can be used to attach more complex functionality to the polymer surface. We are developing this surface-functionalized polyethylene (named polyethylene carboxylic acid, PE-CO2H, to emphasize the functional group that dominates its surface properties) as a substrate with which to study problems in organic surface chemistry--especially wetting, polymer surface reconstruction, and adhesion--using physical-organic techniques. This document describes the preparation, characterization, and fluorescence properties of derivatives of PE-CO2H in which the Dansyl (5-dimethylaminonaphthalene-1-sulfonyl) group has been covalently attached by amide links to the surface carbonyl moieties.

  19. Spectroscopic and chromatographic characterisation of a pentafluorophenylpropyl silica phase end-capped in supercritical carbon dioxide as a reaction solvent.

    Science.gov (United States)

    Ashu-Arrah, Benjamin A; Glennon, Jeremy D; Albert, Klaus

    2013-07-12

    This research uses solid-state nuclear magnetic resonance (NMR) spectroscopy to characterise the nature and amount of different surface species, and chromatography to evaluate phase properties of a pentafluorophenylpropyl (PFPP) bonded silica phase prepared and end-capped using supercritical carbon dioxide (sc-CO2) as a reaction solvent. Under sc-CO2 reaction conditions (at temperature of 100 °C and pressure of 414 bar), a PFPP silica phase was prepared using 3-[(pentafluorophenyl)propyldimethylchlorosilane] within 1h. The bonded PFPP phase was subsequently end-capped with bis-N,O-trimethylsilylacetamide (BSA), hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS) within 1h under the same sc-CO2 reaction conditions (100 °C/4141 bar). Elemental microanalysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to provide support data to solid-state NMR and chromatographic evaluation. Results revealed a surface coverage of 2.2 μmol/m(2) for the non-end-capped PFPP silica phase while the PFPP phase end-capped with BSA gave a higher surface coverage (3.9 μmol/m(2)) compared to HMDS (2.9 μmol/m(2)) and TMCS (2.8 μmol/m(2)). (29)Si CP/MAS NMR analysis of the PFPP end-capped with BSA shows a significant decrease in the amount of Q(3) (free silanols) and Q(4) (siloxane groups) species, coupled with the absence of the most reactive Q(2) (geminal silanols) in addition to increased amount of a single resonance peak centred at +13 ppm (MH) corresponding to -Si-O-*Si-CH3 bond. (13)C CP/MAS NMR shows the resonance corresponding to the propyl linkage (CH3CH2CH2-) and methyl groups (Si(CH3)n) confirming successful silanisation and endcapping reactions in sc-CO2. Chromatographic evaluation of the BSA end-capped PFPP phase with Neue text mixture revealed improved chromatographic separation as evidenced in the enhanced retention of hydrophobic markers and decreased retention for basic solutes. Moreover, chromatography revealed a change in

  20. The use of a well-defined surface organometallic complex as a probe molecule: [(≡SiO)TaVCl2Me2] shows different isolated silanol sites on the silica surface

    KAUST Repository

    Chen, Yin

    2014-01-01

    TaVCl2Me3 reacts with silica(700) and produces two different [(≡SiO)TaVCl2Me2] surface organometallic species, suggesting a heterogeneity of the highly dehydroxylated silica surface, which was studied with a combined experimental and theoretical approach. This journal is © the Partner Organisations 2014.

  1. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines

    DEFF Research Database (Denmark)

    Janaszewska, Anna; Ciolkowski, Michal; Wróbel, Dominika

    2013-01-01

    Modification of the surface groups of dendrimers is one of the methods to improve their biocompatibility. This article presents results of experiments related to the toxicity of a modified polyamidoamine (PAMAM) dendrimer of the fourth generation with 4-carbomethoxypyrrolidone surface groups (PAM...

  2. Group velocity measurement from the propagation of the ionization front in a surface-wave-produced plasma

    International Nuclear Information System (INIS)

    Cotrino, J.; Gamero, A.; Sola, A.; Lao, C.

    1989-01-01

    During the first instant, previous to steady-state in a surface-wave-produced plasma, an ionization front advance front the launcher to the plasma column end. The velocity of the ionization front is much slower than the group velocity of the surface wave, this give a reflection of the incident signal on the moving ionization front. In this paper, the authors use this effect to calculate the surface wave group velocity

  3. Acidic surface functional groups and mineral elements in Lakra coal (Sindh, Pakistan)

    International Nuclear Information System (INIS)

    Saeed, K.; Ishaq, M.; Ahjmad, I.; Shakirullah, M.; Haider, S.

    2010-01-01

    Surface acidity of virgin coal (Lakra Sindh, Pakistan) and variously extracted/leached coal samples with HNO/sub 3/ NaOH, and KMnO/sub 4/, were investigated by aqueous potentiometric titration employing KOH as a titrant. The titration curve of virgin coal showed that its surface might contain carboxylic, carbonyl, phenolic and other weak acidic functional groups such as enols and C-H bond. The titration curves of leached coal samples showed inflections at pH 4-11, being not similar the inflections of carboxylic groups. This inflection might be given by functional groups like CO/sub 2/, phenolic, enols and C-H. Mineral matter such as Fe, K, Zn, Mn and Ni were determined in the ash of coal by atomic absorption spectrophotometer and was found that Fe (3104 micro g/g) in the highest and Ni (36.05 micro g/g) in the lowest quantity is present in virgin coal sample. (author)

  4. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water

    NARCIS (Netherlands)

    Krzyzaniak, A.; Weggemans, W.M.A.; Schuur, B.; Haan, de A.B.

    2011-01-01

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct

  5. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis or primary amines in water

    NARCIS (Netherlands)

    Krzyzaniak, A.; Weggemans, W.; Schuur, Boelo; de Haan, A.B.

    2011-01-01

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct

  6. Reduction of Polymer Adsorption on Reservoir Rocks Réduction de l'adsorption des polymères sur les roches réservoirs

    Directory of Open Access Journals (Sweden)

    Chauveteau G.

    2006-11-01

    Full Text Available The adsorption properties of polyacrylamides and xanthans on mineral surfaces carrying silanol and aluminol groups such as sand and kaolinite are described. The influence of the main parameters such as the nature of adsorption sites, surface charge, chemical structure and conformation of polymer and interactions of mono- and divalent ions with polymer and mineral surface has been investigated and interpreted. Some operating parameters in polymer flooding such as pH and salinity of injected solution, the nature of the polymer and its degree of ionicity were found to be determining factors from the adsorption level. The results give key elements for reducing adsorption by a proper choice of polymer nature and ionicity and of injection conditions. Les propriétés d'adsorption des polyacrylamides et des xanthanes sur des surfaces minérales portant des groupements silanols et aluminols comme le sable et la kaolinite ont été examinées. L'influence de différents paramètres est analysée : nature des sites d'adsorption, charge de surface, structure chimique et conformation du polymère, interactions des ions mono et divalents avec la surface. Il apparaît que le pH et la salinité de la solution injectée, la nature du polymère et, en particulier son degré d'ionicité, qui sont les paramètres opérationnels lors d'une injection de polymère destinée à augmenter le taux de récupération du pétrole, sont déterminants en ce qui concerne les niveaux d'adsorption. On en déduit les principaux moyens pour réduire l'adsorption dans un cas d'application donné.

  7. Colloidal characterization of silicon nitride and silicon carbide

    Science.gov (United States)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  8. Optimisation and characterisation of silica-based reversed-phase liquid chromatographic systems for the analysis of basic pharmaceuticals

    NARCIS (Netherlands)

    Vervoort, R.J.M.; Debets, A.J.J.; Claessens, H.A.; Cramers, C.A.M.G.; Jong, de G.J.

    2000-01-01

    Reversed-phase liquid chromatography using silica-based columns is successfully applied in many separations. However, also some drawbacks exist, i.e. the analysis of basic compounds is often hampered by ionic interaction of the basic analytes with residual silanols present on the silica surface,

  9. The multilevel analysis of surface acting and mental health: A moderation of positive group affective tone

    Science.gov (United States)

    Lee, Meng-Shiu; Huang, Jui-Chan; Wu, Tzu-Jung

    2017-06-01

    The purpose of this study is to investigate the relationship among surface acting, mental health, and positive group affective tone. According to the prior theory, this study attempts to establish a comprehensive research framework among these variables, and furthermore tests the moderating effect of positive group affective tone. Data were collected from 435 employees in 52 service industrial companies by questionnaire, and this study conducted multilevel analysis. The results showed that surface acting will negatively affect the mental health. In addition, the positive group affective tone have significant moderating effect on the relationship among surface acting and mental health. Finally, this study discusses managerial implications and highlights future research suggestions.

  10. Atomic-Level Organization of Vicinal Acid-Base Pairs through the Chemisorption of Aniline and Derivatives onto Mesoporous SBA15

    KAUST Repository

    Basset, Jean-Marie; Hamzaoui, Bilel; Bendjeriou-Sedjerari, Anissa; Pump, Eva; Abou-Hamad, Edy; Sougrat, Rachid; Gurinov, Andrei; Huang, Kuo-Wei; Gajan, David; Lesage, Anne; Emsley, Lyndon

    2016-01-01

    by opening siloxane bridges leading to N-phenylsilanamine-silanol pairs. In contrast with ammonia treated surfaces, the material is stable under air/moisture. Advanced solid state MAS NMR: 2D ¹H-¹H double-quantum, ¹H-¹³C HETCOR experiments and dynamic nuclear

  11. Enhancement of the photocatalytic activity of TiO2 nanoparticles by surface-capping DBS groups

    International Nuclear Information System (INIS)

    Wang Baiqi; Jing Liqiang; Qu Yichun; Li Shudan; Jiang Baojiang; Yang Libin; Xin Baifu; Fu Honggang

    2006-01-01

    TiO 2 nanoparticles capped with sodium dodecylbenzenesulfonate (DBS) are synthesized by a sol-hydrothermal process using tetrabutyl titanate and DBS as raw materials. The effects of surface-capping DBS on the surface photovoltage spectroscopy (SPS), photoluminescence (PL) and photocatalytic performance of TiO 2 nanoparticles are principally investigated together with their relationships. The results show that the surface of TiO 2 nanoparticles can be well capped by DBS groups while the pH value and added DBS amount are controlled at 5.0 and 2% of TiO 2 mass weight, respectively, and the linkage between DBS groups and TiO 2 surfaces is mainly by means of quasi-sulphonate bond. The intensities of SPS and PL spectra of TiO 2 obviously decrease after DBS-capping, while the activity can greatly increase during the photocatalytic degradation of Rhodamine B (RhB) solution, which are mainly attributed to the electron-withdrawing character of the DBS groups. Moreover, the enhancement of photocatalytic activity of DBS-capped TiO 2 is also related to the increase in the capability for adsorbing RhB

  12. Generation of Well-Defined Pairs of Silylamine on Highly Dehydroxylated SBA-15: Application to the Surface Organometallic Chemistry of Zirconium

    KAUST Repository

    Azzi, Joachim

    2012-01-01

    achieved by an ammonia treatment of a highly dehydroxylated SBA-15 at 1000°C (SBA-151000). This support is known to contain mainly strained reactive siloxane bridges (≡Si-O-Si≡)[1] along with a small amount of isolated plus germinal silanols =Si(OH)2

  13. Self-assembled monolayers of perfluoroalkylsilane on plasma-hydroxylated silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lin; Cai, Lu; Liu, Anqi; Wang, Wei; Yuan, Yanhua [College of Textile, Clothing Engineering, Soochow University, Suzhou 215021 (China); National Engineering Laboratory for Modern Silk, Suzhou 215123 (China); Li, Zhanxiong, E-mail: lizhanxiong@suda.edu.cn [College of Textile, Clothing Engineering, Soochow University, Suzhou 215021 (China); State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact, Nanjing 210007 (China)

    2015-09-15

    Highlights: • A novel kind of fluoroalkylsilane monomers with different fluoroalkyl chain length was synthesized. • The fluoroalkyl-terminated self-assembled monolayers (SAMs) on silanol-terminated silicon substrates were chemically fabricated using the liquid phase deposition method. • Fluoroalkylsilanes were used for the self-assembly rather than the silane coupling agents and fluorochemicals to fabricate controllable, ordered SAMs. • The angle-dependent XPS study was conducted to investigate the changes of surface structures as well as elemental compositions of the SAMs. • The results indicated that fluoroalkyl groups would migrate from the inner part of the monolayers to the outermost interface after heat treatment, resulting into the microphase separation of the SAMs surface. - Abstract: In this study, a novel kind of fluoroalkylsilane monomers with different fluoroalkyl chain lengths was synthesized via three steps method and characterized by Fourier transform infrared (FT-IR) spectroscopy, {sup 1}H and {sup 19}F nuclear magnetic resonance ({sup 1}H NMR and {sup 19}F NMR), and mass spectra (MS). Fluoroalkyl-terminated self-assembled monolayers (SAMs) on silanol-terminated silicon substrates (O{sub 2} plasma treatment) were chemically fabricated via –Si–O– covalent bonds using the liquid phase deposition method (LPD). The wetabilities of the SAMs were characterized by water contact angles (CA), surface free energies and adhesive force (AF) measurements. 3-(1H,1H,2H,2H-perfluorooctyloxycarbonyl) -propionamidepropyl-triethoxysilane (PFOPT) assembled monolayer was chosen for in-depth investigation as its CA was higher than the others. Attenuated total reflection infrared spectroscopy (ATR-IR) and X-ray photoelectron spectroscopy (XPS) were used to validate the attachment of PFOPT on the silicon substrate, together with the chemical composition and structure of the SAMs. The surface morphologies and roughness of the monolayers were obtained and

  14. The Measurement and Interpretation of Surface Wave Group Arrival Times

    Science.gov (United States)

    Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.

    2005-12-01

    We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.

  15. Control of Surface Functional Groups on Pertechnetate Sorption on Activated Carbon

    International Nuclear Information System (INIS)

    Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

    2006-01-01

    99 Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO 4 - ). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K d ) varying from 9.5 x 10 5 to 3.2 x 10 3 mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K d remaining more or less constant (1.1 x 10 3 - 1.8 x 10 3 mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO 4 - can be improved by enhancing the formation of carboxylic subgroups A and B during material processing

  16. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior

    International Nuclear Information System (INIS)

    Park, Soo-Jin; Kim, Byung-Joo

    2005-01-01

    The gas phase ozone treatment was used as a method to bind acidic oxygen functional groups on carbon fiber surfaces. The ozone treatment on carbon fibers was varied with the ozone concentration and treatment time. Surface analyses of the carbon fibers before and after treatments were performed by FT-IR, X-ray photoelectron spectrometer (XPS), and dynamic contact angle measurements. Mechanical interfacial properties of the fibers/polymer composites were investigated by using critical stress intensity factor (K IC ) and critical energy release rate (G IC ) measurements. From the results of FT-IR and XPS, it was observed that the oxygen functional groups, such as -OH, O-C=O, C=O, and C-O, were attached on the carbon fiber surfaces after the ozone treatment. The mechanical interfacial properties of the composites also showed higher values than those of untreated composites. Ozone treatment is attributed to the increase of both the acidic functional groups and the degree of adhesion at interfaces between the fibers and polymeric resin in composites

  17. Large-area fabrication of patterned ZnO-nanowire arrays using light stamping lithography.

    Science.gov (United States)

    Hwang, Jae K; Cho, Sangho; Seo, Eun K; Myoung, Jae M; Sung, Myung M

    2009-12-01

    We demonstrate selective adsorption and alignment of ZnO nanowires on patterned poly(dimethylsiloxane) (PDMS) thin layers with (aminopropyl)siloxane self-assembled monolayers (SAMs). Light stamping lithography (LSL) was used to prepare patterned PDMS thin layers as neutral passivation regions on Si substrates. (3-Aminopropyl)triethoxysilane-based SAMs were selectively formed only on regions exposing the silanol groups of the Si substrates. The patterned positively charged amino groups define and direct the selective adsorption of ZnO nanowires with negative surface charges in the protic solvent. This procedure can be adopted in automated printing machines that generate patterned ZnO-nanowire arrays on large-area substrates. To demonstrate its usefulness, the LSL method was applied to prepare ZnO-nanowire transistor arrays on 4-in. Si wafers.

  18. On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum

    Science.gov (United States)

    Persson, Ingemar; Näslund, Lars-Åke; Halim, Joseph; Barsoum, Michel W.; Darakchieva, Vanya; Palisaitis, Justinas; Rosen, Johanna; Persson, Per O. Å.

    2018-03-01

    The two-dimensional (2D) MXene Ti3C2T x is functionalized by surface groups (T x ) that determine its surface properties for, e.g. electrochemical applications. The coordination and thermal properties of these surface groups has, to date, not been investigated at the atomic level, despite strong variations in the MXene properties that are predicted from different coordinations and from the identity of the functional groups. To alleviate this deficiency, and to characterize the functionalized surfaces of single MXene sheets, the present investigation combines atomically resolved in situ heating in a scanning transmission electron microscope (STEM) and STEM simulations with temperature-programmed x-ray photoelectron spectroscopy (TP-XPS) in the room temperature to 750 °C range. Using these techniques, we follow the surface group coordination at the atomic level. It is concluded that the F and O atoms compete for the DFT-predicted thermodynamically preferred site and that at room temperature that site is mostly occupied by F. At higher temperatures, F desorbs and is replaced by O. Depending on the O/F ratio, the surface bare MXene is exposed as F desorbs, which enables a route for tailored surface functionalization.

  19. A Method for Absolute Determination of the Surface Areal Density of Functional Groups in Organic Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Min, Hyegeun; Son, Jin Gyeong; Kim, Jeong Won; Yu, Hyunung; Lee, Tae Geol; Moon, Dae Won [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2014-03-15

    To develop a methodology for absolute determination of the surface areal density of functional groups on organic and bio thin films, medium energy ion scattering (MEIS) spectroscopy was utilized to provide references for calibration of X-ray photoelectron spectroscopy (XPS) or Fourier transformation-infrared (FT-IR) intensities. By using the MEIS, XPS, and FT-IR techniques, we were able to analyze the organic thin film of a Ru dye compound (C{sub 58}H{sub 86}O{sub 8}N{sub 8}S{sub 2}Ru), which consists of one Ru atom and various stoichiometric functional groups. From the MEIS analysis, the absolute surface areal density of Ru atoms (or Ru dye molecules) was determined. The surface areal densities of stoichiometric functional groups in the Ru dye compound were used as references for the calibration of XPS and FT-IR intensities for each functional group. The complementary use of MEIS, XPS, and FT-IR to determine the absolute surface areal density of functional groups on organic and bio thin films will be useful for more reliable development of applications based on organic thin films in areas such as flexible displays, solar cells, organic sensors, biomaterials, and biochips.

  20. Influence of carboxyl group formation on ammonia adsorption of NiO-templated nanoporous carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Long-Yue [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2012-11-15

    The scope of this work was to control the surface functional groups of nanoporous carbons (NPs) by oxidizing agents (nitric acid and hydrogen peroxide) treatments and to investigate the relation between carboxyl group and ammonia removal efficiency. The NPs were directly prepared from a cation exchange resin by the carbonization of a mixture with Ni acetate at 900 Degree-Sign C. N{sub 2}/-196 Degree-Sign C adsorption, Boehm's titrations, and X-ray photoelectron spectroscopy (XPS) analyzes were employed to confirm the physicochemical properties of NPs. The ammonia removal efficiency was confirmed by temperature programmed desorption (TPD) technique. In the result, the oxygen content of NPs increased after various treatments and the highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. It was also found that the oxidation treatment led to an increase in ammonia removal efficiency of NPs, mainly due to an increase of acid oxygen functional groups (such as carboxyl) on NPs surfaces. -- Graphical abstract: The nanoporous carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate for ammonia adsorption. Highlights: Black-Right-Pointing-Pointer The carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate. Black-Right-Pointing-Pointer The carbon surfaces were modified with HNO{sub 3}/H{sub 2}O{sub 2} solution at different volume radio. Black-Right-Pointing-Pointer The highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer The acid oxygen functional groups (such as carboxyl) on carbon surfaces led to an increase in ammonia adsorption.

  1. One-step synthesis of mesoporous silica–graphene composites by ...

    Indian Academy of Sciences (India)

    Administrator

    reaction of the –COOH group of GO and the silanol (Si–OH) of silica. The Raman spectra of the ... Graphene; graphene oxide; mineral silica; silica; mesoporous silica; hydrothermal reduction. 1. Introduction .... mer's method which uses a combination of potassium ... tional groups both on the basal planes and the edges. The.

  2. First principles investigations on the electronic structure of anchor groups on ZnO nanowires and surfaces

    International Nuclear Information System (INIS)

    Dominguez, A.; Lorke, M.; Rosa, A. L.; Frauenheim, Th.; Schoenhalz, A. L.; Dalpian, G. M.; Rocha, A. R.

    2014-01-01

    We report on density functional theory investigations of the electronic properties of monofunctional ligands adsorbed on ZnO-(1010) surfaces and ZnO nanowires using semi-local and hybrid exchange-correlation functionals. We consider three anchor groups, namely thiol, amino, and carboxyl groups. Our results indicate that neither the carboxyl nor the amino group modify the transport and conductivity properties of ZnO. In contrast, the modification of the ZnO surface and nanostructure with thiol leads to insertion of molecular states in the band gap, thus suggesting that functionalization with this moiety may customize the optical properties of ZnO nanomaterials.

  3. Design and characterization of a biodegradable double-layer scaffold aimed at periodontal tissue-engineering applications.

    Science.gov (United States)

    Requicha, João F; Viegas, Carlos A; Hede, Shantesh; Leonor, Isabel B; Reis, Rui L; Gomes, Manuela E

    2016-05-01

    The inefficacy of the currently used therapies in achieving the regeneration ad integrum of the periodontium stimulates the search for alternative approaches, such as tissue-engineering strategies. Therefore, the core objective of this study was to develop a biodegradable double-layer scaffold for periodontal tissue engineering. The design philosophy was based on a double-layered construct obtained from a blend of starch and poly-ε-caprolactone (30:70 wt%; SPCL). A SPCL fibre mesh functionalized with silanol groups to promote osteogenesis was combined with a SPCL solvent casting membrane aiming at acting as a barrier against the migration of gingival epithelium into the periodontal defect. Each layer of the double-layer scaffolds was characterized in terms of morphology, surface chemical composition, degradation behaviour and mechanical properties. Moreover, the behaviour of seeded/cultured canine adipose-derived stem cells (cASCs) was assessed. In general, the developed double-layered scaffolds demonstrated adequate degradation and mechanical behaviour for the target application. Furthermore, the biological assays revealed that both layers of the scaffold allow adhesion and proliferation of the seeded undifferentiated cASCs, and the incorporation of silanol groups into the fibre-mesh layer enhance the expression of a typical osteogenic marker. This study allowed an innovative construct to be developed, combining a three-dimensional (3D) scaffold with osteoconductive properties and with potential to assist periodontal regeneration, carrying new possible solutions to current clinical needs. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Solid-state (49/47)Ti NMR of titanium-based MCM-41 hybrid materials.

    Science.gov (United States)

    Ballesteros, Ruth; Fajardo, Mariano; Sierra, Isabel; Force, Carmen; del Hierro, Isabel

    2009-11-03

    Titanium solid-state NMR spectroscopy data for a series of organic-inorganic titanium MCM-41 based materials have been collected. These materials have been synthesized by first modifying the mesoporous silica MCM-41 in one step with a mixture of silanes: a triazine propyl triethoxysilane acting as functional linker and methyltrimethoxysilane or hexamethyldisilizane as capped agents to mask the remaining silanol groups. Second, the appropiate titanium precursor Ti(OPr(i))(4), [{Ti(OPr(i))(3)(OMent)}(2)] (OMent = 1R,2S,5R-(-)-menthoxo), Ti(OPr(i))(4), or [Ti(eta(5)-C(5)HMe(4))Cl(3)], has been immobilized by reaction with the modified MCM-41. Finally, after Ti(OPr(i))(4) immobilization onto the organomodified support the reaction with the chiral (+)-diethyl-l-tartrate was accomplished. The materials without functional linker have been also prepared by reaction in one step of the capped agent and the titanium precursor with the mesoporous silica. Relevant correlations of titanium NMR resonance chemical shifts and line widths can be inferred depending on different factors. The immobilization procedure used to prepare titanium-based MCM-41 hybrid materials and the choice of the silylating reagents employed to mask the silanol groups present on the silica surfaces produce significant differences in the Ti NMR spectra. Furthermore, depending on the electronic and sterical influence of the substituents directly attached to the titanium center, chemical shifts and line widths are modified providing novel information about titanium structure.

  5. Mesoporous silica particles modified with graphitic carbon: interaction with human red blood cells and plasma proteins

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Diego Stefani Teodoro; Franqui, Lidiane Silva; Bettini, Jefferson; Strauss, Mathias, E-mail: diego.martinez@lnnano.cnpem.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil); Damasceno, Joao Paulo Vita; Mazali, Italo Odone [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: In this work the interaction of the mesoporous silica particles (SBA-15, ∼700 nm) modified with graphitic carbon (SBA-15/C) on human red blood cells (hemolysis) and plasma proteins (protein corona formation) is studied. XPS and CHN analysis showed that the carbon content on the SBA-15/C samples varied from 2 to 10% and was tuned by the functionalization step. The formed carbon structures where associated to graphitic nanodomains coating the pores surface as verified by Raman spectroscopy and {sup 13}C NMR. Advanced TEM/EELS analysis showed that the carbon structures are distributed along the SBA-15 mesopores. SAXS and textural analyses were used to confirm that the porous structure of the silica support is kept after the modification procedure and to calculate the number of graphitic carbon stacked layers coating the mesopores. After incubation of SBA-15 with human red blood cells (RBCs), it was observed a dose-dependent hemolytic effect, probably, due to binding of the material silanol-rich surface to the phosphatidylcholine molecules from the RBC membrane. The graphitic carbon modifications have mitigated this effect, indicating that the graphitic carbon coating protected the silanol groups of the particle surface hindering the hemolysis. Considering the protein corona formation, selective biomolecular interaction of proteins was observed for the different materials using gel electrophoresis (SDS-PAGE) analysis. Besides, graphitic carbon modification decreased the amount of proteins on the corona. Together, the in vitro hemolysis and protein corona assays are promising biological models to understand the influence of silica surface functionalization on their bionano-interactions. Finally, our work contributes to the development of fundamental research on such nanomaterials chemistry in the emerging field of nanobioscience and nanotoxicology. (author)

  6. Chemical reactions on platinum-group metal surfaces studied by synchrotron-radiation-based spectroscopy

    International Nuclear Information System (INIS)

    Kondoh, Hiroshi; Nakai, Ikuyo; Nagasaka, Masanari; Amemiya, Kenta; Ohta, Toshiaki

    2009-01-01

    A new version of synchrotron-radiation-based x-ray spectroscopy, wave-length-dispersive near-edge x-ray absorption fine structure (dispersive-NEXAFS), and fast x-ray photoelectron spectroscopy have been applied to mechanistic studies on several surface catalytic reactions on platinum-group-metal surfaces. In this review, our approach using above techniques to understand the reaction mechanism and actual application studies on three well-known catalytic surface reactions, CO oxidation on Pt(111) and Pd(111), NO reduction on Rh(111), and H 2 O formation on Pt(111), are introduced. Spectroscopic monitoring of the progress of the surface reactions enabled us to detect reaction intermediates and analyze the reaction kinetics quantitatively which provides information on reaction order, rate constant, pre-exponential factor, activation energy and etc. Such quantitative analyses combined with scanning tunneling microscopy and kinetic Monte Carlo simulations revealed significant contribution of the adsorbate configurations and their dynamic changes to the reaction mechanisms of the above fundamental catalytic surface reactions. (author)

  7. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    Science.gov (United States)

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Red-shifting and blue-shifting OH groups on metal oxide surfaces - towards a unified picture.

    Science.gov (United States)

    Kebede, Getachew G; Mitev, Pavlin D; Briels, Wim J; Hermansson, Kersti

    2018-05-09

    We analyse the OH vibrational signatures of 56 structurally unique water molecules and 34 structurally unique hydroxide ions in thin water films on MgO(001) and CaO(001), using DFT-generated anharmonic potential energy surfaces. We find that the OH stretching frequencies of intact water molecules on the surface are always downshifted with respect to the gas-phase species while the OH- groups are either upshifted or downshifted. Despite these differences, the main characteristics of the frequency shifts for all three types of surface OH groups (OHw, OsH and OHf) can be accounted for by one unified expression involving the in situ electric field from the surrounding environment, and the gas-phase molecular properties of the vibrating species (H2O or OH-). The origin behind the different red- and blueshift behaviour can be traced back to the fact that the molecular dipole moment of a gas-phase water molecule increases when an OH bond is stretched, but the opposite is true for the hydroxide ion. We propose that familiarity with the relations presented here will help surface scientists in the interpretation of vibrational OH spectra for thin water films on ionic crystal surfaces.

  9. Proton migration along the membrane surface in the absence of charged or titratable groups

    International Nuclear Information System (INIS)

    Springer, A.

    2011-01-01

    Proton diffusion along membrane surfaces is thought to be essential for many cellular processes such as energy transduction. For example, proton diffusion along membrane surfaces is considered to be the dominant mechanism of proton exchange between membrane sites of high and low proton concentrations. For the investigation of this mechanism, kinetic experiments on proton diffusion are evaluated to determine the ability of lipid membranes to retain protons on their surfaces. Experiments on different lipid bilayer membranes (DPhPC, DPhPE and GMO) are performed under the influence of two types of mobile buffer molecules (Capso, NH4CL). During these experiments the surface diffusion of photolytically released protons is visualized in terms of fluorescence changes of a lipid bound pH-sensitive dye (DHPE +fluorescein). The protons under investigation are released by flash photolysis of a hydrophobic caged compound (DMCM, caged diethyl phosphate). The experimental data confirm the existence of an energy barrier, which prevents the protons from escaping into the bulk. So far this effect was attributed to the proton binding to titrateable groups (e.g. ethanolamine) or electrostatic forces created by charged moieties (e.g. phosphate groups) on the membrane/water interface. However, upon removal of the titrateable groups and charged moieties from the membrane surface, a significant energy barrier remained as indicated by the experiments with glycerol monooleate (GMO) bilayers. To estimate the size of the barrier a semi-analytical model is presented that describes the two and three dimensional proton diffusion and the related physical and chemical processes. Common models describe surface proton diffusion as a series of subsequent hopping processes between membrane-anchored buffer molecules. Our experiments provide evidence for an alternative model. We released membrane-bound caged protons by UV flashes and monitored their arrival at distant sites s by fluorescence

  10. The stability boundary of group-III transition metal diboride ScB 2 (0 0 0 1) surfaces

    Science.gov (United States)

    Zhao, Hui; Qin, Na

    2012-01-01

    Experimental observations and theoretical investigations exhibit that a group-IV(V) transition metal diboride (0 0 0 1) surface is terminated with a 1 × 1 TM(B) layer. As to a group-III transition metal diboride, we have investigated the stability boundary of ScB2 (0 0 0 1) surfaces using first principles total energy plane-wave pseudopotential method based on density functional theory. The Mulliken charge population analysis shows that Sc atoms in the second layer cannot provide B atoms in the first layer with sufficient electrons to form a complete graphene-like boron layer. We also found that the charge transfer between the first and the second layer for the B-terminated surface is more than that for Sc-terminated surface. It elucidates the reason that the outermost interlayer spacing contract more strongly in the B-terminated surface than in the Sc-terminated surface. The surface energies of both terminated ScB2 (0 0 0 1) surfaces as a function of the chemical potential of B are also calculated to check the relative stability of the two surface structures.

  11. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange.

    Science.gov (United States)

    Kitagawa, Shinya; Tsuda, Takao

    2003-05-02

    The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.

  12. ANALYSIS OF BASIC PSYCHOTROPIC DRUGS IN BIOLOGICAL FLUIDS AND TISSUES BY REVERSED-PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY.

    Science.gov (United States)

    Petruczynik, Anna; Waksmundzka-Hajnos, Monika

    2017-03-01

    The review of the RP HPLC analysis of basic psychotropic drugs is presented. It contains sample preparation methods with centrifugation, protein precipitation, liquid-liquid extraction (LLE), dispersive liquid-liquid microextraction (DLLME), solid-phase extraction (SPE), solid-phase microextraction (SPME), microwave-assisted extraction (MAE) and RP-HPLC analysis. Chromatographic behavior of basic drugs in aqueous media - eluents used in reversed phase systems is discussed. Methods of blocking of residue surface silanols' interaction are mentioned. Analytical methods used for the analysis are divided into parts according with the above methods: the use of low-pH eluents, the use of high-pH eluents, the use of silanol blockers, special stationary phases for basic analytes. Literature connected with the sample preparation methods and analytical systems for the drug analysis are cited in details and presented also in Table 1.

  13. A chord diagrammatic presentation of the mapping class group of a once bordered surface

    DEFF Research Database (Denmark)

    Bene, Alex

    2010-01-01

    of Teichmüller space with a discrete set objects. In particular, it leads to an infinite, but combinatorially simple, presentation of the mapping class group of an orientable surface. In this note, we give a presentation of a full mapping class group equivariant subgroupoid of the Ptolemy groupoid......The Ptolemy groupoid is a combinatorial groupoid generated by elementary moves on marked trivalent fatgraphs with three types of relations. Through the fatgraph decomposition of Teichmüller space, the Ptolemy groupoid is a mapping class group equivariant subgroupoid of the fundamental path groupoid...

  14. A Chord Diagrammatic Presentation of the Mapping Class Group of a Once Bordered Surface

    DEFF Research Database (Denmark)

    Bene, Alex

    groupoid of Teichm\\"uller space with a discrete set objects. In particular, it leads to an infinite, but combinatorially simple, presentation of the mapping class group of an orientable surface. In this note, we give a presentation of a full mapping class group equivariant subgroupoid of the Ptolemy......The Ptolemy groupoid is a combinatorial groupoid generated by elementary moves on marked trivalent fatgraphs with three types of relations. Through the fatgraph decomposition of Teichm\\"uller space, the Ptolemy groupoid is a mapping class group equivariant subgroupoid of the fundamental path...

  15. The Synthesis and Characterization of Low-cost Mesoporous Silica SiO2 from Local Pumice Rock

    Directory of Open Access Journals (Sweden)

    Asmaa Mourhly

    2015-12-01

    removal of water molecules and the OH of silanol groups contained in the material. The investigations performed in this work have indicated that there is great scope for pumice exploitation as a raw material in the production of amorphous silica nanopowder on large scale.

  16. Atmospheric weathering and silica-coated feldspar: analogy with zeolite molecular sieves, granite weathering, soil formation, ornamental slabs, and ceramics.

    Science.gov (United States)

    Smith, J V

    1998-03-31

    Feldspar surfaces respond to chemical, biological, and mechanical weathering. The simplest termination is hydroxyl (OH), which interacts with any adsorption layer. Acid leaching of alkalis and aluminum generated a silica-rich, nanometers-thick skin on certain feldspars. Natural K, Na-feldspars develop fragile surfaces as etch pits expand into micrometer honeycombs, possibly colonized by lichens. Most crystals have various irregular coats. Based on surface-catalytic processes in molecular sieve zeolites, I proposed that some natural feldspars lose weakly bonded Al-OH (aluminol) to yield surfaces terminated by strongly bonded Si-OH (silanol). This might explain why some old feldspar-bearing rocks weather slower than predicted from brief laboratory dissolution. Lack of an Al-OH infrared frequency from a feldspar surface is consistent with such a silanol-dominated surface. Raman spectra of altered patches on acid-leached albite correspond with amorphous silica rather than hydroxylated silica-feldspar, but natural feldspar may respond differently. The crystal structure of H-exchanged feldspar provides atomic positions for computer modeling of complex ideas for silica-terminated feldspar surfaces. Natural weathering also depends on swings of temperature and hydration, plus transport of particles, molecules, and ionic complexes by rain and wind. Soil formation might be enhanced by crushing granitic outcrops to generate new Al-rich surfaces favorable for chemical and biological weathering. Ornamental slabs used by architects and monumental masons might last longer by minimizing mechanical abrasion during sawing and polishing and by silicifying the surface. Silica-terminated feldspar might be a promising ceramic surface.

  17. The homology groups of moduli spaces on non-classical Klein surfaces

    International Nuclear Information System (INIS)

    Zaw, Myint

    2001-08-01

    We describe the moduli space M-vector±(g,c) of non-classical directed Klein surfaces of genus g=h-c-1 with c≥0 distinguished points as a configuration space B ± (h,c) of classes h-slit pairs in C. Based on this model, we prove that M-vector ± (g,c) is non-orientable for any g and c and we compute the homology groups of the moduli spaces M-vector ± (g,c) for g≤2. (author)

  18. Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties.

    Science.gov (United States)

    Yan, Dong; Hu, Shihao; Zhou, Zhongzheng; Zeenat, Shah; Cheng, Feng; Li, Yang; Feng, Chao; Cheng, Xiaojie; Chen, Xiguang

    2018-02-01

    The hemostatic properties of surface modified chitosan nonwoven had been investigated. The succinyl groups, carboxymethyl groups and quaternary ammonium groups were introduced into the surface of chitosan nonwoven (obtained NSCS, CMCS and TMCS nonwoven, respectively). For blood clotting, absorbance value (0.105±0.03) of NSCS1 nonwoven was the smallest (CS 0.307±0.002, NSCS2 0.148±0.002, CMCS1 0.195±0.02, CMCS2 0.233±0.001, TMCS1 0.191±0.002, TMCS2 0.345±0.002), which indicated the stronger hemostatic potential. For platelet aggregation, adenosine diphosphate agonist was added to induce the nonwoven to adhered platelets. The aggregation of platelet with TMCS2 nonwoven was highest (10.97±0.16%). Further research of blood coagulation mechanism was discussed, which indicated NSCS and CMCS nonwoven could activate the intrinsic pathway of coagulation to accelerate blood coagulation. NSCS1 nonwoven showed the shortest hemostatic time (147±3.7s) and the lowest blood loss (0.23±0.05g) in a rabbit ear artery injury model. These results demonstrated that these surface modified chitosan nonwoven dressings could use as a promising hemostatic intervention, especially NSCS nonwoven dressing. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA and IVA elemental surfaces

    International Nuclear Information System (INIS)

    Heide, P.A.W. van der

    2006-01-01

    An extensive re-evaluation of XPS binding energies (BE's) and binding energy shifts (ΔBE's) from metals, oxides and the carbonates of the group II, III and IVA elements (exceptions are Be, Mg and Hf) has been carried out using a substrate specific BE referencing approach. From this, O-1s BE's are found to fall into surface oxide, bulk oxide and carbonate groupings, with bulk oxides showing the lowest BE's followed by surface oxides (+∼1.5 eV) and then carbonates (+∼3.0 eV). The O-1s BE's from the bulk oxides also appear to scale with 1/d, where d is inter-atomic distance. The same is noted in the ΔBE's observed from the metallic counterparts during oxidation of the elemental surfaces. This, and the decreasing BE exhibited by Ca, Sr and Ba on oxidation is explained within the charge potential model as resulting from competing inter- and intra-atomic effects, and is shown to be consistent with partial covalency arguments utilizing Madulung potentials. The ΔBE's also fall into groups according to the elements location in the periodic table, i.e. s, p or d block. These trends open up the possibility of approximating ΔBE's arising from initial and final state effects, and bond distances

  20. Non-Photolithographic Manufacturing Processes for Micro-Channels Functioned by Micro-Contact-Printed SAMs

    Science.gov (United States)

    Saigusa, Hiroki; Suga, Yasuo; Miki, Norihisa

    In this paper we propose non-photolithographic fabrication processes of micro-fluid channels with patterned SAMs (Self-Assembled-Monolayers). SAMs with a thiol group are micro-contact printed on a patterned Au/Ti layer, which is vapor-deposited through a shadow mask. Ti is an adhesion layer. Subsequently, the micro-channels are formed by bonding surface-activated PDMS onto the silicon substrate via a silanol group, producing a SAMs-functioned bottom wall of the micro-channel. No photolithographic processes are necessary and thus, the proposed processes are very simple, quick and low cost. The micro-reactors can have various functions associated with the micro-contact-printed SAMs. We demonstrate successful manufacturing of micro-reactors with two types of SAMs. The micro-reactor with patterned AUT (11-amino-1-undecanethiol) successfully trapped nano-particles with a carboxylic acid group, indicating that micro-contact-printed SAMs remain active after the manufacturing processes of the micro-reactor. AUT -functioned micro-channels are applicable to bioassay and to immobilize proteins for DNA arrays. ODT (1-octadecanethiol) makes surfaces hydrophobic with the methyl terminal group. When water was introduced into the micro-reactor with ODT-patterned surfaces, water droplets remained only in the hydrophilic areas where ODT was not patterned. ODT -functioned micro-channels are applicable to fluid handling.

  1. Silica-supported silicotungstic acid: A study by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Frank J.; Derrick, Glyn R. [Department of Chemistry and Analytical Sciences, Robert Hooke Building, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Marco, Jose F. [Instituto de Quimica -Fisica ' Rocasolano' , Consejo Superior de Investigaciones Cientificas, Serrano 119, 28006 Madrid (Spain); Mortimer, Michael [Department of Chemistry and Analytical Sciences, Robert Hooke Building, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)], E-mail: m.mortimer@open.ac.uk

    2009-04-15

    W 4f and O 1s X-ray photoelectron spectra for silicotungstic acid, H{sub 4}SiW{sub 12}O{sub 40}, in pure and silica-supported form are reported. W 4f XP spectra for the supported acid are analysed in terms of contributions from two W(VI) spin-orbit doublets arising from tungsten atoms in terminal W=O bonds some of which directly interact with the silica surface. At low loading (3.2 wt.%) significant changes in the relative contributions and binding energies of the two spin-orbit doublets are taken as evidence of a strong interaction of individual [SiW{sub 12}O{sub 40}]{sup 4-} anions with highly active sites on the silica surface. It is suggested that selective ordering of silanol groups can occur on the silica surface in order to accommodate the adsorption of individual [SiW{sub 12}O{sub 40}]{sup 4-} anions.

  2. Surface layers in the 4A group metals with implanted silicon ions

    International Nuclear Information System (INIS)

    Kovneristyj, Yu.K.; Vavilova, V.V.; Krasnopevtsev, V.V.; Galkin, L.N.; Kudyshev, A.N.; Klechkovskaya, V.V.

    1987-01-01

    A study was made on the change of structure and phase composition of fine near the surface layers of 4A group metals (Hf, Zr, Ti) during ion Si implantation and successive thermal annealing at elevated temperatures. Implantation of Si + ions with 30 or 16 keV energy in Ti, Zr and Hf at room temperature results to amorphization of metal surface layer. The surface hafnium and titanium layer with implanted Si atoms due to interaction with residual atmosphere of oxygen turns during annealing at 870 K to amorphous solid solution of HfO 2m or TiO 2 with Si, preventing further metal oxidation; layers of amorphous alloy are characterized by thermal stability up to 1270 K. Oxidation of the surface amorphous layer in residual oxygen atmosphere and its crystallization in ZrO 2 take place in result of Zr annealing with implanted Si ions at temperature not exceeding 870 K. Similar phenomena are observed in the case of hafnium with implanted oxygen ions or small dose of silicon ions. Thermal stability of amorphous layers produced during ion implantation of Si in Ti, Zr and Hf corresponds to scale resistance of monolithic alloys in Ti-Si, Zr-Si and Hf-Si systems

  3. A multifunctional polymeric nanofilm with robust chemical performances for special wettability

    Science.gov (United States)

    Wang, Yabin; Lin, Feng; Dong, Yaping; Liu, Zhong; Li, Wu; Huang, Yudong

    2016-02-01

    A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has the potential to act as a superhydrophilic and underwater superoleophobic material. As the polymeric nanofilm atop the copper mesh is modified with long-chain octadecyltrichlorosilane (OTS), the functionalized surface becomes superhydrophobic and superoleophilic. The OTS-modified polymeric nanofilm shows outstanding chemical durability and stability that are seldom concurrently satisfied for a material with special wettability, owing to its inherent architecture. These textures generate high separation efficiency, durable separation capability and excellent thermal stability. The protective ability, originating from the textures of the underlying cross-linked disulfide units (-SS-) and siloxane networks (SiOSi) on the top of the nanofilm, prolongs the chemical durability. The activating capability stemming from the residual SiOH groups improves the chemical stability as a result of the chemical bonds developed by these sites. The significant point of this investigation lies in enlightening us on the fabrication of multifunctional polymeric nanofilms on different metal surfaces using various triazinedithiolsilane compounds, and on the construction of interfaces with controllable wettable performances in demanding research or industrial applications.A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has

  4. Radical Initiated Hydrosilylation on Silicon Nanocrystal Surfaces: An Evaluation of Functional Group Tolerance and Mechanistic Study.

    Science.gov (United States)

    Yang, Zhenyu; Gonzalez, Christina M; Purkait, Tapas K; Iqbal, Muhammad; Meldrum, Al; Veinot, Jonathan G C

    2015-09-29

    Hydrosilylation is among the most common methods used for modifying silicon surface chemistry. It provides a wide range of surface functionalities and effective passivation of surface sites. Herein, we report a systematic study of radical initiated hydrosilylation of silicon nanocrystal (SiNC) surfaces using two common radical initiators (i.e., 2,2'-azobis(2-methylpropionitrile) and benzoyl peroxide). Compared to other widely applied hydrosilylation methods (e.g., thermal, photochemical, and catalytic), the radical initiator based approach is particle size independent, requires comparatively low reaction temperatures, and yields monolayer surface passivation after short reaction times. The effects of differing functional groups (i.e., alkene, alkyne, carboxylic acid, and ester) on the radical initiated hydrosilylation are also explored. The results indicate functionalization occurs and results in the formation of monolayer passivated surfaces.

  5. Slow Decomposition of Silicone Rubber.

    Science.gov (United States)

    1982-09-01

    for the presence of silanol groups in the original polymer was obtained by reacting PDMS with tetraethoxysllane, yielding a substantial amount, 76 per...degree of gelatlon. 4J 8 An attempt was also made to block these OH groups by reacting POMS with hexamethyldisilazane to yield trimethylsiloxy groups in...toluene for various periods. Cold extraction, 0; hot ( Soxhlet ) extraction, A. Figure 2. Soluble fraction AS generated in a previously- extracted

  6. Gold nanoparticles as markers for fluorinated surfaces containing embedded amide groups

    Science.gov (United States)

    Ballarin, Barbara; Barreca, Davide; Bertola, Maurizio; Cristina Cassani, Maria; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Nanni, Daniele; Parise, Chiara; Ranieri, Silvia

    2018-05-01

    Indium tin oxide (ITO) substrates were functionalized with fluoroalkylsilanes (FAS) having formula RFC(O)N(R)(CH2)3Si(OMe)3 (1, R = H, RF = C5F11; 2, R = CH3, RF = C5F11;3, R = H, RF = C3F7) and containing embedded amide moieties between the perfluoroalkyl chain and the syloxanic moiety. Subsequently, Au nanoparticle deposition (AuNP) onto the ITO-FAS functionalized surfaces was carried out by immersion into a solution of citrate-stabilized AuNP. The ITO-FAS and AuNP/ITO-FAS modified systems were characterized by various complementary techniques and compared with AuNP/ITO modified with RF(CH2)2Si(OEt)3 (4, RF = C6F13), free from functional groups between the fluorinated tail and the syloxanic moiety. The results showed that only ITO glasses modified with 1, 2 and 3 displayed an oleophobic, as well as hydrophobic, behaviour and that the AuNP Surface Coverage (SC %) directly depended on the fluoroalkylsilane nature with the following trend: 60% ITO-2 > 16% ITO-3 > 9% ITO-1 > 3% ITO-4. The obtained results revealed that, in organosilane 2, the presence of a methyl group on the amide nitrogen increases the steric hindrance in the rotation around the Nsbnd CO bond, resulting in the co-presence of two stable conformers in comparable amounts. Their co-presence in solution, combined with the lack of intermolecular Nsbnd H⋯OCsbnd N hydrogen bonds among the anchored molecules, has dramatic influences on the functionalized ITO, yielding a disorderedly packed coating able to accommodate a large quantity of AuNP. These results indicate that AuNP can act as excellent probes to evaluate the coating layer quality but, at the same time, it is possible to tune the gold loading on electroactive surfaces depending on the chemical structure of the used fluorinated silane.

  7. Influence of the peroxide group on the surface of titanium dioxide synthesized by the OPM route

    International Nuclear Information System (INIS)

    Santos, Estela Melare Ribeiro dos; Kubo, Andressa Mayumi; Gorup, Luiz Fernando; Francatto, Patricia; Souza Neto, Francisco Nunes de; Leite, Edson Roberto; Longo, Elson; Camargo, Emerson Rodrigues

    2016-01-01

    Full text: In the context of nanotechnology, there is a growing demand for environmentally sustainable solutions and technological innovations that are linked to reducing energy consumption and minimizing waste generation during the synthesis process. The Oxidant Peroxide Method for titanium dioxide synthesis (TiO 2 -OPM) is based on the oxidation of titanium ions to obtain nanometric powders that are highly reactive particles with controlled morphology. This method is easy and advantageous because it uses reagents of low toxicity, without the necessity to operate in inert atmosphere and at high temperatures. In this work, we obtained nanometric powders of TiO 2 -OPM from metallic titanium (TiO 2 -Met), and titanium isopropoxide (TiO 2 -Iso). Separately, the precursors reacts with hydrogen peroxide in ammoniacal medium in order to compare their reactivity by quantifying the peroxo groups on the surface. Scanning electronic microscopy (SEM) images showed nanoparticles of 10nm of both materials. X-ray diffraction (XRD) patterns showed typical structures of crystalline materials with mixture of anatase and rutile phase of titanium dioxide. Raman spectroscopy also cooperated with the XRD patterns showing vibrational modes of the mixture of phases (anatase and rutile) in both materials. Thermogravimetric analysis (TGA) showed that the two materials lost mass, in which in the first stage (80 - 125 deg C) occurred 24% of loss and in the second stage (235-265 deg C) is between 10% - 13%, and is related to the elimination of peroxo groups at the surface due to thermal treatment. Differential scanning calorimetry (DSC) revealed peaks related to exothermic decomposition of the peroxo groups (200 - 250 deg C) that coincided with peak rates of mass loss in the TGA. And the redox titration showed that the surface of the TiO 2 -Met had peroxo groups in 8.6 % w/w and 10.1 % w/w for TiO 2 -Iso, resulting in an increase of peroxo groups on the surface, making the TiO 2 -Iso route

  8. Influence of the peroxide group on the surface of titanium dioxide synthesized by the OPM route

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Estela Melare Ribeiro dos; Kubo, Andressa Mayumi; Gorup, Luiz Fernando; Francatto, Patricia; Souza Neto, Francisco Nunes de; Leite, Edson Roberto; Longo, Elson; Camargo, Emerson Rodrigues, E-mail: estelamelare@yahoo.com.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Full text: In the context of nanotechnology, there is a growing demand for environmentally sustainable solutions and technological innovations that are linked to reducing energy consumption and minimizing waste generation during the synthesis process. The Oxidant Peroxide Method for titanium dioxide synthesis (TiO{sub 2}-OPM) is based on the oxidation of titanium ions to obtain nanometric powders that are highly reactive particles with controlled morphology. This method is easy and advantageous because it uses reagents of low toxicity, without the necessity to operate in inert atmosphere and at high temperatures. In this work, we obtained nanometric powders of TiO{sub 2}-OPM from metallic titanium (TiO{sub 2}-Met), and titanium isopropoxide (TiO{sub 2}-Iso). Separately, the precursors reacts with hydrogen peroxide in ammoniacal medium in order to compare their reactivity by quantifying the peroxo groups on the surface. Scanning electronic microscopy (SEM) images showed nanoparticles of 10nm of both materials. X-ray diffraction (XRD) patterns showed typical structures of crystalline materials with mixture of anatase and rutile phase of titanium dioxide. Raman spectroscopy also cooperated with the XRD patterns showing vibrational modes of the mixture of phases (anatase and rutile) in both materials. Thermogravimetric analysis (TGA) showed that the two materials lost mass, in which in the first stage (80 - 125 deg C) occurred 24% of loss and in the second stage (235-265 deg C) is between 10% - 13%, and is related to the elimination of peroxo groups at the surface due to thermal treatment. Differential scanning calorimetry (DSC) revealed peaks related to exothermic decomposition of the peroxo groups (200 - 250 deg C) that coincided with peak rates of mass loss in the TGA. And the redox titration showed that the surface of the TiO{sub 2}-Met had peroxo groups in 8.6 % w/w and 10.1 % w/w for TiO{sub 2}-Iso, resulting in an increase of peroxo groups on the surface, making

  9. AFM imaging and analysis of local mechanical properties for detection of surface pattern of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, Petr, E-mail: petr.knotek@upce.cz [University of Pardubice, Faculty of Chemical Technology, Joint Laboratory of Solid State Chemistry of IMC ASCR and University of Pardubice, Studentska 573, 532 10 Pardubice (Czech Republic); Chanova, Eliska; Rypacek, Frantisek [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho sq. 2, 162 06 Prague (Czech Republic)

    2013-05-01

    In this work we evaluate the applicability of different atomic force microscopy (AFM) modes, such as Phase Shift Imaging, Atomic Force Acoustic Microscopy (AFAM) and Force Spectroscopy, for mapping of the distribution pattern of low-molecular-weight biomimetic groups on polymer biomaterial surfaces. Patterns with either random or clustered spatial distribution of bioactive peptide group derived from fibronectin were prepared by surface deposition of functional block copolymer nano-colloids and grafted with RGDS peptide containing the sequence of amino acids arginine–glycine–aspartic acid–serine (conventionally labeled as RGDS) and carrying biotin as a tag. The biotin-tagged peptides were labeled with 40 nm streptavidin-modified Au nanospheres. The peptide molecules were localized through the detection of bound Au nanospheres by AFM, and thus, the surface distribution of peptides was revealed. AFM techniques capable of monitoring local mechanical properties of the surface were proved to be the most efficient for identification of Au nano-markers. The efficiency was successfully demonstrated on two different patterns, i.e. random and clustered distribution of RGDS peptides on structured surface of the polymer biomaterial. Highlights: ► Bioactive peptides for cell adhesion on PLA-b-PEO biomimetic surface were visualized. ► The biotin-tagged RGDS peptides were labeled with streptavidin-Au nanospheres. ► The RGDS pattern was detected using different atomic force microscopy (AFM) modes. ► Phase Shift Image was proved to be suitable method for studying peptide distribution.

  10. Acid-base properties and the chemical imaging of surface-bound functional groups studied with scanning force microscopy

    NARCIS (Netherlands)

    van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this paper we present a scanning force microscopy (SFM) study on electrostatic and hydrogen-bonding interactions between chemically modified SFM probes and surface functional groups. pH-dependent adhesion force measurements in aqueous media between various ionizable functional groups showed a

  11. Urea functionalized surface-bonded sol-gel coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    Science.gov (United States)

    Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid

    2018-03-30

    Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Surface radiological investigations at the 0816 Site, Waste Area Grouping 13, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Tiner, P.F.; Uziel, M.S.

    1994-12-01

    A surface radiological investigation was conducted intermittently from July through September 1994 at the 0816 site, located within Waste Area Grouping (WAG) 13. The survey was performed by members of the Measurement Applications and Development Group, Health Sciences Research Division, Oak Ridge National Laboratory (ORNL) at the request of ORNL Site Environmental Restoration Program Facility Management. The purpose of the survey was to ascertain and document the surface radiological condition of the site subsequent to remedial action activities completed in May 1994. The survey was designed to determine whether any residual surface sod contamination in excess of 120 pCi/g 137 Cs (Specified by the Interim Record of Decision) remained at the site

  13. Documentation for The Group for High Resolution Sea Surface Temperature (GHRSST) data archived at NCEI (NCEI Accession 0123222)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Group for High Resolution Sea Surface Temperature (GHRSST) is an international open group for SST data producers, users, and scientists. It brings together...

  14. Hydroxyl group induced adsorption of four-nitro benzoic acid on Si(100) 2x1 surface

    International Nuclear Information System (INIS)

    Ihm, K.; Kang, T.-H.; Hwang, C.C.; Kim, K.-J.; Hwang, H.-N.; Kim, H.-D.; Han, J.H.; Moon, S.; Kim, B.; POSTECH

    2004-01-01

    Full text: A number of studies have been conducted on self-assembled monolayers (SAMs) in order to study the adhesion of polymer films on various substrates. Recently, the studies on SAMs on the semiconductor substrate are more motivated because of their possible application to nanoscale devices. For the electronic and chemical properties suitable for various applications, the aromatic ring has been used as a building block of various molecules forming SAMs. Here, we used four-nitro benzoic acid (4-NBA) as a model planar aromatic compound, in which the phenyl ring, the carboxylic functional group, and NO2 are on the same plane. The adsorption mechanism of 4-NBA on the in-situ prepared OH/Si(100) 2x1 surface was investigated using x-ray photoelectron spectroscopy and near-edge x-ray absorption e structure. The results revealed that the 4-NBA molecule reacts with the hydroxyl group on the Si(100) 2x1 surface through deprotonation of the carboxyl group. The saturation coverage of 4-NBA estimated by the O 1s ratio is 1/2 ML. Additionally, we could observe the desorption of the oxygen atom from the NO2 moiety of the 4-NBA upon irradiating the surface by photons of 500 eV

  15. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    International Nuclear Information System (INIS)

    Cha, I.; Hashimoto, K.; Fujiki, K.; Yamauchi, T.; Tsubokawa, N.

    2014-01-01

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion

  16. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Cha, I. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Hashimoto, K. [Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Fujiki, K. [Department of Environmental Science, Niigata Institute of Technology, 1719, Fujihashi, Kashiwazaki, Niigata 945-1195 (Japan); Yamauchi, T. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Tsubokawa, N., E-mail: ntsuboka@eng.niigata-u.ac.jp [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan)

    2014-02-14

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion.

  17. Interaction of calcium silicate hydrates (C-S-H), the main components of cement, with alkaline chlorides, analogy with clays

    International Nuclear Information System (INIS)

    Viallis-Terrisse, H.

    2000-01-01

    This work, belonging to a more general study on the structure and reactivity of cement, deals with the experimental and theoretical analysis of the interaction of alkaline chlorides with calcium silicate hydrates (C-S-H), the main components of cement paste. The interaction of alkaline cations with C-S-H is interfacial, involving both electrostatic and surface complexation mechanisms. The C-S-H surface is constituted of silanol sites, partially dissociated due to the high pH of the interstitial solution. The calcium ions, present in large amounts in the equilibrium solution of C-S-H, constitute potential determining ions for the C-S-H surface. The alkaline ions seem to compete with calcium for the same surface sites. The adsorption isotherms show that caesium presents a better affinity than sodium and lithium for the C-S-H surface. Moreover, solid-state NMR suggests that caesium forms with the surface sites inner-sphere complexes, whereas sodium seems to keep its hydration sphere. These results are in agreement with zeta potential measurements, which let suppose a specific adsorption of caesium ions, and an indifferent behaviour of both other alkaline ions. A model for the C-S-H surface was proposed, from the electric double layer model, and mass action laws expressing the complexation of the different ionic species with the silanol sites. The whole study relies on a structural analogy with smectites, some clays presenting well-known cationic adsorption properties. The structural similarity between both minerals is enhanced by some similarities of reactivity, though significant behaviour differences could also be noted. (author)

  18. Interaction of calcium silicate hydrates (C-S-H), the main components of cement, with alkaline chlorides, analogy with clays; Interaction des silicates de calcium hydrates, principaux constituants du ciment, avec les chlorures d'alcalins. Analogie avec les argiles

    Energy Technology Data Exchange (ETDEWEB)

    Viallis-Terrisse, H

    2000-10-06

    This work, belonging to a more general study on the structure and reactivity of cement, deals with the experimental and theoretical analysis of the interaction of alkaline chlorides with calcium silicate hydrates (C-S-H), the main components of cement paste. The interaction of alkaline cations with C-S-H is interfacial, involving both electrostatic and surface complexation mechanisms. The C-S-H surface is constituted of silanol sites, partially dissociated due to the high pH of the interstitial solution. The calcium ions, present in large amounts in the equilibrium solution of C-S-H, constitute potential determining ions for the C-S-H surface. The alkaline ions seem to compete with calcium for the same surface sites. The adsorption isotherms show that caesium presents a better affinity than sodium and lithium for the C-S-H surface. Moreover, solid-state NMR suggests that caesium forms with the surface sites inner-sphere complexes, whereas sodium seems to keep its hydration sphere. These results are in agreement with zeta potential measurements, which let suppose a specific adsorption of caesium ions, and an indifferent behaviour of both other alkaline ions. A model for the C-S-H surface was proposed, from the electric double layer model, and mass action laws expressing the complexation of the different ionic species with the silanol sites. The whole study relies on a structural analogy with smectites, some clays presenting well-known cationic adsorption properties. The structural similarity between both minerals is enhanced by some similarities of reactivity, though significant behaviour differences could also be noted. (author)

  19. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission

    KAUST Repository

    Hola, Katerina; Bourlinos, Athanasios B.; Kozak, Ondrej; Berka, Karel; Siskova, Karolina M.; Havrdova, Marketa; Tucek, Jiri; Safarova, Klara; Otyepka, Michal; Giannelis, Emmanuel P.; Zboril, Radek

    2014-01-01

    We present a simple molecular approach to control the lipophilic/ hydrophilic nature of photoluminescent carbon dots (CDs) based on pyrolysis of alkyl gallate precursors. Depending on the gallic acid derivative used, CDs with different alkyl groups (methyl, propyl, lauryl) on the surface can be obtained by isothermal heating at 270 C. This precursor-derived approach allows not only the control of lipophilicity but also the length of the particular alkyl chain enables the control over both the size and photoluminescence (PL) of the prepared CDs. Moreover, the alkyl chains on the CDs surface can be readily converted to carboxylate groups via a mild base hydrolysis to obtain water dispersible CDs with a record biocompatibility. The observed differences in PL properties of CDs and time-resolved PL data, including contributions from carbogenic cores and surface functional group, are rationalized and discussed in detail using time-dependent density functional theory (TD-DFT) calculations. © 2013 Elsevier Ltd. All rights reserved.

  20. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission

    KAUST Repository

    Hola, Katerina

    2014-04-01

    We present a simple molecular approach to control the lipophilic/ hydrophilic nature of photoluminescent carbon dots (CDs) based on pyrolysis of alkyl gallate precursors. Depending on the gallic acid derivative used, CDs with different alkyl groups (methyl, propyl, lauryl) on the surface can be obtained by isothermal heating at 270 C. This precursor-derived approach allows not only the control of lipophilicity but also the length of the particular alkyl chain enables the control over both the size and photoluminescence (PL) of the prepared CDs. Moreover, the alkyl chains on the CDs surface can be readily converted to carboxylate groups via a mild base hydrolysis to obtain water dispersible CDs with a record biocompatibility. The observed differences in PL properties of CDs and time-resolved PL data, including contributions from carbogenic cores and surface functional group, are rationalized and discussed in detail using time-dependent density functional theory (TD-DFT) calculations. © 2013 Elsevier Ltd. All rights reserved.

  1. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  2. Effect of Alumina Incorporation on the Surface Mineralization and Degradation of a Bioactive Glass (CaO-MgO-SiO2-Na2O-P2O5-CaF2-Glycerol Paste

    Directory of Open Access Journals (Sweden)

    Dilshat Tulyaganov

    2017-11-01

    Full Text Available This study investigates the dissolution behavior as well as the surface biomineralization in simulated body fluid (SBF of a paste composed of glycerol (gly and a bioactive glass in the system CaO-MgO-SiO2-Na2O-P2O5-CaF2 (BG. The synthesis of the bioactive glass in an alumina crucible has been shown to significantly affect its bioactivity due to the incorporation of aluminum (ca. 1.3–1.4 wt % into the glass network. Thus, the kinetics of the hydroxyapatite (HA mineralization on the glass prepared in the alumina crucible was found to be slower than that reported for the same glass composition prepared in a Pt crucible. It is considered that the synthesis conditions lead to the incorporation of small amount of aluminum into the BG network and thus delay the HA mineralization. Interestingly, the BG-gly paste was shown to have significantly higher bioactivity than that of the as-prepared BG. Structural analysis of the paste indicate that glycerol chemically interacts with the glass surface and strongly alter the glass network architecture, thus generating a more depolymerized network, as well as an increased amount of silanol groups at the surface of the glass. In particular, BG-gly paste features early intermediate calcite precipitation during immersion in SBF, followed by hydroxyapatite formation after ca. seven days of SBF exposure; whereas the HA mineralization seems to be suppressed in BG, probably a consequence of the incorporation of aluminum into the glass network. The results obtained within the present study reveal the positive effect of using pastes based on bioactive glasses and organic carriers (here alcohols which may be of interest not only due to their advantageous visco-elastic properties, but also due to the possibility of enhancing the glass bioactivity upon surface interactions with the organic carrier.

  3. Tailoring surface properties and structure of layered double hydroxides using silanes with different number of functional groups

    International Nuclear Information System (INIS)

    Tao, Qi; He, Hongping; Li, Tian; Frost, Ray L.; Zhang, Dan; He, Zisen

    2014-01-01

    Four silanes, trimethylchlorosilane (TMCS), dimethyldiethoxylsilane (DMDES), 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS), were adopted to graft layered double hydroxides (LDH) via an induced hydrolysis silylation method (IHS). Fourier transform infrared spectra (FTIR) and 29 Si MAS nuclear magnetic resonance spectra ( 29 Si MAS NMR) indicated that APTES and TEOS can be grafted onto LDH surfaces via condensation with hydroxyl groups of LDH, while TMCS and DMDES could only be adsorbed on the LDH surface with a small quantity. A combination of X-ray diffraction patterns (XRD) and 29 Si MAS NMR spectra showed that silanes were exclusively present in the external surface and had little influence on the long range order of LDH. The surfactant intercalation experiment indicated that the adsorbed and/or grafted silane could not fix the interlamellar spacing of the LDH. However, they will form crosslink between the particles and affect the further surfactant intercalation in the silylated samples. The replacement of water by ethanol in the tactoids and/or aggregations and the polysiloxane oligomers formed during silylation procedure can dramatically increase the value of BET surface area (S BET ) and total pore volumes (V p ) of the products. - Graphical abstract: The replacement of water by ethanol in the tactoids and aggregations of LDHs, and the polysiloxane oligomers formed during silylation process can dramatically increase the BET surface area (S BET ) and the total pore volume (V p ) of the silylated products. - Highlights: • Silanes with multifunctional groups were grafted onto LDH surface in C 2 H 5 OH medium. • The number of hydrolysable groups in silanes affects the structure of grafted LDH. • Replacement of H 2 O by C 2 H 5 OH in aggregations increases S BET and V p of grafted LDH. • Polysiloxane oligomers contribute to the increase of S BET and V p of grafted LDH

  4. Investigating the Interaction of Water Vapour with Aminopropyl Groups on the Surface of Mesoporous Silica Nanoparticles.

    Science.gov (United States)

    Paul, Geo; Musso, Giorgia Elena; Bottinelli, Emanuela; Cossi, Maurizio; Marchese, Leonardo; Berlier, Gloria

    2017-04-05

    The interaction of water molecules with the surface of hybrid silica-based mesoporous materials is studied by 29 Si, 1 H and 13 C solid-state NMR and IR spectroscopy, with the support of ab initio calculations. The surface of aminopropyl-grafted mesoporous silica nanoparticles is studied in the dehydrated state and upon interaction with controlled doses of water vapour. Former investigations described the interactions between aminopropyl and residual SiOH groups; the present study shows the presence of hydrogen-bonded species (SiOH to NH 2 ) and weakly interacting "free" aminopropyl chains with restricted mobility, together with a small amount of protonated NH 3 + groups. The concentration of the last-named species increased upon interaction with water, and this indicates reversible and fast proton exchange from water molecules to a fraction of the amino groups. Herein, this is discussed and explained for the first time, by a combination of experimental and theoretical approaches. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-Performance Supercapacitor of Functionalized Carbon Fiber Paper with High Surface Ionic and Bulk Electronic Conductivity: Effect of Organic Functional Groups

    International Nuclear Information System (INIS)

    Suktha, Phansiri; Chiochan, Poramane; Iamprasertkun, Pawin; Wutthiprom, Juthaporn; Phattharasupakun, Nutthaphon; Suksomboon, Montakan; Kaewsongpol, Tanon; Sirisinudomkit, Pichamon; Pettong, Tanut; Sawangphruk, Montree

    2015-01-01

    Highlights: • A supercapacitor of organic functionalized carbon fiber paper (f-CFP) exhibits high areal and volumetric capacitances. • The performance of the supercapacitor depends on the organic functional group on the surface of the f-CFP. • Hydroxyl and carboxylic groups modified on the surface of f-CFP have higher pseudocapacitive property than amide and amine functional groups. • The f-CFP exhibits high surface ionic and bulk electrical conductivities. - Abstract: Although carbon fiber paper (CFP) or nonwovens are widely used as a non-corrosive and conductive substrate or current collector in batteries and supercapacitors as well as a gas diffusion layer in proton exchange membrane fuel cells, the CFP cannot store charges due to its poor ionic conductivity and its hydrophobic surface. In this work, the chemically functionalized CFP (f-CFP) consisting of hydroxyl and carboxylic groups on its surface was produced by an oxidation reaction of CFP in a mixed concentrated acid solution of H 2 SO 4 :HNO 3 (3:1 v/v) at 60 °C for 1 h. Other amide and amine groups modified CFP were also synthesized for comparison using a dehydration reaction of carboxylic modified CFP with ethylenediamine and n-butylamine. Interestingly, it was found that hydroxyl and carboxylic groups modified CFP behave as a pseudocapacitor electrode, which can store charges via the surface redox reaction in addition to electrochemical double layer capacitance. The aqueous-based supercapacitor of f-CFP has high areal, volumetric, and specific energy (49.0 μW.h/cm 2 , 1960 mW.h/L, and 5.2 W.h/Kg) and power (3.0 mW/cm 2 , 120 W/L, and 326.2 W/Kg) based on the total geometrical surface area and volume as well as the total weight of positive and negative electrodes. High charge capacity of the f-CFP stems from high ionic charge and pseudocapacitive behavior due to hydroxyl and carboxylic groups on its surface and high bulk electronic conductivity (2.03 mS/cm) due to 1D carbon fiber paper. The

  6. Holomorphic representation of constant mean curvature surfaces in Minkowski space: Consequences of non-compactness in loop group methods

    DEFF Research Database (Denmark)

    Brander, David; Rossman, Wayne; Schmitt, Nicholas

    2010-01-01

    We give an infinite dimensional generalized Weierstrass representation for spacelike constant mean curvature (CMC) surfaces in Minkowski 3-space $\\R^{2,1}$. The formulation is analogous to that given by Dorfmeister, Pedit and Wu for CMC surfaces in Euclidean space, replacing the group $SU_2$ with...

  7. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  8. First principles-based adsorption comparison of group IV elements (C, Si, Ge, and Sn) on Au(111)/Ag(111) surface

    International Nuclear Information System (INIS)

    Chakraborty, Sudip; Rajesh, Ch.

    2012-01-01

    We have reported a first-principle investigation of the structural properties of monomer and dimer for group IV elements (C, Si, Ge, and Sn) adsorbed on the Au(111) and Ag(111) surfaces. The calculations were performed by means of a plane wave based pseudopotential method under the framework of density functional theory. The results reveal the preference of adatom to be adsorbed on the hexagonal closed packed site of the metal (111) surfaces with strong binding energy. The structures introduce interlayer forces in the adsorbate. The strong bonding with the surface atoms is a result of p–d hybridization. The adsorption energy follows a sequence as one goes down in the group IV elements which imply that the interaction of the group IV elements with Au/Ag is decreasing as the atomic number increases.

  9. Micrometer-sized TPM emulsion droplets with surface-mobile binding groups

    Science.gov (United States)

    van der Wel, Casper; van de Stolpe, Guido L.; Verweij, Ruben W.; Kraft, Daniela J.

    2018-03-01

    Colloids coated with lipid membranes have been widely employed for fundamental studies of lipid membrane processes, biotechnological applications such as drug delivery and biosensing, and more recently, for self-assembly. The latter has been made possible by inserting DNA oligomers with covalently linked hydrophobic anchors into the membrane. The lateral mobility of the DNA linkers on micrometer-sized droplets and solid particles has opened the door to creating structures with unprecedented structural flexibility. Here, we investigate micro-emulsions of TPM (3-(trimethoxysilyl)propyl methacrylate) as a platform for lipid monolayers and further functionalization with proteins and DNA oligonucleotides. TPM droplets can be produced with a narrow size distribution and are polymerizable, thus providing supports for model lipid membranes with controlled size and curvature. With fluorescence recovery after photobleaching, we observed that droplet-attached lipids, NeutrAvidin proteins, as well as DNA oligonucleotides all show mobility on the surface. We explored the assembly of micron-sized particles on TPM-droplets by exploiting either avidin-biotin interactions or double-stranded DNA with complementary single-stranded end groups. While the single molecules are mobile, the particles that are attached to them are not. We propose that this is caused by the heterogeneous nature of emulsified TPM, which forms an oligomer network that limits the collective motion of linkers, but allows the surface mobility of individual molecules.

  10. On the nature of oxygen-containing surface groups on carbon nanofibers and their role for platinum deposition—an xps and titration study

    NARCIS (Netherlands)

    Plomp, A.J.; Su, D.S.; de Jong, K.P.; Bitter, J.H.

    2009-01-01

    XPS and acid−base titrations were used to investigate the nature and stability of oxygen-containing surface groups on carbon nanofibers (CNF) and platinum-containing CNF. During heat treatments in inert atmosphere at 973 K all acidic (carboxylic) oxygen surface groups were removed for CNF.

  11. Tailoring surface properties and structure of layered double hydroxides using silanes with different number of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Qi [Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, Brisbane, Queensland 4001 (Australia); He, Hongping, E-mail: hehp@gig.ac.cn [Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, Brisbane, Queensland 4001 (Australia); Li, Tian [Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese, Academy of Sciences, Beijing 100039 (China); Frost, Ray L. [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, Brisbane, Queensland 4001 (Australia); Zhang, Dan; He, Zisen [Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese, Academy of Sciences, Beijing 100039 (China)

    2014-05-01

    Four silanes, trimethylchlorosilane (TMCS), dimethyldiethoxylsilane (DMDES), 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS), were adopted to graft layered double hydroxides (LDH) via an induced hydrolysis silylation method (IHS). Fourier transform infrared spectra (FTIR) and {sup 29}Si MAS nuclear magnetic resonance spectra ({sup 29}Si MAS NMR) indicated that APTES and TEOS can be grafted onto LDH surfaces via condensation with hydroxyl groups of LDH, while TMCS and DMDES could only be adsorbed on the LDH surface with a small quantity. A combination of X-ray diffraction patterns (XRD) and {sup 29}Si MAS NMR spectra showed that silanes were exclusively present in the external surface and had little influence on the long range order of LDH. The surfactant intercalation experiment indicated that the adsorbed and/or grafted silane could not fix the interlamellar spacing of the LDH. However, they will form crosslink between the particles and affect the further surfactant intercalation in the silylated samples. The replacement of water by ethanol in the tactoids and/or aggregations and the polysiloxane oligomers formed during silylation procedure can dramatically increase the value of BET surface area (S{sub BET}) and total pore volumes (V{sub p}) of the products. - Graphical abstract: The replacement of water by ethanol in the tactoids and aggregations of LDHs, and the polysiloxane oligomers formed during silylation process can dramatically increase the BET surface area (S{sub BET}) and the total pore volume (V{sub p}) of the silylated products. - Highlights: • Silanes with multifunctional groups were grafted onto LDH surface in C{sub 2}H{sub 5}OH medium. • The number of hydrolysable groups in silanes affects the structure of grafted LDH. • Replacement of H{sub 2}O by C{sub 2}H{sub 5}OH in aggregations increases S{sub BET} and V{sub p} of grafted LDH. • Polysiloxane oligomers contribute to the increase of S{sub BET} and V{sub p} of grafted LDH.

  12. Mechanistic study and modeling of radionuclides retention by the hydrated calcium silicates (HCS) of cements

    International Nuclear Information System (INIS)

    Pointeau, I.

    2000-09-01

    This work attempts to investigate the modelling of radioisotopes (Cs + , Pb 2+ , Eu 3+ ) immobilization in cement matrix, in the frame of the design of engineered barrier of a deep radwaste repository. The model development concept consists of three major steps: - surface chemistry modelling of the calcium silicate hydrate CSH, used to simulate hydrated cement behaviour; - solid analysis of the batch sorption experiments: identification of the uptake mechanism; - both previous steps are used, with isotherm data, in the modelling of the radioisotopes immobilization in the CSH matrix. Final results: (all modelling are available for all the range of studied Ca/Si ratios and have been validated with predictive calculations). - A thermodynamic modelling of the CSH surface chemistry has been developed. The labile calcium and proton sorption constants on silanol sites (>SiOH) have been extracted. - Cs + is sorbed on two sites. The silanol site (weak site) has a high site density (10 sites.nm -2 ), which accounts for the CSH unsaturation in high [CS + ]. A strong site is also identified. - Pb 2+ immobilization in CSH matrix is modelled with surface equilibria and solubility equilibrium. - Eu 3+ fixation has been investigated with solid analysis: Site-Selective anti Time-Resolved Luminescence Spectroscopy, XPS and SEM-EDS. Eu 3+ thus does not precipitate in CSH water but is sorbed on the CSH surface (high hydroxylated environment). Europium is also (minority site) inserted in the CSH framework. (author)

  13. Mechanistic study and modeling of radionuclides retention by the hydrated calcium silicates (HCS) of cements; Etude mecanistique et modelisation de la retention de radionucleides par les silicates de calcium hydrates (CSH) des ciments

    Energy Technology Data Exchange (ETDEWEB)

    Pointeau, I

    2000-09-01

    This work attempts to investigate the modelling of radioisotopes (Cs{sup +}, Pb{sup 2+}, Eu{sup 3+}) immobilization in cement matrix, in the frame of the design of engineered barrier of a deep radwaste repository. The model development concept consists of three major steps: - surface chemistry modelling of the calcium silicate hydrate CSH, used to simulate hydrated cement behaviour; - solid analysis of the batch sorption experiments: identification of the uptake mechanism; - both previous steps are used, with isotherm data, in the modelling of the radioisotopes immobilization in the CSH matrix. Final results: (all modelling are available for all the range of studied Ca/Si ratios and have been validated with predictive calculations). - A thermodynamic modelling of the CSH surface chemistry has been developed. The labile calcium and proton sorption constants on silanol sites (>SiOH) have been extracted. - Cs{sup +} is sorbed on two sites. The silanol site (weak site) has a high site density (10 sites.nm{sup -2}), which accounts for the CSH unsaturation in high [CS{sup +}]. A strong site is also identified. - Pb{sup 2+} immobilization in CSH matrix is modelled with surface equilibria and solubility equilibrium. - Eu{sup 3+} fixation has been investigated with solid analysis: Site-Selective anti Time-Resolved Luminescence Spectroscopy, XPS and SEM-EDS. Eu{sup 3+} thus does not precipitate in CSH water but is sorbed on the CSH surface (high hydroxylated environment). Europium is also (minority site) inserted in the CSH framework. (author)

  14. Influence of α-methyl group on molecular aggregation structure and surface physicochemical properties of fluoroalkyl side chain polymers

    International Nuclear Information System (INIS)

    Honda, K; Yamaguchi, H; Takahara, A; Sakata, O; Sasaki, S; Takata, M; Morita, M

    2009-01-01

    Influence of α-methyl group on molecular aggregation states and surface physicochemical properties of poly(fluoroalkyl acrylate)s [PFA-C y , where y is fluoromethylene number in R f group] and poly(fluoroalkykl methacrylate)s [PFMA-C y ] thin films were systematically investigated. Spin-coated PFA-C y and PFMA-C y thin films were characterized by dynamic contact angle measurements and grazing-incidence wide-angle X-ray diffraction (GIWAXD) measurements. GIWAXD data revealed that fluoroalkyl side chains of PFA-C y and PFMA-C y with y≥8 formed regular structures in the surface region as well as bulk one. However, the degree of orientation and ordering of the R f groups of PFMA-C 8 thin films was low. Also, the receding contact angle (θ r ) of PFMA-C 8 thin films was lower than that of PFA-C 8 ones. By annealing treatment, the θ r of PFMA-C 8 was increased. These results suggest that the R f groups of PFMA-C 8 were disordered due to presence of the α-methyl group. The R f groups became ordered to pack closely each other by annealing treatment, so that the water repellency was increased.

  15. A bio-inspired zinc finger analogue anchored in 2D hexagonal meso-porous silica for room temperature CO_2 activation via a hydrogeno-carbonate route

    International Nuclear Information System (INIS)

    Doghri, Hanene; Baranova, Elena A.; Albela, Belen; Bonneviot, Laurent; Mongia Said-Zina

    2017-01-01

    Bio-inspired diethylenetriamine-zinc(II) complexes were anchored into the nano-pores of hexagonal meso-porous MCM41-like silicas targeting a carbamate free and low temperature CO_2 recycling process. A step-by-step approach was adopted to perform an in situ synthesis in order to mimic the zinc finger of carbonic anhydrases, the fastest family of enzymes. In the presence of a surface-masking pattern of TMA"+ ions, some silanol groups were capped using grafted trimethylsilyl functions, TMSgr, (gr for grafted). After removing the masking ions, a tridentate diethylenetriamine ligand was anchored using diethylenetriamine propyl-trimethoxysilane. The so-called DETA_a_n ligands (an for anchored) were partially mono-protonated using either cyclohexane or isopropanol as a solvent. Nonetheless, up to two thirds of them were metallated by Zn(II) ions, leading to the targeted anchored zinc finger mimic [Zn(DETAan)L]+(L = Cl or OH). CO_2 is then adsorbed at room temperature and in humid ambient air by the formation of an intermediate hydrogeno-carbonate-zinc complex. Specific IR signatures at 1330 and 1400 cm"-"1 together with characteristic C 1s and Zn 2p3/2 XPS binding energies at 286.4 and 1024.6 eV advocate for a rather symmetrical bidentate [η"2-CO_3] structural unit in the anchored complex [Zn(DETA_a_n)(η"2-HCO_3"*)]"+, where the Zn(II) ion is most likely penta-coordinated. The internal pH value varied by less than 0.5 depending on the metal reacting with the DETA_a_n ligand and its ability to generate HCO_3"-, due to the buffering effect of surface silanol and amino groups according to the level of protonation of the DETA moieties measured from the N 1s XPS spectra. In contrast to nitrate ions, chloride ions were found to inhibit the formation of hydrogeno-carbonate. (authors)

  16. Ni-SiO2 Catalysts for the Carbon Dioxide Reforming of Methane: Varying Support Properties by Flame Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Emma C. Lovell

    2015-03-01

    Full Text Available Silica particles were prepared by flame spray pyrolysis (FSP as a support for nickel catalysts. The impact of precursor feed rate (3, 5 and 7 mL/min during FSP on the silica characteristics and the ensuing effect on catalytic performance for the carbon dioxide, or dry, reforming of methane (DRM was probed. Increasing the precursor feed rate: (i progressively lowered the silica surface area from ≈340 m2/g to ≈240 m2/g; (ii altered the silanol groups on the silica surface; and (iii introduced residual carbon-based surface species to the sample at the highest feed rate. The variations in silica properties altered the (5 wt % nickel deposit characteristics which in turn impacted on the DRM reaction. As the silica surface area increased, the nickel dispersion increased which improved catalyst performance. The residual carbon-based species also appeared to improve nickel dispersion, and in turn catalyst activity, although not to the same extent as the change in silica surface area. The findings illustrate both the importance of silica support characteristics on the catalytic performance of nickel for the DRM reaction and the capacity for using FSP to control these characteristics.

  17. The use of a well-defined surface organometallic complex as a probe molecule: [(≡SiO)TaVCl2Me2] shows different isolated silanol sites on the silica surface

    KAUST Repository

    Chen, Yin; Zheng, Bin; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Hamzaoui, Bilel; Huang, Kuo-Wei; Basset, Jean-Marie

    2014-01-01

    TaVCl2Me3 reacts with silica(700) and produces two different [(≡SiO)TaVCl2Me2] surface organometallic species, suggesting a heterogeneity of the highly dehydroxylated silica surface, which was studied with a combined experimental and theoretical approach. This journal is © the Partner Organisations 2014.

  18. Annotated bibliography for liquid metal surface tensions of groups III-A, IV-A, and V-A metals

    International Nuclear Information System (INIS)

    Murtha, M.J.; Burnet, G.

    1976-04-01

    An annotated bibliography has been prepared which includes summaries of 82 publications dating from 1920 and dealing with the measurement of the surface tensions of Groups III-A, IV-A, and V-A metals in the liquid state. The bibliography is organized by key element investigated, and contains a tabulation of correlations for surface tension as a function of temperature. A brief discussion dealing with variables and methods has been included

  19. Mixtures of functionalized aromatic groups generated from diazonium chemistry as templates towards bimetallic species supported on carbon electrode surfaces

    International Nuclear Information System (INIS)

    Vilà, Neus; Bélanger, Daniel

    2012-01-01

    Mixtures of 4-sulfophenyl and 4-aminophenyl groups were grafted onto carbon electrodes by electrochemical reduction of their corresponding diazonium cations. Two experimental methodologies were tested in order to control primarily the composition of the binary organic films and subsequently the composition of the bimetallic Cu/Pt layers. The composition of the organic layers was controlled either by changing the ratio of the two components in solution and applying a cathodic potential at which both diazonium cations are electrochemically reduced. The organic layers were characterized by cyclic voltammetry, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. These binary organic films were subsequently used as templates to load bimetallic species to the carbon surface based on electrostatic interactions of 4-sulfophenyl and 4-aminophenyl groups with Cu 2+ and PtCl 6 2− ionic species dissolved in solution, respectively. The metal complexes, electrostatically bounded to the ionic sites of the grafted groups, were reduced by using NaBH 4 as reducing agent. The amount of Cu was estimated by stripping voltammetry in a sulfuric acid aqueous solution whereas adsorption/desorption of hydrogen was used to quantify the platinum present on the carbon surface. XPS analysis of the metallic surfaces was also performed to confirm the presence of the metals on the electrode surface. The results indicate that the composition of the bimetallic layers is controlled by the ratio of the 4-sulfophenyl and 4-aminophenyl grafted groups.

  20. Acid-Base Behavior of Carboxylic Acid Groups Covalently Attached at the Surface of Polyethylene: The Usefulness of Contact Angle in Following the Ionization of Surface Functionality

    Science.gov (United States)

    1985-08-01

    additional check, we converted granular PE-CO 2H to granular PE-CO 2CH3 by acid -catalyzed esterification. This material had no titrable groups. Upon...Task No. NR-631-840 TECHNICAL REPORT NO. 85-1 Acid -Base Behavior of Carboxylic Acid Groups Covalently Attached at the Surface of Polyethylene: The...34I Acid -Base Behavior K-142 ofCarboxylicAcidGroupsAttached...______________________ 12. PERSIIMAL AUTHOR IS) S.R. Holmes-Farly., R.H. Reamey, T.J

  1. First-order dissolution rate law and the role of surface layers in glass performance assessment

    Science.gov (United States)

    Grambow, B.; Müller, R.

    2001-09-01

    The first-order dissolution rate law is used for nuclear waste glass performance predictions since 1984. A first discussion of the role of saturation effects was initiated at the MRS conference that year. In paper (1) it was stated that "For glass dissolution A* (the reaction affinity) cannot become zero since saturation only involves the reacting surface while soluble elements still might be extracted from the glass" [B. Grambow, J. Mater. Res. Soc. Symp. Proc. 44 (1985) 15]. Saturation of silica at the surface and condensation of surface silanol groups was considered as being responsible for the slow down of reaction rates by as much as a factor of 1000. Precipitation of Si containing secondary phases such as quartz was invoked as a mechanism for keeping final dissolution affinities higher than zero. Another (2) paper [A.B. Barkatt, P.B. Macedo, B.C. Gibson, C.J. Montrose, J. Mater. Res. Soc. Symp. Proc. 44 (1985) 3] stated that "… under repository conditions the extent of glass dissolution will be moderate due to saturation with respect to certain major elements (in particular, Si, Al and Ca). Consequently, the concentration levels of the more soluble glass constituents in the aqueous medium are expected to fall appreciable below their solubility limit." The formation of dense surface layers was considered responsible for explaining the saturation effect. The mathematical model assumed stop of reaction in closed systems, once solubility limits were achieved. For more than 15 years the question of the correctness of one or the other concept has seldom been posed and has not yet been resolved. The need of repository performance assessment for validated rate laws demands a solution, particularly since the consequences of the two concepts and research requirements for the long-term glass behavior are quite different. In concept (1) the stability of the `equilibrium surface region' is not relevant because, by definition, this region is stable chemically and after a

  2. Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke; Madsen, L.

    2001-01-01

    adsorption characteristics of selected pesticides. Investigated mineral phases included quartz, calcite, kaolinite, and alpha -alumina. Selected pesticides comprised atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine isoproturon [3-(4-isopropyl-phenyl)-1,1-dimethylurea)], mecoprop [(RS)-2...... due to formation of Ca-pesticide-surface complexes. Adsorption of the uncharged pesticides (atrazine and isoproturon) was detected only on kaolinite. The lack of adsorption on alpha -alumina indicates that the uncharged pesticides have a greater affinity for the silanol surface sites (= SiOH) than...

  3. Critical surface of the quenched bond-diluted cubic model in self-dual lattice: renormalisation group approach

    International Nuclear Information System (INIS)

    Silva, E.P. da; Tsallis, C.

    1991-01-01

    We propose a quite simple real space renormalisation group which enables us to calculate (for the first time as far as we know, and presumably with high precision) the critical surface of the quenched bond-diluted discrete N-vector ferromagnet. (author)

  4. Alcohols react with MCM-41 at room temperature and chemically modify mesoporous silica.

    Science.gov (United States)

    Björklund, Sebastian; Kocherbitov, Vitaly

    2017-08-30

    Mesoporous silica has received much attention due to its well-defined structural order, high surface area, and tunable pore diameter. To successfully employ mesoporous silica for nanotechnology applications it is important to consider how it is influenced by solvent molecules due to the fact that most preparation procedures involve treatment in various solvents. In the present work we contribute to this important topic with new results on how MCM-41 is affected by a simple treatment in alcohol at room temperature. The effects of alcohol treatment are characterized by TGA, FTIR, and sorption calorimetry. The results are clear and show that treatment of MCM-41 in methanol, ethanol, propanol, butanol, pentanol, or octanol at room temperature introduces alkoxy groups that are covalently bound to the silica surface. It is shown that alcohol treated MCM-41 becomes more hydrophobic and that this effect is sequentially more prominent going from methanol to octanol. Chemical formation of alkoxy groups onto MCM-41 occurs both for calcined and hydroxylated MCM-41 and the alkoxy groups are hydrolytically unstable and can be replaced by silanol groups after exposure to water. The results are highly relevant for mesoporous silica applications that involve contact or treatment in protic solvents, which is very common.

  5. Surface modified superparamagnetic nanoparticles: Interaction with fibroblasts in primary cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Chapa Gonzalez, Christian; Roacho Pérez, Jorge A.; Martínez Pérez, Carlos A.; Olivas Armendáriz, Imelda [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Jimenez Vega, Florinda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Castrejon Parga, Karen Y. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Garcia Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico)

    2014-12-05

    Highlights: • An inorganic layer before an organic material shell onto MNPs improves cell viability. • The coating type and the concentration of nanoparticles directly affect cell viability. • Modified magnetite nanoparticles with organic and inorganic materials was developed. - Abstract: The development of a variety of medical applications such as drug delivery, cell labeling, and medical imaging have been possible owing to the unique features exhibited by magnetic nanoparticles. Nanoparticle–cell interaction is related to the surface aspects of nanoparticle, which may be described based on their chemistry or inorganic/organic characteristics. The coating on particle surface reduces the inter-particle interactions and provides properties such as biocompatibility. Among the coating materials used for nanoparticles employed in biomedical applications, oleic acid is one of the most utilized due to its biocompatibility. However, a major drawback with this naturally occurring fatty acid is that it is easily oxidized by cells and this reduces their performance in biomedical applications. In order to avoid the direct contact of the cell with the magnetite particle, coating with an inorganic material prior to the oleic acid shell would be effective. This would retard the magnetite dissociation thereby improve the cell viability. Here we report our investigation on the effect of surface modified magnetite nanoparticles (MNPs) on the cell viability using primary cultures incubated with those particles. We prepared magnetite nanoparticles by chemical co-precipitation method; nanoparticle surface was first modified by silanol condensation followed by chemisorption of oleic acid. All nanostructures have a particle size less than 100 nm, depending on the material coating and superparamagnetic behavior. The saturated magnetizations (M{sub s}) of the magnetite samples coated with oleic acid (MAO; 49.15 emu/g) and double shell silica-oleic acid (MSAO; 46.16 emu/g) are

  6. A novel, efficient and facile method for the template removal from mesoporous materials

    KAUST Repository

    Chen, Lu

    2014-11-12

    © 2014, Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH. A new catalytic-oxidation method was adopted to remove the templates from SBA-15 and MCM-41 mesoporous materials via Fenton-like techniques under microwave irradiation. The mesoporous silica materials were treated with different Fenton agents based on the template’s property and textural property. The samples were characterized by powder X-ray diffraction(XRD) measurement, N2 adsorption-desorption isotherms, infrared spectroscopy, 29Si MAS NMR and thermo gravimetric analysis(TGA). The results reveal that this is an efficient and facile approach to the thorough template-removal from mesoporous silica materials, as well as to offering products with more stable structures, higher BET surface areas, larger pore volumes and larger quantity of silanol groups.

  7. Behaviour of the surface hydroxide groups of exfoliated kaolinite in the gas phase and during water adsorption.

    Science.gov (United States)

    Táborosi, Attila; Szilágyi, Róbert K

    2016-02-14

    The chemical and physical properties, and thus the reactivity of phylloaluminosilicates can be tailored by intercalation, delamination, and exfoliation processes. In going from the periodic crystalline to the molecular exfoliated phase, surface defects and modifications gain importance as each face of the phylloaluminosilicate comes in direct contact with the external chemical environment. In this work, we extend our earlier studies on the molecular cluster modelling of exfoliated kaolinite sheets by evaluating the positions and orientations of surface hydroxide groups and bridging oxide anions, as the sites of reactivity. The previous focus on the inner chemical environment of a single kaolinite layer is shifted to the surface exposed octahedral aluminium-hydroxide and tetrahedral silicon-oxide sheets. The combination of semi-empirical, ab initio wave function, and density functional calculations unanimously support the amphoteric nature of the surface hydroxide groups with respect to H-bonding donor/acceptor capabilities. To a lesser extent, we observe the same for the bridging oxide anions. This is in contrast to the crystalline phase, which manifests only donor orientation for maintaining an inter-layer H-bond network. These results suggest that both electrophilic and nucleophilic characteristics of the octahedral and tetrahedral sheets need to be considered during intercalation and concomitant exfoliation of the kaolinite sheets.

  8. [Influence of different surface treatments on porcelain surface topography].

    Science.gov (United States)

    Tai, Yinxia; Zhu, Xianchun; Sen, Yan; Liu, Chang; Zhang, Xian; Shi, Xueming

    2013-02-01

    To evaluate the influence of different surface treatments on porcelain surface topography. Metal ceramic prostheses in 6 groups were treated according to the different surface treatment methods, and the surface topography was observed through scanning electron microscope (SEM). Group A was the control one (untreated), group B was etched by 9.6% hydrofluoric acid(HF), group C was deglazed by grinding and then etched by 9.6% HF, group D was treated with Nd: YAG laser irradiation(0.75 W) and HF etching, group E was treated with Nd: YAG laser irradiation (1.05 W) and HF etching, and group F was treated with laser irradiation (1.45 W) and HF etching. Surface topography was different in different groups. A lot of inerratic cracks with the shapes of rhombuses and grid, and crater with a shape of circle were observed on the ceramic surface after treatment with energy parameters of 1.05 W Nd: YAG laser irradiation and 9.6% HF etching (group E). Surface topography showed a lot of concaves on the inner wall of the cracks, and the concaves with diameter of 1-5 microm could be observed on the inner wall of the holes, which had a diameter of 20 microm under SEM. The use of Nd: YAG laser irradiation with the energy parameters of 1.05 W and the HF with a concentration of 9.6% can evenly coarsen the porcelain surface, that is an effective surface treatment method.

  9. Impact of physicochemical properties of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond on drug loading and release behavior

    Science.gov (United States)

    Numpilai, Thanapha; Witoon, Thongthai; Chareonpanich, Metta; Limtrakul, Jumras

    2017-02-01

    The conjugation of dexamethasone (DEX) onto modified-porous silica materials via a pH-responsive hydrazone bond has been reported to be highly efficient method to specifically deliver the DEX to diseased sites. However, the influence of physicochemical properties of porous silica materials has not yet been fully understood. In this paper, the impact of pore sizes, particle sizes and silanol contents on surface functionalization, drug loading and release behavior of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond was investigated. The grafting density was found to relate to the number of silanol groups on the surface of porous silica materials. The particle size and macropores of the porous silica materials played an vital role on the drug loading and release behavior. Although the porous silica materials with larger particle sizes possessed a lower grafting density, a larger amount of drug loading could be achieved. Moreover, the porous silica materials with larger particle sizes showed a slower release rate of DEX due to a longer distance for cleaved DEX diffusion out of pores. DEX release rate exhibited pH-dependent, sustained release. At pH 4.5, the amount of DEX release within 10 days could be controlled in the range of 12.74-36.41%, depending on the host material. Meanwhile, less than 1.5% of DEX was released from each of type of the porous silica materials at pH 7.4. The results of silica dissolution suggested that the degradation of silica matrix did not significantly affect the release rate of DEX. In addition, the kinetic modeling studies revealed that the DEX releases followed Korsmeyer-Peppas model with a release exponent (n) ranged from 0.3 to 0.47, indicating a diffusion-controlled release mechanism.

  10. Fumed and Precipitated Hydrophilic Silica Suspension Gels in Mineral Oil: Stability and Rheological Properties

    Directory of Open Access Journals (Sweden)

    Yoshiki Sugino

    2017-08-01

    Full Text Available Hydrophilic fumed silica (FS and precipitated silica (PS powders were suspended in mineral oil; increasing the silica volume fraction (φ in the suspension led to the formation of sol, pre-gel, and gel states. Gelation took place at lower φ values in the FS than the PS suspension because of the lower silanol density on the FS surface. The shear stresses and dynamic moduli of the FS and PS suspensions were measured as a function of φ. Plots of the apparent shear viscosity against shear rate depended on φ and the silica powder. The FS suspensions in the gel state exhibited shear thinning, followed by a weak shear thickening or by constant viscosity with an increasing shear rate. In contrast, the PS suspensions in the gel state showed shear thinning, irrespective of φ. The dynamic moduli of the pre-gel and gel states were dependent on the surface silanol density: at a fixed φ, the storage modulus G′ in the linear viscoelasticity region was larger for the FS than for the PS suspension. Beyond the linear region, the G′ of the PS suspensions showed strain hardening and the loss modulus G″ of the FS and PS suspensions exhibited weak strain overshoot.

  11. Friction Regimes of Water-Lubricated Diamond (111): Role of Interfacial Ether Groups and Tribo-Induced Aromatic Surface Reconstructions

    Science.gov (United States)

    Kuwahara, Takuya; Moras, Gianpietro; Moseler, Michael

    2017-09-01

    Large-scale quantum molecular dynamics of water-lubricated diamond (111) surfaces in sliding contact reveals multiple friction regimes. While water starvation causes amorphization of the tribological interface, small H2O traces are sufficient to preserve crystallinity. This can result in high friction due to cold welding via ether groups or in ultralow friction due to aromatic surface passivation triggered by tribo-induced Pandey reconstruction. At higher water coverage, Grotthuss-type diffusion and H2O dissociation yield dense H /OH surface passivation leading to another ultralow friction regime.

  12. Microstructuring of thermo-mechanically highly stressed surfaces final report of the DFG research group 576

    CERN Document Server

    Rienäcker, Adrian; Knoll, Gunter; Bach, Friedrich-Wilhelm; Maier, Hans; Reithmeier, Eduard; Dinkelacker, Friedrich

    2015-01-01

    This contributed volume presents the final research results of the DFG Research Group 576, which is a joint initiative of five different institutes of the Leibniz Universität Hannover and the Universität Kassel, Germany. The research of the DFG Research Group 576 focuses on improving the tribological behavior of thermomechanically highly stressed surfaces, particularly on cylinder liner for combustion engines. The target audience primarily comprises researchers and experts in the field but the book may also be beneficial for graduate students who want to specialize in the field.

  13. Graphs, groups and surfaces

    CERN Document Server

    White, AT

    1985-01-01

    The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'''' and 9 as ``unsolved''''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''''.

  14. Calculating the acidity of silanols and related oxyacids in aqueous solution

    Science.gov (United States)

    Tossell, John A.; Sahai, Nita

    2000-12-01

    Ab initio molecular orbital theory was used to calculate deprotonation energies and enthalpies (ΔE d, ΔH d) of oxyacid monomers and oligomers. Results were interpreted with reference to current phenomenological models for estimating metal-oxide surface acidities. The ultimate goal is to predict surface acidities using the ab initio method. We evaluated contributions to ΔE d and ΔH d from the electrostatic potential at the proton, electronic relaxation, geometric relaxation, solvation, and polymerization for the neutral-charge gas-phase molecules H 2O, CH 3OH, HCOOH, SiH 3OH, Si(OH) 4, Si 2O 7H 6, H 3PO 4, P 2O 7H 4, H 2SO 3, H 2SO 4, HOCl, HClO 4, Ge(OH) 4, As(OH) 3, and AsO(OH) 3. ΔE d, gas calculated at the modest 6-31G∗ HF of theory level correlates well with experimental pK a in solution, because hydration enthalpies for the acid anions (ΔH hyd, A-) are closely proportional to ΔE d, gas. That is, anion interaction energies with water in aqueous solution and with H + in the gas phase are closely correlated. Correction for differential hydration between an acid and its conjugate base permits generalization of the ΔE d, gas - pK a correlation to deprotonation reactions involving charged acids. Thus, stable protonated, neutral, and deprotonated species Si(OH) 3(OH 2) 1+, Si(OH) 40, Si(OH) 3O 1-, and Si(OH) 2O 22- have been characterized, and solution pK a's for Si(OH) 3(OH 2) 1+ and Si(OH) 3O 1- were estimated, assuming that the charged species (Si(OH) 3(OH 2) 1+, Si(OH) 3O -1) fit into the same ΔE d, gas - pK a correlation as do the neutral acids. The correlation yields a negative pK a (˜ -5) for Si(OH) 3(OH 2) +1. Calculated ΔE d, gas also correlates well with the degree of O under-bonding evaluated using Brown's bond-length based approach. ΔE d, gas increases along the series HClO 4 - Si(OH) 4 mainly because of increasingly negative potential at the site of the proton, not because of differing electronic or geometric relaxation energies. Thus, pK a

  15. IR and Raman spectroscopic studies of sol–gel derived alkaline ...

    Indian Academy of Sciences (India)

    modifications on the silica network. The population of the ... network due to the breaking of the Si–O–Si bonds lead- ing to the ... Nd:YAG laser at 1064 nm (with a maximum output power of. 500 mW) ... The wide distribution of the intertetrahedral Si–O–Si angles .... related to the silanol group, which is situated at the energy of.

  16. Reactivity of group IV (100) semiconductor surfaces towards organic compounds

    Science.gov (United States)

    Wang, George T.

    The reactions of simple and multifunctional organic compounds with the clean silicon, germanium, and diamond (100)-2 x 1 semiconductor surfaces have been investigated using a combination of multiple internal reflection infrared spectroscopy and quantum chemistry density functional theory calculations. From these studies, an improved understanding of the atomic level reactivity of these semiconductor surfaces has been obtained, along with insights into how to achieve their selective coupling with organics of desired and varied functionality. In addition to the Si(100) and Ge(100) surfaces, our results show that cycloaddition chemistry can also be extended to the diamond (100) surface. At room temperature, 1,3-butadiene was found to form a Diels-Alder product with the diamond (100) surface, as evidenced by isotopic substitution experiments and comparison of the surface adduct with its direct molecular analogue, cyclohexene. The reactions of other classes of molecules in addition to alkenes on the Si(100) and Ge(100) surfaces, including a series of five-membered cyclic amines, were also examined. For tertiary aliphatic amines on Si(100) and both secondary and tertiary aliphatic amines on Ge(100), a majority of the molecules were observed to become stably trapped in dative-bonded precursor states rather than form energetically favorable dissociation products. For pyrrole, aromaticity was found to play a defining role in its reactivity, and a comparison of its molecular and surface reactivity reveals interesting similarities. To probe the factors controlling the selectivity of organic reactions on clean semiconductor surfaces, the adsorption of acetone and a series of unsaturated ketones was also investigated. The reaction of acetone on Ge(100) was found to be under thermodynamic control at room temperature, resulting in the formation of an "ene" product rather than the kinetically favored [2+2] C=O cycloaddition product previously observed on the Si(100) surface. In

  17. The XPS study of physical and chemical forms of neptunium group on the surface of minerals

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available The sorption behavior and the physical and chemical forms of neptunium on the surface of minerals of the two chlorate samples, biotite and kaolin, with different contents of Fe(II was studied. The liquid-liquid extraction and the X-ray photoelectron spectroscopy were employed to identify the valence forms of neptunium. On the basis of the obtained data the quantitative elemental composition of the surface of the studied minerals, as well as the ionic composition of the formed neptunium complexes was determined. It was shown that the Np(IV and Np(VI containing compounds did not form, while the complexes Np(VO+ -hydroxyl did form on the surface. The oxygen ions bonded with iron and oxygen belonging to water and/or of carboxyl were suggested to be present in the equatorial plane of the neptunyl group NpO+.

  18. Mechanism of the Transmetalation of Organosilanes to Gold

    KAUST Repository

    Falivene, Laura

    2015-09-01

    Density functional theory (DFT) calculations were carried out to study the reaction mechanism of the first transmetalation of organosilanes to gold as a cheap fluoride-free process. The versatile gold(I) complex [Au(OH)(IPr)] permits very straightforward access to a series of aryl-, vinyl-, and alkylgold silanolates by reaction with the appropriate silane reagent. These silanolate compounds are key intermediates in a fluoride-free process that results in the net transmetalation of organosilanes to gold, rather than the classic activation of silanes as silicates using external fluoride sources. However, here we propose that the gold silanolate is not the active species (as proposed during experimental studies) but is, in fact, a resting state during the transmetalation process, as a concerted step is preferred.

  19. Mechanism of the Transmetalation of Organosilanes to Gold

    KAUST Repository

    Falivene, Laura; Nelson, David J.; Dupuy, Sté phanie; Nolan, Steven P.; Poater, Albert; Cavallo, Luigi

    2015-01-01

    Density functional theory (DFT) calculations were carried out to study the reaction mechanism of the first transmetalation of organosilanes to gold as a cheap fluoride-free process. The versatile gold(I) complex [Au(OH)(IPr)] permits very straightforward access to a series of aryl-, vinyl-, and alkylgold silanolates by reaction with the appropriate silane reagent. These silanolate compounds are key intermediates in a fluoride-free process that results in the net transmetalation of organosilanes to gold, rather than the classic activation of silanes as silicates using external fluoride sources. However, here we propose that the gold silanolate is not the active species (as proposed during experimental studies) but is, in fact, a resting state during the transmetalation process, as a concerted step is preferred.

  20. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.

    Science.gov (United States)

    Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun

    2014-08-14

    The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.

  1. Direct transformation of silyl enol ethers into functionalized allenes.

    Science.gov (United States)

    Langer, P; Döring, M; Seyferth, D; Görls, H

    2001-02-02

    The first elimination reactions of silyl enol ethers to lithiated allenes are reported. These reactions allow a direct transformation of readily available silyl enol ethers into functionalized allenes. The action of three to four equivalents of lithium diisopropylamide (LDA) on silyl enol ethers results in the formation of lithiated allenes by initial allylic lithiation, subsequent elimination of a lithium silanolate, and finally, lithiation of the allene thus formed. Starting with amide-derived silyl imino ethers, lithiated ketenimines are obtained. A variety of reactions of the lithiated allenes with electrophiles (chlorosilanes, trimethylchlorostannane, dimethyl sulfate and ethanol) were carried out. Elimination of silanolate is observed only for substrates that contain the hindered SiMe2tBu or Si(iPr)3 moiety, but not for the SiMe3 group. The reaction of 1,1-dilithio-3,3-diphenylallene with ketones provides a convenient access to novel 1,1-di(hydroxymethyl)allenes which undergo a domino Nazarov-Friedel-Crafts reaction upon treatment with p-toluenesulfonic acid.

  2. Solvent free amorphisation for pediatric formulations (minitablets) using mesoporous silica

    DEFF Research Database (Denmark)

    Monsuur, Fred; Choudhari, Yogesh; Reddy, Upendra

    2016-01-01

    Introduction: Most silica based amorphisation strategies are using organic solvent loading methods. Towards pediatric formulations this is creating concerns. With this in mind the development of a dry amorphisation strategy was the focus of this study. The high internal surface area of mesoporous...... silica gel is densely crowded with silanol groups, which can provide hydrogen-bonding possibilities with a drug, potentially resulting in amorphisation. Purpose: Amorphous drugs provide an advantage in solubility; however, their low physical stability always remained concern. Additional there was a need...... to understand the mechanism and variables of dry amorphisation. Method: Ibuprofen (IBU) and Syloid® silica at different ratios were co-milled at variable milling times between 1 and 90 min. The interaction with; and amorphisation of IBU; on Syloid® silica was analyzed using SEM, FTIR, DSC and XRD. The co...

  3. 用于高效液相色谱和开管毛细管电色谱的氢化硅胶分离材料%Hydride-Based Separation Materials for High Performance Liquid Chromatography and Open Tubular Capillary Electrochromatography

    Institute of Scientific and Technical Information of China (English)

    PESEK Joseph J; MATYSKA Maria T

    2005-01-01

    Silica hydride is a recent development in chromatographic support materials for high performance liquid chromatography (HPLC) where hydride groups replace 95% of the silanols on the surface. This conversion changes many of the fundamental properties of the material as well as the bonded stationary phases that are the result of further chemical modification of the hydride surface. Some unique chromatographic properties of hydride-based phases are described as well as some general application areas where these bonded materials may be used in preference to or have advantages not available from typical stationary phases. The fabrication, properties and applications of etched chemically modified capillaries for electrophoretic analysis are also reviewed. It is shown that the etching process creates a surface that is fundamentally different than a bare fused silica capillary. The new surface matrix produces unique electroosmotic flow properties and is more compatible with basic and biological compounds. After chemical modification of the surface, the bonded organic moiety (stationary phase) contributes to the control of migration of solutes in the capillary. Both electrophoretic and chromatographic processes take place in the etched chemically modified capillaries leading to a variety of experimental variables that can be used to optimize separations. A number of examples of separations on these capillaries are described.

  4. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    International Nuclear Information System (INIS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-01-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure

  5. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samira; Ibrahim, Fatimah [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Djordjevic, Ivan, E-mail: ivan.djordjevic@um.edu.my [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Koole, Leo H. [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Biomedical Engineering, Faculty of Health. Medicine and Life Science, Maastricht University, PO Box 616, NL 6200 MD Maastricht (Netherlands)

    2014-05-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  6. Molecularly oriented surface relief formation in polymethacrylates comprising N-benzylideneaniline derivative side groups

    Science.gov (United States)

    Kawatsuki, Nobuhiro; Hosoda, Risa; Kondo, Mizuho; Sasaki, Tomoyuki; Ono, Hiroshi

    2014-12-01

    Molecularly oriented surface relief (SR) formation in polymethacrylates with N-benzylideneaniline (NBA) derivative side groups is investigated by holographic exposure using a 325 nm He-Cd laser. Because the NBA moieties show a photoinduced orientation perpendicular to the polarization of light, polarization holography successfully forms a molecularly oriented SR structure in accordance with the polarization distribution that includes p-polarized components. Although intensity holography induces molecular orientation, it does not generate a satisfactory SR structure. In all the holographic modes, the SR depth depends on the direction of the C=N bonds in the NBA moieties and the photoproducts affect the SR formation ability.

  7. Operable Unit 3-13, Group 3, Other Surface Soils (Phase II) Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Schwendiman

    2006-07-27

    This Field Sampling Plan describes the Operable Unit 3-13, Group 3, Other Surface Soils, Phase II remediation field sampling activities to be performed at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Sampling activities described in this plan support characterization sampling of new sites, real-time soil spectroscopy during excavation, and confirmation sampling that verifies that the remedial action objectives and remediation goals presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13 have been met.

  8. Investigation of adsorption performance deterioration in silica gel–water adsorption refrigeration

    International Nuclear Information System (INIS)

    Wang Dechang; Zhang Jipeng; Xia Yanzhi; Han Yanpei; Wang Shuwei

    2012-01-01

    Highlights: ► Adsorption deterioration of silica gel in refrigeration systems is verified. ► Possible factors to cause such deterioration are analyzed. ► Specific surface area, silanol content and adsorption capacity are tested. ► The pollution is the primary factor to decline the adsorption capacity. ► Deteriorated samples are partly restored after being processed by acid solution. - Abstract: Silica gel acts as a key role in adsorption refrigeration systems. The adsorption deterioration must greatly impact the performance of the silica gel–water adsorption refrigeration system. In order to investigate the adsorption deterioration of silica gel, many different silica gel samples were prepared according to the application surroundings of silica gel in adsorption refrigeration systems after the likely factors to cause such deterioration were analyzed. The specific surface area, silanol content, adsorption capacity and pore size distribution of those samples were tested and the corresponding adsorption isotherms were achieved. In terms of the experimental data comparisons, it could be found that there are many factors to affect the adsorption performance of silica gel, but the pollution was the primary one to decline the adsorption capacity. In addition, the adsorption performance of the deteriorated samples after being processed by acid solution was explored in order to find the possible methods to restore its adsorption performance.

  9. [Preparation and evaluation of stationary phase of high performance liquid chromatography for the separation of basic solutes].

    Science.gov (United States)

    Wang, P; Wang, J; Cong, R; Dong, B

    1997-05-01

    A bonded phase for high performance liquid chromatography (HPLC) has been prepared by the new reaction between silica and silicon ether. The ether was synthesized from alkylchlorosilane and pentane-2,4-dione in the presence of imidazole under inert conditions by using anhydrous tetrahydrofuran as solvent. The bonded phase thus obtained was characterized by elemental analysis, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and HPLC evaluation. The carbon content was 9.4% and the surface coverage almost attained 3.0micromol/m2 without end-capping. The silanol absorption peaks of the product cannot be observed from the DRIFT spectrum, which revealed that the silanization reaction proceeded thoroughly. The basic solutes, such as aniline, o-toluidine, p-toluidine, N,N-dimethylaniline and pyridine were used as the probe solutes to examine their interaction with the residual silanols on the surface of the products. No buffer or salt was used in the mobile phase for these experiments. In comparison with an acidic solute, such as, phenol, basic aniline eluted in front of phenol, and the ratio of asymmetry of aniline peak to that of the phenol peak was 1.1. Furthermore the relative k' value of p-toluidine to that of o-toluidine was also 1.1. All the results showed that the stationary phase has better quality and reproducibility and can be used for the separation of basic solutes efficiently.

  10. Drug delivery from hydrophobic-modified mesoporous silicas: Control via modification level and site-selective modification

    International Nuclear Information System (INIS)

    Tang Qunli; Chen Yuxi; Chen Jianghua; Li Jin; Xu Yao; Wu Dong; Sun Yuhan

    2010-01-01

    Dimethylsilyl (DMS) modified mesoporous silicas were successfully prepared via co-condensation and post-grafting modification methods. The post-grafting modification was carried out by the reaction of the as-synthesized MCM-41 material (before CTAB removal) with diethoxydimethylsinale (DEDMS). N 2 adsorption-desorption and 29 Si MAS NMR characterization demonstrated that different amount of DMS groups were successfully incorporated into the co-condensation modified samples, and the functional DMS groups were placed selectively on the pore openings and external pore surfaces in the post-grafting modified samples. Subsequently, the controlled drug delivery properties from the resulting DMS-modified mesoporous silicas were investigated in detail. The drug adsorption experiments showed that the adsorption capacities were mainly depended on the content of silanol group (CSG) in the corresponding carriers. The in vitro tests exhibited that the incorporation of DMS groups greatly retarded the ibuprofen release rate. Moreover, the ibuprofen release profiles could be well modulated by varying DMS modification levels and site-selective distribution of functional groups in mesoporous carriers. - The distribution of DMS groups on the pore surfaces of the mesostructures strongly affects the drug release rate. The P-M41-1 and the P-M41-2 possess the close DMS modification levels as the C-M41-10, but the ibuprofen release rates from the P-M41-1 and P-M41-2 are much slower than that from the C-M41-10.

  11. Surface chemistry and reactivity of SiO{sub 2} polymorphs: A comparative study on α-quartz and α-cristobalite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Cuihua [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, 511 Kehua Street, Guangzhou 510640 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Zhu, Jianxi, E-mail: zhujx@gig.ac.cn [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, 511 Kehua Street, Guangzhou 510640 (China); Li, Zhaohui [Geosciences Department, University of Wisconsin – Parkside, Kenosha, WI 53141 (United States); Zhu, Runliang [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, 511 Kehua Street, Guangzhou 510640 (China); Zhou, Qing [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, 511 Kehua Street, Guangzhou 510640 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Wei, Jingming; He, Hongping; Tao, Qi [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, 511 Kehua Street, Guangzhou 510640 (China)

    2015-11-15

    Highlights: • The surface site density of α-quartz was higher than that of α-cristobalite. • The capacity of proton-donating by α-quartz was stronger than that by α-cristobalite. • The surface heterogeneity of α-quartz and α-cristobalite resulted in their different responses to solution pH. • Adsorption of methylene blue (MB) was spontaneous and endothermic. • The higher ΔH for α-quartz accounted for a larger tilt angle of MB on its surface. - Abstract: Silica minerals are widely used in environmental remediation for their prevalence in soil and sediment. Two common SiO{sub 2} polymorphs, α-quartz and α-cristobalite, were investigated for the removal of a typical cationic dye, methylene blue (MB), from aqueous solutions. Their adsorption behaviors were studied in batch experiments as a function of specific surface area (SSA), pH, and temperature. The surface site density of α-quartz (10.6 sites/nm{sup 2}) was higher than that of α-cristobalite (6.2 sites/nm{sup 2}) with the Gran plot method, and the adsorption maxima of MB on the two were 0.84 mg/m{sup 2} and 0.49 mg/m{sup 2}, respectively, at 303 K and pH 8. The potentiometric titration showed the capacity of proton-donating by α-quartz was stronger than that by α-cristobalite. A drastic increase of adsorption amount on α-quartz at pH < 3 was caused by its greater quantity of isolated silanols. The negative ΔG and positive ΔH values suggested adsorption of MB on both minerals was spontaneous and endothermic. At three different temperatures (288 K, 298 K, and 303 K), the adsorption capacities of two polymorphs increased with increasing temperature. The surface heterogeneity of α-quartz and α-cristobalite corresponds to their different adsorption behavior, and our work also provides some referential significance in evaluating the overall quality of soils and sediments.

  12. Incorporation of Titanium into H-ZSM-5 Zeolite via Chemical Vapor Deposition: Effect of Steam Treatment

    International Nuclear Information System (INIS)

    Xu, Cheng Hua; Jin, Tai Huan; Jhung, Sung Hwa; Hwang, Jin Soo; Chang, Jong San; Qiu, Fa Li; Park, Sang Eon

    2004-01-01

    Ti-ZSM-5 prepared by secondary synthesis, from the reaction of H-ZSM-5 with vapor phase TiCl 4 , was characterized with several physicochemical techniques including FT-IR and UV/VIS-DRS. It was found that zeolite structure, surface area and pore volume did not change, and the framework aluminum could not be replaced by titanium atom during the secondary synthesis of Ti-ZSM-5. The incorporation of titanium into the framework might be due to reaction of TiCl 4 with the silanol groups associated with defects or surface sites. The formation of extra-framework titanium could not be avoided, unless the samples were further treated by water vapor at 550 .deg. C or higher temperature. High temperature steam treatment of Ti-ZSM-5 prepared by chemical vapor deposition with TiCl 4 was efficient to prevent the formation of non-framework titanium species. Ti-ZSM-5 zeolites prepared in this work contained only framework titanium species and exhibited improved catalytic property close to TS-1 prepared by hydrothermal synthesis

  13. Incorporation of Titanium into H-ZSM-5 Zeolite via Chemical Vapor Deposition: Effect of Steam Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Cheng Hua; Jin, Tai Huan; Jhung, Sung Hwa; Hwang, Jin Soo [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Chang, Jong San; Qiu, Fa Li [Chinese Academy of Sciences(CAS), Chengdu (China); Park, Sang Eon [Inha University, Incheon (Korea, Republic of)

    2004-05-15

    Ti-ZSM-5 prepared by secondary synthesis, from the reaction of H-ZSM-5 with vapor phase TiCl{sub 4}, was characterized with several physicochemical techniques including FT-IR and UV/VIS-DRS. It was found that zeolite structure, surface area and pore volume did not change, and the framework aluminum could not be replaced by titanium atom during the secondary synthesis of Ti-ZSM-5. The incorporation of titanium into the framework might be due to reaction of TiCl{sub 4} with the silanol groups associated with defects or surface sites. The formation of extra-framework titanium could not be avoided, unless the samples were further treated by water vapor at 550 .deg. C or higher temperature. High temperature steam treatment of Ti-ZSM-5 prepared by chemical vapor deposition with TiCl{sub 4} was efficient to prevent the formation of non-framework titanium species. Ti-ZSM-5 zeolites prepared in this work contained only framework titanium species and exhibited improved catalytic property close to TS-1 prepared by hydrothermal synthesis.

  14. Cell surface groups of two picocyanobacteria strains studied by zeta potential investigations, potentiometric titration, and infrared spectroscopy.

    Science.gov (United States)

    Dittrich, Maria; Sibler, Sabine

    2005-06-15

    In order to clarify the role of picocyanobacteria in aquatic biogeochemical processes (e.g., calcite precipitation), cell surface properties need to be investigated. An experimental study of the cell surface characteristics of two Synechococcus-type unicellular autotrophic picocyanobacterial strains was carried out. One strain was isolated from Lake Plon and contained phycocyanin, the other strain came from Lago Maggiore and was rich in phycoerythrin. Potentiometric titrations were conducted to determine the different types of sites present on the bacteria cell walls. Infrared spectroscopy allowed characterization of the various functional groups (RNH(2), RCOOH, ROH, RPO(2)) and investigations of zeta potential provided insight into the isoelectrical points of the strains. Titrations reveal three distinct sites on the bacterial surfaces of phycocyanin- and phycoerythrin-rich strains with pK values of 4.8+/-0.3/5.0+/-0.2, 6.6+/-0.2/6.7+/-0.4, and 8.8+/-0.1/8.7+/-0.2, corresponding to carboxyl, phosphate, and amine groups with surface densities of 2.6+/-0.4/7.4+/-1.6 x 10(-4), 1.9+/-0.5/4.4+/-0.8 x 10(-4), and 2.5+/-0.4/4.8+/-0.7 x 10(-4) mol/g of dry bacteria. The deprotonation constants are similar to those of bacterial strains and site densities are also within an order of magnitude of other strains. The phycoerythrin-rich strain had a higher number of binding sites than the phycocyanin-rich strain. The results showed that picocyanobacteria may adsorb either calcium cations or carbonate anions and therefore strongly influence the biogeochemical cycling of calcite in pelagic systems.

  15. Theoretical study of chlordecone and surface groups interaction in an activated carbon model under acidic and neutral conditions.

    Science.gov (United States)

    Gamboa-Carballo, Juan José; Melchor-Rodríguez, Kenia; Hernández-Valdés, Daniel; Enriquez-Victorero, Carlos; Montero-Alejo, Ana Lilian; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2016-04-01

    Activated carbons (ACs) are widely used in the purification of drinking water without almost any knowledge about the adsorption mechanisms of the persistent organic pollutants. Chlordecone (CLD, Kepone) is an organochlorinated synthetic compound that has been used mainly as agricultural insecticide. CLD has been identified and listed as a persistent organic pollutant by the Stockholm Convention. The selection of the best suited AC for this type of contaminants is mainly an empirical and costly process. A theoretical study of the influence of AC surface groups (SGs) on CLD adsorption is done in order to help understanding the process. This may provide a first selection criteria for the preparation of AC with suitable surface properties. A model of AC consisting of a seven membered ring graphene sheet (coronene) with a functional group on the edge was used to evaluate the influence of the SGs over the adsorption. Multiple Minima Hypersurface methodology (MMH) coupled with PM7 semiempirical Hamiltonian was employed in order to study the interactions of the chlordecone with SGs (hydroxyl and carboxyl) at acidic and neutral pH and different hydration conditions. Selected structures were re-optimized using CAM-B3LYP to achieve a well-defined electron density to characterize the interactions by the Quantum Theory of Atoms in Molecules approach. The deprotonated form of surface carboxyl and hydroxyl groups of AC models show the strongest interactions, suggesting a chemical adsorption. An increase in carboxylic SGs content is proposed to enhance CLD adsorption onto AC at neutral pH conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The surface reactivity of chalk (biogenic calcite) with hydrophilic and hydrophobic functional groups

    Science.gov (United States)

    Okhrimenko, D. V.; Dalby, K. N.; Skovbjerg, L. L.; Bovet, N.; Christensen, J. H.; Stipp, S. L. S.

    2014-03-01

    surface energies before and after extraction are considered insignificant and we conclude that the sample is not affected by the extraction procedure.The absolute values for the dispersive component of surface energy for North Sea chalks determined here are consistent with data obtained earlier by inverse gas chromatography (IGC) (Skovbjerg et al., 2013). Skovbjerg and colleagues reported values of γd for GS and WS chalk equal to 36.3 and 47.0 mJ/m2. The values reported for the polar components of the surface energy are, however, much lower. This difference is probably associated with the differences in the theoretical background for the two techniques. IGC measures surface interaction with vapours at close to zero coverage, using the Good-van Oss approach (van Oss et al., 1988), whereas the results obtained here are for surfaces fully covered by several layers of adsorbate and use the Owens-Wendt approach (Owens and Wendt, 1969). Our probe molecules (water and ethanol) are also more polar than the probe molecules used for the IGC experiments (dichloromethane and ethyl acetate), which probably leads to overestimation of values for the polar component of the surface energy.The total surface energy of the calcite samples that we obtained is close to reports for marble (Janczuk et al., 1983) and calcite (Goujon and Mutaftschiev, 1976; Okayama et al., 1997). There are, however, considerable differences in the values reported by different groups and in one case (Douillard et al., 1995), values reported are three times higher than our observations. We propose that the history of the samples, thus what is adsorbed on the surfaces, has a great deal to do with the surface tension measured.

  17. Surface modification of ZnAl{sub 1.9}Eu{sub 0.05}O{sub 4} aiming to obtaining ZnAl{sub 1.9}Eu{sub 0.05}O{sub 4}/SiO{sub 2} hybrid for use as a biosensor; Modificacao da superficie do ZnAl{sub 1.9}Eu{sub 0.05}O{sub 4} visando a obtencao do hibrido ZnAl{sub 1.9}Eu{sub 0.05}O{sub 4}/SiO{sub 2} para aplicacao como biossensor

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, P.M.A.G.; Santos, P.T.A.; Costa, A.C.F.M., E-mail: pascally.guerra@gmail.com, E-mail: polyanaquimica@yahoo.com.br, E-mail: ana.costa@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Junior, S.A.; Viana, R. S., E-mail: salvesjr@ufpe.br, E-mail: rodrigosilva.viana@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2017-01-15

    This study aimed to investigate the influence of surface modification of ZnAl{sub 1.9}Eu{sub 0.05}O{sub 4} nanoparticles for obtaining hybrid ZnAl{sub 1.9}Eu{sub 0.05}O{sub 4}/SiO{sub 2} for application as a biosensor. Initially ZnAl{sub 1.9}Eu{sub 0.05}O{sub 4} nanoparticles were synthesized by combustion reaction and, subsequently, their surfaces were modified with silane agent. The samples were characterized by X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and excitation and emission spectroscopy. The results showed formation of ZnAl{sub 2}O{sub 4} as the major phase. By SEM, hard agglomerates, irregularly shaped in the form of plaques, with the presence of few irregular and variables pores were observed. The surface modification was confirmed by FTIR through the silanol and siloxane groups. The excitation and emission spectra revealed the presence of a broadband of ZnAl{sub 2} O{sub 4} matrix, and fine and intense transitions from europium ion arising from doping of non-stoichiometric ZnAl{sub 2}O{sub 4} with the europium. From the results of emission and excitation, it was observed that the luminescence of ZnAl{sub 1.9}Eu{sub 0.05}O{sub 4}/SiO{sub 2} hybrid presented a small decrease in relation to the ZnAl{sub 1.9}Eu0.0{sub 5}O{sub 4} nanoparticles. This decrease was almost insignificant in relation to the benefits of silanization caused by the introduction of functional groups that promote combination of hybrid ZnAl{sub 1.9}Eu{sub 0.05}O{sub 4}/SiO{sub 2} with biomolecules, being this promising for application as a biosensor used in the biomedical field for the diagnosis and treatment of diseases. (author)

  18. Brønsted acid sites based on penta-coordinated aluminum species

    Science.gov (United States)

    Wang, Zichun; Jiang, Yijiao; Lafon, Olivier; Trébosc, Julien; Duk Kim, Kyung; Stampfl, Catherine; Baiker, Alfons; Amoureux, Jean-Paul; Huang, Jun

    2016-12-01

    Zeolites and amorphous silica-alumina (ASA), which both provide Brønsted acid sites (BASs), are the most extensively used solid acid catalysts in the chemical industry. It is widely believed that BASs consist only of tetra-coordinated aluminum sites (AlIV) with bridging OH groups in zeolites or nearby silanols on ASA surfaces. Here we report the direct observation in ASA of a new type of BAS based on penta-coordinated aluminum species (AlV) by 27Al-{1H} dipolar-mediated correlation two-dimensional NMR experiments at high magnetic field under magic-angle spinning. Both BAS-AlIV and -AlV show a similar acidity to protonate probe molecular ammonia. The quantitative evaluation of 1H and 27Al sites demonstrates that BAS-AlV co-exists with BAS-AlIV rather than replaces it, which opens new avenues for strongly enhancing the acidity of these popular solid acids.

  19. Theoretical study on the interactions between chlordecone hydrate and acidic surface groups of activated carbon under basic pH conditions.

    Science.gov (United States)

    Melchor-Rodríguez, Kenia; Gamboa-Carballo, Juan José; Ferino-Pérez, Anthuan; Passé-Coutrin, Nady; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2018-05-01

    A theoretical study of the influence of acidic surface groups (SG) of activated carbon (AC) on chlordecone hydrate (CLDh) adsorption is presented, in order to help understanding the adsorption process under basic pH conditions. A seven rings aromatic system (coronene) with a functional group in the edge was used as a simplified model of AC to evaluate the influence of SG in the course of adsorption from aqueous solution at basic pH conditions. Two SG were modeled in their deprotonated form: carboxyl and hydroxyl (COO - and O - ), interacting with CLDh. In order to model the solvation process, all systems under study were calculated with up to three water molecules. Multiple Minima Hypersurface (MMH) methodology was employed to study the interactions of CLDh with SG on AC using PM7 semiempirical Hamiltonian, to explore the potential energy surfaces of the systems and evaluate their thermodynamic association energies. The re-optimization of representative structures obtained from MMH was done using M06-2X Density Functional Theory. The Quantum Theory of Atoms in Molecules (QTAIM) was used to characterize the interaction types. As result, the association of CLDh with acidic SG at basic pH conditions preferentially occurs between the two alcohol groups of CLDh with COO - and O - groups and by dispersive interactions of chlorine atoms of CLDh with the graphitic surface. On the other hand, the presence of covalent interactions between the negatively charged oxygen of SG and one hydrogen atom of CLDh alcohol groups (O - ⋯HO interactions) without water molecules, was confirmed by QTAIM study. It can be concluded that the interactions of CLDh with acidic SG of AC under basic pH conditions confirms the physical mechanisms of adsorption process. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Veech groups of Loch Ness monsters

    OpenAIRE

    Przytycki, Piotr; Schmithuesen, Gabriela; Valdez, Ferran

    2009-01-01

    We classify Veech groups of tame non-compact flat surfaces. In particular we prove that all countable subgroups of $\\mathbf{GL}_+(2,\\R)$ avoiding the set of mappings of norm less than 1 appear as Veech groups of tame non-compact flat surfaces which are Loch Ness monsters. Conversely, a Veech group of any tame flat surface is either countable, or one of three specific types.

  1. Functional groups grafted nonwoven fabrics for blood filtration-The effects of functional groups and wettability on the adhesion of leukocyte and platelet

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chao [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cao Ye [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China); Sun Kang, E-mail: ksun@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu Jiaxin; Wang Hong [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China)

    2011-01-15

    In this work, the effects of grafted functional groups and surface wettability on the adhesion of leukocyte and platelet were investigated by the method of blood filtration. The filter materials, poly(butylene terephthalate) nonwoven fabrics bearing different functional groups including hydroxyl (OH), carboxyl (COOH), sulfonic acid group (SO{sub 3}H) and zwitterionic sulfobetaine group ({sup +}N((CH{sub 3}){sub 2})(CH{sub 2}){sub 3}SO{sub 3}{sup Circled-Minus }) with controllable wettability were prepared by UV radiation grafting vinyl monomers with these functional groups. Our results emphasized that both surface functional groups and surface wettability had significant effects on the adhesion of leukocyte and platelet. In the case of filter materials with the same wettability, leukocytes adhering to filter materials decreased in the order: the surface bearing OH only > the surface bearing both OH and COOH > the surface bearing sulfobetaine group > the surface bearing SO{sub 3}H, while platelets adhering to filter materials decreased as the following order: the surface bearing SO{sub 3}H > the surface bearing both OH and COOH > the surface bearing OH only > the surface bearing sulfobetaine group. As the wettability of filter materials increased, both leukocyte and platelet adhesion to filter materials declined, except that leukocyte adhesion to the surface bearing OH only remained unchanged.

  2. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water.

    Science.gov (United States)

    Krzyżaniak, Agnieszka; Weggemans, Wilko; Schuur, Boelo; de Haan, André B

    2011-12-16

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct analysis of aliphatic amines and diamines in aqueous samples by gas chromatography (GC) with silanol deactivation using ionic liquids (ILs). ILs including trihexyl(tetradecyl)phosphonium bis 2,4,4-(trimethylpentyl)phosphinate (Cyphos IL-104), 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [pmim][Tf(2)N] and N″-ethyl-N,N,N',N'-tetramethylguanidinium tris(pentafluoroethyl)trifluorophosphate [etmg][FAP] were tested as deactivating media for the GC liner. Solutions of these ILs in methanol were injected in the system prior to the analysis of primary amines. Butane-1,4-diamine (putrescine, BDA) was used as a reference amine. The best results were obtained using the imidazolium IL [pmim][Tf(2)N]. With this deactivator, excellent reproducibility of the analysis was achieved, and the detection limit of BDA was as low as 1mM. The applicability of the method was proven for the analysis of two different primary amines (C4-C5) and pentane-1,5-diamine. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Fast synthesis, formation mechanism, and control of shell thickness of CuS–polystyrene core–shell microspheres

    International Nuclear Information System (INIS)

    Zhao, Li-min; Shao, Xin; Yin, Yi-bin; Li, Wen-zhi

    2012-01-01

    Graphical abstract: Core–shell structure PSt/CuS were prepared using polystyrene which were modified by 3-methacryloxypropyltrimethoxysilane as template. The coating thickness of CuS can be controlled by the amount of 3-methacryloxypropyltrimethoxysilane and the UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS. Highlights: ► Core–shell structure PSt/CuS were prepared using silanol-modified polystyrene microspheres as template. ► The coating thickness of core–shell structure PSt/CuS can be controlled by a simple method. ► The UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS. -- Abstract: The silanol-modified polystyrene microspheres were prepared through dispersion polymerization. Then copper sulfide particles were grown on silanol-modified polystyrene through sonochemical deposition in an aqueous bath containing copper acetate and sulfide, released through the hydrolysis of thioacetamide. The resulting particles were continuous and uniform as characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared, thermogravimetric analysis and UV–vis absorption spectroscopy were used to characterize the structure and properties of core–shell particles. The results showed the coating thickness of CuS shell can be controlled by the amount of silanol and the UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS.

  4. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.

    Science.gov (United States)

    Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J

    2015-05-22

    Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Skidding accidents : considerations on road surface and vehicle characteristics : summary of the present situation. Provisional recommendation concerning skidding resistance of road surfaces investigation programme. Interim report of the SWOV Working Group "Tyres, road surfaces and skidding accidents"

    NARCIS (Netherlands)

    SWOV Working Group "Tyres, road surfaces and skidding accidents"

    1970-01-01

    This is the first report of SWOV Working Group "Tyres, road surfaces and skidding accidents". Skidding is considered to be an important contributory factor in traffic accidents. Skidding can in principle be prevented in two ways, viz: (1) reduction of the minimum necessary friction, and (2)

  6. Optimal Surface Amino-Functionalization Following Thermo-Alkaline Treatment of Nanostructured Silica Adsorbents for Enhanced CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Obdulia Medina-Juárez

    2016-11-01

    Full Text Available Special preparation of Santa Barbara Amorphous (SBA-15, mesoporous silica with highly hexagonal ordered, these materials have been carried out for creating adsorbents exhibiting an enhanced and partially selective adsorption toward CO2. This creation starts from an adequate conditioning of the silica surface, via a thermo-alkaline treatment to increase the population of silanol species on it. CO2 adsorption is only reasonably achieved when the SiO2 surface becomes aminated after put in contact with a solution of an amino alkoxide compound in the right solvent. Unfunctionalized and amine-functionalized substrates were characterized through X-ray diffraction, N2 sorption, Raman spectroscopy, electron microscopy, 29Si solid-state Nuclear Magnetic Resonance (NMR, and NH3 thermal programmed desorption. These analyses proved that the thermo-alkaline procedure desilicates the substrate and eliminates the micropores (without affecting the SBA-15 capillaries, present in the original solid. NMR analysis confirms that the hydroxylated solid anchors more amino functionalizing molecules than the unhydroxylated material. The SBA-15 sample subjected to hydroxylation and amino-functionalization displays a high enthalpy of interaction, a reason why this solid is suitable for a strong deposition of CO2 but with the possibility of observing a low-pressure hysteresis phenomenon. Contrastingly, CH4 adsorption on amino-functionalized, hydroxylated SBA-15 substrates becomes almost five times lower than the CO2 one, thus giving proof of their selectivity toward CO2. Although the amount of retained CO2 is not yet similar to or higher than those determined in other investigations, the methodology herein described is still susceptible to optimization.

  7. Reflection properties of road surfaces. Contribution to OECD Scientific Expert Group AC4 on Road Surface Characteristics.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1983-01-01

    Photometric characteristics of road surfaces are dealt with. Representation of reflection properties in public lighting; quality criteria of road lighting installations; classification of road surfaces; the relation between reflection characteristics and other properties of road pavements in public

  8. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate

    Science.gov (United States)

    Zhang, Guoqiang; Li, Zhong; Zheng, Huayan; Hao, Zhiqiang; Wang, Xia; Wang, Jiajun

    2016-12-01

    Activated carbon (AC) supported Cu catalysts are employed to study the influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for oxidative carbonylation of methanol to dimethyl carbonate (DMC). The AC supports are thermal treated under different temperatures in order to adjust the levels of surface oxygenated groups. The AC supports are characterized by BET, TPD-MS and XRD, and the Cu/AC catalysts are characterized by BET, XRD, TEM, XPS, AAS, CH3OH-TPD and N2O chemisorption. The results show that as the treatment temperature is below 800 °C, the BET surface area of the corresponding AC supports are nearly unchanged and close to that of the original AC (1529.6 m2/g). But as the thermal treatment temperature is elevated from 1000 to 1600 °C, the BET surface area of AC supports gradually decreases from 1407.6 to 972.2 m2/g. After loading of Cu, the BET surface area of copper catalysts is in the range of 834.4 to 1545.3 m2/g, which is slightly less than that of the respective supports. When AC is thermal treated at 400 and 600 °C, the unstable carboxylic acid and anhydrides groups are selectively removed, which has weakened the mobility and agglomeration of Cu species during the calcination process, and thus improve the Cu species dispersion over AC support. But as the treatment temperature is elevated from 600 °C to 1200 °C, the Cu species dispersion begins to decline suggesting further removal of stable surface oxygenated groups is unfavorable for Cu species dispersion. Moreover, higher thermal treatment temperature (above 1200 °C) promotes the graphitization degree of AC and leds to the decrease of Cu loading on AC support. Meanwhile, the removal of surface oxygenated groups by thermal treatment is conducive to the formation of more π-sites, and thus promote the reduction of Cu2+ to Cu+ and Cu0 as active centers. The specific surface area of (Cu+ + Cu0) is improved by thermal treatment of AC

  9. The neural cell adhesion molecule L1 is distinct from the N-CAM related group of surface antigens BSP-2 and D2

    DEFF Research Database (Denmark)

    Faissner, A; Kruse, J; Goridis, C

    1984-01-01

    The neural cell adhesion molecule L1 and the group of N-CAM related molecules, BSP-2 and D2 antigen, are immunochemically distinct molecular species. The two groups of surface molecules are also functionally distinct entities, since inhibition of Ca2+-independent adhesion among early post-natal m...

  10. Long-range interfacial electron transfer and electrocatalysis of molecular scale Prussian Blue nanoparticles linked to Au(111)-electrode surfaces by different chemical contacting groups

    DEFF Research Database (Denmark)

    Zhu, Nan; Ulstrup, Jens; Chi, Qijin

    2017-01-01

    We have explored interfacial electrochemical electron transfer (ET) and electrocatalysis of 5–6 nm Prussian Blue nanoparticles (PBNPs) immobilized on Au(111)-electrode surfaces via molecular wiring with variable-length, and differently functionalized thiol-based self-assembled molecular monolayers...... (SAMs). The SAMs contain positively (−NH3+) or negatively charged (–COO–) terminal group, as well an electrostatically neutral hydrophobic terminal group (–CH3). The surface microscopic structures of the immobilized PBNPs were characterized by high-resolution atomic force microscopy (AFM) directly...... in aqueous electrolyte solution under the same conditions as for electrochemical measurements. The PBNPs displayed fast and reversible interfacial ET on all the surfaces, notably in multi-ET steps as reflected in narrow voltammetric peaks. The ET kinetics can be controlled by adjusting the length of the SAM...

  11. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of indica and japonica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Zhao-Dong Liu

    2017-08-01

    Full Text Available This work was designed to understand the mechanisms of adsorption of copper (Cu and cadmium (Cd on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.

  12. Electroless oxidation of diamond surfaces in ceric and ferricyanide solutions: An easy way to produce 'C-O' functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N., E-mail: nathalie.simon@uvsq.f [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France); Charrier, G.; Etcheberry, A. [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France)

    2010-08-01

    Despite many works are devoted to oxidation of diamond surfaces, it is still a challenge, to successfully produce well defined 'C-O' functions, particularly for functionalization purposes. In this paper we describe and compare, for the first time, the 'electroless' oxidation of as-deposited polycrystalline boron-doped diamond (BDD) films in ceric and ferricyanide solutions at room temperature. Both reactions efficiently generate oxygen functionalities on BDD surface. While a higher amount of 'C-O' moieties is produced with Ce{sup 4+} as oxidizing agent, the use of ferricyanide specie seems the most interesting to specifically generate hydroxyl groups. Additionally, this easy to perform oxidative method appears not damaging for diamond surfaces and adapted to conductive or non-conductive materials. The resulting surfaces were characterized using X-ray photoelectron spectroscopy, contact angle and capacitance-voltage analysis.

  13. Characteristic of New Solid-Phase Extraction Sorbent: Activated Carbon Prepared from Rice Husks under Base Treated Condition

    Directory of Open Access Journals (Sweden)

    Afrida Kurnia Putri

    2012-10-01

    Full Text Available A characterization of activated carbon (ACs prepared from rice husks (RHs under base treated condition as a new sorbent for solid-phase extraction (SPE to extract 4-nonylphenol isomers (4-NPs in water samples has been done. The ACs prepared from RHs usually exhibits low specific surface area due to its high ash content, but in case of its application for SPE, there are other factors need to be considered, such as the existence of functional groups inside the sorbent, that can enhance interaction of non-polar sorbent with analyte in the water matrices. In this case, silanol groups from ash content may affect the extraction efficiency for 4-NPs. The ACs made from RHs were chemically impregnated with ZnCl2 and carbonized at 800oC. To investigate the role of silica, three types of ACs were prepared, i.e., untreated ACs (AC–Si, contain silica, base treated ACs (AC–B–Si, remain some silica inside, and ACs made by base treated RHs (AC–B, no silica, the surface area obtained from these treatments were 1352 m2/g, 1666 m2/g, and 1712m2/g respectively.  ACs made by base treatment has the highest surface area (related to BET, which indicat that silica removal process promotes the formation of open pore system on ACs and enhances the surface area of ACs. However, extraction efficiency measured by GC-MS in SPE process showed the reversal trends (i.e., AC–Si= 32.08%, AC–B–Si= 82.63%, AC–B=51.78%, among them the AC–B–Si sorbent reveal the best performance in SPE process. It is indicated that although silica usually exhibits low specific surface area, but control presence of silica as a polar functional group has a positive influence in the interaction between non-polar sorbent and 4-NPs.

  14. Effects of Different Solvents on the Surface Acidic Oxygen-containing Functional Groups on Xanthoceras sorbifolia Shell

    Directory of Open Access Journals (Sweden)

    Linan Liu

    2014-03-01

    Full Text Available This study reports the preparation of a novel biomaterial from a forestry residue - Xanthoceras sorbifolia shell (XSS - by solvent modification. The effects of acid and base (hydrochloric acerbic, acetic acid, sodium hydroxide, ammonia water and some organic solvents (ethanol, acetone, ethyl acetate, chloroform, petroleum ether, and n-hexane on the surface acidic functional groups (SAFGs on XSS were investigated. The amount of SAFGs was quantified using acid and alkali chemical titration methods, and the characteristics of virgin XSS were compared with treated ones by FT-IR spectroscopy. It was found that acid solutions can increase the concentration of SAFGs, while alkaline solutions reduce it. The XSS treated in 0.5 M HCl has the largest number of total acidic functional groups and phenolic hydroxyl groups. The shell extracted with 2 M acetic acid has the highest concentration of carboxyl. The SAFG contents were remarkably increased by treatments with ethanol and acetone, due to the outstanding enhancement of phenolic hydroxyl. These changes in the SAFGs of XSS brought about by treatments with various solutions could be a theoretical foundation for modifying this residue to create a new type of highly efficient absorbent material.

  15. Transformation of Air Quality Monitor Data from the International Space Station into Toxicological Effect Groups

    Science.gov (United States)

    James, John T.; Zalesak, Selina M.

    2011-01-01

    The primary reason for monitoring air quality aboard the International Space Station (ISS) is to determine whether air pollutants have collectively reached a concentration where the crew could experience adverse health effects. These effects could be near-real-time (e.g. headache, respiratory irritation) or occur late in the mission or even years later (e.g. cancer, liver toxicity). Secondary purposes for monitoring include discovery that a potentially harmful compound has leaked into the atmosphere or that air revitalization system performance has diminished. Typical ISS atmospheric trace pollutants consist of alcohols, aldehydes, aromatic compounds, halo-carbons, siloxanes, and silanols. Rarely, sulfur-containing compounds and alkanes are found at trace levels. Spacecraft Maximum Allowable Concentrations (SMACs) have been set in cooperation with a subcommittee of the National Research Council Committee on Toxicology. For each compound and time of exposure, the limiting adverse effect(s) has been identified. By factoring the analytical data from the Air Quality Monitor (AQM), which is in use as a prototype instrument aboard the ISS, through the array of compounds and SMACs, the risk of 16 specific adverse effects can be estimated. Within each adverse-effect group, we have used an additive model proportioned to each applicable 180-day SMAC to estimate risk. In the recent past this conversion has been performed using archival data, which can be delayed for months after an air sample is taken because it must be returned to earth for analysis. But with the AQM gathering in situ data each week, NASA is in a position to follow toxic-effect groups and correlate these with any reported crew symptoms. The AQM data are supplemented with data from real-time CO2 instruments aboard the ISS and from archival measurements of formaldehyde, which the AQM cannot detect.

  16. WISEP J004701.06+680352.1: AN INTERMEDIATE SURFACE GRAVITY, DUSTY BROWN DWARF IN THE AB DOR MOVING GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Gizis, John E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Allers, Katelyn N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu HI 96822 (United States); Harris, Hugh C. [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86001 (United States); Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-02-01

    We present spectroscopy, astrometry, and photometry of the brown dwarf WISEP J004701.06+680352.1 (W0047+68), an unusually red field L dwarf at a distance of 12.2 ± 0.4 pc. The three-dimensional space motion identifies it as a member of the AB Dor Moving Group, an identification supported by our classification of W0047+68 as intermediate surface gravity (INT-G) using the Allers and Liu near-infrared classification system. This moving group membership implies near-solar metallicity, age ∼100-125 Myr, M ≈ 0.018 M {sub ☉}, and log g ≈ 4.5; the thick condensate clouds needed to explain the infrared spectrum are, therefore, a result of surface gravity that is lower than that of ordinary field brown dwarfs. From the observed luminosity and evolutionary model radius, we find T {sub eff} ≈ 1300 K, a temperature normally associated with early T dwarfs. Thick clouds are also used to explain the spectral properties of directly imaged giant planets, and we discuss the successes and challenges for such substellar models in matching the observed optical and infrared spectra. W0047+68 shows that cloud thickness is more sensitive to intermediate surface gravity than in most models. We also present a trigonometric parallax of the dusty L6 dwarf 2MASS J21481628+4003593. It lies at 8.060 ± 0.036 parsecs; its astrometry is consistent with the view that it is older and metal-rich.

  17. Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration

    International Nuclear Information System (INIS)

    Jusoh, N.W.C.; Jalil, A.A.; Triwahyono, S.; Karim, A.H.; Salleh, N.F.; Annuar, N.H.R.; Jaafar, N.F.; Firmansyah, M.L.; Mukti, R.R.; Ali, M.W.

    2015-01-01

    Graphical abstract: - Highlights: • Hierarchical-like structure of MSN was formed in alkaline aqueous electrolyte. • Desilication generated abundant silanol groups and oxygen vacancies. • Zn 2+ inserted to external –OH groups of the MSN to form Si–O–Zn bonds. • Oxygen vacancies trapped electrons to enhance electron–hole pair separation. • Hydroxyl radical generated from three main sources greatly influenced photoactivity. - Abstract: ZnO-incorporated mesostructured silica nanoparticles (MSN) catalysts (ZM) were prepared by the introduction of Zn ions into the framework of MSN via a simple electrochemical system in the presence of various concentrations of NH 4 OH aqueous solution. The physicochemical properties of the catalysts were studied by XRD, 29 Si MAS NMR, nitrogen adsorption–desorption, FE-SEM, TEM, FTIR, and photoluminescence spectroscopy. Characterization results demonstrated that the alkaline aqueous electrolyte simply generated abundant silanol groups on the surface of the catalysts as a consequence of desilication to form the hierarchical-like structure of the MSN. Subsequent restructuring of the silica network by the creation of oxygen vacancies and formation of Si–O–Zn during the electrolysis, as well as formation of new Si–O–Si bonds during calcination seemed to be the main factors that enhanced the catalytic performance of photodecolorization of methyl orange. A ZM prepared in the presence of 1.0 M NH 4 OH (ZM-1.0) was determined to be the most effective catalyst. The catalyst displays a higher first-order kinetics rate of 3.87 × 10 −1 h −1 than unsupported ZnO (1.13 × 10 −1 h −1 ) that prepared under the same conditions in the absence of MSN. The experiment on effect of scavengers showed that hydroxyl radicals generated from the three main sources; reduced O 2 at the conduction band, decomposed water at the valence band and irradiated H 2 O 2 in the solution, are key factors that influenced the reaction. It is

  18. Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration

    Energy Technology Data Exchange (ETDEWEB)

    Jusoh, N.W.C. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Jalil, A.A., E-mail: aishah@cheme.utm.my [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Institute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Triwahyono, S.; Karim, A.H. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Salleh, N.F. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Annuar, N.H.R.; Jaafar, N.F.; Firmansyah, M.L. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Mukti, R.R. [Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl Ganesha No 10, Bandung 40132 (Indonesia); Ali, M.W. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Institute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-03-01

    Graphical abstract: - Highlights: • Hierarchical-like structure of MSN was formed in alkaline aqueous electrolyte. • Desilication generated abundant silanol groups and oxygen vacancies. • Zn{sup 2+} inserted to external –OH groups of the MSN to form Si–O–Zn bonds. • Oxygen vacancies trapped electrons to enhance electron–hole pair separation. • Hydroxyl radical generated from three main sources greatly influenced photoactivity. - Abstract: ZnO-incorporated mesostructured silica nanoparticles (MSN) catalysts (ZM) were prepared by the introduction of Zn ions into the framework of MSN via a simple electrochemical system in the presence of various concentrations of NH{sub 4}OH aqueous solution. The physicochemical properties of the catalysts were studied by XRD, {sup 29}Si MAS NMR, nitrogen adsorption–desorption, FE-SEM, TEM, FTIR, and photoluminescence spectroscopy. Characterization results demonstrated that the alkaline aqueous electrolyte simply generated abundant silanol groups on the surface of the catalysts as a consequence of desilication to form the hierarchical-like structure of the MSN. Subsequent restructuring of the silica network by the creation of oxygen vacancies and formation of Si–O–Zn during the electrolysis, as well as formation of new Si–O–Si bonds during calcination seemed to be the main factors that enhanced the catalytic performance of photodecolorization of methyl orange. A ZM prepared in the presence of 1.0 M NH{sub 4}OH (ZM-1.0) was determined to be the most effective catalyst. The catalyst displays a higher first-order kinetics rate of 3.87 × 10{sup −1} h{sup −1} than unsupported ZnO (1.13 × 10{sup −1} h{sup −1}) that prepared under the same conditions in the absence of MSN. The experiment on effect of scavengers showed that hydroxyl radicals generated from the three main sources; reduced O{sub 2} at the conduction band, decomposed water at the valence band and irradiated H{sub 2}O{sub 2} in the solution

  19. Graphs of groups on surfaces interactions and models

    CERN Document Server

    White, AT

    2001-01-01

    The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on sufaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English

  20. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Can, Mustafa [Izmir Katip Celebi University, Faculty of Engineering, Department of Engineering Sciences, Çiğli, Izmir (Turkey); Havare, Ali Kemal [Toros University, Faculty of Engineering, Electric and Electronic Department, Mersin (Turkey); Aydın, Hasan; Yagmurcukardes, Nesli [Izmir Institute of Technology, Material Science and Engineering, Izmir (Turkey); Demic, Serafettin [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey); Icli, Sıddık [Ege University, Solar Energy Institute, Izmir (Turkey); Okur, Salih, E-mail: salih.okur@ikc.edu.tr [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey)

    2014-09-30

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  1. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    International Nuclear Information System (INIS)

    Can, Mustafa; Havare, Ali Kemal; Aydın, Hasan; Yagmurcukardes, Nesli; Demic, Serafettin; Icli, Sıddık; Okur, Salih

    2014-01-01

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  2. Soil surface protection by Biocrusts: effects of functional groups on textural properties

    Science.gov (United States)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián

    2015-04-01

    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  3. Analysis of surface contributions to external doses in a radioactively contaminated urban environment designed by the EMRAS-2 Urban Areas Working Group

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Jeong, Hae Sun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Kim, In Gyu

    2013-01-01

    Highlights: ► External dose and contribution from radio-activated surface were evaluated for EMRAS-2 Urban Areas Working Group scenarios. ► The external doses showed a distinctive difference with the locations and precipitation. ► The contribution of contaminated surfaces for external dose depends on locations and precipitation. ► These results provide the essential information for decision-making support of countermeasures. - Abstract: The EMRAS-2 Urban Areas Working Group, which is supported by the IAEA, has designed a variety of accidental scenarios to test and improve the capabilities of the models used for an evaluation of radioactive contamination in an urban environment. A variety of models including a Korean model, METRO-K, are used for predictive results on the hypothetical scenarios. This paper describes the predictive results of METRO-K for the hypothetical scenarios designed in the Working Group. The external dose resulting from the air contamination of Co-60 was evaluated, and its contribution was analyzed with time as a function of the location of a receptor and precipitation conditions at the time of the contamination event. As a result, the external doses showed a distinctive difference with the locations to be evaluated and the precipitation conditions. Moreover, the contribution of contaminated surfaces for external doses was strongly dependent on the locations to be evaluated and the precipitation conditions. These results will provide essential information to assist the decision-making of appropriate countermeasures in an emergency situation of a radioactively contaminated urban environment

  4. The Group for High Resolution Sea Surface Temperature: Past, Present and Future.

    Science.gov (United States)

    Donlon, Craig; Casey, Kenneth; Minnett, Peter; Corlett, Gary

    2014-05-01

    In the last decade, satellite Agencies, science, operational user/producer and Sea Surface Temperature practitioner communities have come together within the Group for High Resolution SST (GHRSST) to create a new framework for generation, delivery and application of improved common format high-resolution (~1-10 km) satellite SST datasets for the benefit of society. The GHRSST data system is a mature, robust, and highly reliable near real time and delayed mode data system known as the GHRSST Regional/Global Task Sharing framework (R/GTS) and has operated in NRT since 2006. It consists of distributed Regional Data Assembly Centers (RDACs) around the world that submit their data to a Global Data Assembly Center (GDAC) maintained at the NASA Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC), where all the data are available for 30 days. After that they are transferred to the GHRSST Long Term Stewardship and Reanalysis Facility (LTSRF) at the U.S. National Oceanographic Data Center (NODC) for long-term preservation and distribution. The extensive user base includes many operational meteorological services, the scientific community, industry and Government. Since the R/GTS has operated, statistics show over 72,000 users have accessed the R/GTS in NRT, accessing over 100 million files amounting to more than 232 Tb of information. GHRSST has an organisation structure that has both fixed and flexible components allowing it to respond effectively and efficiently to new and emerging challenges. GHRSST has often been cited as a model for other Virtual Communities/Constellations. GHRSST is underpinned by an international Science Team and International Project Office together. Long-standing GHRSST Technical Advisory Groups (TAG) and ad hoc Working Groups (WG) are typically at the "cutting edge" of international SST activities delivering real coordination in space-based Earth observations for societal benefit through the prioritized

  5. Surface structure determination of group 11 metals adsorbed on a rhenium(10 anti 10) surface by low-energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Messahel, Lyria

    2012-11-12

    This thesis deals with the computational surface determination of various long-range ordered phases formed by thin films of copper, silver, and gold adsorbed on the rhenium- (10 anti 10) surface. It is based upon LEED-I,V curves for these phases that were recorded in the course of detailed experimental investigations of the respective films carried out in our group (using techniques such as LEED, MEED, and TPD). In order to solve the intricate puzzle of surface structural analysis, the electron elastic scattering behaviour of the investigated coinage metal phases was calculated using the Erlangen TensErLEED program package. Thereby first a set of theoretical LEED-I,V curves is derived for a guessed reference structure. Subsequently its structural input parameters are varied in a trial-and-error procedure until optimal agreement between experiment and theory is attained. The (1 x 1) phases formed by the deposited metals were tackled first to establish an absolute coverage calibration and to elucidate the respective growth modes on the Re(10 anti 10) surface. In all three cases the (1 x 1) structure is developed best at a coverage {Theta}{sub Cu,Ag,Au}=2 ML=1 BL. Extension of the investigation to experimental I,V curves for higher Cu coverages revealed that this element continues to grow bilayerwise, thereby retaining the Re hcp morphology. Ag, in contrast to Cu and Au, happens not to grow as homogeneously, and the TPD data suggest that Ag films exhibit the so-called simultaneous-multilayer (SM) growth mode. The following analysis of the sub-bilayer coverage range shows that the three systems exhibit considerable differences. While Cu, having a negative lattice misfit compared to Re, shows no long-range ordered superstructures, Ag and Au with a similar positive misfit form a couple of such phases. Ag features both a (1 x 4) phase, stable at ambient temperatures, that upon heating transforms into a c(2 x 2) phase that only exists at elevated temperatures. The

  6. Surface structure determination of group 11 metals adsorbed on a rhenium(10 anti 10) surface by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Messahel, Lyria

    2012-01-01

    This thesis deals with the computational surface determination of various long-range ordered phases formed by thin films of copper, silver, and gold adsorbed on the rhenium- (10 anti 10) surface. It is based upon LEED-I,V curves for these phases that were recorded in the course of detailed experimental investigations of the respective films carried out in our group (using techniques such as LEED, MEED, and TPD). In order to solve the intricate puzzle of surface structural analysis, the electron elastic scattering behaviour of the investigated coinage metal phases was calculated using the Erlangen TensErLEED program package. Thereby first a set of theoretical LEED-I,V curves is derived for a guessed reference structure. Subsequently its structural input parameters are varied in a trial-and-error procedure until optimal agreement between experiment and theory is attained. The (1 x 1) phases formed by the deposited metals were tackled first to establish an absolute coverage calibration and to elucidate the respective growth modes on the Re(10 anti 10) surface. In all three cases the (1 x 1) structure is developed best at a coverage Θ Cu,Ag,Au =2 ML=1 BL. Extension of the investigation to experimental I,V curves for higher Cu coverages revealed that this element continues to grow bilayerwise, thereby retaining the Re hcp morphology. Ag, in contrast to Cu and Au, happens not to grow as homogeneously, and the TPD data suggest that Ag films exhibit the so-called simultaneous-multilayer (SM) growth mode. The following analysis of the sub-bilayer coverage range shows that the three systems exhibit considerable differences. While Cu, having a negative lattice misfit compared to Re, shows no long-range ordered superstructures, Ag and Au with a similar positive misfit form a couple of such phases. Ag features both a (1 x 4) phase, stable at ambient temperatures, that upon heating transforms into a c(2 x 2) phase that only exists at elevated temperatures. The structure

  7. Surfacing the life phases of a mental health support group.

    Science.gov (United States)

    Mohr, Wanda K

    2004-01-01

    Support groups have increased rapidly in number and become a viable alternative to formal treatment in the United States. However, little is known regarding how mental health advocacy or support groups start and develop, or about challenges that can threaten their survival. In this 2 1/2-year ethnography, the author studied the culture of a developing family support program associated with a system of care. Several phases emerged, reflecting an organizational dynamic. The group dynamics and response to challenges have implications for organizers and parent organizations about the need for technical assistance necessary for survival of the group. Participant observation and immersion in the culture of such groups can provide a deeper understanding of the ideologies and values around which they organize and the kinds of tensions that members can experience during the group's cycle.

  8. Registration of cortical surfaces using sulcal landmarks for group analysis of MEG data☆

    Science.gov (United States)

    Joshi, Anand A.; Shattuck, David W.; Thompson, Paul M.; Leahy, Richard M.

    2010-01-01

    We present a method to register individual cortical surfaces to a surface-based brain atlas or canonical template using labeled sulcal curves as landmark constraints. To map one cortex smoothly onto another, we minimize a thin-plate spline energy defined on the surface by solving the associated partial differential equations (PDEs). By using covariant derivatives in solving these PDEs, we compute the bending energy with respect to the intrinsic geometry of the 3D surface rather than evaluating it in the flattened metric of the 2D parameter space. This covariant approach greatly reduces the confounding effects of the surface parameterization on the resulting registration. PMID:20824115

  9. Description of two-process surface topography

    International Nuclear Information System (INIS)

    Grabon, W; Pawlus, P

    2014-01-01

    After two machining processes, a large number of surface topography measurements were made using Talyscan 150 stylus measuring equipment. The measured samples were divided into two groups. The first group contained two-process surfaces of random nature, while the second group used random-deterministic textures of random plateau parts and portions of deterministic valleys. For comparison, one-process surfaces were also analysed. Correlation and regression analysis was used to study the dependencies among surface texture parameters in 2D and 3D systems. As the result of this study, sets of parameters describing multi-process surface topography were obtained for two-process surfaces of random and of random-deterministic types. (papers)

  10. Temporal formation of optical anisotropy and surface relief during polarization holographic recording in polymethylmethacrylate with azobenzene side groups

    Science.gov (United States)

    Sasaki, Tomoyuki; Izawa, Masahiro; Noda, Kohei; Nishioka, Emi; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-03-01

    The formation of polarization holographic gratings with both optical anisotropy and surface relief (SR) deformation was studied for polymethylmethacrylate with azobenzene side groups. Temporal contributions of isotropic and anisotropic phase gratings were simultaneously determined by observing transitional intensity and polarization states of the diffraction beams and characterizing by means of Jones calculus. To clarify the mechanism of SR deformation, cross sections of SR were characterized based on the optical gradient force model; experimental observations were in good agreement with the theoretical expectation. We clarified that the anisotropic phase change originating in the reorientation of the azobenzene side groups was induced immediately at the beginning of the holographic recording, while the response time of the isotropic phase change originating in the molecular migration due to the optical gradient force was relatively slow.

  11. Microscopic Study of Surface Microtopographic Characteristics of Dental Implants

    Science.gov (United States)

    Sezin, M.; Croharé, L.; Ibañez, J.C.

    2016-01-01

    Objective: To determine and compare the micro topographic characteristics of dental implants submitted to different surface treatments, using scanning electron microscopy (SEM). Materials and Methods: Implants were divided into 7 groups of 3 specimens each, according to the surface treatment used: group 1: Osseotite, BIOMET 3i; group 2: SLA surface, Institut Straumann AG; group 3: Oxalife surface, Tree-Oss implant; group 4: B&W implant surface; group 5: Q-implant surface; group 6: ML implant surface; group 7: RBM surface, Rosterdent implant. The surfaces were examined under SEM (Carl Zeiss FE-SEM-SIGMA). Image Proplus software was used to determine the number and mean diameter of pores per area unit (mm). The data obtained were analyzed with the Mann-Whitney test. A confocal laser microscope (LEXT-OLS4100 Olympus) was used to conduct the comparative study of surface roughness (Ra). Data were analyzed using Tukey's HSD test. Results: The largest average pore diameter calculated in microns was found in group 5 (3.45 µm+/-1.91) while the smallest in group 7 (1.47µm+/-1.29). Significant differences were observed among each one of the groups studied (p<0.05). The largest number of pores/mm2 was found in group 2 (229343) and the smallest number in group 4 (10937). Group 2 showed significant differences regarding the other groups (p<0.05). The greatest roughness (Ra) was observed in group 2 (0.975µm+/-0.115) and the smallest in group 4 (0.304µm+/-0.063). Group 2 was significantly different from the other groups (p<0.05). Conclusion: The micro topography observed in the different groups presented dissimilar and specific features, depending on the chemical treatment used for the surfaces.. PMID:27335615

  12. Surface reactivity measurements as required for grouping and read-across: An advanced FRAS protocol

    International Nuclear Information System (INIS)

    Gandon, Arnaud; Werle, Kai; Neubauer, Nicole; Wohlleben, Wendel

    2017-01-01

    Oxidative stress is a widely accepted paradigm associated with different adverse outcomes of particulate matter, including nanomaterials. It has frequently been identified in in vitro and in vivo studies and different assays have been developed for this purpose. Here we describe a newly developed multi-dose protocol of the FRAS assay (Ferric Reduction Ability of Serum). The purpose of this SOP is the measurement of the surface reactivity of nanomaterials under physiological conditions. Antioxidative components as present in human blood serum (HBS) serve as reporter molecules. The assay separates the oxidative damage from the read-out of the reporter molecules. The results show significantly enhanced repeatability with better sensitivity towards low reactivity, enabling application of FRAS both to a rough grouping by reactive vs. passive nanomaterials and further to substantiation of read-across by enhanced resolution of the similarity between different nanoforms of the same substance. (paper)

  13. Surface reactivity measurements as required for grouping and read-across: An advanced FRAS protocol

    Science.gov (United States)

    Gandon, Arnaud; Werle, Kai; Neubauer, Nicole; Wohlleben, Wendel

    2017-06-01

    Oxidative stress is a widely accepted paradigm associated with different adverse outcomes of particulate matter, including nanomaterials. It has frequently been identified in in vitro and in vivo studies and different assays have been developed for this purpose. Here we describe a newly developed multi-dose protocol of the FRAS assay (Ferric Reduction Ability of Serum). The purpose of this SOP is the measurement of the surface reactivity of nanomaterials under physiological conditions. Antioxidative components as present in human blood serum (HBS) serve as reporter molecules. The assay separates the oxidative damage from the read-out of the reporter molecules. The results show significantly enhanced repeatability with better sensitivity towards low reactivity, enabling application of FRAS both to a rough grouping by reactive vs. passive nanomaterials and further to substantiation of read-across by enhanced resolution of the similarity between different nanoforms of the same substance.

  14. Catalytic oxidation of 1,2-DCBz over V2O5/TiO2-CNTs: effect of CNT diameter and surface functional groups.

    Science.gov (United States)

    Du, Cuicui; Wang, Qiulin; Peng, Yaqi; Lu, Shengyong; Ji, Longjie; Ni, Mingjiang

    2017-02-01

    A series of V 2 O 5 /TiO 2 -carbon nanotube (CNT) catalysts were prepared and tested to decompose gaseous 1,2-dichlorobenzene (1,2-DCBz). Several physicochemical methods, including nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H 2 temperature-programmed reduction (TPR) were employed to characterise their physicochemical properties. To better understand the effect of CNT properties on the reactivity of V 2 O 5 /TiO 2 -CNT catalysts, the 1,2-DCBz residue remaining in the off-gas and on the catalyst surface were both collected and analysed. The results indicate that the outer diameter and the surface functional groups (hydroxide radical and carboxyl) of CNTs significantly influence upon the catalytic activity of CNT-containing V 2 O 5 /TiO 2 catalysts: the CNT outer diameter mainly affects the aggregation of CNTs and the π-π interaction between the benzene ring and CNTs, while the introduction of -OH and -COOH groups by acid treatment can further enlarge specific surface area (SSA) and contribute to a higher average oxidation state of vanadium (V aos ) and supplemental surface chemisorbed oxygen (O ads ). In addition, the enhanced mobility of lattice oxygen (O latt) also improves the oxidation ability of the catalysts.

  15. Nanostructured Materials

    Science.gov (United States)

    2012-08-30

    potassium hydroxide (2.088 mg) were added to a 10 mL volumetric flask. The balance of the volume to 10 mL was filled with ethanol. The contents were...water (0.27 g), and potassium hydroxide (2.088 mg) were added to a 10 mL volumetric flask. The balance of the volume to 10 mL was filled with ethanol...modification of metals, fill- ers, and composites can be prepared. Preferred reactive groups include but are not limited to silanols, siloxides, meth- acrylates

  16. Finite translation surfaces with maximal number of translations

    OpenAIRE

    Schlage-Puchta, Jan-Christoph; Weitze-Schmithuesen, Gabriela

    2013-01-01

    The natural automorphism group of a translation surface is its group of translations. For finite translation surfaces of genus g > 1 the order of this group is naturally bounded in terms of g due to a Riemann-Hurwitz formula argument. In analogy with classical Hurwitz surfaces, we call surfaces which achieve the maximal bound Hurwitz translation surfaces. We study for which g there exist Hurwitz translation surfaces of genus g.

  17. Surface roughness of glass ionomer cements indicated for uncooperative patients according to surface protection treatment.

    Science.gov (United States)

    Pacifici, Edoardo; Bossù, Maurizio; Giovannetti, Agostino; La Torre, Giuseppe; Guerra, Fabrizio; Polimeni, Antonella

    2013-01-01

    Even today, use of Glass Ionomer Cements (GIC) as restorative material is indicated for uncooperative patients. The study aimed at estimating the surface roughness of different GICs using or not their proprietary surface coatings and at observing the interfaces between cement and coating through SEM. Forty specimens have been obtained and divided into 4 groups: Fuji IX (IX), Fuji IX/G-Coat Plus (IXC), Vitremer (V), Vitremer/Finishing Gloss (VFG). Samples were obtained using silicone moulds to simulate class I restorations. All specimens were processed for profilometric evaluation. The statistical differences of surface roughness between groups were assessed using One-Way Analysis of Variance (One-Way ANOVA) (p<0.05). The Two-Way Analysis of Variance (Two-Way ANOVA) was used to evaluate the influence of two factors: restoration material and presence of coating. Coated restoration specimens (IXC and VFG) were sectioned perpendicular to the restoration surface and processed for SEM evaluation. No statistical differences in roughness could be noticed between groups or factors. Following microscopic observation, interfaces between restoration material and coating were better for group IXC than for group VFG. When specimens are obtained simulating normal clinical procedures, the presence of surface protection does not significantly improve the surface roughness of GICs.

  18. SFG and AFM Studies of Polymer Surface Monolayers

    Science.gov (United States)

    Somorjai, Gabor A.

    2003-03-01

    Sum frequency generation vibrational spectroscopy and atomic force microscopy techniques were utilized to study the structure and composition of polymer surfaces ranging from polyethylene and polypropylene to copolymers of polyurethane and polystyrene. The surface methyl groups aligned perpendicular to the surface above the glass transition temperature of polypropylene. Large side groups such as the phenyl group on polystyrene is also near the surface normal at the polymer-air interface. At the air interface hydrophobic groups are dominant on the polymer surface while at solid-water interface hydrophilic groups segregate to the surface. Minimizing surface energy is the cause of readjusting the surface composition at polymer-water interfaces as compared to polymer-air interfaces. Upon stretching the soft component of two-component polymer systems segregates to the surface and both the surface structure and the surface composition undergo reversible or irreversible changes depending on the magnitude of the stretch. Since the heart beat forces bio-polymers to stretch over 40 million times a year the molecular behavior due to stretching has important physiological consequences.

  19. Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces

    Science.gov (United States)

    Lee, Myoungjin; Kim, Heejin; Seo, Jiae; Kang, Minji; Kang, Sunah; Jang, Joomyung; Lee, Yan; Seo, Ji-Hun

    2018-01-01

    In this study, we conducted surface zwitterionization of hydroxyapatite (HA) surfaces by immersing them in the zwitterionic polymer solutions to provide anti-bacterial properties to the HA surface. Three different monomers containing various zwitterionic groups, i.e., phosphorylcholine (PC), sulfobetaine (SB), and carboxybetaine (CB), were copolymerized with the methacrylic monomer containing a Ca2+-binding moiety, using the free radical polymerization method. As a control, functionalization of the copolymer containing the Ca2+-binding moiety was synthesized using a hydroxy group. The stable immobilization of the zwitterionic functional groups was confirmed by water contact angle analysis and X-ray photoelectron spectroscopy (XPS) measurement conducted after the sonication process. The zwitterionized HA surface showed significantly decreased protein adsorption, whereas the hydroxyl group-coated HA surface showed limited efficacy. The anti-bacterial adhesion property was confirmed by conducting Streptococcus mutans (S. mutans) adhesion tests for 6 h and 24 h. When furanone C-30, a representative anti-quorum sensing molecule for S. mutans, was used, only a small amount of bacteria adhered after 6 h and the population did not increase after 24 h. In contrast, zwitterionized HA surfaces showed almost no bacterial adhesion after 6 h and the effect was retained for 24 h, resulting in the lowest level of oral bacterial adhesion. These results confirm that surface zwitterionization is a promising method to effectively prevent oral bacterial adhesion on HA-based materials.

  20. Toward tuning the surface functionalization of small ceria nanoparticles

    International Nuclear Information System (INIS)

    Huang, Xing; Wang, Binghui; Grulke, Eric A.; Beck, Matthew J.

    2014-01-01

    Understanding and controlling the performance of ceria nanoparticle (CNP) catalysts requires knowledge of the detailed structure and property of CNP surfaces and any attached functional groups. Here we report thermogravimetric analysis results showing that hydrothermally synthesized ∼30 nm CNPs are decorated with 12.9 hydroxyl groups per nm 2 of CNP surface. Quantum mechanical calculations of the density and distribution of bound surface groups imply a scaling relationship for surface group density that balances formal charges in the functionalized CNP system. Computational results for CNPs with only hydroxyl surface groups yield a predicted density of bound hydroxyl groups for ∼30 nm CNPs that is ∼33% higher than measured densities. Quantitative agreement between predicted and measured hydroxyl surface densities is achieved when calculations consider CNPs with both –OH and –O x surface groups. For this more general treatment of CNP surface functionalizations, quantum mechanical calculations predict a range of stable surface group configurations that depend on the chemical potentials of O and H, and demonstrate the potential to tune CNP surface functionalizations by varying temperature and/or partial pressures of O 2 and H 2 O

  1. Additives for reducing the toxicity of respirable crystalline silica. SILIFE project

    Science.gov (United States)

    Monfort, Eliseo; López-Lilao, Ana; Escrig, Alberto; Jesus Ibáñez, Maria; Bonvicini, Guliana; Creutzenberg, Otto; Ziemann, Christina

    2017-10-01

    Prolonged inhalation of crystalline silica particles has long been known to cause lung inflammation and development of the granulomatous and a fibrogenic lung disease known as silicosis. The International Agency for Research on Cancer (IARC) has classified Respirable Crystalline Silica (RCS) in the form of quartz and cristobalite from occupational sources as carcinogenic for humans (category 1). In this regard, numerous studies suggest that the toxicity of quartz is conditioned by the surface chemistry of the quartz particles and by the density and abundance of silanol groups. Blocking these groups to avoid their interaction with cellular membranes would theoretically be possible in order to reduce or even to eliminate the toxic effect. In this regard, the main contribution of the presented research is the development of detoxifying processes based on coating technologies at industrial scale, since the previous studies reported on literature were carried out at lab scale. The results obtained in two European projects showed that the wet method to obtain quartz surface coatings (SILICOAT project) allows a good efficiency in inhibiting the silica toxicity, and the preliminary results obtained in an ongoing project (SILIFE) suggest that the developed dry method to coat quartz surface is also very promising. The development of both coating technologies (wet and a dry) should allow these coating technologies to be applied to a high variety of industrial activities in which quartz is processed. For this reason, a lot of end-users of quartz powders will be potentially benefited from a reduced risk associated to the exposure to RCS.

  2. Marked fatgraph complexes and surface automorphisms

    DEFF Research Database (Denmark)

    Kuno, Yusuke; Penner, Robert; Turaev, Vladimir

    2013-01-01

    Combinatorial aspects of the Torelli-Johnson-Morita theory of surface automorphisms are extended to certain subgroups of the mapping class groups. These subgroups are defined relative to a specified homomorphism from the fundamental group of the surface onto an arbitrary group $K$. For $K$ abelia...

  3. Traffic accidents and road surface skidding resistance : an investigation into the statistical relationship between the skidding resistance of the road surface and relative road risk. Summary of the research report of Sub-committee V of the Working Group on Tyres, Road Surfaces and Skidding Accidents of the Institute for Road Safety Research, SWOV

    NARCIS (Netherlands)

    Schlösser, L.H.M

    1975-01-01

    This study forms part of an extended research programme of the Working Group on Tyres, Road-surfaces and Skidding accidents. According to the terms of reference a statistical relationship had to be established between the skidding resistance of a road-surface and the number of accidents per million

  4. Interaction of paracetamol and 125I-paracetamol with surface groups of activated carbon. Theoretical and experimental study

    International Nuclear Information System (INIS)

    Daniel Hernandez-Valdes; Ulises Jauregui-Haza; Carlos Enriquez-Victorero; Melvin Arias

    2015-01-01

    The selection of activated carbon (AC) filters for water decontamination is currently carried out empirically. The low concentrations of drugs in the environment make the radioisotope labeling a valuable tool for physical and chemical studies of the adsorption process. A theoretical study of paracetamol and 125 I-paracetamol adsorption onto AC was performed to evaluate the interactions between pollutants and surface groups (SG) of AC. Paracetamol was labeled with 125 I and adsorption isotherms were obtained using radioanalytical and spectrophotometric techniques. The radioanalytical method overestimates the paracetamol adsorption. The validity of the chosen approach for qualitative assessment of SG influence over the adsorption process was demonstrated. (author)

  5. Variability of biological effects of silicas: Different degrees of activation of the fifth component of complement by amorphous silicas

    International Nuclear Information System (INIS)

    Governa, Mario; Amati, Monica; Fenoglio, Ivana; Valentino, Matteo; Coloccini, Sabrina; Bolognini, Lucia; Carlo Botta, Gian; Emanuelli, Monica; Pierella, Francesca; Volpe, Anna Rita; Astolfi, Paola; Carmignani, Marco; Fubini, Bice

    2005-01-01

    A biogenic and a pyrogenic amorphous silica were incubated in normal human plasma and compared on a per unit surface basis for their ability to split C5 molecules and yield small C5a peptides. Since C5a peptides induce selective chemotactic attraction of polymorphonuclear leukocytes (PMN), measurement of PMN-induced chemotaxis was used as an index of C5 activation. Though to a lesser extent than the crystalline forms, amorphous silicas can promote the cleavage of C5 protein and generation of C5a-like fragment. The biogenic silica, which differs from the pyrogenic variety in particle shape, level of contaminants, and degree of surface hydrophilicity, besides specific surface, induced a greater response. Both silicas activated C5 through a process which seems to involve multiple events similar to those induced by crystalline silica. C5 molecules are adsorbed and hydroxyl radicals are generated through Haber Weiss cycles catalyzed by the redox-active iron present at the particle surface either as trace impurities or chelated from plasma by silanol groups. In turn, these radicals convert native C5 to an oxidized C5-like form C5(H 2 O 2 ). Finally, C5(H 2 O 2 ) is cleaved by protease enzymatic action of plasma kallikrein activated by the same silica dusts, yielding a product, C5a(H 2 O 2 ), having the same functional characteristic as C5a

  6. Synthesis and characterization of chitosan-graft-poly(acrylic acid)/rice husk ash hydrogels composites

    International Nuclear Information System (INIS)

    Rodrigues, Francisco H.A.; Lopes, Gabriel V.; Pereira, Antonio G.B.; Fajardo, Andre R.; Muniz, Edvani C.

    2011-01-01

    According to environmental concerns, super absorbent hydrogel composites were synthesized based on rice husk ash (RHA), an industrial waste, and Chitosan-graft-poly(acrylic acid). The WAXS and FTIR data confirmed the syntheses of hydrogel composites. The effect of crystalline or amorphous RHA on water uptake was investigated. It was found that the RHA in crystalline form induces higher water capacity (W eq ) of composites hydrogels due to the fact that the intra-interactions among silanol groups on RHA make available new sites in the polymer matrix, which could interact to water. (author)

  7. Synthesis and characterization of chitosan-graft-poly(acrylic acid)/rice husk ash hydrogels composites; Sintese e caracterizacao de hidrogeis compositos de cinza da casca de arroz e quitosana enxertada com poli(acido acrilico)

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Francisco H.A. [Universidade Estadual Vale do Acarau - UVA, Sobral, CE (Brazil); Lopes, Gabriel V.; Pereira, Antonio G.B.; Fajardo, Andre R.; Muniz, Edvani C. [Universidade Estadual de Maringa - UEM, PR (Brazil)

    2011-07-01

    According to environmental concerns, super absorbent hydrogel composites were synthesized based on rice husk ash (RHA), an industrial waste, and Chitosan-graft-poly(acrylic acid). The WAXS and FTIR data confirmed the syntheses of hydrogel composites. The effect of crystalline or amorphous RHA on water uptake was investigated. It was found that the RHA in crystalline form induces higher water capacity (W{sub eq}) of composites hydrogels due to the fact that the intra-interactions among silanol groups on RHA make available new sites in the polymer matrix, which could interact to water. (author)

  8. Moisture curable toughened poly(lactide utilizing vinyltrimethoxysilane based crosslinks

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2016-10-01

    Full Text Available Vinyltrimethoxysilane (VTMOS was grafted on to the backbone of poly(lactide (PLA through a free radical grafting reaction using reactive extrusion (REX processing. The methoxy groups of the silane provide the modified PLA sites for crosslinking through a moisture induced pathway. VTMOS grafting efficiencies of up to 90% were obtained. The newly created methoxy functionality of the modified PLA readily undergoes hydrolysis and condensation forming siloxane crosslinks in the material. Crosslinking with VTMOS exhibited improved modulus, strength, and impact toughness while showing a decrease in ductility. Incorporating silanol-terminated poly(dimethylsiloxane (OH-PDMS resulted in the formation of longer siloxane crosslinks. These samples showed an increase in modulus and impact toughness due to the crosslinking, while the longer siloxane linkages resulted in improved ductility and tensile toughness. This is unusual for polymers toughened through crosslinking reactions. Scanning Electron Microscopy (SEM of the fractured surfaces showed the presence of these elongated siloxane crosslinks. This enhanced ability for the modified PLA to deform and absorb energy results in the increase in both impact and tensile toughness.

  9. Direct ToF-SIMS analysis of organic halides and amines on TLC plates

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Alexander A. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Anderson, Thomas M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Michaelis, David J. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Jiang, Guilin [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Savage, Paul B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Linford, Matthew R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)]. E-mail: mrlinford@chem.byu.edu

    2006-07-30

    It has been reported that: 'direct analysis of thin layer chromatography (TLC) plates with secondary ion mass spectrometry (SIMS) yields no satisfactory results' (J. Chromatogr. A 1084 (2005) 113-118). While this statement appears to be true in general, we have identified two important classes of compounds, organic halides and amines, that appear to yield to such direct analyses. For example, five organic halides with diverse structures were eluted on normal phase TLC plates. In all cases the halide signals in the negative ion time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra were notably stronger than the background signals. Similarly, a series of five organic amines with diverse structures were directly analyzed by positive ion ToF-SIMS. In all but one of the spectra characteristic, and sometimes even quasi-molecular ions, were observed. Most likely, the good halide ion yields are largely a function of the electronegativity of the halogens. We also propose that direct analysis of amines on normal phase silica gel is facilitated by the acidity, i.e., proton donation, of surface silanol groups.

  10. Direct ToF-SIMS analysis of organic halides and amines on TLC plates

    International Nuclear Information System (INIS)

    Parent, Alexander A.; Anderson, Thomas M.; Michaelis, David J.; Jiang, Guilin; Savage, Paul B.; Linford, Matthew R.

    2006-01-01

    It has been reported that: 'direct analysis of thin layer chromatography (TLC) plates with secondary ion mass spectrometry (SIMS) yields no satisfactory results' (J. Chromatogr. A 1084 (2005) 113-118). While this statement appears to be true in general, we have identified two important classes of compounds, organic halides and amines, that appear to yield to such direct analyses. For example, five organic halides with diverse structures were eluted on normal phase TLC plates. In all cases the halide signals in the negative ion time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra were notably stronger than the background signals. Similarly, a series of five organic amines with diverse structures were directly analyzed by positive ion ToF-SIMS. In all but one of the spectra characteristic, and sometimes even quasi-molecular ions, were observed. Most likely, the good halide ion yields are largely a function of the electronegativity of the halogens. We also propose that direct analysis of amines on normal phase silica gel is facilitated by the acidity, i.e., proton donation, of surface silanol groups

  11. Surface magnetization of the Ising ferromagnet in semi-infinite cubic lattice: renormalization group approach

    International Nuclear Information System (INIS)

    Chame, A.M.N.; Tsallis, C.

    1988-01-01

    The behaviour of the spontaneous surface and bulk magnetizations as function of the temperature for the Ising ferromagnet in a semi-infinitre cubic lattice for various ratios JS/JB (JS and JB are the surface and bulk coupling constants, respectively), is studied. The extraordinary transition where the surface maintains its magnetization as the bulk disorders, was study, in particular; a discontinuity on the first derivative of the surface magnetization at the bulk transition temperature was found. The criticality of the system (universality classes, critical exponents and amplitudes) is discussed. An unexpected slight lack of monotonicity of the surface magnetization as a function of JS/JB for JS/JB [pt

  12. Synthesis, surface group modification of 3D MnV2O6 nanostructures and adsorption effect on Rhodamine B

    International Nuclear Information System (INIS)

    Zhang, Wanqun; Shi, Lei; Tang, Kaibin; Liu, Zhongping

    2012-01-01

    Highlights: ► Fabrication of urchin-like MnV 2 O 6 with oxygen-containing surface groups. ► Mn 0.5 V 2 O 5 ·nH 2 O as an intermediate product holds the key to the final products. ► 3D architectures of MnV 2 O 6 with oxygen-containing surface groups as sorbent. ► The sorbent shows a good adsorption ability. -- Abstract: Highly uniform 3D MnV 2 O 6 nanostructures modified by oxygen functional groups (-COO-) were successfully prepared in large quantities by an approach involving preparation of vanadyl ethylene glycolate as the precursor. The growth and self-assembly of MnV 2 O 6 nanobelts and nanorods could be readily tuned by additive species and quantities, which brought different morphologies and sizes to the final products. With a focus on the regulation of structure, the formation process of 3D architectures of MnV 2 O 6 by self-assembly of nanobelts was followed by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The consecutive processes of vanadyl ethylene glycolate and benzoyl peroxide assisted formation of layered structure Mn 0.5 V 2 O 5 ·nH 2 O, growth of aligned MnV 2 O 6 nanobelts, and oriented assembly were proposed for the growth mechanism. The band gap vs. different morphology was also studied. Optical characterization of these MnV 2 O 6 with different morphologies showed direct bandgap energies at 1.8–1.95 eV. The adsorption properties of 3D MnV 2 O 6 nanostructures synthesized under different conditions were investigated through the removal test of Rhodamine B in aqueous water, and the 3D nanostructures synthesized with 30 g L −1 benzoyl peroxide showed good adsorption capability of Rhodamine B.

  13. On the Brauer group

    International Nuclear Information System (INIS)

    Tankeev, Sergei G

    2000-01-01

    For an arithmetic model X of a Fermat surface or a hyperkahler variety with Betti number b 2 (V otimes k-bar)>3 over a purely imaginary number field k, we prove the finiteness of the l-components of Br'(X) for all primes l>>0. This yields a variant of a conjecture of M. Artin. If V is a smooth projective irregular surface over a number field k and V(k)≠ nothing, then the l-primary component of Br(V)/Br(k) is an infinite group for every prime l. Let A 1 →M 1 be the universal family of elliptic curves with a Jacobian structure of level N>=3 over a number field k supset of Q(e 2πi/N ). Assume that M 1 (k) ≠ nothing. If V is a smooth projective compactification of the surface A 1 , then the l-primary component of Br(V)/Br(M-bar 1 ) is a finite group for each sufficiently large prime l

  14. A relevante potencialidade dos centros básicos nitrogenados disponíveis em polímeros inorgânicos e biopol��meros na remoção catiônica The weighty potentiality of nitrogenated basic centers in inorganic polymers and biopolymers for cation removal

    Directory of Open Access Journals (Sweden)

    Claudio Airoldi

    2008-01-01

    Full Text Available This review reports the application of inorganic and organic polymeric materials for cation removal by using nitrogenated basic centers. The data demonstrate the importance of the desired groups when free or immobilized on natural or synthesized inorganic polymers through silanol groups. Thus, the most studied silica gel is followed by natural crysotile and talc polymers, and the synthesized mesopore silicas, talc-like, silicic acids, phosphates and phyllosilicates. The organic natural biopolymeric chitin and cellulose were chemically modified to improve the availability of the amine groups or the reactivity with desirable molecules to enlarge the content of basic centers. The cation removal takes place at the solid/liquid interface and some interactive effects have their thermodynamic data determined.

  15. Study of green quartz of hydrothermal origin treated by gamma radiation

    International Nuclear Information System (INIS)

    Enokihara, Cyro Teiti

    2013-01-01

    A specific variety of quartz showing a green color in nature or induced artificially by radiation is quite rare. This can be explained by the fact that the mechanism of formation of this color is very different from the ones widely discussed in the literature and responsible for the formation of the fumee, citrine and amethyst types of quartz, including the prasiolite (leak green quartz) formed by heating amethyst from Montezuma, Brazil. Only two occurrences are known today, where this type of quartz can be found: Canada, at the Thunder Bay Amethyst Mine, Ontario, a small district, and Brazil, at widely scattered geode occurrences along a 600 km stretch from Quarai at Brazils southernmost tip to Uberlandia in Minas Gerais. These two occurrences have been formed by strong hydrothermal activities, at Thunder Bay due to tectonics and in Brazil by meteoric and hydrothermal waters of the Guarani aquifer. That way much quartz crystals showed a very fast growth history facilitating the formation of growth defects (twinning, small angle tilting, mosaic growth, striations) and the uptake of water in form of micro inclusions, molecular water, silanol (Si-OH) and OH. This type of quartz can be considered 'wet quartz', similar to synthetic quartz. The water content with up to 3200 ppm by weight exceeds the amount of charge balancing cations (Fe, Al, Li). There is no correlation between water content and cations as in other color varieties. Instead, silanol complexes are formed, which by radiation due to gamma rays form the color center NBOHC (non-bonding oxygen hole defect), showing absorption between 590 to 620 nm and leaving a transmission window at about 550nm, responsible for the green color. To characterize samples which will be colored green by gamma rays analyses by ICP, NAA, Electron microscopy, water loss techniques and UV-VIS and NIR-FTIR spectroscopic have been made. The spectroscopic water determination showed less water (up to 2300 ppm by weight) compared with

  16. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    International Nuclear Information System (INIS)

    G. L. Schwendiman

    2006-01-01

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition

  17. Mechanical and thermal properties of UV curable polyurethane acrylate composite coatings

    International Nuclear Information System (INIS)

    Mohd Sofian Alias; Nik Ghazali Nik Salleh; Mohd Hamzah Harun; Mohd Yusof Hamzah; Rosley Che Ismail

    2012-01-01

    UV curable coating formulation comprises urethane acrylate resin and nano silica as filter were synthesized to develop UV curable inorganic hybrid composite (PUA). The surface of the nano silica was chemically modified to improve its chemical interaction within the urethane acrylate matrix. The modification had been undertaken by applying vinyltrymetoxysilane (VTMOS) that acted as a coupling agent to produce organophilic silica shell (SIMA). The shell is linked to the silica via reaction with the surface silanol group of the silica. The disappearance of methoxy groups in VTMOS was demonstrated by FTIR spectrum. The percentage of silica particles in UV curable hybrid formulation were varied on 5 %, 10 %, 15 %, 20 % and 25 wt % respectively. In this work, the formulation was applied on medium density fiber board (MDF) substrate and subsequent has been irradiated under UV light. Then, the coated MDF were characterized by several testing equipment (TGA, DSC, scratch tester, instron, SEM). From the result, we found that the addition of silica nanoparticles exhibit significant improvement in coating film properties as compared to film without silica nanoparticle includes significant improvement in its modulus and scratch resistance. This make them as promising coating candidate for MDF product. On the other hand, we also found that an increase of silica particle up to 25 wt %, the viscosity has increased rapidly indicates that it is not suitable for acrylate coating formulation due to disappearance of desired effect known as thixotropy. (Author)

  18. Surface properties of beached plastics.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  19. Effect of growth at low pH on the cell surface properties of a typical strain of Lactobacillus casei group.

    Science.gov (United States)

    Hossein Nezhad, M; Stenzel, Dj; Britz, Ml

    2010-09-01

    Although members of the Lactobacillus casei group are known to survive under acidic conditions, the underlying mechanisms of growth at acidic condition and the impact of low pH on the relative level of protein expression at the cell surface remain poorly studied. After confirming the taxonomy of L. casei strain GCRL 12 which was originally isolated from cheese and confirmed by 16S rRNA sequence analysis, the impact of acidic pH on growth rate was determined. Late log-phase cells cultured at pH 4.0 showed obvious changes in Gram staining properties while transmission electron microscopy analysis revealed evidence of structural distortions of the cell surface relative to the controls cultured at pH 6.5. When comparing cytosolic or whole cell preparations on SDS-PAGE, few changes in protein profiles were observed under the two growth conditions. However, analysis of surface protein extracted by 5M LiCl demonstrated changes in the proportions of proteins present in the molecular weight range of 10 to 80 kDa, with some proteins more dominant at pH 6.5 and other at pH 4. These data suggest that surface proteins of this strain are associated with growth and survival at low pH. The function of these proteins is subject to further investigation.

  20. Surface radiological investigation of Trench 5 in Waste Area Grouping 7 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goff, D.D.

    1991-08-01

    A surface radiological investigation of areas encompassing Trench 5 on the Oak Ridge Reservation (ORR) was conducted from May 1990 through November 1990. This survey was led by the author, assisted by various members of the Measurement Applications and Development (MAD) group of the Health and Safety Research Division (HASRD) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the investigation was to determine the presence, nature, and extent of surface radiological contamination at Trench 5, the Homogeneous Reactor Experiment fuel wells, and surrounding areas. Based on the data obtained in the field, interim corrective measures were recommended to limit human exposure to radioactivity and to minimize insult to the environment. It should be stressed that this project was not intended to be a complete site characterization but rather to be a preliminary investigation into the potential contamination problem that might exist as a result of past operations at Trench 5

  1. Surface Curvature in Island Groups and Discontinuous Cratonic Structures

    Science.gov (United States)

    McDowell, M. S.

    2002-05-01

    The Canadian Archipelago includes eight major islands and a host of smaller ones. They are separated by water bodies, of varying widths attributable to glacial activity and ocean currents. Land form varies from relatively rugged mountains (~2000 m) in eastern, glacial, islands, to low lying western, similar to the continental topography adjacent. The Arctic region is thought to have been low average elevation before the Pleistocene. To a picture puzzler, it all looks like it fit together. Experimentally cutting apart the islands from large scale maps shows that the rough edges match fairly well. However, when those independent pieces are sutured together, without restraint, as in free air, the fit is far better. Far more importantly, they consistently form a noticeably concave surface. This tendency is not at all apparent in flat surface or computer screen manipulation; the pieces need to be "hand joined" or on a molded surface to allow the assembly to freely form as it will. Fitting together the coastlines above 60 \\deg north, from 120 \\deg west to 45 \\deg east, and comparing the resulting contracted area to the original, obtains an 8 percent area reduction. The curvature "humps" a trial planar section of 15 cms by 1.6 cm, a substantial difference in the radius of curvature. If you rashly suggest applying that formula globally, the resulting sphere would have a surface area of 4.7 x108,(down from 5 x108), and therefore radius of 6117 km, down from 6400, which is a rather preposterous conclusion. As nobody would believe it, I tested the idea elsewhere. The Huronian succession of six named cratons is adjacent on the south. I cut this map apart, too, and fit it together, once again getting a curvature, this time more pronounced. I am trying it with the Indonesian Archipelago, although this area has volcanic complications, and with Precambrian Basins in western Australia and Nimibia, Africa. Indications are - an essentially similar pattern of fit, but non uniform

  2. Comparative effects of graphene and graphene oxide on copper toxicity to Daphnia magna: Role of surface oxygenic functional groups.

    Science.gov (United States)

    Liu, Yingying; Fan, Wenhong; Xu, Zhizhen; Peng, Weihua; Luo, Shenglian

    2018-05-01

    Although the risk of graphene materials to aquatic organisms has drawn wide attention, the combined effects of graphene materials with other contaminants such as toxic metals, which may bring about more serious effects than graphene materials alone, have seldom been explored. Herein, the effects of graphene (GN) and graphene oxide (GO, an important oxidized derivative of graphene) on copper (Cu) toxicity to Daphnia magna were systematically investigated. The results indicated that GN remarkably increased the Cu accumulation in D. magna and enhanced the oxidative stress injury caused by Cu, whereas did not significantly alter D. magna acute mortality within the tested Cu concentrations (0-200 μg L -1 ). On the contrary, GO significantly decreased the Cu accumulation in D. magna and alleviated the oxidative stress injury caused by Cu. Meanwhile, the presence of GO significantly reduced the mortality of D. magna when Cu concentration exceeded 50 μg L -1 . The different effects of GN and GO on Cu toxicity were possibly dependent on the action of surface oxygenic functional group. Because of the introduction of surface oxygenic functional groups, the adsorption ability to metal ions, stability in water and interaction mode with organisms of GO are quite different from that of GN, causing different effects on Cu toxicity. This study provides important information on the bioavailability and toxicity of heavy metals as affected by graphene materials in natural water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Sunspot Groups as Tracers of Sub Surface Processes .

    Indian Academy of Sciences (India)

    tribpo

    Owing to shortage of time I restrict this review to present a report on the work done by our group at Indian Institute of Astrophysics which fits the title of this colloquium and the title of my talk. I shall point out the clues given by these studies for modeling the cyclical evolution of solar magnetic fields, but I shall not report on the ...

  4. Chitosan-nanosilica hybrid materials: Preparation and properties

    International Nuclear Information System (INIS)

    Podust, T.V.; Kulik, T.V.; Palyanytsya, B.B.; Gun’ko, V.M.; Tóth, A.; Mikhalovska, L.; Menyhárd, A.; László, K.

    2014-01-01

    Highlights: • Hybrid chitosan-nanosilica materials were synthesized using an adsorption modification method. • The chitosan adsorption capacity is higher on the silica/titania and silica/alumina than on the fumed silica. • Nanosilicas undergo structural and textural alterations due to modification by chitosan. • The more severe chitosan thermodestruction occurs on the silica/titania and silica/alumina surfaces than on the plain silica surface. - Abstract: The research focuses on the synthesis of novel organic–inorganic hybrid materials based on polysaccharide chitosan and nanosilicas (SiO 2 , TiO 2 /SiO 2 and Al 2 O 3 /SiO 2 ). The chitosan modified nanooxides were obtained by the equilibrium adsorption method. The chitosan adsorption capacities of silica/titania and silica/alumina are higher than of the plain silica due to the additional active sites present on the surfaces of the mixed oxides. The hybrid materials were characterized by low-temperature nitrogen adsorption/desorption, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), thermogravimetry (TG/DTG) and temperature-programmed desorption with mass spectrometry control (TPD MS) methods. The chitosan treatment only modestly influences the surface area S BET of the nanooxides but the rearrangement of the secondary and tertiary structures (aggregates and agglomerates) results in an enhancement of the mesoporosity and affects the size of the aggregates. The more severe thermodestruction of the polysaccharide desorbing from the modified mixed silicas indicates a stronger interaction between the chitosan and the mixed oxides compared to the silanol groups of the plain silica surface

  5. Chitosan-nanosilica hybrid materials: Preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Podust, T.V., E-mail: tania_list@yahoo.com [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Kulik, T.V., E-mail: tanyakulyk@i.ua [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Palyanytsya, B.B.; Gun’ko, V.M. [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Tóth, A. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Mikhalovska, L. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Menyhárd, A. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Institute of Materials Science and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (Hungary); László, K. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)

    2014-11-30

    Highlights: • Hybrid chitosan-nanosilica materials were synthesized using an adsorption modification method. • The chitosan adsorption capacity is higher on the silica/titania and silica/alumina than on the fumed silica. • Nanosilicas undergo structural and textural alterations due to modification by chitosan. • The more severe chitosan thermodestruction occurs on the silica/titania and silica/alumina surfaces than on the plain silica surface. - Abstract: The research focuses on the synthesis of novel organic–inorganic hybrid materials based on polysaccharide chitosan and nanosilicas (SiO{sub 2}, TiO{sub 2}/SiO{sub 2} and Al{sub 2}O{sub 3}/SiO{sub 2}). The chitosan modified nanooxides were obtained by the equilibrium adsorption method. The chitosan adsorption capacities of silica/titania and silica/alumina are higher than of the plain silica due to the additional active sites present on the surfaces of the mixed oxides. The hybrid materials were characterized by low-temperature nitrogen adsorption/desorption, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), thermogravimetry (TG/DTG) and temperature-programmed desorption with mass spectrometry control (TPD MS) methods. The chitosan treatment only modestly influences the surface area S{sub BET} of the nanooxides but the rearrangement of the secondary and tertiary structures (aggregates and agglomerates) results in an enhancement of the mesoporosity and affects the size of the aggregates. The more severe thermodestruction of the polysaccharide desorbing from the modified mixed silicas indicates a stronger interaction between the chitosan and the mixed oxides compared to the silanol groups of the plain silica surface.

  6. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    International Nuclear Information System (INIS)

    Bietti, Sergio; Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano; Fedorov, Alexey

    2014-01-01

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E A =1.31±0.15 eV, a diffusivity prefactor of D 0  = 0.53(×2.1±1) cm 2 s −1 that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  7. An investigation of the chemical composition and acid corrosion of pedra sabão (soapstone

    Directory of Open Access Journals (Sweden)

    ROBSON FERNANDES DE FARIAS

    2005-02-01

    Full Text Available In this paper the results of a basic study of the chemical composition and structure of soapstone are reported. An investigation of the effects of aqueous sulfuric acid solutions on the physical integrity of the stone was also performed. The studied soapstone samples had a lamellar nanostructure as verified by DRX data. Furthermore, they contained isolated silanol (Si–OH groups, as indicated by FTIR data, and the majority of the silicon atoms were bonded to OH groups, as shown by 29Si CPMAS NMR analysis. Is was also shown that a low resistance to acid attack is associated with a large amount of magnesium and/or iron in the stone.

  8. Dynamics of small groups of galaxies. I. Virialized groups

    International Nuclear Information System (INIS)

    Mamon, G.A.; New York Univ., NY)

    1987-01-01

    The dynamical evolution of small groups of galaxies from an initial virial equilibrium state is investigated by means of numerical simulations. The basic scheme is a gravitational N-body code in which galaxies and diffuse background are treated as single particles with both external parameters and internal structure; collisional and tidal stripping, dynamical friction, mergers, and orbital braking are taken into account. The results are presented in extensive tables and graphs and characterized in detail. Eight-galaxy groups with surface densities like those of compact groups (as defined by Hickson, 1982) are found to be unstable to rapid mergers after 1/30 to 1/8 Hubble time. The effects of dark-matter distribution (in galactic halos or in a common intergalactic background) are considered. 79 references

  9. Group-decoupled multi-group pin power reconstruction utilizing nodal solution 1D flux profiles

    International Nuclear Information System (INIS)

    Yu, Lulin; Lu, Dong; Zhang, Shaohong; Wang, Dezhong

    2014-01-01

    Highlights: • A direct fitting multi-group pin power reconstruction method is developed. • The 1D nodal solution flux profiles are used as the condition. • The least square fit problem is analytically solved. • A slowing down source improvement method is applied. • The method shows good accuracy for even challenging problems. - Abstract: A group-decoupled direct fitting method is developed for multi-group pin power reconstruction, which avoids both the complication of obtaining 2D analytic multi-group flux solution and any group-coupled iteration. A unique feature of the method is that in addition to nodal volume and surface average fluxes and corner fluxes, transversely-integrated 1D nodal solution flux profiles are also used as the condition to determine the 2D intra-nodal flux distribution. For each energy group, a two-dimensional expansion with a nine-term polynomial and eight hyperbolic functions is used to perform a constrained least square fit to the 1D intra-nodal flux solution profiles. The constraints are on the conservation of nodal volume and surface average fluxes and corner fluxes. Instead of solving the constrained least square fit problem numerically, we solve it analytically by fully utilizing the symmetry property of the expansion functions. Each of the 17 unknown expansion coefficients is expressed in terms of nodal volume and surface average fluxes, corner fluxes and transversely-integrated flux values. To determine the unknown corner fluxes, a set of linear algebraic equations involving corner fluxes is established via using the current conservation condition on all corners. Moreover, an optional slowing down source improvement method is also developed to further enhance the accuracy of the reconstructed flux distribution if needed. Two test examples are shown with very good results. One is a four-group BWR mini-core problem with all control blades inserted and the other is the seven-group OECD NEA MOX benchmark, C5G7

  10. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing, E-mail: shisq@nwu.edu.cn; Gong, Yongkuan

    2016-11-15

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH{sub 2}) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  11. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    International Nuclear Information System (INIS)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH 2 ) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  12. Epoxy-functionalized mesostructured cellular foams as effective support for covalent immobilization of penicillin G acylase

    Science.gov (United States)

    Xue, Ping; Xu, Fang; Xu, Lidong

    2008-12-01

    The epoxy-functionalized mesoporous cellular foams (G-MCFs) with high specific surface area (˜400 m 2/g) and large-size mesopores (˜17 nm) were obtained by condensation of 3-glycidoxypropyltriethoxysilane (GPTS) and the surface silanol groups of mesoporous cellular foams (MCFs) and used as the support for immobilization of penicillin G acylase (PGA). The structural properties of G-MCF were characterized by FT-IR, N 2 adsorption, TG-DTA and 29Si MAS NMR. The studies indicated that the glycidoxypropyl groups were chemically bonded to the silicon atoms on the surface of MCF. The epoxy-functionalized mesoporous cellular foams can provide the microenvironments suitable for the immobilization of PGA, and the enzyme molecules could be immobilized covalently onto the G-MCF under mild conditions by reaction between the amino groups of the enzyme molecules and the epoxy groups on the surface of G-MCF. The PGA immobilized on G-MCF (PGA/G-MCF) exhibited the apparent activity of 1782 IU/g and 46.6% of activity recovery for hydrolyzing penicillin G potassium to produce 6-aminopenicillanic acid at 37 °C which were higher than that of PGA on pure silica MCF (1521 IU/g and 39.8%, respectively). The kinetic study also indicated that PGA immobilized on G-MCF has a Km of 2.1 × 10 -2 mol/L lower than that of PGA immobilized on the pure silica MCF (5.0 × 10 -2 mol/L). These may be attributed to the enhanced surface affinity between G-MCF support and the substrate molecules. Due to the covalent immobilization of PGA molecules on the surface of G-MCF, the immobilized PGA with considerable operational stability was achieved. The activity of PGA/G-MCF is still about 91.4% of its initial activity at the 10th cycle reuse while that of PGA/MCF only remains 41.5% of its initial activity at the same reuse numbers. In addition, the investigation results show the thermal stability and durability on acid or basic medium of PGA immobilized on G-MCF were improved remarkably.

  13. Epoxy-functionalized mesostructured cellular foams as effective support for covalent immobilization of penicillin G acylase

    International Nuclear Information System (INIS)

    Xue Ping; Xu Fang; Xu Lidong

    2008-01-01

    The epoxy-functionalized mesoporous cellular foams (G-MCFs) with high specific surface area (∼400 m 2 /g) and large-size mesopores (∼17 nm) were obtained by condensation of 3-glycidoxypropyltriethoxysilane (GPTS) and the surface silanol groups of mesoporous cellular foams (MCFs) and used as the support for immobilization of penicillin G acylase (PGA). The structural properties of G-MCF were characterized by FT-IR, N 2 adsorption, TG-DTA and 29 Si MAS NMR. The studies indicated that the glycidoxypropyl groups were chemically bonded to the silicon atoms on the surface of MCF. The epoxy-functionalized mesoporous cellular foams can provide the microenvironments suitable for the immobilization of PGA, and the enzyme molecules could be immobilized covalently onto the G-MCF under mild conditions by reaction between the amino groups of the enzyme molecules and the epoxy groups on the surface of G-MCF. The PGA immobilized on G-MCF (PGA/G-MCF) exhibited the apparent activity of 1782 IU/g and 46.6% of activity recovery for hydrolyzing penicillin G potassium to produce 6-aminopenicillanic acid at 37 o C which were higher than that of PGA on pure silica MCF (1521 IU/g and 39.8%, respectively). The kinetic study also indicated that PGA immobilized on G-MCF has a K m of 2.1 x 10 -2 mol/L lower than that of PGA immobilized on the pure silica MCF (5.0 x 10 -2 mol/L). These may be attributed to the enhanced surface affinity between G-MCF support and the substrate molecules. Due to the covalent immobilization of PGA molecules on the surface of G-MCF, the immobilized PGA with considerable operational stability was achieved. The activity of PGA/G-MCF is still about 91.4% of its initial activity at the 10th cycle reuse while that of PGA/MCF only remains 41.5% of its initial activity at the same reuse numbers. In addition, the investigation results show the thermal stability and durability on acid or basic medium of PGA immobilized on G-MCF were improved remarkably.

  14. Epoxy-functionalized mesostructured cellular foams as effective support for covalent immobilization of penicillin G acylase

    Energy Technology Data Exchange (ETDEWEB)

    Xue Ping [Key Laboratory of Energy Resources and Chemical Engineering, Ningxia University, Yinchuan 750021 (China)], E-mail: Ping@nxu.edu.cn; Xu Fang [Department of Molecule Biology, Ningxia Medical College, Yinchuan 750021 (China); Xu Lidong [Key Laboratory of Energy Resources and Chemical Engineering, Ningxia University, Yinchuan 750021 (China)

    2008-12-30

    The epoxy-functionalized mesoporous cellular foams (G-MCFs) with high specific surface area ({approx}400 m{sup 2}/g) and large-size mesopores ({approx}17 nm) were obtained by condensation of 3-glycidoxypropyltriethoxysilane (GPTS) and the surface silanol groups of mesoporous cellular foams (MCFs) and used as the support for immobilization of penicillin G acylase (PGA). The structural properties of G-MCF were characterized by FT-IR, N{sub 2} adsorption, TG-DTA and {sup 29}Si MAS NMR. The studies indicated that the glycidoxypropyl groups were chemically bonded to the silicon atoms on the surface of MCF. The epoxy-functionalized mesoporous cellular foams can provide the microenvironments suitable for the immobilization of PGA, and the enzyme molecules could be immobilized covalently onto the G-MCF under mild conditions by reaction between the amino groups of the enzyme molecules and the epoxy groups on the surface of G-MCF. The PGA immobilized on G-MCF (PGA/G-MCF) exhibited the apparent activity of 1782 IU/g and 46.6% of activity recovery for hydrolyzing penicillin G potassium to produce 6-aminopenicillanic acid at 37 {sup o}C which were higher than that of PGA on pure silica MCF (1521 IU/g and 39.8%, respectively). The kinetic study also indicated that PGA immobilized on G-MCF has a K{sub m} of 2.1 x 10{sup -2} mol/L lower than that of PGA immobilized on the pure silica MCF (5.0 x 10{sup -2} mol/L). These may be attributed to the enhanced surface affinity between G-MCF support and the substrate molecules. Due to the covalent immobilization of PGA molecules on the surface of G-MCF, the immobilized PGA with considerable operational stability was achieved. The activity of PGA/G-MCF is still about 91.4% of its initial activity at the 10th cycle reuse while that of PGA/MCF only remains 41.5% of its initial activity at the same reuse numbers. In addition, the investigation results show the thermal stability and durability on acid or basic medium of PGA immobilized on G

  15. Microscopic alterations in silicone tubes surface after application of ophthalmological lubricants

    Directory of Open Access Journals (Sweden)

    Jacqueline Sousa

    2015-02-01

    Full Text Available Objective: To identify microscopic morphological alterations in the surface of silicone tubes used for intubation of the lachrymal system after exposure to ophthalmological lubricants. Methods: Experimental, descriptive and longitudinal study consisted of the application of ophthalmological lubricants in silicone tubes. The tubes were divided in: Group 1 (Cylocort®, 2 (Epitezan®, 3 (Labcaína®, 4 (Liposic®, 5 (Maxinom® and 6 (Vista Gel®. One tube was not exposed to any lubricant, used as control. The tubes were observed and photographed after 2 hours, 30 days, 45 days before and after cleaning the surface and lumen. The following aspects were observed: surface (regularity, transparency, quantity, size and shape of the substances and lumen (obstruction. Results: Control: irregular surface with pores after 2 hours: Group 1 – irregular surface with presence of film; Groups 2, 3 and 5 – abundant and irregular quantity of ointment at the surface; Group 4 – discrete modification at the surface; Group 6 – growth of pigmented (brownish structures with filaments in the lumen, with discrete film in the surface. 30 Days: Groups 1, 4 and 5 – increase of the irregular superficial film; Group 2 – crust with notorious horizontal lines; Group 3 – diminution of the superficial film; Group 4 – crust less evident. Group 6 – increase of the structure seen with 2 hours of exposition, arboriform aspect. Forty-five days pre cleaning: Group 4 – diminution of the surface crust; Group 6 – expansion of the arboriform structure; unaltered findings in other groups. 45 days after cleaning: Groups 1 and 5 – light diminution of the surface crust; Groups 2, 3 and 4 – kept the modifications; Group 6 – the structure inside the lumen was not identified, clear surface, without evidence of film. Conclusions: Microscopic morphological alterations in the surface and lumen of silicone tubes can occur when those remain in contact with determined

  16. Gallium sorption on montmorillonite and illite colloids: Experimental study and modelling by ionic exchange and surface complexation

    International Nuclear Information System (INIS)

    Benedicto, Ana; Degueldre, Claude; Missana, Tiziana

    2014-01-01

    Highlights: • Ga sorption onto illite and montmorillonite was studied and modelled for the first time. • The developed sorption model was able to well explain Ga sorption in both clays. • Number of free parameters was reduced applying the linear free energy relationship. • Cationic exchange dominate sorption at pH < 4.5; surface complexation at higher pH. - Abstract: The migration of metals as gallium (Ga) in the environment is highly influenced by their sorption on clay minerals, as montmorillonite and illite. Given the increased usage of gallium in the industry and the medicine, the Ga-associated waste may result in environmental problems. Ga sorption experiments were carried out on montmorillonite and illite colloids in a wide range of pH, ionic strength and Ga concentration. A Ga sorption model was developed combining ionic exchange and surface complexation on the edge sites (silanol and aluminol-like) of the clay sheets. The complexation constants were estimated as far as possible from the Ga hydrolysis constants applying the linear free energy relationship (LFER), which allowed to reduce the number of free parameters in the model. The Ga sorption behaviour was very similar on illite and montmorillonite: decreasing tendency with pH and dependency on ionic strength at very acidic conditions. The experimental data modelling suggests that the Ga sorption reactions avoid the Ga precipitation, which is predicted in absence of clay colloids between pH 3.5 and 5.5. Assuming this hypothesis, clay colloids would affect Ga aqueous speciation, preventing precipitation in favour of sorption. Ga sorption on montmorillonite and illite can be explained on the basis of three main reactions: Ga 3+ exchange at very acidic conditions (pH < ∼3.8); Ga(OH) 4 - complexation on protonated weak sites in acidic-neutral conditions (between pH ∼5.2 and pH ∼7.9); and Ga(OH) 3 complexation on strong sites at basic conditions (pH > ∼7.9)

  17. Surface characterization of nickel titanium orthodontic arch wires

    Science.gov (United States)

    Krishnan, Manu; Seema, Saraswathy; Tiwari, Brijesh; Sharma, Himanshu S.; Londhe, Sanjay; Arora, Vimal

    2015-01-01

    Background Surface roughness of nickel titanium orthodontic arch wires poses several clinical challenges. Surface modification with aesthetic/metallic/non metallic materials is therefore a recent innovation, with clinical efficacy yet to be comprehensively evaluated. Methods One conventional and five types of surface modified nickel titanium arch wires were surface characterized with scanning electron microscopy, energy dispersive analysis, Raman spectroscopy, Atomic force microscopy and 3D profilometry. Root mean square roughness values were analyzed by one way analysis of variance and post hoc Duncan's multiple range tests. Results Study groups demonstrated considerable reduction in roughness values from conventional in a material specific pattern: Group I; conventional (578.56 nm) > Group V; Teflon (365.33 nm) > Group III; nitride (301.51 nm) > Group VI (i); rhodium (290.64 nm) > Group VI (ii); silver (252.22 nm) > Group IV; titanium (229.51 nm) > Group II; resin (158.60 nm). It also showed the defects with aesthetic (resin/Teflon) and nitride surfaces and smooth topography achieved with metals; titanium/silver/rhodium. Conclusions Resin, Teflon, titanium, silver, rhodium and nitrides were effective in decreasing surface roughness of nickel titanium arch wires albeit; certain flaws. Findings have clinical implications, considering their potential in lessening biofilm adhesion, reducing friction, improving corrosion resistance and preventing nickel leach and allergic reactions. PMID:26843749

  18. Dynamic bioactive stimuli-responsive polymeric surfaces

    Science.gov (United States)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface. This was accomplished by carbodiimide coupling between --COOH

  19. Functionalized TiO2 nanoparticle containing isocyanate groups

    International Nuclear Information System (INIS)

    Ou, Baoli; Li, Duxin; Liu, Qingquan; Zhou, Zhihua; Liao, Bo

    2012-01-01

    Functionalized TiO 2 nanoparticle containing isocyanate groups can extend the TiO 2 nanoparticle chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized TiO 2 nanoparticle with highly reactive isocyanate groups on its surface, via the reaction between toluene-2, 4-diisocyanate (TDI) and hydroxyl on TiO 2 nanoparticle surface. The main effect factors on the reaction of TiO 2 with TDI were studied by determining the reaction extent of hydroxyl groups on TiO 2 surface. Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed that reactive isocyanate groups were covalently attached to the TiO 2 nanoparticle surface. The dispersion of the TDI-functionalized TiO 2 nanoparticle was studied by transmission electron microscopy (TEM). Owing to the TDI molecules covalently bonded on TiO 2 nanoparticle surface, it was established that the TiO 2 nanoparticle can be uniformly dispersed in toluene, thus indicating that this functionalization method can prevent TiO 2 nanoparticle from agglomerating. -- Highlights: ► TiO 2 nanoparticle was functionalized with toluene-2, 4-diisocyanate. ► Functionalized TiO 2 nanoparticle can be uniformly dispersed in xylene. ► Compatibility of TiO 2 nanoparticle and organic solvent is significantly improved. ► TiO 2 containing isocyanate groups can extend the TiO 2 nanoparticle chemistry.

  20. Modification of polycarbonate surface in oxidizing plasma

    Science.gov (United States)

    Ovtsyn, A. A.; Smirnov, S. A.; Shikova, T. G.; Kholodkov, I. V.

    2017-11-01

    The properties of the surface of the film polycarbonate Lexan 8010 were experimentally studied after treatment in a DC discharge plasma in oxygen and air at pressures of 50-300 Pa and a discharge current of 80 mA. The contact angles of wetting and surface energies are measured. The topography of the surface was investigated by atomic force microscopy. The chemical composition of the surface was determined from the FT-IR spectroscopy data in the variant of total internal reflection, as well as X-ray photoelectron spectroscopy. Treatment in the oxidizing plasma leads to a change in morphology (average roughness increases), an increase in the surface energy, and the concentration of oxygen-containing groups (hydroxyl groups, carbonyl groups in ketones or aldehydes and in oxyketones) on the surface of the polymer. Possible reasons for the difference in surface properties of polymer under the action of oxygen and air plasma on it are discussed.

  1. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Ha, Seung-Ryong

    2016-06-01

    Surface polishing or glazing may increase the appearance of depth of monolithic zirconia restorations. The purpose of this in vitro study was to investigate the effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. Forty-five monolithic zirconia specimens (16.3×16.4×2.0 mm) were divided into groups I to V, according to the number of colorings each received. Each group was then divided into 3 subgroups (n=3) according to the surface treatment: N=no treatment; P=polished; and G=glazed. CIElab color coordinates were obtained relative to D65 on a reflection spectrophotometer. The translucency parameter (TP) and opalescence parameter (OP) were calculated. One specimen per subgroups I and V was selected for evaluation of surface roughness (Ra) and was examined with scanning electron microscopy (SEM). Data were analyzed with 2-way ANOVA and pairwise comparisons (α=.05). Statistical powers were verified to evaluate results (α=.05). The interaction effects of surface treatments combined with the number of colorings were significant for TP, OP, and Ra (P.05), whereas glazing significantly decreased OP and Ra in most groups. SEM images demonstrated that surface treatments affected the surface texture of monolithic zirconia ceramics. Surface treatments combined with coloring strongly affect the surface texture of dental monolithic zirconia ceramics. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    International Nuclear Information System (INIS)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-01-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N 2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO x films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH 2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  3. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Science.gov (United States)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-10-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiOx films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV-vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of sbnd NH2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  4. Influence of surface roughness on the friction property of textured surface

    OpenAIRE

    Yuankai Zhou; Hua Zhu; Wenqian Zhang; Xue Zuo; Yan Li; Jianhua Yang

    2015-01-01

    In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in ...

  5. PREFACE: Nanostructured surfaces

    Science.gov (United States)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real

  6. Acidity of clay edges from ab-initio simulations

    International Nuclear Information System (INIS)

    Tazi, Sami; Salanne, Mathieu; Rotenberg, Benjamin; Turq, Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    Document available in extended abstract form only. One of the most important factor to understand and predict the sorption of cations on clay surfaces is the protonation state of the surface sites, which is difficult to determine experimentally. Indeed, titration provides a global measure only; it does not probe the status of different silanol (Si-OH) and aluminol sites (Al-OH and Al-OH 2 ) present along the edges of clay sheets in the presence of water. A novel method has been recently designed to quantify the acidity of chemical species. This method allows to estimate pKa values from First Principles Molecular Dynamics by thermodynamic integration. We have applied it to the case of pyrophyllite clay edge sites. These calculations will allow us to subsequently perform classical Molecular Dynamic simulations with realistic surface structures (protonated/deprotonated sites) for natural clays in the presence of water. After presenting the method, we show its application to the (010) edge of pyrophyllite. We find that the most acidic group is Si-OH while the least acidic one is Al-OH, which never deprotonates in water because of its high pKa value (22.1). We further provide a microscopic understanding of the solvation structure and reactivity of the edges of neutral clays. In particular we address the tendency to deprotonation of the different reactive groups on the (010) face of pyrophyllite, showing the important role of solvation and its rearrangements after deprotonation. Finally, we compare our results to the one predicted by the empiric method MUSIC and the estimate from deprotonation energies in the vacuum, confirming the important role of solvation in both the protonated and deprotonated states. (authors)

  7. In-situ Evaluation of Soil Organic Molecules: Functional Group Chemistry Aggregate Structures, Metal and Surface Complexation Using Soft X-Ray

    International Nuclear Information System (INIS)

    Myneni, Satish C.

    2008-01-01

    Organic molecules are common in all Earth surface environments, and their composition and chemistry play an important role in a variety of biogeochemical reactions, such as mineral weathering, nutrient cycling and the solubility and transport of contaminants. However, most of what we know about the chemistry of these molecules comes from spectroscopy and microscopy studies of organic molecules extracted from different natural systems using either inorganic or organic solvents. Although all these methods gave us clues about the composition of these molecules, their composition and structure change with the extraction and the type of ex-situ analysis, their true behavior is less well understood. The goal of this project is to develop synchrotron instrumentation for studying natural organics, and to apply these recently developed synchrotron X-ray spectroscopy and microscopy techniques for understanding the: (1) functional group composition of naturally occurring organic molecules; (2) macromolecular structures of organic molecules; and (3) the nature of interactions of organic molecules with mineral surfaces in different environmental conditions.

  8. Expeditionary Strike Group: Command Structure Design Support

    National Research Council Canada - National Science Library

    Hutchins, Susan G; Kemple, William G; Kleinman, David L; Hocevar, Susan P

    2005-01-01

    An Expeditionary Strike Group (ESG) is a new capability mix that combines the combat power of three surface combatants and one submarine with an Amphibious Readiness Group/ Marine Expeditionary Unit...

  9. Femtosecond laser-induced surface wettability modification of polystyrene surface

    Science.gov (United States)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  10. Design and synthesis of pH-sensitive polyamino-ester magneto-dendrimers: Surface functional groups effect on viability of human prostate carcinoma cell lines DU145.

    Science.gov (United States)

    Dayyani, Nahid; Khoee, Sepideh; Ramazani, Ali

    2015-06-15

    Novel pH-sensitive, biocompatible and biodegradable magneto-dendrimers with OH and/or NH2 functional groups based on poly amino-ester were synthesized for delivery of anti-cancer drugs. Magnetite nanoparticles (MNPs) were synthesized by the co-precipitation method and their surfaces were modified by 3-aminopropyl triethoxysilane. The first and second generations of the magneto-dendrimer with hydroxyl end groups were produced by sequential acrylation and Michael addition reactions using the required amounts of acryloyl chloride and diethanolamine, respectively. The dendrimer containing amino functional surface groups up to second generation was synthesized by the same method using the necessary amounts of acryloyl chloride and ethylenediamine. These dendrimers were fully characterized by the Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), dynamic light scattering (DLS) and zeta potential analysis, vibrating-sample magnetometer (VSM), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). In-vitro release profiles of the drug-loaded magnetic nanoparticles and their cytotoxicity assay were investigated at two pHs (7.4 and 5.8). The hydrolytic degradation behavior of magneto-dendrimers was evaluated in PBS buffer. Our research suggests that magneto-dendrimers having amine or hydroxyl functional groups could be considered as the suitable nanocarriers for therapy applications. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Interaction between the surface of the silver nanoparticles prepared by γ-irradiation and organic molecules containing thiol group

    International Nuclear Information System (INIS)

    Choi, S.-H.; Lee, S.-H.; Hwang, Y.-M.; Lee, K.-P.; Kang, H.-D.

    2003-01-01

    The colloidal silver nanoparticles were prepared by the γ-irradiation of silver nitrate (AgNO 3 ) in a mixture solution of water and 2-propanol in the presence of poly(vinylpyrrolidone) as a colloidal stabilizer. The Ag colloids obtained by γ-irradiation were characterized by use of XRD and TEM. The surface of the Ag colloids were modified by use of mercaptosuccinic acid (MSA), (D)-cysteine (Cys), and (L)-Cys, respectively. The MSA and (L)-Cys-capped Ag colloids were aggregated because of hydrogen bonding of the carboxylic acid and amino acid group, respectively. From the analysis by CD spectroscopy, it was shown that chiral-enhanced phenomena were obtained in (L)- and (D)-Cys-capped Ag colloids

  12. Light transmittance and surface roughness of a feldspathic ceramic CAD-CAM material as a function of different surface treatments.

    Science.gov (United States)

    Ural, Çağrı; Duran, İbrahim; Evmek, Betül; Kavut, İdris; Cengiz, Seda; Yuzbasioglu, Emir

    2016-07-15

    The aim of the present study was to determine the effect of different surface treatments on light transmission of aesthetic feldspathic ceramics used in CAD-CAM chairside restorations. Forty eight feldspatic ceramic test specimens were prepared from prefabricated CAD-CAM blocks by using a slow speed diamond saw. Test specimens were prepared and divided into 4 groups (n = 12). In the control group, no surface treatments were applied on the feldspathic ceramic surfaces. In the hydrofluoric acid group, the bonding surfaces of feldspathic ceramics were etched with 9.5 % hydrofluoric acid. In the sandblasting group the feldspathic ceramic surfaces were air-abraded with 30-μm alumium oxide (Al2O3) particles and Er:YAG laser was used to irradiate the ceramic surfaces. The incident light power given by the LED device and the transmitted light power through each ceramic sample was registered using a digital LED radiometer device. Each polymerization light had a light guide with 8-mm-diameter tips. Light transmission of feldspathic ceramic samples was determined by placing it on the radiometer and irradiating the specimen for 10 s at the highest setting for each light polymerization. All specimens were coated with gold using a sputter coater and examined under a field emission scanning electron microscope. Surface roughness measurement each group were evaluated with 3D optical surface and tactile profilometers. One-way ANOVA test results revealed that both surface conditioning method significantly affect the light transmittance (F:412.437; p ceramic material below the value of 400 mW/cm(2) which is critical limit for safe polymerization.

  13. Study of green quartz of hydrothermal origin treated by gamma radiation; Estudo do quartzo verde de origem hidrotermal tratado com radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Enokihara, Cyro Teiti

    2013-07-01

    A specific variety of quartz showing a green color in nature or induced artificially by radiation is quite rare. This can be explained by the fact that the mechanism of formation of this color is very different from the ones widely discussed in the literature and responsible for the formation of the fumee, citrine and amethyst types of quartz, including the prasiolite (leak green quartz) formed by heating amethyst from Montezuma, Brazil. Only two occurrences are known today, where this type of quartz can be found: Canada, at the Thunder Bay Amethyst Mine, Ontario, a small district, and Brazil, at widely scattered geode occurrences along a 600 km stretch from Quarai at Brazils southernmost tip to Uberlandia in Minas Gerais. These two occurrences have been formed by strong hydrothermal activities, at Thunder Bay due to tectonics and in Brazil by meteoric and hydrothermal waters of the Guarani aquifer. That way much quartz crystals showed a very fast growth history facilitating the formation of growth defects (twinning, small angle tilting, mosaic growth, striations) and the uptake of water in form of micro inclusions, molecular water, silanol (Si-OH) and OH. This type of quartz can be considered 'wet quartz', similar to synthetic quartz. The water content with up to 3200 ppm by weight exceeds the amount of charge balancing cations (Fe, Al, Li). There is no correlation between water content and cations as in other color varieties. Instead, silanol complexes are formed, which by radiation due to gamma rays form the color center NBOHC (non-bonding oxygen hole defect), showing absorption between 590 to 620 nm and leaving a transmission window at about 550nm, responsible for the green color. To characterize samples which will be colored green by gamma rays analyses by ICP, NAA, Electron microscopy, water loss techniques and UV-VIS and NIR-FTIR spectroscopic have been made. The spectroscopic water determination showed less water (up to 2300 ppm by weight

  14. Evaluation of the Effect of Surface Polishing, Oral Beverages and Food Colorants on Color Stability and Surface Roughness of Nanocomposite Resins.

    Science.gov (United States)

    Kumari, R Veena; Nagaraj, Hema; Siddaraju, Kishore; Poluri, Ramya Krishna

    2015-07-01

    It is beyond doubt that finishing and polishing of a composite restoration enhance its esthetics and, is also essential for the health of the periodontium. A variety of instruments are commonly used for finishing and polishing tooth-colored restorative materials Thus, it is important to understand which type of surface finishing treatments would significantly affect the staining and surface irregularities of the composite resin restoration. Still one of the properties of the composite resins that have to pass the test of time is its color stability. In modern day dentistry, a large emphasis is laid over esthetics. Hence, it is important to understand the various agents capable of adversely affecting the esthetics of a restoration due to its staining capacity. Thus, the aim of this in vitro study was to evaluate the effect of surface polishing, oral beverages and food colorants on the color stability and surface roughness of nanocomposite resins. 90 Disks of nanocomposites resin (Filtek Z350 XT) measuring 8 mm in diameter and 2 mm in thickness were fabricated using a custom made silicon mold. Pre-polishing surface roughness (Ra1) of all the 90 samples were measured using a Surface Profilometer. The nano-composite disks were then randomly divided into 3 groups with 30 samples in each group. Group I: The samples were not subjected to any polishing procedures. Group II: Sof-Lex group: Samples subjected to polishing using different grits of Sof-Lex disks. Group III: Diamond polishing paste group: Samples were subjected with a polishing paste consisting of diamond particles. Following polishing procedures, the surface roughness of all samples were measured again to obtain change in surface roughness due to polishing procedures (Ra2), pre immersion spectrophotometric value (ΔE1) was also recorded for baseline color of the samples. The samples were then divided into subgroups (A, B, C, D, E), by including every first sample in Subgroup A, second in Subgroup B, third in

  15. Surface-enhanced Raman spectrum of Gly-Gly adsorbed on the silver colloidal surface

    Science.gov (United States)

    Xiaojuan, Yuan; Huaimin, Gu; Jiwei, Wu

    2010-08-01

    Raman and SERS spectra of homodipeptide Gly-Gly and Gly were recorded and compared in this paper, and band assignment for the functional groups contained in these molecules was analyzed in detail. Time-dependent and pH-dependent SERS spectra of Gly-Gly molecule adsorbed on nano-colloidal silver surface were also studied. The time-dependent SERS spectra of Gly-Gly are characterized by the increase in intensity of bands primarily representing the vibrational signatures emanating from the amino and amide moiety of Gly-Gly molecule. It is found that the adsorption style of Gly-Gly on the silver colloid changes as time goes on; at 5 min after adding the sample to the silver colloid, Gly-Gly adsorbs on silver surface firstly through the carboxylate, amino and amide groups, and then the carboxylate group is far away from the silver surface at 10 min to 3 days. The SERS variation of Gly-Gly with the change of pH suggests that the adsorption style is pH-dependent, the different adsorption behavior of the Gly-Gly occurs on silver surface at different pH values.

  16. Teichmüller Theory of Bordered Surfaces

    Directory of Open Access Journals (Sweden)

    Leonid O. Chekhov

    2007-05-01

    Full Text Available We propose the graph description of Teichmüller theory of surfaces with marked points on boundary components (bordered surfaces. Introducing new parameters, we formulate this theory in terms of hyperbolic geometry. We can then describe both classical and quantum theories having the proper number of Thurston variables (foliation-shear coordinates, mapping-class group invariance (both classical and quantum, Poisson and quantum algebra of geodesic functions, and classical and quantum braid-group relations. These new algebras can be defined on the double of the corresponding graph related (in a novel way to a double of the Riemann surface (which is a Riemann surface with holes, not a smooth Riemann surface. We enlarge the mapping class group allowing transformations relating different Teichmüller spaces of bordered surfaces of the same genus, same number of boundary components, and same total number of marked points but with arbitrary distributions of marked points among the boundary components. We describe the classical and quantum algebras and braid group relations for particular sets of geodesic functions corresponding to $A_n$ and $D_n$ algebras and discuss briefly the relation to the Thurston theory.

  17. Evaluation of surface roughness of the bracket slot floor—a 3D perspective study

    Directory of Open Access Journals (Sweden)

    Chetankumar O. Agarwal

    2016-01-01

    Full Text Available Abstract Background An important constituent of an orthodontic appliance is orthodontic brackets. It is either the bracket or the archwire that slides through the bracket slot, during sliding mechanics. Overcoming the friction between the two surfaces demands an important consideration in an appliance design. The present study investigated the surface roughness of four different commercially available stainless steel brackets. Methods All tests were carried out to analyse quantitatively the morphological surface of the bracket slot floor with the help of scanning electron microscope (SEM machine and to qualitatively analyse the average surface roughness (Sa of the bracket slot floor with the help of a three-dimensional (3D non-contact optical surface profilometer machine. Results The SEM microphotographs were evaluated with the help of visual analogue scale, the surface roughness for group A = 0—very rough surface, group C = 1—rough surface, group B = 2—smooth surface, and group D = 3—very smooth surface. Surface roughness evaluation with the 3D non-contact optical surface profilometer machine was highest for group A, followed by group C, group B and group D. Groups B and D provided smooth surface roughness; however, group D had the very smooth surface with values 0.74 and 0.75 for mesial and distal slots, respectively. Conclusions Evaluation of surface roughness of the bracket slot floor with both SEM and profilometer machine led to the conclusion that the average surface roughness was highest for group A, followed by group C, group B and group D.

  18. [Blood groups - minuses and pluses. Do the blood group antigens protect us from infectious diseases?].

    Science.gov (United States)

    Czerwiński, Marcin

    2015-06-25

    Human blood can be divided into groups, which is a method of blood classification based on the presence or absence of inherited erythrocyte surface antigens that can elicit immune response. According to the International Society of Blood Transfusion, there are 341 blood group antigens collected in 35 blood group systems. These antigens can be proteins, glycoproteins or glycosphingolipids, and function as transmembrane transporters, ion channels, adhesion molecules or receptors for other proteins. The majority of blood group antigens is present also on another types of cells. Due to their localization on the surface of cells, blood group antigens can act as receptors for various pathogens or their toxins, such as protozoa (malaria parasites), bacteria (Helicobacter pylori, Vibrio cholerae and Shigella dysenteriae) and viruses (Noroviruses, Parvoviruses, HIV). If the presence of group antigen (or its variant which arised due to mutation) is beneficial for the host (e.g. because pathogens are not able to bind to the cells), the blood group may become a selection trait, leading to its dissemination in the population exposed to that pathogen. There are thirteen blood group systems that can be related to pathogen resistance, and it seems that the particular influence was elicit by malaria parasites. It is generally thought that the high incidence of blood groups such as O in the Amazon region, Fy(a-b-) in Africa and Ge(-) in Papua-New Guinea is the result of selective pressure from malaria parasite. This review summarizes the data about relationship between blood groups and resistance to pathogens.

  19. Blood compatibility of gas plasma-treated diamond-like carbon surface-Effect of physicochemical properties of DLC surface on blood compatibility

    International Nuclear Information System (INIS)

    Mochizuki, Akira; Ogawa, Tatsuhisa; Okamoto, Keishi; Nakatani, Tatsuyuki; Nitta, Yuki

    2011-01-01

    From the knowledge that zwitterion-type polymers show good blood compatibility, the introduction of both cationic and anionic functional groups onto diamond-like carbon (DLC) surface is expected to improve blood compatibility. Thus, DLC films were treated with oxygen and ammonia gas plasmas. The surfaces were characterized in terms of chemical composition by XPS, contact angle, and zeta potential. XPS analysis showed the introductions of a carboxyl group by oxygen plasma treatment and nitrogen atoms by ammonia plasma treatment. The evaluation of blood compatibility for the DLC surfaces was carried out in terms of platelets and the coagulation system. Excellent improvement of platelet compatibility was observed by the treatment with the gas plasmas, regardless of the plasma species. As for the compatibility with the coagulation system, DLC surfaces with a high concentration of carboxyl groups (COOH) markedly activated the system via the intrinsic pathway. However, the surfaces treated with ammonia plasma did not activate the system even though they had high COOH concentration. Measurement of the zeta potential revealed that the ammonia plasma treatment raised the potential from a negative value to a positive one. Though the introduction of amino groups to the surface was not detected directly, the treatment of ammonia plasma changed the electrical state of the DLC surface having COOH group, causing a difference in blood compatibility among the DLCs obtained by various plasma conditions.

  20. Photo-induced surface functionalization of carbon surfaces: The role of photoelectron ejection

    International Nuclear Information System (INIS)

    Colavita, Paula E.; Sun Bin; Tse, K.-Y.; Hamers, Robert J.

    2008-01-01

    Carbon-based materials are attractive for a wide range of applications, from biomaterials to fuel cells; however, their effective use often requires controlling the surface chemistry to incorporate recognition moieties or reactive centers. The high stability of carbon also makes it a challenging material to functionalize; recently, the use of ultraviolet light (254 nm) to initiate functionalization of carbon surfaces has emerged as a way to obtain carbon/organic interfaces with tailored properties. The authors have investigated the mechanism of covalent grafting of amorphous carbon surfaces with functional organic molecules using the photochemical reaction of terminal alkenes. Measurements comparing the reactivity of different n-alkenes bearing different terminal groups at the terminus opposite the olefin showed pronounced differences in reactivity. They characterized the rate and final coverage of the resulting organic layers using x-ray photoelectron spectroscopy and infrared reflection-absorption spectroscopy. Ultraviolet photoelectron spectroscopy and photocurrent measurements suggested that the reaction involves photoelectron emission from the carbon surface into the liquid phase. Density functional calculations show a strong correlation between the electron affinity of the alkenes and the observed reactivity. The specific terminal group opposite to the olefin was found to play an important role in the stabilization of excess negative charges on the molecule, thus explaining the strong dependence of reactivity on the particular terminal group. These findings suggest that the reaction involves injection of photoelectrons into the alkene acceptor levels, leading to the formation of radical anions in the liquid phase. Finally, the authors demonstrate that the grafting of marginally reactive alkenes can be enhanced by seeding the surface with a small amount of good electron accepting groups. These results provide fundamental new insights into the role of

  1. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups

    Science.gov (United States)

    Ekkapongpisit, Maneerat; Giovia, Antonino; Follo, Carlo; Caputo, Giuseppe; Isidoro, Ciro

    2012-01-01

    Background and methods Nanoparticles engineered to carry both a chemotherapeutic drug and a sensitive imaging probe are valid tools for early detection of cancer cells and to monitor the cytotoxic effects of anticancer treatment simultaneously. Here we report on the effect of size (10–30 nm versus 50 nm), type of material (mesoporous silica versus polystyrene), and surface charge functionalization (none, amine groups, or carboxyl groups) on biocompatibility, uptake, compartmentalization, and intracellular retention of fluorescently labeled nanoparticles in cultured human ovarian cancer cells. We also investigated the involvement of caveolae in the mechanism of uptake of nanoparticles. Results We found that mesoporous silica nanoparticles entered via caveolae-mediated endocytosis and reached the lysosomes; however, while the 50 nm nanoparticles permanently resided within these organelles, the 10 nm nanoparticles soon relocated in the cytoplasm. Naked 10 nm mesoporous silica nanoparticles showed the highest and 50 nm carboxyl-modified mesoporous silica nanoparticles the lowest uptake rates, respectively. Polystyrene nanoparticle uptake also occurred via a caveolae-independent pathway, and was negatively affected by serum. The 30 nm carboxyl-modified polystyrene nanoparticles did not localize in lysosomes and were not toxic, while the 50 nm amine-modified polystyrene nanoparticles accumulated within lysosomes and eventually caused cell death. Ovarian cancer cells expressing caveolin-1 were more likely to endocytose these nanoparticles. Conclusion These data highlight the importance of considering both the physicochemical characteristics (ie, material, size and surface charge on chemical groups) of nanoparticles and the biochemical composition of the cell membrane when choosing the most suitable nanotheranostics for targeting cancer cells. PMID:22904626

  2. Surface properties of functional polymer systems

    Science.gov (United States)

    Wong, Derek

    Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was

  3. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    Science.gov (United States)

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  4. EFFECT OF SURFACE CONDTIONINGON BOND STRENGTH TO ENAMEL AND DENTIN

    Directory of Open Access Journals (Sweden)

    M MOUSAVINASAB

    2002-09-01

    Full Text Available Introduction. Compoglass is a trade mark of dental compomers and because of its partially resinus structure, surface conditioning of dental surfaces is needed for a better bonding process. In this study, the effect of enamel and dentin conditioning procedure on shear bond strength (SBS of compoglass to tooth surfaces was studied. Methods. four groups each one including 11 sound premolars were chosen and their surfaces were prepared as following groups: group1, unconitioned dentin; group 2, dentin conditioning with phosphoric acid 35%; group 3, dentin conditioning with polyacrylic acid 20% group 4, unconditioning enamel; group 5, enamel conditioning with phosphoric acid 35%; and group 6, enamel conditioning with polyacrylic acid 20%. Compoglass was bonded to prepared surfaces and after fixation of the samples in acrylic molds, all samples were tested under shear force of instron testing machine at a rate of 1 mm/min speed. Results. The mean SBS obtained in these 6 groups were 6.207, 8.057, 10.146, 25.939 and 11.827 mpa. the mode of fracture also studied using a streomicroscope. Statistical analysis of the results showed that the maximum SBS obtained in group 5 and the lowest SBS about 6.207 mpa obtained in group 1. Despite increase in SBS group 2 and 3, there was no statistical differncies between group 1, 2 and 3. Discussion. Based on results of this study, conditioning of enamel and dentin surface due to improve SBS is recommeneded.

  5. Truck shovel users group

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J. [Surface Mining Association for Research and Technology, AB (Canada)

    2008-07-01

    The Truck Shovel Users Group (TSUG) was developed as part of the Surface Mining Association for Research and Technology (SMART), an association of companies that meet to coordinate technology developments for the mining industry. The TSUG meet regularly to discuss equipment upgrades, maintenance planning systems, and repair techniques. The group strives to maximize the value of its assets through increased safety, equipment performance and productivity. This presentation provided administrative details about the TSUG including contact details and admission costs. It was concluded that members of the group must be employed by companies that use heavy mining equipment, and must also be willing to host meetings, make presentations, and support the common goals of the group. tabs., figs.

  6. Reconstruction of Kinematic Surfaces from Scattered Data

    DEFF Research Database (Denmark)

    Randrup, Thomas; Pottmann, Helmut; Lee, I.-K.

    1998-01-01

    Given a surface in 3-space or scattered points from a surface, we present algorithms for fitting the data by a surface which can be generated by a one--parameter subgroup of the group of similarities. These surfaces are general cones and cylinders, surfaces of revolution, helical surfaces and spi...

  7. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    Science.gov (United States)

    Kimura, Yusuke

    2018-03-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface into a pair of isomorphic rational elliptic surfaces. When two rational elliptic surfaces have different complex structures, whether their sum glued along a smooth fiber admits deformation to a K3 surface can be determined by studying the structure of the K3 lattice. We investigate the lattice theoretic condition to determine whether a deformation to a K3 surface exists for pairs of extremal rational elliptic surfaces. In addition, we discuss the configurations of singular fibers under stable degeneration. The sum of two isomorphic rational elliptic surfaces glued together admits a deformation to a K3 surface, the singular fibers of which are twice that of the rational elliptic surface. For special situations, singular fibers of the resulting K3 surface collide and they are enhanced to a fiber of another type. Some K3 surfaces become attractive in these situations. We determine the complex structures and the Weierstrass forms of these attractive K3 surfaces. We also deduce the gauge groups in F-theory compactifications on these attractive K3 surfaces times a K3. E 6, E 7, E 8, SU(5), and SO(10) gauge groups arise in these compactifications.

  8. Comparison of limb kinematics between collected and lengthened (medium/extended) trot in two groups of dressage horses on two different surfaces.

    Science.gov (United States)

    Walker, V A; Tranquille, C A; Newton, J R; Dyson, S J; Brandham, J; Northrop, A J; Murray, R C

    2017-09-01

    Dressage horses are often asked to work in lengthened paces during training and competition, but to date there is limited information about the biomechanics of dressage-specific paces. Preliminary work has shown increased fetlock extension in extended compared with collected paces, but further investigation of the kinematic differences between collected, medium and extended trot in dressage horses is warranted. Investigation of the effect of collected vs. medium/extended trot on limb kinematics of dressage horses. Prospective kinematic evaluation. Twenty clinically sound horses in active dressage training were used. Group 1: Ten young horses (≤6 years) were assessed at collected and medium trot and Group 2: Ten mature horses (≥9 years) were assessed at collected and extended trot. All horses were evaluated on two different surfaces. High speed motion capture (240 Hz) was used to determine kinematic variables. Fore- and hindlimb angles were measured at mid-stance. Descriptive statistics and mixed effect multilevel regression analyses were performed. Speed and stride length were reduced and stride duration increased at collected compared with medium/extended trot. Lengthened trot (medium/extended trot) was associated with increased fetlock extension in both the fore- and hindlimbs in both groups of horses. Changes were greater in mature horses compared with young horses. Shoulder and carpus angles were associated with forelimb fetlock angle. Hock angle was not significantly influenced by pace. Surface had no effect on fetlock or hock angles. Only 2D motion analysis was carried out. Results may have differed in horses with more extreme gait characteristics. Medium/extended trot increases extension of the fore- and hindlimb fetlock joints compared with collected trot in both young and mature dressage horses, respectively. © 2017 EVJ Ltd.

  9. Functional Group Imaging by Adhesion AFM

    NARCIS (Netherlands)

    Berger, C.E.H.; Berger, C.E.H.; van der Werf, Kees; Kooyman, R.P.H.; de Grooth, B.G.; Greve, Jan

    1995-01-01

    Recently developed adhesion atomic force microscopy was used as a technique to map the spatial arrangement of chemical functional groups at a surface with a lateral resolution of 20 nm. The ratio of the adhesion forces for different functional groups can be compared with values determined from the

  10. Surface characteristics of PLA and PLGA films

    Energy Technology Data Exchange (ETDEWEB)

    Paragkumar N, Thanki [Laboratoire de Chimie-Physique Macromoleculaire (LCPM), UMR CNRS-INPL 7568, Groupe ENSIC, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex (France); Edith, Dellacherie [Laboratoire de Chimie-Physique Macromoleculaire (LCPM), UMR CNRS-INPL 7568, Groupe ENSIC, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex (France); Six, Jean-Luc [Laboratoire de Chimie-Physique Macromoleculaire (LCPM), UMR CNRS-INPL 7568, Groupe ENSIC, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex (France)]. E-mail: Jean-Luc.Six@ensic.inpl-nancy.fr

    2006-12-30

    Surface segregation and restructuring in polylactides (poly(D,L-lactide) and poly(L-lactide)) and poly(D,L-lactide-co-glycolide) (PLGA) films of various thicknesses were investigated using both attenuated total reflection FTIR (ATR-FTIR) and contact angle relaxation measurements. In case of poly(D,L-lactide) (DLPLA), it was observed that the surface segregation and the surface restructuring of methyl side groups are influenced by the polymer film thickness. This result has been confirmed by X-ray photoelectron spectroscopy (XPS). In the same way, PLGA thick films were also characterized by an extensive surface segregation of methyl side groups. Finally, surface restructuring was investigated by dynamic contact angle measurements and it was observed when film surface comes into contact with water. In parallel, we also found that poly(L-lactide) (PLLA) thin and clear films with thickness {approx}15 {mu}m undergo conformational changes on the surface upon solvent treatment with certain solvents. The solvent treated surface of PLLA becomes hazy and milky white and its hydrophobicity increases compared to untreated surface. FTIR spectroscopic analysis indicated that polymer chains at the surface undergo certain conformational changes upon solvent treatment. These changes are identified as the restricted motions of C-O-C segments and more intense and specific vibrations of methyl side groups. During solvent treatment, the change in water contact angle and FTIR spectrum of PLLA is well correlated.

  11. Clinical Aspects of Combination of Ceramic and Acrylic Occlusal Surfaces

    Directory of Open Access Journals (Sweden)

    Z. Ozhohan

    2017-03-01

    Full Text Available The objective of the research was to develop and substantiate the methods of constructing the occlusal surfaces when manufacturing aesthetic fixed restorations through the combination of different materials. Materials and methods. The study included 65 patients with ceramic and acrylic occlusal surfaces of aesthetic fixed dental prostheses. Group I included 21 patients with a combination of ceramic and acrylic occlusal surfaces. Group II included 22 patients with a combination of ceramic occlusal surfaces. Group III included 22 patients with a combination of acrylic occlusal surfaces. The patients were observed 3, 6 and 12 months after prosthetic repair. Results. The greatest increase in the occlusal contact surface area of fixed restorations was observed in Group I, that is, when combining dental prostheses with ceramic and acrylic occlusal surfaces. Considering uneven abrasion of the occlusal surfaces, we do not recommend to combine different materials when veneering the occlusal surface of the antagonistic teeth. Conclusions. This study demonstrated the important role of the correct combination of materials when veneering the occlusal surfaces. Physical and chemical properties of materials, namely the abrasion resistance play a significant role in the long-term denture functioning. The smallest increase in the occlusal contact surface area was observed in Group II when combining ceramic occlusal surfaces. It was due to a good abrasion resistance of ceramics as compared to acrylic resin as well as the presence of the glazed layer which prevents the premature abrasion of the occlusal surfaces of the antagonistic teeth due to lower surface roughness. The combination of acrylic resin and ceramics when constructing the occlusal surfaces of fixed restorations in Group I demonstrated the highest rate of the increase in the occlusal contact surface area – 9.93%. It was due to a low hardness of acrylic resin and its high surface roughness. In

  12. Three Levels of Diversity: An Examination of the Complex Relationship Between Diversity, Group Cohesiveness, Sexual Harassment, Group Performance, and Time

    National Research Council Canada - National Science Library

    Whaley, Gary

    1998-01-01

    ...: surface, working, and deep level diversity. The author explains the nature of the relationship between the three levels of diversity and posits a general model of organizational behavior including diversity, group cohesiveness, group...

  13. Mostly surfaces

    CERN Document Server

    Schwartz, Richard Evan

    2011-01-01

    This book presents a number of topics related to surfaces, such as Euclidean, spherical and hyperbolic geometry, the fundamental group, universal covering surfaces, Riemannian manifolds, the Gauss-Bonnet Theorem, and the Riemann mapping theorem. The main idea is to get to some interesting mathematics without too much formality. The book also includes some material only tangentially related to surfaces, such as the Cauchy Rigidity Theorem, the Dehn Dissection Theorem, and the Banach-Tarski Theorem. The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigorous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis.

  14. Fowler's approximation for the surface tension and surface energy of Lennard-Jones fluids revisited

    International Nuclear Information System (INIS)

    Mulero, A; Galan, C; Cuadros, F

    2003-01-01

    We present a detailed study of the validity of Fowler's approximation for calculating the surface tension and the surface energy of Lennard-Jones fluids. To do so, we consider three different explicit analytical expressions for the radial distribution function (RDF), including one proposed by our research group, together with very accurate expressions for the liquid and vapour densities, also proposed by our group. The calculation of the surface tension from the direct correlation function using both the Percus-Yevick and the hypernetted-chain approximations is also considered. Finally, our results are compared with those obtained by other authors by computer simulations or through relevant theoretical approximations. In particular, we consider the analytical expression proposed by Kalikmanov and Hofmans (1994 J. Phys.: Condens. Matter 6 2207-14) for the surface tension. Our results indicate that the values for the surface energy in Fowler's approximation obtained by other authors are adequate, and can be calculated from the RDF models. For the surface tension, however, the values considered as valid in previous works seem to be incorrect. The correct values can be obtained from our model for the RDF or from the Kalikmanov and Hofmans expression with suitable inputs

  15. Classical strings and minimal surfaces

    International Nuclear Information System (INIS)

    Urbantke, H.

    1986-01-01

    Real Lorentzian forms of some complex or complexified Euclidean minimal surfaces are obtained as an application of H.A. Schwarz' solution to the initial value problem or a search for surfaces admitting a group of Poincare transformations. (Author)

  16. An Improved MUSIC Model for Gibbsite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.; Rosso, Kevin M.

    2004-06-01

    Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area was available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.

  17. Adhesive bonding of resin composite to various titanium surfaces using different metal conditioners and a surface modification system

    Directory of Open Access Journals (Sweden)

    Hercules Jorge ALMILHATTI

    2013-12-01

    Full Text Available Objective: This study evaluated the effect of three metal conditioners on the shear bond strength (SBS of a prosthetic composite material to cpTi grade I having three surface treatments. Material and Methods: One hundred sixty eight rivet-shaped specimens (8.0x2.0 mm were cast and subjected to polishing (P or sandblasting with either 50 mm (50SB or 250 mm (250SB Al2O3. The metal conditioners Metal Photo Primer (MPP, Cesead II Opaque Primer (OP, Targis Link (TL, and one surface modification system Siloc (S, were applied to the specimen surfaces, which were covered with four 1-mm thick layers of resin composite. The resin layers were exposed to curing light for 90 s separately. Seven specimens from each experimental group were stored in water at 37ºC for 24 h while the other 7 specimens were subjected to 5,000 thermal cycles consisting of water baths at 4ºC and 60ºC (n=7. All specimens were subjected to SBS test (0.5 mm/min until failure occurred, and further 28 specimens were analyzed using scanning electron microscope (SEM and X-ray energy-dispersive spectroscopy (EDS. Data were analyzed by 3-way ANOVA followed by post-hoc Tukey's test (α=0.05. Results: On 50SB surfaces, OP groups showed higher SBS means than MPP (P<0.05, while no significant difference was found among OP, S, and TL groups. On 250SB surfaces, OP and TL groups exhibited higher SBS than MPP and S (P<0.05. No significant difference in SBS was found between OP and TL groups nor between MPP and S groups. The use of conditioners on 250SB surfaces resulted in higher SBS means than the use of the same products on 50SB surfaces (P<0.05. Conclusion: Sandblasting associated with the use of metal conditioners improves SBS of resin composites to cpTi.

  18. Theoretical study of γ-hexachlorocyclohexane and β-hexachlorocyclohexane isomers interaction with surface groups of activated carbon model.

    Science.gov (United States)

    Enriquez-Victorero, Carlos; Hernández-Valdés, Daniel; Montero-Alejo, Ana Lilian; Durimel, Axelle; Gaspard, Sarra; Jáuregui-Haza, Ulises

    2014-06-01

    Activated carbon (AC) is employed in drinking water purification without almost any knowledge about the adsorption mechanism of persistent organic pollutants (POPs) onto it. Hexachlorocyclohexane (HCH) is an organochlorinated contaminant present in water and soils of banana crops production zones of the Caribbean. The most relevant isomers of HCH are γ-HCH and β-HCH, both with great environmental persistence. A theoretical study of the influence of AC surface groups (SGs) on HCH adsorption is done in order to help to understand the process and may lead to improve the AC selection process. A simplified AC model consisting of naphthalene with a functional group was used to assess the influence of SGs over the adsorption process. The Multiple Minima Hypersurface (MMH) methodology was employed to study γ-HCH and β-HCH interactions with different AC SGs (hydroxyl and carboxyl) under different hydration and pH conditions. The results obtained showed that association of HCH with SGs preferentially occurs between the axial protons of HCH and SG's oxygen atom, and the most favorable interactions occurring with charged SGs. An increase in carboxylic SGs content is proposed to enhance HCH adsorption onto AC under neutral pH conditions. Finally, this work presents an inexpensive computer aided methodology for preselecting activated carbon SGs content for the removal of a given compound. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Quantum-chemical study of the geometric and electronic structure of the chromate anion CrO42- and a chromate group on the surface of finely divided silica by the CNDO/2 method

    International Nuclear Information System (INIS)

    Plyuto, I.V.; Shpak, A.P.; Plyuto, Yu.V.; Chuiko, A.A.

    1989-01-01

    A comparative study of the geometric and electronic structure of the chromate anion CrO 4 2- and a chromate group on the surface of finely divided silica (≡Si-O) 2 - CrO 2 , which was simulated by a CrO 9 Si 6 H 12 cluster, has been carried out by the SCF-MO-LCAO method in the all-valence-electron CNDO/2 approximation. The data obtained on the equilibrium geometry of the chromate group attest to the formation of a double bond between the Cr atom and each O atom (which is not bonded to Si). It has been shown that the support has a significant stabilizing in fluence on the energy of the MO's of the chromate group. The chromate group on an SiO 2 surface is characterized by partial delocalization of the frontier MO's among the skeletal bonds; however, the dominant contribution to the HOMO is made by the 2p AO of the oxygen atoms in the coordination shell of the Cr atom (∼70%), and the dominant contribution to the LUMO is made by the 3d AO of the chromium atom (∼50%). The positions and composition of the lowest unoccupied molecular orbitals point out the possibility of the display of electron-acceptor properties by a chromate group of an SiO 2 surface

  20. PREFACE: Atom-surface scattering Atom-surface scattering

    Science.gov (United States)

    Miret-Artés, Salvador

    2010-08-01

    It has been a privilege and a real pleasure to organize this special issue or festschrift in the general field of atom-surface scattering (and its interaction) in honor of J R Manson. This is a good opportunity and an ideal place to express our deep gratitude to one of the leaders in this field for his fundamental and outstanding scientific contributions. J R Manson, or Dick to his friends and colleagues, is one of the founding fathers, together with N Cabrera and V Celli, of the 'Theory of surface scattering and detection of surface phonons'. This is the title of the very well-known first theoretical paper by Dick published in Physical Review Letters in 1969. My first meeting with Dick was around twenty years ago in Saclay. J Lapujoulade organized a small group seminar about selective adsorption resonances in metal vicinal surfaces. We discussed this important issue in surface physics and many other things as if we had always known each other. This familiarity and warm welcome struck me from the very beginning. During the coming years, I found this to be a very attractive aspect of his personality. During my stays in Göttingen, we had the opportunity to talk widely about science and life at lunch or dinner time, walking or cycling. During these nice meetings, he showed, with humility, an impressive cultural background. It is quite clear that his personal opinions about history, religion, politics, music, etc, come from considering and analyzing them as 'open dynamical systems'. In particular, with good food and better wine in a restaurant or at home, a happy cheerful soirée is guaranteed with him, or even with only a good beer or espresso, and an interesting conversation arises naturally. He likes to listen before speaking. Probably not many people know his interest in tractors. He has an incredible collection of very old tractors at home. In one of my visits to Clemson, he showed me the collection, explaining to me in great detail, their technical properties

  1. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    Science.gov (United States)

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pK a values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pK a values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  2. Effects of polishing on surface roughness, gloss and color of surface reaction type pre-reacted glass-ionomer filled resin composite.

    Science.gov (United States)

    Hosoya, Yumiko; Shiraishi, Takanobu; Odatsu, Tetsuro; Miyazaki, Masashi; García-Godoy, Franklin

    2011-06-01

    To evaluate the effects of polishing on surface roughness, gloss and color of different shades of surface reaction type pre-reacted glass-ionomer (S-PRG) filled nano-hybrid resin composite. Resin disks of 15 mm diameter and 2 mm thickness and final polish with 1000-grit SiC paper, super fine cut diamond (FG) point, silicon (MFR) point and Super-Snap mini-disk red (SNAP) were made with Beautifil II shades: A2, A20, Inc). One week after curing, the surface roughness, gloss and color were measured. Data was analyzed with ANOVA and Fisher's PLSD with alpha= 0.05 For all shades, the order of roughness (Ra) ranked according to groups of 1000-grit SiC > FG > MFR > SNAP with significant differences among all groups. For all shades, the order of gloss ranked according to groups of SNAP > MFR > FG > 1000-grit SiC with significant differences among the groups except for between MFR and FG without significant difference. The influence of the surface roughness on color differed among the polishing groups and shades. However, the values of the color differences (deltaE*ab) between the polishing groups of all shades were imperceptible to the naked eye.

  3. Interfacial and Surface Science | Materials Science | NREL

    Science.gov (United States)

    Science group within the Material Science Center. He oversees research studies of surfaces and interfaces Interfacial and Surface Science Interfacial and Surface Science Image of irregular-outlined, light address a broad range of fundamental and applied issues in surface and interfacial science that are

  4. Subsurface dimerization in III-V semiconductor (001) surfaces

    DEFF Research Database (Denmark)

    Kumpf, C.; Marks, L.D.; Ellis, D.

    2001-01-01

    We present the atomic structure of the c(8 X 2) reconstructions of InSb-, InAs-, and GaAs-(001) surfaces as determined by surface x-ray diffraction using direct methods. Contrary to common belief, group III dimers are not prominent on the surface, instead subsurface dimerization of group m atoms ...... takes place in the second bilayer, accompanied by a major rearrangement of the surface atoms above the dimers to form linear arrays. By varying the occupancies of four surface sites the (001)-c(8 X 2) reconstructions of III-V semiconductors can be described in a unified model....

  5. Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.

    Science.gov (United States)

    Kapusuz, Derya; Durucan, Caner

    2017-07-01

    The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29 Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.

  6. Effect of the application of surface treatments before and after sintering on the flexural strength, phase transformation and surface topography of zirconia.

    Science.gov (United States)

    Kurtulmus-Yilmaz, Sevcan; Aktore, Huseyin

    2018-05-01

    To evaluate the effects of airborne-particle abrasion (APA) and Er,Cr:YSGG laser irradiation on 4-point-flexural strength, phase transformation and morphologic changes of zirconia ceramics treated at pre-sintered or post-sintered stage. Three hundred and forty-two bar shaped zirconia specimens were milled with different sizes according to the flexural strength test (n = 10), X-ray diffraction (XRD) (n = 4) and field emission scanning electron microscope (FE-SEM) (n = 4) analyses. For each test protocol, specimens were divided into 4 main groups whether the surface treatments applied before or after sintering and whether the specimens received heat treatment or not as pre-sintered, post-sintered no-heat and post-sintered heat-treated groups, and a group was served as control. Main groups were further divided into 6 equal subgroups according to surface treatment method applied (2 W-, 3 W-, 4 W-, 5 W-, 6 W-laser irradiations and APA). Surface treatments were applied to pre-sintered groups before sintering and to post-sintered groups after sintering. Post-sintered heat-treated groups were subjected to veneer ceramic firing simulation after surface treatments. Flexural strength and flexural modulus values were statistically analysed and monoclinic phase content was calculated. Weibull analysis was used to evaluate strength reliability and fractographic analysis was conducted. Highest flexural strength values were detected at post-sintered no-heat APA and 4W-laser groups (P SEM images pre-sintered groups. Application of surface treatments at pre-sintered stage may be detrimental for zirconia ceramics in terms of flexural strength. Treating the surface of zirconia ceramic before sintering process is not recommended due to significant decrease in flexural strength values. 2 W-4 W Er,Cr:YSGG laser irradiations can be regarded as alternative surface treatment methods when zirconia restoration would be subjected to veneer ceramic firing procedures

  7. Readiness Review Plan for the Interim Remedial Action on Surface Debris in Waste Area Grouping 11 at Oak Ridge National Laboratory, Oak Ridge, TN

    International Nuclear Information System (INIS)

    1993-10-01

    This Readiness Review Plan was prepared by the Waste Area Grouping (WAG) 11 Site Project Readiness Review Team as an overview of the Interim Remedial Action on Surface Debris in WAG 11 project at Oak Ridge National Laboratory, including major readiness milestones, criteria development methodology, and a list of events to occur as part of the review process for determining readiness for each project phase

  8. Surface Modification for Microreactor Fabrication

    Directory of Open Access Journals (Sweden)

    Wladyslaw Torbicz

    2006-04-01

    Full Text Available In this paper, methods of surface modification of different supports, i.e. glass andpolymeric beads for enzyme immobilisation are described. The developed method ofenzyme immobilisation is based on Schiff’s base formation between the amino groups onthe enzyme surface and the aldehyde groups on the chemically modified surface of thesupports. The surface of silicon modified by APTS and GOPS with immobilised enzymewas characterised by atomic force microscopy (AFM, time-of-flight secondary ion massspectroscopy (ToF-SIMS and infrared spectroscopy (FTIR. The supports withimmobilised enzyme (urease were also tested in combination with microreactors fabricatedin silicon and Perspex, operating in a flow-through system. For microreactors filled withurease immobilised on glass beads (Sigma and on polymeric beads (PAN, a very high andstable signal (pH change was obtained. The developed method of urease immobilisationcan be stated to be very effective.

  9. Water Adsorption on Clean and Defective Anatase TiO2 (001) Nanotube Surfaces: A Surface Science Approach.

    Science.gov (United States)

    Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard

    2018-04-11

    We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.

  10. Functionalized carbon nanotubes containing isocyanate groups

    International Nuclear Information System (INIS)

    Zhao Chungui; Ji Lijun; Liu Huiju; Hu Guangjun; Zhang Shimin; Yang Mingshu; Yang Zhenzhong

    2004-01-01

    Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA)

  11. Surface nucleation and independent growth of Ce(OH)4 within confinement space on modified carbon black surface to prepare nano-CeO2 without agglomeration

    Science.gov (United States)

    Zhang, Xinyue; Xia, Chunhui; Li, Kaitao; Lin, Yanjun

    2018-04-01

    Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce3+ can react with OH- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.

  12. Structure and dynamics at the liquid surface of benzyl alcohol

    International Nuclear Information System (INIS)

    Dietter, J.; Morgner, H.

    1999-01-01

    A molecular dynamics simulation of a liquid layer of benzyl alcohol has been performed in order to compare the results with those obtained in experimental studies of our group. The main result of the experimental work was a strong orientational ordering of the benzyl alcohol molecules in the surface as well as an exceptionally large surface potential of ca. 0.6 V. According to the experiments the surface molecules orientate in such a way that the benzene ring points toward the vapor phase while the CH 2 group and the OH group are directed towards the bulk of the liquid. The simulation confirms this orientation of the surface molecules. The surface potential resulting from the simulation is 350 mV. The simulation reveals that the rather large surface potential can be understood as a consequence of the mean orientation of the molecular dipole moment in the surface region. The mean orientation of the molecules themselves in the surface is due to the tendency of the system to maintain the hydrogen bonding structure of the bulk in the surface region as well. The preferential orientation of the surface molecules causes a change of the dynamics of the individual components of the molecules when switching from bulk to surface which depends on the separation of these components from the polar group. This becomes most obvious in case of the reorientation dynamics of the molecular axes, e.g. the reorientation of the benzene ring is faster than the reorientation of the OH group. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  14. Tensile bond strength of metal bracket bonding to glazed ceramic surfaces with different surface conditionings.

    Science.gov (United States)

    Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M

    2011-01-01

    The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (Ptensile bond strength.

  15. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  16. Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities

    KAUST Repository

    Orozco, Carlos A.

    2017-03-24

    Major developments in concrete technology have been achieved with the use of polycarboxylate-based superplasticizers (PCEs) to improve the concrete rheology without increasing the mix water content. Currently, it is possible to control the fluidity of the fresh concrete and obtain stronger and more durable structures. Therefore, there is a strong incentive to understand the interactions between PCEs and cement hydrates at the atomic scale to design new customized functional PCEs according to the ever-increasing requirements of the concrete industry. Here, the bonding types generated between a PCE with silyl functionalities (PCE-Sil) and a synthetic calcium silicate hydrate (C-S-H) are analyzed using XRD, 29Si NMR spectroscopy, and synchrotron-based techniques, such as NEXAFS and EXAFS. The results indicated that the carboxylic groups present in PCE-Sil interact by a ligand-type bond with calcium, which modified not only the symmetry and coordination number of the calcium located at the surface of C-S-H but also the neighboring silicon atoms of the C-S-H. In addition, the silyl functionalities of the PCE-Sil generated covalent bonds through siloxane bridges between the silanol groups of PCE-Sil and the nonbonding oxygen located at the dimeric sites in C-S-H, forming new bridging silicon sites and subsequently increasing the silicate polymerization.

  17. Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities.

    Science.gov (United States)

    Orozco, Carlos A; Chun, Byong W; Geng, Guoqing; Emwas, Abdul H; Monteiro, Paulo J M

    2017-04-11

    Major developments in concrete technology have been achieved with the use of polycarboxylate-based superplasticizers (PCEs) to improve the concrete rheology without increasing the mix water content. Currently, it is possible to control the fluidity of the fresh concrete and obtain stronger and more durable structures. Therefore, there is a strong incentive to understand the interactions between PCEs and cement hydrates at the atomic scale to design new customized functional PCEs according to the ever-increasing requirements of the concrete industry. Here, the bonding types generated between a PCE with silyl functionalities (PCE-Sil) and a synthetic calcium silicate hydrate (C-S-H) are analyzed using XRD, 29 Si NMR spectroscopy, and synchrotron-based techniques, such as NEXAFS and EXAFS. The results indicated that the carboxylic groups present in PCE-Sil interact by a ligand-type bond with calcium, which modified not only the symmetry and coordination number of the calcium located at the surface of C-S-H but also the neighboring silicon atoms of the C-S-H. In addition, the silyl functionalities of the PCE-Sil generated covalent bonds through siloxane bridges between the silanol groups of PCE-Sil and the nonbonding oxygen located at the dimeric sites in C-S-H, forming new bridging silicon sites and subsequently increasing the silicate polymerization.

  18. Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities

    KAUST Repository

    Orozco, Carlos A.; Chun, Byong W.; Geng, Guoqing; Emwas, Abdul-Hamid M.; Monteiro, Paulo J. M.

    2017-01-01

    Major developments in concrete technology have been achieved with the use of polycarboxylate-based superplasticizers (PCEs) to improve the concrete rheology without increasing the mix water content. Currently, it is possible to control the fluidity of the fresh concrete and obtain stronger and more durable structures. Therefore, there is a strong incentive to understand the interactions between PCEs and cement hydrates at the atomic scale to design new customized functional PCEs according to the ever-increasing requirements of the concrete industry. Here, the bonding types generated between a PCE with silyl functionalities (PCE-Sil) and a synthetic calcium silicate hydrate (C-S-H) are analyzed using XRD, 29Si NMR spectroscopy, and synchrotron-based techniques, such as NEXAFS and EXAFS. The results indicated that the carboxylic groups present in PCE-Sil interact by a ligand-type bond with calcium, which modified not only the symmetry and coordination number of the calcium located at the surface of C-S-H but also the neighboring silicon atoms of the C-S-H. In addition, the silyl functionalities of the PCE-Sil generated covalent bonds through siloxane bridges between the silanol groups of PCE-Sil and the nonbonding oxygen located at the dimeric sites in C-S-H, forming new bridging silicon sites and subsequently increasing the silicate polymerization.

  19. Synthesis, surface group modification of 3D MnV{sub 2}O{sub 6} nanostructures and adsorption effect on Rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wanqun, E-mail: wqz@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chemical Experimental Teaching Center, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Lei, E-mail: shil@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Tang, Kaibin; Liu, Zhongping [Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2012-07-15

    Highlights: ► Fabrication of urchin-like MnV{sub 2}O{sub 6} with oxygen-containing surface groups. ► Mn{sub 0.5}V{sub 2}O{sub 5}·nH{sub 2}O as an intermediate product holds the key to the final products. ► 3D architectures of MnV{sub 2}O{sub 6} with oxygen-containing surface groups as sorbent. ► The sorbent shows a good adsorption ability. -- Abstract: Highly uniform 3D MnV{sub 2}O{sub 6} nanostructures modified by oxygen functional groups (-COO-) were successfully prepared in large quantities by an approach involving preparation of vanadyl ethylene glycolate as the precursor. The growth and self-assembly of MnV{sub 2}O{sub 6} nanobelts and nanorods could be readily tuned by additive species and quantities, which brought different morphologies and sizes to the final products. With a focus on the regulation of structure, the formation process of 3D architectures of MnV{sub 2}O{sub 6} by self-assembly of nanobelts was followed by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The consecutive processes of vanadyl ethylene glycolate and benzoyl peroxide assisted formation of layered structure Mn{sub 0.5}V{sub 2}O{sub 5}·nH{sub 2}O, growth of aligned MnV{sub 2}O{sub 6} nanobelts, and oriented assembly were proposed for the growth mechanism. The band gap vs. different morphology was also studied. Optical characterization of these MnV{sub 2}O{sub 6} with different morphologies showed direct bandgap energies at 1.8–1.95 eV. The adsorption properties of 3D MnV{sub 2}O{sub 6} nanostructures synthesized under different conditions were investigated through the removal test of Rhodamine B in aqueous water, and the 3D nanostructures synthesized with 30 g L{sup −1} benzoyl peroxide showed good adsorption capability of Rhodamine B.

  20. Histological Evaluation of Nano-Micro Titanium Implant Surface Treatment in Beagle Humerus.

    Science.gov (United States)

    Yun, Kwidug; Kang, Seongsoo; Oh, Gyejeong; Lim, Hyunpil; Lee, Kwangmin; Yang, Hongso; Vang, Mongsook; Park, Sangwon

    2016-02-01

    The objective of this study was to investigate the effects of nano-micro titanium implant surface using histology in beagle dogs. A total of 48 screw-shaped implants (Megagen, Daegu, Korea) which dimensions were 4 mm in diameter and 8.5 mm in length, were used. The implants were classified into 4 groups (n = 12): machined surface (M group), RBM (Resorbable Blasting Media) surface (R group), nano surface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a constant voltage of 20 V for 10 min using a DC power supply (Fine Power F-3005; SG EMD, Anyang, Korea). The bone blocks were investigated using histology. There was no inflammation around implants, and new bone formation was shown along with the nano-micro titanium implant surfaces. The amount of bone formation was increased depending on time comparing 4 weeks and 12 weeks. At 12 weeks, lamellar bone was more formed along with the nano-micro titanium implant surfaces than 4 weeks. It indicated that nano-micro surface showed good result in terms of osseointegration.

  1. Process of treating surfaces of metals

    International Nuclear Information System (INIS)

    Kimura, T.; Murao, A.; Kuwahara, T.

    1975-01-01

    Both higher corrosion resistance and paint adherence are given to films formed on the surfaces of metals by treating the surfaces with aqueous solutions of one or more materials selected from the group consisting of water soluble vinyl monomer or water soluble high polymer and then irradiating with ionizing radioactive rays on the nearly dried surface film. When a water soluble inorganic compound is mixed with the above mentioned aqueous solution, the film properties are greatly improved. The inorganic ionic material should contain a cation from the group consisting of Ca, Mg, Zn, Cr, Al, Fe, and Ni. Electron beams may be used. (U.S.)

  2. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  3. Repairability of Compomers with Different Methods of Surface Conditioning

    Directory of Open Access Journals (Sweden)

    P.Samimi

    2005-06-01

    Full Text Available Statement of Problem: Considering the cost and amount of time and also the quantity of tooth loss in the process of cavity preparation, repair of the restoration instead of itsreplacement would be much more efficient.Purpose: The aim of this study was to determine the effect of different methods of surface conditioning on the shear bond strength of repaired compomers.Materials and Methods: Sixty blocks of compomer were prepared in acrylic molds and then they were randomly divided into five groups of 12. Group I (control groupreceived no treatment. The remaining samples were immersed in 37 ºC distilled water for one week, then the surfaces were roughened with a coarse diamond bur. Samples ineach group were prepared by different surface treatment and conditioning: In group II specimens were conditioned with 35% phosphoric acid for 20s. Specimens in group III were etched with 10% polyacrylic acid for 20s. In group IV 1.23% acidulated phosphatefluoride was applied for 30s, and compomer surfaces were sandblasted with 50μm Al2O3 powder in group V. After the initial preparations, all groups were treated with silane and resin before bonding of the second mix of compomer. Shear forces were applied with a universal testing machine at a cross-head speed of 5mm/min. The data were analyzed using one-way ANOVA and Duncan's multiple range tests.Results: The mean shear bond strengths and standard deviations (in parentheses for groups I to V were 31.56(10.86, 20.02(5.49, 17.74(7.34, 19.31(4.31 and 27.7(6.33MPa, respectively. The mean bond strengths for Groups I and V were significantly higher than that of the other groups (P<0.05.Conclusion: The results showed that among the surface treatments used in this study,sandblasting with alumina could be the best surface preparation method for repairing compomer restorations.

  4. Use of structured surfaces for friction and wear control on bearing surfaces

    International Nuclear Information System (INIS)

    Wang, Ling

    2014-01-01

    Surface texturing with purposely made regular micropatterns on flat or curved surfaces, as opposed to random roughness inherited from machining processes, has attracted significant attention in recent years. At the 2013 World Tribology Congress in Turin alone there were over 40 presentations related to surface texturing for tribological applications, from magnetic hard discs and hydrodynamic bearings to artificial joints. Although surface texturing has been reported being successfully applied in industrial applications such as seals, pistons, and thrust pad bearings, the demand for robust design is still high. Etsion has recently reviewed the modeling research mainly conducted by his group Etsion I (2013 Friction 1 195–209). This paper aims to review the state-of-the-art development of surface texturing made by a wider range of researchers. (topical review)

  5. Enamel surface remineralization: Using synthetic nanohydroxyapatite

    Directory of Open Access Journals (Sweden)

    J Shanti Swarup

    2012-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the effects of synthetically processed hydroxyapatite particles in remineralization of the early enamel lesions in comparison with 2% sodium fluoride. Materials and Methods: Thirty sound human premolars were divided into nanohydroxyapatite group (n0 = 15 and the sodium fluoride group (n = 15. The specimens were subjected to demineralization before being coated with 10% aqueous slurry of 20 nm nanohydroxyapatite or 2% sodium fluoride. The remineralizing efficacy of the materials was evaluated using surface microhardness (SMH measurements, scanning microscopic analysis and analysis of the Ca/P ratio of the surface enamel. Data analysis was carried out using paired t-test and independent t-test. Results: The results showed that the nanohydroxyapatite group produced a surface morphology close to the biologic enamel, the increase in mineral content (Ca/P ratio was more significant in the nanohydroxyapatite group ( P 0.05. Conclusion: The use of biomimetic nanohydroxyapatite as a remineralizing agent holds promise as a new synthetic enamel biocompatible material to repair early carious lesions.

  6. The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates.

    Science.gov (United States)

    Tazi, Asmaa; Disson, Olivier; Bellais, Samuel; Bouaboud, Abdelouhab; Dmytruk, Nicolas; Dramsi, Shaynoor; Mistou, Michel-Yves; Khun, Huot; Mechler, Charlotte; Tardieux, Isabelle; Trieu-Cuot, Patrick; Lecuit, Marc; Poyart, Claire

    2010-10-25

    Streptococcus agalactiae (group B streptococcus; GBS) is a normal constituent of the intestinal microflora and the major cause of human neonatal meningitis. A single clone, GBS ST-17, is strongly associated with a deadly form of the infection called late-onset disease (LOD), which is characterized by meningitis in infants after the first week of life. The pathophysiology of LOD remains poorly understood, but our epidemiological and histopathological results point to an oral route of infection. Here, we identify a novel ST-17-specific surface-anchored protein that we call hypervirulent GBS adhesin (HvgA), and demonstrate that its expression is required for GBS hypervirulence. GBS strains that express HvgA adhered more efficiently to intestinal epithelial cells, choroid plexus epithelial cells, and microvascular endothelial cells that constitute the blood-brain barrier (BBB), than did strains that do not express HvgA. Heterologous expression of HvgA in nonadhesive bacteria conferred the ability to adhere to intestinal barrier and BBB-constituting cells. In orally inoculated mice, HvgA was required for intestinal colonization and translocation across the intestinal barrier and the BBB, leading to meningitis. In conclusion, HvgA is a critical virulence trait of GBS in the neonatal context and stands as a promising target for the development of novel diagnostic and antibacterial strategies.

  7. Nanometric hybrid films of xanthan and magnetite

    International Nuclear Information System (INIS)

    Pereira, Edla M.A.; Silva, Anielle M.; Petri, Denise F.S.

    2011-01-01

    Magnetite nanoparticles (NMM) were synthesized by co-characterized by means of X-ray diffraction, infrared spectroscopy and potentiometric titration. Xanthan thin films and NMM were deposited alternately onto Si wafers. The attachment of first xanthan layer onto Si wafer was obtained in the presence of Ca 2+ 1 mM and at pH 10. Under these conditions calcium ions interact electrostatically with both silanol groups and xanthan carboxylate groups, yielding stable xanthan (1.5 ± 0.5) nm thick films. The deposition of NMM was forced by applying a magnetic field set under the sample. The following bilayers were formed by 'layer-by-layer' electrostatic process and magnetic field action. The bilayers formation was monitored by the variation in the ellipsometric angles values, Δ e ψ, and atomic force microscopy. (author)

  8. Interaction of alcohols with the calcite surface

    DEFF Research Database (Denmark)

    Bovet, Nicolas Emile; Yang, Mingjun; Javadi, Meshkat Sadat

    2015-01-01

    . Controlling their growth requires complex polysaccharides. Polysaccharide activity depends on the functionality of OH groups, so to simplify the system in order to get closer to a molecular level understanding, we investigated the interaction of OH from a suite of alcohols with clean, freshly cleaved calcite...... surfaces. X-ray photoelectron spectroscopy (XPS) provided binding energies and revealed the extent of surface coverage. Molecular dynamics (MD) simulations supplemented with information about molecule ordering, orientation and packing density. The results show that all alcohols studied bond...... with the calcite surface through the OH group, with their carbon chains sticking away in a standing-up orientation. Alcohol molecules are closely packed and form a well-ordered monolayer on the surface....

  9. Recyclable surfaces for amine conjugation chemistry via redox reaction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Inseong; Yeo, Woon Seok [Dept. of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul (Korea, Republic of); Bae, Se Won [Green Materials and Process Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)

    2017-02-15

    In this study, we extended this strategy to present a switchable surface that allows surface functionalization and removal of functional groups repeatedly. The substrate presenting a benzoquinone acid group is first used to immobilize with an amine-containing (bio)molecule using well-known conjugation chemistry. The benzoquinone group is then converted to the corresponding hydroquinone by treating with a reducing agent. We have described a strategy for the dynamic control of surface properties with recyclability via a simple reduction/ oxidation reaction. A stimuli-responsive quinone derivative was harnessed for the repeated immobilization and release of (bio)molecules, and thus, for the repeated dynamic change of the surface properties according to the characteristics of the immobilized (bio)molecules.

  10. Molecular tailoring of solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evenson, Simon Alan

    1997-07-01

    The overall performance of a material can be dramatically improved by tailoring its surface at the molecular level. The aim of this project was to develop a universal technique for attaching dendrimers (well-defined, nanoscale, functional polymers) and Jeffamines (high molecular weight polymer chains) to the surface of any shaped solid substrate. This desire for controlled functionalization is ultimately driven by the need to improve material compatibility in various biomedical applications. Atomic force microscopy (AFM) was used initially to study the packing and structure of Langmuir-Blodgett films on surfaces, and subsequently resulted in the first visualization of individual, spherically shaped, nanoscopic polyamidoamine dendrimers. The next goal was to develop a methodology for attaching such macromolecules to inert surfaces. Thin copolymer films were deposited onto solid substrates to produce materials with a fixed concentration of surface anhydride groups. Vapor-phase functionalization reactions were then carried out with trifluorinated amines to confirm the viability of this technique to bond molecules to surfaces. Finally, pulsed plasma polymerization of maleic anhydride took this approach one stage further, by forming well-adhered polymer films containing a predetermined concentration of reactive anhydride groups. Subsequent functionalization reactions led to the secure attachment of dendrimers and Jeffamines at any desired packing density. An alternative route to biocompatibilization used 1,2-ethanedithiol to yield thiolated surfaces containing very high polymeric sulfur : carbon ratios. (author)

  11. Molecular tailoring of solid surfaces

    International Nuclear Information System (INIS)

    Evenson, Simon Alan

    1997-01-01

    The overall performance of a material can be dramatically improved by tailoring its surface at the molecular level. The aim of this project was to develop a universal technique for attaching dendrimers (well-defined, nanoscale, functional polymers) and Jeffamines (high molecular weight polymer chains) to the surface of any shaped solid substrate. This desire for controlled functionalization is ultimately driven by the need to improve material compatibility in various biomedical applications. Atomic force microscopy (AFM) was used initially to study the packing and structure of Langmuir-Blodgett films on surfaces, and subsequently resulted in the first visualization of individual, spherically shaped, nanoscopic polyamidoamine dendrimers. The next goal was to develop a methodology for attaching such macromolecules to inert surfaces. Thin copolymer films were deposited onto solid substrates to produce materials with a fixed concentration of surface anhydride groups. Vapor-phase functionalization reactions were then carried out with trifluorinated amines to confirm the viability of this technique to bond molecules to surfaces. Finally, pulsed plasma polymerization of maleic anhydride took this approach one stage further, by forming well-adhered polymer films containing a predetermined concentration of reactive anhydride groups. Subsequent functionalization reactions led to the secure attachment of dendrimers and Jeffamines at any desired packing density. An alternative route to biocompatibilization used 1,2-ethanedithiol to yield thiolated surfaces containing very high polymeric sulfur : carbon ratios. (author)

  12. Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG.

    Science.gov (United States)

    Chen, Chunyan; Wang, Jie; Chen, Zhan

    2004-11-09

    Surface structures of several different poly(dimethylsiloxane) (PDMS) materials, tetraethoxysilane-cured hydroxy-terminated PDMS (TEOS-PDMS), platinum-cured vinyl-terminated PDMS (Pt-PDMS), platinum-cured vinyl-terminated poly(diphenylsiloxane)-co-poly(dimethylsiloxane) (PDPS-co-PDMS), and PDMS-co-polystyrene (PDMS-co-PS) copolymer in air and water have been investigated by sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra collected from all PDMS surfaces in both air and water are dominated by methyl group stretches, indicating that all the surfaces are mainly covered by methyl groups. Other than surface-dominating methyl groups, some -Si-CH2-CH2- moieties on the Pt-PDMS surface have also been detected in air, which are present at cross-linking points. Information about the average orientation angle and angle distribution of the methyl groups on the PDMS surface has been evaluated. Surface restructuring of the methyl groups has been observed for all PDMS surfaces in water. Upon contacting water, the methyl groups on all PDMS surfaces tilt more toward the surface. The detailed restructuring behaviors of several PDMS surfaces in water and the effects of molecular weight on restructuring behaviors have been investigated. For comparison, in addition to air and water, surface structures of PDMS materials mentioned above in a nonpolar solvent, FC-75, have also been studied. By comparing the different response of phenyl groups to water on both PDPS-co-PDMS and PS-co-PDMS surfaces, we have demonstrated how the restructuring behaviors of surface phenyl groups are affected by the structural flexibility of the molecular chains where they are attached.

  13. Functionalized polymer film surfaces via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Hu, Y.; Li, J.S.; Yang, W.T.; Xu, F.J.

    2013-01-01

    The ability to manipulate and control the surface properties of polymer films, without altering the substrate properties, is crucial to their wide-spread applications. In this work, a simple one-step method for the direct immobilization of benzyl chloride groups (as the effective atom transfer radical polymerization (ATRP) initiators) on the polymer films was developed via benzophenone-induced coupling of 4-vinylbenzyl chloride (VBC). Polyethylene (PE) and nylon films were selected as examples of polymer films to illustrate the functionalization of film surfaces via surface-initiated ATRP. Functional polymer brushes of (2-dimethylamino)ethyl methacrylate, sodium 4-styrenesulfonate, 2-hydroxyethyl methacrylate and glycidyl methacrylate, as well as their block copolymer brushes, have been prepared via surface-initiated ATRP from the VBC-coupled PE or nylon film surfaces. With the development of a simple approach to the covalent immobilization of ATRP initiators on polymer film surfaces and the inherent versatility of surface-initiated ATRP, the surface functionality of polymer films can be precisely tailored. - Highlights: ► Atom transfer radical polymerization initiators were simply immobilized. ► Different functional polymer brushes were readily prepared. ► Their block copolymer brushes were also readily prepared

  14. Some remarks on geodesics in gauge groups and harmonic maps

    International Nuclear Information System (INIS)

    Valli, G.

    1987-08-01

    The following topics are discussed: Euler's equations for geodesics in the gauge groups and in gauge orbits of connections, conserved quantities and moment map, existence and uniqueness of solutions for the Cauchy problem, stationary solutions and harmonic bundles, harmonic gauges on Riemann surfaces and Lax pairs, low geodesics in gauge groups over Riemann surfaces produce, by Hodge decomposition, paths of holomorphic differentials. 19 refs

  15. Acyl and silyl group effects in reactivity-based one-pot glycosylation: synthesis of embryonic stem cell surface carbohydrates Lc4 and IV(2)Fuc-Lc4.

    Science.gov (United States)

    Hsu, Yun; Lu, Xin-An; Zulueta, Medel Manuel L; Tsai, Chih-Ming; Lin, Kuo-I; Hung, Shang-Cheng; Wong, Chi-Huey

    2012-03-14

    Relative reactivity evaluations showed the graded arming of toluenyl thioglucosides by variously positioned silyl groups but not by their acyl counterparts. These findings were applied in reactivity-based one-pot assembly of linker-attached Lc(4) and IV(2)Fuc-Lc(4), which are components of human embryonic stem cell surface. The sugar-galectin-1 binding was also examined.

  16. Atomic-Level Organization of Vicinal Acid-Base Pairs through the Chemisorption of Aniline and Derivatives onto Mesoporous SBA15

    KAUST Repository

    Basset, Jean-Marie

    2016-06-09

    The design of novel heterogeneous catalysts with multiple adjacent functionalities is of high interest for heterogeneous catalysis. Herein, we report a method to obtain a majority bifunctional acid-base pairs on SBA15. Aniline reacts with SBA15 by opening siloxane bridges leading to N-phenylsilanamine-silanol pairs. In contrast with ammonia treated surfaces, the material is stable under air/moisture. Advanced solid state MAS NMR: 2D ¹H-¹H double-quantum, ¹H-¹³C HETCOR experiments and dynamic nuclear polarization enhanced ²⁹Si and ¹⁵N spectra demonstrate both the close proximity between the two moieties and the formation of a covalent Si-N surface bond and confirm the design of vicinal acid-base pairs. This approach was successfully applied to the design of a series of aniline derivatives bifunctional SBA15. A correlation of the substituents effects on the aromatic ring (Hammet parameters) on the kinetics of the model reaction of Knoevenagel is observed.

  17. Synthesis of palladium-doped silica nanofibers by sol-gel reaction and electrospinning process

    Energy Technology Data Exchange (ETDEWEB)

    San, Thiam Hui; Daud, Wan Ramli Wan; Kadhum, Abdul Amir Hassan; Mohamad, Abu Bakar; Kamarudin, Siti Kartom; Shyuan, Loh Kee; Majlan, Edy Herianto [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2012-06-29

    Nanofiber is drawing great attention nowadays with their high surface area per volume and flexibility in surface functionalities that make them favorable as a proton exchange membrane in fuel cell application. In this study, incorporation of palladium nanoparticles in silica nanofibers was prepared by combination of a tetraorthosilane (TEOS) sol-gel reaction with electrospinning process. This method can prevent the nanoparticles from aggregation by direct mixing of palladium nanoparticles in silica sol. The as-produced electrospun fibers were thermally treated to remove poly(vinyl pyrrolidone) (PVP) and condensation of silanol in silica framework. PVP is chosen as fiber shaping agent because of its insulting and capping properties for various metal nanoparticles. Scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the silica fibers and Pd nanoparticles on the fibers. Spun fibers with average diameter ranged from 100nm to 400nm were obtained at optimum operating condition and distribution of Pd nanoparticles on silica fibers was investigated.

  18. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics.

    Science.gov (United States)

    Güleç, Hacı Ali

    2013-04-01

    The aim of this study was to investigate the effects of surface characteristics of plain and plasma modified cellulose acetate (CA) membranes on the immobilization yield of β-galactosidases from Kluyveromyces lactis (KLG) and its galacto-oligosaccharide (GOS) yield, respectively. Low pressure plasma treatments involving oxygen plasma activation, plasma polymerization (PlsP) of ethylenediamine (EDA) and PlsP of 2-mercaptoethanol were used to modify plain CA membrane surfaces. KLG enzyme was immobilized onto plain and oxygen plasma treated membrane surfaces by simple adsorption. Oxygen plasma activation increased the hydrophylicity of CA membrane surfaces and it improved the immobilization yield of the enzyme by 42%. KLG enzyme was also immobilized onto CA membrane surfaces through amino groups created by PlsP of EDA via covalent binding. Plasma action at 60W plasma power and 15 min. exposure time improved the amount of membrane bounded enzyme by 3.5-fold. The enrichment of the amount of amino groups via polyethyleneimine (PEI) addition enhanced this increase from 3.5-fold to 4.5-fold. Although high enzyme loading was achived (65-83%), both of the methods dramatically decreased the enzyme activity (11-12%) and GOS yield due to probably negative effects of active amino groups. KLG enzyme was more effectively immobilized onto thiolated CA membrane surface created by PlsP of 2-mercaptoethanol with high immobilization yield (70%) and especially high enzyme activity (46%). Immobilized enzymes on the CA membranes treated by PlsP were successively reutilized for 5-8 cycles at 25°C and enzymatic derivatives retained approximately 75-80% of their initial activites at the end of the reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. II. Adsorption of tetrachlorides and oxydichlorides of Zr, Hf, and Rf on neutral and modified surfaces

    Science.gov (United States)

    Pershina, V.; Borschevsky, A.; Iliaš, M.; Türler, A.

    2014-08-01

    With the aim to interpret results of gas-phase chromatography experiments on volatility of group-4 tetrachlorides and oxychlorides including those of Rf, adsorption enthalpies of these species on neutral, and modified quartz surfaces were estimated on the basis of relativistic, two-component Density Functional Theory calculations of MCl4, MOCl2, MCl6-, and MOCl42 with the use of adsorption models. Several mechanisms of adsorption were considered. In the case of physisorption of MCl4, the trend in the adsorption energy in the group should be Zr > Hf > Rf, so that the volatility should change in the opposite direction. The latter trend complies with the one in the sublimation enthalpies, ΔHsub, of the Zr and Hf tetrachlorides, i.e., Zr Hf > Rf, as defined by the complex formation energies. In the case of adsorption of MCl4 on a chlorinated quartz surface, formation of the MCl62- surface complexes can occur, so that the trend in the adsorption strength should be Zr ≤ Hf < Rf. All the predicted sequences, showing a smooth change of the adsorption energy in the group, are in disagreement with the reversed trend Zr ≈ Rf < Hf, observed in the "one-atom-at-a-time" gas-phase chromatography experiments. Thus, currently no theoretical explanation can be found for the experimental observations.

  20. Homologie cyclique du produit croise algebrique et groupes de surfaces

    NARCIS (Netherlands)

    Bella Baci, A.

    1997-01-01

    Let a group G act on an associative algebra A One can form the algebraic crossed product A G cf which plays the role of a noncommutative quotient in Conness theory The cyclic homology of this algebra was studied extensively in a series of papers It is well known that this homology admits a

  1. Structure and property relations of macromolecular self-assemblies at interfaces

    Science.gov (United States)

    Yang, Zhihao

    Hydrophilic polymer chains, poly(ethylene glycol) (PEG), are attached to glass surfaces by silylation of the silanol groups on glass surfaces with the omega-(methoxyl terminated PEG) trimethoxysilanes. These tethered polymer chains resemble the self-assembled monolayers (SAMs) of PEG, which exhibit excellent biocompatibility and provide a model system for studying the interactions of proteins with polymer surfaces. The low molecular weight PEGs tend to extend, forming a brush-like monolayer, whereas the longer polymer chains tend to interpenetrate each other, forming a mushroom-like PEG monolayer at the interface. Interactions between a plasma protein, bovine serum albumin, and the PEG-SAMs are investigated in terms of protein adsorption and diffusion on the surfaces by the technique of fluorescence recovery after photobleaching (FRAP). The diffusion and aggregation behaviors of the protein on the two monolayers are found to be quite different despite the similarities in adsorption and desorption behaviors. The results are analyzed with a hypothesis of the hydrated surface dynamics. A method of covalently bonding phospholipid molecules to silica substrates followed by loading with free phospholipids is demonstrated to form well organized and stable phospholipid self-assembled monolayers. Surfaces of such SAMs structurally mimic the aqueous sides of phospholipid bilayer membranes. The dynamics of phospholipids and an adsorbed protein, lipase, in the SAMs are probed with FRAP, in terms of lateral diffusion of both phospholipids and protein molecules. The esterase activity of lipase on the SAM surfaces is confirmed by the hydrolysis reaction of a substrate, umbelliferone stearate, showing such lipid SAMs posess biomembrane functionality in terms of interfacial activation of the membranous enzymes. Dynamics of polyethylene oxide and polypropylene oxide tri-block copolymers, PEO-PPO-PEO and PPO-PEO-PPO, at the air/water interface upon thermal stimulation is studied by

  2. A simple three step method for selective placement of organic groups in mesoporous silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Esteban A. [Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (B1650KNA) San Martín, Buenos Aires (Argentina); Llave, Ezequiel de la; Williams, Federico J. [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Soler-Illia, Galo J.A.A., E-mail: galo.soler.illia@gmail.com [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Instituto de Nanosistemas, Universidad Nacional de General San Martín, 25 de Mayo y Francia (1650) San Martín, Buenos Aires (Argentina)

    2016-02-01

    Selective functionalization of mesoporous silica thin films was achieved using a three step method. The first step consists in an outer surface functionalization, followed by washing off the structuring agent (second step), leaving the inner surface of the pores free to be functionalized in the third step. This reproducible method permits to anchor a volatile silane group in the outer film surface, and a second type of silane group in the inner surface of the pores. As a concept test we modified the outer surface of a mesoporous silica film with trimethylsilane (–Si–(CH{sub 3}){sub 3}) groups and the inner pore surface with propylamino (–Si–(CH{sub 2}){sub 3}–NH{sub 2}) groups. The obtained silica films were characterized by Environmental Ellipsometric Porosimetry (EEP), EDS, XPS, contact angle and electron microscopy. The selectively functionalized silica (SF) shows an amount of surface amino functions 4.3 times lower than the one-step functionalized (OSF) silica samples. The method presented here can be extended to a combination of silane chlorides and alkoxides as functional groups, opening up a new route toward the synthesis of multifunctional mesoporous thin films with precisely localized organic functions. - Highlights: • Selective functionalization of mesoporous silica thin films was achieved using a three step method. • A volatile silane group is anchored by evaporation on the outer film surface. • A second silane is deposited in the inner surface of the pores by post-grafting. • Contact angle, EDS and XPS measurements show different proportions of amino groups on both surfaces. • This method can be extended to a combination of silane chlorides and alkoxides functional groups.

  3. Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. II. Adsorption of tetrachlorides and oxydichlorides of Zr, Hf, and Rf on neutral and modified surfaces

    International Nuclear Information System (INIS)

    Pershina, V.; Borschevsky, A.; Iliaš, M.; Türler, A.

    2014-01-01

    With the aim to interpret results of gas-phase chromatography experiments on volatility of group-4 tetrachlorides and oxychlorides including those of Rf, adsorption enthalpies of these species on neutral, and modified quartz surfaces were estimated on the basis of relativistic, two-component Density Functional Theory calculations of MCl 4 , MOCl 2 , MCl 6 − , and MOCl 4 2 with the use of adsorption models. Several mechanisms of adsorption were considered. In the case of physisorption of MCl 4 , the trend in the adsorption energy in the group should be Zr > Hf > Rf, so that the volatility should change in the opposite direction. The latter trend complies with the one in the sublimation enthalpies, ΔH sub , of the Zr and Hf tetrachlorides, i.e., Zr < Hf. On the basis of a correlation between these quantities, ΔH sub (RfCl 4 ) was predicted as 104.2 kJ/mol. The energy of physisorption of MOCl 2 on quartz should increase in the group, Zr < Hf < Rf, as defined by increasing dipole moments of these molecules along the series. In the case of adsorption of MCl 4 on quartz by chemical forces, formation of the MOCl 2 or MOCl 4 2− complexes on the surface can take place, so that the sequence in the adsorption energy should be Zr > Hf > Rf, as defined by the complex formation energies. In the case of adsorption of MCl 4 on a chlorinated quartz surface, formation of the MCl 6 2− surface complexes can occur, so that the trend in the adsorption strength should be Zr ≤ Hf < Rf. All the predicted sequences, showing a smooth change of the adsorption energy in the group, are in disagreement with the reversed trend Zr ≈ Rf < Hf, observed in the “one-atom-at-a-time” gas-phase chromatography experiments. Thus, currently no theoretical explanation can be found for the experimental observations

  4. Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. II. Adsorption of tetrachlorides and oxydichlorides of Zr, Hf, and Rf on neutral and modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pershina, V., E-mail: V.Pershina@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt D-64291 (Germany); Borschevsky, A. [Helmholtz Institute Mainz, Mainz D-55128, Germany and Centre for Theoretical Chemistry and Physics, New Zealand Institute for Advanced Study, Massey University, Private Bag 102904, 0745 North Shore MSC, Auckland (New Zealand); Iliaš, M. [Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-974 00 Banská Bystrica (Slovakia); Türler, A. [Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland and Laboratory for Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2014-08-14

    With the aim to interpret results of gas-phase chromatography experiments on volatility of group-4 tetrachlorides and oxychlorides including those of Rf, adsorption enthalpies of these species on neutral, and modified quartz surfaces were estimated on the basis of relativistic, two-component Density Functional Theory calculations of MCl{sub 4}, MOCl{sub 2}, MCl{sub 6}{sup −}, and MOCl{sub 4}{sup 2} with the use of adsorption models. Several mechanisms of adsorption were considered. In the case of physisorption of MCl{sub 4}, the trend in the adsorption energy in the group should be Zr > Hf > Rf, so that the volatility should change in the opposite direction. The latter trend complies with the one in the sublimation enthalpies, ΔH{sub sub}, of the Zr and Hf tetrachlorides, i.e., Zr < Hf. On the basis of a correlation between these quantities, ΔH{sub sub}(RfCl{sub 4}) was predicted as 104.2 kJ/mol. The energy of physisorption of MOCl{sub 2} on quartz should increase in the group, Zr < Hf < Rf, as defined by increasing dipole moments of these molecules along the series. In the case of adsorption of MCl{sub 4} on quartz by chemical forces, formation of the MOCl{sub 2} or MOCl{sub 4}{sup 2−} complexes on the surface can take place, so that the sequence in the adsorption energy should be Zr > Hf > Rf, as defined by the complex formation energies. In the case of adsorption of MCl{sub 4} on a chlorinated quartz surface, formation of the MCl{sub 6}{sup 2−} surface complexes can occur, so that the trend in the adsorption strength should be Zr ≤ Hf < Rf. All the predicted sequences, showing a smooth change of the adsorption energy in the group, are in disagreement with the reversed trend Zr ≈ Rf < Hf, observed in the “one-atom-at-a-time” gas-phase chromatography experiments. Thus, currently no theoretical explanation can be found for the experimental observations.

  5. Paleomagnetic correlation of surface and subsurface basaltic lava flows and flow groups in the southern part of the Idaho National Laboratory, Idaho, with paleomagnetic data tables for drill cores

    Science.gov (United States)

    Champion, Duane E.; Hodges, Mary K.V.; Davis, Linda C.; Lanphere, Marvin A.

    2011-01-01

    Paleomagnetic inclination and polarity studies have been conducted on thousands of subcore samples from 51 coreholes located at and near the Idaho National Laboratory. These studies are used to paleomagnetically characterize and correlate successive stratigraphic intervals in each corehole to similar depth intervals in adjacent coreholes. Paleomagnetic results from 83 surface paleomagnetic sites, within and near the INL, are used to correlate these buried lava flow groups to basaltic shield volcanoes still exposed on the surface of the eastern Snake River Plain. Sample handling and demagnetization protocols are described as well as the paleomagnetic data averaging process. Paleomagnetic inclination comparisons between coreholes located only kilometers apart show comparable stratigraphic successions of mean inclination values over tens of meters of depth. At greater distance between coreholes, comparable correlation of mean inclination values is less consistent because flow groups may be missing or additional flow groups may be present and found at different depth intervals. Two shallow intersecting cross-sections, A-A- and B-B- (oriented southwest-northeast and northwest-southeast, respectively), drawn through southwest Idaho National Laboratory coreholes show the corehole to corehole or surface to corehole correlations derived from the paleomagnetic inclination data. From stratigraphic top to bottom, key results included the (1) Quaking Aspen Butte flow group, which erupted from Quaking Aspen Butte southwest of the Idaho National Laboratory, flowed northeast, and has been found in the subsurface in corehole USGS 132; (2) Vent 5206 flow group, which erupted near the southwestern border of the Idaho National Laboratory, flowed north and east, and has been found in the subsurface in coreholes USGS 132, USGS 129, USGS 131, USGS 127, USGS 130, USGS 128, and STF-AQ-01; and (3) Mid Butte flow group, which erupted north of U.S. Highway 20, flowed northwest, and has been

  6. Alloyed surfaces: New substrates for graphene growth

    Science.gov (United States)

    Tresca, C.; Verbitskiy, N. I.; Fedorov, A.; Grüneis, A.; Profeta, G.

    2017-11-01

    We report a systematic ab-initio density functional theory investigation of Ni(111) surface alloyed with elements of group IV (Si, Ge and Sn), demonstrating the possibility to use it to grow high quality graphene. Ni(111) surface represents an ideal substrate for graphene, due to its catalytic properties and perfect matching with the graphene lattice constant. However, Dirac bands of graphene growth on Ni(111) are completely destroyed due to the strong hybridization between carbon pz and Ni d orbitals. Group IV atoms, namely Si, Ge and Sn, once deposited on Ni(111) surface, form an ordered alloyed surface with √{ 3} ×√{ 3} -R30° reconstruction. We demonstrate that, at variance with the pure Ni(111) surface, alloyed surfaces effectively decouple graphene from the substrate, resulting unstrained due to the nearly perfect lattice matching and preserves linear Dirac bands without the strong hybridization with Ni d states. The proposed surfaces can be prepared before graphene growth without resorting on post-growth processes which necessarily alter the electronic and structural properties of graphene.

  7. Boehm Titration Revisited (Part II: A Comparison of Boehm Titration with Other Analytical Techniques on the Quantification of Oxygen-Containing Surface Groups for a Variety of Carbon Materials

    Directory of Open Access Journals (Sweden)

    Jan Schönherr

    2018-04-01

    Full Text Available The use of the Boehm titration (BT method as an analytical tool for the quantification of oxygen-containing surface groups is systematically investigated for oxidized carbon black, carbon nanotubes and two active carbons with specific surface areas between 60 and 1750 m2 g−1. The accuracy of the BT method is quantitatively compared with results from elemental analysis (EA, temperature programmed desorption (TPD, and X-ray photoelectron spectroscopy (XPS. Overall, the results from TPD are in line with the values obtained by BT. Both show the equal ratio of the oxygen groups to each other. Within the series of carbon samples, all methods provide similar trends for the total oxygen content yet the absolute numbers are deviating significantly. Reasons for these discrepancies are discussed and linked to the specific characteristics of the different methods. As the BT method is a solution based method, it only probes the surface fraction of the carbon that is accessible to the base solution. That means, it probes the relevant fraction for applications where carbon is in contact to aqueous solutions. Overall, the BT method can be conveniently applied to a broad range of carbon materials as long as the samples are sufficiently hydrophilic and of the enough sample amount is provided.

  8. MicroCT Analysis of Micro-Nano Titanium Implant Surface on the Osseointegration.

    Science.gov (United States)

    Ban, Jaesam; Kang, Seongsoo; Kim, Jihyun; Lee, Kwangmin; Hyunpil, Lim; Vang, Mongsook; Yang, Hongso; Oh, Gyejeong; Kim, Hyunseung; Hwang, Gabwoon; Jung, Yongho; Lee, Kyungku; Park, Sangwon; Yunl, Kwidug

    2015-01-01

    This study was to investigate the effects of micro-nano titanium implant surface on the osseointegration. A total of 36 screw-shaped implants were used. The implant surfaces were classified into 3 groups (n = 12): machined surface (M group), nanosurface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a 20 V for 10 min with 1 M H3PO4 and 1.5 wt% HF solutions. The implants were installed on the humerus on 6 beagles. After 4 and 12 weeks, the morphometric analysis with micro CT (skyscan 1172, SKYSCAN, Antwerpen, Belgium) was done. The data were statistically analyzed with two-way ANOVA. Bone mineral density and bone volume were significantly increased depending on time. RA group showed the highest bone mineral density and bone volume at 4 weeks and 12 weeks significantly. It indicated that nano-micro titanium implant surface showed faster and more mature osseointegration.

  9. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  10. Stromal haze, myofibroblasts, and surface irregularity after PRK.

    Science.gov (United States)

    Netto, Marcelo V; Mohan, Rajiv R; Sinha, Sunilima; Sharma, Ajay; Dupps, William; Wilson, Steven E

    2006-05-01

    The aim of this study was to investigate the relationship between the level of stromal surface irregularity after photorefractive keratectomy (PRK) and myofibroblast generation along with the development of corneal haze. Variable levels of stromal surface irregularity were generated in rabbit corneas by positioning a fine mesh screen in the path of excimer laser during ablation for a variable percentage of the terminal pulses of the treatment for myopia that does not otherwise generate significant opacity. Ninety-six rabbits were divided into eight groups: [see table in text]. Slit lamp analysis and haze grading were performed in all groups. Rabbits were sacrificed at 4 hr or 4 weeks after surgery and histochemical analysis was performed on corneas for apoptosis (TUNEL assay), myofibroblast marker alpha-smooth muscle actin (SMA), and integrin alpha4 to delineate the epithelial basement membrane. Slit-lamp grading revealed severe haze formation in corneas in groups IV and VI, with significantly less haze in groups II, III, and VII and insignificant haze compared with the unwounded control in groups I and V. Analysis of SMA staining at 4 weeks after surgery, the approximate peak of haze formation in rabbits, revealed low myofibroblast formation in group I (1.2+/-0.2 cells/400x field) and group V (1.8+/-0.4), with significantly more in groups II (3.5+/-1.8), III (6.8+/-1.6), VII (7.9+/-3.8), IV (12.4+/-4.2) and VI (14.6+/-5.1). The screened groups were significantly different from each other (p PRK groups. The -9.0 diopter PRK group VI had significantly more myofibroblast generation than the -9.0 diopter PRK with PTK-smoothing group VII (p PRK and the level of stromal surface irregularity. PTK-smoothing with methylcellulose was an effective method to reduce stromal surface irregularity and decreased both haze and associated myofibroblast density. We hypothesize that stromal surface irregularity after PRK for high myopia results in defective basement membrane

  11. Effects of a micro/nano rough strontium-loaded surface on osseointegration

    Science.gov (United States)

    Li, Yongfeng; Qi, Yaping; Gao, Qi; Niu, Qiang; Shen, Mingming; Fu, Qian; Hu, Kaijin; Kong, Liang

    2015-01-01

    We developed a hierarchical hybrid micro/nanorough strontium-loaded Ti (MNT-Sr) surface fabricated through hydrofluoric acid etching followed by magnetron sputtering and evaluated the effects of this surface on osseointegration. Samples with a smooth Ti (ST) surface, micro Ti (MT) surface treated with hydrofluoric acid etching, and strontium-loaded nano Ti (NT-Sr) surface treated with SrTiO3 target deposited via magnetron sputtering technique were investigated in parallel for comparison. The results showed that MNT-Sr surfaces were prepared successfully and with high interface bonding strength. Moreover, slow Sr release could be detected when the MNT-Sr and NT-Sr samples were immersed in phosphate-buffered saline. In in vitro experiments, the MNT-Sr surface significantly improved the proliferation and differentiation of osteoblasts compared with the other three groups. Twelve weeks after the four different surface implants were inserted into the distal femurs of 40 rats, the bone–implant contact in the ST, MT, NT-Sr, and MNT-Sr groups were 39.70%±6.00%, 57.60%±7.79%, 46.10%±5.51%, and 70.38%±8.61%, respectively. In terms of the mineral apposition ratio, the MNT-Sr group increased by 129%, 58%, and 25% compared with the values of the ST, MT, and NT-Sr groups, respectively. Moreover, the maximal pullout force in the MNT-Sr group was 1.12-, 0.31-, and 0.69-fold higher than the values of the ST, MT, and NT-Sr groups, respectively. These results suggested that the MNT-Sr surface has a synergistic effect of hierarchical micro/nano-topography and strontium for enhanced osseointegration, and it may be a promising option for clinical use. Compared with the MT surface, the NT-Sr surface significantly improved the differentiation of osteoblasts in vitro. In the in vivo animal experiment, the MT surface significantly enhanced the bone-implant contact and maximal pullout force than the NT-Sr surface. PMID:26213468

  12. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    Science.gov (United States)

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  13. Nucleic acid interactions with pyrite surfaces

    International Nuclear Information System (INIS)

    Mateo-Marti, E.; Briones, C.; Rogero, C.; Gomez-Navarro, C.; Methivier, Ch.; Pradier, C.M.; Martin-Gago, J.A.

    2008-01-01

    The study of the interaction of nucleic acid molecules with mineral surfaces is a field of growing interest in organic chemistry, origin of life, material science and biotechnology. We have characterized the adsorption of single-stranded peptide nucleic acid (ssPNA) on a natural pyrite surface, as well as the further adsorption of ssDNA on a PNA-modified pyrite surface. The characterization has been performed by means of reflection absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM) and X-ray photoemission spectroscopy (XPS) techniques. The N(1s) and S(2p) XPS core level peaks of PNA and PNA + DNA have been decomposed in curve-components that we have assigned to different chemical species. RAIRS spectra recorded for different concentrations show the presence of positive and negative adsorption bands, related to the semiconducting nature of the surface. The combination of the information gathered by these techniques confirms that PNA adsorbs on pyrite surface, interacting through nitrogen-containing groups of the nucleobases and the iron atoms of the surface, instead of the thiol group of the molecule. The strong PNA/pyrite interaction inhibits further hybridization of PNA with complementary ssDNA, contrary to the behavior reported on gold surfaces

  14. Nucleic acid interactions with pyrite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain)], E-mail: mateome@inta.es; Briones, C.; Rogero, C. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain); Gomez-Navarro, C. [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid (Spain); Methivier, Ch.; Pradier, C.M. [Laboratoire de Reactivite de Surface, UMR CNRS 7609. Universite Pierre et Marie Curie, 4, Pl Jussieu, 75005-Paris (France); Martin-Gago, J.A. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid (Spain)

    2008-09-03

    The study of the interaction of nucleic acid molecules with mineral surfaces is a field of growing interest in organic chemistry, origin of life, material science and biotechnology. We have characterized the adsorption of single-stranded peptide nucleic acid (ssPNA) on a natural pyrite surface, as well as the further adsorption of ssDNA on a PNA-modified pyrite surface. The characterization has been performed by means of reflection absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM) and X-ray photoemission spectroscopy (XPS) techniques. The N(1s) and S(2p) XPS core level peaks of PNA and PNA + DNA have been decomposed in curve-components that we have assigned to different chemical species. RAIRS spectra recorded for different concentrations show the presence of positive and negative adsorption bands, related to the semiconducting nature of the surface. The combination of the information gathered by these techniques confirms that PNA adsorbs on pyrite surface, interacting through nitrogen-containing groups of the nucleobases and the iron atoms of the surface, instead of the thiol group of the molecule. The strong PNA/pyrite interaction inhibits further hybridization of PNA with complementary ssDNA, contrary to the behavior reported on gold surfaces.

  15. Hydrogen-Bonding Surfaces for Ice Mitigation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas

    2014-01-01

    Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.

  16. Pore surface engineering in covalent organic frameworks.

    Science.gov (United States)

    Nagai, Atsushi; Guo, Zhaoqi; Feng, Xiao; Jin, Shangbin; Chen, Xiong; Ding, Xuesong; Jiang, Donglin

    2011-11-15

    Covalent organic frameworks (COFs) are a class of important porous materials that allow atomically precise integration of building blocks to achieve pre-designable pore size and geometry; however, pore surface engineering in COFs remains challenging. Here we introduce pore surface engineering to COF chemistry, which allows the controlled functionalization of COF pore walls with organic groups. This functionalization is made possible by the use of azide-appended building blocks for the synthesis of COFs with walls to which a designable content of azide units is anchored. The azide units can then undergo a quantitative click reaction with alkynes to produce pore surfaces with desired groups and preferred densities. The diversity of click reactions performed shows that the protocol is compatible with the development of various specific surfaces in COFs. Therefore, this methodology constitutes a step in the pore surface engineering of COFs to realize pre-designed compositions, components and functions.

  17. Influence of surface roughness on the friction property of textured surface

    Directory of Open Access Journals (Sweden)

    Yuankai Zhou

    2015-02-01

    Full Text Available In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in the computation. The numerical simulation results suggest that there is an optimum dimensionless surface roughness, and near this value, the maximum load-bearing capacity can be achieved. The load-bearing capacity is determined by the surface texture, the surface roughness, and the interaction between them. To get information of friction coefficient, the experiments were conducted. This experiment was used to evaluate the simulation. The experimental results show that for the frequency of 4 and 6 Hz, friction coefficient decreases at first and then increases with decreasing surface roughness, which indicates that there exists the optimum region of surface roughness leading to the best friction reduction effect, and it becomes larger when area fractions increase from 2% to 10%. The experimental results agree well with the simulation results.

  18. Adhesion enhancement by a dielectric barrier discharge of PDMS used for flexible and stretchable electronics

    International Nuclear Information System (INIS)

    Morent, R; Geyter, N De; Axisa, F; Smet, N de; Gengembre, L; Leersnyder, E De; Leys, C; Vanfleteren, J; Rymarczyk-Machal, M; Schacht, E; Payen, E

    2007-01-01

    Currently, there is a strong tendency to replace rigid electronic assemblies by mechanically flexible and stretchable equivalents. This emerging technology can be applied for biomedical electronics, such as implantable devices and electronics on skin. In the first step of the production process of stretchable electronics, electronic interconnections and components are encapsulated into a thin layer of polydimethylsiloxane (PDMS). Afterwards, the electronic structures are completely embedded by placing another PDMS layer on top. It is very important that the metals inside the electronic circuit do not leak out in order to obtain a highly biocompatible system. Therefore, an excellent adhesion between the 2 PDMS layers is of great importance. However, PDMS has a very low surface energy, resulting in poor adhesion properties. Therefore, in this paper, PDMS films are plasma treated with a dielectric barrier discharge (DBD) operating in air at medium pressure (5.0 kPa). Contact angle and XPS measurements reveal that plasma treatment increases the hydrophilicity of the PDMS films due to the incorporation of silanol groups at the expense of methyl groups. T-peel tests show that plasma treatment rapidly imparts adhesion enhancement, but only when both PDMS layers are plasma treated. Results also reveal that it is very important to bond the plasma-treated PDMS films immediately after treatment. In this case, an excellent adhesion is maintained several days after treatment. The ageing behaviour of the plasma-treated PDMS films is also studied in detail: contact angle measurements show that the contact angle increases during storage in air and angle-resolved XPS reveals that this hydrophobic recovery is due to the migration of low molar mass PDMS species to the surface

  19. The surface modification of polystyrene

    International Nuclear Information System (INIS)

    Tremlett, C.

    2000-03-01

    Polymers have ideal bulk properties for many applications. However, adhesion to many polymers is poor without surface pretreatment. This can result, for example, in peeling paint and printing, adhesive joint failure and bio-incompatibility. In applications such as painting, printing, adhesive bonding and biocompatibility, various cleaning or surface chemical modifications may be employed. A commodity polymer where pretreatment is sometimes needed is polystyrene. This project investigated, in detail, the effects of a novel method of modification namely mediated electrochemical oxidation (MEO), as a mode of surface modification on polystyrene and a comparison was made with other polymers. The resulting modification was investigated using a range of surface analysis techniques to obtain complementary information. These included, X-ray photoelectron spectroscopy, contact angles, static secondary ion mass spectrometry, atomic force microscopy, chemical derivatization, scanning electron microscopy, attenuated total reflection Fourier Transform infrared spectroscopy and composite lap shear joint testing. It has been shown that MEO modifies the surface of polystyrene introduced oxygen mainly as hydroxyl groups, and a small number of carbonyl groups, that are positioned only on the backbone hydrocarbon chain. This modification improved adhesion, was stable and samples could be stored in aqueous media. The resulting hydroxylation was further derivatized using an amino acid to provide a specialised surface. This was very different from the multiple oxygen functionalities introduced in the comparison studies by UV/ozone and plasma treatments. (author)

  20. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups

    Directory of Open Access Journals (Sweden)

    Ekkapongpisit M

    2012-07-01

    Full Text Available Maneerat Ekkapongpisit,1 Antonino Giovia,1 Carlo Follo,1 Giuseppe Caputo,2,3 Ciro Isidoro11Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale “A Avogadro”, Novara, 2Dipartimento di Chimica dell’Università di Torino, Torino, 3Cyanine Technology SpA, Torino, ItalyBackground and methods: Nanoparticles engineered to carry both a chemotherapeutic drug and a sensitive imaging probe are valid tools for early detection of cancer cells and to monitor the cytotoxic effects of anticancer treatment simultaneously. Here we report on the effect of size (10–30 nm versus 50 nm, type of material (mesoporous silica versus polystyrene, and surface charge functionalization (none, amine groups, or carboxyl groups on biocompatibility, uptake, compartmentalization, and intracellular retention of fluorescently labeled nanoparticles in cultured human ovarian cancer cells. We also investigated the involvement of caveolae in the mechanism of uptake of nanoparticles.Results: We found that mesoporous silica nanoparticles entered via caveolae-mediated endocytosis and reached the lysosomes; however, while the 50 nm nanoparticles permanently resided within these organelles, the 10 nm nanoparticles soon relocated in the cytoplasm. Naked 10 nm mesoporous silica nanoparticles showed the highest and 50 nm carboxyl-modified mesoporous silica nanoparticles the lowest uptake rates, respectively. Polystyrene nanoparticle uptake also occurred via a caveolae-independent pathway, and was negatively affected by serum. The 30 nm carboxyl-modified polystyrene nanoparticles did not localize in lysosomes and were not toxic, while the 50 nm amine-modified polystyrene nanoparticles accumulated within lysosomes and eventually caused cell death. Ovarian cancer cells expressing caveolin-1 were more likely to endocytose these nanoparticles.Conclusion: These data highlight the importance of considering both the

  1. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of various water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.

  2. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of various water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants

  3. Thermal and UV Hydrosilylation of Alcohol-Based Bifunctional Alkynes on Si (111) surfaces: How surface radicals influence surface bond formation.

    Science.gov (United States)

    Khung, Y L; Ngalim, S H; Scaccabarozi, A; Narducci, D

    2015-06-12

    Using two different hydrosilylation methods, low temperature thermal and UV initiation, silicon (111) hydrogenated surfaces were functionalized in presence of an OH-terminated alkyne, a CF3-terminated alkyne and a mixed equimolar ratio of the two alkynes. XPS studies revealed that in the absence of premeditated surface radical through low temperature hydrosilylation, the surface grafting proceeded to form a Si-O-C linkage via nucleophilic reaction through the OH group of the alkyne. This led to a small increase in surface roughness as well as an increase in hydrophobicity and this effect was attributed to the surficial etching of silicon to form nanosize pores (~1-3 nm) by residual water/oxygen as a result of changes to surface polarity from the grafting. Furthermore in the radical-free thermal environment, a mix in equimolar of these two short alkynes can achieve a high contact angle of ~102°, comparable to long alkyl chains grafting reported in literature although surface roughness was relatively mild (rms = ~1 nm). On the other hand, UV initiation on silicon totally reversed the chemical linkages to predominantly Si-C without further compromising the surface roughness, highlighting the importance of surface radicals determining the reactivity of the silicon surface to the selected alkynes.

  4. Electrochemistry, surface plasmon resonance, and quartz crystal microbalance: an associative study on cytochrome c adsorption on pyridine tail-group monolayers on gold.

    Science.gov (United States)

    Paulo, Tércio de F; de Sousa, Ticyano P; de Abreu, Dieric S; Felício, Nathalie H; Bernhardt, Paul V; Lopes, Luiz G de F; Sousa, Eduardo H S; Diógenes, Izaura C N

    2013-07-25

    Quartz crystal microbalance (QCM), surface plasmon resonance (SPR), and electrochemistry techniques were used to study the electron-transfer (ET) reaction of cytochrome c (Cyt c) on gold surfaces modified with thionicotinamide, thioisonicotinamide, 4-mercaptopyridine, 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, 5-phenyl-1,3,4-oxadiazole-2-thiol, 4,4'-bipyridine, and 4,4'-dithiopyridine. The electrochemical results showed that the ET process is complex, being chiefly diffusional with steps depending on the orientation of the pyridine or phenyl tail group of the modifiers. The correlation between the electrochemical results and those acquired by SPR and QCM indicated the presence of an adlayer of Cyt c adsorbed on the thiolate SAMs. This adlayer, although being not electroactive, is essential to assess the ET reaction of Cyt c in solution. The results presented in this work are consistent with the statement (Feng, Z. Q.; Imabayashi, S.; Kakiuchi, T.; Niki, K. J. Electroanal. Chem. 1995, 394, 149-154) that the ET reaction of Cyt c can be explained in terms of the through-bond tunneling mechanism.

  5. Protein arrangement on modified diamond-like carbon surfaces - An ARXPS study

    Science.gov (United States)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-12-01

    Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar+ ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC-protein interface; at increasing takeoff angle (further from to DLC-protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC-protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γSp).

  6. Fowler's approximation for the surface tension and surface energy of Lennard-Jones fluids revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mulero, A [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain); Galan, C [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain); Cuadros, F [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain)

    2003-04-16

    We present a detailed study of the validity of Fowler's approximation for calculating the surface tension and the surface energy of Lennard-Jones fluids. To do so, we consider three different explicit analytical expressions for the radial distribution function (RDF), including one proposed by our research group, together with very accurate expressions for the liquid and vapour densities, also proposed by our group. The calculation of the surface tension from the direct correlation function using both the Percus-Yevick and the hypernetted-chain approximations is also considered. Finally, our results are compared with those obtained by other authors by computer simulations or through relevant theoretical approximations. In particular, we consider the analytical expression proposed by Kalikmanov and Hofmans (1994 J. Phys.: Condens. Matter 6 2207-14) for the surface tension. Our results indicate that the values for the surface energy in Fowler's approximation obtained by other authors are adequate, and can be calculated from the RDF models. For the surface tension, however, the values considered as valid in previous works seem to be incorrect. The correct values can be obtained from our model for the RDF or from the Kalikmanov and Hofmans expression with suitable inputs.

  7. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Reece N., E-mail: reece.oosterbeek@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Seal, Christopher K. [Light Metals Research Centre, The University of Auckland, Private Bag 92019 (New Zealand); Hyland, Margaret M. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2014-12-01

    Highlights: • DLC coatings were modified by Ar{sup +} ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp{sup 2} content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar{sup +} ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ{sub S}{sup p})

  8. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    International Nuclear Information System (INIS)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-01-01

    Highlights: • DLC coatings were modified by Ar + ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp 2 content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar + ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ S p )

  9. Lattice topological field theory on nonorientable surfaces

    International Nuclear Information System (INIS)

    Karimipour, V.; Mostafazadeh, A.

    1997-01-01

    The lattice definition of the two-dimensional topological quantum field theory [Fukuma et al., Commun. Math. Phys. 161, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative *-algebras and the topological state sum invariants defined on such surfaces. The partition and n-point functions on all two-dimensional surfaces (connected sums of the Klein bottle or projective plane and g-tori) are defined and computed for arbitrary *-algebras in general, and for the group ring A=R[G] of discrete groups G, in particular. copyright 1997 American Institute of Physics

  10. Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide

    International Nuclear Information System (INIS)

    Xu Bing; Wang Xiaoshu; Lu Yun

    2006-01-01

    In this work, sized polyacrylonitrile (PAN)-based carbon fibers were chemically modified with nitric acid and maleic anhydride (MA) in order to improve the interaction between carbon fiber surface and polyimide matrix. Bismaleimide (BMI) was selected as a model compound of polyimide to react with modified carbon fiber. The surface characteristic changing after modification and surface reaction was investigated by element analysis (EA), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and surface enhanced Raman scattering (SERS). The results indicated that the modification of carbon fiber surface with MA might follow the Diels Alder reaction mechanism. In the surface reaction between modified fibers and BMI, among the various surface functional groups, the hydroxyl group provided from phenolic hydroxyl group and bridged structure on carbon fiber may be the most effective group reacted with imide structure. The results may shed some light on the design of the appropriate surface structure, which could react with polyimide, and the manufacture of the carbon fiber-reinforced polyimide matrix composites

  11. Co-electrospinning fabrication and photocatalytic performance of TiO2/SiO2 core/sheath nanofibers with tunable sheath thickness

    International Nuclear Information System (INIS)

    Cao, Houbao; Du, Pingfan; Song, Lixin; Xiong, Jie; Yang, Junjie; Xing, Tonghai; Liu, Xin; Wu, Rongrong; Wang, Minchao; Shao, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • The core–sheath TiO 2 /SiO 2 nanofibers were fabricated by co-electrospinning technique. • The catalytic property of nanofibers with different sheath thickness was studied. • The potential methods of improving catalytic efficiency are suggested. - Abstract: In this paper, core/sheath TiO 2 /SiO 2 nanofibers with tunable sheath thickness were directly fabricated via a facile co-electrospinning technique with subsequent calcination at 500 °C. The morphologies and structures of core/sheath TiO 2 /SiO 2 nanofibers were characterized by TGA, FESEM, TEM, FTIR, XPS and BET. It was found that the 1D core/sheath nanofibers are made up of anatase–rutile TiO 2 core and amorphous SiO 2 sheath. The influences of SiO 2 sheath and its thickness on the photoreactivity were evaluated by observing photo-degradation of methylene blue aqueous solution under the irradiation of UV light. Compared with pure TiO 2 nanofibers, the core/sheath TiO 2 /SiO 2 nanofibers performed a better catalytic performance. That was attributed to not only efficient separation of hole–electron pairs resulting from the formation of heterojunction but also larger surface area and surface silanol group which will be useful to provide higher capacity for oxygen adsorption to generate more hydroxyl radicals. And the optimized core/sheath TiO 2 /SiO 2 nanofibers with a sheath thickness of 37 nm exhibited the best photocatalytic performance

  12. Solubility studies of inorganic–organic hybrid nanoparticle photoresists with different surface functional groups

    KAUST Repository

    Li, Li

    2016-01-01

    © 2016 The Royal Society of Chemistry. The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.

  13. Tree regeneration following group selection harvesting in southern Indiana

    Science.gov (United States)

    Dale R. Weigel; George R. Parker

    1995-01-01

    An increased interest in the use of group selection harvesting in the Central Hardwood forests has emphasized the lack of scientific information about species response under this uneven-aged management system. Tree regeneration response following group selection harvesting was studied on thirty-six group selection openings on the Naval Surface Warfare Center, Crane...

  14. Ab-initio study of surface segregation in aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yifa, E-mail: yfqin10s@imr.ac.cn; Wang, Shaoqing

    2017-03-31

    Highlights: • A thorough study of surface segregation energies of 41 elements in Al is performed. • Segregation energies vary periodically with the atomic numbers of impurities. • 41 elements are classified into 3 groups according to the signs of segregation energies. • The results are validated by the surface/total concentration ratio in Al alloys. - Abstract: We have calculated surface segregation energies of 41 impurities by means of density functional theory calculations. An interesting periodical variation tendency was found for surface segregation energies derived. For the majority of main group elements, segregation energies are negative which means solute elements enrichment at Al surface is energetically more favorable than uniformly dissolution. Half of transition elements possess positive segregation energies and the energies are sensitive to surface crystallographic orientations. A strong correlation is found between the segregation energies at the Al surface and the surface energ of solute elements.

  15. Cooperative catalysis by silica-supported organic functional groups

    OpenAIRE

    Margelefsky, Eric L.; Zeidan, Ryan K.; Davis, Mark E.

    2008-01-01

    Hybrid inorganic–organic materials comprising organic functional groups tethered from silica surfaces are versatile, heterogeneous catalysts. Recent advances have led to the preparation of silica materials containing multiple, different functional groups that can show cooperative catalysis; that is, these functional groups can act together to provide catalytic activity and selectivity superior to what can be obtained from either monofunctional materials or homogeneous catalysts. This tutorial...

  16. Surface modification for biomedical purposes utilizing dielectric barrier discharges at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gessner, Cordula; Bartels, Volker; Betker, Tanja; Matucha, Ulrike; Penache, Cristina; Klages, Claus-Peter

    2004-07-01

    Using dielectric barrier discharges (DBD) at atmospheric pressure, glass or polymer surfaces were equipped with epoxide groups or amino groups by plasma deposition from suitable monomers or - in case of polymers - DBD treatment in nitrogen-containing gases. Functional group densities have been estimated using absorption and fluorescence measurements or by X-ray photoelectron spectroscopy. Amino group densities are comparable or even larger than those of aminosilylated surfaces. Fluorescence-labeled streptavidin has been used to investigate the binding capacity of surfaces equipped with covalently bound biotin molecules, starting either from epoxide or from amino groups. As an example of a Plasma Printing process, the generation of an array amino-functionalized spots, 400-{mu}m in diameter on a polymer surface by local deposition from aminopropyl-trimethoxysilane is demonstrated.

  17. A New Route for Preparation of Hydrophobic Silica Nanoparticles Using a Mixture of Poly(dimethylsiloxane and Diethyl Carbonate

    Directory of Open Access Journals (Sweden)

    Iryna Protsak

    2018-01-01

    Full Text Available Organosilicon layers chemically anchored on silica surfaces show high carbon content, good thermal and chemical stability and find numerous applications as fillers in polymer systems, thickeners in dispersing media, and as the stationary phases and carriers in chromatography. Methyl-terminated poly(dimethylsiloxanes (PDMSs are typically considered to be inert and not suitable for surface modification because of the absence of readily hydrolyzable groups. Therefore, in this paper, we report a new approach for surface modification of silica (SiO2 nanoparticles with poly(dimethylsiloxanes with different lengths of polymer chains (PDMS-20, PDMS-50, PDMS-100 in the presence of diethyl carbonate (DEC as initiator of siloxane bond splitting. Infrared spectroscopy (IR, elemental analysis (CHN, transmission electron microscopy (TEM, atomic force microscopy (AFM, rotational viscosity and contact angle of wetting were employed for the characterization of the raw fumed silica and modified silica nanoparticles. Elemental analysis data revealed that the carbon content in the grafted layer is higher than 8 wt % for all modified silicas, but it decreases significantly after sample treatment in polar media for silicas which were modified using neat PDMS. The IR spectroscopy data indicated full involvement of free silanol groups in the chemisorption process at a relatively low temperature (220 °C for all resulting samples. The contact angle studies confirmed hydrophobic surface properties of the obtained materials. The rheology results illustrated that fumed silica modified with mixtures of PDMS-x/DEC exhibited thixotropic behavior in industrial oil (I-40A, and exhibited a fully reversible nanostructure and shorter structure recovery time than nanosilicas modified with neat PDMS. The obtained results from AFM and TEM analysis revealed that the modification of fumed silica with mixtures of PDMS-20/DEC allows obtaining narrow particle size distribution with

  18. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Energy Technology Data Exchange (ETDEWEB)

    Tunma, Somruthai [The Graduate School, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Song, Doo-Hoon [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Si-Eun; Kim, Kyoung-Nam [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Han, Jeon-Geon [Center for Advanced Plasma Surface Technology, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746 (Korea, Republic of); Boonyawan, Dheerawan [Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand)

    2013-10-15

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N{sub 2} films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO{sub x} films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH{sub 2} groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  19. Effect of simulated mastication on the surface roughness of three ceramic systems.

    Science.gov (United States)

    Amer, Rafat; Kürklü, Duygu; Johnston, William

    2015-08-01

    Zirconia complete coverage crowns are being widely used as restorations because of their high strength and improved esthetics. Data are sparse about the change in surface roughness of this ceramic material after repeated mastication cycles of opposing enamel. The purpose of this study was to investigate changes in the surface roughness after being subjected to 3-body wear-opposing human enamel of 3 types of ceramics: dense sintered yttrium-stabilized zirconia (Z); lithium disilicate (L); and a conventional low-fusing feldspathic porcelain (P) treated to impart a rough, smooth, or glazed surface. Twenty-four specimens of each of the Z and L ceramic were sectioned from computer-aided design and computer-aided manufacturing blocks into rectangular plates (15×12×2 mm). Twenty-four specimens of the feldspathic porcelain were formed into disks (12-mm diameter) from powders compressed in a silicone mold. All specimens (n=72) were prepared according to the manufacturers' recommendations. Specimens of each ceramic group were placed into 1 of 3 groups: group R, rough surface finish; group S, smooth surface finish; and group G, glazed surface finish. A total of 72 specimens (9 groups with 8 specimens each) was placed in a 3-body wear simulator, with standardized enamel specimens (n=72) acting as the substrate. The changes in surface roughness of the ceramic specimens were evaluated after 50,000 cycles. Data were analyzed by a repeated measures 3-way ANOVA mixed procedure with the Satterthwaite method for degrees of freedom and maximum likelihood estimation of the covariance parameters (α=.05). Data showed that the PS group exhibited the largest change in surface roughness, becoming significantly rougher (P<.004). The LR group became significantly smoother (P=.012). The surfaces of monolithic zirconia ceramic and lithium disilicate did not become as rough as the surface of conventional feldspathic porcelain after enamel wear. Copyright © 2015 Editorial Council for the

  20. Triazatriangulene as binding group for molecular electronics

    DEFF Research Database (Denmark)

    Wei, Zhongming; Wang, Xintai; Borges, Anders

    2014-01-01

    The triazatriangulene (TATA) ring system was investigated as a binding group for tunnel junctions of molecular wires on gold surfaces. Self-assembled monolayers (SAMs) of TATA platforms with three different lengths of phenylene wires were fabricated, and their electrical conductance was recorded ...... with its high stability and directionality make this binding group very attractive for molecular electronic measurements and devices. (Figure Presented)....

  1. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1972-01-01

    Progress in Surface and Membrane Science, Volume 5 covers the developments in the study of surface and membrane science. The book discusses the Mössbauer effect in surface science; the surface functional groups on carbon and silica; and the wetting phenomena pertaining to adhesion. The text also describes the physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes; the characteristics of heterocoagulation; and the effects of calcium on excitable membranes and neurotransmitter action. Chemists, physiologists, biophysicists, and civil engineers will find the book i

  2. Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.

    2002-02-01

    The mechanical response of plasma-enhanced chemical vapor deposited SiO2 to thermal cycling is examined by substrate curvature measurement and depth-sensing indentation. Film properties of deposition stress and stress hysteresis that accompanied thermal cycling are elucidated, as well as modulus, hardness, and coefficient of thermal expansion. Thermal cycling is shown to result in major plastic deformation of the film and a switch from a compressive to a tensile state of stress; both athermal and thermal components of the net stress alter in different ways during cycling. A mechanism of hydrogen incorporation and release from as-deposited silanol groups is proposed that accounts for the change in film properties and state of stress.

  3. Surface morphology changes of acrylic resins during finishing and polishing phases

    Directory of Open Access Journals (Sweden)

    Glaucio Serra

    2013-12-01

    Full Text Available INTRODUCTION: The finishing and polishing phases are essential to improve smoothness and shining on the surface of acrylic resins used to make removable orthodontic appliances. A good surface finishing reduces roughness, which facilitates hygiene, prevents staining and provides greater comfort to the patients. OBJECTIVE: The aim of this paper was to analyze the changes on surface morphology of acrylic resins during finishing and polishing phases. METHODS: Thirty discs (10 mm in diameter and 5 mm in length were made with acrylic resin and randomly divided into ten groups. The control group did not receive any treatment while the other groups received gradual finishing and polishing. The last group received the entire finishing and polishing procedures. Surface morphology was qualitatively analyzed through scanning electron microscopy and quantitatively analyzed through a laser profilometer test. RESULTS: The acrylic resin surfaces without treatment showed bubbles which were not observed in the subsequent phases. Wearing out with multilaminated burs, finishing with wood sandpaper and finishing with water sandpaper resulted in surfaces with decreasing irregularities. The surfaces that were polished with pumice and with low abrasive liquids showed high superficial smoothness. CONCLUSION: Highly smooth acrylic resin surfaces can be obtained after mechanical finishing and polishing performed with multilaminated burs, wood sandpaper, water sandpaper, pumice and low abrasive liquids.

  4. Radiotracer studies of the adsorption of surface active substances at aqueous surfaces, 6

    International Nuclear Information System (INIS)

    Tajima, Kazuo

    1976-01-01

    The surface tension and adsorption were observed by the Wilhelmy plate and radiotracer methods at the air-solution interface of an aqueous solution of urea and α-dodecyl-ω-hydroxyhexa(oxyethylene) (D(EO) 6 ). The adsorption of D(EO) 6 was dependent on the concentration of urea below the CMC values, but above the values it was independent of the concentration. Urea adsorption occurs positively for low-surface packing of the poly(oxyethylene) group of D(EO) 6 , but negatively for the closest packing of the group and high concentrations of urea. It was confirmed that D(EO) 6 adsorption took place at the solution surface according to the Gibbs adsorption isotherm, which was taken into account as an activity coefficient in an empirical equation for the interactions of D(EO) 6 and urea in solution. Urea adsorption for the adsorbed monolayer of D(EO) 6 above the CMC value was interpreted assuming that urea, as for the nonionic micelle, was nonpenetrating, which was examined by gel permeation. (auth.)

  5. Vinyldisiloxanes: their synthesis, cross coupling and applications.

    Science.gov (United States)

    Sore, Hannah F; Boehner, Christine M; Laraia, Luca; Logoteta, Patrizia; Prestinari, Cora; Scott, Matthew; Williams, Katharine; Galloway, Warren R J D; Spring, David R

    2011-01-21

    During the studies towards the development of pentafluorophenyldimethylsilanes as a novel organosilicon cross coupling reagent it was revealed that the active silanolate and the corresponding disiloxane formed rapidly under basic conditions. The discovery that disiloxanes are in equilibrium with the silanolate led to the use of disiloxanes as cross coupling partners under fluoride free conditions. Our previous report focused on the synthesis and base induced cross coupling of aryl substituted vinyldisiloxanes with aryl halides; good yields and selectivities were achieved. As a continuation of our research, studies into the factors which influence the successful outcome of the cross coupling reaction with both alkyl and aryl substituted vinyldisiloxanes were examined and a proposed mechanism discussed. Further investigation into expanding the breadth and diversity of substituted vinyldisiloxanes in cross coupling was explored and applied to the synthesis of unsymmetrical trans-stilbenes and cyclic structures containing the trans-alkene architecture.

  6. Meromorphic functions and cohomology on a Riemann surface

    International Nuclear Information System (INIS)

    Gomez-Mont, X.

    1989-01-01

    The objective of this set of notes is to introduce a series of concepts of Complex Analytic Geometry on a Riemann Surface. We motivate the introduction of cohomology groups through the analysis of meromorphic functions. We finish by showing that the set of infinitesimal deformations of a Riemann surface (the tangent space to Teichmueller space) may be computed as a Cohomology group. (author). 6 refs

  7. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa; Bendjeriou-Sedjerari, Anissa; Jedidi, Abdesslem; Abou-Hamad, Edy; Cavallo, Luigi; Basset, Jean-Marie

    2016-01-01

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  8. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  9. Atomic-scale models of early-stage alkali depletion and SiO2-rich gel formation in bioactive glasses.

    Science.gov (United States)

    Tilocca, Antonio

    2015-01-28

    Molecular dynamics simulations of Na(+)/H(+)-exchanged 45S5 Bioglass® models reveal that a large fraction of the hydroxyl groups introduced into the proton-exchanged, hydrated glass structure do not initially form covalent bonds with Si and P network formers but remain free and stabilised by the modifier metal cations, whereas substantial Si-OH and P-OH bonding is observed only at higher Na(+)/H(+) exchange levels. The strong affinity between free OH groups and modifier cations in the highly fragmented 45S5 glass structure appears to represent the main driving force for this effect. This suggests an alternative direct route for the formation of a repolymerised silica-rich gel in the early stages of the bioactive mechanism, not considered before, which does not require sequential repeated breakings of Si-O-Si bonds and silanol condensations.

  10. Tensile Bond Strength of Metal Bracket Bonding to Glazed Ceramic Surfaces With Different Surface Conditionings

    Directory of Open Access Journals (Sweden)

    M. Imani

    2011-12-01

    Full Text Available Objective: The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments.Materials and Methods: Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA. Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primerand adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively.Results: The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01.Conclusion: In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.

  11. The Surface faulting produced by the 30 October 2016 Mw 6.5 Central Italy earthquake: the Open EMERGEO Working Group experience

    Science.gov (United States)

    Pantosti, Daniela

    2017-04-01

    The October 30, 2016 (06:40 UTC) Mw 6.5 earthquake occurred about 28 km NW of Amatrice village as the result of upper crust normal faulting on a nearly 30 km-long, NW-SE oriented, SW dipping fault system in the Central Apennines. This earthquake is the strongest Italian seismic event since the 1980 Mw 6.9 Irpinia earthquake. The Mw 6.5 event was the largest shock of a seismic sequence, which began on August 24 with a Mw 6.0 earthquake and also included a Mw 5.9 earthquake on October 26, about 9 and 35 km NW of Amatrice village, respectively. Field surveys of coseismic geological effects at the surface started within hours of the mainshock and were carried out by several national and international teams of earth scientists (about 120 people) from different research institutions and universities coordinated by the EMERGEO Working Group of the Istituto Nazionale di Geofisica e Vulcanologia. This collaborative effort was focused on the detailed recognition and mapping of: 1) the total extent of the October 30 coseismic surface ruptures, 2) their geometric and kinematic characteristics, 3) the coseismic displacement distribution along the activated fault system, including subsidiary and antithetic ruptures. The huge amount of collected data (more than 8000 observation points of several types of coseismic effects at the surface) were stored, managed and shared using a specifically designed spreadsheet to populate a georeferenced database. More comprehensive mapping of the details and extent of surface rupture was facilitated by Structure-from-Motion photogrammetry surveys by means of several helicopter flights. An almost continuous alignment of ruptures about 30 km long, N150/160 striking, mainly SW side down was observed along the already known active Mt. Vettore - Mt. Bove fault system. The mapped ruptures occasionally overlapped those of the August 24 Mw 6.0 and October 26 Mw 5.9 shocks. The coincidence between the observed surface ruptures and the trace of active

  12. Fabrication of a bionic microstructure on a C/SiC brake lining surface: Positive applications of surface defects for surface wetting control

    Science.gov (United States)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.; Zhou, C. L.

    2018-05-01

    The material removal processes generate interesting surface topographies, unfortunately, that was usually considered to be surface defects. To date, little attention has been devoted to the positive applications of these interesting surface defects resulted from laser ablation to improve C/SiC surface wettability. In this study, the formation mechanism behind surface defects (residual particles) is discussed first. The results showed that the residual particles with various diameters experienced regeneration and migration, causing them to accumulate repeatedly. The effective accumulation of these residual particles with various diameters provides a new method about fabricating bionic microstructures for surface wetting control. The negligible influence of ablation processes on the chemical component of the subsurface was studied by comparing the C-O-Si weight percentage at the C/SiC subsurface. A group of microstructures were fabricated under different laser trace and different laser parameters. Surface wettability experimental results for different types of microstructures were compared. The results showed that the surface wettability increased as the laser scanning speed decreased. The surface wettability increased with the density of the laser scanning trace. We also demonstrated the application of optimized combination of laser parameters and laser trace to simulate a lotus leaf's microstructure on C/SiC surfaces. The parameter selection depends on the specific material properties.

  13. Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions

    International Nuclear Information System (INIS)

    Ma, Shu-Cui; Wang, Zhi-Gang; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-01-01

    Highlights: • To examine surface hydroxyl functional groups of the calcined diatomite by TGA-DSC, FTIR, and XPS. • To calculate the optimized log K 1 , log K 2 and log C values and the surface species distribution of each surface reactive site using ProtoFit and PHREEQC, respectively. - Abstract: The surface properties of the diatomite were investigated using nitrogen adsorption/deadsorption isotherms, TG-DSC, FTIR, and XPS, and surface protonation–deprotonation behavior was determined by continuous acid–base potentiometric titration technique. The diatomite sample with porous honeycomb structure has a BET specific surface area of 10.21 m 2 /g and large numbers of surface hydroxyl functional groups (i.e. ≡Si-OH, ≡Fe-OH, and ≡Al-OH). These surface hydroxyls can be protonated or deprotonated depending on the pH of the suspension. The experimental potentiometric data in two different ionic strength solutions (0.1 and 0.05 mol/L NaCl) were fitted using ProtoFit GUI V2.1 program by applying diffuse double layer model (DLM) with three amphoteric sites and minimizing the sum of squares between a dataset derivative function and a model derivative function. The optimized surface parameters (i.e. surface dissociation constants (log K 1 , log K 2 ) and surface site concentrations (log C)) of the sample were obtained. Based on the optimized surface parameters, the surface species distribution was calculated using Program-free PHREEQC 3.1.2. Thus, this work reveals considerable new information about surface protonation–deprotonation processes and surface adsorptive behaviors of the diatomite, which helps us to effectively use the cheap and cheerful diatomite clay adsorbent

  14. Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shu-Cui [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022 (China); Wang, Zhi-Gang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhang, Ji-Lin, E-mail: zjl@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Sun, De-Hui [Changchun Institute Technology, Changchun 130012 (China); Liu, Gui-Xia, E-mail: liuguixia22@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022 (China)

    2015-02-01

    Highlights: • To examine surface hydroxyl functional groups of the calcined diatomite by TGA-DSC, FTIR, and XPS. • To calculate the optimized log K{sub 1}, log K{sub 2} and log C values and the surface species distribution of each surface reactive site using ProtoFit and PHREEQC, respectively. - Abstract: The surface properties of the diatomite were investigated using nitrogen adsorption/deadsorption isotherms, TG-DSC, FTIR, and XPS, and surface protonation–deprotonation behavior was determined by continuous acid–base potentiometric titration technique. The diatomite sample with porous honeycomb structure has a BET specific surface area of 10.21 m{sup 2}/g and large numbers of surface hydroxyl functional groups (i.e. ≡Si-OH, ≡Fe-OH, and ≡Al-OH). These surface hydroxyls can be protonated or deprotonated depending on the pH of the suspension. The experimental potentiometric data in two different ionic strength solutions (0.1 and 0.05 mol/L NaCl) were fitted using ProtoFit GUI V2.1 program by applying diffuse double layer model (DLM) with three amphoteric sites and minimizing the sum of squares between a dataset derivative function and a model derivative function. The optimized surface parameters (i.e. surface dissociation constants (log K{sub 1}, log K{sub 2}) and surface site concentrations (log C)) of the sample were obtained. Based on the optimized surface parameters, the surface species distribution was calculated using Program-free PHREEQC 3.1.2. Thus, this work reveals considerable new information about surface protonation–deprotonation processes and surface adsorptive behaviors of the diatomite, which helps us to effectively use the cheap and cheerful diatomite clay adsorbent.

  15. Surface tension and 0.1 MPa density data for 1-Cn-3-methylimidazolium iodides with n=3, 4, and 6, validated using a parachor and group contribution model

    Czech Academy of Sciences Publication Activity Database

    Součková, Monika; Klomfar, Jaroslav; Pátek, Jaroslav

    2015-01-01

    Roč. 83, April (2015), s. 52-60 ISSN 0021-9614 R&D Projects: GA ČR GA13-00145S; GA ČR GA101/09/0010 Institutional support: RVO:61388998 Keywords : density * surface tension * 1-alkyl-3-methylimidazolium iodide * group contribution method * parachor Subject RIV: BJ - Thermodynamics Impact factor: 2.196, year: 2015

  16. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    International Nuclear Information System (INIS)

    Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang

    2015-01-01

    Graphical abstract: - Highlights: • The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated. • The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid. • The relative content of carboxylic groups on carbon fiber surfaces was increased. • The surfaces of carbon fibers neither etched nor generated coating. • Tensile strength of carbon fibers was preserved after grafting reaction. - Abstract: The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  17. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    Energy Technology Data Exchange (ETDEWEB)

    Cuiqin, Fang; Jinxian, Wu [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Julin, Wang, E-mail: wjl@mail.buct.edu.cn [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Tao, Zhang [Beijing Institute of Ancient Architecture, Beijing 100050 (China)

    2015-11-30

    Graphical abstract: - Highlights: • The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated. • The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid. • The relative content of carboxylic groups on carbon fiber surfaces was increased. • The surfaces of carbon fibers neither etched nor generated coating. • Tensile strength of carbon fibers was preserved after grafting reaction. - Abstract: The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  18. Effect of various tooth whitening modalities on microhardness, surface roughness and surface morphology of the enamel.

    Science.gov (United States)

    Kwon, So Ran; Kurti, Steven R; Oyoyo, Udochukwu; Li, Yiming

    2015-09-01

    The purpose of this study was to evaluate the effect of four whitening modalities on surface enamel as assessed with microhardness tester, profilometer, and scanning electron microscopy (SEM). Whitening was performed according to manufacturer's directions for over-the-counter (OTC), dentist dispensed for home use (HW) and in-office (OW) whitening. Do-it-yourself (DIY) whitening consisted of a strawberry and baking soda mix. Additionally, negative and positive controls were used. A total of 120 enamel specimens were used for microhardness testing at baseline and post-whitening. Following microhardness testing specimens were prepared for SEM observations. A total of 120 enamel specimens were used for surface roughness testing at baseline and post-whitening (n = 20 per group). Rank-based Analysis of Covariance was performed to compare microhardness and surface roughness changes. Tests of hypotheses were two-sided with α = 0.05. There was a significant difference in Knoop hardness changes (ΔKHN) among the groups (Kruskal-Wallis test, p whitening modalities-DIY, OTC, HW and OW induced minimal surface morphology changes when observed with SEM. It can be concluded that none of the four whitening modalities adversely affected enamel surface morphology. However, caution should be advised when using a DIY regimen as it may affect enamel microhardness and an OTC product as it has the potential to increase surface roughness.

  19. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  20. Sequential Vapor Infiltration Treatment Enhances the Ionic Current Rectification Performance of Composite Membranes Based on Mesoporous Silica Confined in Anodic Alumina.

    Science.gov (United States)

    Liang, Yanyan; Liu, Zhengping

    2016-12-20

    Ionic current rectification of nanofluidic diode membranes has been studied widely in recent years because it is analogous to the functionality of biological ion channels in principle. We report a new method to fabricate ionic current rectification membranes based on mesoporous silica confined in anodic aluminum oxide (AAO) membranes. Two types of mesostructured silica nanocomposites, hexagonal structure and nanoparticle stacked structure, were used to asymmetrically fill nanochannels of AAO membranes by a vapor-phase synthesis (VPS) method with aspiration approach and were further modified via sequence vapor infiltration (SVI) treatment. The ionic current measurements indicated that SVI treatment can modulate the asymmetric ionic transport in prepared membranes, which exhibited clear ionic current rectification phenomenon under optimal conditions. The ionic current rectifying behavior is derived from the asymmetry of surface conformations, silica species components, and hydrophobic wettability, which are created by the asymmetrical filling type, silica depositions on the heterogeneous membranes, and the condensation of silanol groups. This article provides a considerable strategy to fabricate composite membranes with obvious ionic current rectification performance via the cooperation of the VPS method and SVI treatment and opens up the potential of mesoporous silica confined in AAO membranes to mimic fluid transport in biological processes.

  1. Effect of Commercial SiO2 and SiO2 from rice husk ash loading on biodegradation of Poly (lactic acid) and crosslinked Poly (lactic acid)

    Science.gov (United States)

    Prapruddivongs, C.; Apichartsitporn, M.; Wongpreedee, T.

    2017-09-01

    In this work, biodegradation behavior of poly (lactic acid) (PLA) and crosslinked PLA filled with two types of SiO2, precipitated SiO2 (commercial SiO2) and SiO2 from rice husk ash, were studied. Rice husks were first treated with 2 molar hydrochloric acid (HCl) to produce high purity SiO2, before burnt in a furnace at 800°C for 6 hours. All components were melted bending by an internal mixer then hot pressed using compression molder to form tested specimens. FTIR spectra of SiO2 and PLA samples were investigated. The results showed the lack of silanol group (Si-OH) of rice husk ash after steric acid surface modification, while the addition of particles can affect the crosslinking of the PLA. For biodegradation test by evaluating total amount of carbon dioxide (CO2) evolved during 60 days incubation at a controlled temperature of 58±2°C, the results showed that the biodegradation of crosslinked PLA occurred slower than the neat PLA. However, SiO2 incorporation enhanced the degree of biodegradation In particular, introducing commercial SiO2 in PLA and crosslinked PLA tended to clearly increase the degree of biodegradation as a consequence of the more accelerated hydrolysis degradation.

  2. [Separation of p-aminobenzenearsonic acid and its oxide by ion-pair reversed-phase high performance liquid chromatography].

    Science.gov (United States)

    Kang, J; Ma, X; Meng, L; Ma, D

    1999-05-01

    To study the separation of p-aminobenzenearsonic acid (PABAA) and its oxide, p-aminophenylarsine oxide (PAPAO), both the absorption spectra were scanned at the wavelengths from 200 nm to 380 nm. PABAA had absorption maximum at 254 nm and PAPAO 258 nm. The effects of salt concentration, column temperature, methanol and ion-pair agent concentrations on the capacity factor were investigated. Compounds of high polarity showed almost no retention on reversed-phase column; as the volume fraction of the methanol decreased from 90% to 10%, the retention time of PABAA gradually increased with broad peak, and partially eluted when methanol volume fraction being below 20%. With temperature rising, the retention time of PABAA was decreased. But PABAA capacity factor can be increased by selecting an appropriate salt concentration for the mobile phase. The cetyltrimethyl and tetrabutyl ammonium ions were separately added as ion-pair agents to the mobile phase containing methanol in phosphate buffer of 10 mmol/L, the changes of retention time were observed. The mechanism of retention based on reversed phase ion-pair model is proposed. Besides, the retention behaviour is also influenced by size exclusion in stationary phase as well as polar interactions with residual silanol group on the silica surface.

  3. Characteristics of styrene-butadiene rubber/silica/Nanoprene compounds for application in tire tread.

    Science.gov (United States)

    Seo, Byeongho; Kang, Jonghyub; Jang, Sukhee; Kang, Yonggu; Kim, Wonho

    2013-03-01

    Nanoprene is made from chemically cross-linked rubber particles, and has many hydroxyl groups on the surface of the particles. It is speculated that the Nanoprene could reduce the silica-silica network formation by introducing hydrogen bonding between the silanol group of silica and the hydroxyl group of Nanoprene. In this study, the styrene-butadiene rubber (SBR)/silica compounds with two types of the Nanoprene (BM75OH, BM15OH) were evaluated and it could be well explained by the concept of the volume fraction of filler or the volume fraction of rubber. If the Nanoprene applied to the compound is considered as a kind of filler, the minimum torque values and bound rubber contents of the un-vulcanized compounds, the swelling ratio and the stress-strain relationship of the vulcanized compounds could be well explained by the volume fraction of filler (phi(F)). If Nanoprene is considered as a kind of rubber such as SBR, the properties such as peak tan delta, Payne effect, tan delta at 0 degrees C and 60 degrees C, and abrasion resistance could be well explained by the volume fraction of rubber (phi'(R)). However, the improvement of silica dispersion by addition of the Nanoprene particles in the compounds was not significant. The application of BM75OH as a polymer to the tread compound will be suitable for winter tires. In addition, the compound with BM15OH as an additive will be suitable as a tread compound for summer tires.

  4. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    Science.gov (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  5. Modification of surface properties of LLDPE by water plasma discharge

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Hill, D.J.T.; Firas Rasoul; Whittaker, A.K.; Imelda Keen

    2007-01-01

    Linear low density polyethylene (LLDPE) surface was modified by water plasma treatment. The LLDPE surface was treated at 10 and 20 W discharge power at various exposure times. A laboratory scale Megatherm radio frequency (RF) plasma apparatus that operates at 27 MHz was used to generate the water plasmas. The changes in chemical structure of the LLDPE polymeric chain upon plasma treatment were characterized by FTIR and XPS techniques. The selectivity of trifluoroacetic anhydride (TFAA) toward hydroxyl groups is used to quantify the hydroxyl groups formed on the polymer surface upon plasma treatment. After exposition to the plasma discharge a decline in water contact angle were observed. FTIR and XPS measurements indicate an oxidation of degraded polymeric chains and creation of hydroxyl, carbonyl, ether, ester and carboxyl groups. Chemical derivatization with TFAA of water plasma treated polymer surfaces has shown that under the conditions employed, a very small (less than 5%) of the oxygen introduced by the water plasma treatment was present as hydroxyl group. (Author)

  6. Effects of different polishing techniques on the surface roughness of dental porcelains

    Directory of Open Access Journals (Sweden)

    Işil Sarikaya

    2010-02-01

    Full Text Available OBJECTIVE: The purpose of this study was to evaluate the effects of different polishing techniques on the surface roughness of dental porcelains. MATERIAL AND METHODS: Fifty-five cylindirical specimens (15x2 mm were prepared for each feldspathic (Vita VMK 95, Ceramco III and low-fusing dental porcelain (Matchmaker. Fifty-five specimens of machinable feldspathic porcelain blocks (Vitablocs Mark II, (12x14x18 mm were cut into 2-mm-thick slices (12x14 mm with low speed saw. The prepared specimens were divided into 11 groups (n=5 representing different polishing techniques including control ((C no surface treatment, glaze (G and other 9 groups that were finished and polished with polishing discs (Sof-Lex (Sl, two porcelain polishing kits (NTI (Pk, Dialite II (Di, a diamond polishing paste (Sparkle (Sp, a zirconium silicate based cleaning and polishing prophy paste (Zircate (Zr, an aluminum oxide polishing paste (Prisma Gloss (Pg, and combinations of them. The surface roughness of all groups was measured with a profilometer. The data were analyzed with a 2-way analysis of variance, and the mean values were compared by the Tukey Honestly Significant Difference test (a=0.05. RESULTS: For all porcelain material groups, the lowest Ra values were observed in Group Gl, Group Sl, Group Pk, and Group Di, which were not significantly different from each other (p>0.05.When comparing the 4 different porcelain materials, the machinable feldspathic porcelain block group (Mark II demonstrated statistically significantly less Ra values than the other porcelain materials tested (p<0.05. No significant difference was observed between the VMK 95 and Ceramco III porcelain groups (p=0.919, also these groups demonstrated the highest Ra values. CONCLUSION: Subjected to surface roughness, the surfaces obtained with polishing and/or cleaning-prophy paste materials used alone were rougher compared to the surfaces finished using Sof-lex, Dialite, and NTI polishing kit

  7. Effect of simulated chairside grinding procedures using commercially available abrasive agents on the surface properties of zirconia.

    Science.gov (United States)

    Sandhu, Ramandeep; Kheur, Mohit; Kheur, Supriya

    2017-01-01

    The aim of the present study was to assess the change in physical properties (surface roughness, surface hardness and phase transformation) after surface grinding of zirconia by using three commercially available abrasives. Thirty sintered zirconia specimens were prepared and divided into three groups namely Group M (grinded using Mani Dia diamond bur standard grit), Group T (grinded using Tri Hawk diamond bur coarse grit) and Group P (grinded using Predator carbide bur). A customised assembly was used to follow a standardised protocol for surface grinding. The surface roughness, surface hardness and phase transformation was recorded before and after the grinding procedure. ANOVA and Bonferroni post hoc test were used to assess the values obtained after the testing the surface roughness and surface hardness. The results of the present study revealed the average values of change in surface roughness as Group M (0.44 μ m) and Group T (1.235 μ m) and Group P (-0.88 μ m). The average values of change in surface hardness were Group T (19.578 HV), Group M (46.722 HV) and Group P (36.429 HV). The change in surface hardness was not statistically significant. There was no phase transformation seen after the grinding procedure. Carbide burs along with copious water irrigation when used to grind zirconia intra-orally produces has a polishing effect, minimal change in hardness & no phase transformation. The present study advocates the use of carbides for chair-side grinding of zirconia.

  8. Supermanifolds and super Riemann surfaces

    International Nuclear Information System (INIS)

    Rabin, J.M.

    1986-09-01

    The theory of super Riemann surfaces is rigorously developed using Rogers' theory of supermanifolds. The global structures of super Teichmueller space and super moduli space are determined. The super modular group is shown to be precisely the ordinary modular group. Super moduli space is shown to be the gauge-fixing slice for the fermionic string path integral

  9. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  10. Artificial playing surfaces research: a review of medical, engineering and biomechanical aspects.

    Science.gov (United States)

    Dixon, S J; Batt, M E; Collop, A C

    1999-05-01

    In this paper, current knowledge of artificial playing surfaces is reviewed. Research status in the fields of sports medicine, engineering and biomechanics is described. A multidisciplinary approach to the study of artificial sports surface properties is recommended. The development of modelling techniques to characterise fundamental material properties is described as the most appropriate method for the unique specification of material properties such as stiffness and damping characteristics. It is suggested that the systematic manipulation of fundamental surface material properties in biomechanics research will allow the identification of subject responses to clearly defined surface variation. It is suggested that subjects should be grouped according to characteristic behaviour on specific sports surfaces. It is speculated that future biomechanics research will identify subject criterion related to differing group responses. The literature evidence of interactions between sports shoes and sports surfaces leads to the suggestion that sports shoe and sports surface companies should work together in the development of ideal shoe - surface combinations for particular groups of subjects.

  11. Surface molecular aggregation structure and surface physicochemical properties of poly(fluoroalkyl acrylate) thin films

    International Nuclear Information System (INIS)

    Honda, K; Yamaguchi, H; Takahara, A; Kobayashi, M; Morita, M

    2008-01-01

    Effect of side chain length on the molecular aggregation states and surface properties of poly(fluoroalkyl acrylate)s [PFA-C y , where y is fluoromethylene number in R f group] thin films were systematically investigated. Spin-coated PFA-C y thin films were characterized by static and dynamic contact angle measurements, X-ray photoelectron spectroscopy (XPS), and grazing- incidence X-ray diffraction (GIXD). The receding contact angles showed small values for PFA-C y with short side chain (y≤6) and increased above y≥8. GIXD revealed that fluoroalkyl side chain of PFA-C y with y≥8 was crystallized and formed ordered structures at the surface region as well as bulk one. These results suggest that water repellent mechanism of PFA-C y can be attributed to the presence of highly ordered fluoroalkyl side chains at the outermost surfaces. The results of XPS in the dry and hydrated states and contact angle measurement in water support the mechanism of lowering contact angle for water by exposure of carbonyl group to the water interface through reorientation of short fluoroalkyl chains. The surface nanotextured PFA-C 8 through imprinting of anodic aluminum oxide mold showed extremely high hydrophobicity as well as high oleophobicity

  12. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    Science.gov (United States)

    Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang

    2015-11-01

    The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  13. Nitriles at Silica Interfaces Resemble Supported Lipid Bilayers.

    Science.gov (United States)

    Berne, Bruce J; Fourkas, John T; Walker, Robert A; Weeks, John D

    2016-09-20

    Nitriles are important solvents not just for bulk reactions but also for interfacial processes such as separations, heterogeneous catalysis, and electrochemistry. Although nitriles have a polar end and a lipophilic end, the cyano group is not hydrophilic enough for these substances to be thought of as prototypical amphiphiles. This picture is now changing, as research is revealing that at a silica surface nitriles can organize into structures that, in many ways, resemble lipid bilayers. This unexpected organization may be a key component of unique interfacial behavior of nitriles that make them the solvents of choice for so many applications. The first hints of this lipid-bilayer-like (LBL) organization of nitriles at silica interfaces came from optical Kerr effect (OKE) experiments on liquid acetonitrile confined in the pores of sol-gel glasses. The orientational dynamics revealed by OKE spectroscopy suggested that the confined liquid is composed of a relatively immobile sublayer of molecules that accept hydrogen bonds from the surface silanol groups and an interdigitated, antiparallel layer that is capable of exchanging into the centers of the pores. This picture of acetonitrile has been borne out by molecular dynamics simulations and vibrational sum-frequency generation (VSFG) experiments. Remarkably, these simulations further indicate that the LBL organization is repeated with increasing disorder at least 20 Å into the liquid from a flat silica surface. Simulations and VSFG and OKE experiments indicate that extending the alkyl chain to an ethyl group leads to the formation of even more tightly packed LBL organization featuring entangled alkyl tails. When the alkyl portion of the molecule is a bulky t-butyl group, packing constraints prevent well-ordered LBL organization of the liquid. In each case, the surface-induced organization of the liquid is reflected in its interfacial dynamics. Acetonitrile/water mixtures are favored solvent systems for separations

  14. Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups

    Science.gov (United States)

    Melnyk, Inna V.; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L.

    2016-02-01

    In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g.

  15. Clinical Effectiveness of Using Aesthetic Fixed Prosthetic Appliances with Combined Occlusal Surface

    OpenAIRE

    Andrii Biben; Zinovii Ozhohan

    2017-01-01

    The objective of the research was to evaluate the clinical effectiveness of using aesthetic fixed prosthetic appliances with combined occlusal surface. Materials and methods. The study included 30 patients who were divided into 2 groups: Group I included 20 patients with combined occlusal surface of the crowns; Group II included 22 patients with ceramic occlusal surface of the crowns. The patients were observed 3, 6 and 12 months after prosthetic repair. Results. 6 months after prosthet...

  16. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: jim@jamessund.com [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: charles.parker@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2014-05-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  17. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    International Nuclear Information System (INIS)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-01-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis

  18. Study on superhydrophobic surfaces of octanol grafted electrospun silica nanofibers

    International Nuclear Information System (INIS)

    Meng, Long-Yue; Han, Shunyu; Jiang, Nanzhe; Meng, Wan

    2014-01-01

    In this work, superhydrophobic surfaces were successfully prepared by grafting of octanol on the surface of electrospun silica nanofibers (SNFs). The chemical compositions and microstructures of the prepared SNFs surfaces were investigated by using N 2 full isotherms, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle measurements. The results indicate that the surface of SNFs changed from being superhydrophilic to superhydrophobic by octanol surface grafting. The contact angle of the octanol-grafted SNFs was close to 150.2° because their surface was modified by –(CH 2 ) 6 –CH 3 groups. The 3D network of SNFs networks and the low surface energy of the alkyl side chains played important roles in creating the superhydrophobic surface of the SNFs. - Highlights: • Superhydrophobic surface was prepared from electrospinning SNFs and by grafting octanol on their surface. • The surface of SNFs changed from superhydrophilic to superhydrophobic. • The CA of MSNFs became 150.2° because of interactions between grafted octyl groups

  19. Study on superhydrophobic surfaces of octanol grafted electrospun silica nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Long-Yue [Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Yanji 133002 (China); Department of Chemical Engineering, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002 (China); Han, Shunyu; Jiang, Nanzhe [Department of Chemical Engineering, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002 (China); Meng, Wan, E-mail: mengw@ybu.edu.cn [Department of Chemical Engineering, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002 (China)

    2014-12-15

    In this work, superhydrophobic surfaces were successfully prepared by grafting of octanol on the surface of electrospun silica nanofibers (SNFs). The chemical compositions and microstructures of the prepared SNFs surfaces were investigated by using N{sub 2} full isotherms, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle measurements. The results indicate that the surface of SNFs changed from being superhydrophilic to superhydrophobic by octanol surface grafting. The contact angle of the octanol-grafted SNFs was close to 150.2° because their surface was modified by –(CH{sub 2}){sub 6}–CH{sub 3} groups. The 3D network of SNFs networks and the low surface energy of the alkyl side chains played important roles in creating the superhydrophobic surface of the SNFs. - Highlights: • Superhydrophobic surface was prepared from electrospinning SNFs and by grafting octanol on their surface. • The surface of SNFs changed from superhydrophilic to superhydrophobic. • The CA of MSNFs became 150.2° because of interactions between grafted octyl groups.

  20. Effect of Heat Treatment on the Surface Properties of Activated Carbons

    Directory of Open Access Journals (Sweden)

    Meriem Belhachemi

    2011-01-01

    Full Text Available This work reports the effect of heat treatment on the porosity and surface chemistry of two series of activated carbons prepared from a local agricultural biomass material, date pits, by physical activation with carbon dioxide and steam. Both series samples were oxidized with nitric acid and subsequently heat treated under N2 at 973 K in order to study the effect of these treatments in porosity and surface functional groups of activated carbons. When the activated carbons were heat treated after oxidation the surface area and the pore volume increase for both activated carbons prepared by CO2 and steam activations. However the amount of surface oxygen complexes decreases, the samples keep the most stable oxygen surface groups evolved as CO by temperature-programmed desorption experiments at high temperature. The results show that date pits can be used as precursors to produce activated carbons with a well developed porosity and tailored oxygen surface groups.

  1. Sedimentation in Particulate Aqueous Suspensions as studied by means of Dielectric Time Domain Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Bjoernar Hauknes

    1997-12-31

    Many problems in offshore oil production and multiphase transport are related to surface and colloid chemistry. This thesis applies dielectric spectroscopy as an experimental technique to study the behaviour of particle suspensions in polar media. The thesis opens with an introduction to suspensions and time domain dielectric spectroscopy. It then investigates the dielectric properties of silica and alumina dispersed in polar solvents. It is found that theoretical models can be used to calculate the volume fraction disperse phase in the suspension and that the particle sedimentation depends on the wetting of the particles, charge on the particle surface and viscosity of the solvent, and that this dependency can be measured by time domain dielectric spectroscopy. When the surface properties of silica and alumina particles were modified by coating them with a non-ionic polymer and a non-ionic surfactant, then different degrees of packing in the sedimented phase at the bottom of the sedimentation vessel occurred. Chemometrical methods on the synthesis of monodisperse silica particles were used to investigate what factors influence the particle size. It turned out that it is insufficient to consider only main variables when discussing the results of the synthesis. By introducing interaction terms, the author could explain the variation in the size of particles synthesized. The difference in the sedimentation rate of monodisperse silica particles upon variation of volume fraction particles, pH, salinity, amount of silanol groups at the particle surface and temperature was studied. The cross interactions play an important role and a model explaining the variation in sedimentation is introduced. Finally, magnetic particles dispersed in water and in an external magnetic field were used to study the impact on the sedimentation due to the induced flocculation. 209 refs., 90 figs., 9 tabs.

  2. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal-Organic Framework with Mesoporous Silica for CO2 Adsorption.

    Science.gov (United States)

    Chen, Chong; Li, Bingxue; Zhou, Lijin; Xia, Zefeng; Feng, Nengjie; Ding, Jing; Wang, Lei; Wan, Hui; Guan, Guofeng

    2017-07-12

    The HKUST-1@SBA-15 composites with hierarchical pore structure were constructed by in situ self-assembly of metal-organic framework (MOF) with mesoporous silica. The structure directing role of SBA-15 had an obvious impact on the growth of MOF crystals, which in turn affected the morphologies and structural properties of the composites. The pristine HKUST-1 and the composites with different content of SBA-15 were characterized by XRD, N 2 adsorption-desorption, SEM, TEM, FT-IR, TG, XPS, and CO 2 -TPD techniques. It was found that the composites were assembled by oriented growth of MOF nanocrystals on the surfaces of SBA-15 matrix. The interactions between surface silanol groups and metal centers induced structural changes and resulted in the increases in surface areas as well as micropore volumes of hybrid materials. Besides, the additional constraints from SBA-15 also restrained the expansion of HKUST-1, contributing to their smaller crystal sizes in the composites. The adsorption isotherms of CO 2 on the materials were measured and applied to calculate the isosteric heats of adsorption. The HS-1 composite exhibited an increase of 15.9% in CO 2 uptake capacity compared with that of HKUST-1. Moreover, its higher isosteric heats of CO 2 adsorption indicated the stronger interactions between the surfaces and CO 2 molecules. The adsorption rate of the composite was also improved due to the introduction of mesopores. Ten cycles of CO 2 adsorption-desorption experiments implied that the HS-1 had excellent reversibility of CO 2 adsorption. This study was intended to provide the possibility of assembling new composites with tailored properties based on MOF and mesoporous silica to satisfy the requirements of various applications.

  3. Binding of hydrophobic antigens to surfaces

    DEFF Research Database (Denmark)

    2017-01-01

    A first aspect of the present invention is a method of detecting antibodies comprising the steps of: i) providing a first group of beads comprising a surface modified with C1-C10 alkyl groups comprising amine, ammonium, ether and/or hydroxyl groups, ii) contacting said first group of beads......-antigen-antibody conjugates, and v) detecting said bead-antigen-antibody conjugates. Further aspects include an antibody detection kit, a bead-antigen conjugate and a composition comprising at least two different groups of bead-antigen-conjugates....

  4. Surface properties of activated carbon treated by cold plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Norikazu, Kurano [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yamada, Hiroshi [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yajima, Tatsuhiko [Faculty of Engineering, Saitama Institute of Technology, 1690 Fusoiji, Okabe 3690293 (Japan); Sugiyama, Kazuo [Faculty of Engineering, Saitama University, 255 Shimo-okubo, Sakura-Ku, Saitama 3388570 (Japan)]. E-mail: sugi@apc.saitama-u.ac.jp

    2007-03-12

    To modify the surface properties of activated carbon powders, we have applied the cold plasma treatment method. The cold plasma was used to be generated in the evacuated reactor vessel by 2.45 GHz microwave irradiation. In this paper, changes of surface properties such as distribution of acidic functional groups and roughness morphology were examined. By the cold plasma treatment, activated carbons with large specific surface area of ca. 2000 m{sup 2}/g or more could be prepared in a minute. The amount of every gaseous organic compound adsorbed on the unit gram of treated activated carbons was more increased that on the unit gram of untreated carbons. Especially, the adsorbed amount of carbon disulfide was remarkably increased even if it was compared by the amount per unit surface area. These results suggest that the surface property of the sample was modified by the plasma treatment. It became apparent by observing SEM photographs that dust and impure particles in macropores of activated carbons were far more reduced by the plasma treatment than by the conventional heating in an electric furnace under vacuum. In addition, a bubble-like surface morphology of the sample was observed by AEM measurement. The amount of acidic functional groups at the surface was determined by using the Boehm's titration method. Consequently, the increase of lactone groups and the decrease of carboxyl groups were also observed.

  5. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Science.gov (United States)

    Shen, Tao; Liu, Yong; Zhu, Yan; Yang, De-Quan; Sacher, Edward

    2017-07-01

    Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (sbnd OH, sbnd CHdbnd O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose sbnd NH2 groups were then able to form a bonding complex with the Ag NPs.

  6. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    Science.gov (United States)

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Thiol-ene thermosets exploiting surface reactivity for layer-by-layer structures and control of penetration depth for selective surface reactivity

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Westh, Andreas; Pereira Rosinha Grundtvig, Ines

    Thiol-ene thermosets have been shown to be an efficient platform for preparation of functional polymer surfaces. Especially the effectiveness and versatility of the system has enabled a large variety of network properties to be obtained in a simple and straight-forward way. Due to its selectivity......, various thiols and allyl or other vinyl reactants can be used to obtain either soft and flexible1 or more rigid functional thermosets 2. The methodology permits use of etiher thermal or photochemical conditions both for matrix preparation as well as for surface functionalization. Due to excess reactive...... groups in thµe surface of thiol-ene thermosets, it is possible to prepare surface functional thermosets or to exploit the reactive groups for modular construction and subsequent chemical bonding. Here a different approach preparing monolithic layer-by-layer structures with controlled mechanical...

  8. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains......Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....

  9. Effects of backbone conformation and surface texture of polyimide alignment film on the pretilt angle of liquid crystals

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Chou, Ray-Lin; Lin, Yu-Chi; Liang, Bau-Jy; Chen, Jyun-Ji

    2011-01-01

    Polyimides (PIs) with different inclination angle of polymer backbones, together with polar hydroxyl group and/or nonpolar trifluoromethyl group at various sites of the backbone were synthesized and used as liquid crystal alignment layers. The molecular conformation, surface chemistry, surface energy, surface morphology, and pretilt angle of the PI film were investigated. The distributions of fluorinated group and hydroxyl group at different depths of the PI surfaces were analyzed by X-ray photoelectron spectroscopy. Effects of the conformation of the PI molecular backbone on the surface morphology of the rubbed PI layer, the pretilt angle and surface energy of the alignment film were studied. The PI which contains both nonpolar fluorinated groups sticking out of the surface and the polar hydroxyl groups on the surface exhibits high pretilt angle.

  10. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    Safron, S.A.; Skofronick, J.G.

    1994-01-01

    This progress report describes work carried out in the study of surface structure and dynamics of ionic insulators, the microscopic interactions controlling epitaxial growth and the formation of overlayers, and energy exchange in multiphonon surface scattering. The approach used is to employ high resolution helium atom scattering to study the geometry and structural features of the surfaces. Experiments have been carried out on the surface dynamics of RbCl and preliminary studies done on CoO and NiO. Epitaxial growth and overlayer dynamics experiments on the systems NaCl/NaCl(001), KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been performed. They have collaborated with two theoretical groups to explore models of overlayer dynamics with which to compare and to interpret their experimental results. They have carried out extensive experiments on the multiphonon scattering of helium atoms from NaCl and, particularly, LiF. Work has begun on self-assembling organic films on gold and silver surfaces (alkyl thiols/Au(111) and Ag(111))

  11. Bubbling surface operators and S-duality

    International Nuclear Information System (INIS)

    Gomis, Jaume; Matsuura, Shunji

    2007-01-01

    We construct smooth asymptotically /ADS solutions of Type IIB supergravity corresponding to all the half-BPS surface operators in N = 4 SYM. All the parameters labeling a half-BPS surface operator are identified in the corresponding bubbling geometry. We use the supergravity description of surface operators to study the action of the SL(2,Z) duality group of N 4 SYM on the parameters of the surface operator, and find that it coincides with the recent proposal by Gukov and Witten in the framework of the gauge theory approach to the geometrical Langlands with ramification. We also show that whenever a bubbling geometry becomes singular that the path integral description of the corresponding surface operator also becomes singular

  12. Effects of surfaces on resistor percolation.

    Science.gov (United States)

    Stenull, O; Janssen, H K; Oerding, K

    2001-05-01

    We study the effects of surfaces on resistor percolation at the instance of a semi-infinite geometry. Particularly we are interested in the average resistance between two connected ports located on the surface. Based on general grounds as symmetries and relevance we introduce a field theoretic Hamiltonian for semi-infinite random resistor networks. We show that the surface contributes to the average resistance only in terms of corrections to scaling. These corrections are governed by surface resistance exponents. We carry out renormalization-group improved perturbation calculations for the special and the ordinary transition. We calculate the surface resistance exponents phiS and phiS(infinity) for the special and the ordinary transition, respectively, to one-loop order.

  13. Surface defects and chiral algebras

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States); Gaiotto, Davide [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Shao, Shu-Heng [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States)

    2017-05-26

    We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.

  14. Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM).

    Science.gov (United States)

    Zinelis, Spiros

    2007-05-01

    To evaluate the surface and elemental alterations induced by electro discharge machining (EDM) on the surface of dental cast alloys used for the fabrication of implant retained meso- and super-structures. A completed cast model of an arch that received dental implants was used for the preparation of six wax patterns which were divided into three groups (Au, Co and Ti). The wax patterns of the Au and Co groups were invested with conventional phosphate-bonded silica-based investment material and the Ti group with magnesia-based investment material. The investment rings of the Au and Co groups were cast with an Au-Ag alloy (Stabilor G) and a Co-Cr base alloy (Okta C), respectively, while the investment rings of group Ti were cast with cp Ti (Biotan). One casting of each group was subjected to electro discharge machining (EDM); the other was conventionally ground and polished. The surface morphology and the elemental compositions of conventionally and EDM-finished surfaces were studied by SEM/X-ray EDS analysis. Six spectra were collected from each surface employing the area scan mode and the mean value of each element between conventionally and EDM-finished surfaces was statistically analyzed by t-test (a=0.05). Then the specimens of each group were cut perpendicular to their longitudinal axis and after metallographic grinding and polishing the cross-sections studied under the SEM. The EDM surfaces showed a significant increase in C due to the decomposition of the dielectric fluid during spark erosion. Moreover, a significant Cu uptake was noted on these surfaces from the decomposition of the Cu electrodes used for EDM. Cross-sectional analysis showed that all alloys developed a superficial zone (recast layer) varying from 2 microm for Au-Ag to 10 microm for Co-Cr alloy. The elemental composition of dental alloy surfaces is significantly altered after EDM treatment.

  15. Effects of O2 and H2O plasma immersion ion implantation on surface chemical composition and surface energy of poly vinyl chloride

    International Nuclear Information System (INIS)

    Zhang Wei; Chu, Paul K.; Ji Junhui; Zhang, Yihe; Jiang Zhimin

    2006-01-01

    Oxygen and water plasma immersion ion implantation (PIII) was used to modify poly vinyl chloride (PVC) to enhance oxygen-containing surface functional groups for more effective grafting. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements. Our experimental results show that both oxygen and water PIII can greatly improve the O to C ratios on the surface. The optimal plasma processing conditions differ for the two treatments. The hydrophilicity and surface energy of the plasma-implanted PVC are also improved significantly. Our results indicate that O 2 and H 2 O PIII increase both the polar and dispersion interactions and consequently the surface energy. It can be explained by the large amount of oxygen introduced to the surface and that many C-C bonds are transformed into more polar oxygen containing functional groups

  16. Heparainization of gas plasma-modified polystyrene surfaces and the interactions of these surfaces with proteins studied with surface plasmon resonance

    NARCIS (Netherlands)

    van Delden, C.J.; van Delden, C.J.; Lens, J.P.; Lens, J.P.; Kooyman, R.P.H.; Engbers, G.H.M.; Feijen, Jan

    1997-01-01

    Polystyrene surfaces obtained by spin-coating a solution of polystyrene in toluene on a gold layer were functionalized with carboxylic acid groups by preadsorption of the sodium salt of undecylenic acid, followed by an argon plasma treatment. A conjugate of albumin and heparin (alb-hep) was

  17. Surface characterization for high purity Fe-Cr alloys

    International Nuclear Information System (INIS)

    Iwai, H.; Oiwa, R.; Takaki, S.; Abiko, K.

    1995-01-01

    Fe-50mass%Cr was prepared in a cold crucible furnace with induction heating, then refined by floating-zone melting (FZM). The chemistries on the surface before and after FZM were compared by XPS measurement. C and O were observed on top surfaces both before and after as a hydrocarbon, carbonyl group and carboxyl group which are adsorbed chemical components. The other impurities were observed on the surface in both cases; however, the number and level of impurities on the surface after FZM were much larger than those on the surface before FZM; these adhered to the surface during sample preparation for XPS measurement. It is concluded that sample preparation introduces contamination which affects the detection limit of chemical analytical instruments. Sn was only observed on the top surface after FZM. It was segregated Sn which was contained in chromium as a starting material. It must be eliminated before starting. From XPS depth profiling results, it was concluded that 0.2 nm thickness of carbon such as hydrocarbon and organic components are adsorbed on the 1 nm thickness of oxide layer. Below the oxide layer, a lack of Cr was observed down to a depth of 6 nm. (orig.)

  18. High gain durable anti-reflective coating

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze' ev R.

    2017-06-27

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  19. Effects of a micro/nano rough strontium-loaded surface on osseointegration

    Directory of Open Access Journals (Sweden)

    Li Y

    2015-07-01

    Full Text Available Yongfeng Li,1,* Yaping Qi,2,* Qi Gao,3,* Qiang Niu,1 Mingming Shen,2 Qian Fu,1 Kaijin Hu,1 Liang Kong1 1State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, 2Department of Oral and Maxillofacial Surgery, School of Stomatology, the Second Hospital of Hebei Medical University, Shijiazhuang, 3Department of Stomatology, PLA 458 Hospital, Guangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: We developed a hierarchical hybrid micro/nanorough strontium-loaded Ti (MNT-Sr surface fabricated through hydrofluoric acid etching followed by magnetron sputtering and evaluated the effects of this surface on osseointegration. Samples with a smooth Ti (ST surface, micro Ti (MT surface treated with hydrofluoric acid etching, and strontium-loaded nano Ti (NT-Sr surface treated with SrTiO3 target deposited via magnetron sputtering technique were investigated in parallel for comparison. The results showed that MNT-Sr surfaces were prepared successfully and with high interface bonding strength. Moreover, slow Sr release could be detected when the MNT-Sr and NT-Sr samples were immersed in phosphate-buffered saline. In in vitro experiments, the MNT-Sr surface significantly improved the proliferation and differentiation of osteoblasts compared with the other three groups. Twelve weeks after the four different surface implants were inserted into the distal femurs of 40 rats, the bone–implant contact in the ST, MT, NT-Sr, and MNT-Sr groups were 39.70%±6.00%, 57.60%±7.79%, 46.10%±5.51%, and 70.38%±8.61%, respectively. In terms of the mineral apposition ratio, the MNT-Sr group increased by 129%, 58%, and 25% compared with the values of the ST, MT, and NT-Sr groups, respectively. Moreover, the maximal pullout force in the MNT-Sr group was 1.12-, 0.31-, and 0.69-fold higher than the values of the ST, MT, and NT

  20. Treatment of polymer surfaces in plasma Part I. Kinetic model

    International Nuclear Information System (INIS)

    Tabaliov, N A; Svirachev, D M

    2006-01-01

    The surface tension of the polymer materials depends on functional groups over its surface. As a result from the plasma treatment the kind and concentration of the functional groups can be changed. In the present work, the possible kinetic reactions are defined. They describe the interaction between the plasma and the polymer surface of polyethylene terephthalate (PET). Basing on these reactions, the systems of differential kinetic equations are suggested. The solutions are obtained analytically for the system kinetic equations at defined circumstances