A concept for a Manned Artificial Gravity Research Ship
Fujii, T.; Sato, T.; Suzuki, M.; Toyobe, M.; Hamami, H.; Tauchi, M.; Nitta, K.; Kibe, S.
1992-07-01
In the first half of the next century, mankind will expand its sphere of existence to the moon and space, and they will stand on Mars and study the other planets. Then, humans will inevitably be required to live for long periods, two years or more, in microgravity and/or low-gravity environments. However, it is well known that such microgravity or low-gravity environments adversely affect human physiology and psychology. The longer the period the greater such effects are, and these can result in serious health problems. To improve living conditions in space by generating artificial gravity will be important to solving these problems. In this paper on the Manned Artificial Gravity Research Ship (MAGRS), which can generate artificial gravity from 0 to 1 G, the authors have reviewed the history of research into artificial gravity and concepts for an artificial gravity station, and have studied the following items for MAGRS: (1) mission and purpose; (2) system breakdown and key elements; (3) spin generation mechanism; (4) truss structure; and (5) physiological and psychological research.
SYSTEM IDENTIFICATION OF SURFACE SHIP DYNAMICS.
The feasibility of applying a Newtonian system identification technique to a nonlinear three degree of freedom system of equations describing the...steering and maneuvering of a surface ship is investigated. The input to the system identification program is provided by both analog and digital
The measurement of surface gravity.
Crossley, David; Hinderer, Jacques; Riccardi, Umberto
2013-04-01
This review covers basic theory and techniques behind the use of ground-based gravimetry at the Earth's surface. The orientation is toward modern instrumentation, data processing and interpretation for observing surface, land-based, time-variable changes to the geopotential. The instrumentation side is covered in some detail, with specifications and performance of the most widely used models of the three main types: the absolute gravimeters (FG5, A10 from Micro-g LaCoste), superconducting gravimeters (OSG, iGrav from GWR instruments), and the new generation of spring instruments (Micro-g LaCoste gPhone, Scintrex CG5 and Burris ZLS). A wide range of applications is covered, with selected examples from tides and ocean loading, atmospheric effects on gravity, local and global hydrology, seismology and normal modes, long period and tectonics, volcanology, exploration gravimetry, and some examples of gravimetry connected to fundamental physics. We show that there are only a modest number of very large signals, i.e. hundreds of µGal (10(-8) m s(-2)), that are easy to see with all gravimeters (e.g. tides, volcanic eruptions, large earthquakes, seasonal hydrology). The majority of signals of interest are in the range 0.1-5.0 µGal and occur at a wide range of time scales (minutes to years) and spatial extent (a few meters to global). Here the competing effects require a careful combination of different gravimeter types and measurement strategies to efficiently characterize and distinguish the signals. Gravimeters are sophisticated instruments, with substantial up-front costs, and they place demands on the operators to maximize the results. Nevertheless their performance characteristics such as drift and precision have improved dramatically in recent years, and their data recording ability and ruggedness have seen similar advances. Many subtle signals are now routinely connected with known geophysical effects such as coseismic earthquake displacements, post
Technical Practices Manual for Surface Ship Stack Design
1976-07-01
publico releas5, Diitribution unlimted. n /___ 1J TECHNICAL PRACTICES MANUAL FOR SURFACE SIP STACK DESIGN, AVSECj R%~m,r 6136- 7-1 i /-Jul 76~\\ / Prepared...British Transport Commission for making deck, but so slowly that they can be regarded as virtually in available a cross-channel ship (ship A) on which the
Free surface flows under compensated gravity conditions
Dreyer, Miachel E
2007-01-01
This book considers the behavior of fluids in a low-gravity environment with special emphasis on application in PMD (propellant management device) systems . In the compensated gravity environment of a spacecraft, the hydrostatic pressure decreases to very low values depending on the residual acceleration, and surface tension forces become dominant. Consequently, surface tension can be used to transport and position liquids if the residual acceleration and the resulting hydrostatic pressure are small compared to the capillary pressure. One prominent application is the use of PMDs in surface-tension satellite tanks. PMDs must ensure that the tank outlet is covered with liquid whenever outflow is demanded. Furthermore, PMDs are used to ensure expulsion and refilling of tanks for liquids and gases for life support, reactants, and experiment supplies. Since most of the PMD designs are not testable on ground and thus rely on analytical or numerical concepts, this book treats three different flow problems with analy...
Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis
Directory of Open Access Journals (Sweden)
Young S. Shin
1998-01-01
Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.
Gravity increased by lunar surface temperature
Keene, James
2013-04-01
Quantitatively large effects of lunar surface temperature on apparent gravitational force measured by lunar laser ranging (LLR) and lunar perigee may challenge widely accepted theories of gravity. LLR data grouped by days from full moon shows the moon is about 5 percent closer to earth at full moon compared to 8 days before or after full moon. In a second, related result, moon perigees were least distant in days closer to full moon. Moon phase was used as proxy independent variable for lunar surface temperature. The results support the prediction by binary mechanics that gravitational force increases with object surface temperature.
Wijnolst, N.; Wergeland, T.
1996-01-01
Shipping is a multi-faceted industry which is rather complex to define from an academic point of view. This book attempts to grasp these complexities and provide the reader with an overview of the main topics and terminology in shipping. The book is based on material from our courses in shipping at
Interaction between motion of free fluid surfaces and ship motions
Lamba, D.; Duse, A.; Varsami, C.; Hanzu-Pazara, R.
2017-08-01
This scientific research presents very important aspects of the liquefying process of bulk cargo carried on board merchant ship which may lead to loss of the intact stability of bulk carriers, with serious consequences for the safety of ships and their crew. We are going to present an analytical modelling, modal analysis and finite elements analysis applied in the hydrodynamics of the ship in the water environment, when realising a complex model 3D of the ship’s bulkheads by modelling with finite volumes with the purpose of emphasising these walls’ behaviour when on board the bulk carrier there is a sloshing effect due to free liquid surfaces in the ship’s cargo holds and we also performed a complex study regarding the structural answer of transverse bulkheads of the cargo holds due to the impact of free liquid surfaces.
Free-Surface Viscous Flow Solution Methods for Ship Hydrodynamics
Wackers, J.; Koren, B.; Raven, H.C.; Ploeg, A. van der; Starke, A.R.; Deng, G.B.; Queutey, P.; Visonneau, M.; Hino, T.; Ohashi, K.
2011-01-01
The simulation of viscous free-surface water flow is a subject that has reached a certain maturity and is nowadays used in industrial applications, like the simulation of the flow around ships. While almost all methods used are based on the Navier-Stokes equations, the discretisation methods for the
Getting the Swing of Surface Gravity
Thomas, Brian C
2012-01-01
Sports are a popular and effective way to illustrate physics principles. Baseball in particular presents a number of opportunities to motivate student interest and teach concepts. Several articles have appeared in this journal on this topic, illustrating a wide variety of areas of physics. In addition, several websites and an entire book are available. In this paper we describe a student-designed project that illustrates the relative surface gravity on the Earth, Sun and other solar-system bodies using baseball. We describe the project and its results here as an example of a simple, fun, and student-driven use of baseball to illustrate an important physics principle.
Solid Surface Combustion at Reduced Gravity
Altenkirch, R. A.
1985-01-01
The spread of a flame in the gas over the surface of a solid combustible involves in an essential way the transfer of heat from the flame to the solid fuel immediately ahead of it. This heat transfer is affected by the character of the gas phase flame, and so the phenomenon of flame spreading under reduced gravity, in which the flow is generated by gasification of the solid combustible, is apt to be different from what occurs under the Earth's normal gravitational acceleration where the flow is largely buoyancy driven. An experiment is being designed for the Middeck of the Space Shuttle to aid us in understanding the process of flame spreading in the absence of a buoyancy driven flow. A chamber approximately 0.35 cu.m. in volume is to contain either a thin sample of a cellulosic material or a thick sample of polymethyl-methacrylate and an oxidizing environment of O2 and N2. Samples will be ignited at one end, and the ensuing flame spread will be filmed. The spread rate can be determined from the films, and surface and gas-phase temperatures just above the surface will also be recorded. These data will help to clarify the mechanism of forward heat transfer in the low gravity flames.
Free-Surface Viscous Flow Solution Methods for Ship Hydrodynamics
WACKERS, Jeroen; Koren, Barry; Raven, H.C.; Van Der Ploeg,, Atze; Starke, A.R.; Deng, G.B.; Queutey, P.; VISONNEAU, Michel; Hino, T.; Ohashi, K
2011-01-01
The simulation of viscous free-surface water flow is a subject that has reached a certain maturity and is nowadays used in industrial applications, like the simulation of the flow around ships. While almost all methods used are based on the Navier-Stokes equations, the discretisation methods for the water surface differ widely. Many of these highly different methods are being used with success. We review three of these methods, by describing in detail their implementation in one particular co...
An observational correlation between stellar brightness variations and surface gravity
Bastien, Fabienne A; Basri, Gibor; Pepper, Joshua
2013-01-01
Surface gravity is one of a star's basic properties, but it is difficult to measure accurately, with typical uncertainties of 25-50 per cent if measured spectroscopically and 90-150 per cent photometrically. Asteroseismology measures gravity with an uncertainty of about two per cent but is restricted to relatively small samples of bright stars, most of which are giants. The availability of high-precision measurements of brightness variations for >150,000 stars provides an opportunity to investigate whether the variations can be used to determine surface gravities. The Fourier power of granulation on a star's surface correlates physically with surface gravity; if brightness variations on timescales of hours arise from granulation, then such variations should correlate with surface gravity. Here we report an analysis of archival data that reveals an observational correlation between surface gravity and the root-mean-square brightness variations on timescales of less than eight hours for stars with temperatures ...
Gravity-capillary free-surface flows
Vanden-Broeck, Jean-Marc
2010-01-01
Free surface problems occur in many aspects of science and of everyday life such as the waves on a beach, bubbles rising in a glass of champagne, melting ice, pouring flows from a container and sails billowing in the wind. Consequently, the effect of surface tension on gravity-capillary flows continues to be a fertile field of research in applied mathematics and engineering. Concentrating on applications arising from fluid dynamics, Vanden-Broeck draws upon his years of experience in the field to address the many challenges involved in attempting to describe such flows mathematically. Whilst careful numerical techniques are implemented to solve the basic equations, an emphasis is placed upon the reader developing a deep understanding of the structure of the resulting solutions. The author also reviews relevant concepts in fluid mechanics to help readers from other scientific fields who are interested in free boundary problems.
Förste, Christoph; Franz, Barthelmes; Svetozar, Petrovic; Biao, Lu; Gunter, Liebsch; Joachim, Schwabe; Jonas, Ågren; Bilker-Koivula, Mirjam; Koivula, Hannu; Ince, Sinem; Scheinert, Mirko
2017-04-01
In 2011 GFZ restarted its activities in gravimetry on moving platforms using a Chekan-AM air/ship gravimeter. Since then various gravity missions have been carried out. One special focus of these campaigns is on the improvement of the geoid in the Baltic Sea region within the framework of the ongoing project "Finalising Surveys for the Baltic Motorways of the Sea" (FAMOS). In this context, GFZ has already conducted four campaigns since 2015 together with several European partners around the Baltic Sea under the project management of the Swedish Maritime Administration (SMA). Further two campaigns per year are planned with the GFZ gravimeter till the end of 2020. FAMOS is supported by the European Commission within its Connecting Europe Facility (CET). Another focus is on testing the power and limits of airborne gravimetry onboard the German High Altitude and LOng Range (HALO) research aircraft. An appropriate airborne campaign using this aircraft has been carried out in 2012 over Italy in the framework of the project GEOHALO which was a joint project of several universities and research institutions. The main purpose was to check the performance of the equipment on this aircraft, aiming at the plan to cover the gravity data gap over Antarctica. The presentation gives an overview of these campaigns, summarizes our experiences, especially with respect to processing of the collected data, and shows results from these missions.
Altimetry, ship gravimetry, and the general circulation of the North Atlantic
Zlotnicki, Victor; Marsh, James G.
1989-01-01
Gravity accelerations estimated from satellite altimetric mean sea surfaces (Seasat and Geos-3) are compared to ship gravity measurements. Ship gravity are closer to an estimate based on least squares collocation, orbit perturbations, altimetry and terrestrial gravity than to an estimate based on Fourier transforms, orbit perturbations and altimetry only. Both altimetric estimates yield a smoothed picture of the geostrophic component of sea surface currents in the North Atlantic when gravity acceleration data from only nine cruises are subtracted from the altimetric gravity.
Unexpectedly Large Surface Gravities for Acoustic Horizons?
Liberati, S; Visser, M; Liberati, Stefano; Sonego, Sebastiano; Visser, Matt
2000-01-01
Acoustic black holes are fluid dynamic analogs of general relativistic black holes, wherein the behaviour of sound waves in a moving fluid acts as an analog for scalar fields propagating in a gravitational background. Acoustic horizons possess many of the properties more normally associated with the event horizons of general relativity, up to and including Hawking radiation. They have received much attention because it would seem to be much easier to experimentally create an acoustic horizon than to create an event horizon. We wish to point out some potential difficulties (and opportunities) in actually setting up an experiment that possesses an acoustic horizon. We show that in zero-viscosity, stationary fluid flow with generic boundary conditions, the creation of an acoustic horizon is accompanied by a formally infinite ``surface gravity'', and a formally infinite Hawking flux. Only by applying a suitable non-constant external body force, and for very specific boundary conditions on the flow, can these quan...
Vincent, S.; Marsh, J. G.
1973-01-01
A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.
Gravity Disturbances at Altitude and at the Surface
Damiani, T.
2013-12-01
The U.S. National Geodetic Survey (NGS) is committed to redefining the nation's vertical datum by 2022. In support of the new vertical datum, NGS is collecting high-altitude airborne gravity data across the United States through the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project. GRAV-D (as of August 2013) has publicly released full-field gravity products from these high-altitude flights for >15% of the country. The full-field gravity (FFG) at altitude product is versatile because it allows the user to calculate any disturbance or anomaly that is appropriate for their application- based on any datum and height above the datum desired. However, conventional geophysical methods for calculating gravity disturbances assume very low altitudes above the ellipsoid. This presentation addresses the differences between several conventional and non-conventional methods for calculating gravity disturbances, from the perspective of altitudes as high as 40,000 ft. The methods for calculating a disturbance at altitude apply different corrections to the FFG for: 1. Normal gravity at the surface of the ellipsoid and the free-air reduction (1st order, 2nd order, and higher order approximations); 2. Normal gravity at the surface of the ellipsoid, upward continued to flight height; 3. Normal gravity at flight altitude above the ellipsoid from Heiskanen and Moritz (1967)'s closed equations; 4. Normal gravity at flight altitude above the ellipsoid from spherical and ellipsoidal harmonic coefficients of the ellipsoid. Initial results indicate that these methods produce gravity disturbances that are 10s of mGals different at altitude. This presentation will also investigate disturbances calculated at the surface of the ellipsoid, by downward continuing the results of the above methods. Gravity disturbances continued from airborne flight heights down to the surface are desired for comparison to terrestrial and marine gravity data.
FLOW NOISE MEASUREMENT OF SURFACE SHIP WITH TOWED MODEL
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this article, a new acoustic test technique using towed model was introduced to study flow noise caused by a surface ship. The project of model test was be properly designed for acoustic signal collecting and with the help of appropriate data processing method different kinds of acoustic sources could be successfully identified. A lot of work about fuid noise could be carried on with the towed model, and the noise corresponding to low frequency which is especially interested for its long distance radiating with small attenuation could also be studied in this way.
Asteroseismic surface gravity for evolved stars
Hekker, S; Mosser, B; Kallinger, T; Basu, Sarbani; Chaplin, W J; Stello, D
2013-01-01
Context: Asteroseismic surface gravity values can be of importance in determining spectroscopic stellar parameters. The independent log(g) value from asteroseismology can be used as a fixed value in the spectroscopic analysis to reduce uncertainties due to the fact that log(g) and effective temperature can not be determined independently from spectra. Since 2012, a combined analysis of seismically and spectroscopically derived stellar properties is ongoing for a large survey with SDSS/APOGEE and Kepler. Therefore, knowledge of any potential biases and uncertainties in asteroseismic log(g) values is now becoming important. Aims: The seismic parameter needed to derive log(g) is the frequency of maximum oscillation power (nu_max). Here, we investigate the influence of nu_max derived with different methods on the derived log(g) values. The large frequency separation between modes of the same degree and consecutive radial orders (Dnu) is often used as an additional constraint for the determination of log(g). Addit...
2015-09-30
Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave
Ride control of surface effect ships using distributed control
Directory of Open Access Journals (Sweden)
Asgeir J. Sørensen
1994-04-01
Full Text Available A ride control system for active damping of heave and pitch accelerations of Surface Effect Ships (SES is presented. It is demonstrated that distributed effects that are due to a spatially varying pressure in the air cushion result in significant vertical vibrations in low and moderate sea states. In order to achieve a high quality human comfort and crew workability it is necessary to reduce these vibrations using a control system which accounts for distributed effects due to spatial pressure variations in the air cushion. A mathematical model of the process is presented, and collocated sensor and actuator pairs are used. The process stability is ensured using a controller with appropriate passivity properties. Sensor and actuator location is also discussed. The performance of the ride control system is shown by power spectra of the vertical accelerations obtained from full scale experiments with a 35 m SES.
Study on the Digital Manufacturing System of Ship Model Surface
Institute of Scientific and Technical Information of China (English)
ZHU Linsen; TANG Yangping; BIN Hongzan; FENG Qingxiu; XIONG Zhengpeng
2006-01-01
Because a ship model surface (SMS) is a large double-curved 3-D surface, the machining efficiency of the current handcraft manufacturing method are very low, and the precision is difficult to control also. In order to greatly improve the machining efficiency and precision of SMS, based on the CAD/CAM/CNC technology, this paper proposed a model of SMS digital manufacturing system, which is composed of five functional modules (preprocess module, CAD module, CAM module, post-process module and CNC module), and a twin-skeg SMS as an example, the key technologies & design principle of the modules were investigated also. Based on the above research works, the first set of 4-axis SMS Digital Manufacturing System in China has been successfully developed, which can reduce the machining time of the twin-skeg SMS from 30 working days needed for the current handcrafting manufacturing method to 8 hours now, and which can control more effectively the precision of SMS also.
Naval Survivability and Susceptibility Reduction Study-Surface Ship
2012-09-01
magnetic steels High- alloy steel Corrosion resistant alloys 32 Titanium alloys Aluminum alloys Metal-based composite materials...the ferromagnetic signature. As ships are built under the influence of the Earth’s magnetic field [133], the ferrous materials used in the...techniques, the magnetic field of a ship can be reduced by passive and active means. The passive reduction could be achieved by using less ferrous
Conditions on holographic entangling surfaces in higher curvature gravity
Energy Technology Data Exchange (ETDEWEB)
Erdmenger, Johanna; Flory, Mario; Sleight, Charlotte [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805, Munich (Germany)
2014-06-17
We study the extremal surfaces of functionals recently proposed for the holographic calculation of entanglement entropy in general higher curvature theories, using New Massive gravity and Gauss-Bonnet gravity as concrete examples. We show that the entropy functionals admit closed extremal surfaces, which for black hole backgrounds can encircle the event horizon of the black hole. In the examples considered, such closed surfaces correspond to a lower value of the entropy functional than expected from CFT calculations, implying a seeming mismatch between the bulk and boundary calculations. For Lorentzian settings we show that this problem can be resolved by imposing a causality constraint on the extremal surfaces. The possibility of deriving conditions from an alternative conical boundary condition method as proposed by Lewkowycz and Maldacena is explored.
Conditions on holographic entangling surfaces in higher curvature gravity
Erdmenger, Johanna; Flory, Mario; Sleight, Charlotte
2014-06-01
We study the extremal surfaces of functionals recently proposed for the holographic calculation of entanglement entropy in general higher curvature theories, using New Massive gravity and Gauss-Bonnet gravity as concrete examples. We show that the entropy functionals admit closed extremal surfaces, which for black hole backgrounds can encircle the event horizon of the black hole. In the examples considered, such closed surfaces correspond to a lower value of the entropy functional than expected from CFT calculations, implying a seeming mismatch between the bulk and boundary calculations. For Lorentzian settings we show that this problem can be resolved by imposing a causality constraint on the extremal surfaces. The possibility of deriving conditions from an alternative conical boundary condition method as proposed by Lewkowycz and Maldacena is explored.
Steady periodic gravity waves with surface tension
Walsh, Samuel
2009-01-01
In this paper we consider two-dimensional, stratified, steady water waves propagating over an impermeable flat bed and with a free surface. The motion is assumed to be driven by capillarity (that is, surface tension) on the surface and a gravitational force acting on the body of the fluid. We prove the existence of global continua of classical solutions that are periodic and traveling. This is accomplished by first constructing a 1-parameter family of laminar flow solutions, $\\mathcal{T}$, then applying bifurcation theory methods to obtain local curves of small amplitude solutions branching from $\\mathcal{T}$ at an eigenvalue of the linearized problem. Each solution curve is then continued globally by means of a degree theoretic theorem in the spirit of Rabinowitz. Finally, we complement the degree theoretic picture by proving an alternate global bifurcation theorem via the analytic continuation method of Dancer.
Study on a PEFC propulsion system for surface ships
Energy Technology Data Exchange (ETDEWEB)
Ono, Ryuta [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Tsuchiyama, Syozo [Shipbuilding Research Association, Tokyo (Japan)
1996-12-31
This Abstract summarizes a series of presentations to the present Seminar, covering various aspects of a 1,000 kW PEFC system envisaged as propulsion system to equip a 1,500 DWT Cargo vessel, reported under the following titles: (1) Performance Evaluation of 1kW PEFC (2) Performance of Catalysts for CO Removal by Methanation Reaction (3) Development of a Selective Oxidation CO Removal Reactor for Methanol Reformate Gas (4) Experimental Investigation on a Turbine Compressor for Air Supply System of a Fuel Cell (5) Dynamic Simulator for PEFC Propulsion Plant (6) Power Feature Required for PEFC Powered Electric Propulsion Ship The purpose of this study is to identify subjects requiring further development toward the realization of a practical fuel cell system to power ships.
Study on a PEFC propulsion system for surface ships
Energy Technology Data Exchange (ETDEWEB)
Ono, Ryuta [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Tsuchiyama, Syozo [Shipbuilding Research Association, Tokyo (Japan)
1996-12-31
This Abstract summarizes a series of presentations to the present Seminar, covering various aspects of a 1,000 kW PEFC system envisaged as propulsion system to equip a 1,500 DWT Cargo vessel, reported under the following titles: (1) Performance Evaluation of 1kW PEFC (2) Performance of Catalysts for CO Removal by Methanation Reaction (3) Development of a Selective Oxidation CO Removal Reactor for Methanol Reformate Gas (4) Experimental Investigation on a Turbine Compressor for Air Supply System of a Fuel Cell (5) Dynamic Simulator for PEFC Propulsion Plant (6) Power Feature Required for PEFC Powered Electric Propulsion Ship The purpose of this study is to identify subjects requiring further development toward the realization of a practical fuel cell system to power ships.
Dispersion relation and surface gravity of universal horizons
Ding, Chikun
2016-01-01
In Einstein-aether theory, violating Lorentz invariance permits some super-luminal communications, and the universal horizon can trap excitations traveling at arbitrarily high velocities. To better understand the nature of these universal horizons, we use ray tracing method to study their surface gravity in charged Einstein-aether black hole spacetime. Instead of the previous result in Ref. [Phys. Rev. D 89, 064061], our results show that the surface gravity of the universal horizon is dependent on the specific dispersion relation, $\\kappa_{UH}=2(z-1)\\kappa_{uh}/z$, where $z$ denotes the power of the leading term in the superluminal dispersion relation, characterizing different species of particles. And the associated Hawking temperatures also are different with $z$. These findings, which coincide with those in Ref. [arXiv: 1512.01900] derived by the tunneling method, provide a full understanding of black hole thermodynamics in Lorentz-violating theories.
Dispersion relation and surface gravity of universal horizons
Ding, ChiKun; Liu, ChangQing
2017-05-01
In Einstein-aether theory, violating Lorentz invariance permits some super-luminal communications, and the universal horizon can trap excitations traveling at arbitrarily high velocities. To better understand the nature of these universal horizons, we first modify the ray tracing method, and then use it to study their surface gravity in charged Einstein-aether black hole spacetime. Instead of the previous result by Cropp et al., our results show that the surface gravity of the universal horizon is dependent on the specific dispersion relation, K UH = 2( z - 1) K uh/ z, where z denotes the power of the leading term in the superluminal dispersion relation, characterizing different species of particles. And the associated Hawking temperatures also are different with z. These findings, which coincide with those derived by the tunneling method, provide some full understanding of black hole thermodynamics in Lorentz-violating theories.
Electric Power Load Analysis (EPLA) for Surface Ships
2012-09-17
ESM can be based on a host of technologies to include batteries, flywheels , and ultra-capacitors. Energy storage can be provided for use in a...electrical generation, energy storage , and power conversion components and equipment and current requirements for electrical distribution equipment and...Demand factor 4 3.7 Demand power 4 3.8 Electric and propulsion plant concept of operations 4 3.9 Emergency ship control 4 3.10 Energy storage
Wilson-Bappu Effect: Extended to Surface Gravity
Park, Sunkyung; Lee, Jeong-Eun; Lee, Sang-Gak
2013-01-01
Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (Mv) and the width of the Ca II K emission line for late-type stars in 1957. Here, we revisit the Wilson-Bappu relationship (hereafter, WBR) to claim that WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high resolution spectra of 125 late-type stars, which were obtained with Bohyunsan Optical Echelle Spectrograph (BOES) and adopted from the UVES archive. Based on our measurement of the emission line width (W), we have obtained a WBR of Mv = 33.76 - 18.08 logW. In order to extend the WBR to be a surface gravity indicator, the stellar atmospheric parameters such as effective temperature (Teff), surface gravity (logg), metallicity ([Fe/H]), and micro-turbulence ($\\xi_{tur}$) have been derived from the self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance anal...
Adaptive Path Control of Surface Ships in Restricted Waters.
1980-08-01
about the rudder model included in eq. (11), we assume exact knowledge of the rudder angle. Astrom and K9llstr6m18 note that all sensors have...properties of the ship o 11 and the control loop. Further, Astrom and Wittenmark have noted the fol- lowing conditions as necessary for the convergence...Symposium, VeL. 4, Annapolis, MD., Oct. 30-Nov. 3, 1978, pp. P 1-1 to P 1-13. 1-. Astrom , K.J., "Some Aspwcts, of the Control of Large Tankers
Gaia FGK Benchmark Stars: Effective temperatures and surface gravities
Heiter, U; Gustafsson, B; Korn, A J; Soubiran, C; Thévenin, F
2015-01-01
Large Galactic stellar surveys and new generations of stellar atmosphere models and spectral line formation computations need to be subjected to careful calibration and validation and to benchmark tests. We focus on cool stars and aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of different metallicities. The goal was to determine the effective temperature and the surface gravity independently from spectroscopy and atmospheric models as far as possible. Fundamental determinations of Teff and logg were obtained in a systematic way from a compilation of angular diameter measurements and bolometric fluxes, and from a homogeneous mass determination based on stellar evolution models. The derived parameters were compared to recent spectroscopic and photometric determinations and to gravity estimates based on seismic data. Most of the adopted diameter measurements have formal uncertainties around 1%, which translate into uncertainties in effective temperature of 0.5%. The measurements of bol...
A finite difference model for free surface gravity drainage
Energy Technology Data Exchange (ETDEWEB)
Couri, F.R.; Ramey, H.J. Jr.
1993-09-01
The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells in the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.
2010-06-01
Using Polymer Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase Fuel Efficiency by Douglas M. Kroll B.S...Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase Fuel Efficiency 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Using Polymer Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase
Observation of resonant interactions among surface gravity waves
Bonnefoy, F; Michel, G; Semin, B; Humbert, T; Aumaître, S; Berhanu, M; Falcon, E
2016-01-01
We experimentally study resonant interactions of oblique surface gravity waves in a large basin. Our results strongly extend previous experimental results performed mainly for perpendicular or collinear wave trains. We generate two oblique waves crossing at an acute angle, while we control their frequency ratio, steepnesses and directions. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory with no fitting parameter. Off-resonance experiments are also reported and the relevant theoretical analysis is conducted and validated.
Institute of Scientific and Technical Information of China (English)
Tong-chun LI; Dan-dan LI; Zhi-qiang WANG
2010-01-01
In this study,the limit state equation for tensile reliability analysis of the foundation surface of a gravity dam was established.The possible crack length was set as the action effect and allowable crack length was set as the resistance in the limit state.The nonlinear FEM was used to obtain the crack length of the foundation surface of the gravity dam,and the linear response surface method based on the orthogonal test design method was used to calculate the reliability,providing a reasonable and simple method for calculating the reliability of the serviceability limit state.The Longtan RCC gravity dam was chosen as an example.An orthogonal test,including eleven factors and two levels,was conducted,and the tensile reliability was calculated.The analysis shows that this method is reasonable.
A Granulation "Flicker"-based Measure of Stellar Surface Gravity
Bastien, Fabienne A; Basri, Gibor; Pepper, Joshua
2015-01-01
In Bastien et al. (2013) we found that high quality light curves, such as those obtained by Kepler, may be used to measure stellar surface gravity via granulation-driven light curve "flicker". Here, we update and extend the relation originally presented in Bastien et al. (2013) after calibrating flicker against a more robust set of asteroseismically derived surface gravities. We describe in detail how we extract the flicker signal from the light curves, including how we treat phenomena, such as exoplanet transits and shot noise, that adversely affect the measurement of flicker. We examine the limitations of the technique, and, as a result, we now provide an updated treatment of the flicker-based logg error. We briefly highlight further applications of the technique, such as astrodensity profiling or its use in other types of stars with convective outer layers. We discuss potential uses in current and upcoming space-based photometric missions. Finally, we supply flicker-based logg values, and their uncertainti...
2015-09-30
1 A multiscale nested modeling framework to simulate the interaction of surface gravity waves with nonlinear internal gravity waves...Minnesota LONG-TERM GOALS Our long-term goal is to develop a multiscale nested modeling framework that simulates, with the finest resolution...frameworks such as the proposed HYCOM-LZSNFS-SUNTANS-LES nested model are crucial for understanding multiscale processes that are unresolved, and hence
2010-12-21
... \\1\\ OAQPS Contact \\2\\ Shipbuilding and Ship Repair Mr. Leonard Lazarus, Ms. J. Kaye (Surface Coating). (202) 564-6369, Whitfield, (919) lazarus.leonard@epa 541-2509, .gov. whitfield.kaye@epa.gov Wood Furniture Manufacturing Mr. Leonard Lazarus, Ms. J. Kaye Operations. (202) 564-6369, Whitfield,...
Gamow, George
2003-01-01
A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw
Tong-chun LI; Li, Dan-Dan; Wang, Zhi-Qiang
2010-01-01
In the paper, the limit state equation of tensile reliability of foundation base of gravity dam is established. The possible crack length is set as action effect and the allowance crack length is set as resistance in this limit state. The nonlinear FEM is applied to obtain the crack length of foundation base of gravity dam, and linear response surface method based on the orthogonal test design method is used to calculate the reliability,which offered an reasonable and simple analysis method t...
Reliablity analysis of gravity dams by response surface method
Humar, Nina; Kryžanowski, Andrej; Brilly, Mitja; Schnabl, Simon
2013-04-01
A dam failure is one of the most important problems in dam industry. Since the mechanical behavior of dams is usually a complex phenomenon existing classical mathematical models are generally insufficient to adequately predict the dam failure and thus the safety of dams. Therefore, numerical reliability methods are often used to model such a complex mechanical phenomena. Thus, the main purpose of the present paper is to present the response surface method as a powerful mathematical tool used to study and foresee the dam safety considering a set of collected monitoring data. The derived mathematical model is applied to a case study, the Moste dam, which is the highest concrete gravity dam in Slovenia. Based on the derived model, the ambient/state variables are correlated with the dam deformation in order to gain a forecasting tool able to define the critical thresholds for dam management.
The approach to gravity as a theory of embedded surface
Sheykin, A A
2014-01-01
We study the approach to gravity in which our curved spacetime is considered as a surface in a flat ambient space of higher dimension (the embedding theory). The dynamical variable in this theory is not a metric but an embedding function. The Euler-Lagrange equations for this theory (Regge-Teitelboim equations) are more general than the Einstein equations, and admit "extra solutions" which do not correspond to any Einsteinian metric. The Regge-Teitelboim equations can be explicitly analyzed for the solutions with high symmetry. We show that symmetric embeddings of a static spherically symmetric asymptotically flat metrics in a 6-dimensional ambient space do not admit extra solutions of the vacuum Regge-Teitelboim equations. Therefore in the embedding theory the solutions with such properties correspond to the exterior Schwarzchild metric.
Magnetoacoustic surface gravity waves at a spherical interface
Ballai, I.; Forgács-Dajka, E.; Douglas, M.
2011-03-01
Aims: The plasma structured by magnetic fields in the solar atmosphere is a perfect medium for the propagation of guided magnetic and magnetoacoustic waves. Geometrical restriction of wave propagation is known to confer a dispersive character for waves. In addition, waves propagating along discontinuities in the medium are known to remain localized. As an extension to theories of guided waves in magnetic slabs and cylinders under solar and stellar conditions, we aim to study the propagation of magnetoacoustic-gravity waves at a spherical interface in the low solar corona (considered here as a density discontinuity), modelling global waves recently observed in the corona in EUV wavelengths. Methods: Using conservation laws at the interface we derive the dispersion relation in spherical geometry with a radially expanding magnetic field in the presence of gravitational stratification. The obtained dispersion relation describing fast magnetoacoustic-gravity surface waves is derived using an approximative method taking into account that propagation takes place near the solar surface. Results: Theoretical results obtained in the present study are applied to investigate the propagation of EIT waves in the low corona. The frequency of waves is shown to increase with decreasing density contrast at the interface. We also show that, for a given azimuthal wavenumber, the magnetic field has a very small effect on the value of the frequency of waves. When plotted against the location of the interface (in the radial direction) the frequency varies inversely proportional to the distance, while for a fixed density ratio and location of the interface the frequency is obtained to be defined in a very narrow region.
Ship hull plate processing surface fairing with constraints based on B-spline
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plane curve fairing. The algorithm can be applied to global and local curve fairing. It can constrain the perturbation range of the control points and the shape variation of the curve, and get a better fairing result in plane curves. In this paper, a new fairing algorithm with constraints for curves and surfaces in space is presented. Then this method is applied to the experiments of ship hull plate processing surface. Finally numerical results are obtained to show the efficiency of this method.
Turbulence-particle interactions under surface gravity waves
Paskyabi, Mostafa Bakhoday
2016-11-01
The dispersion and transport of single inertial particles through an oscillatory turbulent aquatic environment are examined numerically by a Lagrangian particle tracking model using a series of idealised test cases. The turbulent mixing is incorporated into the Lagrangian model by the means of a stochastic scheme in which the inhomogeneous turbulent quantities are governed by a one-dimensional k- ɛ turbulence closure scheme. This vertical mixing model is further modified to include the effects of surface gravity waves including Coriolis-Stokes forcing, wave breaking, and Langmuir circulations. To simplify the complex interactions between the deterministic and the stochastic phases of flow, we assume a time-invariant turbulent flow field and exclude the hydrodynamic biases due to the effects of ambient mean current. The numerical results show that the inertial particles acquire perturbed oscillations traced out as time-varying sinking/rising orbits in the vicinity of the sea surface under linear and cnoidal waves and acquire a non-looping single arc superimposed with the high-frequency fluctuations beneath the nonlinear solitary waves. Furthermore, we briefly summarise some recipes through the course of this paper on the implementation of the stochastic particle tracking models to realistically describe the drift and suspension of inertial particles throughout the water column.
Directory of Open Access Journals (Sweden)
Pengju Yang
2016-01-01
Full Text Available Based on the polarimetric scattering model of second-order small-slope approximation (SSA-II with tapered wave incidence for reducing the edge effect caused by limited surface size, monostatic and bistatic polarimetric scattering signatures of two-dimensional dielectric rough sea surface with a ship-induced Kelvin wake is investigated in detail by comparison with those of sea surface without ship wake. The emphasis of this paper is on an investigation of depolarized scattering and enhanced backscattering of sea surface with a ship wake that changes the sea surface geometric structure especially for low wind conditions. Numerical simulations show that in the plane of incidence rough sea surface scattering is dominated by copolarized scattering rather than cross-polarized scattering and that under low wind conditions a larger ship speed gives rise to stronger enhanced backscattering and enhanced depolarized scattering. For both monostatic and bistatic configuration, simulation results indicate that electromagnetic scattering signatures in the presence of a ship wake dramatically differ from those without ship wake, which may serve as a basis for the detection of ships in marine environment.
Gravity field, geoid and ocean surface by space techniques
Anderle, R. J.
1978-01-01
Knowledge of the earth's gravity field continued to increase during the last four years. Altimetry data from the GEOS-3 satellite has provided the geoid over most of the ocean to an accuracy of about one meter. Increasing amounts of laser data has permitted the solution for 566 terms in the gravity field with which orbits of the GEOS-3 satellite have been computed to an accuracy of about one to two meters. The combination of satellite tracking data, altimetry and gravimetry has yielded a solution for 1360 terms in the earth's gravity field. A number of problems remain to be solved to increase the accuracy of the gravity field determination. New satellite systems would provide gravity data in unsurveyed areas and correction for topographic features of the ocean and improved computational procedures together with a more extensive laser network will considerably improve the accuracy of the results.
Evaluation of an ATP Assay to Quantify Bacterial Attachment to Surfaces in Reduced Gravity
Birmele, Michele N.; Roberson, Luke B.; Roberts, Michael S.
2010-01-01
Aim: To develop an assay to quantify the biomass of attached cells and biofilm formed on wetted surfaces in variable-gravity environments. Methods and Results: Liquid cultures of Pseudomonas aeruginosa were exposed to 30-35 brief cycles of hypergravity (ATP luminescent assay accurately reflected cell physiology compared to both cultivation-based and direct-count microscopy analyses. Cells exposed to variable gravity had more than twice as much intracellular ATP as control cells exposed only to normal Earth gravity.
DEFF Research Database (Denmark)
Wang, Xueting; Olsen, S. M.; Andres, E.
in their newly applied conditions. The effects of water absorption of newly applied antifouling coatings on frictional resistance were measured. A flexible rotor with artificial welding seams on its periphery has been designed and constructed to estimate the influence of welding seams on drag resistance. Both......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...... the density of welding seams (number per 5 m ship side) and the height of welding seams had a significant effect on drag resistance....
On singularities of capillary surfaces in the absence of gravity
Directory of Open Access Journals (Sweden)
V. Roytburd
1983-01-01
trapezoidal domains in the absence of gravity when the boundary contact angle declines from 90° to some critical value. We also discuss a result on the behavior of solutions in more general domains that confirms numerical calculations.
Ship Appearance Optimal Design on RCS Reduction Using Response Surface Method and Genetic Algorithms
Institute of Scientific and Technical Information of China (English)
YANG De-qing; GUO Feng-jun
2008-01-01
Radar cross section (RCS) reduction technologies are very important in survivability of the militarynaval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scatteredenergy from one angular region of interest in space to another region of little interest. To decrease the scatteringelectromagnetic signals from ship scientifically, optimization methods should be introduced in shaping design.Based on the assumption of the characteristic section design method, mathematical formulations for optimalshaping design were established. Because of the computation-intensive analysis and singularity in shapingoptimization, the response surface method (RSM) combined genetic algorithm (GA) was proposed. The poly-nomial response surface method was adopted in model approximation. Then genetic algorithms were employedto solve the surrogate optimization problem. By comparison RCS of the conventional and the optimal design,the superiority and effectiveness of proposed design methodology were verified.Ky words: radar cross section (RCS); characteristic section design method; response surface method; genetic algorithm (GA) was proposed. The polynomial response surface method was adopted in model approximation. Then genetic algorithms were employed to solve the surrogate optimization problem. By comparison RCS of the conventional and the optimal design, the superiority and effectiveness of proposed design methodology were verified.
Redic, Kimberly A; Fang, Kayleen; Christen, Catherine; Chaffee, Bruce W
2016-11-17
This study was conducted to determine whether there is contamination on exterior drug packaging using shipping totes from the distributor and carousel storage bins as surrogate markers of external packaging contamination. A two-part study was conducted to measure the presence of 5-fluorouracil, ifosfamide, cyclophosphamide, docetaxel and paclitaxel using surrogate markers for external drug packaging. In Part I, 10 drug distributor shipping totes designated for transport of hazardous drugs provided a snapshot view of contamination from regular use and transit in and out of the pharmacy. An additional two totes designated for transport of non-hazardous drugs served as controls. In Part II, old carousel storage bins (i.e. those in use pre-study) were wiped for snapshot view of hazardous drug contamination on storage bins. New carousel storage bins were then put into use for storage of the five tested drugs and used for routine storage and inventory maintenance activities. Carousel bins were wiped at time intervals 0, 8, 16 and 52 weeks to measure surface contamination. Two of the 10 hazardous shipping totes were contaminated. Three of the five-old carousel bins were contaminated with cyclophosphamide. One of the old carousel bins was also contaminated with ifosfamide. There were no detectable levels of hazardous drugs on any of the new storage bins at time 0, 8 or 16 weeks. However, at the Week 52, there was a detectable level of 5-FU present in the 5-FU carousel bin. Contamination of the surrogate markers suggests that external packaging for hazardous drugs is contaminated, either during the manufacturing process or during routine chain of custody activities. These results demonstrate that occupational exposure may occur due to contamination from shipping totes and storage bins, and that handling practices including use of personal protective equipment is warranted. © The Author(s) 2016.
Random surfaces, solvable lattice models and discrete quantum gravity in two dimensions
Energy Technology Data Exchange (ETDEWEB)
Kostov, I.K. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique)
1989-07-01
We give a review of the analytical results concerning dynamically triangulated surfaces and statistical models on a planar random lattice. The critical behaviour of these models is described by conformal field theories coupled to 2d quantum gravity. (orig.).
Trinh, Philippe H
2016-07-01
The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel.
Trinh, Philippe H.
2016-07-01
The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel.
Mean sea surface and gravity investigations using TOPEX/Poseidon altimeter data
Rapp, Richard H.
1991-01-01
From a broad point of view, we will be concerned with studying global ocean circulation patterns on the basis of ocean surface determinations with geoid undulation information. In addition, we will study local variations of the gravity field implied by the altimeter data. These general goals are reflected in the title of our investigation. To meet our general goal, we have defined a number of specific objectives: (1) sea surface topography representation; (2) mean sea surface determination; (3) development of local geoid models; (4) mean sea surface comparisons; (5) sea surface topographic files; and (6) gravity anomaly determination.
Tectonics of the Bay of Bengal: New insights from satellite-gravity and ship-borne geophysical data
Digital Repository Service at National Institute of Oceanography (India)
Subrahmanyam, C.; Thakur, N.K.; Rao, T.G.; Khanna, R.; Ramana, M.V.; Subrahmanyam, V.
the Rajmahal and Sylhet Traps and volcanics in the Bengal and Mahanadi basins, almost on the scale of the Deccan volcanic province along the west coast, can be envisaged taking into account the occurrences of intrusive rocks around the age of 117 Ma. Gravity...
Hu, Ya-Peng; Wu, Xiao-Ning
2014-01-01
Basing the previous paper arXiv:1207.5309, we investigate the probability to find out the bulk viscosity of dual fluid at the finite cutoff surface via gravity/fluid correspondence in Einstein-Maxwell Gravity. We find that if we adopt new conditions to fix the undetermined parameters contained in the stress tensor and charged current of the dual fluid, two new terms could appear in the stress tensor of the dual fluid. One new term is related to the bulk viscosity term, while the other could be related to the perturbation of energy density. In addition, since the parameters contained in the charged current are the same, the charged current is not changed.
Conformal weldings of random surfaces: SLE and the quantum gravity zipper
Sheffield, Scott
2010-01-01
We construct a conformal welding of two Liouville quantum gravity random surfaces and show that the interface between them is a random fractal curve called the Schramm-Loewner evolution (SLE), thereby resolving a variant of a conjecture of Peter Jones. We also demonstrate some surprising symmetries of this construction, which are consistent with the belief that (path decorated) random planar maps have (SLE-decorated) Liouville quantum gravity as a scaling limit. We present several precise conjectures and open questions.
Gravity at sea —A memoir of a marine geophysicist—
TOMODA, Yoshibumi
2010-01-01
A history of studies on the gravity measurements at sea in Japan is reviewed with an emphasis on the contribution of the author. The first successful measurements at sea were made in 1923 by Vening Meinesz in the Netherlands using the pendulum apparatus installed in a submarine. However, the gravity measurements using a submarine are not convenient because the access to a submarine is limited. Professor Chuji Tsuboi made a number of unsuccessful attempts at developing a gravity meter that can be operated on a normal surface ship by reducing the noise by minimizing the motion of the gravity meter through a mechanical design. I have chosen a new approach toward the measurements of gravity on a surface ship by simplifying the mechanical part using a string gravity meter that was installed directly on a vertical gyroscope in combination with the numerical and/or electronic reduction of noises. With this gravity meter TSSG (Tokyo Surface Ship Gravity Meter), we firstly succeeded in measuring gravity at sea onboard a surface ship in July 1961 and the measurements have been extended to the northwestern Pacific and beyond. The results reveal the fine structures of gravity field in and around trenches that provide important clues as to a number of geodynamic issues including the nature of the trench-trench interaction and the interaction of trenches with seamounts. PMID:20948173
An optimal design of wind turbine and ship structure based on neuro-response surface method
Directory of Open Access Journals (Sweden)
Jae-Chul Lee
2015-07-01
Full Text Available The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface. The Response Surface Method (RSM is generally used to predict the system performance in engi-neering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN which is considered as Neuro-Response Surface Method (NRSM. The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II. Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance, we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.
An optimal design of wind turbine and ship structure based on neuro-response surface method
Directory of Open Access Journals (Sweden)
Lee Jae-Chul
2015-07-01
Full Text Available The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface. The Response Surface Method (RSM is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN which is considered as Neuro-Response Surface Method (NRSM. The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II. Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance, we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.
Yuan, Lei; Wu, Han-Song
2010-12-01
A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the problem, the controller was designed by employing the universal approximation property of fuzzy logic system, the advantage of Nussbaum function, and using multiple sliding mode control algorithm based on the recursive technique. In the last step of designing, a nonsingular terminal sliding mode was utilized to drive the last state of the system to converge in a finite period of time, and high-order sliding mode control law was designed to eliminate the chattering and make the system robust. The simulation results showed that the controller designed here could track a desired course fast and accurately. It also exhibited strong robustness peculiarly to system, and had better adaptive ability than traditional PID control algorithms.
Automated Visual Inspection of Ship Hull Surfaces Using the Wavelet Transform
Directory of Open Access Journals (Sweden)
Carlos Fernández-Isla
2013-01-01
Full Text Available A new online visual inspection technique is proposed, based on a wavelet reconstruction scheme over images obtained from the hull. This type of visual inspection to detect defects in hull surfaces is commonly carried out at shipyards by human inspectors before the hull repair task starts. We propose the use of Shannon entropy for automatic selection of the band for image reconstruction which provides a low decomposition level, thus avoiding excessive degradation of the image, allowing more precise defect segmentation. The proposed method here is capable of on-line assisting to a robotic system to perform grit blasting operations over damage areas of ship hulls. This solution allows a reliable and cost-effective operation for hull grit spot blasting. A prototype of the automated blasting system has been developed and tested in the Spanish NAVANTIA shipyards.
Ziegler, Yann; Lambert, Sébastien; Rosat, Séverine; Nurul Huda, Ibnu; Bizouard, Christian
2017-04-01
Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have been shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the intermediate results of the ongoing project of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by the International VLBI Service for geodesy and astrometry (IVS) as the result of a combination of inputs from various IVS analysis centers, and surface gravity data from about 15 SG stations. We address here the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting for nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package, the preliminary estimates of the resonant periods, and the correlations between parameters.
Marsh, J. G.; Koblinsky, C. J.; Lerch, F.; Klosko, S. M.; Robbins, J. W.
1990-01-01
A gravitational model incorporating Seasat altimetry, surface gravimetry, and satellite tracking data has been determined in terms of global spherical harmonics complete to degree and order 50. This model, PGS-3337, uses altimeter data as a dynamic observation of the satellite's height above the sea surface. A solution for the ocean's dynamic topography is recovered simultaneously with the orbit parameters, gravity, and ocean tidal terms. The recovered dynamic topography reveals the global long wavelength circulation of the oceans with a resolution of 2000 km and is very similar to the mean upper ocean dynamic height derived from historical ship observations. The PGS-3337 geoid has an uncertainty of 60 cm rms globally but 25 cm rms over the ocean because of the altimeter measurements. Seasat orbits determined in this solution have an estimated accuracy for the radial position of 20 cm rms. The difference between the altimeter observed sea height and the geoid plus dynamic topography model is 30 cm rms. Contained in these residuals are the sea height variability, as well as errors from the geoid, orbits, tidal models, and altimeter range measurement. This performance level is 2 to 3 times better than that achieved with previous Goddard gravitational models.
Physics at the surface of a star in Eddington-inspired Born-Infeld gravity
Kim, Hyeong-Chan
2013-01-01
We study a phenomenon happening at the surface of a star in Eddington-inspired Born-Infeld (EiBI) gravity. The star is made of particles, which are effectively described by a polytropic fluid. The EiBI theory was known to have a pathology that singularities happen at a star surface. We suggest that the gravitational back-reaction on the particles cures the problem. Strong tidal forces near the (surface) singularity modify the effective equation of state of the particles. The geodesic deviation equations take the form of the Hooke's law with its frequency proportional to the square root of the curvature. Due to the oscillations, a particle collides with a probing wall measuring the pressure more often and increases the pressure. With the modified equation of state, the surface is no longer singular. Therefore, the EiBI gravity is saved from the pathology of surface singularity.
Freely decaying weak turbulence for sea surface gravity waves.
Onorato, M; Osborne, A R; Serio, M; Resio, D; Pushkarev, A; Zakharov, V E; Brandini, C
2002-09-30
We study the long-time evolution of deep-water ocean surface waves in order to better understand the behavior of the nonlinear interaction processes that need to be accurately predicted in numerical models of wind-generated ocean surface waves. Of particular interest are those nonlinear interactions which are predicted by weak turbulence theory to result in a wave energy spectrum of the form of [k](-2.5). We numerically implement the primitive Euler equations for surface waves and demonstrate agreement between weak turbulence theory and the numerical results.
Computation of 3D steady Navier-Stokes flow with free-surface gravity waves
Lewis, M.R.; Koren, B.; Raven, H.C.
2003-01-01
In this paper an iterative method for the computation of stationary gravity-wave solutions is investigated, using a novel formulation of the free-surface (FS) boundary-value problem. This method requires the solution of a sequence of stationary Reynolds-Averaged Navier-Stokes subproblems employing t
Computation of 3D Steady Navier-Stokes Flow with Free-Surface Gravity Waves
Lewis, M.R.; Koren, B.; Raven, H.C.
2003-01-01
In this paper an iterative method for the computation of stationary gravity-wave solutions is investigated, using a novel formulation of the free-surface (FS) boundary-value problem. This method requires the solution of a sequence of stationary Reynolds-Averaged Navier-Stokes subproblems employing t
Directory of Open Access Journals (Sweden)
Cüneyt Ezgi
2015-12-01
Full Text Available Naval surface ships should use thermally driven heating and cooling technologies to continue the Navy’s leadership role in protecting the marine environment. Steam ejector refrigeration (SER or steam ejector heat pump (SEHP systems are thermally driven heating and cooling technologies and seem to be a promising technology to reduce emissions for heating and cooling on board naval surface ships. In this study, design and thermodynamic analysis of a seawater cooled SER and SEHP as an HVAC system for a naval surface ship application are presented and compared with those of a current typical naval ship system case, an H2O-LiBr absorption heat pump and a vapour-compression heat pump. The off-design study estimated the coefficient of performances (COPs were 0.29–0.11 for the cooling mode and 1.29–1.11 for the heating mode, depending on the pressure of the exhaust gas boiler at off-design conditions. In the system operating at the exhaust gas boiler pressure of 0.2 MPa, the optimum area ratio obtained was 23.30.
Collected Experimental Resistance Component and Flow Data for Three Surface Ship Model Hulls
1985-09-01
in alphabetical order: Bulgarian Ship Hydro. Centre (BSHC) Centre Stud, di Tecnica Navale (CETENA) China Ship Scientific Res. Center (CSSRC) David...test in a run. 26 PRACTICAL EXAMPLES 2 Because the sinkage is proportional to V , the differences between the experi- mental a’s at the two
Surface Gravity Data Contribution to the Puerto Rico and U.S. Virgin Islands Geoid Model
Li, X.; Gerhards, C.; Holmes, S. A.; Saleh, J.; Shaw, B.
2015-12-01
The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project provides updated local gravity field information for the XGEOID15 models. In particular, its airborne gravity data in the area of Puerto Rico and U.S. Virgin Islands (PRVI) made substantial improvements (~60%) on the precision of the geoid models at the local GNSS/Leveling bench marks in the target area. Fortunately, PRVI is free of the huge systematic error in the North American Vertical Datum of 1988 (NAVD88). Thus, the airborne contribution was evaluated more realistically. In addition, the airborne data picked up more detailed gravity field information in the medium wavelength band (spherical harmonic degree 200 to 600) that are largely beyond the resolution of the current satellite missions, especially along the nearby ocean trench areas. Under this circumstance (significant airborne contributions in the medium band), local surface gravity data need to be examined more carefully than before during merging with the satellite and airborne information for local geoid improvement, especially considering the well-known systematic problems in the NGS historical gravity holdings (Saleh et al 2013 JoG). Initial tests showed that it is very important to maintain high consistency between the surface data sets and the airborne enhanced reference model. In addition, a new aggregation method (Gerhards 2014, Inverse Problems) will also be tested to optimally combine the local surface data with the reference model. The data cleaning and combining procedures in the target area will be summarized here as reference for future applications.
Gravity Degrees of Freedom on a Null Surface
Hopfmüller, Florian
2016-01-01
A canonical analysis for general relativity is performed on a null surface without fixing the diffeomorphism gauge, and the canonical pairs of configuration and momentum variables are derived. Next to the well-known spin-2 pair, also spin-1 and spin-0 pairs are identified. The boundary action for a null boundary segment of spacetime is obtained, including terms on codimension two corners.
Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface
Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming
2003-01-01
The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.
Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface
Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming
2003-01-01
The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.
Li, Guang-Xing; Burkert, Andreas
2016-09-01
Gravity is believed to be important on multiple physical scales in molecular clouds. However, quantitative constraints on gravity are still lacking. We derive an analytical formula which provides estimates on multiscale gravitational energy distribution using the observed surface density probability distribution function (PDF). Our analytical formalism also enables one to convert the observed column density PDF into an estimated volume density PDF, and to obtain average radial density profile ρ(r). For a region with N_col ˜ N^{-γ _N}, the gravitational energy spectra is E_p(k)˜ k^{-4(1 - 1/γ _N)}. We apply the formula to observations of molecular clouds, and find that a scaling index of -2 of the surface density PDF implies that ρ ˜ r-2 and Ep(k) ˜ k-2. The results are valid from the cloud scale (a few parsec) to around ˜ 0.1 pc. Because of the resemblance the scaling index of the gravitational energy spectrum and the that of the kinetic energy power spectrum of the Burgers turbulence (where E ˜ k-2), our result indicates that gravity can act effectively against turbulence over a multitude of physical scales. This is the critical scaling index which divides molecular clouds into two categories: clouds like Orion and Ophiuchus have shallower power laws, and the amount of gravitational energy is too large for turbulence to be effective inside the cloud. Because gravity dominates, we call this type of cloud g-type clouds. On the other hand, clouds like the California molecular cloud and the Pipe nebula have steeper power laws, and turbulence can overcome gravity if it can cascade effectively from the large scale. We call this type of cloud t-type clouds. The analytical formula can be used to determine if gravity is dominating cloud evolution when the column density PDF can be reliably determined.
Surface Ships: Navy Needs to Revise Its Decommissioning Policy to Improve Future Decision Making
2014-06-01
Island ( LSD 41) class dock-landing ships. Examples of these types of ships are shown in figure 1. Figure 1: Images of a Navy Cruiser and Dock...remaining in 2014, and the LSD 41 class dock-landing ships had, on average, 15 years of expected service life remaining. The Navy’s Battle Force...Amphibious transport dock (LPD 4 class) 1 35 45 Amphibious transport dock (LPD 17 class) 9 40 4 Dock-landing ( LSD 41 class) 8 40 25 Dock-landing
An Internal Wave as a Frequency Filter for Surface Gravity Waves on Water
Lossow, K
2010-01-01
We consider one-dimensional model of the interaction between surface and the internal gravity water waves. The internal wave is modeled by its basic form: a non-dispersive field with a horizontal current that is uniform over all depth, insignificantly affected by the surface waves, while ignoring surface tension and wind growth/decay effects. The depth is infinite. Approximation for the height of the surface wave on the flow by the "elementary quasi stationary" solutions was found. It was shown that the flow acts as a frequency filter for gravitational waves on water.
Energy Technology Data Exchange (ETDEWEB)
Pedrick, A.P.
1971-06-30
This device may be towed behind crude oil tankers and other ships for the purpose of removing oil slicks, or other flotsam, from the surface of the water in which they are buoyant. The device consists of a coil of hose, a substantial part of which can float above the water surface. By operation of controls on the towing ship, a drum of drums may be rotated within the device to payout the coils of hose to such an extent that they take up an arcuate shape at the water surfaces so that by continued forward movement of the towing vessel, oil slicks and other pollutants at the water surface are swept towards the outer ends of the arcuate lengths of hose. From here they may be sucked and pumped into tanks inboard of the towing vessel through lengths of nonbuoyant hose linking the outer ends of the buoyant hose lengths to pumps near the stren of the towing vessel or ship. (1 claim)
The zero gravity curve and surface and radii for geostationary and geosynchronous satellite orbits
Directory of Open Access Journals (Sweden)
Sjöberg L.E.
2017-02-01
Full Text Available A geosynchronous satellite orbits the Earth along a constant longitude. A special case is the geostationary satellite that is located at a constant position above the equator. The ideal position of a geostationary satellite is at the level of zero gravity, i.e. at the geocentric radius where the gravitational force of the Earth equals the centrifugal force. These forces must be compensated for several perturbing forces, in particular for the lunisolar tides. Considering that the gravity field of the Earth varies not only radially but also laterally, this study focuses on the variations of zero gravity not only on the equator (for geostationary satellites but also for various latitudes. It is found that the radius of a geostationary satellite deviates from its mean value of 42164.2 km only within ±2 m, mainly due to the spherical harmonic coefficient J22, which is related with the equatorial flattening of the Earth. Away from the equator the zero gravity surface deviates from the ideal radius of a geosynchronous satellite, and more so for higher latitudes. While the radius of the former surface increases towards infinity towards the poles, the latter decreases about 520 m from the equator to the pole. Tidal effects vary these radii within ±2.3 km.
An enhanced trend surface analysis equation for regional-residual separation of gravity data
Obasi, A. I.; Onwuemesi, A. G.; Romanus, O. M.
2016-12-01
Trend surface analysis is a geological term for a mathematical technique which separates a given map set into a regional component and a local component. This work has extended the steps for the derivation of the constants in the trend surface analysis equation from the popularly known matrix and simultaneous form to a more simplified and easily achievable format. To achieve this, matrix inversion was applied to the existing equations and the outcome was tested for suitability using a large volume of gravity data set acquired from the Anambra Basin, south-eastern Nigeria. Tabulation of the field data set was done using the Microsoft Excel spread sheet, while gravity maps were generated from the data set using Oasis Montaj software. A comparison of the residual gravity map produced using the new equations with its software derived counterpart has shown that the former has a higher enhancing capacity than the latter. This equation has shown strong suitability for application in the separation of gravity data sets into their regional and residual components.
Prospects for Improving Gravity-Fed Surface Irrigation Systems in Mediterranean European Contexts
Directory of Open Access Journals (Sweden)
Daniele Masseroni
2017-01-01
Full Text Available Traditionally, most irrigation practices in Southern Europe have been based on gravity-fed surface irrigation systems. Currently, these systems remain a relevant typology in the European Union (EU member states of the Mediterranean areas, where it is often the only sustainable method for farmers due to the small size of agricultural holdings, their reduced capacity and readiness to invest and the low ratio between yield profits and irrigation costs. In the last several years, in response to European and national directives, surface irrigation has garnered increasing attention at the political and bureaucratic levels due to frequent criticisms of its postulated low efficiency and high water wastage. However, these systems commonly provide a number of ecosystem services and nature-based solutions that increase the positive externalities in different rural socio-ecological contexts and often have the potential to extend these services and provide solutions that are compatible with economical sustainability. This study aims to discuss the prospects for new practices and for the rehabilitation and modernization of the gravity-fed surface irrigation systems in EU Mediterranean areas to enhance water efficiency, thus gaining both economic advantages and environmental benefits. The difficulties, stimuli for improvements and peculiarities of the irrigation water management of four rural environments located in Italy, Spain and Portugal were analyzed and compared to the current state of the gravity-fed surface irrigation systems with hypothetical future improvements achievable by innovative technologies and practices. In these different case studies, the current gravity-fed surface irrigation systems have an obsolete regulatory structure; water-use efficiency is not a driving criterion for the management of the conveyance and distribution canal network, and farmers are not yet adequately encouraged to adopt more efficient gravity-fed irrigation practices
An experimental study on low-velocity low-gravity collisions into granular surfaces
Sunday, C.; Murdoch, N.; Mimoun, D.
2014-07-01
The Japanese Space Agency (JAXA) is scheduled to launch the asteroid sample-return mission, Hayabusa-2, to target body 1999 JU_3 in December 2014 [1]. The spacecraft will arrive at the C-type near-Earth asteroid in mid-2018 and deploy several science payloads to its surface. Among these payloads is a 10-kg lander, the Mobile Asteroid Surface Scout (MASCOT), provided by the German Space Agency (DLR) with cooperation from the Centre National d'Etudes Spatiales (CNES). MASCOT will reach the asteroid's surface with an anticipated impact speed of 10--20 cm/s. In addition to housing four instruments for in-situ science investigation, MASCOT contains a mobility mechanism that will correct its orientation and enable it to ''hop'' to various measurement sites [2]. Based on thermal infrared observations [3,4,5] and previous space missions [6,7], it is strongly believed that 1999 JU_3 is covered by loose regolith. The asteroid's granular surface, in combination with the low surface gravity, makes it difficult to predict the lander's collision behavior from existing theoretical models. However, to ensure that MASCOT can successfully fulfill its mission, it is vital to understand the rebound dynamics of the lander in the asteroid surface environment. The objective of this work, derived from the needs of current and future asteroid missions, is to present an experiment designed to study low-velocity, low-gravity collisions into granular surfaces. The experiment measures the amount of energy lost during impact via a projectile's coefficient of restitution and also the acceleration profile of the projectile during collision. The key challenge to designing an asteroid collision experiment is finding a way to simulate reduced gravity conditions on the Earth so that the prevailing forces in micro-gravity collisions can be reflected in the experimental results. The proposed way to achieve this goal is to let a free-falling projectile impact a surface with a constant downward
On the surface gravity of a Maxwell-dilaton black hole in string theory
Lopez-Monsalvo, C S; Quevedo, H
2012-01-01
The thermodynamics of dirty (Maxwell-Dilaton) black holes has been extensively studied. It has served as a fertile ground to test ideas about temperature through various definitions of surface gravity. In this paper, we make an independent analysis of this black hole solution in both, Einstein and Jordan, frames. We show that the conformal transformation between these two frames is not well defined in the extremal limit. We explore a set of definitions for surface gravity and observe the different predictions they make for the near extremal configuration of this black hole. Finally, motivated by the singularity structure in the interior of the event horizon in the Jordan frame, we use a holographic argument to remove the micro-states from the disconnected region of this solution. In this manner, we obtain a temperature which agrees with the standard results in the non-extremal regime, and which has a desirable behaviour around the extremal configurations.
A Correlation Between Stellar Activity and the Surface Gravity of Hot Jupiters
Hartman, Joel D
2010-01-01
Recently Knutson et al. (2010) have demonstrated a correlation between the presence of temperature inversions in the atmospheres of hot Jupiters, and the chromospheric activity levels of the host stars. Here we show that there is also a correlation, with greater than 99.5% confidence, between the surface gravity of hot Jupiters and the activity levels of the host stars, such that high surface gravity planets tend be found around high activity stars. We also find a less significant positive correlation between planet mass and chromospheric activity, but no significant correlation is seen between planet radius and chromospheric activity. We consider the possibility that this may be due to an observational bias against detecting lower mass planets around higher activity stars, but conclude that this bias is only likely to affect the detection of planets much smaller than those considered here. Finally, we speculate on physical origins for the correlation, including the possibility that the effect of stellar inso...
Kumagai, Ichiro; Murai, Yuichi; Takahashi, Yoshiaki; Sakamaki, Haruki; Tsukahara, Takahiro; Ozaki, Tsubasa; Tasaka, Yuji; Oishi, Yoshihiko
2014-04-01
We have invented two types of hydrofoil bubble generator for drag reduction of ship that can reduce the energy for air bubble generation on the ship hull. Their fundamental process of air entrainment and subsequent bubble generation by the hydrofoil facility are described by a simple fluid dynamic model. We experimentally determined the critical velocity of the bubble generation and the relationship between air volume flow rate and the hydrofoil velocity. The magnitude of the negative pressure produced above the hydrofoil, which is a driving force of the air entrainment, depends on the shape of the hydrofoil, gap ratio (normalized depth of the hydrofoil), Reynolds number, Froude number, and angle of attack. Recent applications of the drag-reduction technology with air bubbles to a ship save about 10%-15% of the total energy consumption of the ship. The device works as a self-priming pump when the draft of the ship is shallow (hydrofoil depends on the flow condition around the hydrofoil, proper operation of compressors is necessary. We also show experimental results on optimization of hydrofoils to enhance the hydrofoil performance of air entrainment and air bubble generation.
Weiss, P.; Gardette, B.; Chirié, B.; Collina-Girard, J.; Delauze, H. G.
2012-12-01
Extravehicular activity (EVA) of astronauts during space missions is simulated nowadays underwater in neutral buoyancy facilities. Certain aspects of weightlessness can be reproduced underwater by adding buoyancy to a diver-astronaut, therefore exposing the subject to the difficulties of working without gravity. Such tests were done at the COMEX' test pool in Marseilles in the 1980s to train for a French-Russian mission to the MIR station, for the development of the European HERMES shuttle and the COLUMBUS laboratory. However, space agencies are currently studying missions to other destinations than the International Space Station in orbit, such as the return to the Moon, NEO (near-Earth objects) or Mars. All these objects expose different gravities: Moon has one sixth of Earth's gravity, Mars has a third of Earth's gravity and asteroids have virtually no surface gravity; the astronaut "floats" above the ground. The preparation of such missions calls for a new concept in neutral buoyancy training, not on man-made structures, but on natural terrain, underwater, to simulate EVA operations such as sampling, locomotion or even anchoring in low gravity. Underwater sites can be used not only to simulate the reduced gravity that astronauts will experience during their field trips, also human factors like stress are more realistically reproduced in such environment. The Bay of Marseille hosts several underwater sites that can be used to simulate various geologic morphologies, such as sink-holes which can be used to simulate astronaut descends into craters, caves where explorations of lava tubes can be trained or monolithic rock structures that can be used to test anchoring devices (e.g., near Earth objects). Marseilles with its aerospace and maritime/offshore heritage hosts the necessary logistics and expertise that is needed to perform such simulations underwater in a safe manner (training of astronaut-divers in local test pools, research vessels, subsea robots and
The gravimeter "B-grave" for the in-situ surface gravity measurements of an asteroid
van Ruymbeke, Michel; karatekin, ozgur; rasson, jean; wielant, françois; dumont, Phillipe; Ritter, Birgit; zhu, Ping
2016-04-01
In the context of the preliminary study phase for the CubeSats supporting ESA's Asteroid Impact Mission (AIM) to the Didymos, we investigate a miniaturized gravimeter as part of the geophysical instrument package for the Asteroid Geophysical Explorer (AGEX). AGEX intends to land a CubeSat on the secondary object in the Didymos system, Didymoon in order to characterize the asteroid surface and internal structure A 3D compact gravimeter is developed at the Royal Observatory of Belgium. Its design allows to meter a weak 50 μm/sec² gravity field corresponding to 5 ppm of Earth gravity in a harsh environment. A system with three components mounted in an orthogonal geometry allows obtaining the gravity field in amplitude and in angular position without any requirement of levelling. B-GRAVES will use a in-situ calibration and multi-parameter approach for validation of the measurements. A laboratory simulation is induced with centrifugal forces applied to the pendulum set-up in a vertical position to reject the Earth gravity field. Signal treatment and uncertainties are discussed keeping in mind questions of thermal and vibration influence. The B-GRAVES can serve as a novel and robust instrument for future lander and rover missions .
A Gravity-Responsive Time-Keeping Protein of the Plant and Animal Cell Surface
Morre, D. James
2003-01-01
The hypothesis under investigation was that a ubiquinol (NADH) oxidase protein of the cell surface with protein disulfide-thiol interchange activity (= NOX protein) is a plant and animal time-keeping ultradian (period of less than 24 h) driver of both cell enlargement and the biological clock that responds to gravity. Despite considerable work in a large number of laboratories spanning several decades, this is, to my knowledge, our work is the first demonstration of a time-keeping biochemical reaction that is both gravity-responsive and growth-related and that has been shown to determine circadian periodicity. As such, the NOX protein may represent both the long-sought biological gravity receptor and the core oscillator of the cellular biological clock. Completed studies have resulted in 12 publications and two issued NASA-owned patents of the clock activity. The gravity response and autoentrainment were characterized in cultured mammalian cells and in two plant systems together with entrainment by light and small molecules (melatonin). The molecular basis of the oscillatory behavior was investigated using spectroscopic methods (Fourier transform infrared and circular dichroism) and high resolution electron microscopy. We have also applied these findings to an understanding of the response to hypergravity. Statistical methods for analysis of time series phenomena were developed (Foster et al., 2003).
Holographic Gravity and the Surface term in the Einstein-Hilbert Action
Padmanabhan, T
2004-01-01
Certain peculiar features of Einstein-Hilbert (EH) action provide clues towards a holographic approach to gravity which is independent of the detailed microstructure of spacetime. These features of the EH action include: (a) the existence of second derivatives of dynamical variables; (b) a non trivial relation between the surface term and the bulk term; (c) the fact that surface term is non analytic in the coupling constant, when gravity is treated as a spin-2 perturbation around flat spacetime and (d) the form of the variation of the surface term under infinitesimal coordinate transformations. The surface term can be derived directly from very general considerations and using (d) one can obtain Einstein's equations {\\it just from the surface term of the action}. Further one can relate the bulk term to the surface term and derive the full EH action based on purely thermodynamic considerations. The features (a), (b) and (c) above emerge in a natural fashion in this approach. It is shown that action $A_{grav}$ ...
Higher-Order Bragg Resonance in Gravity Surface Waves over Periodic Bottoms
Institute of Scientific and Technical Information of China (English)
XIAO Yu-Meng; TAO Zhi-Yong; WANG Xin-Long
2006-01-01
@@ A calculation method based on the Bloch theorem is developed for the gravity surface waves over the periodic bottoms of large undulations. The study shows the existence of comparable high-order bandgaps, which are demonstrated to result from the higher-order Bragg resonances, i.e. the resonant interactions between surface waves and the harmonic components of the fluctuating bottom. It is also shown that the band widths of the high-order gaps are quite sensitive to the amplitudes of high-order harmonics of the bottom.
On the use of lifting surface theory for moderately and heavily loaded ship propellers
Van Gent, W.
1977-01-01
It is usual to subdivide the loading range of a ship propeller, in which it developes a thrust in the direction of advance, into light, moderate and heavy loadings. The division is based on the degree to which the flow is influenced by the action of the propeller. For the heavily loaded propeller no
Surface state decoherence in loop quantum gravity, a first toy model
Feller, Alexandre
2016-01-01
The quantum-to-classical transition through decoherence is a major facet of the semi-classical analysis of quantum models that are supposed to admit a classical regime, as quantum gravity should be. A particular problem of interest is the decoherence of black hole horizons and holographic screens induced by the bulk-boundary coupling with interior degrees of freedom. Here in this paper we present a first toy-model, in the context of loop quantum gravity, for the dynamics of a surface geometry as an open quantum system at fixed total area. We discuss the resulting decoherence and recoherence and compare the exact density matrix evolution to the commonly used master equation approximation {\\it \\`a la} Lindblad underlining its merits and limitations. The prospect of this study is to have a clearer understanding of the boundary decoherence of black hole horizons seen by outside observers.
Using gravity data to estimate the density of surface rocks of Taiwan region
Lo, Y. T.; Horng-Yen, Y.
2016-12-01
Surface rock density within terrain correction step is one of the important parameters for obtaining Bouguer anomaly map. In the past study, we obtain the Bouguer anomaly map considering the average density correction of a wide range of the study area. In this study, we will be the better estimate for the correction of the density of each observation point. A correction density that coincides with surface geology is in order to improve the accuracy of the cloth cover anomaly map. The main idea of estimating correction of the density using gravity data statistics are two method, g-H relationship and Nettleton density profile method, respectively. The common advantages of these methods are in the following: First, density estimating is calculated using existing gravity observations data, it may be avoided the trouble of directly measure the rock density. Second, after the establishment the measuring point s of absolute gravity value, latitude, longitude and elevation into the database, you can always apply its database of information and terrain data with the value to calculate the average rock density on any range. In addition, each measuring point and numerical data of each terrain mesh are independent, if found to be more accurate gravity or terrain data, simply update a document data alone, without having to rebuild the entire database. According the results of estimating density distribution map, the trends are broadly distributed close to Taiwan Geology Division. The average density of the backbone mountain region is about 2.5 to 2.6 g/cm^3, the average density of east Central Mountain Range and Hsuehshan Range are about 2.3 to 2.5 g/cm^3, compared with the western foothills of 2.1-2.3 g/cm^3, the western plains is from 1.8 to 2.0 g/cm^3.
Directory of Open Access Journals (Sweden)
Siyuan He
2012-01-01
Full Text Available The range profiles of a two-dimension (2 D perfect electric conductor (PEC ship on a wind-driven rough sea surface are derived by performing an inverse discrete Fourier transform (IDFT on the wide band backscattered field. The rough sea surface is assuming to be a PEC surface. The back scattered field is computed based on EM numerical simulation when the frequencies are sampled between 100 MHz and 700 MHz. Considering the strong coupling interactions between the ship and sea, the complicated multipath effect to the range profile characteristics is fully analyzed based on the multipath imaging mechanisms. The coupling mechanisms could be explained by means of ray theory prediction and numerical extraction of the coupling currents. The comparison of the range profile locations between ray theory prediction and surface current simulation is implemented and analyzed in this paper. Finally, the influence of different sea states on the radar target signatures has been examined and discussed.
Institute of Scientific and Technical Information of China (English)
Joong-Hyun Rhim; Doo-Yeoun Cho; Kyu-Yeul Lee; Tae-Wan Kim
2006-01-01
We propose a method that automatically generates discrete bicubic G1 continuous B-spline surfaces that interpolate the curve network of a ship hullform. First, the curves in the network are classified into two types: boundary curves and "reference curves". The boundary curves correspond to a set of rectangular (or triangular) topological type that can be represented with tensor-product (or degenerate) B-spline surface patches. Next, in the interior of the patches,surface fitting points and cross boundary derivatives are estimated from the reference curves by constructing "virtual" isoparametric curves. Finally, a discrete G1 continuous B-spline surface is generated by a surface fitting algorithm. Several smooth ship hullform surfaces generated from curve networks corresponding to actual ship hullforms demonstrate the quality of the method.
Energy Technology Data Exchange (ETDEWEB)
Kai, H.; Ikehata, M.; Sakai, S. [Yokohama National University, Yokohama (Japan). Faculty of Engineering
1997-10-01
This is basically a technique wherein the wing element method is replaced by a surface vortex lattice method. A horseshoe vortex of unknown intensity and source surface of known intensity are distributed on the wing surface and, under conditions that the fluid will not cross the boundary, the intensity of horseshoe vortex circulation is calculated for the solution of the fluid field. For the simulation of a real ship in navigation, the required propeller revolution thrust is determined using the real ship resistance value and real ship thrust reduction factor estimated from a model ship resistance test by extrapolation. The calculation of propeller performance is conducted in the quasi-steady condition using the force of fluid working on one wing for each wing angle (with the wing rotated at the increment of 6 degrees), and the thrust and torque are determined using the averages of values obtained in one cycle. It is found that the torque value is overestimated in a considerable degree in the wing element theory. In the surface vortex lattice method, both thrust and torque values agree with experimental values mostly, and this method is found to be accurate enough as a navigation element calculation tool when many panels are considered. 4 refs., 5 figs., 1 tab.
Second generation diffusion model of interacting gravity waves on the surface of deep fluid
Directory of Open Access Journals (Sweden)
A. Pushkarev
2004-01-01
Full Text Available We propose a second generation phenomenological model for nonlinear interaction of gravity waves on the surface of deep water. This model takes into account the effects of non-locality of the original Hasselmann diffusion equation still preserving important properties of the first generation model: physically consistent scaling, adherence to conservation laws and the existence of Kolmogorov-Zakharov solutions. Numerical comparison of both models with the original Hasselmann equation shows that the second generation models improves the angular distribution in the evolving wave energy spectrum.
An experimental study of wave coupling in gravity surface wave turbulence
Aubourg, Quentin; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas
2016-11-01
Weak turbulence is a theoretical framework aimed at describing wave turbulence (in the weakly nonlinear limit) i.e. a statistical state involving a large number of nonlinearly coupled waves. For gravity waves at the surface of water, it provides a phenomenology that may describe the formation of the spectrum of the ocean surface. Analytical predictions of the spectra are made based on the fact that energy transfer occurs through 4-wave coupling. By using an advanced stereoscopic imaging technique, we measure in time the deformation of the water surface. We obtain a state of wave turbulence by using two small wedge wavemakers in a 13-m diameter wavetank. We then use high order correlator (bi- and tri-coherence) in order to get evidence of the active wave coupling present in our system as used successfully for gravity-capillary wave turbulence. At odds with the weak turbulence theory we observe 3-wave interaction involving 2 quasi linear wave and a bound wave whose frequency lies on the first harmonics of the linear dispersion relation. We do not observe 4-wave coupling within the accuracy of our measurement. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No 647018-WATU).
Linear surface capillary-gravity short-crested waves on a current
Institute of Scientific and Technical Information of China (English)
HUANG Hu
2008-01-01
One of the forward situations in the study of water waves is the basic three-dimensional surface wave motion of short-crested waves. Capillary waves result in rich effects concerned closely with remote sensing in the open ocean. Ocean currents experience a complete process in surface wave motion. Based on the above ideas, a linear dynamical system of surface capillary-gravity short-crested waves is developed by considering the current effects, thus leading to the following analytical expressions of the kinematic and dynamic variables: the wave height, the wave steepness, the phase velocity, the wave-particle velocities, accelerations and trajectories and the wave pressure. A number of the classi-cal, typical and latest special wave cases can arise from these expressions.
Self-accelerating Massive Gravity: Superluminality, Cauchy Surfaces and Strong Coupling
Motloch, Pavel; Joyce, Austin; Motohashi, Hayato
2015-01-01
Self-accelerating solutions in massive gravity provide explicit, calculable examples that exhibit the general interplay between superluminality, the well-posedness of the Cauchy problem, and strong coupling. For three particular classes of vacuum solutions, one of which is new to this work, we construct the conformal diagram for the characteristic surfaces on which isotropic stress-energy perturbations propagate. With one exception, all solutions necessarily possess spacelike characteristics, indicating perturbative superluminality. Foliating the spacetime with these surfaces gives a pathological frame where kinetic terms of the perturbations vanish, confusing the Hamiltonian counting of degrees of freedom. This frame dependence distinguishes the vanishing of kinetic terms from strong coupling of perturbations or an ill-posed Cauchy problem. We give examples where spacelike characteristics do and do not originate from a point where perturbation theory breaks down and where spacelike surfaces do or do not inte...
First Gravity Traverse on the Martian Surface from the Curiosity Rover
Lewis, K. W.; Peters, S. F.; Gonter, K. A.; Vasavada, A. R.
2016-12-01
Orbital gravity surveys have been a key tool in understanding planetary interiors and shallow crustal structure, exemplified by recent missions such as GRAIL and Juno. However, due to the loss of spatial resolution with altitude, airborne and ground-based survey methods are typically employed on the Earth. Previously, the Lunar Traverse Gravimeter experiment on the Apollo 17 mission has been the only attempt to collect surface gravity measurements on another planetary body. We will describe the results of the first gravity survey on the Martian surface, using data from the Curiosity rover over its >10 km traverse across the floor of Gale crater and lower slopes of Mount Sharp. These results enable us to estimate bulk rock density, and to search for potential subsurface density anomalies. To measure local gravitational acceleration, we use one of the two onboard Rover Inertial Measurement Units (RIMU-A), designed for rover position and fine attitude determination. The IMU contains three-axis micro-electromechanical (MEMS) accelerometers and fiber-optic gyros, and is used for gyrocompassing by integrating data for several minutes on sols with no drive or arm motions (roughly 50% of sols to date). Raw acceleration data are calibrated for biases induced by temperature effects and rover orientation, along with rover elevation over the course of the mission using multiple regression. We use the best fit linear relationship between topographic height and gravitational acceleration to estimate a Bouguer correction for the observed change in magnitude over the mission as the rover has ascended over 100 meters up the lower slopes of Mount Sharp. We find a relatively low best-fit density of 1600 +/- 500 kg/m^3 for the rocks of Mount Sharp, consistent with rover-based measurements of thermal inertial, and potentially indicating pervasive fracturing, high porosity and/or low compaction within the original sediments at least to depths of order 100 meters. Future measurements
A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3
Lerch, F. J.; Nerem, R. S.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Marshall, J. A.; Klosko, S. M.; Patel, G. B.; Williamson, R. G.; Chinn, D. S.
1994-01-01
An improved model of Earth's gravitational field, Goddard Earth Model T-3 (GEM-T3), has been developed from a combination of satellite tracking, satellite altimeter, and surface gravimetric data. GEM-T3 provides a significant improvement in the modeling of the gravity field at half wavelengths of 400 km and longer. This model, complete to degree and order 50, yields more accurate satellite orbits and an improved geoid representation than previous Goddard Earth Models. GEM-T3 uses altimeter data from GEOS 3 (1975-1976), Seasat (1978) and Geosat (1986-1987). Tracking information used in the solution includes more than 1300 arcs of data encompassing 31 different satellites. The recovery of the long-wavelength components of the solution relies mostly on highly precise satellite laser ranging (SLR) data, but also includes Tracking Network (TRANET) Doppler, optical, and satellite-to-satellite tracking acquired between the ATS 6 and GEOS 3 satellites. The main advances over GEM-T2 (beyond the inclusion of altimeter and surface gravity information which is essential for the resolution of the shorter wavelength geoid) are some improved tracking data analysis approaches and additional SLR data. Although the use of altimeter data has greatly enhanced the modeling of the ocean geoid between 65 deg N and 60 deg S latitudes in GEM-T3, the lack of accurate detailed surface gravimetry leaves poor geoid resolution over many continental regions of great tectonic interest (e.g., Himalayas, Andes). Estimates of polar motion, tracking station coordinates, and long-wavelength ocean tidal terms were also made (accounting for 6330 parameters). GEM-T3 has undergone error calibration using a technique based on subset solutions to produce reliable error estimates. The calibration is based on the condition that the expected mean square deviation of a subset gravity solution from the full set values is predicted by the solutions' error covariances. Data weights are iteratively adjusted until
Joint Geophysical Imaging of the Utah Area Using Seismic Body Waves, Surface Waves and Gravity Data
Zhang, H.; Maceira, M.; Toksoz, M. N.; Burlacu, R.; Yang, Y.
2009-12-01
We present a joint geophysical imaging method that makes use of seismic body wave arrival times, surface wave dispersion measurements, and gravity data to determine three-dimensional (3D) Vp and Vs models. An empirical relationship mapping densities to Vp and Vs for earth materials is used to link them together. The joint inversion method takes advantage of strengths of individual data sets and is able to better constrain the velocity models from shallower to greater depths. Combining three different data sets to jointly invert for the velocity structure is equivalent to a multiple-objective optimization problem. Because it is unlikely that the different “objectives” (data types) would be optimized by the same parameter choices, some trade-off between the objectives is needed. The optimum weighting scheme for different data types is based on relative uncertainties of individual observations and their sensitivities to model parameters. We will apply this joint inversion method to determine 3D Vp and Vs models of the Utah area. The seismic body wave arrival times are assembled from waveform data recorded by the University of Utah Seismograph Stations (UUSS) regional network for the past 7 years. The surface wave dispersion measurements are obtained from the ambient noise tomography study by the University of Colorado group using EarthScope/USArray stations. The gravity data for the Utah area is extracted from the North American Gravity Database managed by the University of Texas at El Paso. The preliminary study using the seismic body wave arrival times indicates strong low velocity anomalies in middle crust beneath some known geothermal sites in Utah. The joint inversion is expected to produce a reasonably well-constrained velocity structure of the Utah area, which is helpful for characterizing and exploring existing and potential geothermal reservoirs.
Directionality and maneuvering effects on a surface ship underwater acoustic signature.
Trevorrow, Mark V; Vasiliev, Boris; Vagle, Svein
2008-08-01
This work examines underwater source spectra of a small (560 tons, 40 m length), single-screw oceanographic vessel, focusing on directionality and effects of maneuvers. The measurements utilized a set of four, self-contained buoys with GPS positioning, each recording two calibrated hydrophones with effective acoustic bandwidth from 150 Hz to 5 kHz. In straight, constant-speed runs at speeds up to 6.2 m s(-1), the ship source spectra showed spectral levels in reasonable agreement with reference spectra. The broadband source level was observed to increase as approximately speed to the fourth power over the range of 2.6-6.1 m s(-1), partially biased at low speeds by nonpropulsion machinery signals. Source directionality patterns were extracted from variations in source spectra while the ship transited past the buoy field. The observed spectral source levels exhibited a broadside maximum, with bow and stern aspect reduced by approximately 12-9 dB, respectively, independent of frequency. An empirical model is proposed assuming that spectral source levels exhibit simultaneous variations in aspect angle, speed, and turn rate. After correction for source directionality and speed during turning maneuvers, an excess of up to 18 dB in one-third octave source levels was observed.
Estimation of the radius of a star based on its effective temperature and surface gravity
Sichevskij, S. G.
2016-06-01
Amethod for determining the radius of a star using its effective temperature and surface gravity is proposed. The method assumes that the relationship between the radius, effective temperature, and surface gravity can be approximated using models for the internal structure and evolution of the star. The method is illustrated using the Geneva-Toulouse evolutionary computations for two metal abundances—solar and one-tenth of solar. Analysis of the systematic errors shows that the accuracy of the method is better than 10% over most part of the Hertzsprung-Russell diagram, and is about 5% for main-sequence stars. The maximum relative systematic error due to the simplifications underlying the method is about 15%. A test using eclipsing binaries confirms the viability of the proposed method for estimating stellar radii. In the region of the main sequence, systematic deviations do not exceed 2%, and the relative standard deviation is ≤4.7%. It is expected that th maximum relative error over the rest of the Hertzsprung-Russell diagram will likewise be close to the systematic error, about 15-20%. The method is applied to estimate the radii of model stellar atmospheres. Such estimates can be used to synthesize the color index and luminosity of a star. The method can be used whenever accuracies of about 10% in the estimated stellar radius and luminosity are acceptable.
Matter-wave soliton bouncing on a reflecting surface under the effect of gravity
Benseghir, A.; Abdullah, W. A. T. Wan; Baizakov, B. B.; Abdullaev, F. Kh.
2014-08-01
The dynamics of a matter-wave soliton bouncing on the reflecting surface (atomic mirror) under the effect of gravity has been studied by analytical and numerical means. The analytical description is based on the variational approach. Resonant oscillations of the soliton's center of mass and width, induced by appropriate modulation of the atomic scattering length and the slope of the linear potential, are analyzed. In numerical experiments we observe the Fermi-type acceleration of the soliton when the vertical position of the reflecting surface is periodically varied in time. Analytical predictions are compared to the results of numerical simulations of the Gross-Pitaevskii equation and qualitative agreement between them is found.
Fast accurate computation of the fully nonlinear solitary surface gravity waves
Clamond, Didier
2013-01-01
In this short note, we present an easy to implement and fast algorithm for the computation of the steady solitary gravity wave solution of the free surface Euler equations in irrotational motion. First, the problem is reformulated in a fixed domain using the conformal mapping technique. Second, the problem is reduced to a single equation for the free surface. Third, this equation is solved using Petviashvili's iterations together with pseudo-spectral discretisation. This method has a super-linear complexity, since the most demanding operations can be performed using a FFT algorithm. Moreover, when this algorithm is combined with the multi-precision arithmetics, the results can be obtained to any arbitrary accuracy.
Directory of Open Access Journals (Sweden)
E. Momoniat
2005-01-01
surface tension can be represented as a power law in r. The effect of this nonuniformity is to reduce the surface tension at the centre of the drop and increase it at the foot of the drop. This results in a deflection away from the solution for spreading under gravity only and the formation of a capillary ridge.
Claret, A.
2017-03-01
Aims: We present new gravity and limb-darkening coefficients for a wide range of effective temperatures, gravities, metallicities, and microturbulent velocities. These coefficients can be used in many different fields of stellar physics as synthetic light curves of eclipsing binaries and planetary transits, stellar diameters, line profiles in rotating stars, and others. Methods: The limb-darkening coefficients were computed specifically for the photometric system of the space mission tess and were performed by adopting the least-square method. In addition, the linear and bi-parametric coefficients, by adopting the flux conservation method, are also available. On the other hand, to take into account the effects of tidal and rotational distortions, we computed the passband gravity-darkening coefficients y(λ) using a general differential equation in which we consider the effects of convection and of the partial derivative (∂lnI(λ) /∂lng)Teff. Results: To generate the limb-darkening coefficients we adopt two stellar atmosphere models: atlas (plane-parallel) and phoenix (spherical, quasi-spherical, and r-method). The specific intensity distribution was fitted using five approaches: linear, quadratic, square root, logarithmic, and a more general one with four terms. These grids cover together 19 metallicities ranging from 10-5 up to 10+1 solar abundances, 0 ≤ log g ≤ 6.0 and 1500 K ≤Teff ≤ 50 000 K. The calculations of the gravity-darkening coefficients were performed for all plane-parallel ATLAS models. Tables 2-29 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A30
Institute of Scientific and Technical Information of China (English)
LANG Haitao; ZHANG Jie; WANG Yiduo; ZHANG Xi; MENG Junmin
2016-01-01
To dates, most ship detection approaches for single-pol synthetic aperture radar (SAR) imagery try to ensure a constant false-alarm rate (CFAR). A high performance ship detector relies on two key components: an accurate estimation to a sea surface distribution and a fine designed CFAR algorithm. First, a novel nonparametric sea surface distribution estimation method is developed based onn-order Bézier curve. To estimate the sea surface distribution usingn-order Bézier curve, an explicit analytical solution is derived based on a least square optimization, and the optimal selection also is presented to two essential parameters, the ordern of Bézier curve and the numberm of sample points. Next, to validate the ship detection performance of the estimated sea surface distribution, the estimated sea surface distribution byn-order Bézier curve is combined with a cell averaging CFAR (CA-CFAR). To eliminate the possible interfering ship targets in background window, an improved automatic censoring method is applied. Comprehensive experiments prove that in terms of sea surface estimation performance, the proposed method is as good as a traditional nonparametric Parzen window kernel method, and in most cases, outperforms two widely used parametric methods, K and G0 models. In terms of computation speed, a major advantage of the proposed estimation method is the time consuming only depended on the numberm of sample points while independent of imagery size, which makes it can achieve a significant speed improvement to the Parzen window kernel method, and in some cases, it is even faster than two parametric methods. In terms of ship detection performance, the experiments show that the ship detector which constructed by the proposed sea surface distribution model and the given CA-CFAR algorithm has wide adaptability to different SAR sensors, resolutions and sea surface homogeneities and obtains a leading performance on the test dataset.
Impacts of climate changes on ocean surface gravity waves over the eastern Canadian shelf
Guo, Lanli; Sheng, Jinyu
2017-05-01
A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The "business-as-usual" climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979-2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979-2008), near future (2021-2050) and far future (2071-2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights ( H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.
Impacts of climate changes on ocean surface gravity waves over the eastern Canadian shelf
Guo, Lanli; Sheng, Jinyu
2017-03-01
A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The "business-as-usual" climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979-2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979-2008), near future (2021-2050) and far future (2071-2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights (H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.
2012-08-07
F76 for ship propulsion and power generation and JP5 for aircraft. JP5 is also used occasionally for ship propulsion and power generation. While...applications, the FBCE includes the acquisition cost of a barrel of ship propulsion fuel burdened with the additional indirect costs associated with...fuel used for Navy ship propulsion and electrical power generation. JP5 is primarily used for powering aircraft. The FY 2011 DoD composite standard
Fossati, L; Lanza, A F
2015-01-01
The chromospheric activity index logR'HK of stars hosting transiting hot Jupiters appears to be correlated with the planets' surface gravity. One of the possible explanations is based on the presence of condensations of planetary evaporated material located in a circumstellar cloud that absorbs the CaII H&K and MgII h&k resonance line emission flux, used to measure chromospheric activity. A larger column density in the condensations, or equivalently a stronger absorption in the chromospheric lines, is obtained when the evaporation rate of the planet is larger, which occurs for a lower gravity of the planet. We analyze here a sample of stars hosting transiting hot Jupiters tuned in order to minimize systematic effects (e.g., interstellar medium absorption). Using a mixture model, we find that the data are best fit by a two-linear-regression model. We interpret this result in terms of the Vaughan-Preston gap. We use a Monte Carlo approach to best take into account the uncertainties, finding that the two...
The effect of micro-gravity and bioactive surfaces on the mineralization of bone
Maroothynaden, J.; Hench, J. J.
2006-07-01
The loss of bone density with age especially for women, is one of the most serious health complications affecting humans An increased incidence of fractured hips and long bones, and collapse of vertebrae are all due to loss of bone density. Demineralization of bone also poses one of the most severe limitations on long-duration manned space flight. This study investigates the hypothesis that chemical effects responsible for enhanced osteoblast differentiation and proliferation observed in-vitro and in-vivo at 1-gravity with bioactive glasses may be sufficient to prevent the turn-off of bone cells that occurs in μ-g or other reduced loading environments as a consequence of age or immobility. To conduct this work, the authors developed an embryonic mouse long-bone model to examine the interaction of bioactive surfaces and ions with the influence of a simulated μ-g environment.
Unified first law and some general prescription: a redefinition of surface gravity
Haldar, Sourav; Bhattacharjee, Sudipto; Chakraborty, Subenoy
2017-09-01
The paper contains an extensive study of the unified first law (UFL) in the Friedmann-Robertson-Walker spacetime model. By projecting the UFL along the Kodama vector the second Friedmann equation can be obtained. Also studying the UFL on the event horizon it is found that the Clausius relation cannot be obtained from the UFL by projecting it along the tangent to the event horizon as it can be for the trapping horizon. However, it is shown in the present work that Clausius relation can be obtained by projecting the UFL along the Kodama vector on the horizon and the result is found to be true for any horizon. Finally motivated by the Unruh temperature for the Rindler observer, surface gravity is redefined and a Clausius relation is obtained from the UFL by projecting it along a vector analogous to the Kodama vector.
Experimental study of three-wave interactions among capillary-gravity surface waves
Haudin, Florence; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael
2016-01-01
In propagating wave systems, three or four-wave resonant interactions constitute a classical non-linear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave-trains and we study their interaction. Using two optical methods, a local one (Laser Doppler Vibrometry) and a spatio-temporal one (Diffusive Light Photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wavenumber. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly non-linear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave-trains. Finally, we discuss the relevance of three-w...
Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies
Savage, Anna C.; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Alford, Matthew H.; Buijsman, Maarten C.; Thomas Farrar, J.; Sharma, Hari; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis
2017-03-01
High horizontal-resolution (1/12.5° and 1/25°) 41-layer global simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea surface height (SSH) variability. The HYCOM output is separated into steric and nonsteric and into subtidal, diurnal, semidiurnal, and supertidal frequency bands. The model SSH output is compared to two data sets that offer some geographical coverage and that also cover a wide range of frequencies—a set of 351 tide gauges that measure full SSH and a set of 14 in situ vertical profilers from which steric SSH can be calculated. Three of the global maps are of interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) two-dimensional swath altimeter mission: (1) maps of the total and (2) nonstationary internal tidal signal (the latter calculated after removing the stationary internal tidal signal via harmonic analysis), with an average variance of 1.05 and 0.43 cm2, respectively, for the semidiurnal band, and (3) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum, with an average variance of 0.15 cm2. Stationary internal tides (which are predictable), nonstationary internal tides (which will be harder to predict), and nontidal internal gravity waves (which will be very difficult to predict) may all be important sources of high-frequency "noise" that could mask lower frequency phenomena in SSH measurements made by the SWOT mission.
Guo, Jinyun; Dong, Zhenghua; Tan, Zhengguang; Liu, Xin; Chen, Chuanfa; Hwang, Cheinway
2016-08-01
Ship-borne global navigation satellite system (GNSS) technique can overcome the weakness of satellite altimetry and tide gauge in measuring sea surface heights (SSHs) over coastal seas. Ship-borne GNSS technique can be used to calibrate SSHs determined by the satellite altimetry and tide gauge. The ship-borne GNSS data are processed with the single-epoch precise point positioning (PPP) method to estimate SSHs which are filtered by the Gaussian filter to weaken and/or remove effects of sea wind and wave field. Tidal corrections are also taken into consideration to improve SSHs. One crossover adjustment method is put forward to calculate the bias and drift along the ship route and assess the accuracy of SSHs. We processed the in-situ ship-borne GPS data over the offshore sea around Keelung to compute precisely SSHs with the single-epoch PPP. Statistical results of SSH differences of crossover points indicate that the root mean squares error of SSHs determined by the ship-borne GPS is up to level of 12.9 cm over the offshore sea ~30 km far away to land.
Clément, Gilles
2007-01-01
Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term reduced gravity during surface operations will require effective, multi-system countermeasures. Artificial gravity, which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by short-radius human centrifuge devices within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient
Hu, Ya-Peng; Wu, Xiao-Ning
2014-01-01
Using the gravity/fluid correspondence in our paper, we investigate the holographic fluid at finite cutoff surface in the Einstein gravity. After constructing the first order perturbative solution of the Schwarzschild-AdS black brane solution in the Einstein gravity, we focus on the stress-energy tensor of the dual fluid with transport coefficients at the finite cutoff surface. Besides the pressure and energy density of dual fluid are obtained, the shear viscosity is also obtained. The most important results are that we find that if we adopt different conditions to fix the undetermined parameters contained in the stress-energy tensor of the dual fluid, the pressure and energy density of the dual fluid can be perturbed. Particularly, the bulk viscosity of the dual fluid can also be given in this case.
Effects of Steady Flow on Magnetoacoustic-Gravity Surface Waves: I. The Weak Field Case
Erdélyi, R.; Mather, J. F.
2017-02-01
Magnetoacoustic gravity (MAG) waves have been studied for some time. In this article, we investigate the effect that a shear flow at a tangential discontinuity embedded in a gravitationally stratified and magnetised plasma has on MAG surface waves. The dispersion relation found is algebraically analogous to the relation of the non-flow cases obtained by Miles and Roberts ( Solar Phys. 141, 205, 1992), except for the introduction of a Doppler-shifted frequency for the eigenvalue. This feature, however, introduces rather interesting physics, including the asymmetric presence of forward- and backward-propagating surface waves. We find that increasing the equilibrium flow speed leads to a shift in the permitted regions of propagation for surface waves. For most wave number combinations this leads to the fast mode being completely removed, as well as more limited phase speed regimes for slow-mode propagation. We also find that upon increasing the flow, the phase speeds of the backward propagating waves are increased. Eventually, at high enough flow speeds, the wave's direction of propagation is reversed and is in the positive direction. However, the phase speed of the forward-propagating wave remains mainly the same. For strong enough flows we find that the Kelvin-Helmholtz instability can also occur when the forward- and backward-propagating modes couple.
Parsons, T.; Blakely, R.J.; Brocher, T.M.
2001-01-01
The geologic structure of the Earth's upper crust can be revealed by modeling variation in seismic arrival times and in potential field measurements. We demonstrate a simple method for sequentially satisfying seismic traveltime and observed gravity residuals in an iterative 3-D inversion. The algorithm is portable to any seismic analysis method that uses a gridded representation of velocity structure. Our technique calculates the gravity anomaly resulting from a velocity model by converting to density with Gardner's rule. The residual between calculated and observed gravity is minimized by weighted adjustments to the model velocity-depth gradient where the gradient is steepest and where seismic coverage is least. The adjustments are scaled by the sign and magnitude of the gravity residuals, and a smoothing step is performed to minimize vertical streaking. The adjusted model is then used as a starting model in the next seismic traveltime iteration. The process is repeated until one velocity model can simultaneously satisfy both the gravity anomaly and seismic traveltime observations within acceptable misfits. We test our algorithm with data gathered in the Puget Lowland of Washington state, USA (Seismic Hazards Investigation in Puget Sound [SHIPS] experiment). We perform resolution tests with synthetic traveltime and gravity observations calculated with a checkerboard velocity model using the SHIPS experiment geometry, and show that the addition of gravity significantly enhances resolution. We calculate a new velocity model for the region using SHIPS traveltimes and observed gravity, and show examples where correlation between surface geology and modeled subsurface velocity structure is enhanced.
Fluid surface behavior in low gravity. Center discretionary fund no. 83-21
Leslie, F.; Gans, R. F.; Schafer, C.
1985-01-01
Measurements of rotating equilibrium bubble shapes in the low-gravity environment of a free-falling aircraft are presented. Emphasis is placed on bubbles which intersect the container boundaries. These data are compared with theoretical profiles derived from Laplace's formula and are in good agreement with the measurements. Two types of instability are explored. The first occurs when the baffle spacing is too large for the bubble to intersect both the top and bottom boundaries. The second occurs when the hydrostatic pressure beneath a displaced free surface does not compensate for pressure change due to capillary forces. The interface shape depends on the contact angle, the radius of intersection with container, and the parameter F which is a measure of the relative importance of centrifugal force to surface tension. For isolated bubbles, F has a maximum value of 1/2. A further increase in F causes the bubble to break contact with the axis of rotation. For large values of F, the bubble becomes more cylindrical and the capillary rise occurs over a thinner layer so that the small radius of curvature can generate enough pressure drop to balance the increased hydrostatic contribution.
Near-surface gravity actuated pipe (GAP{sup TM}) system for Brazilian deepwater fluid transfer
Energy Technology Data Exchange (ETDEWEB)
Fromage, Lionel; Brown, Paul A. [SBM Offshore (Monaco)
2009-12-19
The recent discovery of new deep water and ultra-deep water oil and gas fields offshore Brazil, including pre-salt reservoirs, has become a focal point for field development Operators and Contractors. The aggressive nature of fluids (sour, high density) in combination with deeper waters implies potential flow assurance issues. These issues challenge riser and pipeline technology to find cost effective solutions for hydrocarbon fluid transfer in field development scenarios involving phased tied-back. The near-surface GAP{sup TM}, system (Gravity Actuated Pipe{sup TM}), which has been in operation for more than two years on the Kikeh field offshore Malaysia in 1325 m of water between a Dry Tree Unit (SPAR) and a turret-moored FPSO, is considered to meet these challenges since such a product is quasi independent of water depth and takes advantage of being near surface to optimize flow assurance. Furthermore the GAP{sup TM} has undergone technical upgrades when compared to the Kikeh project in order to make it suitable for the more hostile met ocean conditions offshore Brazil. This paper presents the design features, the construction and assembly plans in Brazil and the offshore installation of a GAP fluid transfer system for operation in Brazilian deep waters. (author)
Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.
1988-01-01
Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).
Digital Repository Service at National Institute of Oceanography (India)
Mehra, P.; Desai, R.G.P.; Joseph, A.; VijayKumar, K.; Dabholkar, N.; Prabhudesai, S.; Nagvekar, S.; Agarvadekar, Y.
at NIO is presented in Fig. 2. TABLE 1. PARTICULARS OF SENSORS USED IN THE AWS SYSTEM Surface meteorological parameter Sensor type Specifications Wind speed & direction Propeller & Vane (Model: 05103 from R.M. Young, U.S.A) Speed range Gust... and Mrs. Vimala Damodaran. REFERENCES [1]. R. G. Prabhudesai, P. Mehra, E. Desa, S. Nagvekar, and V. Kumar, Weather Station for Scientific Data Collection, Second Indian National Conference on Harbour and Ocean Engineering (INCHOE-97), 1997...
Ardhuin, Fabrice
2012-01-01
Oceanic observations, even in very deep water, and atmospheric pressure or seismic records, from anywhere on Earth, contain noise with dominant periods between 3 and 10 seconds, that can be related to surface gravity waves in the oceans. This noise is consistent with a dominant source explained by a nonlinear wave-wave interaction mechanism, and takes the form of surface gravity waves, acoustic or seismic waves. Previous theoretical works on seismic noise focused on surface (Rayleigh) waves, and did not consider finite depth effects on the generating wave kinematics. These finite depth effects are introduced here, which requires the consideration of the direct wave-induced pressure at the ocean bottom, a contribution previously overlooked in the context of seismic noise. That contribution can lead to a considerable reduction of the seismic noise source, which is particularly relevant for noise periods larger than 10 s. The theory is applied to acoustic waves in the atmosphere, extending previous theories that...
Trapping of surface gravity waves by a vertical flexible porous plate near a wall
Kaligatla, R. B.; Koley, S.; Sahoo, T.
2015-10-01
The present study deals with the trapping of oblique surface gravity waves by a vertical submerged flexible porous plate located near a rigid wall in water of finite as well as infinite depths. The physical problem is based on the assumption of small amplitude water wave theory and structural response. The flexible plate is assumed to be thin and is modeled based on the Euler-Bernoulli beam equation. Using the Green's function technique to the plate equation and associated boundary conditions, an integral equation is derived which relates the normal velocity on the plate to the difference in velocity potentials across the plate involving the porous-effect parameter and structural rigidity. Further, applying Green's second identity to the free-surface Green's function and the scattered velocity potentials on the two sides of the plate, a system of three more integral equations is derived involving the velocity potentials and their normal derivatives across the plate boundary along with the velocity potential on the rigid wall. The system of integral equations is converted into a set of algebraic equations using appropriate Gauss quadrature formula which in turn solved to obtain various quantities of physical interest. Utilizing Green's identity, explicit expressions for the reflection coefficients are derived in terms of the velocity potentials and their normal derivatives across the plate. Energy balance relations are derived and used to check the accuracy of the computational results. As special cases of the submerged plate, wave trapping by the bottom-standing as well as surface-piercing plates is analyzed. Effects of various wave and structural parameters in trapping of surface waves are studied from the computational results by analyzing the reflection coefficients, wave forces exerted on the plate and the rigid wall, flow velocity, plate deflections and surface elevations. It is observed that surface-piercing plate is more effective for trapping of water waves
National Research Council Canada - National Science Library
Eyres, D.J; Bruce, G.J
2012-01-01
.... "Acting as both a professional reference on current approaches in shipyard practice and a comprehensive introduction for students in any marine discipline, Ship Construction covers the complete...
Department of Homeland Security — Various shipping zones delineate activities and regulations for marine vessel traffic. Traffic lanes define specific traffic flow, while traffic separation zones...
Blomquist, B.; Fairall, C. W.; Intrieri, J. M.; Wolfe, D. E.; Pezoa, S.
2015-12-01
The NOAA Physical Sciences Division portable flux system was deployed on the R/V Ron Brown as part of the surface observational strategy for the CALWATER 2015 field investigation. Measurements included turbulent fluxes of temperature, water vapor and wind stress. A refined 'best' set of bulk meteorological measurements for the duration of the cruise was produced from combined NOAA, DOE ARM-AMF2 and shipboard sensors. Direct eddy correlation and bulk model estimates of sensible and latent heat are broadly consistent (RMSE transport budget.
Institute of Scientific and Technical Information of China (English)
NOBLESSE Francis; DELHOMMEAU Gerard; LIU Hua; WAN De-cheng; YANG Chi
2013-01-01
The bow wave generated by a ship hull that advances at constant speed in calm water is considered.The bow wave only depends on the shape of the ship bow (not on the hull geometry aft of the bow wave).This basic property makes it possible to determine the bow waves generated by a canonical family of ship bows defined in terms of relatively few parameters.Fast ships with fine bows generate overturning bow waves that consist of detached thin sheets of water,which are mostly steady until they hit the main free surface and undergo turbulent breaking up and diffusion.However,slow ships with blunt bows create highly unsteady and turbulent breaking bow waves.These two alternative flow regimes are due to a nonlinear constraint related to the Bernoulli relation at the free surface.Recent results about the overturning and breaking bow wave regimes,and the boundary that divides these two basic flow regimes,are reviewed.Questions and conjectures about the energy of breaking ship bow waves,and free-surface effects on flow circulation,are also noted.
Lafrance, Pierre
1978-01-01
Explores in a non-mathematical treatment some of the hydrodynamical phenomena and forces that affect the operation of ships, especially at high speeds. Discusses the major components of ship resistance such as the different types of drags and ways to reduce them and how to apply those principles for the hovercraft. (GA)
46 CFR 45.157 - Scuppers and gravity drains.
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Scuppers and gravity drains. 45.157 Section 45.157 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.157 Scuppers and gravity drains. Scuppers and gravity deck drains from...
Predictionof Powering Performance for a Surface Ship Based on CFD Simulations%基于CFD模拟的水面船功率性能预报研究
Institute of Scientific and Technical Information of China (English)
吴乘胜; 赵峰; 张志荣; 高雷; 祁江涛
2013-01-01
CFD prediction of powering performance for a surface ship model KCS is carried out in this paper. Numerical computation of resistance for the ship model is performed firstly. Open water performance for propeller model KP505 is computed then. Numerical tests of self-propulsion of the ship model are carried out thirdly. Self-propulsion parameters are obtained through analyzing the results of CFD simulation. Powering performance of the full scale ship is predicted finally. It is shown that the results of numerical simulation and analysis agree quite well with the experimental results.% 论文针对水面船CFD标模KCS,进行CFD计算,模拟实船功率性能预报研究.比拟基于模型试验的水面船功率性能预报,开展了船模阻力、螺旋桨模型敞水和船模自航的数值模拟.通过对CFD模拟结果的分析,获得 KCS 实船的自航因子,并预报了设计航速下的实船功率.CFD 计算模拟、分析及预报结果,都与模型试验及基于模型试验的预报结果进行了比较,总体上符合较好.
2008-11-21
and the native population’s transition from nomadic, big game subsistence/settlement patterns to a more sedentary lifestyle residing along the...Dental Clinic, Chapel, Child Development Center, and NAVSTA Mayport Family Housing. Final EIS for the Proposed Homeporting of Additional Surface Ships...for the more coastal lifestyle (Brockington & Associates 1998, Hardy Heck Moore Inc. 2001). The Late Archaic sub-period underwent another climate
Federal Laboratory Consortium — The U. S. Navy dedicated the decommissioned Spruance Class destroyer ex-PAUL F. FOSTER (EDD 964), Test Ship, primarily for at sea demonstration of short range weapon...
DEFF Research Database (Denmark)
Hansen, Carsten Ørts; Grønsedt, Peter; Lindstrøm Graversen, Christian
maritime industries (including shipping, offshore energy, ports, and maritime service and equipment suppliers) as well as addresses topics that cut across maritime industries (regulation and competitiveness). The topics and narrower research questions addressed in the initiative were developed in close...
Li, Guang-Xing
2016-01-01
Gravity is believed to be important on multiple physical scales in molecular clouds. However, quantitative constraints on gravity are still lacking. We derive an analytical formula which provides estimates on multi-scale gravitational energy distribution using the observed surface density PDF. Our analytical formalism also enables one to convert the observed column density PDF into an estimated volume density PDF, and to obtain average radial profile $\\rho(r)$. For a region with $N_{\\rm col} \\sim N^{-\\gamma_{\\rm N}}$, the gravitational energy spectra is $E_{\\rm p}(k)\\sim k^{-4(1 - 1/\\gamma_{\\rm N})}$. We apply the formula to observations of molecular clouds, and find that a scaling index of $-2$ of the surface density PDF implies that $\\rho \\sim r^{-2}$ and $E_{\\rm p}(k) \\sim k^{-2}$. This indicates that gravity can act effectively against turbulence over a multitude of physical scales. This is the critical scaling index which divides molecular clouds into two categories: clouds like Orion and Ophiuchus have ...
Impact of upper-level jet-generated inertia-gravity waves on surface wind and precipitation
Directory of Open Access Journals (Sweden)
C. Zülicke
2007-11-01
Full Text Available A meteorological case study for the impact of inertia-gravity waves on surface meteorology is presented. The large-scale environment from 17 to 19 December 1999 was dominated by a poleward breaking Rossby wave transporting subtropical air over the North Atlantic Ocean upward and north-eastward. The synoptic situation was characterized with an upper tropospheric jet streak passing Northern Europe. The unbalanced jet spontaneously radiated inertia-gravity waves from its exit region. Near-inertial waves appeared with a horizontal wavelength of about 200 km and an apparent period of about 12 h. These waves transported energy downwards and interacted with large-scale convection.
This configuration is simulated with the nonhydrostatic Fifth-Generation Mesoscale Model. Together with simplified runs without orography and moisture it is demonstrated that the imbalance of the jet (detected with the cross-stream ageostrophic wind and the deep convection (quantified with the latent heat release are forcing inertia-gravity waves. This interaction is especially pronounced when the upper tropospheric jet is located above a cold front at the surface and supports deep frontal convection. Weak indication was found for triggering post-frontal convection by inertia-gravity waves.
The realism of model simulations was studied in an extended validation study for the Baltic Sea region. It included observations from radar (DWDPI, BALTRAD, satellite (GFZGPS, weather stations (DWDMI and assimilated products (ELDAS, MESAN. The detected spatio-temporal patterns show wind pulsations and precipitation events at scales corresponding to those of inertia-gravity waves. In particular, the robust features of strong wind and enhanced precipitation near the front appeared with nearly the same amplitudes as in the model. In some datasets we found indication for periodic variations in the post-frontal region.
These findings demonstrate the impact of upper
Moldenhauer, Jacob; Thompson, John; Easson, Damien A
2010-01-01
We consider recently proposed higher order gravity models where the action is built from the Einstein-Hilbert action plus a function f(G) of the Gauss-Bonnet invariant. The models were previously shown to pass physical acceptability conditions as well as solar system tests. In this paper, we compare the models to combined data sets of supernovae, baryon acoustic oscillations, and constraints from the CMB surface of last scattering. We find that the models provide fits to the data that are close to those of the LCDM concordance model. The results provide a pool of higher order gravity models that pass these tests and need to be compared to constraints from large scale structure and full CMB analysis.
Masnadi, Naeem; Cho, Yeunwoo; Duncan, James H.; Akylas, Triantaphyllos
2015-11-01
The non-linear response of a water free surface to a pressure source moving at speeds near the minimum speed of linear gravity-capillary waves (Cmin ~ 23 cm/s) is investigated with experiments and theory. In the experiments, waves are generated by a vertically oriented air-jet that moves at a constant speed over the water surface in a long tank. The 3-D surface shape behind the air-jet is measured using a cinematic refraction-based technique combined with an LIF technique. At towing speeds just below Cmin, an unsteady pattern is formed where localized depressions periodically appear in pairs and move away from the source along the arms of a downstream V-shaped pattern. This behavior is analogous to the periodic shedding of solitary waves upstream of a source moving at the maximum wave speed in shallow water. The gravity-capillary depressions are rapidly damped by viscosity and their speed-amplitude characteristics closely match those from inviscid calculations of gravity-capillary lumps. The shedding frequency of the lumps in the present experiments increases with both increasing towing speed and air-flow rate. Predictions of this behavior using a model equation that incorporates damping and a quadratic nonlinearity are in good agreement with the experiments. The partial support of the National Science Foundation under grant OCE0751853 is gratefully acknowledged.
Frifita, N.; Arfaoui, M. S.; Zargouni, F.
2016-08-01
Gravity data were analyzed in the northern Atlas of Tunisia in order to identify the deep structures of the region and their relationship to the geological outcrop. The analysis based on the Bouguer gravity maps related to upward continuation at 1, 2, 4, 6, 10 and 12 km. The lineaments obtained by the horizontal gradient method were interpreted as deep faults with two global directions NE-SW and NW-SE related to major tectonic corridors. These lineaments were confirmed by the automatic estimation of depth solutions using the Euler deconvolution technique. By separation between the gravity anomaly bodies in different levels, it shows that almost all of the lineaments are oriented in NE-SW and NW-SE directions. The NW-SE-trending lineaments are related to deep faults and the NE-SW-oriented lineaments define the global direction of the surface, and they are related to shallow structures. 2.5D gravity modeling was used to improve the results obtained by the Maxima and the Euler deconvolution techniques. The 2.5D model points out the variation of depths of the NE-SW-trending major faults. In this study, we demonstrate the relationship between the NE-SW and the NW-SE directions. These two major sets of faults have been determined by the statistical study of the lineaments. This study confirms some faults already recognized or supposed by the classical geological studies, and it also detects a new deep fault masked in the surface, and gives information about major fault depths and the relation between different structures.
Review of Electrical and Gravity Methods of Near-Surface Exploration for Groundwater
Directory of Open Access Journals (Sweden)
W. O. Raji
2014-12-01
Full Text Available The theory and practice of electrical and gravity methods of geophysics for groundwater exploration was reviewed with illustrations and data examples. With the goal of reducing cases of borehole/water-well failure attributed to the lack of the knowledge of the methods of geophysics for groundwater exploration and development, the paper reviews the basic concepts, field procedures for data acquisition, data processing, and interpretation as applied to the subject matter. Given a case study of groundwater exploration in University of Ilorin Campus, the three important techniques of electrical method of groundwater exploration are explained and illustrated using field data obtained in a previous study. Interpretation of resistivity data shows that an area measuring low resistivity (high conductivity, having thick pile of unconsolidated rock, and underlained by fracture crystalline is a ‘bright spot’ for citing borehole for groundwater abstraction in a basement complex area. Further to this, gravity method of groundwater exploration was discussed with field data from Wokbedilo community in Ethopia. Bouguer and reduced gravity anomaly results were presented as maps and contours to demonstrate how gravity data can be inverted to map groundwater aquifers and subsurface geological structures during groundwater exploration.
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0084176 includes chemical, physical, and underway - surface data collected aboard NOAA Ship DAVID STARR JORDAN in Channel Islands National Marine...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship DISCOVERER. Data were collected by the Pacific Marine...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship DISCOVERER from 23 October 1980 to 04 November 1980. Data...
National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from surface sensors and CTD casts from NOAA Ship DISCOVERER and other platforms from 22 October 1981 to 13 October 1982....
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship DISCOVERER from 10 November 1980 to 13 November 1980. Data...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from the NOAA Ship SURVEYOR from 15 August 1980 to 05 September 1980. Data...
Institute of Scientific and Technical Information of China (English)
LIU Nan; BAI Yi-Long; XIA Meng-Fen; KE Fu-Jiu
2005-01-01
@@ Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in experiments, we present an analytical representation of the shape of liquid surface under van der Waals interaction induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly gov erned by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to gravity. However, its horizontal extension is determined by the capillary length.
Co- and post-seismic surface deformation and gravity changes of M S7.0 Lushan, earthquake
Wang, Kai; Liu, Chengli; Xiong, Xiong; Zheng, Yong
2013-08-01
On April 20, 2013, an earthquake with magnitude 7.0 occurred in the southwest of the Longmenshan fault system in and around Lushan County, Sichuan Province, China. This devastating earthquake killed hundreds of people, injured 10 thousand others, and collapsed countless buildings. In order to analyze the potential risk of this big earthquake, we calculate the co- and post-seismic surface deformation and gravity changes of this event. In this work, a multilayered crustal model is designed, and the elastic dislocation theory is utilized to calculate the co- and post-seismic deformations and gravity changes. During the process, a rupture model obtained by seismic waveform inversion (Liu et al. Sci China Earth Sci 56(7):1187-1192, 2013) is applied. The time-dependent relaxation results show that the influences on Lushan and its surrounding areas caused by the M S7.0 Lushan earthquake will last as long as 10 years. The maximum horizontal displacement, vertical uplift, and settlement are about 5 cm, 21.24 cm, and 0.16 m, respectively; the maximal positive and negative values of gravity changes are 45 and -0.47 μGal, respectively. These results may be applied to evaluate the long-term potential risk caused by this earthquake and to provide necessary information for post-earthquake reconstruction.
Pirkola, Patrik
2016-01-01
The surface gravity on Mars is smaller than the surface gravity on Earth, resulting in longer falling times. This effect can be simulated on Earth by taking advantage of air resistance and buoyancy, which cause low density objects to fall slowly enough to approximate objects falling on the surface of Mars. We describe a computer simulation based on an experiment that approximates Martian gravity, and verify our numerical results by performing the experiment.
Energy Technology Data Exchange (ETDEWEB)
Gizis, John E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Allers, Katelyn N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu HI 96822 (United States); Harris, Hugh C. [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86001 (United States); Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)
2015-02-01
We present spectroscopy, astrometry, and photometry of the brown dwarf WISEP J004701.06+680352.1 (W0047+68), an unusually red field L dwarf at a distance of 12.2 ± 0.4 pc. The three-dimensional space motion identifies it as a member of the AB Dor Moving Group, an identification supported by our classification of W0047+68 as intermediate surface gravity (INT-G) using the Allers and Liu near-infrared classification system. This moving group membership implies near-solar metallicity, age ∼100-125 Myr, M ≈ 0.018 M {sub ☉}, and log g ≈ 4.5; the thick condensate clouds needed to explain the infrared spectrum are, therefore, a result of surface gravity that is lower than that of ordinary field brown dwarfs. From the observed luminosity and evolutionary model radius, we find T {sub eff} ≈ 1300 K, a temperature normally associated with early T dwarfs. Thick clouds are also used to explain the spectral properties of directly imaged giant planets, and we discuss the successes and challenges for such substellar models in matching the observed optical and infrared spectra. W0047+68 shows that cloud thickness is more sensitive to intermediate surface gravity than in most models. We also present a trigonometric parallax of the dusty L6 dwarf 2MASS J21481628+4003593. It lies at 8.060 ± 0.036 parsecs; its astrometry is consistent with the view that it is older and metal-rich.
基于 NURBS 曲面插值的船体曲面重构%Reconstruction of Ship Hull Based on NURBS Surface Interpolation
Institute of Scientific and Technical Information of China (English)
钱宏; 刘敏; 贺庆; 刘朕明; 荣焕宗
2016-01-01
A method for reconstructing the ship hull is presented. The ship hull surface is divided into numbers of panels according to the character curves on the surface. The nets in the wire frame model are dealt with homogeneously to get offset points, on which the character values are added, and the NURBS net is generated. B-spline surfaces with multiple knot points are used to interpolate the nets together with tangential vectors and multiple points, so as to get the panels connected to each other and to form a NURBS surface without gaps. Therefore the complex ship hull surface with a bulb bow, bulb tail, plane side curve, plane bottom curve, partly knuckle curve and transom stern can be constructed by smaller numbers of panels. It provides a favorable NURBS surface in the further design of ship structure, CAM and CFD.%论文提出了一种船体曲面重构方法。首先，用特征线把船体曲面划分为曲面片，便于表达复杂船体曲面和保留船体特征。其次，对船体线框模型的网格均匀化处理，得到型值点的位置，并给它们加上特征，生成NURBS 网格。最后，用带重节点的 B 样条曲面插值带切矢和重点的 NURBS 网格，并进行曲面片拼接，生成无缝隙的 NURBS 曲面。因此，可以用较少的曲面片（几至十几块）重构带有球首、球尾、平边线、平底线、部分折角线和方尾的复杂船体曲面。这给船舶结构设计、CAM 和 CFD 计算提供了良好的船体 NURBS曲面模型。
Directory of Open Access Journals (Sweden)
A. M. Abd-Alla
2013-01-01
Full Text Available Estimation is done to investigate the gravitational and rotational parameters effects on surface waves in fibre-reinforced thermoelastic media. The theory of generalized surface waves has been firstly developed and then it has been employed to investigate particular cases of waves, namely, Stoneley waves, Rayleigh waves, and Love waves. The analytical expressions for surface waves velocity and attenuation coefficient are obtained in the physical domain by using the harmonic vibrations and four thermoelastic theories. The wave velocity equations have been obtained in different cases. The numerical results are given for equation of coupled thermoelastic theory (C-T, Lord-Shulman theory (L-S, Green-Lindsay theory (G-L, and the linearized (G-N theory of type II. Comparison was made with the results obtained in the presence and absence of gravity, rotation, and parameters for fibre-reinforced of the material media. The results obtained are displayed by graphs to clear the phenomena physical meaning. The results indicate that the effect of gravity, rotation, relaxation times, and parameters of fibre-reinforced of the material medium is very pronounced.
National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER and NOAA Ship MILLER FREEMAN. Data were...
CFD prediction of self-propulsion parameters for a surface ship%水面船自航因子CFD预报研究
Institute of Scientific and Technical Information of China (English)
戈亮; 顾民; 吴乘胜; 邵建南
2012-01-01
CFD prediction of self-propulsion parameters for surface ship KCS is carried out. Numerical computation of resistance and wave for the ship model is performed. Open water performance for propeller model KP505 is computed numerically. Numerical tests of self-propulsion of the ship model are carried out. Self-propulsion parameters are obtained by analyzing the results of CFD simulation. The results of numerical simulation and analysis agree quite well with the experimental results.%针对水面船CFD标模KCS,进行基于CFD计算/模拟的自航因子预报研究.比拟基于模型试验的水面船自航因子预报,文中开展了船模阻力、螺旋桨模型敞水和船模自航的数值计算/模拟.通过对CFD计算/模拟结果的分析,获得KCS实船的自航因子.CFD计算/模拟及分析的结果(包括:船模阻力,螺旋桨推力、扭矩、效率,实船自航因子等)都与模型试验结果进行了比较,总体上符合较好.
Convection due to surface-tension gradients. [in reduced gravity spacecraft environments
Ostrach, S.
1978-01-01
The use of dimensionless parameters to study fluid motions that could occur in a reduced-gravity environment is discussed. The significance of the Marangoni instability is considered, and the use of dimensionless parameters to investigate problems such as thermo and diffusocapillary flows is described. Characteristics of fluid flow in space are described, and the relation and interaction of motions due to capillarity and buoyancy is examined.
Segawa, J.; Ganeko, Y.; Sasaki, M.; Mori, T.; Ooe, M.; Nakagawa, I.; Ishii, H.; Hagiwara, Y.
1991-01-01
Our program includes five research items: (1) determination of a precision geoid and gravity anomaly field; (2) precise leveling and detection of tidal changes of the sea surface and study of the role of the tide in the global energy exchange; (3) oceanic effect on the Earth's rotation and polar motion; (4) geological and geophysical interpretation of the altimetry gravity field; and (5) evaluation of the effectiveness of local tracking of TOPEX/POSEIDON by use of a laser tracker.
Garland, G D; Wilson, J T
2013-01-01
The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp
Sichevskij, S. G.
2016-09-01
A method for determining the radius of a star based on its effective temperature and surface gravity together with computations of the star's structure and evolution is proposed. Rotating and nonrotating stellar models are considered, making it possible to take into account uncertainties associated with the lack of data on the rotational velocities of the stars considered. Each point of an evolutionary track is assigned a weight in accordance with the rate of the stellar evolution and the initial mass function. This enables a more correct estimation of the stellar radius. The method is used to calculate the radius corresponding to the effective temperature and surface gravity obtained from theoretical spectra derived from model stellar atmospheres. This makes it possible to calculate not only the color indices, but also the brightness of the star, enabling estimation of the distance to the star based on photometric observations. The method has been tested and its accuracy estimated using more than a hundred binaries and two dozen well-studied bright stars. The derived radius estimates for stars near the main sequence display systematic deviations that do not exceed 0.03%, and standard deviations for the relative errors below 3.87%. Data on well studied bright stars have enabled verification of the applicability of the method for the red giant branch, and hence proved the possibility of applying it in this densely populated area of the Hertzsprung-Russell diagram.
Gizis, John E; Liu, Michael C; Harris, Hugh C; Faherty, Jacqueline K; Burgasser, Adam J; Kirkpatrick, J Davy
2014-01-01
We present spectroscopy, astrometry, and photometry of the brown dwarf WISEP J004701.06+680352.1 (W0047+68), an unusually red field L dwarf at a distance of $12.2 \\pm 0.4$ parsecs. The three-dimensional space motion identifies it as a member of the AB Dor Moving Group, an identification supported by our classification of W0047+68 as intermediate surface gravity (INT-G) using the Allers \\& Liu (2013) near-infrared classification system. This moving group membership implies near-solar metallicity, age $\\sim 100-125$ Myr, $M \\approx 0.018~M_\\odot$, and $\\log g \\approx 4.5$; the thick condensate clouds needed to explain the infrared spectrum are therefore a result of the lower surface gravity than ordinary field brown dwarfs. From the observed luminosity and evolutionary model radius, we find $T_{eff} \\approx 1300 $K, a temperature normally associated with early T dwarfs. Thick clouds are also used to explain the spectral properties of directly imaged giant planets, and we discuss the successes and challenges...
基于动态面控制的船舶航迹跟踪%Tracking Control of Ships Based on Dynamic Surface Control Methed
Institute of Scientific and Technical Information of China (English)
陈建锋; 王锡淮; 肖健梅
2015-01-01
Tracking control of surface ships is a chal enging problem.A design scheme based on the dynamic surface control methed is proposed for this problem.The addition of low pass filters in backstepping design procedure al ows the dynamic surface control methed to avoid the explosion of terms involving the calculation of the state derivatives and result in the simpler control structure.Simulation results prove that the proposed methed can implement the tracking of ships.%针对船舶航迹跟踪控制问题，引入动态面控制算法，设计了基于动态面控制的船舶航迹跟踪控制器。该算法是在backstepping算法的基础上加入了一阶低通滤波器，这样能够避免状态量微分计算时的微分膨胀问题，使得设计更为简单。仿真结果表明，所设计的控制器能够很好地实现船舶航迹跟踪。
Energy Technology Data Exchange (ETDEWEB)
Campante, T. L.; Chaplin, W. J.; Handberg, R.; Miglio, A.; Davies, G. R.; Elsworth, Y. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, M. N.; Arentoft, T.; Christensen-Dalsgaard, J.; Karoff, C.; Kjeldsen, H.; Lundkvist, M. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Huber, D. [NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035 (United States); Hekker, S. [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Amsterdam (Netherlands); García, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot (France); IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Corsaro, E. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Basu, S. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Bedding, T. R. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Gilliland, R. L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Kawaler, S. D., E-mail: campante@bison.ph.bham.ac.uk [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); and others
2014-03-10
We present a novel method for estimating lower-limit surface gravities (log g) of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.
Campante, T L; Lund, M N; Huber, D; Hekker, S; García, R A; Corsaro, E; Handberg, R; Miglio, A; Arentoft, T; Basu, S; Bedding, T R; Christensen-Dalsgaard, J; Davies, G R; Elsworth, Y P; Gilliland, R L; Karoff, C; Kawaler, S D; Kjeldsen, H; Lundkvist, M; Metcalfe, T S; Aguirre, V Silva; Stello, D
2014-01-01
We present a novel method for estimating lower-limit surface gravities log g of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.
Disturbance Vector in Space from Surface Gravity Anomalies Using Complementary Models.
1985-08-01
sphere. For the dense 5’x5" data used in our New Mexico tests, however, the Dirac results were superior to those of the l.s.c. because of the ill...Lelgemann, D., "Spherical Approximation and the Combination of Gravimetric and Satellite Data," Bolletino di Geodesia e Scienze Affini, vol. 32, No. 4... Geodesia e Scienze Affini, vol. 41, No. 1, pp. 89-103, 1982. Rapp, R.H., "A FORTRAN Program for the Computation of the Normal Gravity and Gravitational
Suspension-Driven Gravity Surges on Horizontal Surfaces: Effect of the Initial Shape
Zgheib, Nadim; Bonometti, Thomas; Balachandar, S.
2016-11-01
We present results from fully-resolved direct numerical simulations of canonical (axisymmetric and planar) and non-canonical (rectangular) configurations of horizontal suspension-driven gravity surges. We show that the dynamics along the initial minor and major axis of a rectangular release are roughly similar to that of a planar and axisymmetric current, respectively. However, contrary to expectation, we observe under certain conditions the final extent of the deposit from finite releases to surpass that from an equivalent planar current. This is attributed to a converging flow of the particle-laden mixture towards the initial minor axis, a behaviour that was previously reported for scalar-driven currents on uniform slopes. This flow is observed to be correlated with the travelling of a perturbation wave generated at the extremity of the longest side that reaches the front of the shortest side in a finite time. A semi-empirical explicit expression (based on established relations for planar and axisymmetric currents) is proposed to predict the extent of the deposit in the entire x-y plane. Finally we observe that for the same initial volume of a suspension-driven gravity surge, a release of larger initial horizontal aspect-ratio is able to retain particles in suspension for longer periods of time. ExxonMobil Upstream Research (EM 09296); NSF (OISE-0968313); CALMIP (P1525).
1982-01-01
Guided missile cruiser equipped with advanced Aegis fleet defense system which automatically tracks hundreds of attacking aircraft or missiles, then fires and guides the ship's own weapons in response. Designed by Ingalls Shipbuilding for the US Navy, the U.S.S. Ticonderoga is the first of four CG-47 cruisers to be constructed. NASTRAN program was used previously in another Navy/Ingalls project involving design and construction of four DDG-993 Kidd Class guided missile destroyers.
Directory of Open Access Journals (Sweden)
Animesh Mukherjee
1991-01-01
Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.
Holman, R. A.; Greydanus, S. J.
2014-12-01
In May of 2013 and beyond, Argus optical measurements of the mouth of the Columbia River estuary and plume were collected as part of the RIVET II multi-investigator field experiment. One surprise was the strength of eddy and internal wave signatures observed in movies computed from one-minute averages of high-frequency snapshots (such that gravity waves were averaged out but slicks and variable surface roughness remained). In particular, passing ships left wakes that propagated away at speeds on the order of 0.5 m/s, much slower than gravity waves and presumably surface manifestations of internal waves associated with the time-varying salt-wedge. Thus, these internal ship wakes appear to act as probes of internal stratification dynamics. This paper will explore the time variations of these internal wakes and relate them to corresponding variations in the estuary salt wedge.
Bussonière, Adrien; Brunet, Philippe; Matar, Olivier Bou
2016-01-01
When sessile droplets are excited by ultrasonic traveling surface acoustic waves (SAWs), they undergo complex dynamics with both oscillations and translational motion. While the nature of the Rayleigh-Lamb quadrupolar drop oscillations has been identified, their origin and their influence on the drop mobility remains unexplained. Indeed the physics behind this peculiar dynamics is complex with nonlinearities involved both at the excitation level (acoustic streaming and radiation pressure) and in the droplet response (nonlinear oscillations and contact line dynamics). In this paper, we investigate the dynamics of sessile and pendant drops excited by SAWs. For pendant drops, so-far unreported dynamics are observed close to the drop detachment threshold with the suppression of the translational motion. Away from this threshold, the comparison between pendant and sessile drop dynamics allows us to identify the role played by gravity or more generally by an initial or dynamically induced stretching of the drop. In...
Onorato, M; Osborne, A R; Serio, M; Cavaleri, L; Brandini, C; Stansberg, C T
2004-12-01
We study random surface gravity wave fields and address the formation of large-amplitude waves in a laboratory environment. Experiments are performed in one of the largest wave tank facilities in the world. We present experimental evidence that the tail of the probability density function for wave height strongly depends on the Benjamin-Feir index (BFI)-i.e., the ratio between wave steepness and spectral bandwidth. While for a small BFI the probability density functions obtained experimentally are consistent with the Rayleigh distribution, for a large BFI the Rayleigh distribution clearly underestimates the probability of large events. These results confirm experimentally the fact that large-amplitude waves in random spectra may result from the modulational instability.
Scalable Gravity Offload System Project
National Aeronautics and Space Administration — A scalable gravity offload device simulates reduced gravity for the testing of various surface system elements such as mobile robots, excavators, habitats, and...
1990-09-14
University, Fisheries (Japan) ON THE MANEUVERING QUALITIES OF SHIPS 2.81 C.G. Biancardi, Istituto Universitario Navale (Italy), D.R. Dellwo, U.S. Merchant...Architects, No.209, June, 1988.(in Japanese) 2.80 I ON ’THE MANEUVERING QUALITIES OF SHIPS by Carmine G. Biancardi, Istituto Universitario Navale, Italy...Ventilation system, - High pressure air system and - Fuel load and transport system. The interface between Damocles and the DC-officer has been
Ramillien, Guillaume; Frappart, Frédéric; Seoane, Lucia
2016-04-01
We propose a new method to produce time series of global maps of surface mass variations by progressive integration of daily geopotential variations measured by orbiting satellites. In the case of the GRACE mission, these geopotential variations can be determined from very accurate inter-satellite K-Band Range Rate (KBRR) measurements of 5-second daily orbits. In particular, the along-track gravity contribution of hydrological mass changes is extracted by removing de-aliasing models for static field, atmosphere, oceans mass variations (including periodical tides), as well as polar movements. Our determination of surface mass sources is composed of two successive dependent Kalman filter stages. The first one consists of reducing the satellite-based potential anomalies by adjusting the longest spatial wavelengths (i.e., low-degree spherical harmonics lower than 2). In the second stage, the residual potential anomalies from the previous stage are used to recover surface mass density changes - in terms of Equivalent-Water Height (EWH) - over a global network of juxtaposed triangular elements. These surface tiles of ~100,000 km x km (or equivalently 330 km by 330 km) are defined to be of equal areas over the terrestrial sphere. However they can be adapted to the local geometry of the surface mass. Our global approach was tested by inverting geopotential data, and successfully applied to estimate time-varying surface mass densities from real GRACE-based residuals. This strategy of combined Kalman filter-type inversions can also be useful for exploring the possibility of improving time and space resolutions for ocean and land studies that would be hopefully brought by future low altitude geodetic missions.
Surface gravity waves and their acoustic signatures, 1-30 Hz, on the mid-Pacific sea floor.
Farrell, W E; Munk, Walter
2013-10-01
In 1999, Duennebier et al. deployed a hydrophone and geophone below the conjugate depth in the abyssal Pacific, midway between Hawaii and California. Real time data were transmitted for 3 yr over an abandoned ATT cable. These data have been analyzed in the frequency band 1 to 30 Hz. Between 1 and 6 Hz, the bottom data are interpreted as acoustic radiation from surface gravity waves, an extension to higher frequencies of a non-linear mechanism proposed by Longuet-Higgins in 1950 to explain microseisms. The inferred surface wave spectrum for wave lengths between 6 m and 17 cm is saturated (wind-independent) and roughly consistent with the traditional Phillips κ(-4) wave number spectrum. Shorter ocean waves have a strong wind dependence and a less steep wave number dependence. Similar features are found in the bottom record between 6 and 30 Hz. But this leads to an enigma: The derived surface spectrum inferred from the Longuet-Higgins mechanism with conventional assumptions for the dispersion relation is associated with mean square slopes that greatly exceed those derived from glitter. Regardless of the generation mechanism, the measured bottom intensities between 10 and 30 Hz are well below minimum noise standards reported in the literature.
Nugraha, M. G.; Saepuzaman, D.; Sholihat, F. N.; Ramayanti, S.; Setyadin, A. H.; Ferahenki, A. R.; Samsudin, A.; Utama, J. A.; Susanti, H.; Kirana, K. H.
2016-11-01
This study was conducted to determine the Earth's surface gravitational acceleration (g) prior to, during, and after a partial solar eclipse. Data was collected in Basic Physics Laboratory Universitas Pendidikan Indonesia, Bandung with coordinates S 6°51'48", E 107°35'40" for three days on March 8 - 10, 2016, in time interval measurement from 6 a.m. to 9 a.m. This research used a standard pendulum, Kater's reversible pendulum, which deviated less than 3° so that the motion can be regarded harmonics oscillation. The period of pendulum oscillation motion is measured by a light sensor (photogate sensor) with accuracy until 10-13 seconds. The data analysis shows that there is small difference value of gravity acceleration at the Earth's surface from three days of observation, i.e. in the order of 10-3 ms-2. It means, there is a changes in the Earth's surface gravitational acceleration (g) due to the partial solar eclipse but not significant.
Drenth, Benjamin J.
2013-01-01
Airborne gravity gradient (AGG) data are rapidly becoming standard components of geophysical mapping programs, due to their advantages in cost, access, and resolution advantages over measurements of the gravity field on the ground. Unlike conventional techniques that measure the gravity field, AGG methods measure derivatives of the gravity field. This means that effects of terrain and near-surface geology are amplified in AGG data, and that proper terrain corrections are critically important for AGG data processing. However, terrain corrections require reasonable estimates of density for the rocks and sediments that make up the terrain. A recommended philosophical approach is to use the terrain and surface geology, with their strong expression in AGG data, to the interpreter’s advantage. An example of such an approach is presented here for an area with very difficult ground access and little ground gravity data. Nettleton-style profiling is used with AGG data to estimate the densities of the sand dunefield and adjacent Precambrian rocks from the area of Great Sand Dunes National Park in southern Colorado. Processing of the AGG data using the density estimate for the dunefield allows buried structures, including a hypothesized buried basement bench, to be mapped beneath the sand dunes.
Institute of Scientific and Technical Information of China (English)
Xue Lina; Lin Lin; Wang Siyuan
2009-01-01
@@ According to the statistics from Frech shipping advisory bod-ies,till December 21,2008,165 container ships were idle,leav-ing the fees,such as anchorage fees,ship maintaining fee,crev resettlement fee and repaying loans for ship-buying,an-noying the ship-owners.
Wijnolst, N.; Waals, F.
1999-01-01
Understanding Shipping Management requires a thorough understanding of the Shipping Industry Structure. This book provides this knowledge base and should be seen in conjunction with two other books: Shipping and Design Innovation in Shipping. Shipping Industry Structure was intended as the first par
Wijnolst, N.; Waals, F.
1999-01-01
Understanding Shipping Management requires a thorough understanding of the Shipping Industry Structure. This book provides this knowledge base and should be seen in conjunction with two other books: Shipping and Design Innovation in Shipping. Shipping Industry Structure was intended as the first par
Wijnolst, N.; Waals, F.
1999-01-01
Understanding Shipping Management requires a thorough understanding of the Shipping Industry Structure. This book provides this knowledge base and should be seen in conjunction with two other books: Shipping and Design Innovation in Shipping. Shipping Industry Structure was intended as the first
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109923 includes biological, chemical, meteorological, physical and underway - surface data collected from AURORA AUSTRALIS, NOAA Ship DISCOVERER,...
Ship?Shore and Ship?Ship Data Transfer
Heikkilä, Martti
During recent years there has been significant development in several technologies which can contribute to the efficiency and safety of maritime traffic. The most important of these are accurate positioning systems (DGPS), digital data transmission/transponder technology, electronic chart systems (ECDIS), control of ships using electronic passage plans, and ship path prediction. With a widespread implementation of these new techniques, combined with advanced ship-shore and ship-ship data transfer, significant improvements can be achieved in traffic situation awareness both in a VTS and onboard. This paper describes the research carried out at VTT on VTS development, and especially gives an outline of new VTS functions using shipship data transfer.
Institute of Scientific and Technical Information of China (English)
Luo Ying; Zhang Zhongzhe; Qi Jibing; Li Gang; Qi Guisheng; Liu Youzhi
2015-01-01
By using a mixture of N2 and H2S as the simulated APG (associated petroleum gas), the desulfurization experi-ment was performed in a cross-lfow rotating packed bed (RPB) based on the chelated iron oxidation-reduction method. In order to determine the operating conditions of the system, the effects of the concentration of Fe3+ions (ranging from 0.1 to 0.2 mol/L), the liquid-gas volume ratio (ranging from 15 to 25 L/m3) and the high gravity factor (ranging from 36 to 126) on the removal of H2S were studied by means of the Box-Behnken design (BBD) under response surface methodology (RSM). The overall results have demonstrated that the BBD with an experimental design can be used effectively in the optimization of the desulfurization process. The optimal conditions based on both individualized and combined responses (at a Fe3+ion concentration of 0.16 mol/L, a liquid-gas volume ratio of 20.67 L/m3 and a high gravity factor of 87) were found. Under this optimum condition, the desulfurization efifciency could reach 98.81%when the H2S concentration was 7 g/m3 in APG. In this work, the sulfur product was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and the energy dispersive X-ray spectrometer (EDX). The results of analysis show that the sulfur is made of the high-purity orthorhombic crystals, which are advantageous to environmental conservation.
DEMON-type algorithms for determination of hydro-acoustic signatures of surface ships and of divers
Slamnoiu, G.; Radu, O.; Rosca, V.; Pascu, C.; Damian, R.; Surdu, G.; Curca, E.; Radulescu, A.
2016-08-01
With the project “System for detection, localization, tracking and identification of risk factors for strategic importance in littoral areas”, developed in the National Programme II, the members of the research consortium intend to develop a functional model for a hydroacoustic passive subsystem for determination of acoustic signatures of targets such as fast boats and autonomous divers. This paper presents some of the results obtained in the area of hydroacoustic signal processing by using DEMON-type algorithms (Detection of Envelope Modulation On Noise). For evaluation of the performance of various algorithm variations we have used both audio recordings of the underwater noise generated by ships and divers in real situations and also simulated noises. We have analysed the results of processing these signals using four DEMON algorithm structures as presented in the reference literature and a fifth DEMON algorithm structure proposed by the authors of this paper. The algorithm proposed by the authors generates similar results to those obtained by applying the traditional algorithms but requires less computing resources than those and at the same time it has proven to be more resilient to random noise influence.
Sunday, Cecily; Cherrier, Olivier; Serrano, Sara Morales; Nardi, Claudia Valeria; Janin, Tristan; Martinez, Iris Avila; Gourinat, Yves; Mimoun, David
2016-01-01
This work presents an experimental design for studying low-velocity collisions into granular surfaces in low-gravity. In the experiment apparatus, reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use of an Atwood machine, or a system of pulleys and counterweights. The starting height of the surface container and the initial separation distance between the projectile and surface are variable and chosen to accommodate collision velocities up to 20 cm/s and effective accelerations of ~0.1 - 1.0 m/s^2. Accelerometers, placed on the surface container and inside the projectile, provide acceleration data, while high-speed cameras capture the collision and act as secondary data sources. The experiment is built into an existing 5.5 m drop-tower frame and requires the custom design of all components, including the projectile, surface sample container, rele...
Retrieving capillary-gravity wave spectrum from polarimetric microwave radiation of ocean surface
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A new simple two-scale model on the polarimetric microwave emission of ocean surface is derived at first, which can be ex-pressed as an integral of weighting functions (M0 and M2) and ocean surface curvature spectrum coefficients (C0 and C2). This provides a simple way to investigate the effect of curvature spectrum on ocean emission. It is found that ocean waves with wavelengths both comparable to and much greater than the electromagnetic wavelength can contribute to the harmonics of ocean surface microwave emission, depending on the magnitude of the ocean surface spectrum in these length scales. Bright-ness temperature predictions differ significantly due to present diverse spectrum models, and thus a study on wave spectrum obtained inversely from brightness temperature measurements is necessary. From the ocean surface radiation data measured by polarimetric microwave radiometer, we derived an ocean wave spectrum with a wider wave number range, using the proposed two-scale model and constrained linear least-squares method. The derived ocean wave spectrum is useful for comparing with present diverse models.
Clément, A.
1996-06-01
The numerical simulation of nonlinear gravity waves propagating at the surface of a perfect fluid is now usually solved by totally nonlinear time-domain numerical models in two dimensions, and this approach is being extended to three dimensions. The original initial boundary value problem is posed in an unbounded region, extending horizontally up to infinity to model the sea. Its numerical solution requires truncating the domain at a finite distance. Unfortunately, no exact nonreflecting boundary condition on the truncating surface exists in this time-domain formulation. The proposed strategy is based on the coupling of two previously known methods in order to benefit from their different, and complementary, bandwidth: the numerical "beach," very efficient in the high frequency range; and a piston-like Neumann condition, asymptotically ideal for low frequencies. The coupling method gives excellent results in the whole range of frequencies of interest and is as easy to implement in nonlinear as in linear versions. One of its major advantages is that it does not require any spectral knowledge of the incident waves.
Zero-gravity Mean Free Surface Curvature of a Confined Liquid in a Radially-Vaned Container
Chen, Yongkang; Callahan, Michael; Weislogel, Mark
2013-01-01
A variety of increasingly intricate container geometries are under consideration for the passive manipulation of liquids aboard spacecraft where the impact of gravity may be neglected. In this study we examine the mean curvature of a liquid volume confined within a radial array of disconnected vanes of infinite extent. This particular geometry possesses a number of desirable characteristics relevant to waste water treatment aboard spacecraft for life support. It is observed that under certain conditions the slender shape of the free surface approaches an asymptote, which can be predicted analytically using new hybrid boundary conditions proposed herein. This contribution represents possibly the final extension of what has been referred to as the method of de Lazzer et al. (1996). The method enables the integration of the Young-Laplace equation over a domain with its boundaries, including the wetted portion of the solid boundaries, symmetry planes, and circular arcs representing free surfaces at the center plane of the liquid body. Asymptotic solutions at several limits are obtained and the analysis is confirmed with numerical computations.
New Views of Earth's Gravity Field from GRACE
2003-01-01
expected to increase the resolution further. The second figure confirms that the Grace data is global, homogeneous and highly accurate. These are all properties that have been sought for gravity model development. [figure removed for brevity, see original site] Ocean Circulation Measurements from Grace The arrows in the three data sets in Figure 3 depict ocean currents off the East Coast of the United States, 1,000 meters (approximately 3,280 feet) beneath the surface. The top panel is obtained from the GRACE geoid, satellite altimetry and ship measurements of temperature and salt. The bottom panel is computed in the same manner as the top one, except that the best geoid prior to GRACE is used instead of the GRACE geoid. The middle panel shows direct measurement of those currents by floats deployed from ships. Notice that the current arrows in the Gulf Stream extension, East and slightly South of Washington DC, point eastward, toward Europe, in the two upper panels, but in the opposite direction in the lower panel. Colors indicate the strength of the ocean current, with red being strongest and blue-green weakest. Areas in white have no available data.The Gulf Stream region of the North Atlantic is among the best studied in the world's oceans, with a significant quantity of high-quality data available on it as a result of shipborne instrument measurements. In less well studied regions, the new information provided by GRACE, together with satellite altimetry, will increase our knowledge of ocean circulation.
Institute of Scientific and Technical Information of China (English)
荆发标; 康晓予
2011-01-01
通过对编队舰空导弹武器系统射击过程的分析,在一定的假设条件下,从被攻击舰和掩护舰两方面着手,建立整个编队舰空导弹武器系统对来袭目标的射击拦截次数模型.为进一步计算舰空导弹射击效能提供了方便;同时,仿真参数对射击次数的影响也能为部队作战训练和武器系统的进一步改进提供依据.%In hypothesis condition, the firing times model of the whole surface ship formation is established via analysis on firing process of ship-to-air missile weapon system from two aspects of attacked ship and covering ship. This method provides a convenient way to calculate firing efficiency of surface to ship-to-air missile weapon system. At the same time, simulating parameter can provide reasonable basis for training and amelioration of weapon system.
Charland, J.; Rey, V.; Touboul, J.
2012-04-01
Part of evanescent modes in the normally incident gravity surface wave's energy layout around a submerged obstacle Jenna Charland *1, Vincent Rey *2, Julien Touboul *2 *1 Mediterraneen Institute of Oceanography. Institut des Sciences de l'Ingénieur Toulon-Var. Avenue Georges Pompidou, BP 56, 83162 La Valette du Var Cedex, France. Centre National de la Recherche Scientifique, Délégation Normandie. Projet soutenu financièrement par la Délégation Générale de l'Armement. *2 Mediterraneen Institute of Oceanography. Institut des Sciences de l'Ingénieur Toulon-Var. Avenue Georges Pompidou, BP 56, 83162 La Valette du Var Cedex, France. During the last decades various studies have been performed to understand the wave propagation over varying bathymetries. Few answers related to this non linear problem were given by the Patarapanich's studies which described the reflection coefficient of a submerged plate as a function of the wavelength. Later Le-Thi-Minh [2] demonstrated the necessity of taking into account the evanescent modes to better describe the propagation of waves over a varying bathymetry. However, all these studies stare at pseudo-stationary state that allows neither the comprehension of the transient behaviour of propagative modes nor the role of the evanescent modes in this unstationnary process. Our study deals with the wave establishment over a submerged plate or step and focuses on the evanescent modes establishment. Rey [3] described the propagation of a normally incident surface gravity wave over a varying topography on the behaviour of the fluid using a linearized potential theory solved by a numerical model using an integral method. This model has a large field of application and has been adapted to our case. This code still solves a stationary problem but allows us to calculate the contribution of the evanescent modes in the energy layout around a submerged plate or a submerged step. The results will show the importance of the trapped energy
Garel, F.; Kaminski, E.; Tait, S.; Limare, A.
2011-12-01
During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a
Geometric Cone Surfaces and (2+1)- Gravity coupled to Particles
Benedetti, R; Benedetti, Riccardo; Guadagnini, Enore
2000-01-01
We introduce the (2+1)-spacetimes with compact space of genus g and with r gravitating particles which arise by ``Minkowskian suspensions of flat or hyperbolic cone surfaces'', by ``distinguished deformations'' of hyperbolic suspensions and by ``patchworking'' of suspensions. Similarly to the matter-free case, these spacetimes have nice properties with respect to the canonical Cosmological Time Function. When the values of the masses are sufficiently large and the cone points are suitably spaced, the distinguished deformations of hyperbolic suspensions determine a relevant open subset of the full parameter space; this open subset is homeomorphic to the product of an Euclidean space of dimension 6g-6+2r with an open subset of the Teichm\\"uller Space of Riemann surfaces of genus g with r punctures. By patchworking of suspensions one can produce examples of spacetimes which are not distinguished deformations of any hyperbolic suspensions, although they have the same masses; in fact, we will guess that they belon...
Newtonian and general relativistic contribution of gravity to surface tension of strange stars
Bagchi, M; Dey, M; Dey, J; Bhowmick, S; Bagchi, Manjari; Sinha, Monika; Dey, Mira; Dey, Jishnu; Bhowmick, Siddhartha
2005-01-01
Surface tension (S) is due to the inward force experienced by particles at the surface and usually gravitation does not play an important role in this force. But in compact stars the gravitational force on the particles is very large and S is found to depend not only on the interactions in the strange quark matter, but also on the structure of the star, i.e. on its mass and radius. Indeed, it has been claimed recently that 511 keV photons observed by the space probe INTEGRAL from the galactic bulge may be due to electron-positron annihilation, and their source may be the positron cloud outside of an antiquark star. Such stars, if they exist, may also go a long way towards explaining away the antibaryon deficit of the universe. For that to happen S must be high enough to allow for survival of quark/antiquark stars born in early stages of the formation of the universe. High value of S may also assist explanation of delayed gamma-ray burst after a supernova explosion, as conversion from normal matter to strange ...
1990-09-14
Istituto Universitario Navale, M. Capecchi, A. Troiano, A. Trotta, Istituto Tecnico Nautico (Italy) AN OBJUCT-ORIENTUD DESIGN METHOD FOR SHIP AND MACHINERY...time delays associated with perceptual, central processing, neuromotor pathways and communication and transport delays are negligibly small compared...4.381 MARITIME MANEUVERING PILOTING AID by Carmine G. Biancardi Istituto Universitario Navale, Naples, Italy, Massimo Capecchi Istituto Tecnico
Bussonnière, A.; Baudoin, M.; Brunet, P.; Matar, O. Bou
2016-05-01
When sessile droplets are excited by ultrasonic traveling surface acoustic waves (SAWs), they undergo complex dynamics with both oscillations and translational motion. While the nature of the Rayleigh-Lamb quadrupolar drop oscillations has been identified, their origin and their influence on the drop mobility remains unexplained. Indeed, the physics behind this peculiar dynamics is complex with nonlinearities involved both at the excitation level (acoustic streaming and radiation pressure) and in the droplet response (nonlinear oscillations and contact line dynamics). In this paper, we investigate the dynamics of sessile and pendant drops excited by SAWs. For pendant drops, so-far unreported dynamics are observed close to the drop detachment threshold with the suppression of the translational motion. Away from this threshold, the comparison between pendant and sessile drop dynamics allows us to identify the role played by gravity or, more generally, by an initial or dynamically induced stretching of the drop. In turn, we elucidate the origin of the resonance frequency shift, as well as the origin of the strong correlation between oscillatory and translational motion. We show that for sessile drops, the velocity is mainly determined by the amplitude of oscillation and that the saturation observed is due to the nonlinear dependence of the drop response frequency on the dynamically induced stretching.
Bilal, Adel
2014-01-01
We study two-dimensional quantum gravity on arbitrary genus Riemann surfaces in the Kaehler formalism where the basic quantum field is the (Laplacian of the) Kaehler potential. We do a careful first-principles computation of the fixed-area partition function $Z[A]$ up to and including all two-loop contributions. This includes genuine two-loop diagrams as determined by the Liouville action, one-loop diagrams resulting from the non-trivial measure on the space of metrics, as well as one-loop diagrams involving various counterterm vertices. Contrary to what is often believed, several such counterterms, in addition to the usual cosmological constant, do and must occur. We consistently determine the relevant counterterms from a one-loop computation of the full two-point Green's function of the Kaehler field. Throughout this paper we use the general spectral cutoff regularization developed recently and which is well-suited for multi-loop computations on curved manifolds. At two loops, while all "unwanted" contribut...
Notsu, Yuta; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Nogami, Daisaku; Shibata, Kazunari
2014-01-01
We conducted high dispersion spectroscopic observations of 50 superflare stars with Subaru/HDS, and measured the stellar parameters of them. These 50 targets were selected from the solar-type (G-type main sequence) superflare stars that we had discovered from the Kepler photometric data. As a result of these spectroscopic observations, we found that more than half (34 stars) of our 50 targets have no evidence of binary system. We then estimated effective temperature ($T_{\\rm{eff}}$), surface gravity ($\\log g$), metallicity ([Fe/H]), and projected rotational velocity ($v\\sin i$) of these 34 superflare stars on the basis of our spectroscopic data. The accuracy of our estimations is higher than that of Kepler Input Catalog (KIC) values, and the differences between our values and KIC values ($(\\Delta T_{\\rm{eff}})_{\\rm{rms}} \\sim 219$K, $(\\Delta \\log g)_{\\rm{rms}} \\sim 0.37$ dex, and $(\\Delta\\rm{[Fe/H]})_{\\rm{rms}} \\sim 0.46$ dex) are comparable to the large uncertainties and systematic differences of KIC values ...
Near-surface current meter array measurements of internal gravity waves
Energy Technology Data Exchange (ETDEWEB)
Jones, H.B.E. [Lawrence Livermore National Lab., CA (United States)
1994-11-15
We have developed various processing algorithms used to estimate the wave forms produced by hydrodynamic Internal Waves. Furthermore, the estimated Internal Waves are used to calculate the Modulation Transfer Function (MTF) which relates the current and strain rate subsurface fields to surface scattering phenomenon imaged by radar. Following a brief discussion of LLNL`s measurement platform (a 10 sensor current meter array) we described the generation of representative current and strain rate space-time images from measured or simulated data. Then, we present how our simulation capability highlighted limitations in estimating strain rate. These limitations spurred the application of beamforming techniques to enhance our estimates, albeit at the expense of collapsing our space-time images to 1-D estimates. Finally, we discuss progress with regard to processing the current meter array data captured during the recent Loch Linnhe field trials.
Chakrabarti, Aditi; Chaudhury, Manoj K
2013-12-17
We report some experimental observations regarding a new type of long-range interaction between rigid particles that prevails when they are suspended in an ultrasoft elastic gel. A denser particle submerges itself to a considerable depth inside the gel and becomes elasto-buoyant by balancing its weight against the elastic force exerted by the surrounding medium. By virtue of a large elasto-capillary length, the surface of the gel wraps around the particle and closes to create a line singularity connecting the particle to the free surface of the gel. A substantial amount of tensile strain is thus developed in the gel network parallel to the free surface that penetrates to a significant depth inside the gel. The field of this tensile strain is rather long-range because of a large gravito-elastic correlation length and sufficiently strong to pull two submerged particles into contact. The particles move toward each other with an effective force following an inverse linear distance law. When more monomers or dimers of the particles are released inside the gel, they orient rather freely inside the capsules where they are located and attract each other to form closely packed clusters. Eventually, these clusters themselves interact and coalesce. This is an emergent phenomenon in which gravity, capillarity, and elasticity work in tandem to create a long-range interaction. We also present the results of a related experiment, in which a particle suspended inside a thickness-graded gel moves accompanied by the continuous folding and the relaxation of the gel's surface.
Typhoon generated surface gravity waves measured by NOMAD-type buoys
Collins, Clarence O., III
This study examines wind-generated ocean surface waves as measured by NOMAD-type buoys during the ONR-sponsored Impact of Typhoons on the Ocean in the Pacific (ITOP) field experiment in 2010. 1-D measurements from two new Extreme Air-Sea Interaction (EASI) NOMAD-type buoys were validated against measurements from established Air-Sea Interaction Spar (ASIS) buoys. Also, during ITOP, 3 drifting Miniature Wave Buoys, a wave measuring marine radar on the R/V Roger Revelle, and several overpasses of JASON-1 (C- and Ku-band) and -2 (Ku-band) satellite altimeters were within 100 km of either EASI buoy. These additional measurements were compared against both EASI buoys. Findings are in line with previous wave parameter inter-comparisons. A corroborated measurement of mean wave direction and direction at the peak of the spectrum from the EASI buoy is presented. Consequently, this study is the first published account of directional wave information which has been successfully gathered from a buoy with a 6 m NOMAD-type hull. This result may be applied to improve operational coverage of wave direction. In addition, details for giving a consistent estimate of sea surface elevation from buoys using strapped down accelerometers are given. This was found to be particularly important for accurate measurement of extreme waves. These technical studies established a high level of confidence in the ITOP wave measurements. Detailed frequency-direction spectra were analyzed. Structures in the wave field were described during the close passages of 4 major tropical cyclones (TC) including: severe tropical storm Dianmu, Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. In addition, significant swell was measured from a distant 5th TC, Typhoon Malakas. Changes in storm direction and intensity are found to have a profound impact on the wave field. Measurements of extreme waves were explored. More extreme waves were measured during TCs which coincided with times of increased wave
Lun, Y H Venus; Wong, Christina W Y; Cheng, T C E
2016-01-01
This book presents theory-driven discussion on the link between implementing green shipping practices (GSP) and shipping firm performance. It examines the shipping industry’s challenge of supporting economic growth while enhancing environmental performance. Consisting of nine chapters, the book covers topics such as the conceptualization of green shipping practices (GSPs), measurement scales for evaluating GSP implementation, greening capability, greening and performance relativity (GPR), green management practice, green shipping network, greening capacity, and greening propensity. In view of the increasing quest for environment protection in the shipping sector, this book provides a good reference for firms to understand and evaluate their capability in carrying out green operations on their shipping activities.
Institute of Scientific and Technical Information of China (English)
张永生; 翁志刚; 肖雪
2011-01-01
This paper builds the model for the surface-ship formation using the hull-mounted sonars to search the submarine,and analyzes the affections caused by the interval distance between the ships and the speed ratio of the submarine and the ship formation.In t%文章建立了水面舰艇编队使用舰壳声纳对潜搜索模型,分析了舰艇间距及敌我舰艇航速大小等因素对搜索效能的影响,提出编队使用舰壳声纳对潜搜索基本方法。
Institute of Scientific and Technical Information of China (English)
JI Yulong; SUN Yuqing; ZHANG Hongpeng; ZHANG Yindong; CHEN Haiquan
2009-01-01
As the development tends towards high-speed, large-scale and high-power, power of the ship main engine becomes larger and larger. This make the engine design and cabin arrangement become more and more difficult. Ship maneuverability becomes bad. A new ship propulsion system, integrated hydraulic propulsion (IHP), is put forward to meet the development of modem ship. Principle of IHP system is discussed. Working condition matching characteristic of IHP ship is studied based on its matching characteristic charts. According to their propulsion principle, dynamic mathematic models of IHP ship and direct propulsion (DP) ship are developed. These two models are verified by test sailing and test stand data. Based on the software Matlab/Simulink, comparison research between IHP ship and DP ship is conducted. The results show that cabin arrangement of IHP ship is very flexible, working condition matching characteristic of IHP ship is good, the ratio of power to weight of IHP ship is larger than DP ship, and maneuverability is excellent. IHP system is suitable for engineering ship, superpower ship and warship, etc.
46 CFR 170.200 - Estimated lightweight vertical center of gravity.
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Estimated lightweight vertical center of gravity. 170... Centers of Gravity § 170.200 Estimated lightweight vertical center of gravity. (a) Each tank vessel that... calculations required by §§ 170.170 and 172.065, the vertical center of gravity of a tank vessel in the...
Meinerzhagen, Florian; Bukowska, Hanna; Bender, Markus; Severin, Daniel; Herder, Matthias; Lebius, Henning; Schleberger, Marika; Wucher, Andreas
2015-01-01
The irradiation with fast ions with kinetic energies of > 10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in-situ analysis of differ...
The shipping man adventures in ship finance
McCleery, Matthew
2013-01-01
When restless New York City hedge fund manager Robert Fairchild watches the Baltic Dry Cargo Index plunge 97%, registering an all-time high and a 25-year low within the span of just six months, he decides to buy a ship. Immediately fantasizing about naming a vessel after his wife, carrying a string of worry beads and being able to introduce himself as a "shipowner" at his upcoming college reunion, Fairchild immediately embarks on an odyssey into the most exclusive, glamorous and high stakes business in the world. From pirates off the coast of Somalia and on Wall Street to Greek and Norwegian shipping magnates, the education of Robert Fairchild is an expensive one. In the end, he loses his hedge fund, but he gains a life - as a Shipping Man. Part fast paced financial thriller, part ship finance text book, The Shipping Man is 310 pages of required reading for anyone with an interest in capital formation for shipping.
Yarin, Alexander; Sinha-Ray, Suman; Jun, Seongchul
2014-03-01
The earth experiments with drop impact onto metal-plated electrospun nanofiber mats encompass a single drop, or drop trains or jets impacts. The results on drop cooling and pool boiling on nano-textured surface were obtained during the parabolic flights supported by NASA and ESA. Pool boiling on nano-textured surfaces was studied for ethanol and water as working fluids. The nano-textured surfaces were copper platelets covered with copper-plated electrospun nanofibers. The results revealed that the heat flux in boiling on the nano-textured surfaces was about 3-8 times higher than that on the bare copper. This stems from the fact that nano-textured surfaces promote bubble growth by increasing the average temperature of fluid surrounding growing bubbles. Nano-textured surfaces facilitated bubble growth rate and increase bubble detachment frequency. On the other hand, the critical heat flux (CHF) on the nano-textured surfaces was found to be very close to its counterpart on the bare copper surfaces. However, the heat flux on the nano-textured surfaces in transition boiling was significantly higher than on the bare copper ones, since the presence of nanofibers prevented bubble merging and delayed formation of vapor film.
Nonlinear ship waves and computational fluid dynamics
National Research Council Canada - National Science Library
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
.... Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design...
Infrared ship signature analysis and optimisation
Neele, F.P.
2005-01-01
The last decade has seen an increase in the awareness of the infrared signature of naval ships. New ship designs show that infrared signature reduction measures are being incorporated, such as exhaust gas cooling systems, relocation of the exhausts and surface cooling systems. Hull and superstructur
National Research Council Canada - National Science Library
de Rham, Claudia
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP...
Claudia de Rham
2016-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali-Gabadadze-Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware-Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
de Rham, Claudia
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali-Gabadadze-Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware-Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
Bianchi, Eugenio
The following sections are included: * Introduction * Topological Field Theory and Gravity * Classical Spinfoam Gravity: Degrees of Freedom and Foams * Unitary Representations of the Rotation and the Lorentz Group * Boundary Variables and the Loop Quantum Gravity Hilbert Space * Spinfoam Partition Function and the Vertex Amplitude * Cellular Quantum Geometry: A Single Atom of Space * Cellular Quantum Geometry: Coherent Spin-networks * Vertex-amplitude Asymptotics and Regge Gravity * Reconstructing a Semiclassical Spacetime * Conclusions * References
Cheah, May J; Kevrekidis, Ioannis G; Benziger, Jay B
2013-08-06
Water emerging from ∼100 μm pores into millimeter-size gas flow channels forms drops that grow and become slugs which span the flow channel. Flowing gas causes the slugs to detach and move down the channel. The effect of channel geometry, surface wettability, and gravity on the formation and motion of water slugs has been analyzed using high-speed video images of the drops and differential pressure-time traces. Drops grow and appear, assuming a sequence of shapes that minimize the total interfacial energy of the gas-liquid and liquid-solid interfaces. The drops are initially spherical caps centered on the pore (the liquid contacts one wall). Above a certain size, the drops move to the corner, forming "corner drops" (the liquid contacts two walls). Corner drops grow across the channel, evolving into partial liquid bridges (drops confined by three walls), and finally the drops span the channel cross-section forming slugs (contacting all four walls). Smaller slugs are formed in channels with hydrophobic walls than in channels with hydrophilic walls. Smaller slugs are formed in channels with curved walls than in square or rectangular channels. Slugs move when the differential gas pressure overcomes the force to move the advancing and receding gas-liquid-solid contact lines of the slugs. Residual water left behind in corners by moving slugs reduces the barriers for drops to form slugs, causing the steady-state slug volumes to be smaller than those seen at start-up in dry channels.
1989-12-26
Mar 79 Switchboard 2. 438-80 Shenandoah AD26 Fire in Paint Room 19 May 79 3. 626-80 Conyngham DDG 17 Four Arson Fires 12-14 Jul 78 4. 920-80 Paul...as TAFES) TECHEVAL - Technical Evaluation XO - Executive Officer XRAY - Watertight condition of a ship. Usually set at night. 96 YOKE - Watertight...condition of a ship (more than XRAY , less than ZEBRA). ZEBRA - Most watertight condition of a ship. Usually set with General Quarters. II. SPACE
Directory of Open Access Journals (Sweden)
Yoshimine Ikeda
1985-01-01
Full Text Available The objective of this work is to study the possibility of estimating the heat flux balance at the sea surface from GOSSTCOMP (Global Ocean Sea Surface Temperature Computation developed by NOAA/NESS, USA, and sea surface current data based from ships drift information obtained from Pilot Charts, published by the Diretoria de Hidrografia e Navegação (DHN, Brazilian Navy. The annual mean value of the heat flux balance at the sea surface off southeast Brazil for 1977, is estimated from data on the balance between the heat transported by the currents and that transported by eddy diffusion for each volume defined as 2º x 2º (Lat. x Long. square with a constant depth equivalent to an oceanic mixed layer, 100 m thick. Results show several oceanic areas where there are net flows of heat from atmosphere towards the sea surface. In front of Rio de Janeiro the heat flow was downward and up to 70 ly day-1 and is probably related to the upwellirug phenomenon normally occurring in that area. Another coastal area between Lat. 25ºS to 28ºS indicated an downward flow up to 50 ly day-1; and for an area south of Lat. 27ºS, Long. 040ºW - 048ºW an downward flow up to 200 ly day-1, where the transfer was probably due to the cold water of a nortward flux from the Falkland (Malvinas Current. Results also show several oceanic areas where net flows of heat (of about -100 ly day-1 were toward the atmosphere. In the oceanic areas Lat. 19ºS - 23ºS and Lat. 24ºS - 30ºS, the flows were probably due to the warm water of a southward flux of the Brazil Current. The resulting fluxes from the warm waters of the Brazil Current when compared with those from warm waters of the Gulf Stream and Kuroshio, indicate that the Gulf Stream carries about 3.3 times and the Kuroshio 1.7 times more heat than the Brazil Current. These values agree with those of data available on the heat fluxes of the above mentioned Currents calculated by different methods (Budyko, 1974.
Industrial processes influenced by gravity
Ostrach, Simon
1988-01-01
In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.
Wiggins, Andrew D.
Bow seals are critical components on advanced marine vehicles that rely on aerostatic support to reduce drag. They consist of a series of open-ended fabric cylinders ("fingers") that contact the free surface and, when inflated, form a compliant pressure barrier. Bow seals are unique in that, unlike a majority of structures in civil and mechanical engineering, bow seals operate in a buckled state. The response characteristics of these structures are of practical interest due to unacceptable wear rates on seal components and difficulties in predicting seal performance. Despite this, the hydroelastic response of the seal system, particularly basic information on seal vibration modes and the mechanisms responsible for seal wear, remains largely unknown. Similarly, estimates of the hydrodynamic loads on the seal system are inaccurate and based on heuristic scaling of data from small-scale experiments, where similitude is challenging to maintain. Thus, a large-scale test system is necessary to obtain accurate estimates of bow seal response. The work is comprised of three parts. Part one presents detailed observations of bow seal response acquired using a large-scale test platform developed as part of the present study. These high-resolution observations, the first of their kind, show bow seal response to be characterized by complex post-buckling behavior. Part two proposes an analytical framework for interpreting the wide range of behavior observed at large scale. Using this framework, key parameters driving seal conformation and stability are identified. It is found that, due to their buckled state, bow seals are highly susceptible to a mode switching instability, which may be a potential mechanism responsible for the damaging vibrations. In part three, a benchtop experiment is used to demonstrate that the scalings identified in this study hold across a wide range of bending rigidities. This work has implications for improving drag and wear characteristics in future bow
Institute of Scientific and Technical Information of China (English)
徐林; 葛伟
2015-01-01
The research of combat capability against sea targets of surface ship formation is based on the research of sin‐gle ship platform's .Based on the combat process against sea targets of surface ship platform ,the capability is divided into four parts as ability of detecting and warning ,ability of command and control ,ability of air attack and ability of elecronic warfare .At the same time ,the index system of combat capability against sea targets of surface ship is built after analysing the factor collection of the four abilities .Meanwhile ,considering the characteristic of index system of surface ship combat ca‐pability against sea targets ,the both‐branch fuzzy comprehensive evaluation theory is introduced to evaluate the surface ship combat capability against sea targets .Finally we take an example to prove the feasibility and universal application of this the‐ory .%单舰艇平台对海作战能力的研究是水面舰艇编队对海作战能力研究的基础。论文依据水面舰艇平台对海上目标作战的流程，将水面舰艇对海作战能力划分为侦察预警能力、指挥控制能力、火力打击能力、电子战能力四个部分，并逐一分析了影响这四个部分能力的因素集，建立了水面舰艇对海作战能力指标体系。同时，根据水面舰艇对海作战能力指标体系的特点，采用了双枝模糊综合评判法对水面舰艇对海作战能力进行评估，并通过实例验证了该方法的可行性及普遍适用性。
Preparation of dynamic gravity testing system
Bowin, Carl
Bowin's interest at WHOI is to obtain the most accurate gravity and gravity gradient measurements possible. The Navy's interest is to have the most accurate navigation possible. Neither can have one without the other. Through Zarak Corporation, Bowin has proposed to the Navy Air System Command to develop a dynamic navigational gravity/gravity gradient (NAV/GRAV) system utilizing superconducting squid gravity and tensor gravity gradient sensors for high precision performance. The proposed system development incorporates that inter-dependency, not only to provide the best estimates of both, but also to provide estimates of the quality of the results obtained. Zarak is pursuing funds for the development of superconducting gravity and gravity gradient sensors. Such sensors, when available, will then be utilized in this palletized system for higher accuracy navigation, gravity and gravity gradient determination. It is desired that initial testing utilize Vibrating String Accelerometers (VSA) gravity sensors and readout systems available at WHOI. This way the development and testing of the NAV/GRAV system can proceed using the VSA sensors while the superconducting gravity sensors are being fabricated. Initial dynamic systems tests will be in a van vehicle for convenience and practicality. The system units will be palletized, and therefore they shall be easily transferable, and thus also be usable in aircraft and ships. It is planned that WHOI will have loan of prototype systems for about two months each year for earth research use.
Directory of Open Access Journals (Sweden)
Magdalena Klopott
2013-12-01
Full Text Available The article briefly outlines the issues concerning ship recycling. It highlights ships' high value as sources of steel scrap and non-ferrous metals, without omitting the fact that they also contain a range of hazardous substances. Moreover, the article also focuses on basic ship demolition methods and their environmental impact, as well as emphasizes the importance of “design for ship recycling” philosophy.
Institute of Scientific and Technical Information of China (English)
刘虹; 刘飞; 王斌
2011-01-01
为保障水面舰艇形成与其任务相适应的核化生防护能力,从核化生武器扩散新样式、核化生事故、恐怖袭击、次生核化灾害等角度深入阐述并研究了海上核化生环境对水面舰艇安全的威胁.基于此背景,分析了水面舰艇核化生集体防护的技术要素、能力的必要性及其较个人防护更适合于海上环境的技术特点.另外,通过对比国外海军主战水面舰艇的集体防护能力,为我国今后集体防护设计明确了发展方向.%For ensuring nuclear, chemical, and biological(NCB) defense ability of surface ships in accord with its mission, combining with the current international condition, the nautical NCB security situation is analyzed, and the NCB threat to surface ship security is lucubrated, surrounding several main aspects including new modality of nuclear spread, NCB accident, terror raid, derivative nuclear and chemical disaster, and so on. Aiming at this threat, the technology essentials and the ability necessary of surface ship NCB collective protection are analyzed, and the technology traits between collective protection and individual protection for nautical environment are compared. In addition, by comparing the collective protection ability of foreign naval main active surface ships, it shows clearly the further development direction of collective protection designment.
Mather, R. S.
1973-01-01
Procedures for obtaining position from surface gravity observations are reviewed and their relevance assessed in the context of the application of modern geodetic techniques to programs of Earth and ocean physics. Solutions based on the use of surface layer techniques, the discrete value approach, and the development from Green's theorem are stated in summary, the latter being extended to order e cubed in the height anomaly. The representation of the surface gravity field which is required in order that this accuracy may be achieved is discussed. Interim techniques which could be used in the absence of such a representation are also outlined.
Fuzzy Technique Tracking Control for Multiple Unmanned Ships
Ramzi Fraga; Liu Sheng
2013-01-01
A Fuzzy logic control law is presented and implemented for trajectory tracking of multiple under actuated autonomous surface vessels. In this study, an individual unmanned ship is used to be the leader that tracks the desired path; other unmanned ships are used to be the followers which track the leader only by using its position. A fuzzy controller was implemented for the ship leader position with a constant velocity; however, the ship follower needed a fuzzy controller for the position and ...
Polar gravity fields from GOCE and airborne gravity
DEFF Research Database (Denmark)
Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan
2011-01-01
Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...
Cuesta, C M
2011-01-01
We derive a boundary layer equation describing accumulation regions within a thin-film approximation framework where gravity and surface tension balance. As part of the analysis of this problem we investigate in detail and rigorously the 'drainage' equation (phi"'+1)phi^3=1. In particular, we prove that all solutions that do not tend to 1 as the independent variable goes to infinity are oscillatory, and that they oscillate in a very specific way. This result and the method of proof will be used in the analysis of solutions of the afore mentioned boundary layer problem.
Energy Technology Data Exchange (ETDEWEB)
Healey, D.L. [Geological Survey, Denver, CO (USA)
1983-12-31
A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska and other locations from NOAA Ship...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER. Data were collected by...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109930 includes biological, chemical, meteorological, physical and underway - surface data collected from NOAA Ship RONALD H. BROWN in the North...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115710 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship Bell M. Shimada in the Coastal Waters of SE...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115714 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship Bell M. Shimada in the Coastal Waters of SE...
National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144352 includes Surface underway data collected from NOAA Ship DAVID STARR JORDAN in the Channel Islands National Marine Sanctuary, Cordell Bank...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117689 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea, North...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska from NOAA Ship MILLER FREEMAN. Data...
National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144980 includes Surface underway data collected from NOAA Ship OSCAR DYSON in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-03-03...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117697 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Gulf of Mexico from...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117699 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and...
National Oceanic and Atmospheric Administration, Department of Commerce — Underway measurements of pCO2, salinity, sea surface temperature, and other parameters were collected during 4 trans-Pacific crossings in 2015 on the container ship...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska from NOAA Ship SURVEYOR. Data were...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship RAINIER and other platforms. Data were collected by the...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts from NOAA Ship DISCOVERER. Data were collected by the...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Bering Sea and other locations from NOAA Ship DISCOVERER. Data were...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108156 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from NOAA Ship RONALD H. BROWN in...
National Oceanic and Atmospheric Administration, Department of Commerce — R/V Albatross Globec broadscale cruises 1995-1999, shipboard meteorology and sea surface measurements along the ship's track Comments submitted by Jim Manning These...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts from NOAA Ship DISCOVERER from 22 May 1977 to 09 June 1977....
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109934 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship McARTHUR II in the Coastal Waters of SE...
National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship MILLER FREEMAN from 17 April 1990 to 11 October 1990....
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER. Data were collected by...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116979 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship MILLER FREEMAN and other platforms from 02 April 1976 to 18...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER and other platforms. Data...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters collected in 2014 on board NOAA Ship Oscar...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Bering Sea from NOAA Ship DISCOVERER. Data were collected by the...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Chukchi Sea from NOAA Ship DISCOVERER from 19 July 1982 to 11...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship DISCOVERER and other platforms. Data were collected by the...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER and other platforms. Data were collected by...
National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected from surface sensors and CTD casts from NOAA Ship MILLER FREEMAN and other platforms from 31 January 1988 to 23...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship RAINIER. Data were collected by the Pacific Marine...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115170 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship KA'IMIMOANA in the North Pacific Ocean and...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship DISCOVERER and other platforms. Data were collected by the...
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
Shama, Mohamed
2013-01-01
Buckling of Ship Structures presents a comprehensive analysis of the buckling problem of ship structural members. A full analysis of the various types of loadings and stresses imposed on ship plating and primary and secondary structural members is given. The main causes and consequences of the buckling mode of failure of ship structure and the methods commonly used to control buckling failure are clarified. This book contains the main equations required to determine the critical buckling stresses for both ship plating and the primary and secondary stiffening structural members. The critical buckling stresses are given for ship plating subjected to the induced various types of loadings and having the most common boundary conditions encountered in ship structures. The text bridges the gap existing in most books covering the subject of buckling of ship structures in the classical analytical format, by putting the emphasis on the practical methods required to ensure safety against buckling of ship structur...
DEFF Research Database (Denmark)
Jentzsch, G.; Knudsen, Per; Ramatschi, M.
2000-01-01
Air-borne and satellite based altimetry are used to monitor the Greenland ice-cap. Since these measurements are related to fiducial sites at the coast, the robustness of the height differences depends on the stability of these reference points. To benefit from the accuracy of these methods...... observations. Near the coast ocean tidal loading causes additional vertical deformations in the order of 1 to 10 cm Therefore, tidal gravity measurements were carried out at four fiducial sites around Greenland in order to provide corrections for the kinematic part of the coordinates of these sites. Starting...
Ships as future floating farm systems?
Moustafa, Khaled
2016-09-29
Environmental and agriculture challenges such as severe drought, desertification, sprawling cities and shrinking arable lands in large regions in the world compel us to think about alternative and sustainable farming systems. Ongoing projects to build floating cities in the sea suggest that building specific ships for farming purposes (as farming ships or farming boats) would also be attainable to introduce new farming surfaces and boost food production worldwide to cope with food insecurity issues.
Crushing Strength of Ship Structures
DEFF Research Database (Denmark)
Cerup-Simonsen, Bo; Abramowicz, W.; Høstgaard-Brene, C.N.S.
1999-01-01
The crushing response of ship structures is of primary importance to the designers and practicing engineers concerned with accidental loading and accident reconstruction of marine vehicles. Ship to-ship collisions, ship-harbor infrastructure interaction or ship-offshore structure interaction are ...
Crushing Strength of Ship Structures
DEFF Research Database (Denmark)
Cerup-Simonsen, Bo; Abramowicz, W.; Høstgaard-Brene, C.N.S.
1999-01-01
The crushing response of ship structures is of primary importance to the designers and practicing engineers concerned with accidental loading and accident reconstruction of marine vehicles. Ship to-ship collisions, ship-harbor infrastructure interaction or ship-offshore structure interaction are ...
Energy Technology Data Exchange (ETDEWEB)
Arnaiz, J.B.; Batutis, E.
1974-05-01
The report covers the evaluation of the General Electric Coalescing Plate Oil/Water Separator concept as applied to ballast water discharged from a ship equipped with self compensating fuel tanks during fueling operations. It was used to remove the entrained fuel oil from de-ballasted water being discharged during routine fueling operations. This separator was chosen because it has a cross sectional area and volume very nearly equivalent to a DE-1040 forward fuel tank. By attaching the separator directly to the ship's discharge port and refuelling at several flow rates it was possible to evaluate the performance of the coalescing plate banks in a de-ballasting operation.
Lujan, Richard E.
2001-01-01
A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.
DEFF Research Database (Denmark)
Jensen, Thomas; Vatrapu, Ravi
2015-01-01
This paper presents a design science approach to solving persistent problems in the international shipping eco system by creating the missing common information infrastructures. Specifically, this paper reports on an ongoing dialogue between stakeholders in the shipping industry and information s...... impacts on global trade and local economies....
Optimization in liner shipping
DEFF Research Database (Denmark)
Brouer, Berit Dangaard; Karsten, Christian Vad; Pisinger, David
2017-01-01
Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling...... research....
DEFF Research Database (Denmark)
Jensen, Thomas; Vatrapu, Ravi
2015-01-01
This paper presents a design science approach to solving persistent problems in the international shipping eco system by creating the missing common information infrastructures. Specifically, this paper reports on an ongoing dialogue between stakeholders in the shipping industry and information s...
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Amdahl, Jørgen; Rutgersson, Olle
1996-01-01
A Joint Nordic Research project "Effecive and Safe Ships" is presented. The project is aiming to develop methods and tools for quantitative evaluation fo ship safety. This report is the report of the preliminary phase where the plan for the main project is developed. The objectives of the project...
Fritts, David
1987-02-01
Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.
Institute of Scientific and Technical Information of China (English)
张朝阳; 衣军
2012-01-01
The vector surface integral method is a high effective method for the continuation of ship magnetic field. When only a plane magnetic field can be gotten, based on which we can calculate the field on the equivalent enveloping surface inversely, and then the objective field can be gotten by surface integral method. Compared with the magnet simulation method, the inverse method is more efficient. The mockup experiment has indicated the validity and high calculation precision of the method, which supports a new thought for the near field conversion of the ship.%舰船磁场的矢量曲面积分法是磁场延拓的一种高效方法,在只能测量舰船平面磁场时,首先由平面磁场反演得到等效包络面磁场,进而利用曲面积分法延拓得到目标平面磁场.该方法较之磁体模拟法等更加方便有效.船模实验验证了该方法的有效性,具有较高的换算精度,为舰船近场磁场的换算提供了一种新的思路.
Scalable Gravity Offload System Project
National Aeronautics and Space Administration — The proposed innovation is a scalable gravity off-load system that enables controlled integrated testing of Surface System elements such as rovers, habitats, and...
Institute of Scientific and Technical Information of China (English)
Oluwole Daniel Makinde
2009-01-01
This study is devoted to the investigation of thermal criticality for a reactive gravity driven thin film flow of a third-grade fluid with adiabatic free surface down an inclined isothermal plane. It is assumed that the reaction is exothermic under Arrhenius kinetics, neglecting the consumption of the material. The governing non-linear equations for conservation of momentum and energy are obtained and solved by using a new com-implemented in MAPLE. This semi-numerical scheme offers some advantages over solu-tions obtained with traditional methods such as finite differences, spectral method, and shooting method. It reveals the analytical structure of the solution function. Important properties of overall flow structure including velocity field, temperature field, thermal criticality, and bifurcations are discussed.
Hubeny, I.; Heap, S. R.; Altner, B.
1991-01-01
GHRS spectra of two very hot stars provide evidence for the presence of microturbulence in their photospheres. In attempting to reproduce the observed spectra, theoretical models have been built in which the microturbulence is allowed to modify not only the Doppler line widths (classical 'spectroscopic' microturbulence), but also the turbulent pressure (thus mimicking a 'physical' turbulence). It is found that a corresponding modification of the temperature-pressure stratification influences the hydrogen and helium line profiles to the extent that the surface gravities of early O stars determined without considering microturbulence are too low by 0.1-0.15 dex. Thus, including microturbulence would reduce, or resolve completely, a long-standing discrepancy between evolutionary and spectroscopic stellar masses.
Obisesan, Abayomi; Sriramula, Srinivas
2017-06-01
Ship collision accidents are rare events but pose huge threat to human lives, assets, and the environment. Many researchers have sought for effective models that compute ship stochastic response during collisions by considering the variability of ship collision scenario parameters. However, the existing models were limited by the capability of the collision computational models and did not completely capture collision scenario, and material and geometric uncertainties. In this paper, a novel framework to performance characterisation of ships in collision involving a variety of striking ships is developed, by characterising the structural consequences with efficient response models. A double-hull oil carrier is chosen as the struck ship to demonstrate the applicability of the proposed framework. Response surface techniques are employed to generate the most probable input design sets which are used to sample an automated finite element tool to compute the chosen structural consequences. The resulting predictor-response relationships are fitted with suitable surrogate models to probabilistically characterise the struck ship damage under collisions. As demonstrated in this paper, such models are extremely useful to reduce the computational complexity in obtaining probabilistic design measures for ship structures. The proposed probabilistic approach is also combined with available collision frequency models from literature to demonstrate the risk tolerance computations.
1985-01-01
Precision navigation - GPS o Science office/conference room/ library o Ship’s data video display and annotation terminals o Hazardous cargo storage _ o...Unpublished]. 11. Voelker, R.P., F.A. Geisel , K.E. Dane, "Arctic Deployment of USCGC POLAR Sea - Winter 1983", ARCTEC Report No. 800C. 12. Voelker, R.P...F.A. Geisel , G.M. Wohl, "Bering Sea Data Collection - February/March 1984," ARCTEC Report No. 1010C. 13. St. John, J.W., G.M. Wohl, J.R. Meyer, J.L
Masson, F.; Sedighi, M.; Hinderer, J.; Bayer, R.; Nilforoushan, F.; Luck, J.-M.; Vernant, P.; Chéry, J.
The present tectonic of Iran results from the north-south convergence between Eura- sia and Arabia, with a rate of about 3 cm/year. The deformation of Iran is concen- trated in major belts along the south-western border (Zagros), the southern shore of the Caspian Sea (Alborz) and along the north-east border (Kopet-Dag). The Alborz range is an east-west mountain range which accommodates about 1 cm/year of short- ening between the Central Iranian Desert and the south Caspian Sea. The main tec- tonic structures are generally overthrusting range-parallel faults northward dipping in the south (North Tehran fault, Mosha fault) and southward dipping in the north (Amir fault, North Border fault). The compressive tectonic in the Alborz range is certainly accommodated by large vertical motions along the major faults. To study the defor- mation (horizontal and vertical movement) we have installed and measured a GPS network of 14 sites crossing the Alborz range east of Tehran. The GPS network is measured during campaigns performed each year. In order to well constrained the ver- tical deformation of the southern border of the Alborz, we have performed colocated GPS and absolute gravity measurements in 3 sites, one near the Mosha fault (Abali), one in the frontal thrust area of Tehran and one in the stable central Iranian block (Chesmeh-Sour). After two measures (2000 and 2001), some interesting preliminary results will be shown. The observed gravity variation for one year (Sept. 2000 - Sept. 2001) is -3.0 mgal +-2.6 mgal (Abali), -24.2 mgal +-4.8 mgal (Tehran) and +4.7 mgal +-2.3 mgal (Chesmeh-Sour). These results could be explained respectively by a tec- tonic uplift of about 10 mm/year in the Alborz, water pumping in the Tehran area and (unexplained) subsidence at Chesmeh-Sour. These results will be compared to the first estimation of the deformation obtained by GPS (horizontal repeatability < 3 mm and vertical repeatability < 5 mm).
Celada, Mariano; Montesinos, Merced
2016-01-01
$BF$ gravity comprises all the formulations of gravity that are based on deformations of $BF$ theory. Such deformations consist of either constraints or potential terms added to the topological $BF$ action that turn some of the gauge degrees of freedom into physical ones, particularly giving rise to general relativity. The $BF$ formulations have provided new and deep insights into many classical and quantum aspects of the gravitational field, setting the foundations for the approach to quantum gravity known as spinfoam models. In this review, we present a self-contained and unified treatment of the $BF$ formulations of $D$-dimensional general relativity and other related models, focusing on the classical aspects of them and including some new results.
Kiefer, Claus
2012-01-01
The search for a quantum theory of the gravitational field is one of the great open problems in theoretical physics. This book presents a self-contained discussion of the concepts, methods and applications that can be expected in such a theory. The two main approaches to its construction - the direct quantisation of Einstein's general theory of relativity and string theory - are covered. Whereas the first attempts to construct a viable theory for the gravitational field alone, string theory assumes that a quantum theory of gravity will be achieved only through a unification of all the interactions. However, both employ the general method of quantization of constrained systems, which is described together with illustrative examples relevant for quantum gravity. There is a detailed presentation of the main approaches employed in quantum general relativity: path-integral quantization, the background-field method and canonical quantum gravity in the metric, connection and loop formulations. The discussion of stri...
Celada, Mariano; González, Diego; Montesinos, Merced
2016-11-01
BF gravity comprises all the formulations of gravity that are based on deformations of BF theory. Such deformations consist of either constraints or potential terms added to the topological BF action that turn some of the gauge degrees of freedom into physical ones, particularly giving rise to general relativity. The BF formulations have provided new and deep insights into many classical and quantum aspects of the gravitational field, setting the foundations for the approach to quantum gravity known as spinfoam models. In this review, we present a self-contained and unified treatment of the BF formulations of D-dimensional general relativity and other related models, focusing on the classical aspects of them and including some new results.
Modeling the seakeeping performance of luxury cruise ships
Cao, Yu; Yu, Bao-Jun; Wang, Jian-Fang
2010-09-01
The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase. By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of model tests, it was shown that the 3-D method predicted the seakeeping performance of the luxury cruise ship well. Based on the model, the seakeeping features of the luxury cruise ship were analyzed, and then the influence was seen of changes to the primary design parameters (center of gravity, inertial radius, etc.). Based on the results, suggestions were proposed to improve the choice of parameters for luxury cruise ships during the concept design phase. They should improve seakeeping performance.
Minnett, P. J.; Izaguirre, M. A.; Szcszodrak, M.; Williams, E.; Reynolds, R. M.
2015-12-01
The assessment of errors and uncertainties in satellite-derived SSTs can be achieved by comparisons with independent measurements of skin SST of high accuracy. Such validation measurements are provided by well-calibrated infrared radiometers mounted on ships. The second generation of Marine-Atmospheric Emitted Radiance Interferometers (M-AERIs) have recently been developed and two are now deployed on cruise ships of Royal Caribbean Cruise Lines that operate in the Caribbean Sea, North Atlantic and Mediterranean Sea. In addition, two Infrared SST Autonomous Radiometers (ISARs) are mounted alternately on a vehicle transporter of NYK Lines that crosses the Pacific Ocean between Japan and the USA. Both M-AERIs and ISARs are self-calibrating radiometers having two internal blackbody cavities to provide at-sea calibration of the measured radiances, and the accuracy of the internal calibration is periodically determined by measurements of a NIST-traceable blackbody cavity in the laboratory. This provides SI-traceability for the at-sea measurements. It is anticipated that these sensors will be deployed during the next several years and will be available for the validation of the SLSTRs on Sentinel-3a and -3b.
CFT dual of the AdS Dirichlet problem : Fluid/Gravity on cut-off surfaces
Brattan, Daniel K; Loganayagam, R; Rangamani, Mukund
2011-01-01
We study the gravitational Dirichlet problem in AdS spacetimes with a view to understanding the boundary CFT interpretation. We define the problem as bulk Einstein's equations with Dirichlet boundary conditions on fixed timelike cut-off hypersurface. Using the fluid/gravity correspondence, we argue that one can determine non-linear solutions to this problem in the long wavelength regime. On the boundary we find a conformal fluid with Dirichlet constitutive relations, viz., the fluid propagates on a `dynamical' background metric which depends on the local fluid velocities and temperature. This boundary fluid can be re-expressed as an emergent hypersurface fluid which is non-conformal but has the same value of the shear viscosity as the boundary fluid. The hypersurface dynamics arises as a collective effect, wherein effects of the background are transmuted into the fluid degrees of freedom. Furthermore, we demonstrate that this collective fluid is forced to be non-relativistic below a critical cut-off radius in...
Mandal, Nisith R
2017-01-01
This book addresses various aspects of ship construction, from ship types and construction materials, to welding technologies and accuracy control. The contents of the book are logically organized and divided into twenty-one chapters. The book covers structural arrangement with longitudinal and transverse framing systems based on the service load, and explains basic structural elements like hatch side girders, hatch end beams, stringers, etc. along with structural subassemblies like floors, bulkheads, inner bottom, decks and shells. It presents in detail double bottom construction, wing tanks & duct keels, fore & aft end structures, etc., together with necessary illustrations. The midship sections of various ship types are introduced, together with structural continuity and alignment in ship structures. With regard to construction materials, the book discusses steel, aluminum alloys and fiber reinforced composites. Various methods of steel material preparation are discussed, and plate cutting and form...
Mach-like capillary-gravity wakes.
Moisy, Frédéric; Rabaud, Marc
2014-08-01
We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.
Čulin, Jelena; Bielić, Toni
2016-01-01
The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.
Logistics Group
2001-01-01
Users are informed that as from 1 September 2001 all Shipping Requests must be made on EDH using the appropriate electronic form. The submission of user requests directly into EDH will help rationalise the activities of the Shipping Service (Import & Export), with requests being automatically forwarded to hierarchical supervisors thereby improving the processing speed and facilitating the follow-up. Thank you for your collaboration.
Logistics Group
2001-01-01
Users are informed that as from 1 September 2001 all Shipping Requests must be made on EDH using the appropriate electronic form. The submission of user requests directly into EDH will help rationalise the activities of the Shipping Service (Import & Export), with requests being automatically forwarded to hierarchical supervisors thereby improving the processing speed and facilitating the follow-up. Thank you for your collaboration.
Escherichia coli growth under modeled reduced gravity
Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.
2004-01-01
Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.
Luznik, L.; Lust, E.; Flack, K. A.
2014-12-01
There are few studies describing the interaction between marine current turbines and an overlying surface gravity wave field. In this work we present an experimental study on the effects of surface gravity waves of different wavelengths on the wave phase averaged performance characteristics of a marine current turbine model. Measurements are performed with a 1/25 scale (diameter D=0.8m) two bladed horizontal axis turbine towed in the large (116m long) towing tank at the U.S. Naval Academy equipped with a dual-flap, servo-controlled wave maker. Three regular waves with wavelengths of 15.8, 8.8 and 3.9m with wave heights adjusted such that all waveforms have the same energy input per unit width are produced by the wave maker and model turbine is towed into the waves at constant carriage speed of 1.68 m/s. This representing the case of waves travelling in the same direction as the mean current. Thrust and torque developed by the model turbine are measured using a dynamometer mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using in in-house designed shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Free surface elevation and wave parameters are measured with two optical wave height sensors, one located in the turbine rotor plane and other one diameter upstream of the rotor. All instruments are synchronized in time and data is sampled at a rate of 700 Hz. All measured quantities are conditionally sampled as a function of the measured surface elevation and transformed to wave phase space using the Hilbert Transform. Phenomena observed in earlier experiments with the same turbine such as phase lag in the torque signal and an increase in thrust due to Stokes drift are examined and presented with the present data as well as spectral analysis of the torque and thrust data.
Off-level corrections for gravity meters
Niebauer, T. M.; Blitz, Thomas; Constantino, Andy
2016-04-01
Gravity meters must be aligned with the local gravity at any location on the surface of the earth in order to measure the full amplitude of the gravity vector. The gravitational force on the sensitive component of the gravity meter decreases by the cosine of the angle between the measurement axis and the local gravity vector. Most gravity meters incorporate two horizontal orthogonal levels to orient the gravity meter for a maximum gravity reading. In order to calculate a gravity correction it is often necessary to estimate the overall angular deviation between the gravity meter and the local gravity vector using two measured horizontal tilt meters. Typically this is done assuming that the two horizontal angles are independent and that the product of the cosines of the horizontal tilts is equivalent to the cosine of the overall deviation. These approximations, however, break down at large angles. This paper derives analytic formulae to transform angles measured by two orthogonal tilt meters into the vertical deviation of the third orthogonal axis. The equations can be used to calibrate the tilt sensors attached to the gravity meter or provide a correction for a gravity meter used in an off-of-level condition.
Outer Dynamics of Ship Collisions
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup
1996-01-01
The purpose is to present analysis procedures for the motion of ships during ship-ship collisions and for ship collisions with offshore structures. The aim is to estimate that part of the lost kinetic energy which will have to be absorbed by rupture and plastic damage of the colliding structures....
Outer Dynamics of Ship Collisions
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup
1996-01-01
The purpose of these notes is to present analysis procedures for the motion of ships during ship-ship collisions and for ship collisons with offshore structures. The aim is to estimate that part of the lost kinetic energy which will have to be absorbed by rupture and plastic damage of the collidi...
Pipinos, Savas
2010-01-01
This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…
Pipinos, Savas
2010-01-01
This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…
SOME PROBLEMS ABOUT SHIP WAVES
Institute of Scientific and Technical Information of China (English)
Liu Min-jia
2003-01-01
Several problems about ship waves were discussed in the dissertation:(1) Transient ship waves from calmness to the generation of steady-state ship waves were described. (2) The procedure of the formation of the V-shaped steady-state ship waves were clearly shown, and the difference of ship waves on an inviscid fluid and on a viscous fluid was exmined. (3) With the Lighthill two-stage scheme, the algebraic expression for ship waves on a viscous fluid of finite depth was obtained.(4) Singularity on the two boundaries of the ship waves was treated.
Extrand, C W; Moon, Sung In
2010-11-16
Measurement of contact angles on super hydrophobic surfaces by conventional methods can produce ambiguous results. Experimental difficulties in constructing tangent lines, gravitational distortion or erroneous assumptions regarding the extent of spreading can lead to underestimation of contact angles. Three models were used to estimate drop shape and perceived contact angles on completely nonwetting super hydrophobic surfaces. One of the models employed the classic numerical solutions from Bashforth and Adams. Additionally, two approximate models were derived as part of this work. All three showed significant distortion of microliter-sized drops and similar trends in perceived contact angles. Liquid drops of several microliters are traditionally used in sessile contact angle measurements. Drops of this size are expected to and indeed undergo significant flattening on super hydrophobic surfaces, even if the wetting interactions are minimal. The distortion is more pronounced if the liquid has a lesser surface tension or greater density. For surfaces that are completely nonwetting, underestimation of contact angles can be tens of degrees. Our modeling efforts suggest that accurate contact angle measurements on super hydrophobic surfaces would require very small sessile drops, on the order of hundreds of picoliters.
Galathea-3: A global marine gravity profile
DEFF Research Database (Denmark)
Strykowski, Gabriel; Cordua, Knud Skou; Forsberg, René
2012-01-01
topography. This paper reports on the second experiment in which a continuous marine gravity profile along the ship’s route was measured. The focus of the paper is on the practical aspects of such large scale world wide operation and on the challenges of the data processing. Furthermore, the processed free......-air gravity values are compared to 3 global models: EGM96, EGM08 and DNSC08. Even though the along-track resolution of marine data is higher than the resolution in any global gravity model (which influences the direct comparison of the collected marine data to the model) the statistics for the residual free......-air gravity anomalies show, that EGM08 and DNSC08 are better models than EGM96 for all Galathea-3 legs. Some areas along the ships route are quite challenging for modellers....
Galathea-3: A global marine gravity profile
DEFF Research Database (Denmark)
Strykowski, Gabriel; Cordua, Knud Skou; Forsberg, René
2012-01-01
-air gravity values are compared to 3 global models: EGM96, EGM08 and DNSC08. Even though the along-track resolution of marine data is higher than the resolution in any global gravity model (which influences the direct comparison of the collected marine data to the model) the statistics for the residual free......-air gravity anomalies show, that EGM08 and DNSC08 are better models than EGM96 for all Galathea-3 legs. Some areas along the ships route are quite challenging for modellers....... topography. This paper reports on the second experiment in which a continuous marine gravity profile along the ship’s route was measured. The focus of the paper is on the practical aspects of such large scale world wide operation and on the challenges of the data processing. Furthermore, the processed free...
Energy Technology Data Exchange (ETDEWEB)
Oelgaard, P.L. [Risoe National Lab., Roskilde (Denmark)]|[Technical Univ. of Denmark, Lyngby (Denmark)
1996-12-01
This report starts with a discussion of the types of nuclear vessels accidents, in particular accidents which involve the nuclear propulsion systems. Next available information on 61 reported nuclear ship events in considered. Of these 6 deals with U.S. ships, 54 with USSR ships and 1 with a French ship. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/explosions, sea-water leaks into the submarines and sinking of vessels are considered. For each event a summary of available information is presented, and comments are added. In some cases the available information is not credible, and these events are neglected. This reduces the number of events to 5 U.S. events, 35 USSR/Russian events and 1 French event. A comparison is made between the reported Soviet accidents and information available on dumped and damaged Soviet naval reactors. It seems possible to obtain good correlation between the two types of events. An analysis is made of the accident and estimates are made of the accident probabilities which are found to be of the order of 10{sup -3} per ship reactor years. It if finally pointed out that the consequences of nuclear ship accidents are fairly local and does in no way not approach the magnitude of the Chernobyl accident. It is emphasized that some of the information on which this report is based, may not be correct. Consequently some of the results of the assessments made may not be correct. (au).
Budulas, Peter P.; Young, Stuart H.; Emmerman, Philip J.
2000-07-01
Small physical agents will be ubiquitous on the battlefield of the 21st century, principally to lower the exposure to harm of our ground forces. Teams of small collaborating physical agents conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA); chemical and biological agent detection, logistics, sentry; and communications relay will have advanced sensor and mobility characteristics. The mother ship much effectively deliver/retrieve, service, and control these robots as well as fuse the information gathered by these highly mobile robot teams. The mother ship concept presented in this paper includes the case where the mother ship is itself a robot or a manned system. The mother ship must have long-range mobility to deploy the small, highly maneuverable agents that will operate in urban environments and more localized areas, and act as a logistics base for the robot teams. The mother ship must also establish a robust communications network between the agents and is an up-link point for disseminating the intelligence gathered by the smaller agents; and, because of its global knowledge, provides the high-level information fusion, control and planning for the collaborative physical agents. Additionally, the mother ship incorporates battlefield visualization, information fusion, and multi-resolution analysis, and intelligent software agent technology, to support mission planning and execution. This paper discusses on going research at the U.S. Army Research Laboratory that supports the development of a robot mother ship. This research includes docking, battlefield visualization, intelligent software agents, adaptive communications, information fusion, and multi- modal human computer interaction.
Gravity Anomaly Assessment Using Ggms and Airborne Gravity Data Towards Bathymetry Estimation
Tugi, A.; Din, A. H. M.; Omar, K. M.; Mardi, A. S.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Yazid, N.
2016-09-01
The Earth's potential information is important for exploration of the Earth's gravity field. The techniques of measuring the Earth's gravity using the terrestrial and ship borne technique are time consuming and have limitation on the vast area. With the space-based measuring technique, these limitations can be overcome. The satellite gravity missions such as Challenging Mini-satellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), and Gravity-Field and Steady-State Ocean Circulation Explorer Mission (GOCE) has introduced a better way in providing the information on the Earth's gravity field. From these satellite gravity missions, the Global Geopotential Models (GGMs) has been produced from the spherical harmonics coefficient data type. The information of the gravity anomaly can be used to predict the bathymetry because the gravity anomaly and bathymetry have relationships between each other. There are many GGMs that have been published and each of the models gives a different value of the Earth's gravity field information. Therefore, this study is conducted to assess the most reliable GGM for the Malaysian Seas. This study covered the area of the marine area on the South China Sea at Sabah extent. Seven GGMs have been selected from the three satellite gravity missions. The gravity anomalies derived from the GGMs are compared with the airborne gravity anomaly, in order to figure out the correlation (R2) and the root mean square error (RMSE) of the data. From these assessments, the most suitable GGMs for the study area is GOCE model, GO_CONS_GCF_2_TIMR4 with the R2 and RMSE value of 0.7899 and 9.886 mGal, respectively. This selected model will be used in the estimating the bathymetry for Malaysian Seas in future.
GRAVITY ANOMALY ASSESSMENT USING GGMS AND AIRBORNE GRAVITY DATA TOWARDS BATHYMETRY ESTIMATION
Directory of Open Access Journals (Sweden)
A. Tugi
2016-09-01
Full Text Available The Earth’s potential information is important for exploration of the Earth’s gravity field. The techniques of measuring the Earth’s gravity using the terrestrial and ship borne technique are time consuming and have limitation on the vast area. With the space-based measuring technique, these limitations can be overcome. The satellite gravity missions such as Challenging Mini-satellite Payload (CHAMP, Gravity Recovery and Climate Experiment (GRACE, and Gravity-Field and Steady-State Ocean Circulation Explorer Mission (GOCE has introduced a better way in providing the information on the Earth’s gravity field. From these satellite gravity missions, the Global Geopotential Models (GGMs has been produced from the spherical harmonics coefficient data type. The information of the gravity anomaly can be used to predict the bathymetry because the gravity anomaly and bathymetry have relationships between each other. There are many GGMs that have been published and each of the models gives a different value of the Earth’s gravity field information. Therefore, this study is conducted to assess the most reliable GGM for the Malaysian Seas. This study covered the area of the marine area on the South China Sea at Sabah extent. Seven GGMs have been selected from the three satellite gravity missions. The gravity anomalies derived from the GGMs are compared with the airborne gravity anomaly, in order to figure out the correlation (R2 and the root mean square error (RMSE of the data. From these assessments, the most suitable GGMs for the study area is GOCE model, GO_CONS_GCF_2_TIMR4 with the R2 and RMSE value of 0.7899 and 9.886 mGal, respectively. This selected model will be used in the estimating the bathymetry for Malaysian Seas in future.
Institute of Scientific and Technical Information of China (English)
Hu Huang; Jia Fu
2006-01-01
A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in the horizontal plane, are propagating at an angle to each other. The first-and second-order asymptotic analytical solutions of the short-crested wave system are obtained via a perturbation expansion in a small parameter associated with the wave steepness, therefore depicting a series of typical three-dimensional wave patterns involving currents, shallow and deep water, and surface capillary waves, and comparing them with each other.
Stochastic gravity: beyond semiclassical gravity
Energy Technology Data Exchange (ETDEWEB)
Verdaguer, E [Departament de Fisica Fonamental and CER en Astrofisica, Fisica de Particules i Cosmologia, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)
2007-05-15
The back-reaction of a classical gravitational field interacting with quantum matter fields is described by the semiclassical Einstein equation, which has the expectation value of the quantum matter fields stress tensor as a source. The semiclassical theory may be obtained from the quantum field theory of gravity interacting with N matter fields in the large N limit. This theory breaks down when the fields quantum fluctuations are important. Stochastic gravity goes beyond the semiclassical limit and allows for a systematic and self-consistent description of the metric fluctuations induced by these quantum fluctuations. The correlation functions of the metric fluctuations obtained in stochastic gravity reproduce the correlation functions in the quantum theory to leading order in an 1/N expansion. Two main applications of stochastic gravity are discussed. The first, in cosmology, to obtain the spectrum of primordial metric perturbations induced by the inflaton fluctuations, even beyond the linear approximation. The second, in black hole physics, to study the fluctuations of the horizon of an evaporating black hole.
AllahTavakoli, Yahya; Safari, Abdolreza; Vaníček, Petr
2016-12-01
This paper resurrects a version of Poisson's Partial Differential Equation (PDE) associated with the gravitational field at the Earth's surface and illustrates how the PDE possesses a capability to extract the mass density of Earth's topography from land-based gravity data. Herein, first we propound a theorem which mathematically introduces this version of Poisson's PDE adapted for the Earth's surface and then we use this PDE to develop a method of approximating the terrain mass density. Also, we carry out a real case study showing how the proposed approach is able to be applied to a set of land-based gravity data. In the case study, the method is summarized by an algorithm and applied to a set of gravity stations located along a part of the north coast of the Persian Gulf in the south of Iran. The results were numerically validated via rock-samplings as well as a geological map. Also, the method was compared with two conventional methods of mass density reduction. The numerical experiments indicate that the Poisson PDE at the Earth's surface has the capability to extract the mass density from land-based gravity data and is able to provide an alternative and somewhat more precise method of estimating the terrain mass density.
Fuzzy Technique Tracking Control for Multiple Unmanned Ships
Directory of Open Access Journals (Sweden)
Ramzi Fraga
2013-01-01
Full Text Available A Fuzzy logic control law is presented and implemented for trajectory tracking of multiple under actuated autonomous surface vessels. In this study, an individual unmanned ship is used to be the leader that tracks the desired path; other unmanned ships are used to be the followers which track the leader only by using its position. A fuzzy controller was implemented for the ship leader position with a constant velocity; however, the ship follower needed a fuzzy controller for the position and the forward velocity. Simulation results show that the fuzzy method presents an interesting robustness against the environmental disturbances and effective tracking results.
Holographic renormalization in teleparallel gravity
Energy Technology Data Exchange (ETDEWEB)
Krssak, Martin [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)
2017-01-15
We consider the problem of IR divergences of the action in the covariant formulation of teleparallel gravity in asymptotically Minkowski spacetimes. We show that divergences are caused by inertial effects and can be removed by adding an appropriate surface term, leading to the renormalized action. This process can be viewed as a teleparallel analog of holographic renormalization. Moreover, we explore the variational problem in teleparallel gravity and explain how the variation with respect to the spin connection should be performed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Escobar, M.; Meyerovich, A. E., E-mail: Alexander-Meyerovich@uri.edu [University of Rhode Island, Department of Physics (United States)
2014-12-15
We discuss transport of particles along random rough surfaces in quantum size effect conditions. As an intriguing application, we analyze gravitationally quantized ultracold neutrons in rough waveguides in conjunction with GRANIT experiments (ILL, Grenoble). We present a theoretical description of these experiments in the biased diffusion approximation for neutron mirrors with both one- and two-dimensional (1D and 2D) roughness. All system parameters collapse into a single constant which determines the depletion times for the gravitational quantum states and the exit neutron count. This constant is determined by a complicated integral of the correlation function (CF) of surface roughness. The reliable identification of this CF is always hindered by the presence of long fluctuation-driven correlation tails in finite-size samples. We report numerical experiments relevant for the identification of roughness of a new GRANIT waveguide and make predictions for ongoing experiments. We also propose a radically new design for the rough waveguide.
Dalsøren, S. B.; Eide, M. S.; Endresen, Ø.; Mjelde, A.; Gravir, G.; Isaksen, I. S. A.
2008-10-01
A reliable and up-to-date ship emission inventory is essential for atmospheric scientists quantifying the impact of shipping and for policy makers implementing regulations and incentives for emission reduction. The emission modelling in this study takes into account ship type and size dependent input data for 15 ship types and 7 size categories. Global port arrival and departure data for more than 32 000 merchant ships are used to establish operational profiles for the ship segments. The modelled total fuel consumption amounts to 217 Mt in 2004 of which 11 Mt is consumed in in-port operations. This is in agreement with international sales statistics. The modelled fuel consumption is applied to develop global emission inventories for CO2, NO2, SO2, CO, CH4, VOC (Volatile Organic Compounds), N2O, BC (Black Carbon) and OC (Organic Carbon). The global emissions from ships at sea and in ports are distributed geographically, applying extended geographical data sets covering about 2 million global ship observations and global port data for 32 000 ships. In addition to inventories for the world fleet, inventories are produced separately for the three dominating ship types, using ship type specific emission modelling and traffic distributions. A global Chemical Transport Model (CTM) was used to calculate the environmental impacts of the emissions. We find that ship emissions is a dominant contributor over much of the world oceans to surface concentrations of NO2 and SO2. The contribution is also large over some coastal zones. For surface ozone the contribution is high over the oceans but clearly also of importance over western North America (contribution 15 25%) and western Europe (5 15%). The contribution to tropospheric column ozone is up to 5 6%. The overall impact of ship emissions on global methane lifetime is large due to the high NOx emissions. With regard to acidification we find that ships contribute 11% to nitrate wet deposition and 4.5% to sulphur wet deposition
Dalsøren, S. B.; Eide, M. S.; Endresen, Ø.; Mjelde, A.; Gravir, G.; Isaksen, I. S. A.
2009-03-01
A reliable and up-to-date ship emission inventory is essential for atmospheric scientists quantifying the impact of shipping and for policy makers implementing regulations and incentives for emission reduction. The emission modelling in this study takes into account ship type and size dependent input data for 15 ship types and 7 size categories. Global port arrival and departure data for more than 32 000 merchant ships are used to establish operational profiles for the ship segments. The modelled total fuel consumption amounts to 217 Mt in 2004 of which 11 Mt is consumed in in-port operations. This is in agreement with international sales statistics. The modelled fuel consumption is applied to develop global emission inventories for CO2, NO2, SO2, CO, CH4, VOC (Volatile Organic Compounds), N2O, BC (Black Carbon) and OC (Organic Carbon). The global emissions from ships at sea and in ports are distributed geographically, applying extended geographical data sets covering about 2 million global ship observations and global port data for 32 000 ships. In addition to inventories for the world fleet, inventories are produced separately for the three dominating ship types, using ship type specific emission modelling and traffic distributions. A global Chemical Transport Model (CTM) was used to calculate the environmental impacts of the emissions. We find that ship emissions is a dominant contributor over much of the world oceans to surface concentrations of NO2 and SO2. The contribution is also large over some coastal zones. For surface ozone the contribution is high over the oceans but clearly also of importance over Western North America (contribution 15-25%) and Western Europe (5-15%). The contribution to tropospheric column ozone is up to 5-6%. The overall impact of ship emissions on global methane lifetime is large due to the high NOx emissions. With regard to acidification we find that ships contribute 11% to nitrate wet deposition and 4.5% to sulphur wet deposition
Directory of Open Access Journals (Sweden)
S. B. Dalsøren
2009-03-01
Full Text Available A reliable and up-to-date ship emission inventory is essential for atmospheric scientists quantifying the impact of shipping and for policy makers implementing regulations and incentives for emission reduction. The emission modelling in this study takes into account ship type and size dependent input data for 15 ship types and 7 size categories. Global port arrival and departure data for more than 32 000 merchant ships are used to establish operational profiles for the ship segments. The modelled total fuel consumption amounts to 217 Mt in 2004 of which 11 Mt is consumed in in-port operations. This is in agreement with international sales statistics. The modelled fuel consumption is applied to develop global emission inventories for CO_{2}, NO_{2}, SO_{2}, CO, CH_{4}, VOC (Volatile Organic Compounds, N_{2}O, BC (Black Carbon and OC (Organic Carbon. The global emissions from ships at sea and in ports are distributed geographically, applying extended geographical data sets covering about 2 million global ship observations and global port data for 32 000 ships. In addition to inventories for the world fleet, inventories are produced separately for the three dominating ship types, using ship type specific emission modelling and traffic distributions.
A global Chemical Transport Model (CTM was used to calculate the environmental impacts of the emissions. We find that ship emissions is a dominant contributor over much of the world oceans to surface concentrations of NO_{2} and SO_{2}. The contribution is also large over some coastal zones. For surface ozone the contribution is high over the oceans but clearly also of importance over Western North America (contribution 15–25% and Western Europe (5–15%. The contribution to tropospheric column ozone is up to 5–6%. The overall impact of ship emissions on global methane lifetime is large due to the high NO_{x} emissions. With
Directory of Open Access Journals (Sweden)
S. B. Dalsøren
2008-10-01
Full Text Available A reliable and up-to-date ship emission inventory is essential for atmospheric scientists quantifying the impact of shipping and for policy makers implementing regulations and incentives for emission reduction. The emission modelling in this study takes into account ship type and size dependent input data for 15 ship types and 7 size categories. Global port arrival and departure data for more than 32 000 merchant ships are used to establish operational profiles for the ship segments. The modelled total fuel consumption amounts to 217 Mt in 2004 of which 11 Mt is consumed in in-port operations. This is in agreement with international sales statistics. The modelled fuel consumption is applied to develop global emission inventories for CO_{2}, NO_{2}, SO_{2}, CO, CH_{4}, VOC (Volatile Organic Compounds, N_{2}O, BC (Black Carbon and OC (Organic Carbon. The global emissions from ships at sea and in ports are distributed geographically, applying extended geographical data sets covering about 2 million global ship observations and global port data for 32 000 ships. In addition to inventories for the world fleet, inventories are produced separately for the three dominating ship types, using ship type specific emission modelling and traffic distributions.
A global Chemical Transport Model (CTM was used to calculate the environmental impacts of the emissions. We find that ship emissions is a dominant contributor over much of the world oceans to surface concentrations of NO_{2} and SO_{2}. The contribution is also large over some coastal zones. For surface ozone the contribution is high over the oceans but clearly also of importance over western North America (contribution 15–25% and western Europe (5–15%. The contribution to tropospheric column ozone is up to 5–6%. The overall impact of ship emissions on global methane lifetime is large due to the high NO_{x} emissions. With
Logistical Analysis of the Littoral Combat Ship
2003-03-01
and CAPT Jeff Kline for sparking my interest in the Littoral Combat Ship and CAPT James Stewart at Commander, Naval Surface Forces Pacific and CDR...Senior Lecturer of Operations Research Naval Postgraduate School Monterey, California 76 10. James Stewart , CAPT, USN Warfare Requirements, N8
Liner Shipping Fleet Repositioning
DEFF Research Database (Denmark)
Tierney, Kevin; Jensen, Rune Møller
2011-01-01
, can be accurately modeled. Numerous liner shipping fleet repositioning problems are solved each year by the world’s shipping firms without the assistance of any decision support, even though humans can require between two to three days to find a reasonable solution. Finding optimal repositionings...... to complex handling and timing restrictions. The objective of the problem is cost minimization, which translates nearly directly into the minimization of CO2 emissions and pollution. Additionally, it is important that all cost elements, including the ones that are only loosely coupled with activity choices...
2014-01-01
Shipping emissions in ports are substantial, accounting for 18 million tonnes of CO2 emissions, 0.4 million tonnes of NOx, 0.2 million of SOx and 0.03 million tonnes of PM10 in 2011. Around 85% of emissions come from containerships and tankers. Containerships have short port stays, but high emissions during these stays. Most of CO2 emissions in ports from shipping are in Asia and Europe (58%), but this share is low compared to their share of port calls (70%). European ports have much less emi...
Predicting Ship Fuel Consumption: Update.
1996-07-01
ship propulsion fuel consumption as a function of ship speed for U.S. Navy combatant and auxiliary ships. Prediction is based on fitting an analytic function to published ship class speed-fuel use data using nonlinear regression. The form of the analytic function fitted is motivated by the literature on ship powering and resistance. The report discusses data sources and data issues, and the impact of ship propulsion plant configuration on fuel use. The regression coefficients of the exponential function fitted, tabular numerical comparison of
Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily
2015-04-01
The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum
Institute of Scientific and Technical Information of China (English)
杜佳璐; 杨杨; 胡鑫; 陈海泉
2014-01-01
The control problem of dynamic positioning for surface ship was analyzed,the time-variant environmental disturbances with unknown bounds were considered,the dynamic surface control technology was combined with the vectorial backstepping method,based on which,an adaptive robust nonlinear control law of dynamic positioning was proposed.By introducing the dynamic surface control technique,the proposed control law utilized the differentiation term of the first-order low-pass filter to replace the differentiation term of virtual control vector.As a result,the differentiation operations in the control law design were replaced by the simple algebraic operations.Hence,the control law simplified the computation and was implemented in engineering practice easily. Leakage terms based on a variation of σ-modification were incorporated into the adaptive laws for estimating the unknown bounds of disturbances to prevent parameters from drifting.By using the Lyapunov function,it was proved that the proposed control law could force the ship’ s position and heading to converge and keep at the desired target values and guarantee the uniformly ultimate boundedness of all signals in the closed-loop dynamic positioning system of ship.Simulation result shows that as the initial horizontal-plane position of ship deviates 25 m from the desired position,the ship can achieve the desired position within 50 s based on the control law,so the proposed control law is effective.1 tab,7 figs,15 refs.%针对水面船舶动力定位控制问题，考虑带有未知界的时变环境扰动，将动态面控制技术与矢量逆推方法相结合，设计了船舶动力定位系统的自适应鲁棒非线性控制律。引入动态面控制技术，利用一阶滤波器的微分项代替虚拟控制矢量的微分项，使得在控制律设计过程中的微分运算被简单的代数运算所替代，简化了计算，易于工程实现。为阻止自适应参数漂移
Energy Technology Data Exchange (ETDEWEB)
N. Aslan [Cumhuriyet University, Sivas (Turkey). Mining Engineering Department
2007-03-15
In this study, the application of response surface methodology (RSM) and central composite rotatable design (CCRD) for modeling the influence of some operating variables on the performance of a Multi-Gravity Separator (MGS) for coal cleaning was discussed. Four operating variables of MGS, namely drum speed, tilt angle, wash water and feed solids were changed during the tests based on the CCRD. In order to produce clean coal with MGS, mathematical model equations were derived by computer simulation programming applying least squares method using MATLAB 7.1. These equations that are second-order response functions representing ash content and combustible recovery of clean coal were expressed as functions of four operating parameters of MGS. Predicted values were found to be in good agreement with experimental values (R{sup 2} values of 0.84 and 0.93 for ash content and combustible recovery of clean coal, respectively). This study has shown that the CCRD and RSM could efficiently be applied for the modeling of MGS for coal and it is economical way of obtaining the maximum amount of information in a short period of time and with the fewest number of experiments. 12 refs., 5 figs., 4 tabs.
Stephens, D C; Cushing, Michael C; Marley, Mark S; Saumon, D; Geballe, T R; Golimowski, David A; Fan, Xiaohui; Noll, K S
2009-01-01
We present new 5.2-14.5 micron low-resolution spectra of 14 mid-L to mid-T dwarfs, as well as 3.0-4.1 micron spectra for five of these dwarfs. These data are supplemented by existing red and near-infrared spectra (0.6-2.5 micron), as well as red through mid-infrared spectroscopy of seven other L and T dwarfs presented by Cushing et al. (2008). We compare these spectra to those generated from the model atmospheres of Saumon & Marley (2008). The models reproduce the observed spectra well, except in the case of one very red L3.5 dwarf, 2MASS J22244381-0158521. The broad wavelength coverage allows us to constrain almost independently the four parameters used to describe these photospheres in our models: effective temperature (Teff), surface gravity, grain sedimentation efficiency (fsed) and vertical gas transport efficiency (Kzz). The sample of L3.5 to T5.5 dwarfs spans the range 1800 < Teff < 1000 K, with an L-T transition (spectral types L7-T4) that lies between 1400 K and 1100K for dwarfs with typica...
Classification of Ship Routing and Scheduling Problems in Liner Shipping
DEFF Research Database (Denmark)
Kjeldsen, Karina Hjortshøj
2011-01-01
This article provides a classification scheme for ship routing and scheduling problems in liner shipping in line with the current and future operational conditions of the liner shipping industry. Based on the classification, the literature is divided into groups whose main characteristics...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117715 includes Surface underway, biological, chemical, meteorological and physical data collected from NOAA Ship MALCOLM BALDRIGE in the Banda Sea,...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108094 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea, North...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108093 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship RONALD H. BROWN in the Gulf of Guinea, Gulf...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109931 includes biological, chemical, meteorological, physical and underway - surface data collected from NOAA Ship RONALD H. BROWN in the Caribbean...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109926 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117704 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Florida Keys National...
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup
1996-01-01
In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bottom...
Moving Sustainable Shipping Forward
Leeuwen, van J.; Koppen, van C.S.A.
2016-01-01
The International Maritime Organization (IMO) is considering adopting marketbased mechanisms (MBMs) to reduce fuel consumption by commercial shipping. This paper explores the potential effectiveness of these MBMs. How companies respond to economic stimuli generated by MBMs depends on the kind of env
2015-12-01
Defense Switched Network EMD - Engineering and Manufacturing Development EVM - Earned Value Management FOC - Full Operational Capability FMS - Foreign...responses to small boat threats, mine laying and quiet diesel submarines. LCS employment of networked sensors for Intelligence, Surveillance, and...Flight 0 ships in addition to the program development, test and evaluation, training development, and sustained engineering for both LCS and Frigate
TIS/RP Group
2001-01-01
The TIS-RP group informs users that shipping of small radioactive items is normally guaranteed within 24 hours from the time the material is handed in at the TIS-RP service. This time is imposed by the necessary procedures (identification of the radionuclides, determination of dose rate and massive objects require a longer procedure and will therefore take longer.
Moving Sustainable Shipping Forward
Leeuwen, van J.; Koppen, van C.S.A.
2016-01-01
The International Maritime Organization (IMO) is considering adopting marketbased mechanisms (MBMs) to reduce fuel consumption by commercial shipping. This paper explores the potential effectiveness of these MBMs. How companies respond to economic stimuli generated by MBMs depends on the kind of
Ship Observations - VOS and Navy
National Oceanic and Atmospheric Administration, Department of Commerce — Combination of Voluntary Observing Ship (VOS) and US Navy Ship weather observations. Obs generally taken 2-4 times daily at 00, 06, 12, and 18z.
Travelers' Health: Cruise Ship Travel
... Water Disinfection Infographics for Travelers MERS Health Advisory poster Food and Water: What's Safer Health Advisory: MERS ... cruise ships can vary widely depending on ship size, itinerary, length of cruise, and passenger demographics. Generally, ...
High-resolution gravity model of Venus
Reasenberg, R. D.; Goldberg, Z. M.
1992-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
Hildenbrand, Thomas G.; Phelps, Geoffrey A.; Mankinen, Edward A.
2006-01-01
A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significant improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.
Energy Technology Data Exchange (ETDEWEB)
Thomas G. Hildenbrand; Geoffrey A. Phelps; Edward A. Mankinen
2006-09-21
A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significant improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (< 1 km). The new model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.
Energy Technology Data Exchange (ETDEWEB)
Thomas G. Hildenbrand; Geoffrey A. Phelps; Edward A. Mankinen
2006-09-21
A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significant improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (< 1 km). The new model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.
DYNA3D analysis of the DT-20 shipping container
Energy Technology Data Exchange (ETDEWEB)
Logan, R.W.; Lovejoy, S.C.
1991-08-22
A DYNA3D model of the DT-20 shipping container was constructed. Impact onto a rigid steel surface at a velocity of 44 ft/sec (30 foot gravity drop) was studied. The orientation of most interest was a side-drop, but end and corner drops were also studied briefly. The assembly for the baseline side impact contained a 150 lb. payload. During this drop, the outer drum sustains plastic strains of up to 0.15, with most the deformation near the rim. The plywood/Celotex packing is crushed about 3 inches. The inner sealed can sees significant stresses, but barely reaches the onset of yielding in some local areas. Based on hand calculations, the bolts joining the can halves could see stresses near 50 ksi. It is felt that overall, the container should survive this drop. However, detailed modeling of the rim closure and the center bolted joint was not possible due to time constraints. Furthermore, better material models and properties are needed for the Celotex, plywood, and honeycomb in particular. 39 figs., 1 tab.
Ask, Martin
2015-01-01
During the last decades there have been several major ship accidents, and it is believed that old ships are more unsafe than newer ships. To get a better understanding of this phenomenon the thesis is investigating different issues with ship ageing. This thesis consists of a general description of the most important ageing issues, and the condition of sea water ballast tanks is identified as one of the most critical issue regarded to ageing on LPG-tankers. This investigation consists of...
Favrie, N.; Gavrilyuk, S.
2017-07-01
A new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing dispersive waves on shallow water is proposed. From the mathematical point of view, the SGN equations are the Euler-Lagrange equations for a ‘master’ lagrangian submitted to a differential constraint which is the mass conservation law. One major numerical challenge in solving the SGN equations is the resolution of an elliptic problem at each time instant. This is the most time-consuming part of the numerical method. The idea is to replace the ‘master’ lagrangian by a one-parameter family of ‘augmented’ lagrangians, depending on a greater number of variables, for which the corresponding Euler-Lagrange equations are hyperbolic. In such an approach, the ‘master’ lagrangian is recovered by the augmented lagrangian in some limit (for example, when the corresponding parameter is large). The choice of such a family of augmented lagrangians is proposed and discussed. The corresponding hyperbolic system is numerically solved by a Godunov type method. Numerical solutions are compared with exact solutions to the SGN equations. It appears that the computational time in solving the hyperbolic system is much lower than in the case where the elliptic operator is inverted. The new method is applied, in particular, to the study of ‘Favre waves’ representing non-stationary undular bores produced after reflection of the fluid flow with a free surface at an immobile wall.
77 FR 65621 - Security Zone; Cruise Ships, Santa Barbara Harbor, Santa Barbara, CA
2012-10-30
... waters from the surface to the sea floor within a 100-yard radius of any cruise ship located within 3... prevent the catastrophic impact that a terrorist attack against a cruise ship would have on the public... to the sea floor within a 100-yard radius of any cruise ship which is located within 3 nautical...
Processing Marine Gravity Data Around Korea
Lee, Y.; Choi, K.; Kim, Y.; Ahn, Y.; Chang, M.
2008-12-01
In Korea currently 4 research ships are under operating in Korea, after the first research vessel equipped shipborne gravity meter was introduced in 1990s. These are Onnuri(launch 1991) of KORDI(Korea Ocean Research & Development Institute), Haeyang2000(launch 1996), Badaro1(launch 2002) of NORI(National Oceanographic Research Institute) and Tamhae2(launch 1997) of KIGAM(Korea Institute of Geoscience and Mineral Resources). Those of research vessel, Haeyang2000 have observed marine gravity data over 150,000 points each year from year 1996 to year 2003. Haeyang2000, about 2,500 tons, is unable to operate onshore so NORI has constructed another 600 tons research ship Badaro1 that has observed marine gravity data onshore since year 2002. Haeyang2000 finished observing marine gravity data offshore within Korean territorial waters until year 2003. Currently Badaro1 is observing marine gravity data onshore. These shipborne gravity data will be very useful and important on geodesy and geophysics research also those data can make a contribution to developing these studies. In this study NORI's shipbrne gravity data from 1996 to 2007 has been processed for fundamental data to compute Korean precise geoid. Marine gravity processing steps as followed. 1. Check the time sequence, latitude and longitude position, etc. of shipborne gravity data 2. Arrangement of the tide level below the pier and meter drift correction of each cruise. 3. Elimination of turning points. 4. The time lag correction. 5. Computation of RV's velocities, Heading angles and the Eötvös correction. 6. Kalman filtering of GPS navigation data using cross-over points. 7. Cross-over correction using least square adjustment. About 2,058,000 points have been processed with NORI's marine gravity data from 1996 to 2007 in this study. The distribution of free-air anomalies was -41.0 mgal to 136.0 mgal(mean 8.90mgal) within Korean territorial waters. The free-air anomalies processed with the marine gravity data are
National Oceanic and Atmospheric Administration, Department of Commerce — Underway surface air temperature and sea water temperature were collected aboard the Skelton Castle while in route from England to Bombay India as part of the East...
Ship Infrared Detection/Vulnerability
Jong, A.N. de
1993-01-01
The IR contrast of ships at sea is of importance for those who want to detect or identify the ship and for those who worry about this. This IR contrast is determined by a large number of parameters. Of course temperatures of the ship's structure and those of the ambient sea and air are important, bu
Miller, Willis H.
1985-01-01
The cruise ship industry relates directly to many features of the natural and cultural environments. The U.S. cruise ship industry is analyzed. Discusses the size of the industry, precruise passenger liners, current cruise ships, cruise regions and routes, ports of call, major ports, passengers, and future prospects. (RM)
Laser welding in a reduced gravity environment
Workman, Gary L.; Kaukler, William F.
1992-01-01
Preliminary results on the effects of reduced gravity on laser welding of stainless steel and other materials are reported. Laser welding experiments using a low power (10-18 watts) Nd-YAG laser have been performed on the NASA KC-135, which flies parabolic maneuvers to simulate reduced gravity conditions. Experiments on 0.005-0.010 inch thick stainless steel samples displayed a pronounced change in weld bead width, depth of penetration and surface ripple with changes in gravity level.
A ship-borne meteorological station for ground truth measurements
Digital Repository Service at National Institute of Oceanography (India)
Desai, R.G.P.; Desa, B.A.E.
Oceanographic upwelling studies required ground truth measurements of meteorological parameters and sea surface temperature to be made from a research vessel which did not have the necessary facilities. A ship-borne station was therefore designed...
Institute of Scientific and Technical Information of China (English)
孙建; 李伟; 安思朦
2015-01-01
针对受内部动态不确定和外界风流影响下的欠驱动水面船舶直线航迹保持问题，将变结构控制引入非线性自抗扰控制器中，在保证原控制器优点的同时，大大减少了需要整定的参数。同时构造降维方程，使航迹控制问题转变为简单的跟踪参考航向问题。仿真结果表明，新控制器具有较好的控制效果，可使船舶对直线航迹精确跟踪，且具有较强的鲁棒性。%Variable structure control was introduced into non-linear active-disturbance rejection controller for the straight line track keeping control problem of underactuated surface ship under the influence of internal dynamic uncertainties and external disturbances .The needed setting parameters were greatly reduced with keeping the intrinsic controller ’ s advan-tages.Meanwhile through the design of dimension reduction equation, the ship track keeping control is changed into the simple desired heading angle followed control .Simulation re-sults show that the new controller with preferable control func-tion is robust against the systemic variations and external dis-turbances , which can realize the accurate tracking of straight line.
National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...
National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...
Towards Real Time Simulation of Ship-Ship Interaction
DEFF Research Database (Denmark)
Lindberg, Ole; Bingham, Harry B.; Engsig-Karup, Allan Peter
2012-01-01
We present recent and preliminary work directed towards the development of a simplified, physics-based model for improved simulation of ship-ship interaction that can be used for both analysis and real-time computing (i.e. with real-time constraints due to visualization). The goal is to implement...... the model into a large maritime simulator for training of naval officers, in particular tug boat helmsmen. Tug boat simulators are used for training of communication and situation awareness during manoeuvre involved with towing of large vessels. A main objective of the work is to improve and enable more...... accurate (realistic) and much faster ship-wave and ship-ship simulations than are currently possible. The coupling of simulation with visualization should improve the visual experience such that it can be perceived as more realistic in training. Today the state-of-art in real-time ship-ship interaction...
Numerical Simulation on Ship Bubbly Wake
Institute of Scientific and Technical Information of China (English)
Huiping Fu; Pengcheng Wan
2011-01-01
Based on a volume of fluid two-phase model imbedded in the general computational fluid dynamics code FLUENT6.3.26,the viscous flow with free surface around a model-scaled KRISO container ship(KCS)was first numerically simulated.Then with a rigid-lid-free-surface method,the underwater flow field was computed based on the mixture multiphase model to simulate the bubbly wake around the KCS hull.The realizable k-ε two-equation turbulence model and Reynolds stress model were used to analyze the effects of turbulence model on the ship bubbly wake.The air entrainment model,which is relative to the normal velocity gradient of the free surface,and the solving method were verified by the qualitatively reasonable computed results.
Energy Technology Data Exchange (ETDEWEB)
Deadrick, F.J.; Cabayan, H.S.; Kunz, K.F.; Bevensee, R.M.; Martin, L.C.; Egbert, R.W.
1980-01-01
Scale-model tests were conducted to establish the adequacy and limitations of model measurements as tools for predicting electromagnetic pulse (EMP) coupling voltages and currents to the critical antennas, cables, and metallic structures on ships. The scale-model predictions are compared with the results of the full-scale EMP simulation test of the Canadian ASW ship, HMCS Huron. (The EMP coupling predictions in this report were made without prior knowledge of the results of the data from the HMCS Huron tests.) This report establishes that the scale-model tests in conjunction with the data base from EMP coupling modules provides the necessary information for source model development and permits effective, low-cost study of particular system configurations. 184 figures, 9 tables.
Hydrodynamics of Ship Propellers
DEFF Research Database (Denmark)
Breslin, John P.; Andersen, Poul
This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation......) and about wings. It then treats propellers in uniform flow, first via advanced actuator disc modelling, and then using lifting-line theory. Pragmatic guidance is given for design and evaluation of performance, including the use of computer modelling.The second part covers the development of unsteady forces...... arising from operation in non-uniform hull wakes. First, by a number of simplifications, various aspects of the problem are dealt with separately until the full problem of a non-cavitating, wide-bladed propeller in a wake is treated by a new and completely developed theory. Next, the complicated problem...
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup
1996-01-01
In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bottom....... Finally, overall hull failure is considered first applying a quasistatic analysis model and thereafter a full dynamic model....
FREMONT, A
2006-01-01
For some time it has been acknowledged that logistics is a driving force that shapes the integration of the transport chain. This paper argues that while the liner shipping industry exhibits increased horizontal integration, its vertical integration remains limited. A clear distinction is drawn between freight logistics, container logistics and vessel logistics. Freight logistics is defined as part of the supply chain process, the focus of which are the goods being transported. The purpose of...
2011-01-28
CDR Ed Suraci, and Mr. Leif Bergey . Cell Support: Each cell had an assigned data collection support assistant. These personnel assisted the players...Mr. Leif Bergey (Control Cell). Ethnographers (Environmental Recorders): Employed a variety of quasi-anthropological, ethnographic techniques to...for this project was Mr. Leif Bergey . Global Shipping Game Report 20 7 / 14 7 / 5 19 / 8 3 / 10 III. ANALYSIS
TIS/RP Group
2001-01-01
The TIS-RP group informs users that shipping of small radioactive items is normally guaranteed within 24 hours from the time the material is handed in at the TIS-RP service. This time is imposed by the necessary procedures (identification of the radionuclides, determination of dose rate, preparation of the package and related paperwork). Large and massive objects require a longer procedure and will therefore take longer.
2007-08-01
the 500 group include climate control, freshwater/seawater systems, mechanical handling, and special purpose systems. Due to the large troop...compliment carried on the JHSS, large amounts of climate control and ventilation were required. The transformable heavy lift ship has only a single... Treeline Connector Innovation Cell Naval Research Enterprise Intern Program Final Report, NSWCCD-20-TR-2005/05 August 2005 "Saturn." Nijhuis
Nash, Patrick Lee
2010-01-01
A theory of a new gravitational interaction is described. This theory follows naturally from a new Lagrangian formulation of Maxwell's theory for photons and electrons (and positrons) whose associated Euler Lagrange equations imply the conventional Maxwell equations, but which possesses new \\textbf{\\emph{bosonic}} spinor degrees of freedom that may be associated with a new type of fundamental gravitational interaction. The precise character of this gravitational interaction with a photon vector potential is explicitly defined in terms of a local U(1)-invariant Lagrangian in Eq.[\\ref{Lagrangian3}]. However in Section \\ref{ssec:Simple-Cosmolo-Model}, in order to parallel the well known Friedmann model in cosmology, a phenomenological description of the new gravitational interaction coupled to Newton-Einstein gravity that is sourced by an ideal fluid is discussed. % % To lay the foundation for a description of the new gravitational interaction our new formulation of Maxwell's theory must first be described. It i...
Magueijo, J; Magueijo, Joao; Smolin, Lee
2004-01-01
Non-linear special relativity (or doubly special relativity) is a simple framework for encoding properties of flat quantum space-time. In this paper we show how this formalism may be generalized to incorporate curvature (leading to what might be called ``doubly general relativity''). We first propose a dual to non-linear realizations of relativity in momentum space, and show that for such a dual the space-time invariant is an energy-dependent metric. This leads to an energy-dependent connection and curvature, and a simple modification to Einstein's equations. We then examine solutions to these equations. We find the counterpart to the cosmological metric, and show how cosmologies based upon our theory of gravity may solve the ``horizon problem''. We discuss the Schwarzchild solution, examining the conditions for which the horizon is energy dependent. We finally find the weak field limit.
Lombard, John
2016-01-01
We introduce the construction of a new framework for probing discrete emergent geometry and boundary-boundary observables based on a fundamentally a-dimensional underlying network structure. Using a gravitationally motivated action with Forman weighted combinatorial curvatures and simplicial volumes relying on a decomposition of an abstract simplicial complex into realized embeddings of proper skeletons, we demonstrate properties such as a minimal volume-scale cutoff, the necessity of a positive-definite cosmological constant as a regulator for non-degenerate geometries, and naturally emergent simplicial structures from Metropolis network evolution simulations with no restrictions on attachment rules or regular building blocks. We see emergent properties which echo results from both the spinfoam formalism and causal dynamical triangulations in quantum gravity, and provide analytical and numerical results to support the analogy. We conclude with a summary of open questions and intent for future work in develop...
Calculating the Marine Gravity Anomaly of the South China Sea based on the Inverse Stokes Formula
Liu, Liang; Jiang, Xiaoguang; Liu, Shanwei; Zheng, Lei; Zang, Jinxia; Zhang, Xuehua; Liu, Longfei
2016-11-01
Marine gravity field information has a great significance for the resource, environment and military affairs. As a new way to get marine gravity data, the satellite altimetry technique makes up for what ship measuring means lack. The paper carries out the researches on how altimeter data applied for calculating marine gravity anomaly based on inverse Stokes formula. In the article, the editing of 14-track Jason-1 data over South China Sea for 7 years is for collinear processing and cross-point adjustment. The inverse Stokes formula and fast Flourier transform technique are applied to calculate marine gravity anomaly of the region (0°∼23°N, 103°∼120°E), and to draw gravity anomaly map. Compared with the gravity anomaly by ship observation, RMS is 12.6mGal, and single altimetry satellite has a good precision.
Newtonian gravity in loop quantum gravity
Smolin, Lee
2010-01-01
We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.
Newtonian gravity in loop quantum gravity
Smolin, Lee
2010-01-01
We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.
Holographic entanglement entropy in Lovelock gravities
de Boer, J.; Kulaxizi, M.; Parnachev, A.
2011-01-01
We study entanglement entropies of simply connected surfaces in field theories dual to Lovelock gravities. We consider Gauss-Bonnet and cubic Lovelock gravities in detail. In the conformal case the logarithmic terms in the entanglement entropy are governed by the conformal anomalies of the CFT; we v
Institute of Scientific and Technical Information of China (English)
朱成全; 韦林山; 洪加津; 孙学刚
2013-01-01
目的 了解舰艇部队军事应激条件下,军人心理状况及血5-羟色胺(5-hydroxytryptamine,5-HT)、5-羟吲哚乙酸(5-hydroxyindoleacetic acid,5-HIAA)、多巴胺(dopamine,DA)、去甲肾上腺素(norepinephrine,NE)的变化.方法 对80例执行军事演习任务的军人(应激组),在演习前使用症状自评量表(Symptom Checklist 90,SCL-90)进行测评,同期对同一部队80例未参与演习任务的军人(对照组)进行SCL-90测评;用荧光分光光度法(fluorescence spectrophotometry,FS)检测两组军人血浆及血小板5-HT、5-HIAA、DA和NE含量;对数据进行统计分析.结果 军事应激事件前,应激组军人SCL-90中的总分、躯体化、强迫、抑郁、焦虑、偏执等因子分数,血浆及血小板5-HT、5-HIAA和NE含量均高于对照组军人(P＜0.01),军事应激后恢复正常;血浆及血小板DA在军事应激事件前后无统计学差异.结论 军事应激事件对舰艇部队军人心理及外周血单胺类递质具有重要影响.%Objective To investigate the changes of mental health status and plasma 5-hydroxytryptamine (5-HT),5-hydroxyindoleacetic acid (5-HIAA),dopamine (DA) and norepinephrine (NE) of the soldiers under military stress in surface ships. Methods Symptom Checklist 90 (SCL-90) was applied to evaluate 80 military men (stress group) before and after the military exercise in surface ships and 80 military men (control). Fluorescence spectrophotometry was adopted to measure 5-HT, 5-HIAA,DA and NE in the plasma and platelet of the two groups. Statistical analysis was performed Results The total score and factors of sornzatization, compulsion, depression, anxity and paparanoid of the stress group were higher than that of the control group before military exercise. The plasma and platelet 5-HT, 5-HIAA and the NE level were higher than that of the control group before the military stress (P<0. 01) and returned to the normal level after military stress. There was no difference between DA levels
Institute of Scientific and Technical Information of China (English)
罗木生; 姜青山; 侯学隆
2012-01-01
The advanced nuclear submarine having high velocity and low noise becomes more and more dangerous to surface ship formation from stern direction, and it needs to study the strategies for countering this threat. Aiming at stern interception antisubmarine operation for surface ship formation, the enemy submarine following position and torpedo attack position were analyzed, and models were built up to calculate the interception barrier length, set position and effective work time for helicopter operation by taking antisubmarine helicopter cruising speed and operation time into consideration. Antisubmarine area and sonobuoy barrier were analyzed for stern interception antisubmarine. Finally, the influence of enemy submarine velocity, interception sector, barrier position and barrier effective work time on stern interception antisubmarine was analyzed through simulation. The results show that the barrier length will increase greatly if submarine velocity increases, and antisubmarine helicopter operation time constrains barrier position and its effective work time.%高航速、低噪声的先进核动力潜艇使得水面舰艇编队尾后方向的潜艇威胁越来越大,因而需对此类威胁的应对策略展开研究.针对水面舰艇编队尾后拦截潜艇作战问题,在分析敌潜艇追击阵位与鱼雷攻击阵位的基础上,综合反潜直升机巡航速度、留空时间等因素,建立了反潜直升机尾后拦截阵长度、拦截阵设置阵位、拦截阵有效工作时间的计算模型,并对编队尾后截击区域、声纳浮标拦截阵的设置进行了分析.最后仿真分析了尾追潜艇航速、拦截扇面、拦截阵阵位、拦截阵工作时间等因素影响下的拦截潜艇模型.结果表明:敌潜艇航速的提高,将使拦截阵的长度大幅增加；反潜直升机留空时间制约了拦截阵的阵位与有效工作时间.
Lineal gravity from planar gravity
Achúcarro, A
1993-01-01
We show how to obtain the two-dimensional black hole action by dimensional reduction of the three-dimensional Einstein action with a non-zero cosmological constant. Starting from the Chern-Simons formulation of 2+1 gravity, we obtain the 1+1 dimensional gauge formulation given by Verlinde. Remarkably, the proposed reduction shares the relevant features of the formulation of Cangemi and Jackiw, without the need for a central charge in the algebra. We show how the Lagrange multipliersin these formulations appear naturally as the remnants of the three dimensional connection associated to symmetries that have been lostin the dimensional reduction. The proposed dimensional reduction involves a shift in the three dimensional connection whose effect is to make the length of the extra dimension infinite.
National Oceanic and Atmospheric Administration, Department of Commerce — The US Voluntary Observing Ships (VOS) report surface marine observations in both real-time (FM-13 ship format) and delayed-mode (International Maritime...
A Model of Ship Auxiliary System for Reliable Ship Propulsion
Dragan Martinović; Mato Tudor; Dean Bernečić
2012-01-01
The main purpose of a vessel is to transport goods and passengers at minimum cost. Out of the analysis of relevant global databases on ship machinery failures, it is obvious that the most frequent failures occur precisely on the generator-running diesel engines. Any failure in the electrical system can leave the ship without propulsion, even if the main engine is working properly. In that case, the consequences could be devastating: higher running expenses, damage to the ship, oil spill or su...
Integrated cargo routing and ship scheduling in liner shipping
DEFF Research Database (Denmark)
Kjeldsen, Karina Hjortshøj
The problem consists of creating routes and schedules for a heterogeneous fleet of ships while determining the cargo routing and the speed for all relevant port pair/ship combinations. Transshipment is allowed in ports with transshipment capabilities. The service frequency is fixed at one week....... Since the speed of the ships is a decision variable, the developed model is nonlinear. The model is made linear by means of variable redefinition. Using decomposition the linearized model is split into a master problem and a sub problem per ship, and solved by a column generation algorithm....
Gandzha, I S; Dutykh, D S
2015-01-01
We consider the high-order nonlinear Schr\\"odinger equation derived earlier by Sedletsky [Ukr. J. Phys. 48(1), 82 (2003)] for the first-harmonic envelope of slowly modulated gravity waves on the surface of finite-depth irrotational, inviscid, and incompressible fluid with flat bottom. This equation takes into account the third-order dispersion and cubic nonlinear dispersive terms. We rewrite this equation in dimensionless form featuring only one dimensionless parameter $kh$, where $k$ is the carrier wavenumber and $h$ is the undisturbed fluid depth. We show that one-soliton solutions of the classical nonlinear Schr\\"{o}dinger equation are transformed into quasi-soliton solutions with slowly varying amplitude when the high-order terms are taken into consideration. These quasi-soliton solutions represent the secondary modulations of gravity waves.
DEFF Research Database (Denmark)
Perez, Tristan; Blanke, Mogens
2010-01-01
The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of deciencies in control system designs, which have proven to be far from trivial due to fundamental performance limitations....... This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....
Operational Options for Green Ships
Institute of Scientific and Technical Information of China (English)
Salma Sherbaz; Wenyang Duan
2012-01-01
Environmental issues and rising fuel prices necessitate better energy-efficiency in all sectors.The shipping industry is one of the major stakeholders,responsible for 3％ of global CO2 emissions,14％-15％ of global NOx emissions,and 16％ of global SOx emissions.In addition,continuously rising fuel prices are also an incentive to focus on new ways for better energy-effectiveness.The green ship concept requires exploring and implementing technology on ships to increase energy-efficiency and reduce emissions.Ship operation is an important topic with large potential to increase cost-and-energy-effectiveness.This paper provided a comprehensive review of basic concepts,principles,and potential of operational options for green ships.The key challenges pertaining to ship crew i.e.academic qualifications prior to induction,in-service training and motivation were discussed.The author also deliberated on remedies to these challenges.
Operational options for green ships
Sherbaz, Salma; Duan, Wenyang
2012-09-01
Environmental issues and rising fuel prices necessitate better energy-efficiency in all sectors. The shipping industry is one of the major stakeholders, responsible for 3% of global CO2 emissions, 14%-15% of global NO X emissions, and 16% of global SO X emissions. In addition, continuously rising fuel prices are also an incentive to focus on new ways for better energy-effectiveness. The green ship concept requires exploring and implementing technology on ships to increase energy-efficiency and reduce emissions. Ship operation is an important topic with large potential to increase cost-and-energy-effectiveness. This paper provided a comprehensive review of basic concepts, principles, and potential of operational options for green ships. The key challenges pertaining to ship crew i.e. academic qualifications prior to induction, in-service training and motivation were discussed. The author also deliberated on remedies to these challenges.
A New Propulsion System for Ships.
1980-01-31
complex relationships involving ship propulsion , ship control and a host of independent problems related to hydrodynamics, structural mechanics, efficiency...namely ship configuration and ship con- trol in addition to ship propulsion . The transmission pump can 1be used for boundary layer control on the...possibly overcome the limitation and performance shortcomings of existing ship propulsion systems. Light weight propulsion systems for naval ship
Linker, Patrick
2016-01-01
A couple of quantum gravity theories were proposed to make theoretical predictions about the behavior of gravity. The most recent approach to quantum gravity, called E-theory, is proposed mathematical, but there is not formulated much about what dynamics of gravity this theory proposes. This research paper treats the main results of the application of E-theory to General relativity involving conservation laws and scattering of particles in presence of gravity. Also the low-energy limit of thi...
Gravity field determination and error assessment techniques
Yuan, D. N.; Shum, C. K.; Tapley, B. D.
1989-01-01
Linear estimation theory, along with a new technique to compute relative data weights, was applied to the determination of the Earth's geopotential field and other geophysical model parameters using a combination of satellite ground-based tracking data, satellite altimetry data, and the surface gravimetry data. The relative data weights for the inhomogeneous data sets are estimated simultaneously with the gravity field and other geophysical and orbit parameters in a least squares approach to produce the University of Texas gravity field models. New techniques to perform calibration of the formal covariance matrix for the geopotential solution were developed to obtain a reliable gravity field error estimate. Different techniques, which include orbit residual analysis, surface gravity anomaly residual analysis, subset gravity solution comparisons and consider covariance analysis, were applied to investigate the reliability of the calibration.
Competitiveness of Slovenian Cargo Shipping
Directory of Open Access Journals (Sweden)
Milojka Počuča
2012-10-01
Full Text Available The paper presents Slovenian cargo shipping, its system oforganisation, ownership, age and value stntcture. It shows theimportance of shipping in the Slovenian overseas trade and itsimpact on the state's balance of payments. The analysis of thecompetitiveness of shipping was made from the viewpoint ofoperation costs and in comparison with the competitiveness ofEU shippers. The paper concludes with a proposal of possiblesystemic solutions which improve the competitiveness of Slovenianshipping.
Future of Magnetohydrodynamic Ship Propulsion,
1983-08-16
83 FOREIGN TECHNOLOGY DIVISION FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION by A.P. Baranov DTIQ ~E tJ Approved for public release; 0.. distribution...MAGNETOHYDRODYNAMIC SHIP PROPULSION By: A.P. Baranov -,English pages: 10 Source: Sudostroyeniye, Nr. 12, December 1966, pp. 3-6 . Country of origin: USSR X...equations, etc. merged into this translation were extracted from the best quality copy available. FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION A. P
Federal Laboratory Consortium — Performing Advanced Hydrodynamic ModelingEngineers and ship pilots can now overcome the challenges of evaluating navigation channel designs, modifications and safety...
Energy Technology Data Exchange (ETDEWEB)
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Energy Technology Data Exchange (ETDEWEB)
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ship Creek bioassessment investigations
Energy Technology Data Exchange (ETDEWEB)
Cushing, C.E.; Mueller, R.P.; Murphy, M.T.
1995-06-01
Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.
Harris, Karin; Gende, Scott M.; Logsdon, Miles G.; Klinger, Terrie
2012-01-01
Understanding interactions between large ships and large whales is important to estimate risks posed to whales by ships. The coastal waters of Alaska are a summer feeding area for humpback whales ( Megaptera novaeangliae) as well as a prominent destination for large cruise ships. Lethal collisions between cruise ships and humpback whales have occurred throughout Alaska, including in Glacier Bay National Park (GBNP). Although the National Park Service (NPS) establishes quotas and operating requirements for cruise ships within GBNP in part to minimize ship-whale collisions, no study has quantified ship-whale interactions in the park or in state waters where ship traffic is unregulated. In 2008 and 2009, an observer was placed on ships during 49 different cruises that included entry into GBNP to record distance and bearing of whales that surfaced within 1 km of the ship's bow. A relative coordinate system was developed in ArcGIS to model the frequency of whale surface events using kernel density. A total of 514 whale surface events were recorded. Although ship-whale interactions were common within GBNP, whales frequently surfaced in front of the bow in waters immediately adjacent to the park (west Icy Strait) where cruise ship traffic is not regulated by the NPS. When ships transited at speeds >13 knots, whales frequently surfaced closer to the ship's midline and ship's bow in contrast to speeds slower than 13 knots. Our findings confirm that ship speed is an effective mitigation measure for protecting whales and should be applied to other areas where ship-whale interactions are common.
Harris, Karin; Gende, Scott M; Logsdon, Miles G; Klinger, Terrie
2012-01-01
Understanding interactions between large ships and large whales is important to estimate risks posed to whales by ships. The coastal waters of Alaska are a summer feeding area for humpback whales (Megaptera novaeangliae) as well as a prominent destination for large cruise ships. Lethal collisions between cruise ships and humpback whales have occurred throughout Alaska, including in Glacier Bay National Park (GBNP). Although the National Park Service (NPS) establishes quotas and operating requirements for cruise ships within GBNP in part to minimize ship-whale collisions, no study has quantified ship-whale interactions in the park or in state waters where ship traffic is unregulated. In 2008 and 2009, an observer was placed on ships during 49 different cruises that included entry into GBNP to record distance and bearing of whales that surfaced within 1 km of the ship's bow. A relative coordinate system was developed in ArcGIS to model the frequency of whale surface events using kernel density. A total of 514 whale surface events were recorded. Although ship-whale interactions were common within GBNP, whales frequently surfaced in front of the bow in waters immediately adjacent to the park (west Icy Strait) where cruise ship traffic is not regulated by the NPS. When ships transited at speeds >13 knots, whales frequently surfaced closer to the ship's midline and ship's bow in contrast to speeds slower than 13 knots. Our findings confirm that ship speed is an effective mitigation measure for protecting whales and should be applied to other areas where ship-whale interactions are common.
Integrated cargo routing and ship scheduling in liner shipping
DEFF Research Database (Denmark)
Kjeldsen, Karina Hjortshøj
The problem consists of creating routes and schedules for a heterogeneous fleet of ships while determining the cargo routing and the speed for all relevant port pair/ship combinations. Transshipment is allowed in ports with transshipment capabilities. The service frequency is fixed at one week...
Ship Systems Staging Diagrams for DDG-37 Class Ships.
1977-12-01
Naval Air Systems Command ( NA VELEX - Naval Electronics Systems CommandNAVSEA - Naval Sea Systems Command NA VSEC - Naval Ships Engineering Center...Configuration Accounting System (SECAS) 93.2 . 3 Technical Systems Commands (NAVSEA, NA VELEX ) . 9 3. 2. 4 Type Commanders (TYCOMs~ 9I 3. 2. 5 Nava l Ships
Environmental applications of gravity surveying
Energy Technology Data Exchange (ETDEWEB)
Barrows, L.J. (Illinois State Univ., Normal, IL (United States)); Nesbit, L.C. (KEMRON Environmental Services, Novi, MI (United States)); Khan, W.A. (Environmental Science Engineering, Phoenix, AZ (United States))
1994-04-01
The Allis Park Sanitary Landfill Company developed a new landfill near Onway, Michigan in an area which has glacial alluvium and glacial till overlying limestone. There are several solution karst features in the region and some critics had maintained that a new karst collapse could rupture the liner system and allow escape of leachate into the groundwater. The gravity survey was conducted to determine the extent of any karst development at the site. The first portion of the survey was two profiles over some karst features located about five miles southeast of the proposed landfill. These showed negative gravity anomalies. The survey of the proposed landfill site resulted in a 50 microGal contour map of the area and also showed a negative anomaly. This could be due to either elevation variations on the till to limestone bedrock surface or to karst development within the limestone. Because there was no evidence of historic development of new karst features in the region, the gravity anomaly was not further investigated. In another gravity survey, a large retail department store had been remodeled and extended over an area previously occupied by an auto service center. The removal of a waste oil storage tank (UST) had not been documented and the environmental consultant (KEMRON, Inc.) proposed that a gravity survey be used to find the tank location. This proposal was based on calculations of the gravity effects of a UST. The survey resulted in a four-microGal contour map which showed a couple of anomalies which could be due to a tank or a backfilled tank excavation. During the survey, a store employee identified the previous location of the tank and explained that she had personally witnessed its removal. Based on the employee's eye-witness account of the tank removal and the coincidence of her indicated tank location with one of the gravity anomalies the authors recommended the site be granted clean closure.
VELOCITY FIELD IN SHIP WAVES ON THE VISCOUS FLUID
Institute of Scientific and Technical Information of China (English)
刘敏嘉; 陶明德
2002-01-01
From the Navier-Stokes equations, the integral expressions of the free-surface elevation and the velocity field in ship waves of a moving waterborne body are obtained.Next, Lighthill's two-stage scheme is employed to change the above-mentioned integral expressions to algebraic expressions.Compared with the results obtained when the seawater is idealized to an inviscid fluid, the singularities are dispelled or weakened, and the accuracy of the digit information of ship waves is improved.
On the Global Ship Hull Bending Energy in Ship Collisions
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Li, Y.
2004-01-01
During ship collisions part of the kinetic energy of the involved vessels prior to contact is absorbed as energy dissipated by crushing of the hull structures, by friction and by elastic energy. The purpose of this report is to present an estimate of the elastic energy that can be stored in elastic...... absorbed by the struck ship normally is small and varies from 1 to 6 % of the energy released for crushing. The energy stored as elastic global hull girder vibrations depends on the ship mass, the local stiffness of the side structure, and of the position of contact. The results also show that for highly...... hull vibrations during a ship collision. When a ship side is strengthened in order to improve the crashworthiness it has been argued in the scientific literature that a non trivial part of the energy released for structural deformation during the collision can be absorbed as elastic energy in global...
On the global ship hull bending energy in ship collisions
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Li, Yujie
2009-01-01
be stored in elastic hull vibrations during a ship collision. When a ship side is strengthened in order to improve the crashworthiness it has been argued in the scientific literature that a non-trivial part of the energy released for structural deformation during the collision can be absorbed as elastic...... energy absorbed by the struck ship normally is small and varies from 1 to 6% of the energy released for crushing. The energy stored as elastic global hull girder vibrations depends on the ship mass, the local stiffness of the side structure, and of the position of contact. The results also show......During ship collisions part of the kinetic energy of the involved vessels immediately prior to contact is absorbed as energy dissipated by crushing of the hull structures, by friction and by elastic energy. The purpose of this report is to present an estimate of the elastic energy that can...
On Impact Mechanics in Ship Collisions
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Zhang, Shengming
1998-01-01
The purpose of this paper is to present analytical, closed-form expressions for the energy released for crushing and the impact impulse during ship collisions. Ship-ship collisions, ship collisions with rigid walls and ship collisions with flexible offshore structures are considered. The derived ...
National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0084052 includes underway chemical, meteorological, and physical data collected from NOAA Ship McARTHUR II in Coastal Waters of SE Alaska, Cordell...
Precautionay Seizure of Civil Ship
Directory of Open Access Journals (Sweden)
Ciprian Alexandrescu
2011-05-01
Full Text Available Noting that many pending cases in the maritime and river sections of the courts concern the seizureof commercial ships, we intend to study in detail this institution of maritime law. This approach is due to thefact that the few Romanian law-writers, and especially the practitioners, who have approached the subject,have referred in particular to comment and interpretation of existing rules in the Commercial Code and theCivil Procedure Code, not considering the relationship between other institutions of maritime law and seizingthe ship. In our opinion the mentioned institution of law can not be examined thoroughly without priorinvestigation of what is the ship which is subject to seizure. Moreover, the ship is at the heart of all legalresearch on shipping. The concept of ship has been controversial since the seventeenth century, with the firstregulations that led to the development and adoption of commercial codes, and it is still controversial today.We can say that the diversity of opinions, expressed both in the legal literature and legal practice, on theconcept of ship, is largely due to the technical progress of shipping in modern times, this transport meanbenefiting from exceptional facilities to ensure a safely water transport of goods and people.
Ship exhaust gas plume cooling
Schleijpen, H.M.A.; Neele, P.P.
2004-01-01
The exhaust gas plume is an important and sometimes dominating contributor to the infrared signature of ships. Suppression of the infrared ship signatures has been studied by TNO for the Royal Netherlands Navy over considerable time. This study deals with the suppression effects, which can be achiev
NATO Standards for Virtual Ships
Kraker, J.K. de; Duncan, J.; Budde, E.W.; Reading, R.
2005-01-01
The NATO Naval Armaments Group Sub-Group 61 on Virtual Ships has been chartered to establish NATO standards for modeling and simulation applied to ship acquisition. Its objective is to enable multi-national simulation re-use and interoperability, as well as simulation composability. Technical activi
Hydroelastic Vibrations of Ships
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Folsø, Rasmus
2002-01-01
A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...... wave- and whipping induced bending moment is derived under the assumption that the maximum peak value in a whipping sequence occurs simultaneously with a peak in sagging wave-induced bending moment, but that the magnitudes of these two peaks are statistically independent. The expression can be written...... as the usual Rayleigh distribution for the wave response multiplied by a factor independent of the significant wave height. Finally, the springing and whipping predictions are compared with model test results....
DEFF Research Database (Denmark)
Perez, Tristan; Blanke, Mogens
2012-01-01
The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of difficulties associated with control system designs, which have proven to be far from trivial due to fundamental performance...... limitations and large variations of the spectral characteristics of wave-induced roll motion. This tutorial paper presents an account of the development of various ship roll motion control systems together with the challenges associated with their design. It discusses the assessment of performance...... and the applicability of different mathematical models, and it surveys the control methods that have been implemented and validated with full scale experiments. The paper also presents an outlook on what are believed to be potential areas of research within this topic....
Boullet, Vanessa
2012-01-01
Ship of Fools est un essai polémique sur les différents éléments qui, selon Fintan O’Toole, ont contribué à la chute du Tigre Celtique : hommes politiques incompétents, souvent corrompus et pourtant réélus par les Irlandais, banquiers et promoteurs cupides, et enfin régulations inexistantes dans la gestion des affaires du pays. La thèse principale que développe O’Toole, journaliste et intellectuel de gauche, est que l’Irlande a d’une certaine manière importé sa modernité économique (passant r...
Occupational accidents aboard merchant ships
DEFF Research Database (Denmark)
Hansen, H.L.; Nielsen, D.; Frydenberg, Morten
2002-01-01
Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may...... be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were...... rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious...
Identification of Dynamically Positioned Ships
Directory of Open Access Journals (Sweden)
Thor I. Fossen
1996-04-01
Full Text Available Todays model-based dynamic positioning (DP systems require that the ship and thruster dynamics are known with some accuracy in order to use linear quadratic optical control theory. However, it is difficult to identify the mathematical model of a dynamically posititmed (DP ship since the ship is not persistently excited under DP. In addition the ship parameter estimation problem is nonlinear and multivariable with only position and thruster state measurements available for parameter estimation. The process and measurement noise must also be modeled in order to avoid parameter drift due to environmental disturbances and sensor failure. This article discusses an off-line parallel extended Kalman filter (EKF algorithm utilizing two measurement series in parallel to estimate the parameters in the DP ship model. Full-scale experiments with a supply vessel are used to demonstrate the convergence and robustness of the proposed parameter estimator.
Hung, R. J.; Pan, H. L.
1995-01-01
The dynamical behavior of fluids affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank, have been investigated. Three different cases of accelerations, one gravity gradient-dominated, one equally weighted between gravity gradient and jitter, and the others gravity jitter-dominated are studied. Results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated acceleration indicate that the gravity gradient-dominated acceleration is equivalent to the combined effect of a twisting force and torsional moment acting on the spacecraft. Results of the slosh wave excitation along the liquid vapor interface induced by gravity jitter-dominated acceleration indicate that the gravity jitter-dominated acceleration is equivalent to time-dependent oscillatory forces which push the bubble in the combined directions of down-and-up and sideward -and-middleward as the bubble is rotating with respect to rotating dewar axis. This study discloses the slosh wave excitation along the liquid-vapor interface driven by the combined effects of gravity gradient and jitter accelerations which are two major driving forces affecting the stability of the fluid system in microgravity.
A Model of Ship Auxiliary System for Reliable Ship Propulsion
Directory of Open Access Journals (Sweden)
Dragan Martinović
2012-03-01
Full Text Available The main purpose of a vessel is to transport goods and passengers at minimum cost. Out of the analysis of relevant global databases on ship machinery failures, it is obvious that the most frequent failures occur precisely on the generator-running diesel engines. Any failure in the electrical system can leave the ship without propulsion, even if the main engine is working properly. In that case, the consequences could be devastating: higher running expenses, damage to the ship, oil spill or substantial marine pollution. These are the reasons why solutions that will prevent the ship being unable to manoeuvre during her exploitation should be implemented. Therefore, it is necessary to define a propulsion restoration model which would not depend on the primary electrical energy. The paper provides a model of the marine auxiliary system for more reliable propulsion. This includes starting, reversing and stopping of the propulsion engine. The proposed solution of reliable propulsion model based on the use of a shaft generator and an excitation engine enables the restoration of propulsion following total failure of the electrical energy primary production system, and the self-propelled ship navigation. A ship is an important factor in the Technology of Transport, and the implementation of this model increases safety, reduces downtime, and significantly decreases hazards of pollution damage.KEYWORDSreliable propulsion, failure, ship auxiliary system, control, propulsion restoration
Zucchini, R
1995-01-01
A lagrangian euclidean model of Drinfeld--Sokolov (DS) reduction leading to general W--algebras on a Riemann surface of any genus is presented. The background geometry is given by the DS principal bundle K associated to a complex Lie group G and an SL(2,\\Bbb C) subgroup S. The basic fields are a hermitian fiber metric H of K and a (0,1) Koszul gauge field A^* of K valued in a certain negative graded subalgebra \\goth x of \\goth g related to \\goth s. The action governing the H and A^* dynamics is the effective action of a DS field theory in the geometric background specified by H and A^*. Quantization of H and A^* implements on one hand the DS reduction and on the other defines a novel model of 2d gravity, DS gravity. The gauge fixing of the DS gauge symmetry yields an integration on a moduli space of DS gauge equivalence classes of A^* configurations, the DS moduli space. The model has a residual gauge symmetry associated to the DS gauge transformations leaving a given field A^* invariant. This is the DS count...
... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...
Northern Oklahoma Gravity Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...
National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...
National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...
Cadiz, California Gravity Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...
Classical Weyl Transverse Gravity
Oda, Ichiro
2016-01-01
We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally-invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally-invariant scalar tensor gravity and the WTDiff gravity is a "fake" symmetry. We find it possible to extend this proof to all matter fields,...
Bukley, Angie; Paloski, William; Clement, Gilles
2006-01-01
This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.
Terrestrial Gravity Fluctuations
Harms, Jan
2015-12-01
Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of
Terrestrial Gravity Fluctuations.
Harms, Jan
2015-01-01
Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10(-23) Hz(-1/2) above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of
Terrestrial Gravity Fluctuations
Directory of Open Access Journals (Sweden)
Jan Harms
2015-12-01
Full Text Available Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^–23 Hz^–1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our
Terrestrial Gravity Fluctuations
Harms, Jan
2015-01-01
The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.
Research in Advanced Surface Effect Ships
2008-02-12
115% Power -49.34 kts Aver Service -P$.(100oer-6830 vr evc ’N Speed) -nPoly. (815% Power - 43 kts Aver Service -7---Speed) -Poly. (10% Power - 4.8...Fast Ferry $0.30 PoIy. (130% Power - 63.3 kts Aver Service $0.20Sed -Poly. (115% Power-60.3 kts Aver Service -pee.(00d oer-68)t vr evc Poly. (850% Power
Surface Effect Ship Structural Producibility. Part 1.
1980-05-14
REINFORCEMENT. Reinforcement of void at the side other than that from which welding was done. See also REINFORCEMENT OF WELD and FACE REINFORCEMENT...rod, bar, tube, or wire. SHEET. A rolled product rectangular in cross-section and form of thickness 0.006 through 0.249 inch. SHRINKAGE VOID . A cavity...melted into the base metal adjacent to the toe or root of a weld and left unfilled by weld metal. UNDERFILL . A depression on the face of the weld or root
Analysis of Ship Groundings on Soft Sea Beds
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Pedersen, Preben Terndrup
1997-01-01
water through the grain skeleton of the soil. The flow is governed by Darcy's law and it is driven by the pressure of the pore water at the bow. In addition to this pore water pressure, the bow is subjected to the effective stresses in the grain skeleton at the bow surface. These stresses are determined...... it influences the ship heave and pitch motions as well as the friction between the ship and the soil.In this paper a rational calculation model is presented for the sea bed soil reaction forces on the ship bottom. The model is based on the assumption that the penetration of the ship bow generates a flow of pore...
Bergshoeff, E.; Pope, C.N.; Stelle, K.S.
1990-01-01
We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.
Production Balance of Ship Erection
Institute of Scientific and Technical Information of China (English)
JIANG Ru-hong; TAN Jia-hua; LIU Cun-gen
2008-01-01
A network plan model of ship erection was established based on the network planning technologyand the work-package breakdown system. The load-oriented production control method was introduced to buildup a throughput diagram model thus it is possible to describe the ship erection process numerically. Based onthe digitaiized models some cases of production balance of ship erection were studied and three balance indexeswere put forward, they are the load balance rate, the input manpower balance rate and the maximum gantrycrane operating times. Such an analytic method based on the balance evaluation is the important foundationfor digitization and intelligentization of shipyard production management.
Antimatter gravity with muonium
Kaplan, Daniel M; Kirch, Klaus; Mancini, Derrick; Phillips, James D; Phillips, Thomas J; Reasenberg, Robert D; Roberts, Thomas J; Terry, Jeff
2016-01-01
The gravitational acceleration of antimatter, $\\bar{g}$, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Three avenues appear feasible for such a measurement: antihydrogen, positronium, and muonium. The muonium measurement requires a novel monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating interferometer can be produced in silicon nitride or ultrananocrystalline diamond using state-of-the-art nanofabrication. The required precision alignment and calibration at the picometer level also appear to be feasible. With 100 nm grating pitch, a 10% measurement of $\\bar{g}$ can be made using some months of surface-muon beam time, and a 1% or better measurement with a correspondingly larger exposure. This could constitute the first gravitational measurement of leptonic matter, of 2nd-generation matter and, possibly, the f...
van Herwijnen, Eric
2016-01-01
SHIP is a new general purpose fixed target facility, whose Technical Proposal has been recently reviewed by the CERN SPS Committee. It recommended that the experiment proceed further to a Comprehensive Design phase. In its initial phase, the 400 GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2×1020 POT (Protons On Target) in 5 years. A dedicated detector, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below O(10) GeV/c 2 . The main focus will be the physics of the so-called Hidden Portals. The sensitivity to Heavy Neutrinos will allow to probe for the first time the mass range between the kaon and the charm meson mass, and a range of couplings for which Baryogenesis and active neutrino masses could also be explained. Another dedicated detector will allow the study of neutrino cross-sections and angular distributions. ντ ...
Quantization of Emergent Gravity
Yang, Hyun Seok
2013-01-01
Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as spacetime admits a symplectic structure, in other words, a microscopic spacetime becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC spacetime, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing spacetime itself, leading to a dynamical NC spacetime. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background independent formulation where spacetime as well as matter fields is equally emergent from a universal vacuum of quantum gravity.
Quantization of emergent gravity
Yang, Hyun Seok
2015-02-01
Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as space-time admits a symplectic structure, in other words, a microscopic space-time becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC space-time, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing space-time itself, leading to a dynamical NC space-time. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background-independent formulation where space-time and matter fields are equally emergent from a universal vacuum of quantum gravity.
WMO Selected, Supplemenatary, Auxiliary Ships
National Oceanic and Atmospheric Administration, Department of Commerce — World Meteorological Organization International List of Selected, Supplementary and Auxiliary Ships, recognized as Publication 47. 1973-1998 editions, gathered from...
Institute of Scientific and Technical Information of China (English)
程绪铎; 王照林
2000-01-01
由力学平衡方程导出了旋转对称贮箱内静液面的二阶非线性常微方程，接着具体推出了球腔、旋转椭球腔、柱面腔的边界接触条件，最后使用Runge-Kutta法在计算机上得出数值结果，绘出了静液面形状曲线，分析了算法特点。%By equilibrium equation of mechanics, the equation of static fluid surface in revolving symmtrical tank under low gravity has been derived. Boundary condition of contact angle is given. Finally, using Runge-Kutta method, numerical results are attained with the shape of static fluid surface drawn by the computer. Features of the computing method are analysed as well.
SIMULATION OF SHIP GENERATED TURBULENT AND VORTICAL WAKE IMAGING BY SAR
Institute of Scientific and Technical Information of China (English)
Wang Aiming; Zhu Minhui
2004-01-01
Synthetic Aperture Radar (SAR) imaging of ocean surface features is studied. The simulation of the turbulent and vortical features generated by a moving ship and SAR imaging of these wakes is carried out. The turbulent wake damping the ocean surface capillary waves may be partially responsible for the suppression of surface waves near the ship track. The vortex pair generating a change in the lateral flow field behind the ship may be partially responsible for an enhancement of the waves near the edges of the smooth area. These hydrodynamic phenomena as well as the changes of radar backscatter generated by turbulence and vortex are simulated.An SAR imaging model is then used on such ocean surface features to provide SAR images.Comparison of two ships' simulated SAR images shows that the wake features are different for various ship parameters.
A NUMERICAL APPLICATION TO PREDICT THE RESISTANCE AND WAVE PATTERN OF KRISO CONTAINER SHIP
Directory of Open Access Journals (Sweden)
Yavuz Hakan Ozdemir
2016-06-01
Full Text Available In this study, the computational results for KRISO Container Ship (KCS are presented. CFD analyses are performed to simulate free surface flow around KCS by using RANS approach with success. Also the complicated turbulent flow zone behind the ship is well simulated. The RANS equations and the non-linear free surface boundary conditions are discretized by means of a finite volume scheme. The numerical methodology is found to be appropriate for simulating the turbulent flow around a ship in order to estimate ship total resistance and free surface. By the numerical results, total resistance is calculated for the ship model and the result is satisfactory with regard to the experimental one. As a result of well captured free surface, the wave elevation on/around the hull is compared with the experimental results.
2010-01-01
Approved for public release; distribution is unlimited As the United States Navy continues to refine its designs for future ships, one approach that it is currently being explored is to use a unified electrical grid to power every system aboard a ship, including propulsion and weapons. Some concerns with this design are estimating the power demands placed upon the grid by various systems and anticipating transients induced on the grid by high power pulsed loads. The first part of this thes...
Littoral Combat Ship Crew Scheduling
2015-03-01
package DON Department of the Navy F&R Fix and Relax GAMS General Algebraic Modeling System LCS Littoral Combat Ship LCSRON Littoral Combat Ship...but that can be acceptable depending on the scheduler needs. F&R produces superior long-term schedules when compared to a similar-length RH schedule...LEFT BLANK 29 IV. MODEL IMPLEMENTATION LCSS is implemented with the General Algebraic Modeling System (GAMS) using the GAMS/CPLEX (GAMS, 2014
Lifecycle Readiness and Ship Deployment
2013-06-01
The physical fatigue associated with ship motions has significant consequences for today’s minimally manned ships. “Because of minimally sized...a deployment. The inefficiencies in performance may develop from lack of training, different personal aptitude, and individual’s mental or physical ...exacerbation of symptoms known as the avalanche phenomenon follows which includes: increased salivation, bodily warmth , and light- headedness” (Stevens
Competitive Liner Shipping Network Design
DEFF Research Database (Denmark)
Karsten, Christian Vad
The goal of this thesis is to develop decision support tools, which can be used to optimize container shipping networks while supporting competitive transportation services. The competitiveness of container liner shipping is to a high degree determined by transportation times and number of transs......The goal of this thesis is to develop decision support tools, which can be used to optimize container shipping networks while supporting competitive transportation services. The competitiveness of container liner shipping is to a high degree determined by transportation times and number...... shipping company earnings.The operation of the route net constitute the majority of the total costs, so it is essential to achieve a good capacity utilization in a route plan with travel times that satisfy customer requirements. Most academic articles dealing with the design of container networks neither.......The contributions of this thesis cover modeling, methodology, and applications.The developed methods address operational (cargo routing), tactical (speed optimization and service selection), and strategic (network design) planning problems faced by liner shipping companies. Ultimately, the proposed methods help...
Tribology Experiment in Zero Gravity
Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.
2015-01-01
A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.
Spectrograms of ship wakes: identifying linear and nonlinear wave signals
Pethiyagoda, Ravindra; Moroney, Timothy J
2016-01-01
A spectrogram is a useful way of using short-time discrete Fourier transforms to visualise surface height measurements taken of ship wakes in real world conditions. For a steadily moving ship that leaves behind small-amplitude waves, the spectrogram is known to have two clear linear components, a sliding-frequency mode caused by the divergent waves and a constant-frequency mode for the transverse waves. However, recent observations of high speed ferry data have identified three additional components of the spectrograms that are not yet explained. We use computer simulations of linear and nonlinear ship wave patterns and apply time-frequency analysis to generate spectrograms for an idealised ship. We clarify the role of the linear dispersion relation and ship speed on the two linear components. Further, we show that additional features in the experimental data are caused by nonlinearity. Finally, we explain a discrepancy between the high speed ferry spectrograms and linear theory by accounting for ship acceler...
National Oceanic and Atmospheric Administration, Department of Commerce — The US Voluntary Observing Ships (VOS) report surface marine observations in both real-time (FM-13 ship format) and delayed-mode (International Maritime...
National Oceanic and Atmospheric Administration, Department of Commerce — The US Voluntary Observing Ships (VOS) report surface marine observations in both real-time (FM-13 ship format) and delayed-mode (International Maritime...
On impact mechanics in ship collisions
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Zhang, Shengming
1998-01-01
The purpose of this paper is to present analytical, closed-form expressions for the energy released for crushing and the impact impulse during ship collisions. Ship–ship collisions, ship collisions with rigid walls and ship collisions with flexible offshore structures are considered. The derived ...... of illustrative examples are presented. The procedure presented in the paper is well suited for inclusion in a probabilistic calculation model for damage of ship structures due to collisions....
The equilibrium of dense plasma in a gravity field
Vasilev, B V
2000-01-01
The equilibrium of dense plasma in a gravity field and problem of a gravity-induced electric polarization in this matter are discussed. The calculation for metals performed before shows that both - the gravity-induced compressive strain and the gravity-induced electric field - are inversely proportional to their Young moduli. The calculation for high dense plasma, where Young modulus is equal to zero, shows that there is another effect: each cell of this plasma inside a celestial body in own gravity field obtains the small positive electric charge. It happens as heavy ions sag on to light electron clouds. A celestial body stays electrically neutral as a whole, because the negative electric charge concentrates on its surface. The gravity-induced positive volume charge is very small, its order of magnitude equals to $10^{-18}e$ per atom only. But it is sufficient for the complete conterbalancing of the gravity force.
Directory of Open Access Journals (Sweden)
Rongjia Yang
2014-08-01
Full Text Available If we assume that the source of thermodynamic system, ρ and p, are also the source of gravity, then either thermal quantities, such as entropy, temperature, and chemical potential, can induce gravitational effects, or gravity can induce thermal effects. We find that gravity can be seen as entropic force only for systems with constant temperature and zero chemical potential. The case for Newtonian approximation is discussed.
Trugenberger, Carlo A
2016-01-01
In a recently developed approach, geometry is modelled as an emergent property of random networks. Here I show that one of these models I proposed is exactly quantum gravity defined in terms of the combinatorial Ricci curvature recently derived by Ollivier. Geometry in the weak (classical) gravity regime arises in a phase transition driven by the condensation of short graph cycles. The strong (quantum) gravity regime corresponds to "small world" random graphs with logarithmic distance scaling.
Mielke, E W
2006-01-01
Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j_5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four--form F^ F= dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed.
Effects of Unsymmetric Flow on a Ship Traveling in a Channel
Institute of Scientific and Technical Information of China (English)
XIAJin-zhu; MIA0Quan-ming
2004-01-01
A modified Dawson's method that deals with asymmetric free-surface flow is applied to investigate the effect of the channel walls and water depth on the hydrodynamics of a ship running off the eenterline of a restricted waterway. The comparison of the numerical results with the experimental results shows that the method and the computer program are valid to predict the hydrodynamic forces and ship waves when the under keel clearance is not extremely small.The numerical results also demonstrate how the flow and pressure vary unsymmetriely on both sides of the ship and how the water depth and bank distance influence the hydrodynamic forces and ship waves.
Boiler for ships; Hakuyo boira
Energy Technology Data Exchange (ETDEWEB)
Shimoda, F. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)
1999-07-20
In this paper, production and technology trend of boiler for ships in 1998 are described. The actual results of main boiler are as follows. As the main boiler for LNG ships, 4 boilers produced by Mitsui Engineering and Shipbuilding for Qatar Project, 8 produced by Kawasaki Heavy Industries for South Korea and 10 produced by Mitsubishi Heavy Industries for domestic use and South Korea. 1998 was an active year for the main boiler for ships. The auxiliary boiler of steam pressure of 16k to 25k equipping for tanker ships was 115 (4,441t/h of steam quantity in total), it greatly increased in comparison with 88 (3,172t/h) produced in the proceeding year. Donkey boilers of steam pressure of 6k to 10k equipping for container ships and bulk cargo was 147 (672t/h), and it substantially decreased in comparison with 274 (693t/h) of the proceeding year, but capacity per boiler increased. The gas exhaust economizer for turbo power generation plants was 6 produced for VLCC. (NEDO)
Directory of Open Access Journals (Sweden)
M.Arulmani, V.R.Hema Latha
2013-10-01
Full Text Available A scientific research in this article focus that the whole Cosmo Universe shall be considered as a “SPACE SHIP”. The Space Ship shall be considered as ANCHORED to the base of universe with three-in-one space elements SUN, EARTH, MOON for its stability and symmetry. Further the Anchor of Universe shall be considered fastened to the “J-Hook” through strong THREAD consists of three core or strand for its “Centre of Buoyancy”.The Space Ship shall be considered as a suspending pendulum. The base of the pendulum considered like Anchor which is fastened to J-Hook through a cable of three core and in “Standstill State”.The human populations, life organisms spread all over the EARTH shall be considered as Passengers. Other space objects such as Planets, Comets, Asteroids, Matters, Molecules having definite mass shall be considered as CARGO existing in the Upper Deck of Human Passengers and other life organisms.The “J-Hook” shall be considered as having infinity energy level and any weight added to the base of space ship during the course of expanding universe shall not affect the centre of buoyancy of ship and the ship shall be considered as highly stable for ever (Highly Anchored and become standstill.
Gravity Independent Compressor Project
National Aeronautics and Space Administration — We propose to develop and demonstrate a small, gravity independent, vapor compression refrigeration system using a linear motor compressor which effectively...
Classical Weyl transverse gravity
Energy Technology Data Exchange (ETDEWEB)
Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)
2017-05-15
We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)
Effect of Buffer Bow Structure in Ship-Ship Collision
DEFF Research Database (Denmark)
Yamada, Yasuhira; Endo, Hisayoshi; Pedersen, Preben Terndrup
2008-01-01
tankers, the introduction of buffer bulbous bows has been proposed. Relatively soft buffer bows absorb part of the kinetic energy of the striking ship before penetrating the inner hull of the struck vessel. The purpose of the present paper is to verify the effectiveness of a prototype buffer bulbous bow......) and the forward velocity of the struck ship on the collapse mode of the bow of the striking vessel are investigated. Collapse modes, contact forces and energy absorption capabilities of the buffer bows are compared with those of conventional bows....
Gravity dependence at the bottom of the main sequence
Viti, Serena; Jones, Hugh R. A.
1999-11-01
We investigate the effects of gravity on the infrared spectra of objects around the M dwarf to brown dwarf transition. We focus on observations of the very low-mass objects TVLM 513-46546 and GJ 569B from 1 to 2.5 mu m. These objects have very similar spectral types and colours but they differ by more than a magnitude in luminosity; this indicates that their surface gravities differ by around 0.5 dex. We compare their spectra and present line identifications in the infrared. We investigate at low resolution the sensitivity of some of the atomic features to changes in surface gravities and make comparisons with recent atmospheric models. We identify seven surface gravity sensitive features. We find that the difference in surface gravity between the spectra are consistent with GJ 569B having a lower surface gravity than TVLM by at least 0.5 dex which suggests GJ 569B is a brown dwarf. Because of the relatively few surface gravity features which can be identified at low resolution, confirmation of this result should be made with observations at higher resolution which would enable more gravity sensitive features to be identified with better precision.
EX1001 Ship Shakedown (EX1001, EM302) on NOAA Ship Okeanos Explorer in Hawaiian Islands
National Oceanic and Atmospheric Administration, Department of Commerce — The ship has been alongside for repairs and leave since November, 2009. The ship shakedown cruise is scheduled to provide an opportunity for the ship to get underway...
Underwater Ship Husbandry Discharges
2011-11-01
organisms and sediment, and removal of fouling organisms from the hull, piping and tanks on a regular basis. Additionally, although crude oil tankers...oxidation, providing a longer coating life Almeida et al., 2007). Controlled Depletion Polymer / Ablative Coatings Controlled depletion polymer ( CPD ...biocidal surface for biofouling organisms. CPD coatings provide effective biofouling protection and, since thicker layers of CDP coatings can be applied
Twisted spacetime in Einstein gravity
Zhang, Hongsheng
2016-01-01
We find a vacuum stationary twisted solution in four-dimensional Einstein gravity. Its frame dragging angular velocities are antisymmetric with respect to the equatorial plane. It possesses a symmetry of joint inversion of time and parity with respect to the equatorial plane. Its Arnowitt-Deser-Misner (ADM) mass and angular momentum are zero. It is curved but regular all over the manifold. Its Komar mass and Komar angular momentum are also zero. Its infinite red-shift surface coincides with its event horizon, since the event horizon does not rotate. Furthermore we extend this solution to the massive case, and find some similar properties. This solution is a stationary axisymmetric solution, but not Kerr. It explicitly proves that pure Einstein gravity permits different rotational mode other than Kerr. Our results demonstrate that the Einstein theory may have much more rich structures than what we ever imagine.
Institute of Scientific and Technical Information of China (English)
常江凡; 白秀琴; 袁成清
2016-01-01
For the river/coastal ships which are sailing in the typical route from Wuhan Newport to Yangshan port , the dif-ferent water salinity in this typical route and the main marine fouling-organism around Yangshan port , the bio-fouling occurrence status at the hull surface of the river/coastal ship along the shipping route is investigated , combining with the characteristics of different hull immersed parts .The growth features and adhesion mechanisms of the main marine fouling organism , including dia-tom, amphibalanus reticulatus and saccostrea cucullata are analyzed as well to provide some theoretical references for anti -fouling of the river/coastal ship .%针对武汉新港至洋山港这一典型航线的江海直达运输船，调查船舶航行水域盐度的差异和洋山港水域的主要海洋污损生物种类，结合船舶浸水部位的区域特性以及江海直达船的结构特点，得出江海直达船不同部位海洋污损生物的附着情况，并对硅藻、网纹藤壶和僧帽牡蛎这三种主要污损生物的生长特性和附着机理进行了分析，以期为江海直达船的防污损提供一些理论依据。
Talon, Suzanne
2008-01-01
This is the fourth in a series of papers that deal with angular momentum transport by internal gravity waves in stellar interiors. Here, we want to examine the potential role of waves in other evolutionary phases than the main sequence. We study the evolution of a 3Msun Population I model from the pre-main sequence to the early-AGB phase and examine whether waves can lead to angular momentum redistribution and/or element diffusion at the external convection zone boundary. We find that, although waves produced by the surface convection zone can be ignored safely for such a star during the main sequence, it is not the case for later evolutionary stages. In particular, angular momentum transport by internal waves could be quite important at the end of the sub-giant branch and during the early-AGB phase. Wave-induced mixing of chemicals is expected during the early-AGB phase.
Reliability Based Ship Structural Design
DEFF Research Database (Denmark)
Dogliani, M.; Østergaard, C.; Parmentier, G.;
1996-01-01
with developments of models of load effects and of structural collapse adopted in reliability formulations which aim at calibrating partial safety factors for ship structural design. New probabilistic models of still-water load effects are developed both for tankers and for containerships. New results are presented......This paper deals with the development of different methods that allow the reliability-based design of ship structures to be transferred from the area of research to the systematic application in current design. It summarises the achievements of a three-year collaborative research project dealing...... structure of several tankers and containerships. The results of the reliability analysis were the basis for the definition of a target safety level which was used to asses the partial safety factors suitable for in a new design rules format to be adopted in modern ship structural design. Finally...
Aim to International Shipping Center
Institute of Scientific and Technical Information of China (English)
Hu Wenxiu
2009-01-01
@@ Since 1990s,various countries in the world have been focusing on the construction of the key ports,leading to a fiercer competition between ports.For example,in East Asia,South Korea and Japan are rivaling for the international shipping center in Northeast Asia.Taking Busan Port and Gwangyang Port as the central ports,South Korea is boosting the ports expansion plans,to construct a"logistic center in Northeast Asia".Meanwhile.Japan is projecting the optimizmg and integration of port resources,to regain the international shipping center in Asia.The central government of China made plans for constructing Shanghai Shipping Center as early in 1996.and after 13 years'construction,now Shanghai Port has the largest cargo throughput and the second largest container throughput in the world.
Geoacoustic inversion with ships as sources.
Koch, Robert A; Knobles, David P
2005-02-01
Estimation of geoacoustic parameters using acoustic data from a surface ship was performed for a shallow water region in the Gulf of Mexico. The data were recorded from hydrophones in a bottom mounted, horizontal line array (HLA). The techniques developed to produce the geoacoustic inversion are described, and an efficient method for geoacoustic inversion with broadband beam cross-spectral data is demonstrated. The performance of cost functions that involve coherent or incoherent sums over frequency and one or multiple time segments is discussed. Successful inversions for the first sediment layer sound speed and thickness and some of the parameters for the deeper layers were obtained with the surface ship at nominal ranges of 20, 30, or 50 water depths. The data for these inversions were beam cross-spectra from four subapertures of the HLA spanning a little more than two water depths. The subaperture beams included ten frequencies equally spaced in the 120-200 Hz band. The values of the geoacoustic parameters from the inversions are validated by comparisons with geophysical observations and with the parameter values from previous inversions by other invesigators, and by comparing transmission loss (TL) measured in the experiment with modeled TL based on the inverted geoacoustic parameters.
Allan, T.; Guymer, T.; Muller, P.
1984-01-01
The overall aim is to interpret Shuttle Imaging Radar-B imagery of selected ocean areas near the United Kingdom using available data from ships and buoys, with particular emphasis on understanding the mechanisms involved in the backscattering of microwaves from the sea surface and their relationship to surface gravity waves. The secondary objective is to use a multispectral approach to study sea-surface expressions such as slicks, internal waves, and eddies. Data acquisition, handling, and analysis approaches and expected results are discussed.
Hamiltonian Boussinesq formulation of wave–ship interactions
van Groesen, Embrecht W.C.; Andonowati, A.
In this paper a new approach is described for the fully nonlinear treatment of the dynamic wave–ship interaction for potential flows. A major reduction of computational complexity is obtained by describing the fluid motion in horizontal variables only, the surface elevation and the potential at the
Legal risk management in shipping
DEFF Research Database (Denmark)
Siig, Kristina
The book discusses the most typical legal challenges met in the chartering, broker, agent or port management part of the shipping industry. It discusses these issues in both English and Scandinavian law and gives indications on how to best ensure your legal risk management in these parts of the i......The book discusses the most typical legal challenges met in the chartering, broker, agent or port management part of the shipping industry. It discusses these issues in both English and Scandinavian law and gives indications on how to best ensure your legal risk management in these parts...
Competitive Liner Shipping Network Design
DEFF Research Database (Denmark)
Karsten, Christian Vad; Brouer, Berit Dangaard; Pisinger, David
2017-01-01
We present a solution method for the liner shipping network design problem which is a core strategic planning problem faced by container carriers. We propose the first practical algorithm which explicitly handles transshipment time limits for all demands. Individual sailing speeds at each service...... are presented showing very promising results for realistic global liner shipping networks. Due to a number of algorithmic enhancements, the obtained solutions can be found within the same time frame as used by previous algorithms not handling time constraints. Furthermore, we present a sensitivity analysis...
Wind Forces on Container Ships
DEFF Research Database (Denmark)
Andersen, Ingrid Marie Vincent
2012-01-01
An investigation of the wind forces acting on a 9,000+ TEU container ship has been carried out through a series of wind tunnel tests. It was investigated how the wind forces depend on the container configuration on the deck using a 1:450 scale model and a series of appropriate container...... are presented as nondimensional coefficients. It is concluded, that the measured forces and moment depend on the container configuration on deck, and the results may provide a general idea of how the magnitude of the wind forces is affected by a given container stacking configuration on a similar container ship....
Visualization of Ship Risk Profiles for the Shipping Industry
S. Knapp (Sabine); M. van de Velden (Michel)
2010-01-01
textabstractThis article uses correspondence analysis to visualize risk profiles and their changes over the time period 1977 to 2008. It is based on a unique dataset which combines incident data and ship particular data. The risk profiles can help stakeholders better understand the relationship of
Trinh, Philippe H
2015-01-01
The standard analytical approach for studying gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between a given physical flow geometry, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship...
Interior Alaska Bouguer Gravity Anomaly
National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....
Possibilities in ship design. Trends and techniques
Energy Technology Data Exchange (ETDEWEB)
Levander, K. [Kvaerner Masa-Yards Technology (Finland)
1994-12-31
The paper relates to ship design by new technologies. The base for ship design will be modules and modulated systems. Modulated products form the base for mechanized production and only mechanized production processes can be automated. Ships will still be tailor-made for each trade and customer. Modulation and standardization will be based on common features found in the hull, machinery and equipment of all ships. Only the payload related outfitting will vary for different ship types. Even new, advanced ship concepts can be developed following this concept. Trends in this development are discussed. 24 figs.
Kan, Nahomi; Maki, Takuya; Shiraishi, Kiyoshi
2016-10-01
We propose a model of gravity in which a General Relativity metric tensor and an effective metric generated from a single scalar formulated in geometric scalar gravity are mixed. We show that the model yields the exact Schwarzschild solution, along with accelerating behavior of scale factors in cosmological solutions.
No consistent bimetric gravity?
Deser, S; Waldron, A
2013-01-01
We discuss the prospects for a consistent, nonlinear, partially massless (PM), gauge symmetry of bimetric gravity (BMG). Just as for single metric massive gravity, ultimate consistency of both BMG and the putative PM BMG theory relies crucially on this gauge symmetry. We argue, however, that it does not exist.
Krasnov, Kirill
2016-01-01
Self-dual gravity is a diffeomorphism invariant theory in four dimensions that describes two propagating polarisations of the graviton and has a negative mass dimension coupling constant. Nevertheless, this theory is not only renormalisable but quantum finite, as we explain. We also collect various facts about self-dual gravity that are scattered across the literature.
Masters, Roy
2010-03-01
Flowing global gravitation initially produced space without time or mass. Space-time and mass are properties of flowing global gravitation. From its fabric, primal mass spins spontaneously giving rise to local gravitational space-time curvatures. Global gravity is the unifying background field. Gravity began flowing from its singularity with a big whoosh. It curves with angular rotational precession, creating a spatial geometry similar to the windings of a ball of string. Three-dimensional global gravity swirls locally into massive densities. Concurrently with these densities, local gravity curvatures of space-time arise. The expanse between celestial objects is not completely empty, void space as generally believed; it is antecedent gravity, a prerequisite associated field necessary for originating the first quantum particles. Gravity is dark energy; gravity's spin, as the second fundamental force, is electromagnetic dark matter. Electromagnetic masses attract then gravity compresses hot, dense and small---then bang, the first hydrogen star of which there are many. There may have been many big bangs, but no Big Bang that ultimately created the universe.
Measuring SO2 ship emissions with an ultraviolet imaging camera
Prata, A. J.
2014-05-01
Over the last few years fast-sampling ultraviolet (UV) imaging cameras have been developed for use in measuring SO2 emissions from industrial sources (e.g. power plants; typical emission rates ~ 1-10 kg s-1) and natural sources (e.g. volcanoes; typical emission rates ~ 10-100 kg s-1). Generally, measurements have been made from sources rich in SO2 with high concentrations and emission rates. In this work, for the first time, a UV camera has been used to measure the much lower concentrations and emission rates of SO2 (typical emission rates ~ 0.01-0.1 kg s-1) in the plumes from moving and stationary ships. Some innovations and trade-offs have been made so that estimates of the emission rates and path concentrations can be retrieved in real time. Field experiments were conducted at Kongsfjord in Ny Ålesund, Svalbard, where SO2 emissions from cruise ships were made, and at the port of Rotterdam, Netherlands, measuring emissions from more than 10 different container and cargo ships. In all cases SO2 path concentrations could be estimated and emission rates determined by measuring ship plume speeds simultaneously using the camera, or by using surface wind speed data from an independent source. Accuracies were compromised in some cases because of the presence of particulates in some ship emissions and the restriction of single-filter UV imagery, a requirement for fast-sampling (> 10 Hz) from a single camera. Despite the ease of use and ability to determine SO2 emission rates from the UV camera system, the limitation in accuracy and precision suggest that the system may only be used under rather ideal circumstances and that currently the technology needs further development to serve as a method to monitor ship emissions for regulatory purposes. A dual-camera system or a single, dual-filter camera is required in order to properly correct for the effects of particulates in ship plumes.
An Algorithm for Interpolating Ship Motion Vectors
Directory of Open Access Journals (Sweden)
Qinyou Hu
2014-03-01
Full Text Available Interpolation of ship motion vectors is able to be used for estimating the lost ship AIS dynamic information, which is important for replaying marine accidents and for analysing marine traffic data. The previous methods can only interpolate ship's position, while not including ship's course and speed. In this paper, vector function is used to express the relationship between the ship's time and space coordinates, and the tangent of the vector function and its change rate are able to express physical characteristics of ship's course, speed and acceleration. The given AIS dynamic information can be applied to calculate the parameters of ship's vector function and then the interpolation model for ship motion vectors is developed to estimate the lost ship dynamic information at any given moment. Experiment results show that the ship motion vector function is able to depict the characteristics of ship motions accurately and the model can estimate not only the ship's position but also ship's course and speed at any given moment with limited differences.
Directory of Open Access Journals (Sweden)
Ronghui Li
2013-01-01
Full Text Available The compound control of active-disturbance-rejection control (ADRC with sliding mode is proposed to improve the performance of the closed-loop system and deal with the constraint condition problem of a surface ship. The advantages of ADRC with sliding mode were verified by ship course control simulations. Meanwhile, to solve the path-following problem of underactuated surface ships with uncertainties of internal dynamic and external disturbances, the ADRC controller with sliding mode is introduced to steer the ship to follow the desired path. In order to overcome the cross-track error caused by wind and current, drift angle is compensated in the controller by designing a coordinate transformation equation. Simulations were performed on a nonlinear kinematics model of a training ship to validate the stability and excellent robustness of the proposed path-following controller.
Designing Indonesian Liner Shipping Network
Directory of Open Access Journals (Sweden)
Armand Omar Moeis
2017-06-01
Full Text Available As the largest archipelago nation in the world, Indonesia’s logistics system has not shown excellence according to the parameters of logistics performance index and based on logistics costs percentages from overall GDP. This is due to the imbalances of trading on the western and eastern regions in Indonesia, which impacts the transportation systems costs to and from the eastern regions. Therefore, it is imperative to improve the competitiveness of Indonesian maritime logistics through maritime logistics network design. This research will focus on three levels of decision making in logistics network design, which include type of ships in the strategic level, shipping routes in the tactical level, and container allocation in the operational level with implementing butterfly routes in Indonesia’s logistics networking problems. Furthermore, this research will analyze the impact of Pendulum Nusantara and Sea Toll routes against the company profits and percentages of containers shipped. This research will also foresee how demand uncertainties and multi-period planning should affect decision making in designing the Indonesian Liner Shipping Network.
Single liner shipping service design
DEFF Research Database (Denmark)
Plum, Christian Edinger Munk; Pisinger, David; Salazar-González, Juan-José
2014-01-01
demand under commercially driven constraints. This paper introduces the Single Liner Shipping Service Design Problem. Arc-flow and path-flow models are presented using state-of-the-art elements from the wide literature on pickup and delivery problems. A Branch-and-Cut-and-Price algorithm is proposed...
Legal risk management in shipping
DEFF Research Database (Denmark)
Siig, Kristina
The book discusses the most typical legal challenges met in the chartering, broker, agent or port management part of the shipping industry. It discusses these issues in both English and Scandinavian law and gives indications on how to best ensure your legal risk management in these parts...
Modeling of Ship Propulsion Performance
DEFF Research Database (Denmark)
Pedersen, Benjamin Pjedsted; Larsen, Jan
2009-01-01
Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature, from four different loading conditions has been used to train a neural network for prediction of propulsion power. The network was able to predict the propulsion power with accuracy bet...
Rudder roll stabilization for ships
Amerongen, van J.; Klugt, van der P.G.M.; Nauta Lemke, van H.R.
1990-01-01
This paper describes the design of an autopilot for rudder roll stabilization for ships. This autopilot uses the rudder not only for course keeping but also for reduction of the roll. The system has a series of properties which make the controller design far from straightforward: the process has onl