WorldWideScience

Sample records for surface ship arctic

  1. Arctic Shipping

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Lindstrøm Graversen, Christian

    maritime industries (including shipping, offshore energy, ports, and maritime service and equipment suppliers) as well as addresses topics that cut across maritime industries (regulation and competitiveness). The topics and narrower research questions addressed in the initiative were developed in close...

  2. Arctic Shipping

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Lindstrøm Graversen, Christian

    , the latter aiming at developing key concepts and building up a basic industry knowledge base for further development of CBS Maritime research and teaching. This report attempts to map the opportunities and challenges for the maritime industry in an increasingly accessible Arctic Ocean...

  3. Arctic shipping emissions inventories and future scenarios

    Directory of Open Access Journals (Sweden)

    J. J. Corbett

    2010-10-01

    Full Text Available This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050 scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow, aerosols, and gaseous emissions including carbon dioxide. We quantify ship emissions scenarios which are expected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. A first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase global warming potential due to Arctic ships' CO2 emissions (~42 000 gigagrams by some 17% to 78%. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  4. Arctic shipping emissions inventories and future scenarios

    Directory of Open Access Journals (Sweden)

    J. J. Corbett

    2010-04-01

    Full Text Available The Arctic is a sensitive region in terms of climate change and a rich natural resource for global economic activity. Arctic shipping is an important contributor to the region's anthropogenic air emissions, including black carbon – a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow. These emissions are projected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. To understand the impacts of these increased emissions, scientists and modelers require high-resolution, geospatial emissions inventories that can be used for regional assessment modeling. This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050 scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. Short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing; a first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing due to Arctic ships by at least 17% compared to warming from these vessels' CO2 emissions (~42 000 gigagrams. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  5. A quantitative assessment of Arctic shipping in 2010–2014

    KAUST Repository

    Eguíluz, Victor M.

    2016-08-01

    Rapid loss of sea ice is opening up the Arctic Ocean to shipping, a practice that is forecasted to increase rapidly by 2050 when many models predict that the Arctic Ocean will largely be free of ice toward the end of summer. These forecasts carry considerable uncertainty because Arctic shipping was previously considered too sparse to allow for adequate validation. Here, we provide quantitative evidence that the extent of Arctic shipping in the period 2011–2014 is already significant and that it is concentrated (i) in the Norwegian and Barents Seas, and (ii) predominantly accessed via the Northeast and Northwest Passages. Thick ice along the forecasted direct trans-Arctic route was still present in 2014, preventing transit. Although Arctic shipping remains constrained by the extent of ice coverage, during every September, this coverage is at a minimum, allowing the highest levels of shipping activity. Access to Arctic resources, particularly fisheries, is the most important driver of Arctic shipping thus far.

  6. A quantitative assessment of Arctic shipping in 2010-2014.

    Science.gov (United States)

    Eguíluz, Victor M; Fernández-Gracia, Juan; Irigoien, Xabier; Duarte, Carlos M

    2016-08-01

    Rapid loss of sea ice is opening up the Arctic Ocean to shipping, a practice that is forecasted to increase rapidly by 2050 when many models predict that the Arctic Ocean will largely be free of ice toward the end of summer. These forecasts carry considerable uncertainty because Arctic shipping was previously considered too sparse to allow for adequate validation. Here, we provide quantitative evidence that the extent of Arctic shipping in the period 2011-2014 is already significant and that it is concentrated (i) in the Norwegian and Barents Seas, and (ii) predominantly accessed via the Northeast and Northwest Passages. Thick ice along the forecasted direct trans-Arctic route was still present in 2014, preventing transit. Although Arctic shipping remains constrained by the extent of ice coverage, during every September, this coverage is at a minimum, allowing the highest levels of shipping activity. Access to Arctic resources, particularly fisheries, is the most important driver of Arctic shipping thus far.

  7. Towards seasonal Arctic shipping route predictions

    Science.gov (United States)

    Melia, N.; Haines, K.; Hawkins, E.; Day, J. J.

    2017-08-01

    The continuing decline in Arctic sea-ice will likely lead to increased human activity and opportunities for shipping in the region, suggesting that seasonal predictions of route openings will become ever more important. Here we present results from a set of ‘perfect model’ experiments to assess the predictability characteristics of the opening of Arctic sea routes. We find skilful predictions of the upcoming summer shipping season can be made from as early as January, although typically forecasts show lower skill before a May ‘predictability barrier’. We demonstrate that in forecasts started from January, predictions of route opening date are twice as uncertain as predicting the closing date and that the Arctic shipping season is becoming longer due to climate change, with later closing dates mostly responsible. We find that predictive skill is state dependent with predictions for high or low ice years exhibiting greater skill than medium ice years. Forecasting the fastest open water route through the Arctic is accurate to within 200 km when predicted from July, a six-fold increase in accuracy compared to forecasts initialised from the previous November, which are typically no better than climatology. Finally we find that initialisation of accurate summer sea-ice thickness information is crucial to obtain skilful forecasts, further motivating investment into sea-ice thickness observations, climate models, and assimilation systems.

  8. New Trans-Arctic shipping routes navigable by midcentury.

    Science.gov (United States)

    Smith, Laurence C; Stephenson, Scott R

    2013-03-26

    Recent historic observed lows in Arctic sea ice extent, together with climate model projections of additional ice reductions in the future, have fueled speculations of potential new trans-Arctic shipping routes linking the Atlantic and Pacific Oceans. However, numerical studies of how projected geophysical changes in sea ice will realistically impact ship navigation are lacking. To address this deficiency, we analyze seven climate model projections of sea ice properties, assuming two different climate change scenarios [representative concentration pathways (RCPs) 4.5 and 8.5] and two vessel classes, to assess future changes in peak season (September) Arctic shipping potential. By midcentury, changing sea ice conditions enable expanded September navigability for common open-water ships crossing the Arctic along the Northern Sea Route over the Russian Federation, robust new routes for moderately ice-strengthened (Polar Class 6) ships over the North Pole, and new routes through the Northwest Passage for both vessel classes. Although numerous other nonclimatic factors also limit Arctic shipping potential, these findings have important economic, strategic, environmental, and governance implications for the region.

  9. Proceedings of U.S. Navy Symposium on Arctic/Cold Weather Operations of Surface Ships (1985) Held on 3-4 December 1985

    Science.gov (United States)

    1985-01-01

    Precision navigation - GPS o Science office/conference room/ library o Ship’s data video display and annotation terminals o Hazardous cargo storage _ o...Unpublished]. 11. Voelker, R.P., F.A. Geisel , K.E. Dane, "Arctic Deployment of USCGC POLAR Sea - Winter 1983", ARCTEC Report No. 800C. 12. Voelker, R.P...F.A. Geisel , G.M. Wohl, "Bering Sea Data Collection - February/March 1984," ARCTEC Report No. 1010C. 13. St. John, J.W., G.M. Wohl, J.R. Meyer, J.L

  10. Future Projections of Trans-Arctic Shipping Potential and Variability

    Science.gov (United States)

    Stephenson, S. R.; Smith, L. C.

    2014-12-01

    As the Arctic Ocean transitions towards a seasonally ice-free state, efforts to predict new connections between the Arctic and the global economy are underway. In particular, record lows in September sea ice extent from 2007-2013 have recast Arctic shipping routes as emerging international seaways for export of resources and as potential alternative pathways for global trade. While ensemble-averaged output from sea ice models suggest significant increases in vessel accessibility in September by midcentury (Smith & Stephenson, 2013), the seasonal length and variability of trans-Arctic shipping is not well understood. In addition, differences in ice extent due to inter-model variability reveal significant uncertainties in the magnitude and location of future vessel access. Here we present several scenarios of 21st-century trans-Arctic shipping as driven by sea ice output from CMIP5 models. Optimal vessel transits from North America and Europe to the Bering Strait are estimated for two periods representing present-day (2006-2015) and midcentury (2040-2059) conditions under two forcing scenarios (RCP 4.5/8.5), assuming Polar Class 6 (PC6) and open-water vessels (OW) with medium and no ice-breaking capability, respectively. Results illustrate a range of potential futures for shipping in the Arctic owing to differences in model choice, vessel capability, and climate forcing. Inter-model differences reveal the importance of model choice in devising projections for strategic planning by governments, environmental agencies, and the global maritime industry.

  11. Future emissions from shipping and petroleum activities in the Arctic

    Science.gov (United States)

    Peters, G. P.; Nilssen, T. B.; Lindholt, L.; Eide, M. S.; Glomsrød, S.; Eide, L. I.; Fuglestvedt, J. S.

    2011-06-01

    The Arctic sea-ice is retreating faster than predicted by climate models and could become ice free during summer this century. The reduced sea-ice extent may effectively "unlock" the Arctic Ocean to increased human activities such as transit shipping and expanded oil and gas production. Travel time between Europe and the north Pacific Region can be reduced by up to 50 % with low sea-ice levels and the use of this route could increase substantially as the sea-ice retreats. Oil and gas activities already occur in the Arctic region and given the large undiscovered petroleum resources increased activity could be expected with reduced sea-ice. We use a bottom-up shipping model and a detailed global energy market model to construct emission inventories of Arctic shipping and petroleum activities in 2030 and 2050 given estimated sea-ice extents. The emission inventories are on a 1×1 degree grid and cover both short-lived components (SO2, NOx, CO, NMVOC, BC, OC) and the long-lived greenhouse gases (CO2, CH4, N2O). We find rapid growth in transit shipping due to increased profitability with the shorter transit times compensating for increased costs in traversing areas of sea-ice. Oil and gas production remains relatively stable leading to reduced emissions from emission factor improvements. The location of oil and gas production moves into locations requiring more ship transport relative to pipeline transport, leading to rapid emissions growth from oil and gas transport via ship. Our emission inventories for the Arctic region will be used as input into chemical transport, radiative transfer, and climate models to quantify the role of Arctic activities in climate change compared to similar emissions occurring outside of the Arctic region.

  12. Scenarios Creation and Use in the Arctic Council's Arctic Marine Shipping Assessment

    Science.gov (United States)

    Brigham, L. W.

    2016-12-01

    The Arctic Council's Arctic Marine Shipping Assessment (AMSA), conducted 2004-2009, used a scenarios-based approach to reveal the complexity of future Arctic marine navigation and to develop a set of plausible futures. The initial task was to use experts and stakeholders in brainstorming sessions to identify the key drivers and uncertainties for Arctic marine navigation. AMSA scenario participants identified 120 driving forces or factors that may influence future levels of marine activity. This effort illustrated the broad, global connections that can impact future use of the Arctic Ocean. Two primary factors were selected to anchor, as axes of uncertainty, the scenarios matrix: resources and trade (the level of demand for Arctic natural resources and trade); and, governance (the degree of relative stability of rules and standards for marine use both within the Arctic and internationally). Four scenarios were created by crossing the two primary drivers: a Polar Lows scenario (low demand and unstable governance); an Arctic Race scenario (high demand and unstable governance); a Polar Preserve scenario (low demand and stable governance); and, an Arctic Saga scenario (high demand and stable governance). The AMSA scenarios effort proved to be an effective and powerful way to communicate to the Arctic Council diplomats, Arctic indigenous peoples, maritime stakeholders and many other actors in the global community the complexities influencing the future of Arctic shipping and marine operations. The scenarios approach facilitated unconstrained thinking and identified the many plausible linkages of the Arctic to the global economic system. The AMSA scenarios work was influential in the Arctic ministers' approval of the framework set of AMSA recommendations that are being implemented today to enhance Arctic marine safety and environmental protection.

  13. Evaluation of Composite-Hull Ships Operating in Arctic Ice

    Science.gov (United States)

    2016-06-01

    7 Figure 8. DYSMAS Code Architecture . Source: [21...is estimated to reduce the voyage distance between Japan and Northern Europe by 40% [1]. Figure 1. Northwest Passage. Source: [2]. Arctic sea...from the code architecture to the phases of code execution. Section B provides the user’s methodology of conducting the parametric study, such as ship

  14. Improved Projections of 21st Century Trans-Arctic Shipping

    Science.gov (United States)

    Melia, N.; Haines, K.; Hawkins, E.

    2015-12-01

    Climate models unanimously project a decline in the extent and thickness of Arctic sea ice as the climate warms, but at differing rates. Projecting the timing of an ice-free Arctic is a topic that has received considerable scientific and public attention. An ice-free Arctic opens up the potential for shorter global trade routes through the Arctic Ocean and there has already been a sharp increase in the number of transits along Russia's Northern Sea Route with escorts from nuclear powered icebreakers.Here we present results on the future of trans-Arctic shipping using bias corrected sea ice thickness projections, utilising the CMIP5 multi-model ensemble and considering multiple emission scenarios. We find that for 'Open Water' vessels (normal ocean going vessels that possess no specific ice strengthening), unaided trans-Arctic shipping is likely to become feasible in the next couple of decades. We find that the North West Passage will open approximately a decade later than the Northern Sea Route. Initially however, both routes exhibit marked inter-annual variability in accessibility which we quantify. The hypothesised trans-polar sea route through international waters via the North Pole will start to become navigable by 2050. Towards the latter period of the 21st century, normal ocean going vessels will be able to transit their choice of any of these routes for at least six months of any given year under the RCP 8.5 high future emissions scenario and four months for the lower RCP 4.5 emissions scenario. These findings suggest that further increases in global temperature could transform the Arctic into a global transport hub.

  15. Wavegliders for Arctic Surface Observations and Navigation Support (DURIP)

    Science.gov (United States)

    2014-09-30

    research, in particular the ONR Marginal Ice Zone (MIZ) Departmental Research Initiative (DRI). The use of ships in the Arctic Ocean, even during...interacts with the surface and ice as it propagates to the Seagliders in the MIZ. 7 Figure 7. Modeled transmission loss for an acoustic...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wavegliders for Arctic Surface Observations and

  16. Research of legal status and navigation regime of arctic shipping lanes

    OpenAIRE

    Yu, Yue

    2016-01-01

    As the thawing of the sea ice within the Arctic Ocean, the Arctic is facing tremendous changes, including environment, economy, industry, culture and many other areas. As the sea ice decreasing, the Arctic region is becoming a “new world” opening its gate to the whole world. The most obvious aspect is about Arctic shipping issues. The Arctic Ocean is locating on special geographical point which closely connecting the Atlantic Ocean and Pacific Ocean. Furthermore, the Arctic Ocean has shorter ...

  17. Influence of climate model variability on projected Arctic shipping futures

    Science.gov (United States)

    Stephenson, Scott R.; Smith, Laurence C.

    2015-11-01

    Though climate models exhibit broadly similar agreement on key long-term trends, they have significant temporal and spatial differences due to intermodel variability. Such variability should be considered when using climate models to project the future marine Arctic. Here we present multiple scenarios of 21st-century Arctic marine access as driven by sea ice output from 10 CMIP5 models known to represent well the historical trend and climatology of Arctic sea ice. Optimal vessel transits from North America and Europe to the Bering Strait are estimated for two periods representing early-century (2011-2035) and mid-century (2036-2060) conditions under two forcing scenarios (RCP 4.5/8.5), assuming Polar Class 6 and open-water vessels with medium and no ice-breaking capability, respectively. Results illustrate that projected shipping viability of the Northern Sea Route (NSR) and Northwest Passage (NWP) depends critically on model choice. The eastern Arctic will remain the most reliably accessible marine space for trans-Arctic shipping by mid-century, while outcomes for the NWP are particularly model-dependent. Omitting three models (GFDL-CM3, MIROC-ESM-CHEM, and MPI-ESM-MR), our results would indicate minimal NWP potential even for routes from North America. Furthermore, the relative importance of the NSR will diminish over time as the number of viable central Arctic routes increases gradually toward mid-century. Compared to vessel class, climate forcing plays a minor role. These findings reveal the importance of model choice in devising projections for strategic planning by governments, environmental agencies, and the global maritime industry.

  18. Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)

    Science.gov (United States)

    Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.

    2013-12-01

    The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources

  19. Local and Regional Scale Impacts of Arctic Shipping Emissions Off the Coast of Northern Norway

    Science.gov (United States)

    Marelle, L.; Thomas, J. L.; Law, K.; Raut, J. C.; Jalkanen, J. P.; Johansson, L.; Roiger, A.; Schlager, H.; Kim, J.; Reiter, A.; Weinzierl, B.; Rose, M.

    2014-12-01

    Decreased sea ice extent due to warming has already resulted in the use of new shipping routes through the Arctic. Marine traffic is a source of air pollutants, including NOx, SO2, and aerosols, and is predicted to be an increasingly significant source of Arctic pollution in the future. Currently there are large uncertainties in both global and Arctic shipping emissions, leading to uncertainties in diagnosing current and future impacts of marine traffic on Arctic air quality and climate. This study focuses on the local scale, examining chemical/aerosol transformations occurring in individual ship plumes. Measurements of ship pollution in the Arctic taken during the EU ACCESS aircraft campaign (Arctic Climate Change, Economy and Society) in July 2012 are used to quantify the amount of pollution emitted from different ship types. This is combined with regional model (WRF-Chem) simulations to evaluate the impacts of shipping in northern Norway in summer 2012. The model is run at high resolution (2x2 km) combined with STEAMv2 (Ship Traffic Emission Assessment Model version 2) emissions (1x1 km, 15 minute resolution) produced for shipping activity during the measurement period. WRF-Chem model results are compared with 3 ship plumes sampled during ACCESS. The model shows that both the location and total amount of pollution in individual ship plumes are correctly represented. Given this, the model is used to investigate the regional influence of ship pollution off the coast of Norway on a weekly time scale during July 2012, focusing on ozone photochemistry in ship plumes, the evolution of aerosols, and investigating the fate of black carbon emitted from ships. We compare regional modeling results obtained using 15 minute resolution STEAMv2 emissions with results using weekly averaged emissions, which are more representative of emissions typically used by global models to study the impacts of shipping on air quality and climate.

  20. Climate impacts of shipping and petroleum extraction in an unlocked Arctic ocean

    Science.gov (United States)

    Samset, B. H.; Berntsen, T.; Dahlsøren, S. B.; Eide, L. I.; Eide, M. S.; Fuglestvedt, J.; Glomsrød, S.; Lindholt, L.; Myhre, G.; Nilssen, T. B.; Peters, G. P.; Ødemark, K.

    2012-04-01

    Reductions in sea ice extent are expected to open up the Arctic region to increased volumes of ship traffic and petroleum extraction activities. Both of these potentially entail changes in concentrations of short-lived climate forcers (SLCFs) such as aerosols and ozone, which may impact the future climate. The response of the Arctic to SLCF emissions is however not well constrained, as the annual cycle, solar irradiation, surface albedo and ambient temperature are special to this region. The present study investigates the effects of SLCF emissions in the Arctic in 2004, as well as in 2030 and 2050. An emission inventory is used for present day activities, while future emissions are taken from models of the global energy market and shipping fleet. Atmospheric concentrations are input to the OsloCTM2 chemical transport model, and radiative forcings (RFs) are calculated using a multi-stream radiation transport code. Climate impacts are quantified via RFs and Global Warming Potentials of the various emitted components, in addition to estimates of the first indirect aerosol effect and the snow albedo effect from black carbon (BC). For present day emissions we calculate a net negative RF from shipping, mainly driven by the indirect aerosol effect, and a net positive RF from petroleum extraction, mainly due to the BC snow albedo effect. For future emissions the general results remain similar, but the total RFs develop with changes in emission volume and composition. We discuss the sensitivity of the Arctic region to emissions in terms of normalized RFs as function of season and geographical location.

  1. Ship accessibility predictions for the Arctic Ocean based on IPCC CO2 emission scenarios

    Science.gov (United States)

    Oh, Jai-Ho; Woo, Sumin; Yang, Sin-Il

    2017-02-01

    Changes in the extent of Arctic sea ice, which have resulted from climate change, offer new opportunities to use the Northern Sea Route (NSR) and Northwest Passage (NWP) for shipping. However, choosing to navigate the Arctic Ocean remains challenging due to the limited accessibility of ships and the balance between economic gain and potential risk. As a result, more precise and detailed information on both weather and sea ice change in the Arctic are required. In this study, a high-resolution global AGCM was used to provide detailed information on the extent and thickness of Arctic sea ice. For this simulation, we have simulated the AMIP-type simulation for the present-day climate during 31 years from 1979 to 2009 with observed SST and Sea Ice concentration. For the future climate projection, we have performed the historical climate during 1979-2005 and subsequently the future climate projection during 2010-2099 with mean of four CMIP5 models due to the two Representative Concentration Pathway scenarios (RCP 8.5 and RCP 4.5). First, the AMIP-type simulation was evaluated by comparison with observations from the Hadley Centre sea-ice and Sea Surface Temperature (HadlSST) dataset. The model reflects the maximum (in March) and minimum (in September) sea ice extent and annual cycle. Based on this validation, the future sea ice extents show the decreasing trend for both the maximum and minimum seasons and RCP 8.5 shows more sharply decreasing patterns of sea ice than RCP 4.5. Under both scenarios, ships classified as Polar Class (PC) 3 and Open-Water (OW) were predicted to have the largest and smallest number of ship-accessible days (in any given year) for the NSR and NWP, respectively. Based on the RCP 8.5 scenario, the projections suggest that after 2070, PC3 and PC6 vessels will have year-round access across to the Arctic Ocean. In contrast, OW vessels will continue to have a seasonal handicap, inhibiting their ability to pass through the NSR and NWP.

  2. Arctic Ocean Drift Tracks from Ships, Buoys and Manned Research Stations, 1872-1973

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Thirty-four drift tracks in the Arctic Ocean pack ice are collected in a unified tabular data format, one file per track. Data are from drifting ships, manned...

  3. Ship Track for The Hidden Ocean Arctic 2005 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the US Coast Guard icebreaker Healy during the "Hidden Ocean Arctic 2005" expedition sponsored by the National Oceanic and Atmospheric Administration...

  4. Impact of ship emissions on air pollution and AOD over North Atlantic and European Arctic

    Science.gov (United States)

    Kaminski, Jacek W.; Struzewska, Joanna; Jefimow, Maciej; Durka, Pawel

    2016-04-01

    The iAREA project is combined of experimental and theoretical research in order to contribute to the new knowledge on the impact of absorbing aerosols on the climate system in the European Arctic (http://www.igf.fuw.edu.pl/iAREA). A tropospheric chemistry model GEM-AQ (Global Environmental Multiscale Air Quality) was used as a computational tool. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). The numerical grid covered the Euro-Atlantic region with the resolution of 50 km. Emissions developed by NILU in the ECLIPSE project was used (Klimont et al., 2013). The model was run for two 1-year scenarios. 2014 was chosen as a base year for simulations and analysis. Scenarios include a base run with most up-to-date emissions and a run without maritime emissions. The analysis will focus on the contribution of maritime emissions on levels of particulate matter and gaseous pollutants over the European Arctic, North Atlantic and coastal areas. The annual variability will be assessed based on monthly mean near-surface concentration fields. Analysis of shipping transport on near-surface air pollution over the Euro-Atlantic region will be assessed for ozone, NO2, SO2, CO, PM10, PM2.5. Also, a contribution of ship emissions to AOD will be analysed.

  5. Future emissions from oil, gas, and shipping activities in the Arctic

    Science.gov (United States)

    Peters, G. P.; Nilssen, T. B.; Lindholt, L.; Eide, M. S.; Glomsrød, S.; Eide, L. I.; Fuglestvedt, J. S.

    2011-02-01

    The Arctic sea-ice is retreating faster than predicted by climate models and could become ice free during summer this century. The reduced sea-ice extent may effectively "unlock" the Arctic Ocean to increased human activities such as transit shipping and expanded oil and gas production. Travel time between Europe and the north Pacific Region can be reduced by up to 50% with low sea-ice levels and the use of this route could increase substantially as the sea-ice retreats. Oil and gas activities already occur in the Arctic region and given the large undiscovered petroleum resources increased activity could be expected with reduced sea-ice. We use a detailed global energy market model and a bottom-up shipping model with a sea-ice module to construct emission inventories of Arctic shipping and petroleum activities in 2030 and 2050. The emission inventories are on a 1× 1 degree grid and cover both short-lived pollutants and ozone pre-cursors (SO2, NOx, CO, NMVOC, BC, OC) and the long-lived greenhouse gases (CO2, CH4, N2O). We find rapid growth in transit shipping due to increased profitability with the shorter transit times compensating for increased costs in traversing areas of sea-ice. Oil and gas production remains relatively stable leading to reduced emissions from emission factor improvements. The location of oil and gas production moves into locations requiring more ship transport relative to pipeline transport, leading to rapid emissions growth from oil and gas transport via ship. Our emission inventories for the Arctic region will be used as input into chemical transport, radiative transfer, and climate models to quantify the role of Arctic activities in climate change compared to similar emissions occurring outside of the Arctic region.

  6. Future emissions from oil, gas, and shipping activities in the Arctic

    Directory of Open Access Journals (Sweden)

    G. P. Peters

    2011-02-01

    Full Text Available The Arctic sea-ice is retreating faster than predicted by climate models and could become ice free during summer this century. The reduced sea-ice extent may effectively "unlock" the Arctic Ocean to increased human activities such as transit shipping and expanded oil and gas production. Travel time between Europe and the north Pacific Region can be reduced by up to 50% with low sea-ice levels and the use of this route could increase substantially as the sea-ice retreats. Oil and gas activities already occur in the Arctic region and given the large undiscovered petroleum resources increased activity could be expected with reduced sea-ice. We use a detailed global energy market model and a bottom-up shipping model with a sea-ice module to construct emission inventories of Arctic shipping and petroleum activities in 2030 and 2050. The emission inventories are on a 1× 1 degree grid and cover both short-lived pollutants and ozone pre-cursors (SO2, NOx, CO, NMVOC, BC, OC and the long-lived greenhouse gases (CO2, CH4, N2O. We find rapid growth in transit shipping due to increased profitability with the shorter transit times compensating for increased costs in traversing areas of sea-ice. Oil and gas production remains relatively stable leading to reduced emissions from emission factor improvements. The location of oil and gas production moves into locations requiring more ship transport relative to pipeline transport, leading to rapid emissions growth from oil and gas transport via ship. Our emission inventories for the Arctic region will be used as input into chemical transport, radiative transfer, and climate models to quantify the role of Arctic activities in climate change compared to similar emissions occurring outside of the Arctic region.

  7. The influence of declining sea ice on shipping activity in the Canadian Arctic

    Science.gov (United States)

    Pizzolato, Larissa; Howell, Stephen E. L.; Dawson, Jackie; Laliberté, Frédéric; Copland, Luke

    2016-12-01

    Significant attention has focused on the potential for increased shipping activity driven by recently observed declines in Arctic sea ice cover. In this study, we describe the first coupled spatial analysis between shipping activity and sea ice using observations in the Canadian Arctic over the 1990-2015 period. Shipping activity is measured by using known ship locations enhanced with a least cost path algorithm to generate ship tracks and quantified by computing total distance traveled in kilometers. Statistically significant increases in shipping activity are observed in the Hudson Strait (150-500 km traveled yr-1), the Beaufort Sea (40-450 km traveled yr-1), Baffin Bay (50-350 km traveled yr-1), and regions in the southern route of the Northwest Passage (50-250 km traveled yr-1). Increases in shipping activity are significantly correlated with reductions in sea ice concentration (Kendall's tau up to -0.6) in regions of the Beaufort Sea, Western Parry Channel, Western Baffin Bay, and Foxe Basin. Changes in multiyear ice-dominant regions in the Canadian Arctic were found to be more influential on changes to shipping activity compared to seasonal sea ice regions.

  8. Environmental impacts of shipping in 2030 with a particular focus on the Arctic region

    Directory of Open Access Journals (Sweden)

    S. B. Dalsøren

    2013-02-01

    Full Text Available We quantify the concentrations changes and Radiative Forcing (RF of short-lived atmospheric pollutants due to shipping emissions of NOx, SOx, CO, NMVOCs, BC and OC. We use high resolution ship emission inventories for the Arctic that are more suitable for regional scale evaluation than those used in former studies. A chemical transport model and a RF model are used to evaluate the time period 2004–2030, when we expect increasing traffic in the Arctic region. Two datasets for ship emissions are used that characterize the potential impact from shipping and the degree to which shipping controls may mitigate impacts: a high (HIGH scenario and a low scenario with Maximum Feasible Reduction (MFR of black carbon in the Arctic. In MFR, BC emissions in the Arctic are reduced with 70% representing a combination technology performance and/or reasonable advances in single-technology performance. Both scenarios result in moderate to substantial increases in concentrations of pollutants both globally and in the Arctic. Exceptions are black carbon in the MFR scenario, and sulfur species and organic carbon in both scenarios due to the future phase-in of current regulation that reduces fuel sulfur content. In the season with potential transit traffic through the Arctic in 2030 we find increased concentrations of all pollutants in large parts of the Arctic. Net global RFs from 2004–2030 of 53 mW m−2 (HIGH and 73 mW m−2 (MFR are similar to those found for preindustrial to present net global aircraft RF. The found warming contrasts with the cooling from historical ship emissions. The reason for this difference and the higher global forcing for the MFR scenario is mainly the reduced future fuel sulfur content resulting in less cooling from sulfate aerosols. The Arctic RF is largest in the HIGH scenario. In the HIGH scenario ozone dominates the RF during the transit season (August–October. RF due to BC in air, and

  9. Sea ice decline and 21st century trans-Arctic shipping routes

    Science.gov (United States)

    Melia, N.; Haines, K.; Hawkins, E.

    2016-09-01

    The observed decline in Arctic sea ice is projected to continue, opening shorter trade routes across the Arctic Ocean, with potentially global economic implications. Here we quantify, using Coupled Model Intercomparison Project Phase 5 global climate model simulations calibrated to remove spatial biases, how projected sea ice loss might increase opportunities for Arctic transit shipping. By midcentury for standard open water vessels, the frequency of navigable periods doubles, with routes across the central Arctic becoming available. A sea ice-ship speed relationship is used to show that European routes to Asia typically become 10 days faster via the Arctic than alternatives by midcentury, and 13 days faster by late century, while North American routes become 4 days faster. Future greenhouse gas emissions have a larger impact by late century; the shipping season reaching 4-8 months in Representative Concentration Pathway (RCP)8.5 double that of RCP2.6, both with substantial interannual variability. Moderately, ice-strengthened vessels likely enable Arctic transits for 10-12 months by late century.

  10. Environmental impacts of shipping in 2030 with a particular focus on the Arctic region

    Directory of Open Access Journals (Sweden)

    S. B. Dalsøren

    2012-10-01

    Full Text Available We quantify the concentrations change of atmospheric pollutants and Radiative Forcing (RF of short-lived components due to shipping emissions of NOx, SOx, CO, NMVOCs, BC and OC. A set of models is used to evaluate the period 2004–2030. This time period reflects expected increasing traffic in the Arctic region. Two datasets for ship emissions are used that may characterize the potential impact from shipping and the degree to which shipping controls may mitigate impacts: A high (HIGH scenario and a low scenario with Maximum Feasible Reduction (MFR of black carbon in the Arctic. In MFR, BC emissions in the Arctic are reduced with 70% representing a combination technology performance and/or reasonable advances in single-technology performance. Both scenarios result in moderate to substantial increases in concentrations of pollutants both globally and in the Arctic. Exceptions are black carbon in the MFR scenario, and sulfur species and organic carbon in both scenarios due to the future phase-in of current regulation that reduces fuel sulfur content. In the season with potential transit traffic through the Arctic in 2030 significant increases occur for all pollutants in large parts of the Arctic. Net global RFs from 2004–2030 of 53 mW m−2 (HIGH and 73 mW m−2 (MFR are similar to those found for preindustrial to present net global aircraft RF. The found warming contrasts the cooling from historical ship emissions. The reason for this difference and the higher global forcing for the MFR scenario is mainly the reduced future fuel sulfur content resulting in less cooling from sulfate aerosols. Arctic regional forcing is largest in the HIGH scenario because other components become locally more important in polar latitudes. In the HIGH scenario ozone dominates the RF during Arctic summer and the transit season. RF due to BC in air, and snow and ice becomes of significance in Arctic spring. For the HIGH

  11. SYSTEM IDENTIFICATION OF SURFACE SHIP DYNAMICS.

    Science.gov (United States)

    The feasibility of applying a Newtonian system identification technique to a nonlinear three degree of freedom system of equations describing the...steering and maneuvering of a surface ship is investigated. The input to the system identification program is provided by both analog and digital

  12. Regional Modelling of Air Quality in the Canadian Arctic: Impact of marine shipping and North American wild fire emissions

    Science.gov (United States)

    Gong, W.; Beagley, S. R.; Zhang, J.; Cousineau, S.; Sassi, M.; Munoz-Alpizar, R.; Racine, J.; Menard, S.; Chen, J.

    2015-12-01

    Arctic atmospheric composition is strongly influenced by long-range transport from mid-latitudes as well as processes occurring in the Arctic locally. Using an on-line air quality prediction model GEM-MACH, simulations were carried out for the 2010 northern shipping season (April - October) over a regional Arctic domain. North American wildfire emissions and Arctic shipping emissions were represented, along with other anthropogenic and biogenic emissions. Sensitivity studies were carried out to investigate the principal sources and processes affecting air quality in the Canadian Northern and Arctic regions. In this paper, we present an analysis of sources, transport, and removal processes on the ambient concentrations and atmospheric loading of various pollutants with air quality and climate implications, such as, O3, NOx, SO2, CO, and aerosols (sulfate, black carbon, and organic carbon components). Preliminary results from a model simulation of a recent summertime Arctic field campaign will also be presented.

  13. Ship-borne wind LIDAR measurements in the Arctic and Antarctic

    Science.gov (United States)

    Zentek, Rolf; Heinemann, Günther; Kohnemann, Svenja

    2017-04-01

    During the two cruises of RV Polarstern (Alfred Wegener Institute, Germany) a wind LIDAR was installed on the upper deck of the ship. The measurements in the Arctic were taken over two weeks (June 2014) in the Fram Strait and in the Antarctic over six weeks (December/January 2015/2016) in the Weddell Sea. Measurements included horizontal and vertical scan programs that allow for the computation of different wind profiles. Since the LIDAR was not motion-stabilized, motion correction was done during post processing. Depending on weather condition data up to 1 km (and in single cases up to 2 km) height was collected. An evaluation of the derived vertical wind profiles was done by comparing them to on board surface measurements and radio soundings. The RMSD of wind speed between the LIDAR and the radiosonde measurements was found as 0.7 - 1.2 m/s depending on data selection and height. Overall, the wind LIDAR is an excellent tool for the measurement of wind profiles with high spatial (10m) and temporal resolution (15min).

  14. Scenarios of 21st-century trans-Arctic shipping for climate studies

    Science.gov (United States)

    Stephenson, S. R.; Davis, S. J.; Zender, C. S.; Smith, L. C.

    2013-12-01

    Receding Arctic sea ice coupled with increased resource demand in east Asia have recast the Arctic as an international trade space facilitating export of petroleum and minerals and offering potential alternative pathways for global maritime trade. Several studies have examined the future impact of increased vessel traffic in the Arctic on emissions of greenhouse gases and black carbon (BC); however, the net impact of these emissions on climate forcing in the region is not well understood. Here we present several scenarios of 21st-century trans-Arctic shipping for climate studies. Vessel transits between 5 east Asian ports (Tianjin, Shanghai, Hong Kong, Tokyo/Yokohama, Busan) and 2 European ports (Rotterdam, Hamburg) are estimated from 2010-2050 according to projected sea ice concentration and thickness, trends in cargo export volumes, and vessel ice class and cargo capacity. Sea ice data are represented by a 7-model ensemble mean from CMIP5 under two forcing scenarios (RCP 4.5/8.5). Emissions presented (CO2, CH4, N2O, NOx, SOx, BC) are obtained by convolving projected transits with trends in emissions factors. Results illustrate a range of emissions inventories for the Arctic owing to differences in vessel accessibility, trade volume, routes, and fuel mixtures.

  15. Optimizing Ship Classification in the Arctic Ocean: A Case Study of Multi-Disciplinary Problem Solving

    Directory of Open Access Journals (Sweden)

    Mark Rahmes

    2014-08-01

    Full Text Available We describe a multi-disciplinary system model for determining decision making strategies based upon the ability to perform data mining and pattern discovery utilizing open source actionable information to prepare for specific events or situations from multiple information sources. We focus on combining detection theory with game theory for classifying ships in Arctic Ocean to verify ship reporting. More specifically, detection theory is used to determine probability of deciding if a ship or certain ship class is present or not. We use game theory to fuse information for optimal decision making on ship classification. Hierarchy game theory framework enables complex modeling of data in probabilistic modeling. However, applicability to big data is complicated by the difficulties of inference in complex probabilistic models, and by computational constraints. We provide a framework for fusing sensor inputs to help compare if the information of a ship matches its AIS reporting requirements using mixed probabilities from game theory. Our method can be further applied to optimizing other choke point scenarios where a decision is needed for classification of ground assets or signals. We model impact on decision making on accuracy by adding more parameters or sensors to the decision making process as sensitivity analysis.

  16. Evaluation of Arctic broadband surface radiation measurements

    OpenAIRE

    N. Matsui; C. N. Long; Augustine, J.; D. Halliwell; T. Uttal; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-01-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that ...

  17. The influence of cruise ship emissions on air pollution in Svalbard – a harbinger of a more polluted Arctic?

    Directory of Open Access Journals (Sweden)

    S. Eckhardt

    2013-08-01

    Full Text Available In this study we have analyzed whether tourist cruise ships have an influence on measured sulfur dioxide (SO2, ozone (O3, Aitken mode particle and equivalent black carbon (EBC concentrations at Ny Ålesund and Zeppelin Mountain on Svalbard in the Norwegian Arctic during summer. We separated the measurement data set into periods when ships were present and periods when ships were not present in the Kongsfjord area, according to a long-term record of the number of passengers visiting Ny Ålesund. We show that when ships with more than 50 passengers cruise in the Kongsfjord, measured daytime mean concentrations of 60 nm particles and EBC in summer show enhancements of 72 and 45%, respectively, relative to values when ships are not present. Even larger enhancements of 81 and 72% were found for stagnant conditions. In contrast, O3 concentrations were 5% lower on average and 7% lower under stagnant conditions, due to titration of O3 with the emitted nitric oxide (NO. The differences between the two data subsets are largest for the highest measured percentiles, while relatively small differences were found for the median concentrations, indicating that ship plumes are sampled relatively infrequently even when ships are present although they carry high pollutant concentrations. We estimate that the ships increased the total summer mean concentrations of SO2, 60 nm particles and EBC by 15, 18 and 11%, respectively. Our findings have two important implications. Firstly, even at such a remote Arctic observatory as Zeppelin, the measurements can be influenced by tourist ship emissions. Careful data screening is recommended before summertime Zeppelin data is used for data analysis or for comparison with global chemistry transport models. However, Zeppelin remains as one of the most valuable Arctic observatories, as most other Arctic observatories face even larger local pollution problems. Secondly, given landing statistics of tourist ships on Svalbard, it is

  18. The influence of cruise ship emissions on air pollution in Svalbard – a harbinger of a more polluted Arctic?

    Directory of Open Access Journals (Sweden)

    A. Baecklund

    2013-01-01

    Full Text Available In this study we have analyzed whether tourist cruise ships have an influence on measured sulfur dioxide (SO2, ozone (O3, Aitken mode particle and equivalent black carbon (EBC concentrations at Ny Ålesund and Zeppelin Mountain on Svalbard in the Norwegian Arctic, during summer. We separated the measurement data set into periods when ships were present and periods when no ships were present in the Kongsfjord area, according to a long-term record of the number of passengers visiting Ny Ålesund. We show that when ships with more than 50 passengers cruise in the Kongsfjord, measured daytime-mean concentrations of 60-nm particles and EBC in summer show enhancements of 72 and 45% relative to values when no ships are present. Even larger enhancements of 81 and 72% were found for stagnant conditions. In contrast, O3 concentrations were 5% lower on average and 7% lower under stagnant conditions, due to titration of O3 with the emitted nitric oxide (NO. The differences between the two data subsets are largest for the highest measured percentiles while relatively small differences were found for the median concentrations, indicating that ship plumes are sampled relatively infrequently even when ships are generally present but carry high concentrations. We estimate that the ships increased the total summer mean concentrations of SO2, 60-nm particles and EBC by 15, 18 and 11%, respectively. Our findings have two important implications: firstly, even at such a remote Arctic observatory as Zeppelin, the measurements can be influenced by tourist ship emissions. Careful data screening is recommended before summer-time Zeppelin data is used for data analysis or for comparison with global chemistry transport models. However, Zeppelin remains one of the most valuable Arctic observatories, as most other Arctic observatories face even larger local pollution problems. Secondly, given landing statistics of tourist ships on Svalbard, it is suspected that large parts

  19. The influence of cruise ship emissions on air pollution in Svalbard - a harbinger of a more polluted Arctic?

    Science.gov (United States)

    Eckhardt, S.; Hermansen, O.; Grythe, H.; Fiebig, M.; Stebel, K.; Cassiani, M.; Baecklund, A.; Stohl, A.

    2013-08-01

    In this study we have analyzed whether tourist cruise ships have an influence on measured sulfur dioxide (SO2), ozone (O3), Aitken mode particle and equivalent black carbon (EBC) concentrations at Ny Ålesund and Zeppelin Mountain on Svalbard in the Norwegian Arctic during summer. We separated the measurement data set into periods when ships were present and periods when ships were not present in the Kongsfjord area, according to a long-term record of the number of passengers visiting Ny Ålesund. We show that when ships with more than 50 passengers cruise in the Kongsfjord, measured daytime mean concentrations of 60 nm particles and EBC in summer show enhancements of 72 and 45%, respectively, relative to values when ships are not present. Even larger enhancements of 81 and 72% were found for stagnant conditions. In contrast, O3 concentrations were 5% lower on average and 7% lower under stagnant conditions, due to titration of O3 with the emitted nitric oxide (NO). The differences between the two data subsets are largest for the highest measured percentiles, while relatively small differences were found for the median concentrations, indicating that ship plumes are sampled relatively infrequently even when ships are present although they carry high pollutant concentrations. We estimate that the ships increased the total summer mean concentrations of SO2, 60 nm particles and EBC by 15, 18 and 11%, respectively. Our findings have two important implications. Firstly, even at such a remote Arctic observatory as Zeppelin, the measurements can be influenced by tourist ship emissions. Careful data screening is recommended before summertime Zeppelin data is used for data analysis or for comparison with global chemistry transport models. However, Zeppelin remains as one of the most valuable Arctic observatories, as most other Arctic observatories face even larger local pollution problems. Secondly, given landing statistics of tourist ships on Svalbard, it is suspected that

  20. The phenology of Arctic Ocean surface warming

    Science.gov (United States)

    Steele, Michael; Dickinson, Suzanne

    2016-09-01

    In this work, we explore the seasonal relationships (i.e., the phenology) between sea ice retreat, sea surface temperature (SST), and atmospheric heat fluxes in the Pacific Sector of the Arctic Ocean, using satellite and reanalysis data. We find that where ice retreats early in most years, maximum summertime SSTs are usually warmer, relative to areas with later retreat. For any particular year, we find that anomalously early ice retreat generally leads to anomalously warm SSTs. However, this relationship is weak in the Chukchi Sea, where ocean advection plays a large role. It is also weak where retreat in a particular year happens earlier than usual, but still relatively late in the season, primarily because atmospheric heat fluxes are weak at that time. This result helps to explain the very different ocean warming responses found in two recent years with extreme ice retreat, 2007 and 2012. We also find that the timing of ice retreat impacts the date of maximum SST, owing to a change in the ocean surface buoyancy and momentum forcing that occurs in early August that we term the Late Summer Transition (LST). After the LST, enhanced mixing of the upper ocean leads to cooling of the ocean surface even while atmospheric heat fluxes are still weakly downward. Our results indicate that in the near-term, earlier ice retreat is likely to cause enhanced ocean surface warming in much of the Arctic Ocean, although not where ice retreat still occurs late in the season.

  1. The emergence of surface-based Arctic amplification

    Directory of Open Access Journals (Sweden)

    M. C. Serreze

    2008-07-01

    Full Text Available Rises in surface and lower troposphere air temperatures through the 21st century are projected to be especially pronounced over the Arctic Ocean during the cold season. This Arctic amplification is largely driven by loss of the sea ice cover, allowing for strong heat transfers from the ocean to the atmosphere. Consistent with observed reductions in sea ice extent, fields from the NCEP/NCAR reanalysis suggest emergence of surface-based Arctic amplification in the last decade.

  2. The emergence of surface-based Arctic amplification

    OpenAIRE

    SERREZE, M. C.; A. P. Barrett; J. C. Stroeve; Kindig, D. N.; Holland, M. M.

    2009-01-01

    Rises in surface and lower troposphere air temperatures through the 21st century are projected to be especially pronounced over the Arctic Ocean during the cold season. This Arctic amplification is largely driven by loss of the sea ice cover, allowing for strong heat transfers from the ocean to the atmosphere. Consistent with observed reductions in sea ice extent, fields from both the NCEP/NCAR and JRA-25 reanalyses point to emergence of surface-based Arctic amplification in the last decade.

  3. Implications of a Changing Arctic on Summertime Surface Seawater pCO2 Variations in the Eastern Canadian Arctic

    Science.gov (United States)

    Burgers, T.; Miller, L. A.; Thomas, H.; Else, B. G. T.; Gosselin, M.; Papakyriakou, T. N.

    2015-12-01

    Arctic marine carbonate chemistry and rates of air-sea CO2 exchange are anticipated to be affected by current changes in sea-ice structure and extent, freshwater inputs, ocean circulation patterns, and the seasonality of phytoplankton blooms. This study examines how such changes will impact rates of air-sea CO2 exchange in northern Baffin Bay, Nares Strait, and the eastern Canadian Arctic Archipelago. This complex oceanographic region includes the North Water polynya; one of the most biologically productive areas in the Arctic Ocean, and the convergence site of the warm West Greenland Current with cold exported Arctic waters. Continuous measurements of atmospheric and surface seawater CO2 (pCO2) were collected onboard the Canadian Coast Guard Ship Amundsen during its 2013 and 2014 summer cruises. Surface seawater pCO2 displayed considerable variability (145 - 389 ppm), but never exceeded atmospheric concentrations. Calculated CO2 fluxes ranged from 0 to -45 mmol m-2 day-1 (oceanic uptake), and were estimated using the Sweeney et al. (2007) parameterization with in-situ wind speed measurements. Ancillary measurements of chlorophyll a reveal low productivity in surface waters during mid-summer with isolated sub-surface blooms. This is likely the result of nutrient limitation within the highly stratified polar mixed layer (PML). Measurements of stable oxygen isotope ratios (δ18O) and total alkalinity were used to estimate freshwater inputs (sea-ice melt vs. meteoric water) to the PML. These and in-situ observations of sea ice cover were used to interpret seawater pCO2 variations. Surface waters influenced by sea-ice melt exhibit lower pCO2 than those influenced by meteoric water. The results of this investigation shed light on the future role of this region as a summertime sink of atmospheric CO2.

  4. Technical Practices Manual for Surface Ship Stack Design

    Science.gov (United States)

    1976-07-01

    publico releas5, Diitribution unlimted. n /___ 1J TECHNICAL PRACTICES MANUAL FOR SURFACE SIP STACK DESIGN, AVSECj R%~m,r 6136- 7-1 i /-Jul 76~\\ / Prepared...British Transport Commission for making deck, but so slowly that they can be regarded as virtually in available a cross-channel ship (ship A) on which the

  5. Evaluation of Arctic broadband surface radiation measurements

    Directory of Open Access Journals (Sweden)

    N. Matsui

    2012-02-01

    Full Text Available The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW and thermal infrared, or longwave (LW, radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse SW measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  6. Dominant patterns of winter Arctic surface wind variability

    Institute of Scientific and Technical Information of China (English)

    WU Bingyi; John Walsh; LIU Jiping; ZHANG Xiangdong

    2014-01-01

    Dominant statistical patterns of winter Arctic surface wind (WASW) variability and their impacts on Arctic sea ice motion are investigated using the complex vector empirical orthogonal function (CVEOF) method. The results indicate that the leading CVEOF of Arctic surface wind variability, which accounts for 33% of the covariance, is characterized by two different and alternating spatial patterns (WASWP1 and WASWP2). Both WASWP1 and WASWP2 show strong interannual and decadal variations, superposed on their declining trends over past decades. Atmospheric circulation anomalies associated with WASWP1 and WASWP2 exhibit, respectively, equivalent barotropic and some baroclinic characteristics, differing from the Arctic dipole anomaly and the seesaw structure anomaly between the Barents Sea and the Beaufort Sea. On decadal time scales, the decline trend of WASWP2 can be attributed to persistent warming of sea surface temperature in the Greenland—Barents—Kara seas from autumn to winter, relfecting the effect of the Arctic warming. The second CVEOF, which accounts for 18% of the covariance, also contains two different spatial patterns (WASWP3 and WASWP4). Their time evolutions are signiifcantly correlated with the North Atlantic Oscillation (NAO) index and the central Arctic Pattern, respectively, measured by the leading EOF of winter sea level pressure (SLP) north of 70°N. Thus, winter anomalous surface wind pattern associated with the NAO is not the most important surface wind pattern. WASWP3 and WASWP4 primarily relfect natural variability of winter surface wind and neither exhibits an apparent trend that differs from WASWP1 or WASWP2. These dominant surface wind patterns strongly inlfuence Arctic sea ice motion and sea ice exchange between the western and eastern Arctic. Furthermore, the Fram Strait sea ice volume lfux is only signiifcantly correlated with WASWP3. The results demonstrate that surface and geostrophic winds are not interchangeable in terms of

  7. The emergence of surface-based Arctic amplification

    Directory of Open Access Journals (Sweden)

    M. C. Serreze

    2009-02-01

    Full Text Available Rises in surface and lower troposphere air temperatures through the 21st century are projected to be especially pronounced over the Arctic Ocean during the cold season. This Arctic amplification is largely driven by loss of the sea ice cover, allowing for strong heat transfers from the ocean to the atmosphere. Consistent with observed reductions in sea ice extent, fields from both the NCEP/NCAR and JRA-25 reanalyses point to emergence of surface-based Arctic amplification in the last decade.

  8. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  9. Shipping

    NARCIS (Netherlands)

    Wijnolst, N.; Wergeland, T.

    1996-01-01

    Shipping is a multi-faceted industry which is rather complex to define from an academic point of view. This book attempts to grasp these complexities and provide the reader with an overview of the main topics and terminology in shipping. The book is based on material from our courses in shipping at

  10. Interaction between motion of free fluid surfaces and ship motions

    Science.gov (United States)

    Lamba, D.; Duse, A.; Varsami, C.; Hanzu-Pazara, R.

    2017-08-01

    This scientific research presents very important aspects of the liquefying process of bulk cargo carried on board merchant ship which may lead to loss of the intact stability of bulk carriers, with serious consequences for the safety of ships and their crew. We are going to present an analytical modelling, modal analysis and finite elements analysis applied in the hydrodynamics of the ship in the water environment, when realising a complex model 3D of the ship’s bulkheads by modelling with finite volumes with the purpose of emphasising these walls’ behaviour when on board the bulk carrier there is a sloshing effect due to free liquid surfaces in the ship’s cargo holds and we also performed a complex study regarding the structural answer of transverse bulkheads of the cargo holds due to the impact of free liquid surfaces.

  11. Ocean surface waves in an ice-free Arctic Ocean

    Science.gov (United States)

    Li, Jian-Guo

    2016-08-01

    The retreat of the Arctic ice edge implies that global ocean surface wave models have to be extended at high latitudes or even to cover the North Pole in the future. The obstacles for conventional latitude-longitude grid wave models to cover the whole Arctic are the polar problems associated with their Eulerian advection schemes, including the Courant-Friedrichs-Lewy (CFL) restriction on diminishing grid length towards the Pole, the singularity at the Pole and the invalid scalar assumption for vector components defined relative to the local east direction. A spherical multiple-cell (SMC) grid is designed to solve these problems. It relaxes the CFL restriction by merging the longitudinal cells towards the Poles. A round polar cell is used to remove the singularity of the differential equation at the Pole. A fixed reference direction is introduced to define vector components within a limited Arctic part in mitigation of the scalar assumption errors at high latitudes. The SMC grid has been implemented in the WAVEWATCH III model and validated with altimeter and buoy observations, except for the Arctic part, which could not be fully tested due to a lack of observations as the polar region is still covered by sea ice. Here, an idealised ice-free Arctic case is used to test the Arctic part and it is compared with a reference case with real ice coverage. The comparison indicates that swell wave energy will increase near the ice-free Arctic coastlines due to increased fetch. An expanded Arctic part is used for comparisons of the Arctic part with available satellite measurements. It also provides a direct model comparison between the two reference systems in their overlapping zone.

  12. Free-Surface Viscous Flow Solution Methods for Ship Hydrodynamics

    NARCIS (Netherlands)

    Wackers, J.; Koren, B.; Raven, H.C.; Ploeg, A. van der; Starke, A.R.; Deng, G.B.; Queutey, P.; Visonneau, M.; Hino, T.; Ohashi, K.

    2011-01-01

    The simulation of viscous free-surface water flow is a subject that has reached a certain maturity and is nowadays used in industrial applications, like the simulation of the flow around ships. While almost all methods used are based on the Navier-Stokes equations, the discretisation methods for the

  13. Free-Surface Viscous Flow Solution Methods for Ship Hydrodynamics

    OpenAIRE

    WACKERS, Jeroen; Koren, Barry; Raven, H.C.; Van Der Ploeg,, Atze; Starke, A.R.; Deng, G.B.; Queutey, P.; VISONNEAU, Michel; Hino, T.; Ohashi, K

    2011-01-01

    The simulation of viscous free-surface water flow is a subject that has reached a certain maturity and is nowadays used in industrial applications, like the simulation of the flow around ships. While almost all methods used are based on the Navier-Stokes equations, the discretisation methods for the water surface differ widely. Many of these highly different methods are being used with success. We review three of these methods, by describing in detail their implementation in one particular co...

  14. Impacts of urban and industrial development on Arctic land surface temperature in Lower Yenisei River Region.

    Science.gov (United States)

    Li, Z.; Shiklomanov, N. I.

    2015-12-01

    Urbanization and industrial development have significant impacts on arctic climate that in turn controls settlement patterns and socio-economic processes. In this study we have analyzed the anthropogenic influences on regional land surface temperature of Lower Yenisei River Region of the Russia Arctic. The study area covers two consecutive Landsat scenes and includes three major cities: Norilsk, Igarka and Dudingka. Norilsk industrial region is the largest producer of nickel and palladium in the world, and Igarka and Dudingka are important ports for shipping. We constructed a spatio-temporal interpolated temperature model by including 1km MODIS LST, field-measured climate, Modern Era Retrospective-analysis for Research and Applications (MERRA), DEM, Landsat NDVI and Landsat Land Cover. Those fore-mentioned spatial data have various resolution and coverage in both time and space. We analyzed their relationships and created a monthly spatio-temporal interpolated surface temperature model at 1km resolution from 1980 to 2010. The temperature model then was used to examine the characteristic seasonal LST signatures, related to several representative assemblages of Arctic urban and industrial infrastructure in order to quantify anthropogenic influence on regional surface temperature.

  15. Atmospheric nitrous oxide observations above the oceanic surface during the first Chinese Arctic Research Expedition

    Institute of Scientific and Technical Information of China (English)

    朱仁斌; 孙立广; 谢周清; 赵俊琳

    2003-01-01

    339 gas samples above oceanic surface were collected on the cruise of "Xuelong" expeditionary ship and nitrous oxide concentrations were analyzed in the laboratory. Results showed that Atmospheric average N20 concentration was 309 ± 3.8nL/L above the surface of northern Pacific and Arctic ocean. N2O concentrations were significantly different on the northbound and southbound track in the range of the same latitude, 308.0 ± 3.5 nL/L from Shanghai harbor to the Arctic and 311.9 ± 2.5 nL/L from the Arctic to Shanghai harbor. N2O concentration had a greater changing magnitude on the mid- and high-latitude oceanic surface of northern Pacific Ocean than in the other latitudinal ranges. The correlation between the concentrations of the compositions in the aerosol samples and atmospheric N2O showed that continental sources had a great contribution on atmospheric N2 O concentration above the oceanic surface. Atmospheric N2O concentration significantly increased when the expeditionary ship approached Shanghai harbor. The average N2O concentrations were 315.1 ±2.5 nL/L, 307.2 ±1.4 nL/L and 306.2 ±0.7 nL/L, respectively, at Shanghai harbor, at ice stations and at floating ices. The distribution of N2O concentrations was related with air pressure and temperature above the mid- and high-latitude Pacific Ocean.

  16. Arctic Mechanisms of Interaction between the Surface and Atmosphere (AMISA) IPY Airborne Data Set

    Science.gov (United States)

    Gasiewski, A. J.; Zucker, M. L.; Persson, O. P.

    2012-12-01

    The Arctic Mechanisms of Interaction Between the Surface and Atmosphere (AMISA) campaign is an International Polar year (IPY) project conducted in conjunction with a related ship-based IPY project, the Arctic Summer Cloud-Ocean Study (ASCOS). Understanding the top-side atmospheric and sea ice radiative processes contributing to Arctic sea ice reduction is the primary goal of AMISA. This poster describes the field activities and status of AMISA data processing studies at the end of the final grant year. Tropospheric synoptic and mesoscale disturbances over the Arctic Ocean force large, transitory changes in the structure of the Arctic boundary layer (ABL) and its surface energy budget (SEB). These changes determine the near-surface air temperature and drive the thermodynamic and mass balance of sea ice. The thermal, kinematic, and cloud features associated with these disturbances modify the kinematic and thermodynamic structure of the ABL through both turbulent and radiative fluxes and changes in ABL clouds. These changes, in turn, subsequently affect the SEB of the pack ice. Accordingly, processes linking atmospheric synoptic and mesoscale disturbances to ABL structure and SEB during the seasonal transition periods were the primary observational objectives of AMISA. To achieve these objectives high resolution observations of Arctic sea ice cover and type along with meteorological conditions representative of significant mesoscale processes were obtained during five sorties over polar sea ice as part of the 23-day AMISA deployment in August 2008 using the NASA DC-8 aircraft based out of Kiruna, Sweden. Measurements of ABL cloud and moisture content and identification of summertime meltponds (which produce different radiative and turbulent fluxes) and leads were included. DC-8 data includes high resolution microwave imagery of sea ice using the Polarimetric Scanning Radiometer (PSR/A) system, video data used for ice/lead/meltpond discrimination, and direct sampling

  17. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    Science.gov (United States)

    Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  18. Surface ozone observations during voyages to the Arctic and Antarctic regions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Surface ozone concentration and UV-B data between 75°N and 70°S were obtained aboard the Chinese polar scientific vessel "Xue-long" (Snow-Dragon) during the first voyage to the Arctic and the 16th to the Antarctic in 1999-2000. Analysis of these data presents that variations of the surface ozone concentration have small amplitude during voyages except the mid-latitude in the Northern Hemisphere. As a whole, average surface ozone concentration in the Northern Hemisphere is higher than that in the Southern, and high value occurred when the ship sailed close to the continents. The average diurnal variations of the surface ozone in the Northern Hemisphere are also higher compared to the southern counterparts, and high diurnal variations were found at low latitudes, and relative low level in the polar region.

  19. Evaluation of arctic broadband surface radiation measurements

    OpenAIRE

    N. Matsui; C. N. Long; Augustine, J.; D. Halliwell; T. Uttal; Longenecker, D.; O. Nievergall; Wendell, J.; Albee, R.

    2011-01-01

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are...

  20. The Governance of Arctic Shipping and Ways for China's Participation%北极航运治理与中国的参与路径研究

    Institute of Scientific and Technical Information of China (English)

    孙凯; 刘腾

    2015-01-01

    随着北极地区的冰融与经济全球化的深入发展,北极航线开通与商业性运营提上了日程。北极航道的开通以及商业性运营不仅会对世界经济格局、航运发展带来深远的影响,也将对中国的经济布局、能源安全以及航运业等产生重要的影响。在北极航运治理正处在“建章立制”的阶段,中国应积极参与正在形成中的北极航运国际管制机制的构建,并且在参与北极治理现有的基础上,进一步提升中国在北极航运事务治理中的参与度,进而最大限度地实现和保障中国在北极地区的权益。%With the melting of Arctic sea ice and economic globalization ,the opening up and commer‐cialization of Arctic shipping is at the top of the agenda .The Arctic shipping routes will shape not only world economic pattern and shipping industry ,but also China's economic pattern ,energy security and ship‐ping industry .In this early stage of Arctic shipping rule‐making ,China should be engaged in the construc‐tion of Arctic shipping control system and enhance its sense of participation based on current Arctic gov‐ernance so as to maximize China's interests in the Arctic .

  1. Surface towed electromagnetic system for mapping of subsea Arctic permafrost

    Science.gov (United States)

    Sherman, Dallas; Kannberg, Peter; Constable, Steven

    2017-02-01

    Sea level has risen globally since the late Pleistocene, resulting in permafrost-bearing coastal zones in the Arctic being submerged and subjected to temperature induced degradation. Knowing the extent of permafrost and how it changes over time is important for climate change predictions and for planning engineering activities in the Arctic environment. We developed a controlled source electromagnetic (CSEM) method to obtain information on the depth, thickness, and lateral extent of marine permafrost. To operate in shallow water we used a surface towed electric dipole-dipole CSEM system suitable for deployment from small boats. This system was used to map permafrost on the Arctic shelf offshore Prudhoe Bay, Alaska. Our results show significant lateral variability in the presence of permafrost, with the thickest layers associated with a large river outflow where freshwater influx seems to have a preserving effect on relict subsea permafrost.

  2. FLOW NOISE MEASUREMENT OF SURFACE SHIP WITH TOWED MODEL

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this article, a new acoustic test technique using towed model was introduced to study flow noise caused by a surface ship. The project of model test was be properly designed for acoustic signal collecting and with the help of appropriate data processing method different kinds of acoustic sources could be successfully identified. A lot of work about fuid noise could be carried on with the towed model, and the noise corresponding to low frequency which is especially interested for its long distance radiating with small attenuation could also be studied in this way.

  3. Evaluation of arctic broadband surface radiation measurements

    Directory of Open Access Journals (Sweden)

    N. Matsui

    2011-08-01

    Full Text Available The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW and broadband thermal infrared, or longwave (LW radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse shortwave measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  4. Arctic Ocean surface geostrophic circulation 2003–2014

    Directory of Open Access Journals (Sweden)

    T. W. K. Armitage

    2017-07-01

    Full Text Available Monitoring the surface circulation of the ice-covered Arctic Ocean is generally limited in space, time or both. We present a new 12-year record of geostrophic currents at monthly resolution in the ice-covered and ice-free Arctic Ocean derived from satellite radar altimetry and characterise their seasonal to decadal variability from 2003 to 2014, a period of rapid environmental change in the Arctic. Geostrophic currents around the Arctic basin increased in the late 2000s, with the largest increases observed in summer. Currents in the southeastern Beaufort Gyre accelerated in late 2007 with higher current speeds sustained until 2011, after which they decreased to speeds representative of the period 2003–2006. The strength of the northwestward current in the southwest Beaufort Gyre more than doubled between 2003 and 2014. This pattern of changing currents is linked to shifting of the gyre circulation to the northwest during the time period. The Beaufort Gyre circulation and Fram Strait current are strongest in winter, modulated by the seasonal strength of the atmospheric circulation. We find high eddy kinetic energy (EKE congruent with features of the seafloor bathymetry that are greater in winter than summer, and estimates of EKE and eddy diffusivity in the Beaufort Sea are consistent with those predicted from theoretical considerations. The variability of Arctic Ocean geostrophic circulation highlights the interplay between seasonally variable atmospheric forcing and ice conditions, on a backdrop of long-term changes to the Arctic sea ice–ocean system. Studies point to various mechanisms influencing the observed increase in Arctic Ocean surface stress, and hence geostrophic currents, in the 2000s – e.g. decreased ice concentration/thickness, changing atmospheric forcing, changing ice pack morphology; however, more work is needed to refine the representation of atmosphere–ice–ocean coupling in models before we can fully

  5. Spatial distribution of biogenic sulphur compounds in the Arctic aerosol collected during the AREX 2011 and 2012 Oceania ship cruises

    Science.gov (United States)

    Udisti, Roberto; Rugi, Francesco; Becagli, Silvia; Bolzacchini, Ezio; Calzolai, Giulia; Chiari, Massimo; Frosini, Daniele; Ghedini, Costanza; Marconi, Miriam; Grazia Perrone, Maria; Sangiorgi, Giorgia; Severi, Mirko; Traversi, Rita; Walczowski, Waldek; Zielinski, Timon

    2013-04-01

    The sea area between Norway and Svalbard Islands (Norwegian and Greenland Seas) is a critical site to study the effects of the climate change on the high-latitude Northern-Hemisphere regions. In particular, changes in extension and/or in the persistence of annual sea-ice, availability of nutrients and trace-elements in the biological-active marine layers and sea surface temperatures could affect the marine primary productivity and the emission into the atmosphere of dimethylsulphide (DMS), produced by phytoplankton metabolic processes. This volatile compound is oxidised in the atmosphere mainly to sulphuric acid and Methanesulphonic acid (MSA), which undergo gas-to-particle processes and form secondary sub-micrometric aerosol particles. In this way, they play a relevant role as cloud concentration nuclei (CCN), therefore controlling the climate through scattering/absorption of solar irradiation and changes in cloud coverage (and so affecting albedo). Here, we report the spatial distribution of MSA and H2SO4 measured on 12-h aerosol samples (PM10) collected during two summer cruises of the Oceania ship (AREX 2011 and 2012 oceanographic cruises). The samples were collected on Teflon filters along several marine transects starting from Tromso (Norway) to Svalbard Island and along the Western side of Svalbard Islands. S-compounds distribution was also compared with the organic carbon (OC) aerosol fraction, determined by a EC/OC thermo-optical analyser, and with the atmospheric concentration of selected carboxylic acids (measured by ion chromatography). Preliminary results on the AREX 2011 aerosol samples show two sharp maxima of non-sea-salt sulphate and MSA in June, in phase one with each other, while lower contribution of biogenic emission are recorded in the filters collected in July. Besides, no clear trend along coastal to open-sea transects is evident. Higher MSA concentrations (up to 120 ng/m3) were measured near the Norwegian coast, along the Tromso

  6. Cost Estimation for Surface Navy Investment in Arctic-capable Platform to Maintain National Security Interests

    Science.gov (United States)

    2014-12-01

    perspective 24 China’s environment is significantly effected by Arctic weather patterns (International Studies on the Polar Region, 2014). This...space for Arctic cold- weather gear, which translates into greater sustainability and an increased HADR capability. The possibility of incorporating...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT COST ESTIMATION FOR SURFACE NAVY INVESTMENT IN ARCTIC

  7. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  8. Ride control of surface effect ships using distributed control

    Directory of Open Access Journals (Sweden)

    Asgeir J. Sørensen

    1994-04-01

    Full Text Available A ride control system for active damping of heave and pitch accelerations of Surface Effect Ships (SES is presented. It is demonstrated that distributed effects that are due to a spatially varying pressure in the air cushion result in significant vertical vibrations in low and moderate sea states. In order to achieve a high quality human comfort and crew workability it is necessary to reduce these vibrations using a control system which accounts for distributed effects due to spatial pressure variations in the air cushion. A mathematical model of the process is presented, and collocated sensor and actuator pairs are used. The process stability is ensured using a controller with appropriate passivity properties. Sensor and actuator location is also discussed. The performance of the ride control system is shown by power spectra of the vertical accelerations obtained from full scale experiments with a 35 m SES.

  9. Air quality monitoring in communities of the Canadian Arctic during the high shipping season with a focus on local and marine pollution

    Directory of Open Access Journals (Sweden)

    A. A. Aliabadi

    2015-03-01

    Full Text Available The Canadian Arctic has experienced decreasing sea ice extent and increasing shipping activity in recent decades. While there are economic incentives to develop resources in the north, there are environmental concerns that increasing marine traffic will contribute to declining air quality in northern communities. In an effort to characterize the relative impact of shipping on air quality in the north, two monitoring stations have been installed in Cape Dorset and Resolute, Nunavut, and have been operational since 1 June 2013. The impact of shipping and other sources of emissions on NOx, O3, SO2, BC, and PM2.5 pollution have been characterized for the 2013 shipping season from 1 June to 1 November. In addition, a high-resolution Air Quality Health Index (AQHI for both sites was computed. Shipping consistently increased O3 mixing ratio and PM2.5 concentration. The 90% confidence interval for mean difference in O3 mixing ratio between ship- and no ship-influenced air masses were up to 4.6–4.7 ppb and 2.5–2.7 ppb for Cape Dorset and Resolute, respectively. The same intervals for PM2.5 concentrations were up to 1.8–1.9 μg m−3 and 0.5–0.6 μg m−3. Ship-influenced air masses consistently exhibited an increase of 0.1 to 0.3 in the high-resolution AQHI compared to no ship-influenced air masses. Trajectory cluster analysis in combination with ship traffic tracking provided an estimated range for percent ship contribution to NOx, O3, SO2, and PM2.5 that were 12.9–17.5 %, 16.2–18.1 %, 16.9–18.3 %, and 19.5–31.7 % for Cape Dorset and 1.0–7.2 %, 2.9–4.8 %, 5.5–10.0 %, and 6.5–7.2 % for Resolute during the 2013 shipping season. Additional measurements in Resolute suggested that percent ship contribution to black carbon was 4.3–9.8 % and that black carbon constituted 1.3–9.7 % of total PM2.5 mass in ship plumes. Continued air quality monitoring in the above sites for future shipping seasons will improve the statistics in our

  10. Air quality monitoring in communities of the Canadian Arctic during the high shipping season with a focus on local and marine pollution

    Science.gov (United States)

    Aliabadi, A. A.; Staebler, R. M.; Sharma, S.

    2015-03-01

    The Canadian Arctic has experienced decreasing sea ice extent and increasing shipping activity in recent decades. While there are economic incentives to develop resources in the north, there are environmental concerns that increasing marine traffic will contribute to declining air quality in northern communities. In an effort to characterize the relative impact of shipping on air quality in the north, two monitoring stations have been installed in Cape Dorset and Resolute, Nunavut, and have been operational since 1 June 2013. The impact of shipping and other sources of emissions on NOx, O3, SO2, BC, and PM2.5 pollution have been characterized for the 2013 shipping season from 1 June to 1 November. In addition, a high-resolution Air Quality Health Index (AQHI) for both sites was computed. Shipping consistently increased O3 mixing ratio and PM2.5 concentration. The 90% confidence interval for mean difference in O3 mixing ratio between ship- and no ship-influenced air masses were up to 4.6-4.7 ppb and 2.5-2.7 ppb for Cape Dorset and Resolute, respectively. The same intervals for PM2.5 concentrations were up to 1.8-1.9 μg m-3 and 0.5-0.6 μg m-3. Ship-influenced air masses consistently exhibited an increase of 0.1 to 0.3 in the high-resolution AQHI compared to no ship-influenced air masses. Trajectory cluster analysis in combination with ship traffic tracking provided an estimated range for percent ship contribution to NOx, O3, SO2, and PM2.5 that were 12.9-17.5 %, 16.2-18.1 %, 16.9-18.3 %, and 19.5-31.7 % for Cape Dorset and 1.0-7.2 %, 2.9-4.8 %, 5.5-10.0 %, and 6.5-7.2 % for Resolute during the 2013 shipping season. Additional measurements in Resolute suggested that percent ship contribution to black carbon was 4.3-9.8 % and that black carbon constituted 1.3-9.7 % of total PM2.5 mass in ship plumes. Continued air quality monitoring in the above sites for future shipping seasons will improve the statistics in our analysis and characterize repeating seasonal patterns

  11. Air quality monitoring in communities of the Canadian Arctic during the high shipping season with a focus on local and marine pollution

    Directory of Open Access Journals (Sweden)

    A. A. Aliabadi

    2014-11-01

    Full Text Available The Canadian Arctic has experienced decreasing sea ice extent and increasing shipping activity in the recent decades. While there are economic incentives to develop resources in the North, there are environmental concerns that increasing marine traffic will contribute to declining air quality in Northern communities. In an effort to characterize the relative impact of shipping on air quality in the North, two monitoring stations have been installed in Cape Dorset and Resolute, Nunavut, and have been operational since 1 June 2013. The impact of shipping and other sources of emissions on NOx, O3, SO2, BC, and PM2.5 pollution have been characterized for the 2013 shipping season from 1 June to 1 November. In addition, a high resolution Air Quality Health Index (AQHI for both sites was computed. Shipping consistently increased O3 mixing ratio and PM2.5 concentration. The 90% confidence interval for mean difference in O3 mixing ratio between ship and no ship-influenced air masses were up to 4.6–4.7 ppb and 2.5–2.7 ppb for Cape Dorset and Resolute, respectively. The same intervals for PM2.5 concentrations were up to 1.8–1.9 μg m−3 and 0.5–0.6 μg m−3. Ship-influenced air masses consistently exhibited degraded air quality by an increase of 0.1 to 0.3 in the high resolution AQHI compared to no ship-influenced air masses. Trajectory cluster analysis in combination with ship traffic tracking provided an estimated range for percent ship contribution to NOx, O3, SO2, and PM2.5 that were 12.9–17.5%, 16.2–18.1%, 16.9–18.3%, and 19.5–31.7% for Cape Dorset and 1.0–7.2%, 2.9–4.8%, 5.5–10.0%, and 6.5–7.2% for Resolute during the 2013 shipping season. Additional measurements in Resolute suggested that percent ship contribution to black carbon was 4.3–9.8% and that black carbon constituted 1.3–9.7% of total PM2.5 mass in ship plumes. Continued air quality monitoring in the above sites for future shipping seasons will improve the

  12. Study on the Digital Manufacturing System of Ship Model Surface

    Institute of Scientific and Technical Information of China (English)

    ZHU Linsen; TANG Yangping; BIN Hongzan; FENG Qingxiu; XIONG Zhengpeng

    2006-01-01

    Because a ship model surface (SMS) is a large double-curved 3-D surface, the machining efficiency of the current handcraft manufacturing method are very low, and the precision is difficult to control also. In order to greatly improve the machining efficiency and precision of SMS, based on the CAD/CAM/CNC technology, this paper proposed a model of SMS digital manufacturing system, which is composed of five functional modules (preprocess module, CAD module, CAM module, post-process module and CNC module), and a twin-skeg SMS as an example, the key technologies & design principle of the modules were investigated also. Based on the above research works, the first set of 4-axis SMS Digital Manufacturing System in China has been successfully developed, which can reduce the machining time of the twin-skeg SMS from 30 working days needed for the current handcrafting manufacturing method to 8 hours now, and which can control more effectively the precision of SMS also.

  13. Remote sensing of Arctic boundary layer clouds above snow surfaces

    Science.gov (United States)

    Ehrlich, André; Bierwirth, Eike; Wendisch, Manfred

    2015-04-01

    In the Arctic remote sensing of clouds using reflected solar radiation is mostly related to high uncertainties as the contrast between the bright sea ice and snow surface and the clouds is low. Additionally, uncertainties result from variation of the snow grain size which changes the absorption of solar radiation similarly to the size of cloud particles. This is a major issue for understanding the response of Arctic clouds to climate warming as the quantification of cloud properties in this remote region mostly relies on satellite observations. We used spectral radiation measurements of the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer) to improve common used cloud remote sensing algorithms in case of snow surfaces. The measurements were collected during the airborne research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) above the Canadian Beaufort where both sea ice covered and ice free ocean areas were present during the observation period. Based on the spectral absorption characteristics of snow and clouds (assuming to be dominated by the liquid fraction) a combination of wavelengths was found which allows to separate the impact of clouds and snow surface on the reflected radiation measured above the clouds. While snow grain size dominates the absorption at a wavelength of 1.0 μm, information on cloud optical thickness and cloud particle effective radius can be extracted at wavelengths of 1.7 μm and 2.1 μm, respectively. Based on radiative transfer simulations lookup tables for the retrieval algorithm were calculated and used to estimate the theoretical uncertainties of the retrieval. It was found that using ratios instead of absolute radiances reduces the uncertainties significantly. The new algorithm was applied to a specific case observed during the VERDI campaign where a stratocumulus clouds was located above an ice edge. It could be shown that the method works also over water

  14. Naval Survivability and Susceptibility Reduction Study-Surface Ship

    Science.gov (United States)

    2012-09-01

    magnetic steels  High- alloy steel  Corrosion resistant alloys 32  Titanium alloys  Aluminum alloys  Metal-based composite materials...the ferromagnetic signature. As ships are built under the influence of the Earth’s magnetic field [133], the ferrous materials used in the...techniques, the magnetic field of a ship can be reduced by passive and active means. The passive reduction could be achieved by using less ferrous

  15. Utilization of the Suomi National Polar-Orbiting Partnership (NPP Visible Infrared Imaging Radiometer Suite (VIIRS Day/Night Band for Arctic Ship Tracking and Fisheries Management

    Directory of Open Access Journals (Sweden)

    William C. Straka

    2015-01-01

    Full Text Available Maritime ships operating on-board illumination at night appear as point sources of light to highly sensitive low-light imagers on-board environmental satellites. Unlike city lights or lights from offshore gas platforms, whose locations remain stationary from one night to the next, lights from ships typically are ephemeral. Fishing boat lights are most prevalent near coastal cities and along the thermal gradients in the open ocean. Maritime commercial ships also operate lights that can be detected from space. Such observations have been made in a limited way via U.S. Department of Defense satellites since the late 1960s. However, the Suomi National Polar-orbiting Partnership (S-NPP satellite, which carries a new Day/Night Band (DNB radiometer, offers a vastly improved ability for users to observe commercial shipping in remote areas such as the Arctic. Owing to S-NPP’s polar orbit and the DNB’s wide swath (~3040 km, the same location in Polar Regions can be observed for several successive passes via overlapping swaths—offering a limited ability to track ship motion. Here, we demonstrate the DNB’s improved ability to monitor ships from space. Imagery from the DNB is compared with the heritage low-light sensor, the Operational Linescan System (OLS on board the Defense Meteorological Support Program (DMSP satellites, and is evaluated in the context of tracking individual ships in the Polar Regions under both moonlit and moonless conditions. In a statistical sense, we show how DNB observations of ship lights in the East China Sea can be correlated with seasonal fishing activity, while also revealing compelling structures related to regional fishery agreements established between various nations.

  16. SMOS sea surface salinity maps of the Arctic Ocean

    Science.gov (United States)

    Gabarro, Carolina; Olmedo, Estrella; Turiel, Antonio; Ballabrera-Poy, Joaquim; Martinez, Justino; Portabella, Marcos

    2016-04-01

    years of SMOS data acquisitions. The second is the modification of the filtering criterion to account for the statistical distributions of SSS at each ocean grid point. This allows retrieving a value of SSS which is less affected by outliers originated from RFI and other effects. We will provide an assessment of the quality of these new SSS products in the Arctic, as well as illustrate the potential of these maps to monitor the main river discharges to the Arctic Ocean. [1] Font, J.; Camps, A.; Borges, A.; Martín-Neira, M.; Boutin, J.; Reul, N.; Kerr, Y.; Hahne, A. & Mecklenburg, S. SMOS: The Challenging Sea Surface Salinity Measurement From Space Proceedings of the IEEE, 2010, 98, 649 -665

  17. Moderate-resolution sea surface temperature data for the Arctic Ocean Ecoregions

    Science.gov (United States)

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. Of particular interest is the fate of the Arctic Ocean, which provides critical habitat to commercially important fish (M...

  18. Study on a PEFC propulsion system for surface ships

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryuta [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Tsuchiyama, Syozo [Shipbuilding Research Association, Tokyo (Japan)

    1996-12-31

    This Abstract summarizes a series of presentations to the present Seminar, covering various aspects of a 1,000 kW PEFC system envisaged as propulsion system to equip a 1,500 DWT Cargo vessel, reported under the following titles: (1) Performance Evaluation of 1kW PEFC (2) Performance of Catalysts for CO Removal by Methanation Reaction (3) Development of a Selective Oxidation CO Removal Reactor for Methanol Reformate Gas (4) Experimental Investigation on a Turbine Compressor for Air Supply System of a Fuel Cell (5) Dynamic Simulator for PEFC Propulsion Plant (6) Power Feature Required for PEFC Powered Electric Propulsion Ship The purpose of this study is to identify subjects requiring further development toward the realization of a practical fuel cell system to power ships.

  19. Study on a PEFC propulsion system for surface ships

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryuta [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Tsuchiyama, Syozo [Shipbuilding Research Association, Tokyo (Japan)

    1996-12-31

    This Abstract summarizes a series of presentations to the present Seminar, covering various aspects of a 1,000 kW PEFC system envisaged as propulsion system to equip a 1,500 DWT Cargo vessel, reported under the following titles: (1) Performance Evaluation of 1kW PEFC (2) Performance of Catalysts for CO Removal by Methanation Reaction (3) Development of a Selective Oxidation CO Removal Reactor for Methanol Reformate Gas (4) Experimental Investigation on a Turbine Compressor for Air Supply System of a Fuel Cell (5) Dynamic Simulator for PEFC Propulsion Plant (6) Power Feature Required for PEFC Powered Electric Propulsion Ship The purpose of this study is to identify subjects requiring further development toward the realization of a practical fuel cell system to power ships.

  20. Electric Power Load Analysis (EPLA) for Surface Ships

    Science.gov (United States)

    2012-09-17

    ESM can be based on a host of technologies to include batteries, flywheels , and ultra-capacitors. Energy storage can be provided for use in a...electrical generation, energy storage , and power conversion components and equipment and current requirements for electrical distribution equipment and...Demand factor 4 3.7 Demand power 4 3.8 Electric and propulsion plant concept of operations 4 3.9 Emergency ship control 4 3.10 Energy storage

  1. Adaptive Path Control of Surface Ships in Restricted Waters.

    Science.gov (United States)

    1980-08-01

    about the rudder model included in eq. (11), we assume exact knowledge of the rudder angle. Astrom and K9llstr6m18 note that all sensors have...properties of the ship o 11 and the control loop. Further, Astrom and Wittenmark have noted the fol- lowing conditions as necessary for the convergence...Symposium, VeL. 4, Annapolis, MD., Oct. 30-Nov. 3, 1978, pp. P 1-1 to P 1-13. 1-. Astrom , K.J., "Some Aspwcts, of the Control of Large Tankers

  2. 北极航线的世界航运网络格局影响分析%The Impact of the Arctic Route on the Global Shipping Network

    Institute of Scientific and Technical Information of China (English)

    李振福; 李漪

    2014-01-01

    The accelerated melting of Arctic sea ice is increasing the world-wide concern and thinking about Arctic route issues, especially the impact of the Arctic route on the global shipping network after the Arctic route com-pletely opens. This research analyzed the global shipping network, then dis-cussed the factors of global shipping network, and on this basis, respectively analyzed the global shipping network after the Arctic route opens, and finally put forward the corresponding strategies for China.%北冰洋冰层的加速融化,引发了世界对北极航线相关问题的关注和思考,尤其是北极航线全线贯通之后,将会对当今世界航运网络格局产生更加深远的影响。本文分析了世界航运网络格局的内涵和现状,随后讨论了世界航运网络格局的要素,并以此为基础,分析了北极航线通航后对世界航运网络格局的影响和我国的应对策略。

  3. Arctic Sea Salt Aerosol from Blowing Snow and Sea Ice Surfaces - a Missing Natural Source in Winter

    Science.gov (United States)

    Frey, M. M.; Norris, S. J.; Brooks, I. M.; Nishimura, K.; Jones, A. E.

    2015-12-01

    Atmospheric particles in the polar regions consist mostly of sea salt aerosol (SSA). SSA plays an important role in regional climate change through influencing the surface energy balance either directly or indirectly via cloud formation. SSA irradiated by sunlight also releases very reactive halogen radicals, which control concentrations of ozone, a pollutant and greenhouse gas. However, models under-predict SSA concentrations in the Arctic during winter pointing to a missing source. It has been recently suggested that salty blowing snow above sea ice, which is evaporating, to be that source as it may produce more SSA than equivalent areas of open ocean. Participation in the 'Norwegian Young Sea Ice Cruise (N-ICE 2015)' on board the research vessel `Lance' allowed to test this hypothesis in the Arctic sea ice zone during winter. Measurements were carried out from the ship frozen into the pack ice North of 80º N during February to March 2015. Observations at ground level (0.1-2 m) and from the ship's crows nest (30 m) included number concentrations and size spectra of SSA (diameter range 0.3-10 μm) as well as snow particles (diameter range 50-500 μm). During and after blowing snow events significant SSA production was observed. In the aerosol and snow phase sulfate is fractionated with respect to sea water, which confirms sea ice surfaces and salty snow, and not the open ocean, to be the dominant source of airborne SSA. Aerosol shows depletion in bromide with respect to sea water, especially after sunrise, indicating photochemically driven release of bromine. We discuss the SSA source strength from blowing snow in light of environmental conditions (wind speed, atmospheric turbulence, temperature and snow salinity) and recommend improved model parameterisations to estimate regional aerosol production. N-ICE 2015 results are then compared to a similar study carried out previously in the Weddell Sea during the Antarctic winter.

  4. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    DEFF Research Database (Denmark)

    Goncalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid

    2016-01-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys...... were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (f(mw)), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait...... was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential...

  5. Using Polymer Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase Fuel Efficiency

    Science.gov (United States)

    2010-06-01

    Using Polymer Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase Fuel Efficiency by Douglas M. Kroll B.S...Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase Fuel Efficiency 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Using Polymer Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase

  6. Forecast and emergency response of oil spill on the arctic shipping route%北极通航船舶溢油的运动数值预测与应急处置

    Institute of Scientific and Technical Information of China (English)

    梁霄; 李巍; 林建国

    2011-01-01

    基于北极海域脆弱的生态环境特点,为了将溢油污染危害降至最低,以FLUENT为研究平台,建立多项因素共同作用下的船舶溢油模型,分析溢油在有冰海域中的运动特点.结果表明;当冰盖存在时溢油会黏附于冰的下表面,扩散范围小于相同温度下自由海面上的油膜扩散范围;部分溢油会被卷吸到冰盖表面并继续迁移,加速了冰盖的融化;溢油点距离冰盖较近时造成的污染范围小于较远时的污染范围.以此为基础对冰区溢油防治措施的应用进行探讨,提出可在冰区采用围油栏与积冰联合围控、在积冰较多海水中喷洒消油剂以及在距离北极大陆较远海域使用燃烧法等应急措施来控制溢油污染,有助于我国北极通航环境管理办法的制定.%Based on the fragile ecosystem of arctic environment, the oil spill pollution in arctic shipping route was discussed. The simulation of oil spill in ice waters was built by FLUENT. The movement characteristics of oil spill in ice waters were analyzed. The results showed that the oil adhered to the ice lower surface easily, while its diffusion area was less than that on the free sea surface at the same temperature; some oil was entrained to the ice upper surface and was further transported, which accelerated the ice melting. The pollution area caused by oil spill near the ice sheet was less than that caused by oil spill far away from the ice sheet. In view of the data, the prevention and treatment methods of oil spill were discussed. The containing combination of boom and pack ice, spraying oil dispersant in icy waters and burning oil in the sea far away from arctic continent were suggested for the arctic sea waters, which could help China to establish the environment management methods for fragile ecosystem.

  7. 75 FR 80219 - National Emission Standards for Shipbuilding and Ship Repair (Surface Coating); National Emission...

    Science.gov (United States)

    2010-12-21

    ... \\1\\ OAQPS Contact \\2\\ Shipbuilding and Ship Repair Mr. Leonard Lazarus, Ms. J. Kaye (Surface Coating). (202) 564-6369, Whitfield, (919) lazarus.leonard@epa 541-2509, .gov. whitfield.kaye@epa.gov Wood Furniture Manufacturing Mr. Leonard Lazarus, Ms. J. Kaye Operations. (202) 564-6369, Whitfield,...

  8. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations

    Science.gov (United States)

    Cory, Rose M.; McKnight, Diane M.; Chin, Yu-Ping; Miller, Penney; Jaros, Chris L.

    2007-12-01

    Dissolved organic matter (DOM) originating from the extensive Arctic tundra is an important source of organic material to the Arctic Ocean. Chemical characteristics of whole water dissolved organic matter (DOM) and the fulvic acid fraction of DOM were studied from nine surface waters in the Arctic region of Alaska to gain insight into the extent of microbial and photochemical transformation of this DOM. All the fulvic acids had a strong terrestrial/higher plant signature, with uniformly depleted δ13C values of -28‰, and low fluorescence indices around 1.3. Several of the measured chemical characteristics of the Arctic fulvic acids were related to water residence time, a measure of environmental exposure to sunlight and microbial activity. For example, fulvic acids from Arctic streams had higher aromatic contents, higher specific absorbance values, lower nitrogen content, lower amino acid-like fluorescence and were more depleted in δ15N relative to fulvic acids isolated from lake and coastal surface waters. The differences in the nitrogen signature between the lake and coastal fulvic acids compared to the stream fulvic acids indicated that microbial contributions to the fulvic acid pool increased with increasing water residence time. The photo-lability of the fulvic acids was positively correlated with water residence time, suggesting that the fulvic acids isolated from source waters with larger water residence times (i.e., lakes and coastal waters) have experienced greater photochemical degradation than the stream fulvic acids. In addition, many of the initial differences in fulvic acid chemical characteristics across the gradient of water residence times were consistent with changes observed in fulvic acid photolysis experiments. Taken together, results from this study suggest that photochemical processes predominantly control the chemical character of fulvic acids in Arctic surface waters. Our findings show that hydrologic transport in addition to

  9. Occurrence of perfluoroalkyl compounds in surface waters from the North Pacific to the Arctic Ocean.

    Science.gov (United States)

    Cai, Minghong; Zhao, Zhen; Yin, Zhigao; Ahrens, Lutz; Huang, Peng; Cai, Minggang; Yang, Haizhen; He, Jianfeng; Sturm, Renate; Ebinghaus, Ralf; Xie, Zhiyong

    2012-01-17

    Perfluoroalkyl compounds (PFCs) were determined in 22 surface water samples (39-76°N) and three sea ice core and snow samples (77-87°N) collected from North Pacific to the Arctic Ocean during the fourth Chinese Arctic Expedition in 2010. Geographically, the average concentration of ∑PFC in surface water samples were 560 ± 170 pg L(-1) for the Northwest Pacific Ocean, 500 ± 170 pg L(-1) for the Arctic Ocean, and 340 ± 130 pg L(-1) for the Bering Sea, respectively. The perfluoroalkyl carboxylates (PFCAs) were the dominant PFC class in the water samples, however, the spatial pattern of PFCs varied. The C(5), C(7) and C(8) PFCAs (i.e., perfluoropentanoate (PFPA), perfluoroheptanoate (PFHpA), and perfluorooctanoate (PFOA)) were the dominant PFCs in the Northwest Pacific Ocean while in the Bering Sea the PFPA dominated. The changing in the pattern and concentrations in Pacific Ocean indicate that the PFCs in surface water were influenced by sources from the East-Asian (such as Japan and China) and North American coast, and dilution effect during their transport to the Arctic. The presence of PFCs in the snow and ice core samples indicates an atmospheric deposition of PFCs in the Arctic. The elevated PFC concentration in the Arctic Ocean shows that the ice melting had an impact on the PFC levels and distribution. In addition, the C(4) and C(5) PFCAs (i.e., perfluorobutanoate (PFBA), PFPA) became the dominant PFCs in the Arctic Ocean indicating that PFBA is a marker for sea ice melting as the source of exposure.

  10. Towards a Combined Surface Temperature Dataset for the Arctic from the Along-Track Scanning Radiometers

    Science.gov (United States)

    Dodd, Emma; Veal, Karen; Corlett, Gary; Ghent, Darren; Remedios, John

    2017-04-01

    Surface Temperature (ST) changes in the Polar Regions are predicted to be more rapid than either global averages or responses in lower latitudes. Observations increasingly confirm these findings, their urgency, and their significance in the Arctic. It is, therefore, particularly important to monitor Arctic climate change. Satellites are particularly relevant to observations of Polar Regions as they are well-served by low-Earth orbiting satellites. Whilst clouds often cause problems for satellite observations of the surface, in situ observations of STs are much sparser. The ATSRs are accurate infra-red satellite radiometers, designed explicitly for climate standard observations and particularly suited to ST observations. ATSR radiance observations have been used to retrieve sea and land ST for a series of three instruments over a period greater than twenty years. This series has been extended with the launch of SLSTR on Sentinel 3, which has the same key design features. We have combined land, ocean and sea-ice ST retrievals from ATSR-2 and AATSR to produce a new ST dataset for the Arctic; the ATSR Arctic combined Surface Temperature (AAST) dataset. The method of cloud-clearing, use of auxiliary data for ice classification and the ST retrievals used for each surface-type will be described. We will establish the accuracy of sea-ice and land-ice retrievals with results from validation against in situ data and comparison with other datasets. Time series of ST anomalies for each surface type will be presented. The time series for open ocean in the Arctic Polar Region shows a significant warming trend during the AATSR mission. Time series for land, land-ice and sea-ice show high variability as expected but also interesting patterns. Overall, our purpose is to present the state-of-the-art for ATSR observations of surface temperature change in the Arctic and hence indicate the confidence we can have in temperature change across all three domains, and in combination.

  11. Moderate-resolution sea surface temperature data and seasonal pattern analysis for the Arctic Ocean ecoregions

    Science.gov (United States)

    Payne, Meredith C.; Reusser, Deborah A.; Lee, Henry

    2012-01-01

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. In particular, the fate of the Arctic Ocean, which provides critical habitat to commercially important fish, is in question. This poses an intriguing problem for future research of Arctic environments - one that will require examination of long-term SST records. This publication describes and provides access to an easy-to-use Arctic SST dataset for ecologists, biogeographers, oceanographers, and other scientists conducting research on habitats and/or processes in the Arctic Ocean. The data cover the Arctic ecoregions as defined by the "Marine Ecoregions of the World" (MEOW) biogeographic schema developed by The Nature Conservancy as well as the region to the north from approximately 46°N to about 88°N (constrained by the season and data coverage). The data span a 29-year period from September 1981 to December 2009. These SST data were derived from Advanced Very High Resolution Radiometer (AVHRR) instrument measurements that had been compiled into monthly means at 4-kilometer grid cell spatial resolution. The processed data files are available in ArcGIS geospatial datasets (raster and point shapefiles) and also are provided in text (.csv) format. All data except the raster files include attributes identifying latitude/longitude coordinates, and realm, province, and ecoregion as defined by the MEOW classification schema. A seasonal analysis of these Arctic ecoregions reveals a wide range of SSTs experienced throughout the Arctic, both over the course of an annual cycle and within each month of that cycle. Sea ice distribution plays a major role in SST regulation in all Arctic ecoregions.

  12. Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker Amundsen from the Polar 6 aircraft platform

    Science.gov (United States)

    Aliabadi, Amir A.; Thomas, Jennie L.; Herber, Andreas B.; Staebler, Ralf M.; Leaitch, W. Richard; Schulz, Hannes; Law, Kathy S.; Marelle, Louis; Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Hoor, Peter M.; Köllner, Franziska; Schneider, Johannes; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2016-06-01

    Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of effluents originating from the Canadian Coast Guard icebreaker Amundsen operating near Resolute Bay, NU, Canada, were investigated. The Amundsen burned distillate fuel with 1.5 wt % sulfur. Emissions were studied via plume intercepts using the Polar 6 aircraft measurements, an analytical plume dispersion model, and using the FLEXPART-WRF Lagrangian particle dispersion model. The first plume intercept by the research aircraft was carried out on 19 July 2014 during the operation of the Amundsen in the open water. The second and third plume intercepts were carried out on 20 and 21 July 2014 when the Amundsen had reached the ice edge and operated under ice-breaking conditions. Typical of Arctic marine navigation, the engine load was low compared to cruising conditions for all of the plume intercepts. The measured species included mixing ratios of CO2, NOx, CO, SO2, particle number concentration (CN), refractory black carbon (rBC), and cloud condensation nuclei (CCN). The results were compared to similar experimental studies in mid-latitudes. Plume expansion rates (γ) were calculated using the analytical model and found to be γ = 0.75 ± 0.81, 0.93 ± 0.37, and 1.19 ± 0.39 for plumes 1, 2, and 3, respectively. These rates were smaller than prior studies conducted at mid-latitudes, likely due to polar boundary layer dynamics, including reduced turbulent mixing compared to mid-latitudes. All emission factors were in agreement with prior

  13. Diazotroph diversity in the sea ice, melt ponds and surface waters of the Eurasian Basin of the Central Arctic Ocean

    OpenAIRE

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A.; Rapp, Josephine Z.; Buttigieg, Pier Luigi; Krumpen, Thomas; Jonathan P Zehr; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which ...

  14. Ship hull plate processing surface fairing with constraints based on B-spline

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plane curve fairing. The algorithm can be applied to global and local curve fairing. It can constrain the perturbation range of the control points and the shape variation of the curve, and get a better fairing result in plane curves. In this paper, a new fairing algorithm with constraints for curves and surfaces in space is presented. Then this method is applied to the experiments of ship hull plate processing surface. Finally numerical results are obtained to show the efficiency of this method.

  15. Arctic surface temperatures from Metop AVHRR compared to in situ ocean and land data

    Directory of Open Access Journals (Sweden)

    G. Dybkjær

    2012-11-01

    Full Text Available The ice surface temperature (IST is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions prevail during spring in the Arctic, while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveals that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C and that the different in situ measurements complicate the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic, the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.

  16. The Role of the Mean State of Arctic Sea Ice on Near-Surface Temperature Trends

    NARCIS (Netherlands)

    Linden, van der E.C.; Bintanja, R.; Hazeleger, W.; Katsman, C.A.

    2014-01-01

    Century-scale global near-surface temperature trends in response to rising greenhouse gas concentrations in climate models vary by almost a factor of 2, with greatest intermodel spread in the Arctic region where sea ice is a key climate component. Three factors contribute to the intermodel spread:

  17. The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface

    Directory of Open Access Journals (Sweden)

    G. Sotiropoulou

    2014-02-01

    Full Text Available The vertical structure of Arctic low-level clouds and Arctic boundary layer is studied, using observations from ASCOS (Arctic Summer Cloud Ocean Study, in the central Arctic, in late summer 2008. Two general types of cloud structures are examined: the "neutrally-stratified" and "stably-stratified" clouds. Neutrally-stratified are mixed-phase clouds where radiative-cooling near cloud top produces turbulence that creates a cloud-driven mixed layer. When this layer mixes with the surface-generated turbulence, the cloud layer is coupled to the surface, whereas when such an interaction does not occur, it remains decoupled; the latter state is most frequently observed. The decoupled clouds are usually higher compared to the coupled; differences in thickness or cloud water properties between the two cases are however not found. The surface fluxes are also very similar for both states. The decoupled clouds exhibit a bimodal thermodynamic structure, depending on the depth of the sub-cloud mixed layer (SML: clouds with shallower SMLs are disconnected from the surface by weak inversions, whereas those that lay over a deeper SML are associated with stronger inversions at the decoupling height. Neutrally-stratified clouds generally precipitate; the evaporation/sublimation of precipitation often enhances the decoupling state. Finally, stably-stratified clouds are usually lower, geometrically and optically thinner, non-precipitating liquid-water clouds, not containing enough liquid to drive efficient mixing through cloud-top cooling.

  18. Arctic surface temperatures from Metop AVHRR compared to in situ ocean and land data

    Directory of Open Access Journals (Sweden)

    G. Dybkjær

    2012-03-01

    Full Text Available The ice surface temperature (IST is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions are prevailing during spring in the Arctic while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveal that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C and that the different in situ measures complicates the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.

  19. The Role of the Mean State of Arctic Sea Ice on Near-Surface Temperature Trends

    NARCIS (Netherlands)

    Linden, van der E.C.; Bintanja, R.; Hazeleger, W.; Katsman, C.A.

    2014-01-01

    Century-scale global near-surface temperature trends in response to rising greenhouse gas concentrations in climate models vary by almost a factor of 2, with greatest intermodel spread in the Arctic region where sea ice is a key climate component. Three factors contribute to the intermodel spread: 1

  20. Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970-2009

    DEFF Research Database (Denmark)

    Koldunov, Nikolay V.; Serra, Nuno; Koehl, Armin

    2014-01-01

    The performance of several numerical ocean models is assessed with respect to their simulation of sea surface height (SSH) in the Arctic Ocean, and the main patterns of SSH variability and their causes over the past 40 years (1970-2009) are analyzed. In comparison to observations, all tested mode...

  1. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    Science.gov (United States)

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  2. Methane excess in Arctic surface water- triggered by sea ice formation and melting

    Science.gov (United States)

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-11-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  3. Temperature profiles from XBT casts in the Arctic Ocean and other locations from NOAA Ship MILLER FREEMAN in support of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1976-04-26 to 1976-05-12 (NODC Accession 7601159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts in Arctic Ocean and other locations from NOAA Ship MILLER FREEMAN. Data were collected by the National Ocean...

  4. Comparison of surface fluxes and boundary-layer measurements at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Stone, Robert; Crepinsek, Sara; Albee, Robert; Makshtas, Alexander; Kustov, Vasily; Repina, Irina; Artamonov, Arseniy

    2014-05-01

    Observational evidence suggests that atmospheric energy fluxes are a major contributor to the decrease of the Arctic pack ice, seasonal land snow cover and the warming of the surrounding land areas and permafrost layers. To better understand the atmosphere-surface exchange mechanisms, improve models, and to diagnose climate variability in the Arctic, accurate measurements are required of all components of the net surface energy budget and the carbon dioxide cycle over representative areas and over multiple years. This study analyzes and discusses variability of surface fluxes and basic meteorological parameters based on measurements made at several long-term research observatories near the coast of the Arctic Ocean located in USA (Barrow), Canada (Eureka), and Russia (Tiksi). Tower-based eddy covariance and solar radiation measurements provide a long-term near continuous temporal record of hourly average mass and energy fluxes respectively. The turbulent fluxes of the momentum, sensible heat, water vapor, and carbon dioxide are supported by additional atmospheric and surface/snow/permafrost measurements (mean wind speed, air temperature and humidity, upwelling and downwelling short-wave and long-wave atmospheric and surface radiation, snow depth, surface albedo, soil heat flux, active layer temperature profiles etc.) In this study we compare annual cycles of surface fluxes including solar radiation and other ancillary data to describe four seasons in the Arctic including spring onset of melt and fall onset of snow accumulation. Particular interest is a transition through freezing point, i.e. during transition from winter to spring and from summer to fall, when the carbon dioxide and/or water vapor turbulent fluxes change their direction. According to our data, in a summer period observed temporal variability of the carbon dioxide flux was generally in anti-phase with water vapor flux (downward CO2 flux and upward H2O flux). On average the turbulent flux of carbon

  5. Surface salinity fields in the Arctic Ocean and statistical approaches to predicting anomalies and patterns

    CERN Document Server

    Chernyavskaya, Ekaterina A; Golden, Kenneth M; Timokhov, Leonid A

    2014-01-01

    Significant salinity anomalies have been observed in the Arctic Ocean surface layer during the last decade. Using gridded data of winter salinity in the upper 50 m layer of the Arctic Ocean for the period 1950-1993 and 2007-2012, we investigated the inter-annual variability of the salinity fields, attempted to identify patterns and anomalies, and developed a statistical model for the prediction of surface layer salinity. The statistical model is based on linear regression equations linking the principal components with environmental factors, such as atmospheric circulation, river runoff, ice processes, and water exchange with neighboring oceans. Using this model, we obtained prognostic fields of the surface layer salinity for the winter period 2013-2014. The prognostic fields demonstrated the same tendencies of surface layer freshening that were observed previously. A phase portrait analysis involving the first two principal components exhibits a dramatic shift in behavior of the 2007-2012 data in comparison ...

  6. Polarimetric Scattering from Two-Dimensional Dielectric Rough Sea Surface with a Ship-Induced Kelvin Wake

    Directory of Open Access Journals (Sweden)

    Pengju Yang

    2016-01-01

    Full Text Available Based on the polarimetric scattering model of second-order small-slope approximation (SSA-II with tapered wave incidence for reducing the edge effect caused by limited surface size, monostatic and bistatic polarimetric scattering signatures of two-dimensional dielectric rough sea surface with a ship-induced Kelvin wake is investigated in detail by comparison with those of sea surface without ship wake. The emphasis of this paper is on an investigation of depolarized scattering and enhanced backscattering of sea surface with a ship wake that changes the sea surface geometric structure especially for low wind conditions. Numerical simulations show that in the plane of incidence rough sea surface scattering is dominated by copolarized scattering rather than cross-polarized scattering and that under low wind conditions a larger ship speed gives rise to stronger enhanced backscattering and enhanced depolarized scattering. For both monostatic and bistatic configuration, simulation results indicate that electromagnetic scattering signatures in the presence of a ship wake dramatically differ from those without ship wake, which may serve as a basis for the detection of ships in marine environment.

  7. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid; Azetsu-Scott, Kumiko; Dodd, Paul A.; Stedmon, Colin A.

    2016-09-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (fmw), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait and EGS, a robust correlation between visible wavelength fluorescence and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential of designing in situ multi-channel DOM fluorometers to trace the freshwater origins and decipher water mass mixing dynamics in the region without laborious samples analyses.

  8. Experiment of near surface layer parameters in ice camp over Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Estimates of near surface layer parameters over (78.) N drifting ice in ice camp over the Arctic ocean are made using bulk transfer methods with the data from the experiments operated by the Chinese Arctic Scientific Expedition in August 22 September 3, 2003.The results show that the net radiation received by the snow surface is only 3.6 W/m2, among which the main part transported into atmosphere in term of sensible heat and latent heat, which account for 52% and 31% respectively,and less part being transported to deep ice in the conductive process.The bulk transfer coefficient of momentum is about 1.16 x 10-3 in the near neutral layer, which is a little smaller than that obtained over (75.)N drifting ice.However, to compare with the results observed over 75°N drifting ice over the Arctic Ocean in 1999, it can be found that the thermodynamic and momentum of interactions between sea and air are significant different with latitudes, concentration and the scale of sea ice.It is very important on considering the effect of sea-air-ice interaction over the Arctic Ocean when studying climate modeling.

  9. Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003-2014

    Science.gov (United States)

    Armitage, Thomas W. K.; Bacon, Sheldon; Ridout, Andy L.; Thomas, Sam F.; Aksenov, Yevgeny; Wingham, Duncan J.

    2016-06-01

    Arctic sea surface height (SSH) is poorly observed by radar altimeters due to the poor coverage of the polar oceans provided by conventional altimeter missions and because large areas are perpetually covered by sea ice, requiring specialized data processing. We utilize SSH estimates from both the ice-covered and ice-free ocean to present monthly estimates of Arctic Dynamic Ocean Topography (DOT) from radar altimetry south of 81.5°N and combine this with GRACE ocean mass to estimate steric height. Our SSH and steric height estimates show good agreement with tide gauge records and geopotential height derived from Ice-Tethered Profilers. The large seasonal cycle of Arctic SSH (amplitude ˜5 cm) is dominated by seasonal steric height variation associated with seasonal freshwater fluxes, and peaks in October-November. Overall, the annual mean steric height increased by 2.2 ± 1.4 cm between 2003 and 2012 before falling to circa 2003 levels between 2012 and 2014 due to large reductions on the Siberian shelf seas. The total secular change in SSH between 2003 and 2014 is then dominated by a 2.1 ± 0.7 cm increase in ocean mass. We estimate that by 2010, the Beaufort Gyre had accumulated 4600 km3 of freshwater relative to the 2003-2006 mean. Doming of Arctic DOT in the Beaufort Sea is revealed by Empirical Orthogonal Function analysis to be concurrent with regional reductions in the Siberian Arctic. We estimate that the Siberian shelf seas lost ˜180 km3 of freshwater between 2003 and 2014, associated with an increase in annual mean salinity of 0.15 psu yr-1. Finally, ocean storage flux estimates from altimetry agree well with high-resolution model results, demonstrating the potential for altimetry to elucidate the Arctic hydrological cycle.

  10. Multi-decadal Surface Temperature Trends and Extremes at Arctic Stations

    Science.gov (United States)

    Uttal, T.; Makshtas, A.

    2015-12-01

    The Arctic region is considered to be one where global temperatures are changing the most quickly; a number of factors make it the region where an accurate determination of surface temperature is the most difficult to measure or estimate. In developing a pan-Arctic perspective on Arctic in-situ temperature variability, several issues must be addressed including accounting for the different lengths of temperature records at different locations when comparing trends, accounting for the steep latitudinal controls on 'seasonal' trends, considering the often significant variability between different (sometimes a multitude) of temperature measurements made in the vicinity of a single station, and loss of detail information when data is ingested in a global archives or interpolated into gridded data sets. The International Arctic Systems for Observing the Atmosphere (www.iasoa.org) is an internationally networked consortium of facilities that measure a wide range of meteorological and climate relevant parameters; temperature is the most fundamental of these parameters. Many of the observatories have the longest temperature records in the Arctic region including Barrow, Alaska (114 years), Tiksi, Russia (83 years), and Eureka, Canada (67 years). Using the IASOA data sets a detailed analysis is presented of temperature trends presented as a function of the beginning date from which the trend is calculated, seasonal trends considered in the context of the extreme Arctic solar ephemeris, and the variability in occurrence of annual extreme temperature events. At the Tiksi observatory, a complete record is available of 3-hourly temperatures 1932 to present that was constructed through digitization of decades of written records. This data set is used to investigate if calculated trends and variabilities are consistent with those calculated from daily minimum and maximum values archived by the NOAA National Centers for Environmental Information Global Historical Climatology

  11. Temporal and spatial characteristics of surface ozone depletion events from measurements over the Arctic Ocean

    Science.gov (United States)

    Halfacre, J. W.; Knepp, T. N.; Stephens, C. R.; Pratt, K. A.; Shepson, P.; Simpson, W. R.; Peterson, P. K.; Walsh, S. J.; Matrai, P. A.; Bottenheim, J. W.; Netcheva, S.; Perovich, D. K.; Richter, A.

    2012-12-01

    Arctic tropospheric ozone depletion events (ODEs) have been studied primarily from coastal sites since the mid 1980s with only a few studies occurring over the Arctic Ocean, the hypothesized site of initiation. Despite a multitude of studies, some basic characteristics of ODEs remain poorly defined, including their temporal, spatial, and meteorological characteristics. Several deployments of autonomous, ice-tethered buoys (O-Buoys) were used to elucidate such characteristics from both the Arctic Ocean and coastal sites. The apparent first order decays imply an ozone lifetime (median of 11 hours) that would correspond to a very large BrO concentration, relative to BrO observations obtained from the buoys. These results suggest that ODEs involve a large, unaccounted for source of bromine atoms, that there is a significant contribution from other mechanisms possibly not involving bromine, or that the majority of observed ODEs represent advection of previously-depleted air to the buoy site, even in the Arctic Ocean. Using backward air mass trajectories, the spatial scales for ODEs (defined by time periods with O3 ≤ 15 nmol/mol) were estimated to be ~1800 km (mode), suggesting that most of the lower troposphere above the Arctic Ocean is frequently, at least partially, depleted of ozone. Using the same method, areas estimated to be highly depleted of O3 (ice-tethered O-Buoys provide unique data to study the characteristics of ODEs; however, more remote and simultaneous surface observations over the Arctic Ocean are necessary to enable study of both the site(s) and mechanism(s) of ODE initiation.

  12. Observations of atmospheric methane and its stable isotope ratio (δ13C) over the East Arctic seas from the ship cruises in the autumn of 2016

    Science.gov (United States)

    Pankratova, Natalia; Skorokhod, Andrey; Belikov, Igor; Semiletov, Igor; Berezina, Elena

    2017-04-01

    Methane (CH4) is the third most important greenhouse gas after water vapor and carbon dioxide (CO2) which has an integral radiative effect on the contemporary terrestrial climatic system. The methane radiative effect is 20 times as strong as carbon dioxide per unit mole. Taking into account the characteristic life time of the greenhouse gases molecules in the atmosphere, the methane global warming potential at the 100-year time interval is 20 times higher than the CO2 potential. Atmospheric CH4 mixing ratio and the changes in the methane 13C:12C ratio (reported the changes relative to a reference ratio and denoted as δ13C-CH4 and reported , in units of per mil) were measured from aboard the research vessel Akademik M.A. Lavrentiev from September to November 2016 in the Laptev, East Siberian and Chukchi Seas and as well as the North Pacific and the Sea of Japan. The measurements were made performed using a Cavity-Ring-Down Spectrometer (CRDS) from Picarro™ (model G2132-i). Together with methane concentrations of other trace gases (CO2, NO, NO2, O3) were measured. Air was sampled from an inlet at the front of the deck at 11 meters above sea level. A significant increase in methane concentration over the shelf areas of the Arctic seas and in the deltas of the large Siberian rivers is revealed in the expeditions. The measurements have confirmed the possibility of the formation of extreme methane concentrations (above 3 ppm) in the air over the areas of methane seeps of the Eastern shelf of the Arctic Ocean. The present study allowed to identify the sources of atmospheric methane in the Arctic. The measurements were compared with the surface methane data from the NOAA/ESRL arctic sites and the Tiksi station located on the shore of the Laptev Sea.

  13. Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend

    Directory of Open Access Journals (Sweden)

    Bingyi Wu

    2012-05-01

    Full Text Available We used monthly mean surface wind data from the National Centers for Environmental Prediction/National Centers for Atmospheric Research (NCEP/NCAR reanalysis dataset during the period 1979–2010 to describe the first two patterns of Arctic surface wind variability by means of the complex vector empirical orthogonal function (CVEOF analysis. The first two patterns respectively account for 31 and 16% of its total anomalous kinetic energy. The leading pattern consists of the two subpatterns: the northern Laptev Sea (NLS pattern and the Arctic dipole (AD pattern. The second pattern contains the northern Kara Sea (NKS pattern and the central Arctic (CA pattern. Over the past two decades, the combined dynamical forcing of the first two patterns has contributed to Arctic September sea ice extent (SIE minima and its declining trend. September SIE minima are mainly associated with the negative phase of the AD pattern and the positive phase of the CA pattern during the summer (July to September season, and both phases coherently show an anomalous anticyclone over the Arctic Ocean. Wind patterns affect September SIE through their frequency and intensity. The negative trend in September SIE over the past two decades is associated with increased frequency and enhanced intensity of the CA pattern during the melting season from April to September. Thus, it cannot be simply attributed to the AD anomaly characterised by the second empirical orthogonal function mode of sea level pressure north of 70°N. The CA pattern exhibited interdecadal variability in the late 1990s, and an anomalous cyclone prevailed before 1997 and was then replaced by an anomalous anticyclone over the Arctic Ocean that is consistent with the rapid decline trend in September SIE. This paper provides an alternative way to identify the dominant patterns of climate variability and investigate their associated Arctic sea ice variability from a dynamical perspective. Indeed, this study

  14. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    in their newly applied conditions. The effects of water absorption of newly applied antifouling coatings on frictional resistance were measured. A flexible rotor with artificial welding seams on its periphery has been designed and constructed to estimate the influence of welding seams on drag resistance. Both......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...... the density of welding seams (number per 5 m ship side) and the height of welding seams had a significant effect on drag resistance....

  15. Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean

    Science.gov (United States)

    Stroh, J. N.; Panteleev, Gleb; Kirillov, Sergey; Makhotin, Mikhail; Shakhova, Natalia

    2015-11-01

    Sea-surface temperature and salinity (SST/S) in the Arctic Ocean (AO) are largely governed by sea-ice and continental runoff rather than evaporation and precipitation as in lower latitude oceans, and global satellite analyses and models which incorporate remotely observed SST/S may be inaccurate in the AO due to lack of direct measurements for calibrating satellite data. For this reason, we are motivated to validate several satellite sea-surface temperature (SST) data products and SST/S models by comparing gridded data in the AO with oceanographic records from 2006 to 2013. Statistical analysis of product-minus-observation differences reveals that the satellite SST products considered have a temperature bias magnitude of less than 0.5°C compared to ship-based CTD measurements, and most of these biases are negative in sign. SST/S models also show an overall negative temperature bias, but no common sign or magnitude of salinity bias against CTD data. Ice tethered profiler (ITP) near-surface data span the seasons of several years, and these measurements reflect a sea-ice dominated region where the ocean surface cannot be remotely observed. Against this data, many of the considered models and products show large errors with detectable seasonal differences in SST bias. Possible sources of these errors are discussed, and two adjustments of product SST on the basis of sea-ice concentration are suggested for reducing bias to within less than 0.01°C of ITP near-surface temperatures.

  16. Arctic Watch

    Science.gov (United States)

    Orcutt, John; Baggeroer, Arthur; Mikhalevsky, Peter; Munk, Walter; Sagen, Hanne; Vernon, Frank; Worcester, Peter

    2015-04-01

    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This will be driven by increased demand for energy and the marine resources of an Arctic Ocean more accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism and search and rescue will increase the pressure on the vulnerable Arctic environment. Synoptic in-situ year-round observational technologies are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual and decadal scales to inform and enable sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. This paper will discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings and autonomous vehicles. This paper supports the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary, in situ Arctic Ocean Observatory.

  17. Changes in the Arctic: Background and Issues for Congress

    Science.gov (United States)

    2016-05-12

    to regulatory enforcement. It is common for cargo ships to be owned by one company, operated by a second company (which markets the ship’s space...convey ore from mines to the market further south. Some railway and mining operators are considering developing railroads and other infrastructure to...of Arctic sea ice is opening up potential new operating areas for their surface ships. The U.S. Army and Marine Corps, too, are beginning to focus

  18. Western Arctic Coastal Plain, IFSAR-derived, Digital Surface Model. University of Alaska Fairbanks, Geophysical Institute Permafrost Laboratory (2013).

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This dataset consists of a mosaic created from an Interferometric Synthetic Aperture Radar (IfSAR) derived digital surface model (DSM) acquired over the National...

  19. Ship Appearance Optimal Design on RCS Reduction Using Response Surface Method and Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    YANG De-qing; GUO Feng-jun

    2008-01-01

    Radar cross section (RCS) reduction technologies are very important in survivability of the militarynaval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scatteredenergy from one angular region of interest in space to another region of little interest. To decrease the scatteringelectromagnetic signals from ship scientifically, optimization methods should be introduced in shaping design.Based on the assumption of the characteristic section design method, mathematical formulations for optimalshaping design were established. Because of the computation-intensive analysis and singularity in shapingoptimization, the response surface method (RSM) combined genetic algorithm (GA) was proposed. The poly-nomial response surface method was adopted in model approximation. Then genetic algorithms were employedto solve the surrogate optimization problem. By comparison RCS of the conventional and the optimal design,the superiority and effectiveness of proposed design methodology were verified.Ky words: radar cross section (RCS); characteristic section design method; response surface method; genetic algorithm (GA) was proposed. The polynomial response surface method was adopted in model approximation. Then genetic algorithms were employed to solve the surrogate optimization problem. By comparison RCS of the conventional and the optimal design, the superiority and effectiveness of proposed design methodology were verified.

  20. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Lüers

    2010-01-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in Arctic landscapes. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formulae currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an atypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that the use of a hydrodynamic three-layer temperature-profile model achieves the best fit and reproduces the temporal variability of the surface temperature better than other approaches.

  1. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic turbulence experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Bareiss

    2009-08-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in an Arctic landscape. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formula currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an untypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that only the use of a hydrodynamic three-layer temperature-profile model achieves enough accuracy for heat flux calculations as it reliably reproduces the temporal variability of the surface temperature.

  2. Surface contamination of hazardous drug pharmacy storage bins and pharmacy distributor shipping containers.

    Science.gov (United States)

    Redic, Kimberly A; Fang, Kayleen; Christen, Catherine; Chaffee, Bruce W

    2016-11-17

    This study was conducted to determine whether there is contamination on exterior drug packaging using shipping totes from the distributor and carousel storage bins as surrogate markers of external packaging contamination. A two-part study was conducted to measure the presence of 5-fluorouracil, ifosfamide, cyclophosphamide, docetaxel and paclitaxel using surrogate markers for external drug packaging. In Part I, 10 drug distributor shipping totes designated for transport of hazardous drugs provided a snapshot view of contamination from regular use and transit in and out of the pharmacy. An additional two totes designated for transport of non-hazardous drugs served as controls. In Part II, old carousel storage bins (i.e. those in use pre-study) were wiped for snapshot view of hazardous drug contamination on storage bins. New carousel storage bins were then put into use for storage of the five tested drugs and used for routine storage and inventory maintenance activities. Carousel bins were wiped at time intervals 0, 8, 16 and 52 weeks to measure surface contamination. Two of the 10 hazardous shipping totes were contaminated. Three of the five-old carousel bins were contaminated with cyclophosphamide. One of the old carousel bins was also contaminated with ifosfamide. There were no detectable levels of hazardous drugs on any of the new storage bins at time 0, 8 or 16 weeks. However, at the Week 52, there was a detectable level of 5-FU present in the 5-FU carousel bin. Contamination of the surrogate markers suggests that external packaging for hazardous drugs is contaminated, either during the manufacturing process or during routine chain of custody activities. These results demonstrate that occupational exposure may occur due to contamination from shipping totes and storage bins, and that handling practices including use of personal protective equipment is warranted. © The Author(s) 2016.

  3. Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production

    Science.gov (United States)

    Robinson, M.M.; Valdes, P.J.; Haywood, A.M.; Dowsett, H.J.; Hill, D.J.; Jones, S.M.

    2011-01-01

    The mid-Pliocene warm period (MPWP; ~. 3.3 to 3.0. Ma) is the most recent interval in Earth's history in which global temperatures reached and remained at levels similar to those projected for the near future. The distribution of global warmth, however, was different than today in that the high latitudes warmed more than the tropics. Multiple temperature proxies indicate significant sea surface warming in the North Atlantic and Arctic Oceans during the MPWP, but predictions from a fully coupled ocean-atmosphere model (HadCM3) have so far been unable to fully predict the large scale of sea surface warming in the high latitudes. If climate proxies accurately represent Pliocene conditions, and if no weakness exists in the physics of the model, then model boundary conditions may be in error. Here we alter a single boundary condition (bathymetry) to examine if Pliocene high latitude warming was aided by an increase in poleward heat transport due to changes in the subsidence of North Atlantic Ocean ridges. We find an increase in both Arctic sea surface temperature and deepwater production in model experiments that incorporate a deepened Greenland-Scotland Ridge. These results offer both a mechanism for the warming in the North Atlantic and Arctic Oceans indicated by numerous proxies and an explanation for the apparent disparity between proxy data and model simulations of Pliocene northern North Atlantic and Arctic Ocean conditions. Determining the causes of Pliocene warmth remains critical to fully understanding comparisons of the Pliocene warm period to possible future climate change scenarios. ?? 2011.

  4. Sources of springtime surface black carbon in the Arctic: an adjoint analysis for April 2008

    Science.gov (United States)

    Qi, Ling; Li, Qinbin; Henze, Daven K.; Tseng, Hsien-Liang; He, Cenlin

    2017-08-01

    We quantify source contributions to springtime (April 2008) surface black carbon (BC) in the Arctic by interpreting surface observations of BC at five receptor sites (Denali, Barrow, Alert, Zeppelin, and Summit) using a global chemical transport model (GEOS-Chem) and its adjoint. Contributions to BC at Barrow, Alert, and Zeppelin are dominated by Asian anthropogenic sources (40-43 %) before 18 April and by Siberian open biomass burning emissions (29-41 %) afterward. In contrast, Summit, a mostly free tropospheric site, has predominantly an Asian anthropogenic source contribution (24-68 %, with an average of 45 %). We compute the adjoint sensitivity of BC concentrations at the five sites during a pollution episode (20-25 April) to global emissions from 1 March to 25 April. The associated contributions are the combined results of these sensitivities and BC emissions. Local and regional anthropogenic sources in Alaska are the largest anthropogenic sources of BC at Denali (63 % of total anthropogenic contributions), and natural gas flaring emissions in the western extreme north of Russia (WENR) are the largest anthropogenic sources of BC at Zeppelin (26 %) and Alert (13 %). We find that long-range transport of emissions from Beijing-Tianjin-Hebei (also known as Jing-Jin-Ji), the biggest urbanized region in northern China, contribute significantly (˜ 10 %) to surface BC across the Arctic. On average, it takes ˜ 12 days for Asian anthropogenic emissions and Siberian biomass burning emissions to reach the Arctic lower troposphere, supporting earlier studies. Natural gas flaring emissions from the WENR reach Zeppelin in about a week. We find that episodic transport events dominate BC at Denali (87 %), a site outside the Arctic front, which is a strong transport barrier. The relative contribution of these events to surface BC within the polar dome is much smaller (˜ 50 % at Barrow and Zeppelin and ˜ 10 % at Alert). The large contributions from Asian anthropogenic

  5. Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds

    Science.gov (United States)

    Zamora, Lauren M.; Kahn, Ralph A.; Eckhardt, Sabine; McComiskey, Allison; Sawamura, Patricia; Moore, Richard; Stohl, Andreas

    2017-06-01

    Aerosol indirect effects have potentially large impacts on the Arctic Ocean surface energy budget, but model estimates of regional-scale aerosol indirect effects are highly uncertain and poorly validated by observations. Here we demonstrate a new way to quantitatively estimate aerosol indirect effects on a regional scale from remote sensing observations. In this study, we focus on nighttime, optically thin, predominantly liquid clouds. The method is based on differences in cloud physical and microphysical characteristics in carefully selected clean, average, and aerosol-impacted conditions. The cloud subset of focus covers just ˜ 5 % of cloudy Arctic Ocean regions, warming the Arctic Ocean surface by ˜ 1-1.4 W m-2 regionally during polar night. However, within this cloud subset, aerosol and cloud conditions can be determined with high confidence using CALIPSO and CloudSat data and model output. This cloud subset is generally susceptible to aerosols, with a polar nighttime estimated maximum regionally integrated indirect cooling effect of ˜ -0.11 W m-2 at the Arctic sea ice surface (˜ 8 % of the clean background cloud effect), excluding cloud fraction changes. Aerosol presence is related to reduced precipitation, cloud thickness, and radar reflectivity, and in some cases, an increased likelihood of cloud presence in the liquid phase. These observations are inconsistent with a glaciation indirect effect and are consistent with either a deactivation effect or less-efficient secondary ice formation related to smaller liquid cloud droplets. However, this cloud subset shows large differences in surface and meteorological forcing in shallow and higher-altitude clouds and between sea ice and open-ocean regions. For example, optically thin, predominantly liquid clouds are much more likely to overlay another cloud over the open ocean, which may reduce aerosol indirect effects on the surface. Also, shallow clouds over open ocean do not appear to respond to aerosols as

  6. Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds

    Directory of Open Access Journals (Sweden)

    L. M. Zamora

    2017-06-01

    Full Text Available Aerosol indirect effects have potentially large impacts on the Arctic Ocean surface energy budget, but model estimates of regional-scale aerosol indirect effects are highly uncertain and poorly validated by observations. Here we demonstrate a new way to quantitatively estimate aerosol indirect effects on a regional scale from remote sensing observations. In this study, we focus on nighttime, optically thin, predominantly liquid clouds. The method is based on differences in cloud physical and microphysical characteristics in carefully selected clean, average, and aerosol-impacted conditions. The cloud subset of focus covers just ∼ 5 % of cloudy Arctic Ocean regions, warming the Arctic Ocean surface by ∼ 1–1.4 W m−2 regionally during polar night. However, within this cloud subset, aerosol and cloud conditions can be determined with high confidence using CALIPSO and CloudSat data and model output. This cloud subset is generally susceptible to aerosols, with a polar nighttime estimated maximum regionally integrated indirect cooling effect of ∼ −0.11 W m−2 at the Arctic sea ice surface (∼ 8 % of the clean background cloud effect, excluding cloud fraction changes. Aerosol presence is related to reduced precipitation, cloud thickness, and radar reflectivity, and in some cases, an increased likelihood of cloud presence in the liquid phase. These observations are inconsistent with a glaciation indirect effect and are consistent with either a deactivation effect or less-efficient secondary ice formation related to smaller liquid cloud droplets. However, this cloud subset shows large differences in surface and meteorological forcing in shallow and higher-altitude clouds and between sea ice and open-ocean regions. For example, optically thin, predominantly liquid clouds are much more likely to overlay another cloud over the open ocean, which may reduce aerosol indirect effects on the surface. Also, shallow clouds over

  7. Sources of springtime surface black carbon in the Arctic: an adjoint analysis for April 2008

    Directory of Open Access Journals (Sweden)

    L. Qi

    2017-08-01

    Full Text Available We quantify source contributions to springtime (April 2008 surface black carbon (BC in the Arctic by interpreting surface observations of BC at five receptor sites (Denali, Barrow, Alert, Zeppelin, and Summit using a global chemical transport model (GEOS-Chem and its adjoint. Contributions to BC at Barrow, Alert, and Zeppelin are dominated by Asian anthropogenic sources (40–43 % before 18 April and by Siberian open biomass burning emissions (29–41 % afterward. In contrast, Summit, a mostly free tropospheric site, has predominantly an Asian anthropogenic source contribution (24–68 %, with an average of 45 %. We compute the adjoint sensitivity of BC concentrations at the five sites during a pollution episode (20–25 April to global emissions from 1 March to 25 April. The associated contributions are the combined results of these sensitivities and BC emissions. Local and regional anthropogenic sources in Alaska are the largest anthropogenic sources of BC at Denali (63 % of total anthropogenic contributions, and natural gas flaring emissions in the western extreme north of Russia (WENR are the largest anthropogenic sources of BC at Zeppelin (26 % and Alert (13 %. We find that long-range transport of emissions from Beijing–Tianjin–Hebei (also known as Jing–Jin–Ji, the biggest urbanized region in northern China, contribute significantly (∼ 10 % to surface BC across the Arctic. On average, it takes ∼ 12 days for Asian anthropogenic emissions and Siberian biomass burning emissions to reach the Arctic lower troposphere, supporting earlier studies. Natural gas flaring emissions from the WENR reach Zeppelin in about a week. We find that episodic transport events dominate BC at Denali (87 %, a site outside the Arctic front, which is a strong transport barrier. The relative contribution of these events to surface BC within the polar dome is much smaller (∼ 50 % at Barrow and Zeppelin and ∼ 10 % at

  8. Distribution of benthic foraminifers (>125 um) in the surface sediments of the Arctic Ocean

    Science.gov (United States)

    Osterman, Lisa E.; Poore, Richard Z.; Foley, Kevin M.

    1999-01-01

    Census data on benthic foraminifers (>125 ?m) in surface sediment samples from 49 box cores are used to define four depth-controlled biofacies, which will aid in the paleoceanographic reconstruction of the Arctic Ocean. The shelf biofacies contains a mix of shallow-water calcareous and agglutinated species from the continental shelves of the Beaufort and Chukchi Seas and reflects the variable sedimentologic and oceanic conditions of the Arctic shelves. The intermediate-depth calcareous biofacies, found between 500 and 1,100 meters water depth (mwd), contains abundant Cassidulina teretis , presumably indicating the influence of Atlantic-derived water at this depth. In water depths between 1,100 and 3,500 m, a deepwater calcareous biofacies contains abundant Oridorsalis umbonatus . Below 3,500 mwd, the deepwater mixed calcareous/agglutinated biofacies of the Canada, Makarov, and Eurasian Basins reflects a combination of low productivity, dissolution, and sediment transport. Two other benthic foraminiferal species show specific environmental preferences. Fontbotia wuellerstorfi has a depth distribution between 900 and 3,500 mwd, but maximum abundance occurs in the region of the Mendeleyev Ridge. The elevated abundance of F. wuellerstorfi may be related to increased food supply carried by a branch of Atlantic water that crosses the Lomonosov Ridge near the Russian Continental Shelf. Triloculina frigida is recognized to be a species preferring lower slope sediments commonly disturbed by turbidites and bottom currents. INTRODUCTION At present, our understanding of the Arctic Ocean lags behind our understanding of other oceans, and fundamental questions still exist about its role in and response to global climate change. The Arctic Ocean is particularly sensitive to climatic fluctuations because small changes in the amounts of sea-ice cover can alter global albedo and thermohaline circulation (Aagaard and Carmack, 1994). Numerous questions still exist regarding the nature

  9. Surface Energy Fluxes During Arctic Freeze-Up

    Science.gov (United States)

    Persson, Ola; Blomquist, Byron; Guest, Peter; Fairall, Christopher; Stammerjohn, Sharon; Brooks, Ian; Björk, Göran; Tjernström, Michael; Inoue, Jun

    2016-04-01

    This presentation will use atmospheric and ocean mixed-layer observations from three cruises during the past two years to examine the magnitude and variability of the air-ocean energy fluxes, the sources of the variability, the impact of the fluxes on the ocean mixed-layer thermal structure, and how these surface energy fluxes impact the initial ice formation. The measurements were made during the ACSE, Mirai, and Sea State field programs, the first two obtaining measurements near the ice edge in the Laptev and Chukchi Seas in September 2014 and the last along the advancing ice edge in the Beaufort/Chukchi Sea in October 2015. These time periods include the onset of continuous ocean heat loss, the initial episodic ice formation, and the core period for southward advance of the ice. Frequent atmospheric soundings and continuous remote-sensor measurements provide the vertical kinematic and thermodynamic structure in the lower troposphere. Broadband radiometers, turbulent flux sensors, surface temperature sensors, surface characterization instruments, and basic meteorological instrumentation provide continuous measurements of all surface energy flux terms (shortwave/longwave radiation, sensible/latent turbulent heat fluxes), allowing the quantification of the total energy exchange between the ocean and the atmosphere. Furthermore, each cruise provided continuous measurements of the upper-ocean temperature and salinity and frequent CTD measurements of the ocean temperature and salinity profiles, providing estimates of upper-ocean energy evolution. Various methods for characterizing the ocean surface (open ocean, ice cover, ice thickness, wave state, etc.) allow linking energy changes with changes in ocean surface conditions. Analyses of the September and October conditions show persistent ocean heat loss after Sep. 15 because of the reduction of downwelling shortwave radiation and strong impacts of off-ice airflow on turbulent heat fluxes and downwelling longwave

  10. Diazotroph diversity in the sea ice, melt ponds and surface waters of the Eurasian Basin of the Central Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Mar Fernández-Méndez

    2016-11-01

    Full Text Available The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing towards a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77ºN. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.

  11. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean

    Science.gov (United States)

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A.; Buttigieg, Pier L.; Rapp, Josephine Z.; Krumpen, Thomas; Zehr, Jonathan P.; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed. PMID:27933047

  12. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean.

    Science.gov (United States)

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A; Buttigieg, Pier L; Rapp, Josephine Z; Krumpen, Thomas; Zehr, Jonathan P; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.

  13. Sea surface height determination in the arctic ocean from Cryosat2 SAR data, the impact of using different empirical retrackers

    DEFF Research Database (Denmark)

    Jain, Maulik; Andersen, Ole Baltazar; Stenseng, Lars

    2012-01-01

    Cryosat2 Level 1B SAR data can be processed using different empirical retrackers to determine the sea surface height and its variations in the Arctic Ocean. Two improved retrackers based on the combination of OCOG (Offset Centre of Gravity), Threshold methods and Leading Edge Retrieval is used...... to estimate the sea surface height in the Arctic Region. This sea surface height determination is to be compared with the Level2 sea surface height components available in the Cryosat2 data. Further a comparison is done with the marine gravity field for retracker performance evaluation....

  14. Simulation of arctic surface radiation and energy budget during the summertime using the single-column model

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; WANG Hui; ZHANG Zhanhai; WU Huiding

    2008-01-01

    The surface heat budget of the Arctic Ocean (SHEBA) project has shown that the study of the surface heat budget characteristics is crucial to understanding the interface process and environmental change in the polar region.An arctic single-column model (ARCSCM) of Colorado University is used to simulate the arctic surface radiation and energy budget during the summertime.The simulation results are analyzed and compared with the SHEBA measurements.Sensitivity analyses are performed to test microphys- ical and radiative parameterizations in this model.The results show that the ARCSCM model is able to simulate the surface radia- tion and energy budget in the arctic during the summertime,and the different parameterizations have a significant influence on the results.The combination of cloud microphysics and RRTM parameterizations can fairly derive the surface solar shortwave radiation and downwelling Iongwave radiation flux.But this cloud microphysics parameterization scheme deviates notably from the simula- tion of surface sensible and latent heat flux.Further improvement for the parameterization scheme applied to the Arctic Regions is necessary.

  15. Arctic and Antarctic Analogs for Planetary Surface Traverses

    Science.gov (United States)

    Hoffman, Stephen J.; Cameron, A. O.

    2009-01-01

    The proposed paper summarizes the workshop presentations and discusses several of the key findings or lessons including: (1) A recognition that NASA s current approach for long duration planetary surface operations has fundamental differences from any of the operational approaches described by the invited speakers. These approaches drive the crew size and skill mix to accomplish basic objectives and, in turn, drive the logistical pyramid needed to support these operations. NASA will review the operational approaches of the organizations represented to understand the differentiating factors. NASA will then decide if it should alter its current approach to surface exploration. (2) There are potential parallels between key characteristics of the systems used for exploration in these environments, such as heated volume as an analog for pressurized volume or energy usage for various activities. NASA will look at these characteristics to identify which could help with preliminary planning and gather raw data from the presenters to model these characteristics. (3) New technologies are being applied and design approaches are being tailored to take advantage of these technologies on both side. Interactions between these two communities has begun or is expanding to understand how these new technologies are being leveraged: NASA habitation designers are exchanging ideas and approaches with the Antarctic station designers; Antarctic support

  16. Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater

    Science.gov (United States)

    Irish, Victoria E.; Elizondo, Pablo; Chen, Jessie; Chou, Cédric; Charette, Joannie; Lizotte, Martine; Ladino, Luis A.; Wilson, Theodore W.; Gosselin, Michel; Murray, Benjamin J.; Polishchuk, Elena; Abbatt, Jonathan P. D.; Miller, Lisa A.; Bertram, Allan K.

    2017-09-01

    The sea-surface microlayer and bulk seawater can contain ice-nucleating particles (INPs) and these INPs can be emitted into the atmosphere. Our current understanding of the properties, concentrations, and spatial and temporal distributions of INPs in the microlayer and bulk seawater is limited. In this study we investigate the concentrations and properties of INPs in microlayer and bulk seawater samples collected in the Canadian Arctic during the summer of 2014. INPs were ubiquitous in the microlayer and bulk seawater with freezing temperatures in the immersion mode as high as -14 °C. A strong negative correlation (R = -0. 7, p = 0. 02) was observed between salinity and freezing temperatures (after correction for freezing depression by the salts). One possible explanation is that INPs were associated with melting sea ice. Heat and filtration treatments of the samples show that the INPs were likely heat-labile biological materials with sizes between 0.02 and 0.2 µm in diameter, consistent with previous measurements off the coast of North America and near Greenland in the Arctic. The concentrations of INPs in the microlayer and bulk seawater were consistent with previous measurements at several other locations off the coast of North America. However, our average microlayer concentration was lower than previous observations made near Greenland in the Arctic. This difference could not be explained by chlorophyll a concentrations derived from satellite measurements. In addition, previous studies found significant INP enrichment in the microlayer, relative to bulk seawater, which we did not observe in this study. While further studies are needed to understand these differences, we confirm that there is a source of INP in the microlayer and bulk seawater in the Canadian Arctic that may be important for atmospheric INP concentrations.

  17. Arctic air pollution: Challenges and opportunities for the next decade

    Directory of Open Access Journals (Sweden)

    S.R. Arnold

    2016-05-01

    Full Text Available Abstract The Arctic is a sentinel of global change. This region is influenced by multiple physical and socio-economic drivers and feedbacks, impacting both the natural and human environment. Air pollution is one such driver that impacts Arctic climate change, ecosystems and health but significant uncertainties still surround quantification of these effects. Arctic air pollution includes harmful trace gases (e.g. tropospheric ozone and particles (e.g. black carbon, sulphate and toxic substances (e.g. polycyclic aromatic hydrocarbons that can be transported to the Arctic from emission sources located far outside the region, or emitted within the Arctic from activities including shipping, power production, and other industrial activities. This paper qualitatively summarizes the complex science issues motivating the creation of a new international initiative, PACES (air Pollution in the Arctic: Climate, Environment and Societies. Approaches for coordinated, international and interdisciplinary research on this topic are described with the goal to improve predictive capability via new understanding about sources, processes, feedbacks and impacts of Arctic air pollution. Overarching research actions are outlined, in which we describe our recommendations for 1 the development of trans-disciplinary approaches combining social and economic research with investigation of the chemical and physical aspects of Arctic air pollution; 2 increasing the quality and quantity of observations in the Arctic using long-term monitoring and intensive field studies, both at the surface and throughout the troposphere; and 3 developing improved predictive capability across a range of spatial and temporal scales.

  18. An optimal design of wind turbine and ship structure based on neuro-response surface method

    Directory of Open Access Journals (Sweden)

    Jae-Chul Lee

    2015-07-01

    Full Text Available The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface. The Response Surface Method (RSM is generally used to predict the system performance in engi-neering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN which is considered as Neuro-Response Surface Method (NRSM. The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II. Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance, we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

  19. An optimal design of wind turbine and ship structure based on neuro-response surface method

    Directory of Open Access Journals (Sweden)

    Lee Jae-Chul

    2015-07-01

    Full Text Available The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface. The Response Surface Method (RSM is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN which is considered as Neuro-Response Surface Method (NRSM. The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II. Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance, we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

  20. A Holocene Record of Changing Arctic Surface Ice Drift, Analogous to the Effects of the Arctic Oscillation

    Science.gov (United States)

    Darby, D. A.; Bischof, J. F.

    2003-12-01

    The Arctic Oscillation (AO) controls the strength and location of the Trans Polar Drift (TPD), a system that exports ice through Fram Strait into the Nordic Seas. There, changing amounts of sea ice influence surface water salinity and the formation of North Atlantic deep water (NADW), and this, in turn has an impact on the global climate. Therefore, in order to understand how the global climate system functions it is imperative to know how the TPD changed over the last millennium or more. To that end we performed a provenance study on ice rafted sand grains in a sediment core located near the confluence of the counterclockwise TPD and the clockwise Beaufort Gyre. The core has more than 200 cm of Holocene sediment with intervals dominated by grains from the Siberian shelves alternating with intervals of abundant grains from North American sources. Grains matched to Siberian shelves indicate that the TPD was shifted toward North America similar to what occurs during a more positive phase of the AO. This scenario alternated with intervals where few grains matched to Russian sources. During the last 1300 years increased influx of Russian grains occurred approximately every 50-150 years. We suggest that this periodicity represents the long-term fluctuation of the AO, which produces the same TPD shift today. In addition, we found evidence for ice drift changes corresponding to the Medieval Warm interval from 900-1200 AD and at the end of the last deglaciation when glacial iceberg rafting rapidly declined. These more recent changes prior to the Little Ice Age were opposite in sense to the mineralogic changes at the last termination, and might indicate changes leading to the onset of the Little Ice Age.

  1. COMPLEX NETWORK CHARACTERISTICS OF ARCTIC ROUTE SHIPPING NEIVVORK NATIONAL RIGHTS STRUCTURE%北极航道海运网络的国家权益格局复杂特征研究

    Institute of Scientific and Technical Information of China (English)

    李振福; 李亚军; 孙建平

    2011-01-01

    The national rights system of an Arctic route shipping network can be defined abstractly as a network of states.The structure and characteristics of the network are important to the rights structure. According to the meaning of the rights structure, the complex network characteristics of the national fights structure of the Arctic route shipping network is analyzed. Reasons for individuality in the network are then examined. This research provides the government with scientific research methods and theoretical support for contending Arctic route shipping network national rights in the future.%北极航道海运网络的国家权益系统可以抽象为由相关权益国家构成的复杂网络,这个网络的结构和性质对研究北极航道海运网络国家权益格局具有重要意义.在提出北极航道海运网络国家权益格局涵义的基础上,对北极航道国家权益网络表现出的复杂特性进行了分析,并对其表现出来的一些不符合典型复杂网络统计特征的现象进行了解释,可为今后我国政府的北极航道海运网络国家权益争取提供科学的研究手段和理论支持.

  2. Seasonal cues of Arctic grayling movement in a small Arctic stream: the importance of surface water connectivity

    Science.gov (United States)

    Heim, Kurt C.; Wipfli, Mark S.; Whitman, Matthew S.; Arp, Christopher D.; Adams, Jeff; Falke, Jeffrey A.

    2015-01-01

    In Arctic ecosystems, freshwater fish migrate seasonally between productive shallow water habitats that freeze in winter and deep overwinter refuge in rivers and lakes. How these movements relate to seasonal hydrology is not well understood. We used passive integrated transponder tags and stream wide antennae to track 1035 Arctic grayling in Crea Creek, a seasonally flowing beaded stream on the Arctic Coastal Plain, Alaska. Migration of juvenile and adult fish into Crea Creek peaked in June immediately after ice break-up in the stream. Fish that entered the stream during periods of high flow and cold stream temperature traveled farther upstream than those entering during periods of lower flow and warmer temperature. We used generalized linear models to relate migration of adult and juvenile fish out of Crea Creek to hydrology. Most adults migrated in late June – early July, and there was best support (Akaike weight = 0.46; w i ) for a model indicating that the rate of migration increased with decreasing discharge. Juvenile migration occurred in two peaks; the early peak consisted of larger juveniles and coincided with adult migration, while the later peak occurred shortly before freeze-up in September and included smaller juveniles. A model that included discharge, minimum stream temperature, year, season, and mean size of potential migrants was most strongly supported (w i  = 0.86). Juvenile migration rate increased sharply as daily minimum stream temperature decreased, suggesting fish respond to impending freeze-up. We found fish movements to be intimately tied to the strong seasonality of discharge and temperature, and demonstrate the importance of small stream connectivity for migratory Arctic grayling during the entire open-water period. The ongoing and anticipated effects of climate change and petroleum development on Arctic hydrology (e.g. reduced stream connectivity, earlier peak flows, increased evapotranspiration) have important implications

  3. Terminal sliding mode fuzzy control based on multiple sliding surfaces for nonlinear ship autopilot systems

    Science.gov (United States)

    Yuan, Lei; Wu, Han-Song

    2010-12-01

    A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the problem, the controller was designed by employing the universal approximation property of fuzzy logic system, the advantage of Nussbaum function, and using multiple sliding mode control algorithm based on the recursive technique. In the last step of designing, a nonsingular terminal sliding mode was utilized to drive the last state of the system to converge in a finite period of time, and high-order sliding mode control law was designed to eliminate the chattering and make the system robust. The simulation results showed that the controller designed here could track a desired course fast and accurately. It also exhibited strong robustness peculiarly to system, and had better adaptive ability than traditional PID control algorithms.

  4. Automated Visual Inspection of Ship Hull Surfaces Using the Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Carlos Fernández-Isla

    2013-01-01

    Full Text Available A new online visual inspection technique is proposed, based on a wavelet reconstruction scheme over images obtained from the hull. This type of visual inspection to detect defects in hull surfaces is commonly carried out at shipyards by human inspectors before the hull repair task starts. We propose the use of Shannon entropy for automatic selection of the band for image reconstruction which provides a low decomposition level, thus avoiding excessive degradation of the image, allowing more precise defect segmentation. The proposed method here is capable of on-line assisting to a robotic system to perform grit blasting operations over damage areas of ship hulls. This solution allows a reliable and cost-effective operation for hull grit spot blasting. A prototype of the automated blasting system has been developed and tested in the Spanish NAVANTIA shipyards.

  5. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    Science.gov (United States)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-02-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  6. Synthesis of primary production in the Arctic Ocean: I. Surface waters, 1954-2007

    Science.gov (United States)

    Matrai, P. A.; Olson, E.; Suttles, S.; Hill, V.; Codispoti, L. A.; Light, B.; Steele, M.

    2013-03-01

    The spatial and seasonal magnitude and variability of primary production in the Arctic Ocean (AO) is quantified with a pan-arctic approach. We synthesize estimates of primary production (PP), focusing on surface waters (0-5 m), using complementary methods that emphasize different spatial and temporal scales. These methods include (1) in situ observations of 14C uptake mostly and possibly some O2 production reported in units of carbon (in situ PP), (2) remotely sensed primary production (sat-PP), and (3) an empirical algorithm giving net PP as a function of in situ chlorophyll a (in situ Chl-PP). The work presented herein examines historical data for PP collected in surface waters only, as they form the majority of the values of a larger ensemble of PP data collected over >50 years (ARCSS-PP) by many national and international efforts. This extended set of surface and vertically-resolved data will provide pan-Arctic validation of remotely sensed chlorophyll a and PP, an extremely valuable tool in this environment which is so difficult to sample. To this day, PP data in the AO are scarce and have uneven temporal and spatial coverage which, when added to the AO’s regional heterogeneity, its strong seasonal changes, and limited access, have made and continue to make obtaining a comprehensive picture of PP in the AO difficult. Daily surface in situ PP averaged 70 and 21 mg C m-3 d-1 for spring and summer, respectively, for the ca. 50 year period across the AO. Average daily estimates of in situ PP in surface waters on a pan-Arctic basis were several fold higher with respect to remotely sensed PP (sat-PP) and in situ chlorophyll-derived PP (Chl-PP) in the spring period, likely due to differences in data availability and coverage. Summer daily averages for surface in situ PP and sat-PP were similar and twice as high as in situ Chl-PP. Differences among annual estimates of surface in situ PP, in situ Chl-PP and sat-PP across the Arctic Ocean are presented and discussed

  7. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    Science.gov (United States)

    Gao, Q.; Leck, C.; Rauschenberg, C.; Matrai, P. A.

    2012-07-01

    The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud Ocean Study (ASCOS) in August 2008, particulate organic matter (POM, with size range > 0.22 μm) and dissolved organic matter (DOM, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM (> 5 kDa) and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Aerosol particles, artificially generated by bubbling experiments, were enriched in polysaccharides by factors of 22-70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides could be one of the possible mechanisms for the enrichment of polysaccharides in the high Arctic open lead SML.

  8. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    Directory of Open Access Journals (Sweden)

    Q. Gao

    2012-01-01

    Full Text Available The surface microlayer (SML represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW. Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS. During the Arctic Summer Cloud-Ocean Study (ASCOS in August 2008, particulate and dissolved organic matter (POM, DOM samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW DOM and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Experimentally-generated aerosol particles were enriched in polysaccharides by factors of 22–70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides was one of the possible mechanisms for the enrichment of polysaccharides in the SML.

  9. Fine-resolution simulation of surface current and sea ice in the Arctic Mediterranean Seas

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying; ZHANG Xuehong; YU Rucong; LIU Hailong; LI Wei

    2007-01-01

    A fine-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (141 st-150 th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.

  10. A sub-surface eddy at inertial current layer in the Canada Basin, Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An Arctic Ocean eddy in sub-surface layer is analyzed in this paper by use of temperature, salinity and current profiles data obtained at an ice camp in the Canada Basin during the second Chinese Arctic Expedition in summer of 2003.In the vertical temperature section, the eddy shows itself as an isolated cold water block at depth of 60 m with a minimum temperature of-1.5℃, about 0.5℃ colder than the ambient water.Isopycnals in the eddy form a pattern of convex, which indicates the eddy is anticyclonic.Although maximum velocity near O.4 m s-1 occurs in the current records observed synchronously, the current pattern is far away from a typical eddy.By further analysis, inertial frequency oscillations with amplitudes comparable with the eddy velocity are found in the sub-surface layer currents.After filter the inertial current and mean current, an axisymmetric current pattern of an eddy with maximum velocity radius of 5 km is obtained.The analysis of the T-S characteristics of the eddy core water and its ambient waters supports the conclusion that the eddy was formed on the Chukchi Shelf and migrated northeastward into the northern Canada Basin.

  11. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    Directory of Open Access Journals (Sweden)

    Q. Gao

    2012-07-01

    Full Text Available The surface microlayer (SML represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW. Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS. During the Arctic Summer Cloud Ocean Study (ASCOS in August 2008, particulate organic matter (POM, with size range > 0.22 μm and dissolved organic matter (DOM, < 0.22 μm, obtained after filtration samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW DOM (> 5 kDa and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Aerosol particles, artificially generated by bubbling experiments, were enriched in polysaccharides by factors of 22–70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides could be one of the possible mechanisms for the

  12. Numerical simulation of the impact of underlying surface changes on Arctic climate

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying; XIA Huasheng

    2014-01-01

    Using a regional atmospheric model for Arctic climate simulation, two groups of numerical experiments were carried out to study the inlfuence of changes in the underlying surface (land surface, sea surface, and sea ice (LS/SS/SI)) from mild ice years to severe ice years on Arctic climate. In each experiment in the same group, the initial values and lateral boundary conditions were identical. The underlying surface conditions were updated every six hours. The model was integrated for 10 a and monthly mean results were saved for analysis. Variations in annual mean surface air temperature were closely correlated with changes in LS/SS/SI, with a maximum change of more than 15 K. The impact of changes in LS/SS/SI on low-level air temperature was also evident, with signiifcant changes seen over the ocean. However, the maximum change was less than 2 K. For air temperature above 700 hPa, the impact of LS/SS/SI changes was not signiifcant. The distribution of annual mean sea level pressure differences was coincident with the distribution of annual mean sea ice concentration. The difference centers were located in the Barents Sea, the Kara Sea, and the East Siberian Sea, with the maximum value exceeding 3 hPa. For geopotential height, some results passed and some failed at-test. For results passing thet-test, the area of signiifcance did not decrease with height. There was a signiifcant difference at high levels, with a value of 27 gpm in the difference center at 200 hPa.

  13. How Will Aerosol-Cloud Interactions Change in an Ice-Free Arctic Summer?

    Science.gov (United States)

    Gilgen, Anina; Katty Huang, Wan Ting; Ickes, Luisa; Lohmann, Ulrike

    2016-04-01

    Future temperatures in the Arctic are expected to increase more than the global mean temperature, which will lead to a pronounced retreat in Arctic sea ice. Before mid-century, most sea ice will likely have vanished in late Arctic summers. This will allow ships to cruise in the Arctic Ocean, e.g. to shorten their transport passage or to extract oil. Since both ships and open water emit aerosol particles and precursors, Arctic clouds and radiation may be affected via aerosol-cloud and cloud-radiation interactions. The change in radiation feeds back on temperature and sea ice retreat. In addition to aerosol particles, also the temperature and the open ocean as a humidity source should have a strong effect on clouds. The main goal of this study is to assess the impact of sea ice retreat on the Arctic climate with focus on aerosol emissions and cloud properties. To this purpose, we conducted ensemble runs with the global climate model ECHAM6-HAM2 under present-day and future (2050) conditions. ECHAM6-HAM2 was coupled with a mixed layer ocean model, which includes a sea ice model. To estimate Arctic aerosol emissions from ships, we used an elaborated ship emission inventory (Peters et al. 2011); changes in aerosol emissions from the ocean are calculated online. Preliminary results show that the sea salt aerosol and the dimethyl sulfide burdens over the Arctic Ocean significantly increase. While the ice water path decreases, the total water path increases. Due to the decrease in surface albedo, the cooling effect of the Arctic clouds becomes more important in 2050. Enhanced Arctic shipping has only a very small impact. The increase in the aersol burden due to shipping is less pronounced than the increase due to natural emissions even if the ship emissions are increased by a factor of ten. Hence, there is hardly an effect on clouds and radiation caused by shipping. References Peters et al. (2011), Atmos. Chem. Phys., 11, 5305-5320

  14. A Characterization of Arctic Aerosols as Derived from Airborne Observations and their Influence on the Surface Radiation Budget

    Science.gov (United States)

    Herber, A.; Stone, R.; Liu, P. S.; Li, S.; Sharma, S.; Neuber, R.; Birnbaumn, G.; Vitale, V.

    2011-12-01

    Arctic climate is influenced by aerosols that affect the radiation balance at the surface and within the atmosphere. Impacts depend on the composition and concentration of aerosols that determine opacity, which is quantified by the measure of aerosol optical depth (AOD). During winter and spring, aerosols are transported into the Arctic from lower latitude industrial regions. Trans-Arctic flight missions PAMARCMiP (Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project) of the German POLAR 5 during spring 2009 and spring 2011 provided opportunities to collect a comprehensive data set from which properties of the aerosol were derived, including AOD. Measurements were made from near the surface to over 4 km in altitude during flights between Svalbard, Norway and Pt. Barrow, Alaska. These, along with measurements of particle size and concentration, and black carbon content (BC) provide a three-dimensional characterization of the aerosols encountered along track. The horizontal and vertical distribution of Arctic haze, in particular, was evaluated. During April 2009, the Arctic atmosphere was variably turbid with total column AOD (at 500 nm) ranging from ~ 0.12 to > 0.35, where clean background values are typically Stone et al., 2010). The haze was concentrated within and just above the surface-based temperature inversion layer. Few, distinct elevated aerosol layers were observed, also with an aerosol airborne Lidar. The presence of these haze layers in the Arctic atmosphere during spring reduced the diurnally averaged net shortwave irradiance, which can cause cooling of the surface, depending on its Albedo (reflectivity). An overview of both campaigns will be given with results presented in the context of historical observations and current thinking about the impact aerosols have on the Arctic climate. Stone, R.S., A. Herber, V. Vitale, M. Mazzola, A. Lupi, R. Schnell, E.G. Dutton, P. Liu, S.M. Li, K. Dethloff, A. Lampert, C. Ritter, M. Stock

  15. Mineralogical study of surface sediments in the western Arctic Ocean and their implications for material sources

    Institute of Scientific and Technical Information of China (English)

    DONG Linsen; SHI Xuefa; LIU Yanguang; FANG Xisheng; CHEN Zhihua; WANG Chunjuan; ZOU Jianjun; HUANG Yuanhui

    2014-01-01

    Mineralogical analysis was performed on bulk sediments of 79 surface samples using X-ray diffraction. The analytical results, combined with data on ocean currents and the regional geological background, were used to investigate the mineral sources. Mineral assemblages in sediments and their distribution in the study area indicate that the material sources are complex. (1) Feldspar is abundant in the sediments of the middle Chukchi Sea near the Bering Strait, originating from sediments in the Anadyr River carried by the Anadyr Current. Sediments deposited on the western side of the Chukchi Sea are rich in feldspar. Compared with other areas, sediments in this region are rich in hornblende transported from volcanic and sedimentary rocks in Siberia by the Anadyr Stream and the Siberian Coastal Current. Sediments in the eastern Chukchi Sea are rich in quartz sourced from sediments of the Yukon and Kuskokwim rivers carried by the Alaska Coastal Current. Sediments in the northern Chukchi Sea are rich in quartz and carbonates from the Mackenzie River sediments. (2) Sediments of the southern and central Canada Basin contain little calcite and dolomite, mainly due to the small impact of the Beaufort Gyre carrying carbonates from the Canadian Arctic Islands. Compared with other areas, the mica content in the region is high, implying that the Laptev Sea is the main sediment source for the southern and central Canada Basin. In the other deep sea areas, calcite and dolomite levels are high caused by the input of large amounts of sediment carried by the Beaufort Gyre from the Canadian Arctic Islands (Banks and Victoria). The Siberian Laptev Sea also provides small amounts of sediment for this region. Furthermore, the Atlantic mid-water contributes some fine-grained material to the entire deep western Arctic Ocean.

  16. Methane excess in Arctic surface water-triggered by sea ice formation and melting

    OpenAIRE

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-01-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence t...

  17. Near-surface temperature profiles collected from an Arctic Wave Glider (AWG) near the Arctic ice-edge in the Beaufort Sea from July 29, 2011 to September 23, 2011 (NODC Accession 0088841)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in the attached files are near-surface temperature profiles collected by an Arctic Wave Glider (AWG) from July 29-Sept 23, 2011. Temperatures were collected...

  18. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K.; Jakuba, Michael V.; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  19. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    Science.gov (United States)

    Katlein, C.; Arndt, S.; Nicolaus, M.; Perovich, D. K.; Jakuba, M.; Suman, S.; Elliott, S.; Whitcomb, L. L.; McFarland, C.; Gerdes, R.; Boetius, A.

    2015-12-01

    The changes in physical properties of sea ice such as decreased thickness and increased melt pond cover observed over the last decades severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role in the amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to undertake challenging research at the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance onboard the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely-piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three-dimensional under-ice topography and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties during summer on the spatial variability of light transmittance. Results show that surface properties dominate the spatial distribution of the under-ice light field on small scales (<1000m²), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we suggest an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  20. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  1. Design and Thermodynamic Analysis of a Steam Ejector Refrigeration/Heat Pump System for Naval Surface Ship Applications

    Directory of Open Access Journals (Sweden)

    Cüneyt Ezgi

    2015-12-01

    Full Text Available Naval surface ships should use thermally driven heating and cooling technologies to continue the Navy’s leadership role in protecting the marine environment. Steam ejector refrigeration (SER or steam ejector heat pump (SEHP systems are thermally driven heating and cooling technologies and seem to be a promising technology to reduce emissions for heating and cooling on board naval surface ships. In this study, design and thermodynamic analysis of a seawater cooled SER and SEHP as an HVAC system for a naval surface ship application are presented and compared with those of a current typical naval ship system case, an H2O-LiBr absorption heat pump and a vapour-compression heat pump. The off-design study estimated the coefficient of performances (COPs were 0.29–0.11 for the cooling mode and 1.29–1.11 for the heating mode, depending on the pressure of the exhaust gas boiler at off-design conditions. In the system operating at the exhaust gas boiler pressure of 0.2 MPa, the optimum area ratio obtained was 23.30.

  2. Collected Experimental Resistance Component and Flow Data for Three Surface Ship Model Hulls

    Science.gov (United States)

    1985-09-01

    in alphabetical order: Bulgarian Ship Hydro. Centre (BSHC) Centre Stud, di Tecnica Navale (CETENA) China Ship Scientific Res. Center (CSSRC) David...test in a run. 26 PRACTICAL EXAMPLES 2 Because the sinkage is proportional to V , the differences between the experi- mental a’s at the two

  3. Surface and Tethered-Balloon Observations of Actinic Flux: Effects of Arctic stratus, Surface Albedo and Solar Zenith Angle

    NARCIS (Netherlands)

    Roode, S.R. de; Duynkerke, P.G.; Boot, Wim; Hage, Jeroen C.H. van der

    2000-01-01

    As part of the FIRE III (First ISCCP Regional Experiment) Arctic Cloud Experiment actinic flux measurements were made above the Arctic Sea ice during May 1998. FIRE III was designed to address questions concerning clouds, radiation and chemistry in the Arctic sea ice region. The actinic flux,

  4. Sea Surface Height Determination In The Arctic Using Cryosat-2 SAR Data From Primary Peak Empirical Retrackers

    DEFF Research Database (Denmark)

    Jain, Maulik; Andersen, Ole Baltazar; Dall, Jørgen

    2015-01-01

    SAR waveforms from Cryosat-2 are processed using primary peak empirical retrackers to determine the sea surface height in the Arctic. The empirical retrackers investigated are based on the combination of the traditional OCOG (Offset Center of Gravity) and threshold methods with primary peak...

  5. Correlations between Inter-Annual Variations in Arctic Sea Ice Extent, Greenland Surface Melt, and Boreal Snow Cover

    Science.gov (United States)

    Markus, Thorstena; Stroeve, Julienne C.; Armstrong, Richard L.

    2004-01-01

    Intensification of global warming in recent decades has caused a rise of interest in year-to-year and decadal-scale climate variability in the Arctic. This is because the Arctic is believed to be one of the most sensitive and vulnerable regions to climatic changes. For over two decades satellite passive microwave observations have been utilized to continuously monitor the Arctic environment. Derived parameters include sea ice cover, snow cover and snow water equivalent over land, and Greenland melt extent and length of melt season. Most studies have primarily concentrated on trends and variations of individual variables. In this study we investigated how variations in sea ice cover, Greenland surface melt, and boreal snow cover are correlated. This was done on hemispheric as well as on regional scales. Latest results will be presented including data from the summer of 2004.

  6. Correlations between Inter-Annual Variations in Arctic Sea Ice Extent, Greenland Surface Melt, and Boreal Snow Cover

    Science.gov (United States)

    Markus, Thorstena; Stroeve, Julienne C.; Armstrong, Richard L.

    2004-01-01

    Intensification of global warming in recent decades has caused a rise of interest in year-to-year and decadal-scale climate variability in the Arctic. This is because the Arctic is believed to be one of the most sensitive and vulnerable regions to climatic changes. For over two decades satellite passive microwave observations have been utilized to continuously monitor the Arctic environment. Derived parameters include sea ice cover, snow cover and snow water equivalent over land, and Greenland melt extent and length of melt season. Most studies have primarily concentrated on trends and variations of individual variables. In this study we investigated how variations in sea ice cover, Greenland surface melt, and boreal snow cover are correlated. This was done on hemispheric as well as on regional scales. Latest results will be presented including data from the summer of 2004.

  7. Surface Ships: Navy Needs to Revise Its Decommissioning Policy to Improve Future Decision Making

    Science.gov (United States)

    2014-06-01

    Island ( LSD 41) class dock-landing ships. Examples of these types of ships are shown in figure 1. Figure 1: Images of a Navy Cruiser and Dock...remaining in 2014, and the LSD 41 class dock-landing ships had, on average, 15 years of expected service life remaining. The Navy’s Battle Force...Amphibious transport dock (LPD 4 class) 1 35 45 Amphibious transport dock (LPD 17 class) 9 40 4 Dock-landing ( LSD 41 class) 8 40 25 Dock-landing

  8. Status of persistent organic pollutants and heavy metals in surface water of Arctic region

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Trace pollutants in the surface water of the Arctic region have been analyzed by the capillary gas chromatography with the micro-electron capture detector (GC- μECD), the gas chromatography-mass spectrometry (GC- MS) and the inductively coupled plasmas-mass spectrometry (ICP-MS). Compared with previously reported studies, concentrations of OCPs in these regions are much lower than those in the last decades. The ratio of α-/γ-HCH indicates the different pesticide composition between these two regions and is the potential marker for the source of the OCPs. Many other OCPs with different residue patterns have also been found for the first time in the two regions. No heavy metal contaminant was found in the investigation regions.

  9. Apparatus for towing by ships for removal of oil slicks and other forms of buoyant pollutants from a water surface

    Energy Technology Data Exchange (ETDEWEB)

    Pedrick, A.P.

    1971-06-30

    This device may be towed behind crude oil tankers and other ships for the purpose of removing oil slicks, or other flotsam, from the surface of the water in which they are buoyant. The device consists of a coil of hose, a substantial part of which can float above the water surface. By operation of controls on the towing ship, a drum of drums may be rotated within the device to payout the coils of hose to such an extent that they take up an arcuate shape at the water surfaces so that by continued forward movement of the towing vessel, oil slicks and other pollutants at the water surface are swept towards the outer ends of the arcuate lengths of hose. From here they may be sucked and pumped into tanks inboard of the towing vessel through lengths of nonbuoyant hose linking the outer ends of the buoyant hose lengths to pumps near the stren of the towing vessel or ship. (1 claim)

  10. Stable climate and surface mass balance in Svalbard over 1979–2013 despite the Arctic warming

    Directory of Open Access Journals (Sweden)

    C. Lang

    2015-01-01

    (Model for Interdisciplinary Research on Climate global model (MARMIROC5 from the CMIP5 (Coupled Model Intercomparison Project database, we have modelled the climate and surface mass balance of Svalbard at a 10 km resolution over 1979–2013. The integrated total surface mass balance (SMB over Svalbard modelled by MARERA is negative (−1.6 Gt yr−1 with a large interannual variability (7.1 Gt but, unlike over Greenland, there has been no acceleration of the surface melt over the past 35 years because of the recent change in atmospheric circulation bringing northwesterly flows in summer over Svalbard, contrasting the recent observed Arctic warming. However, in 2013, the atmospheric circulation changed to a south–southwesterly flow over Svalbard causing record melt, SMB (−20.4 Gt yr−1 and summer temperature. MIROC5 is significantly colder than ERA-Interim over 1980–2005 but MARMIROC5 is able to improve the near-surface MIROC5 results by simulating not significant SMB differences with MARERA over 1980–2005. On the other hand, MIROC5 does not represent the recent atmospheric circulation shift in summer and induces in MARMIROC5 a significant trend of decreasing SMB (−0.6 Gt yr−2 over 1980–2005.

  11. Relating the Chemical Composition of Dissolved Organic Matter Draining Permafrost Soils to its Photochemical Degradation in Arctic Surface Waters.

    Science.gov (United States)

    Ward, C.; Cory, R. M.

    2015-12-01

    Thawing permafrost soils are expected to shift the chemical composition of DOM exported to and degraded in arctic surface waters. While DOM photo-degradation is an important component of the freshwater C cycle in the Arctic, the molecular controls on DOM photo-degradation remain poorly understood, making it difficult to predict how shifting chemical composition may alter DOM photo-degradation in arctic surface waters. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer to complete photo-oxidation to CO₂ and partial photo-oxidation to compounds that remain in the DOM pool, and investigated changes in DOM chemical composition following sunlight exposure. DOM leached from the organic mat contained higher molecular weight, more oxidized and unsaturated aromatic species compared to permafrost DOM. Despite significant differences in initial chemical composition, permafrost and organic mat DOM had similar susceptibilities to complete photo-oxidation to CO₂. Concurrent losses of carboxyl moieties and shifts in chemical composition during photo-degradation indicated that carboxyl-rich tannin-like compounds in both DOM sources were likely photo-decarboxylated to CO₂. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic compounds that act as "antioxidants" and slow the oxidation of DOM. These results demonstrated how chemical composition controls the photo-degradation of DOM in arctic surface waters, and that DOM photo-degradation will likely remain an important component of the freshwater C budget in the Arctic with increased export of permafrost DOM to surface waters.

  12. A multi-parameter database for Arctic shipping routes: The example of sea ice%基于多源共享数据的北极航道海域冰情分析

    Institute of Scientific and Technical Information of China (English)

    邵晨; 蒋雪中; 恽才兴

    2015-01-01

    Global warming and sea ice melt have made commercial navigation possible in the Arctic Ocean in summer. However, it is rare for Chinese commercial vessels to use an Arctic shipping route to travel from Asian harbors to Europe. Before establishing Arctic shipping routes, we must colect basic geographic information to establish a geodatabase for Arctic navigation. In this paper, sea ice data is obtained from open-access websites from countries such as the USA, Canada, Norway, and Russia. These data meet the spatial, temporal, and formatting demands of the geodatabase. Data from different sources also provide a way to check for data consistency in the same time periods and geographic areas.%随着全球气候变暖,北冰洋季节性大规模通航已经可以预见.为开辟北极航道服务,保障航道航行安全,采集航线所经海域及沿岸国家和地区基础地理信息,建立基础数据库是基础.以东北航道所经海域海冰覆盖为例,获取多国海洋信息服务网络的海冰共享数据,按照空间信息系统要求,相互校验,提高数据时效和空间覆盖频率,处理成适用于保障北极航道安全航行的信息,讨论了东北航道所经海区的海冰对航道开通时间的影响,实现航道水域海冰信息的通航期(7月1日到11月30日)逐日发布,非通航期(12月1日到次年6月30日)半月发布一次,为北极航道大规模通航积累经验和基础信息.

  13. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Sedlar, Joseph; Tjernstroem, Michael; Leck, Caroline [Stockholm University, Department of Meteorology, Stockholm (Sweden); Mauritsen, Thorsten [Max-Planck-Institute for Meteorology, Hamburg (Germany); Shupe, Matthew D.; Persson, P.O.G. [University of Colorado, NOAA-ESRL-PSD, Boulder, CO (United States); Brooks, Ian M.; Birch, Cathryn E. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Sirevaag, Anders [University of Bergen, Bjerknes Center for Climate Research, Bergen (Norway); Nicolaus, Marcel [Norwegian Polar Institute, Tromsoe (Norway); Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2011-10-15

    Snow surface and sea-ice energy budgets were measured near 87.5 N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7 C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m{sup -2} and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m{sup -2}, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. (orig.)

  14. Ship-borne Observations of Atmospheric Black Carbon Aerosol Particles over the Arctic Ocean, Bering Sea, and North Pacific Ocean during September 2014

    Science.gov (United States)

    Taketani, F.; Miyakawa, T.; Takashima, H.; Komazaki, Y.; Kanaya, Y.; PAN, X.; Inoue, J.

    2015-12-01

    Measurements of refractory black carbon (rBC) aerosol particles using a highly sensitive online single particle soot photometer were performed on-board the R/V Mirai during a cruise across the Arctic Ocean, Bering Sea, and the North Pacific Ocean (31 August-9 October 2014). The measured rBC mass concentrations over the Arctic Ocean in the latitudinal region > 70°N were in the range 0-66 ng/m3 for 1-min averages, with an overall mean value of 1.0 ± 1.2 ng/m3. Single-particle-based observations enabled the measurement of such low rBC mass concentrations. The effects of long-range transport from continents to the Arctic Ocean were limited during the observed period, suggesting that such low rBC concentration levels would prevail over the Arctic Ocean. An analysis of rBC mixing states showed that particles with a non-shell/core structure made a significant contribution to the rBC particles detected over the Arctic Ocean.

  15. Arctic Summer Ice Processes

    Science.gov (United States)

    Holt, Benjamin

    1999-01-01

    The primary objective of this study is to estimate the flux of heat and freshwater resulting from sea ice melt in the polar seas. The approach taken is to examine the decay of sea ice in the summer months primarily through the use of spaceborne Synthetic Aperture Radar (SAR) imagery. The improved understanding of the dynamics of the melt process can be usefully combined with ice thermodynamic and upper ocean models to form more complete models of ice melt. Models indicate that more heat is absorbed in the upper ocean when the ice cover is composed of smaller rather than larger floes and when there is more open water. Over the course of the summer, floes disintegrate by physical forcing and heating, melting into smaller and smaller sizes. By measuring the change in distribution of floes together with open water over a summer period, we can make estimates of the amount of heating by region and time. In a climatic sense, these studies are intended to improve the understanding of the Arctic heat budget which can then be eventually incorporated into improved global climate models. This work has two focus areas. The first is examining the detailed effect of storms on floe size and open water. A strong Arctic low pressure storm has been shown to loosen up the pack ice, increase the open water concentration well into the pack ice, and change the distribution of floes toward fewer and smaller floes. This suggests episodic melting and the increased importance of horizontal (lateral) melt during storms. The second focus area is related to an extensive ship-based experiment that recently took place in the Arctic called Surface Heat Budget of the Arctic (SHEBA). An icebreaker was placed purposely into the older pack ice north of Alaska in September 1997. The ship served as the base for experimenters who deployed extensive instrumentation to measure the atmosphere, ocean, and ice during a one-year period. My experiment will be to derive similar measurements (floe size, open

  16. Surface water mass composition changes captured by cores of Arctic land-fast sea ice

    Science.gov (United States)

    Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.

    2016-04-01

    In the Arctic, land-fast sea ice growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea ice cores. To determine changes in sea water isotope composition over the course of the ice growth period, the output of a sea ice thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea ice oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea ice growth rates are used to validate the output of the sea ice growth model. It is shown that for sea ice formed during the 2011/2012 ice growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea ice isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea ice growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea ice cores is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast ice regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea ice effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when

  17. Impact of interactive vegetation phenology on the simulated pan-Arctic land surface state

    Science.gov (United States)

    Teufel, Bernardo; Sushama, Laxmi

    2016-04-01

    The pan-Arctic land surface is undergoing rapid changes in a warming climate, with near-surface permafrost projected to degrade significantly during the 21st century. This can have important impacts on the regional climate and hydrology through various feedbacks, including vegetation-related feedbacks. In this study, the impact of interactive phenology on the land surface state, including near-surface permafrost, is assessed by comparing two simulations of the Canadian Land Surface Scheme (CLASS) - one with interactive phenology, modelled using the Canadian Terrestrial Ecosystem Model (CTEM), and the other with prescribed phenology. These simulations are performed for the 1979-2012 period, using atmospheric forcing from ECMWF's ERA-Interim reanalysis. The impact of interactive phenology on projected changes to the land surface state are also assessed by comparing two simulations of CLASS (with and without interactive phenology), spanning the 1961-2100 period, driven by atmospheric forcing from a transient climate change simulation of the 5th generation Canadian Regional Climate Model (CRCM5) for the Representative Concentration Pathway 8.5 (RCP8.5). Comparison of the CLASS coupled to CTEM simulation with available observational estimates of plant area index, primary productivity, spatial distribution of permafrost and active layer thickness suggests that the model captures reasonably well the general distribution of vegetation and permafrost. Significant differences in evapotranspiration, leading to differences in runoff, soil temperature and active layer thickness are noted when comparing CLASS simulations with and without interactive phenology. Furthermore, the CLASS simulations with and without interactive phenology for RCP8.5 show extensive near-surface permafrost degradation by the end of the 21st century, with slightly accelerated degradation of permafrost in the simulation with interactive phenology, pointing towards a positive feedback of changes in

  18. Stable climate and surface mass balance in Svalbard over 1979–2013 despite the Arctic warming

    Directory of Open Access Journals (Sweden)

    C. Lang

    2014-08-01

    Full Text Available With the help of the regional climate model MAR forced by the ERA-Interim reanalysis (MARERA and the MIROC5 global model (MARMIROC5 from the CMIP5 database, we have modelled the climate and surface mass balance of Svalbard at a 10 km resolution over 1979–2013. The integrated total SMB over Svalbard modelled by MARERA is negative (−1.6 Gt yr−1 with a large interannual variability (7.1 Gt but, unlike over Greenland, there has been no acceleration of the surface melt over the past 35 years because of the recent change in atmospheric circulation bringing northerly flows in summer over Svalbard, contrasting the recent observed Arctic warming. However, in 2013, the atmospheric circulation changed to a southwesterly flow over Svalbard causing a record of melt, SMB (−20.4 Gt yr−1 and summer temperature. MIROC5 is significantly colder than ERA-Interim over 1980–2005 but MARMIROC5 is able to improve the near-surface MIROC5 results by simulating not significant SMB differences with MARERA over 1980–2005. On the other hand, MIROC5 does not represent the recent atmospheric circulation shift in summer and induces in MARMIROC5 a significant trend of decreasing SMB (−0.6 Gt yr−2 over 1980–2005.

  19. Summertime surface O3 behavior and deposition to tundra in the Alaskan Arctic

    Science.gov (United States)

    Van Dam, Brie; Helmig, Detlev; Doskey, Paul V.; Oltmans, Samuel J.

    2016-07-01

    Atmospheric turbulence quantities, boundary layer ozone (O3) levels, and O3 deposition to the tundra surface were investigated at Toolik Lake, AK, during the 2011 summer season. Beginning immediately after snowmelt, a diurnal cycle of O3 in the atmospheric surface layer developed with daytime O3 maxima, and minima during low-light hours, resulting in a mean amplitude of 13 ppbv. This diurnal O3 cycle is far larger than observed at other high Arctic locations during the snow-free season. During the snow-free months of June, July, and August, O3 deposition velocities were ˜3 to 5 times faster than during May, when snow covered the ground most of the month. The overall mean O3 deposition velocity between June and August was 0.10 cm s-1. The month of June had the highest diurnal variation, with a median O3 deposition velocity of 0.2 cm s-1 during the daytime and 0.08 cm s-1 during low-light conditions. These values are slightly lower than previously reported summertime deposition velocities in northern latitudes over tundra or fen. O3 loss during low-light periods was attributed to a combination of surface deposition to the tundra and stable boundary layer conditions. We also hypothesize that emissions of reactive biogenic volatile organic compounds into the shallow boundary layer may contribute to nighttime O3 loss.

  20. Surface Temperature Trends in the Arctic and the Antarctic from AVHRR and In Situ Data

    Science.gov (United States)

    Perez, G. J. P.; Comiso, J. C.

    2015-12-01

    The earliest signals of a climate change are expected to be observed in the polar regions in part because of the high reflectively of snow and ice. Because of general inaccessibility, there is a paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the two regions. The sensor with the longest satellite record on temperature has been the NOAA/Advanced Very High Resolution Radiometer (AVHRR) that has provided continuous thermal infrared data for more than 33 years. The results of analysis of the data show that there is indeed a strong signal coming from the Arctic with the trend in surface temperature (for the region > 64°N) being 0.6°C per decade which is about 3 times the global trend of 0.2°C per decade for the same period. It appeared surprising when the results from a similar region (> 64 °S) in the Antarctic show a much lower trend and comparable to the global trend. The primary source of error in the temperature data is cloud masking associated with the similar signatures of clouds and snow/ice covered surfaces. However, the derived AVHRR data show good consistency with in situ data with standard deviation less than 1°C. The AVHRR time series has also been compared and showed compatibility with data from the Aqua/Moderate Resolution Imaging Spectroradiometer (MODIS) which have been available from 2000 to the present. Some differences in the trends from the two hemispheres are expected because of very different geographical environments in the two regions. The relationships of the trend with the atmospheric global circulation in the north, as defined by the Northern Annular Mode (NAM), and that in the south, as defined by the Southern Annular Mode (SAM), have been observed to be generally weak. The occurrences of the Antarctic Circumpolar Wave (ACW) and ENSO were also studied and not considered a significant factor. It is intriguing that the observed variability in

  1. Light absorption and partitioning in Arctic Ocean surface waters: impact of multi year ice melting

    Directory of Open Access Journals (Sweden)

    S. Bélanger

    2013-03-01

    Full Text Available Ice melting in the Arctic Ocean exposes the surface water to more radiative energy with poorly understood effects on photo-biogeochemical processes and heat deposition in the upper ocean. In August 2009, we documented the vertical variability of light absorbing components at 37 stations located in the southeastern Beaufort Sea including both Mackenzie river-influenced waters and polar mixed layer waters. We found that melting multi-year ice released significant amount of non-algal particulates (NAP near the sea surface relative to sub-surface waters. NAP absorption coefficients at 440 nm (aNAP(440 immediately below the sea surface (0- were on average 3-fold (up to 10-fold higher compared to sub-surface values measured at 2–3 m depth. The impact of this unusual feature on the light transmission and remote sensing reflectance (Rrs was further examined using a radiative transfer model. A 10-fold particle enrichment homogeneously distributed in the first meter of the water column slightly reduced photosynthetically available and usable radiation (PAR and PUR by ~6% and ~8%, respectively, relative to a fully homogenous water column with low particles concentration. In terms of Rrs, the particle enrichment significantly flattered the spectrum by reducing the Rrs by up to 20% in the blue-green spectral region (400–550 nm. These results highlight the impact of melt water on the concentration of particles at sea surface, and the need for considering nonuniform vertical distribution of particles in such systems when interpreting remotely sensed ocean color. Spectral slope of aNAP spectra calculated in the UV domain decreased with depth suggesting that this parameter is sensitive to detritus composition and/or diagenesis state (e.g., POM photobleaching.

  2. Experiments on bubble generation by a hydrofoil moving beneath the water surface for reducing ship drag

    Science.gov (United States)

    Kumagai, Ichiro; Murai, Yuichi; Takahashi, Yoshiaki; Sakamaki, Haruki; Tsukahara, Takahiro; Ozaki, Tsubasa; Tasaka, Yuji; Oishi, Yoshihiko

    2014-04-01

    We have invented two types of hydrofoil bubble generator for drag reduction of ship that can reduce the energy for air bubble generation on the ship hull. Their fundamental process of air entrainment and subsequent bubble generation by the hydrofoil facility are described by a simple fluid dynamic model. We experimentally determined the critical velocity of the bubble generation and the relationship between air volume flow rate and the hydrofoil velocity. The magnitude of the negative pressure produced above the hydrofoil, which is a driving force of the air entrainment, depends on the shape of the hydrofoil, gap ratio (normalized depth of the hydrofoil), Reynolds number, Froude number, and angle of attack. Recent applications of the drag-reduction technology with air bubbles to a ship save about 10%-15% of the total energy consumption of the ship. The device works as a self-priming pump when the draft of the ship is shallow (hydrofoil depends on the flow condition around the hydrofoil, proper operation of compressors is necessary. We also show experimental results on optimization of hydrofoils to enhance the hydrofoil performance of air entrainment and air bubble generation.

  3. Towards a Combined Surface Temperature Dataset for the Arctic from the Along-Track Scanning Radiometers (ATSRs)

    Science.gov (United States)

    Dodd, Emma; Veal, Karen; Corlett, Gary; Ghent, Darren; Remedios, John

    2016-04-01

    Surface Temperature (ST) changes in the Polar Regions are predicted to be more rapid than either global averages or responses in lower latitudes. Observations increasingly confirm these findings in the Arctic. It is, therefore, particularly important to monitor Arctic climate change. Satellites are particularly relevant to observations of Polar latitudes as they are well-served by low-Earth orbiting satellites. Whilst clouds often cause problems for satellite observations of the surface, in situ observations are much sparser. The ATSRs are accurate infra-red satellite radiometers, designed explicitly for climate standard observations and particularly suited to ST observations. ATSR radiance observations have been used to retrieve sea and land ST for a series of three instruments over a period greater than twenty years. This series will be extended with the launch of SLSTR on Sentinel 3, which has the same key design features necessary for providing climate quality ST datasets. We have combined land, ocean and sea-ice ST retrievals from ATSR-2 and AATSR to produce a new ST dataset for the Arctic; the ATSR Arctic combined Surface Temperature (AAST) dataset. The method of cloud-clearing, use of auxiliary data for ice classification and the ST retrievals used for each surface-type will be described. We will establish the accuracy of sea-ice and land-ice retrievals with recent results from validation against in situ data. We will also discuss the results from the calculation and propagation of uncertainties in the AAST dataset. Time series of ST anomalies for each surface type will be presented. The time series for open ocean in the Arctic Polar Region shows a significant warming trend during the AATSR mission. Time series for land, land-ice and sea-ice show high variability as expected but also interesting patterns. Overall, our purpose is to present the state-of-the-art for ATSR observations of ST change in the Arctic and hence indicate confidence we can have in

  4. Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka

    Directory of Open Access Journals (Sweden)

    G. Lesins

    2009-03-01

    Full Text Available Ice crystals, also known as diamond dust, are suspended in the boundary layer air under clear sky conditions during most of the Arctic winter in Northern Canada. Occasionally ice crystal events can produce significantly thick layers with optical depths in excess of 2.0 even in the absence of liquid water clouds. Four case studies of high optical depth ice crystal events at Eureka in the Nunavut Territory of Canada during the winter of 2006/07 are presented. They show that the measured ice crystal surface infrared downward radiative forcing ranged from 8 to 36 W m−2 in the wavelength band from 5.6 to 20 μm for 532 nm optical depths ranging from 0.2 to 1.7. MODIS infrared and visible images and the operational radiosonde wind profile were used to show that these high optical depth events were caused by surface snow being blown off 600 to 800 m high mountain ridges about 20 to 30 km North-West of Eureka and advected by the winds towards Eureka as they settled towards the ground within the highly stable boundary layer. This work presents the first study that demonstrates the important role that surrounding topography plays in determining the occurrence of high optical depth ice crystal events from residual blowing snow that becomes a source of boundary layer ice crystals distinct from the classical diamond dust phenomenon.

  5. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin

    Science.gov (United States)

    Goñi, Miguel A.; O'Connor, Alison E.; Kuzyk, Zou Zou; Yunker, Mark B.; Gobeil, Charles; Macdonald, Robie W.

    2013-09-01

    As part of the International Polar Year research program, we conducted a survey of surface marine sediments from box cores along a section extending from the Bering Sea to Davis Strait via the Canadian Archipelago. We used bulk elemental and isotopic compositions, together with biomarkers and principal components analysis, to elucidate the distribution of marine and terrestrial organic matter in different regions of the North American Arctic margin. Marked regional contrasts were observed in organic carbon loadings, with the highest values (≥1 mg C m-2 sediment) found in sites along Barrow Canyon and the Chukchi and Bering shelves, all of which were characterized by sediments with low oxygen exposure, as inferred from thin layers (cutin acids) all indicate marked regional differences in the proportions of marine and terrigenous organic matter present in surface sediments. Regions such as Barrow Canyon and the Mackenzie River shelf were characterized by the highest contributions of land-derived organic matter, with compositional characteristics that suggested distinct sources and provenance. In contrast, sediments from the Canadian Archipelago and Davis Strait had the smallest contributions of terrigenous organic matter and the lowest organic carbon loadings indicative of a high degree of post-depositional oxidation.

  6. Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic.

    Science.gov (United States)

    Cory, Rose M; Crump, Byron C; Dobkowski, Jason A; Kling, George W

    2013-02-26

    Recent climate change has increased arctic soil temperatures and thawed large areas of permafrost, allowing for microbial respiration of previously frozen C. Furthermore, soil destabilization from melting ice has caused an increase in thermokarst failures that expose buried C and release dissolved organic C (DOC) to surface waters. Once exposed, the fate of this C is unknown but will depend on its reactivity to sunlight and microbial attack, and the light available at the surface. In this study we manipulated water released from areas of thermokarst activity to show that newly exposed DOC is >40% more susceptible to microbial conversion to CO(2) when exposed to UV light than when kept dark. When integrated over the water column of receiving rivers, this susceptibility translates to the light-stimulated bacterial activity being on average from 11% to 40% of the total areal activity in turbid versus DOC-colored rivers, respectively. The range of DOC lability to microbes seems to depend on prior light exposure, implying that sunlight may act as an amplification factor in the conversion of frozen C stores to C gases in the atmosphere.

  7. Baseline monitoring of the western Arctic Ocean estimates 20% of Canadian basin surface waters are undersaturated with respect to aragonite.

    Science.gov (United States)

    Robbins, Lisa L; Wynn, Jonathan G; Lisle, John T; Yates, Kimberly K; Knorr, Paul O; Byrne, Robert H; Liu, Xuewu; Patsavas, Mark C; Azetsu-Scott, Kumiko; Takahashi, Taro

    2013-01-01

    Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ≈ 20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean's largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.

  8. Baseline monitoring of the western Arctic Ocean estimates 20% of Canadian basin surface waters are undersaturated with respect to aragonite.

    Directory of Open Access Journals (Sweden)

    Lisa L Robbins

    Full Text Available Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index for the western Arctic Ocean. This data set documents aragonite undersaturation in ≈ 20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean's largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.

  9. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.

    Science.gov (United States)

    Han, Dukki; Kang, Ilnam; Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung

    2014-01-01

    From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.

  10. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.

    Directory of Open Access Journals (Sweden)

    Dukki Han

    Full Text Available From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1 surface seawater, (2 ice core, and (3 melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.

  11. The impact of a seasonally ice free Arctic Ocean on the climate and surface mass balance of Svalbard

    Directory of Open Access Journals (Sweden)

    J. J. Day

    2011-07-01

    Full Text Available General circulation models (GCMs predict a rapid decrease in Arctic sea ice extent in the 21st century. The decline of September sea ice is expected to continue until the Arctic Ocean is seasonally ice free, leading to a much perturbed Arctic climate with large changes in surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers which are extremely sensitive to changes in climate. Records of past accumulation indicate that the surface mass balance (SMB of Svalbard is also sensitive to changes in the position of the sea ice edge.

    To investigate the impact of 21st Century sea ice decline on the climate and surface mass balance of Svalbard a high resolution (25 km regional climate model (RCM was forced with a repeating cycle of sea surface temperatures (SSTs and sea ice conditions for the periods 1961–1990 and 2061–2090. By prescribing 20th Century SSTs and 21st Century sea ice for one simulation, the impact of sea ice decline is isolated. This study shows that the coupled impact of sea ice decline and SST increase results in a decrease in SMB, whereas the impact of sea ice decline alone causes an increase in SMB of similar magnitude.

  12. Climate driven changes in hydrology, nutrient cycling, and food web dynamics in surface waters of the Arctic Coastal Plain, Alaska

    Science.gov (United States)

    Koch, J. C.; Wipfli, M.; Schmutz, J.; Gurney, K.

    2011-12-01

    Arctic ecosystems are changing rapidly as a result of a warming climate. While many areas of the arctic are expected to dry as a result of warming, the Arctic Coastal Plain (ACP) of Alaska, which extends from the Brooks Range north to the Beaufort Sea will likely become wetter, because subsurface hydrologic fluxes are constrained by thick, continuous permafrost. This landscape is characterized by large, oriented lakes and many smaller ponds that form in the low centers and troughs/edges of frost polygons. This region provides important breeding habitat for many migratory birds including loons, arctic terns, eiders, shorebirds, and white-fronted geese, among others. Increased hydrologic fluxes may provide a bottom-up control on the success of these species by altering the availability of food resources including invertebrates and fish. This work aimed to 1) characterize surface water fluxes and nutrient availability in the small streams and lake types of two study regions in the ACP, 2) predict how increased hydrological fluxes will affect the lakes, streams, and water chemistry, and 3) use nutrient additions to simulate likely changes in lake chemistry and invertebrate availability. Initial observations suggest that increasing wetland areas and availability of nutrients will result in increased invertebrate abundance, while the potential for drainage and terrestrialization of larger lakes may reduce fish abundance and overwintering habitat. These changes will likely have positive implications for insectivores and negative implications for piscivorous waterfowl.

  13. Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest

    Science.gov (United States)

    Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.

    2004-01-01

    Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.

  14. On the use of lifting surface theory for moderately and heavily loaded ship propellers

    NARCIS (Netherlands)

    Van Gent, W.

    1977-01-01

    It is usual to subdivide the loading range of a ship propeller, in which it developes a thrust in the direction of advance, into light, moderate and heavy loadings. The division is based on the degree to which the flow is influenced by the action of the propeller. For the heavily loaded propeller no

  15. Large surface radiative forcing from surface-based ice crystal events measured in the High Arctic at Eureka

    Directory of Open Access Journals (Sweden)

    G. Lesins

    2008-09-01

    Full Text Available Ice crystals, also known as diamond dust, are suspended in the boundary layer air under clear sky conditions during most of the Arctic winter in Northern Canada. Occasionally ice crystal events can produce significantly thick layers with optical depths in excess of 2.0 even in the absence of liquid water clouds. Four case studies of high optical depth ice crystal events at Eureka in the Nunavut Territory of Canada during the winter of 2006–2007 are presented. They show that the measured ice crystal surface infrared downward radiative forcing ranged from 8 to 36 W m−2 in the wavelength band from 5.6 to 20 μm for visible optical depths ranging from 0.2 to 1.7. MODIS infrared and visible images and the operational radiosonde wind profile were used to show that these high optical depth events were caused by surface snow being blown off 600 to 800 m high mountain ridges about 20 to 30 km North-West of Eureka and advected by the winds towards Eureka as they settled towards the ground within the highly stable boundary layer. This work presents the first study that demonstrates the important role that surrounding topography plays in determining the occurrence of high optical depth ice crystal events and points to a new source of boundary layer ice crystal events distinct from the classical diamond dust phenomenon.

  16. Light absorption and partitioning in Arctic Ocean surface waters: impact of multiyear ice melting

    Directory of Open Access Journals (Sweden)

    S. Bélanger

    2013-10-01

    Full Text Available Ice melting in the Arctic Ocean exposes the surface water to more radiative energy with poorly understood effects on photo-biogeochemical processes and heat deposition in the upper ocean. In August 2009, we documented the vertical variability of light absorbing components at 37 stations located in the southeastern Beaufort Sea including both Mackenzie River-influenced waters and polar mixed layer waters. We found that melting multiyear ice released significant amount of non-algal particulates (NAP near the sea surface relative to subsurface waters. NAP absorption coefficients at 440 nm (aNAP(440 immediately below the sea surface were on average 3-fold (up to 10-fold higher compared to subsurface values measured at 2–3 m depth. The impact of this unusual feature on the light transmission and remote sensing reflectance (Rrs was further examined using a radiative transfer model. A 10-fold particle enrichment homogeneously distributed in the first meter of the water column slightly reduced photosynthetically available and usable radiation (PAR and PUR by ∼6 and ∼8%, respectively, relative to a fully homogenous water column with low particle concentration. In terms of Rrs, the particle enrichment significantly flattered the spectrum by reducing the Rrs by up to 20% in the blue-green spectral region (400–550 nm. These results highlight the impact of meltwater on the concentration of particles at sea surface, and the need for considering non-uniform vertical distribution of particles in such systems when interpreting remotely sensed ocean color. Spectral slope of aNAP spectra calculated in the UV (ultraviolet domain decreased with depth suggesting that this parameter is sensitive to detritus composition and/or diagenesis state (e.g., POM (particulate organic matter photobleaching.

  17. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from the Bering Sea and western Arctic Ocean.

    Science.gov (United States)

    Zhao, Mengwei; Wang, Weiguo; Liu, Yanguang; Dong, Linsen; Jiao, Liping; Hu, Limin; Fan, Dejiang

    2016-03-15

    To analyze the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) and evaluate their potential ecological risks, the concentrations of 16 PAHs were measured in 43 surface sediment samples from the Bering Sea and western Arctic Ocean. Total PAH (tPAH) concentrations ranged from 36.95 to 150.21 ng/g (dry weight). In descending order, the surface sediment tPAH concentrations were as follows: Canada Basin>northern Chukchi Sea>Chukchi Basin>southern Chukchi Sea>Aleutian Basin>Makarov Basin>Bering Sea shelf. The Bering Sea and western Arctic Ocean mainly received PAHs of pyrogenic origin due to pollution caused by the incomplete combustion of fossil fuels. The concentrations of PAHs in the sediments of the study areas did not exceed effects range low (ERL) values.

  18. Acquisition of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program

    Science.gov (United States)

    2014-09-30

    Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program Year 3 Report PI: Mark A. Tschudi...surface temperature? During summer, melting ice is covered extensively by melt ponds, which exhibit a reflectance considerably lower than the...of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program 5a

  19. Decadal Arctic surface atmosphere/ocean heat budgets and mass transport estimates from several atmospheric and oceanic reanalyses

    Science.gov (United States)

    Chepurin, gennaday; Carton, James

    2017-04-01

    The Arctic is undergoing dramatic changes associated with the loss of seasonal and permanent ice pack. By exposing the surface ocean to the atmosphere these changes dramatically increase surface exchange processes. In contrast, increases in freshwater and heat input decreases turbulent exchanges within the ocean. In this study we present results from an examination of changing ocean heat flux, storage, and transport during the 36 year period 1980-2015. To identify changes in the surface atmosphere we examine three atmospheric reanalyses: MERRA2, ERA-I, and JRA55. Significant differences in fluxes from these reanalyses arise due to the representation of clouds and water vapor. These differences provide an indication of the uncertainties in the historical record. Next we turn to the Simple Ocean Data Assimilation version 3 (SODA3) global ocean/sea ice reanalysis system to allow us to infer the full ocean circulation from the limited set of historical record of ocean observations. SODA3 has 10 km horizontal resolution in the Arctic and assimilates the full suite of historical marine temperature and salinity observations. To account for the uncertainties in atmospheric forcing, we repeat our analysis with each of the three atmospheric reanalyses. In the first part of the talk we review the climatological seasonal surface fluxes resulting from our reanalysis system, modified for consistency with the ocean observations, and the limits of what we can learn from the historical record. Next we compare the seasonal hydrography, heat, and mass transports with direct estimates from moorings. Finally we examine the impact on the Arctic climate of the changes in sea ice cover and variability and trends of ocean/sea ice heat storage and transport and their contributions to changes in the seasonal stratification of the Arctic Ocean.

  20. Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures

    Science.gov (United States)

    Chylek, Petr; Folland, Chris K.; Lesins, Glen; Dubey, Manvendra K.

    2010-04-01

    Understanding the phase relationship between climate changes in the Arctic and Antarctic regions is essential for our understanding of the dynamics of the Earth's climate system. In this paper we show that the 20th century de-trended Arctic and Antarctic temperatures vary in anti-phase seesaw pattern - when the Arctic warms the Antarctica cools and visa versa. This is the first time that a bi-polar seesaw pattern has been identified in the 20th century Arctic and Antarctic temperature records. The Arctic (Antarctic) de-trended temperatures are highly correlated (anti-correlated) with the Atlantic Multi-decadal Oscillation (AMO) index suggesting the Atlantic Ocean as a possible link between the climate variability of the Arctic and Antarctic regions. Recent accelerated warming of the Arctic results from a positive reinforcement of the linear warming trend (due to an increasing concentration of greenhouse gases and other possible forcings) by the warming phase of the multidecadal climate variability (due to fluctuations of the Atlantic Ocean circulation).

  1. (AC)3: A German Initiative to Study Arctic Amplification—Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms

    Science.gov (United States)

    Spreen, G.; Wendisch, M.; Brückner, M.

    2016-12-01

    Within the last 25 years a remarkable increase of the Arctic near-surface air temperature exceeding the global warming by a factor of at least two has been observed. This phenomenon is commonly referred to as Arctic Amplification. The warming results in rather dramatic changes of a variety of climate parameters. For example, the Arctic sea ice has declined significantly. This ice retreat has been well identified by satellite measurements. Over recent decades, significant progress has been made in two main scientific areas: (i) the capabilities of in-situ measurements and remote sensing techniques to observe key physico-chemical atmospheric constituents and surface parameters at high latitudes have advanced impressively, and (ii) the computational skills and power used to model individual feedback mechanisms on small scales have improved notably. It is, therefore, timely to exploit synergistically these new developments to enhance our knowledge of the origins of the observed Arctic climate changes. To achieve this aim a new Transregional Collaborative Research Center (TR 172) was launched in January 2016 called "ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms" with the acronym (AC)3. Observations from instrumentation on satellites, aircraft, tethered balloons, research vessels, and a selected set of ground-based sites will be integrated in dedicated campaigns, as well as being combined with long-term measurements. The field studies will be conducted in different seasons and meteorological conditions, covering a suitably wide range of spatial and temporal scales. They will be performed in an international context and in close collaboration with modelling activities. The latter utilize a hierarchy of process, meso-scale, regional, and global models to bridge the spatio-temporal scales from local individual processes to appropriate climate signals. The models will serve to guide the campaigns, to analyse the

  2. Soil surface organic layers in Arctic Alaska: Spatial distribution, rates of formation, and microclimatic effects

    Science.gov (United States)

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-06-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500-700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  3. Soil surface organic layers in Arctic Alaska: spatial distribution, rates of formation, and microclimatic effects

    Science.gov (United States)

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-01-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500–700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  4. Investigation of Range Profiles from a Simplified Ship on Rough Sea Surface and Its Multipath Imaging Mechanisms

    Directory of Open Access Journals (Sweden)

    Siyuan He

    2012-01-01

    Full Text Available The range profiles of a two-dimension (2 D perfect electric conductor (PEC ship on a wind-driven rough sea surface are derived by performing an inverse discrete Fourier transform (IDFT on the wide band backscattered field. The rough sea surface is assuming to be a PEC surface. The back scattered field is computed based on EM numerical simulation when the frequencies are sampled between 100 MHz and 700 MHz. Considering the strong coupling interactions between the ship and sea, the complicated multipath effect to the range profile characteristics is fully analyzed based on the multipath imaging mechanisms. The coupling mechanisms could be explained by means of ray theory prediction and numerical extraction of the coupling currents. The comparison of the range profile locations between ray theory prediction and surface current simulation is implemented and analyzed in this paper. Finally, the influence of different sea states on the radar target signatures has been examined and discussed.

  5. The impact of a seasonally ice free Arctic Ocean on the temperature, precipitation and surface mass balance of Svalbard

    Directory of Open Access Journals (Sweden)

    J. J. Day

    2012-01-01

    Full Text Available The observed decline in summer sea ice extent since the 1970s is predicted to continue until the Arctic Ocean is seasonally ice free during the 21st Century. This will lead to a much perturbed Arctic climate with large changes in ocean surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers and is expected to experience rapid warming over the 21st Century. The total sea level rise if all the land ice on Svalbard were to melt completely is 0.02 m.

    The purpose of this study is to quantify the impact of climate change on Svalbard's surface mass balance (SMB and to determine, in particular, what proportion of the projected changes in precipitation and SMB are a result of changes to the Arctic sea ice cover. To investigate this a regional climate model was forced with monthly mean climatologies of sea surface temperature (SST and sea ice concentration for the periods 1961–1990 and 2061–2090 under two emission scenarios. In a novel forcing experiment, 20th Century SSTs and 21st Century sea ice were used to force one simulation to investigate the role of sea ice forcing. This experiment results in a 3.5 m water equivalent increase in Svalbard's SMB compared to the present day. This is because over 50 % of the projected increase in winter precipitation over Svalbard under the A1B emissions scenario is due to an increase in lower atmosphere moisture content associated with evaporation from the ice free ocean. These results indicate that increases in precipitation due to sea ice decline may act to moderate mass loss from Svalbard's glaciers due to future Arctic warming.

  6. (7)Be, (210)Pb, and (210)Po in the surface air from the Arctic to Antarctica.

    Science.gov (United States)

    Persson, Bertil R R; Holm, Elis

    2014-12-01

    In the present study we have investigated the activity concentrations of (210)Pb, (210)Po as well as (7)Be in surface air of the North and South Atlantic (1988-1989), the Arctic Ocean (1991), and along the coastline of Siberia (1994) during succeeding expeditions in the Swedish Polar Research program. During the cruises in the Arctic Ocean during 1991-07-28 to 1991-10-04 the average air concentrations of (7)Be was 0.6 ± 0.4 mBq/m(3), (210)Pb 40 ± 4 μBq/m(3) and (210)Po-38 ± 10 μBq/m(3). During the Swedish-Russian Tundra Ecology-94 expedition along the Siberian coastline the average air concentrations of (7)Be and (210)Pb measured during May-July were 11 ± 3, and 2.4 ± 0.4 mBq/m(3), and during July-September they were 7.2 ± 2 and 2.7 ± 1.1 mBq/m(3) respectively. The results from measurements of the activity concentration of (210)Pb in the air over the Arctic Ocean vary between 75 and 176 μBq/m(3). In the air close to land masses, however, the activity concentration of (210)Pb in the air increases to 269-2712 μBq/m(3). The activity concentration of (7)Be in the South Atlantic during the cruise down to Antarctica varied between 1.3 and 1.7 with an average of 1.5 ± 0.8 mBq/m(3). The activity concentration of (210)Pb in the South Atlantic down to Antarctica varied between 6 and 14 μBq/m(3). At the Equator the activity concentration recorded in November 1988 was 630 μBq/m(3) and in April 1989 it was 260 μBq/m(3). The average activity concentration of (210)Pb during the route Gothenburg-Montevideo in 1988 was 290 and on the return Montevideo-Gothenburg it was 230 μBq/m(3). The activity concentration of (210)Po in the South Atlantic down to Antarctica varied between 15 and 58 μBq/m(3). At the Equator the activity concentration in November 1988 was 170 and in April 1989 it was 70 μBq/m(3). The average activity concentration of (210)Po during the route Gothenburg-Montevideo in 1988 was 63 and on the return Montevideo

  7. Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves

    Directory of Open Access Journals (Sweden)

    M. Chierici

    2009-05-01

    Full Text Available In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT underway aboard IB Oden along the Northwest Passage from Cape Farwell (South Greenland to the Chukchi Sea. We investigated variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S and sea surface temperature (SST, were used to calculate total dissolved inorganic carbon (DIC, [CO32−] and saturation of aragonite (ΩAr and calcite (ΩCa in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA and on the Mackenzie shelf (MS were found to be undersaturated with respect to aragonite (ΩAr<1. In these areas, surface water was low in AT and DIC (<1500 μmol kg−1 relative to seawater and showed low [CO32−]. The low saturation states were probably due to the effect of dilution due from freshwater addition by sea ice melt (CAA and river runoff (MS. High AT and DIC and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to physical upwelling of subsurface water with elevated CO2. Highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower DIC from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and DIC from enhanced organic matter remineralization, resulting in

  8. Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves

    Directory of Open Access Journals (Sweden)

    A. Fransson

    2009-11-01

    Full Text Available In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT underway aboard IB Oden along the Northwest Passage from Cape Farewell (South Greenland to the Chukchi Sea. We investigated the variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S and sea surface temperature (SST, were used to calculate total dissolved inorganic carbon (CT, [CO32−] and the saturation of aragonite (ΩAr and calcite (ΩCa in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA and on the Mackenzie shelf (MS were found to be undersaturated with respect to aragonite (ΩAr<1. In these areas, surface water was low in AT and CT (<1500 μmol kg−1 relative to seawater and showed low [CO32−]. The low saturation states were probably due to the likely the effect of dilution due to freshwater addition by sea ice melt (CAA and river runoff (MS. High AT and CT and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to the physical upwelling of subsurface water with elevated CO2. The highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower CT from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and

  9. Generation of Discrete Bicubic G1 B-Spline Ship Hullform Surfaces from a Given Curve Network Using Virtual Iso-Parametric Curves

    Institute of Scientific and Technical Information of China (English)

    Joong-Hyun Rhim; Doo-Yeoun Cho; Kyu-Yeul Lee; Tae-Wan Kim

    2006-01-01

    We propose a method that automatically generates discrete bicubic G1 continuous B-spline surfaces that interpolate the curve network of a ship hullform. First, the curves in the network are classified into two types: boundary curves and "reference curves". The boundary curves correspond to a set of rectangular (or triangular) topological type that can be represented with tensor-product (or degenerate) B-spline surface patches. Next, in the interior of the patches,surface fitting points and cross boundary derivatives are estimated from the reference curves by constructing "virtual" isoparametric curves. Finally, a discrete G1 continuous B-spline surface is generated by a surface fitting algorithm. Several smooth ship hullform surfaces generated from curve networks corresponding to actual ship hullforms demonstrate the quality of the method.

  10. Estimation of real ship propelling performance by the surface velocity lattice method using model ship flow field data; Mokeisen ryujo data wo mochiita hyomen uzu koshiho ni yoru jissen suishin seino no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Kai, H.; Ikehata, M.; Sakai, S. [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    1997-10-01

    This is basically a technique wherein the wing element method is replaced by a surface vortex lattice method. A horseshoe vortex of unknown intensity and source surface of known intensity are distributed on the wing surface and, under conditions that the fluid will not cross the boundary, the intensity of horseshoe vortex circulation is calculated for the solution of the fluid field. For the simulation of a real ship in navigation, the required propeller revolution thrust is determined using the real ship resistance value and real ship thrust reduction factor estimated from a model ship resistance test by extrapolation. The calculation of propeller performance is conducted in the quasi-steady condition using the force of fluid working on one wing for each wing angle (with the wing rotated at the increment of 6 degrees), and the thrust and torque are determined using the averages of values obtained in one cycle. It is found that the torque value is overestimated in a considerable degree in the wing element theory. In the surface vortex lattice method, both thrust and torque values agree with experimental values mostly, and this method is found to be accurate enough as a navigation element calculation tool when many panels are considered. 4 refs., 5 figs., 1 tab.

  11. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene

    DEFF Research Database (Denmark)

    Bowman, Jeff S.; Rasmussen, Simon; Blom, Nikolaj

    2011-01-01

    Dramatic decreases in the extent of Arctic multiyear ice (MYI) suggest this environment may disappear as early as 2100, replaced by ecologically different first-year ice. To better understand the implications of this loss on microbial biodiversity, we undertook a detailed census of the microbial...... in underlying surface water, we found diversity to be comparable using the Simpson and Shannon's indices (for Simpson t=0.65, P=0.56; for Shannon t=0.25, P=0.84 for a Student's t-test of mean values). Cyanobacteria, comprising 6.8% of reads obtained from MYI, were observed for the first time in Arctic sea ice....... In addition, several low-abundance clades not previously reported in sea ice were present, including the phylum TM7 and the classes Spartobacteria and Opitutae. Members of Coraliomargarita, a recently described genus of the class Opitutae, were present in sufficient numbers to suggest niche occupation within...

  12. Islands of the Arctic

    Science.gov (United States)

    Overpeck, Jonathan

    2004-02-01

    Few environments on Earth are changing more dramatically than the Arctic. Sea ice retreat and thinning is unprecedented in the period of the satellite record. Surface air temperatures are the warmest in centuries. The biology of Arctic lakes is changing like never before in millennia. Everything is pointing to the meltdown predicted by climate model simulations for the next 100 years. At the same time, the Arctic remains one of the most pristine and beautiful places on Earth. For both those who know the Arctic and those who want to know it, this book is worth its modest price. There is much more to the Arctic than its islands, but there's little doubt that Greenland and the major northern archipelagos can serve as a great introduction to the environment and magnificence of the Arctic. The book uses the islands of the Arctic to give a good introduction to what the Arctic environment is all about. The first chapter sets the stage with an overview of the geography of the Arctic islands, and this is followed by chapters that cover many key aspects of the Arctic: the geology (origins), weather and climate, glaciers, ice sheets, sea ice, permafrost and other frozen ground issues, coasts, rivers, lakes, animals, people, and environmental impacts. The material is pitched at a level well suited for the interested layperson, but the book will also appeal to those who study the science of the Arctic.

  13. The potential of using meteorological data to correct for water surface roughness impacts on soil moisture retrieval in the Arctic

    Science.gov (United States)

    Högström, Elin; Bartsch, Annett

    2017-04-01

    Permafrost temperatures have risen significantly over the past two to three decades, and the Arctic, which to a large extent is underlain by permafrost, is expected to warm rapidly compared to the global mean temperature until the end of the 21st century. In remote areas that are difficult to access for ground measurements, such as the Arctic, satellite-derived data are essential. For permafrost studies in particular, satellite derived soil moisture data is one important parameter which is needed for modelling purposes. To assess the applicability of such data at high latitudes has been given little attention but recent studies have pointed out that seasonal land cover variations and the presence of small water bodies. The presence of small water bodies is characteristic for the Arctic and we expect it to cause complications for soil moisture retrieval from satellite data in these regions. In the present study, we hypothesize that a bias related to water fraction is caused by variations in the water surface roughness (wind, precipitation). The impact is quantified for the active microwave remote sensing instrument Metop Advanced Scatterometer (ASCAT) by investigating the higher spatial resolution synthetic aperture radar (SAR) data acquired by ENVISAT Advanced SAR. The bias is calculated as an average over time for 11 sites across the Siberian Arctic. It is concluded that a water fraction higher than 20% causes a bias of more than 10% relative surface soil moisture. Comparisons with in situ collected meteorological data showed that the bias to a great extent could be attributed to the wind and therefore a bias correction was developed based on this. The wind correction was applied and evaluated with in-situ soil moisture data, which were available from one of the sites: the Lena Delta. The results from the correction were weak, which is likely explained by the fact that the water surfaces at this specific site mainly correspond to rivers: variations in discharge

  14. Near-Surface Meteorology During the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of Reanalyses and Global Climate Models.

    Science.gov (United States)

    De Boer, G.; Shupe, M.D.; Caldwell, P.M.; Bauer, Susanne E.; Persson, O.; Boyle, J.S.; Kelley, M.; Klein, S.A.; Tjernstrom, M.

    2014-01-01

    Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three atmospheric reanalyses (European Centre for Medium Range Weather Forecasting (ECMWF)- Interim reanalysis, National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, and NCEP-DOE (Department of Energy) reanalysis) and two global climate models (CAM5 (Community Atmosphere Model 5) and NASA GISS (Goddard Institute for Space Studies) ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large-scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms, are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, has demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the benefits gained by evaluating individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms that result in the best net energy budget.

  15. Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS: evaluation of reanalyses and global climate models

    Directory of Open Access Journals (Sweden)

    G. de Boer

    2013-07-01

    Full Text Available Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS are used to evaluate the performance of three reanalyses (ERA-Interim, NCEP/NCAR and NCEP/DOE and two global climate models (CAM5 and NASA GISS ModelE2 in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, is demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the need to evaluate individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms resulting in the best net energy budget.

  16. Arctic Digital Elevation Models (DEMs) generated by Surface Extraction from TIN-Based Searchspace Minimization (SETSM) algorithm from RPCs-based Imagery

    Science.gov (United States)

    Noh, M. J.; Howat, I. M.; Porter, C. C.; Willis, M. J.; Morin, P. J.

    2016-12-01

    The Arctic is undergoing rapid change associated with climate warming. Digital Elevation Models (DEMs) provide critical information for change measurement and infrastructure planning in this vulnerable region, yet the existing quality and coverage of DEMs in the Arctic is poor. Low contrast and repeatedly-textured surfaces, such as snow and glacial ice and mountain shadows, all common in the Arctic, challenge existing stereo-photogrammetric techniques. Submeter resolution, stereoscopic satellite imagery with high geometric and radiometric quality, and wide spatial coverage are becoming increasingly accessible to the scientific community. To utilize these imagery for extracting DEMs at a large scale over glaciated and high latitude regions we developed the Surface Extraction from TIN-based Searchspace Minimization (SETSM) algorithm. SETSM is fully automatic (i.e. no search parameter settings are needed) and uses only the satellite rational polynomial coefficients (RPCs). Using SETSM, we have generated a large number of DEMs (> 100,000 scene pair) from WorldView, GeoEye and QuickBird stereo images collected by DigitalGlobe Inc. and archived by the Polar Geospatial Center (PGC) at the University of Minnesota through an academic licensing program maintained by the US National Geospatial-Intelligence Agency (NGA). SETSM is the primary DEM generation software for the US National Science Foundation's ArcticDEM program, with the objective of generating high resolution (2-8m) topography for the entire Arctic landmass, including seamless DEM mosaics and repeat DEM strips for change detection. ArcticDEM is collaboration between multiple US universities, governmental agencies and private companies, as well as international partners assisting with quality control and registration. ArcticDEM is being produced using the petascale Blue Waters supercomputer at the National Center for Supercomputer Applications at the University of Illinois. In this paper, we introduce the SETSM

  17. Air cushion vehicles for arctic operation

    Science.gov (United States)

    Koleser, J.; Lavis, D. R.

    1986-09-01

    Attention is given to the results of the NAVSEA FY85 Surface Ship Concept Formulation Design Study for an initial operational capability year-2000 air cushion vehicle (ACV) suitable for logistics and general search/rescue duties in the Arctic. Two designs were developed during the study; the first utilized an ACV design synthesis math model while the second evolved as a derivative of an existing U.S. production craft. Both are regarded as feasible from an engineering and naval architectural standpoint. Results of performance and cost trade-off studies suggest that, for an Arctic ACV, gas turbines are the preferred power plant choice and an aluminum alloy is the preferred hull structural material choice. The most appropriate skirt height is approximately 12 ft.

  18. Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters.

    Science.gov (United States)

    Page, Sarah E; Logan, J Robert; Cory, Rose M; McNeill, Kristopher

    2014-04-01

    Hydroxyl radical (˙OH) is an indiscriminate oxidant that reacts at near-diffusion-controlled rates with organic carbon. Thus, while ˙OH is expected to be an important oxidant of dissolved organic matter (DOM) and other recalcitrant compounds, the role of ˙OH in the oxidation of these compounds in aquatic ecosystems is not well known due to the poorly constrained sources and sinks of ˙OH, especially in pristine (unpolluted) natural waters. We measured the rates of ˙OH formation and quenching across a range of surface waters in the Arctic varying in concentrations of expected sources and sinks of ˙OH. Photochemical formation of ˙OH was observed in all waters tested, with rates of formation ranging from 2.6 ± 0.6 to 900 ± 100 × 10(-12) M s(-1). Steady-state concentrations ranged from 2 ± 1 to 290 ± 60 × 10(-17) M, and overlapped with previously reported values in surface waters. While iron-mediated photo-Fenton reactions likely contributed to the observed ˙OH production, several lines of evidence suggest that DOM was the primary source and sink of photochemically produced ˙OH in pristine arctic surface waters. DOM from first-order or headwater streams was more efficient in producing ˙OH than what has previously been reported for DOM, and ˙OH formation decreased with increasing residence time of DOM in sunlit surface waters. Despite the ubiquitous formation of ˙OH in arctic surface waters observed in this study, photochemical ˙OH formation was estimated to contribute ≤4% to the observed photo-oxidation of DOM; however, key uncertainties in this estimate must be addressed before ruling out the role of ˙OH in the oxidation of DOM in these waters.

  19. Surface Heat Budget and Solar Radiation Allocation at a Melt Pond During Summer in the Central Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shugang; ZHAO Jinping; SHI Jiuxin; JIAO Yutian

    2014-01-01

    The heat budget of a melt pond surface and the solar radiation allocation at the melt pond are studied using the 2010 Chinese National Arctic Research Expedition data collected in the central Arctic. Temperature at a melt pond surface is proportional to the air temperature above it. However, the linear relationship between the two varies, depending on whether the air temperature is higher or lower than 0℃. The melt pond surface temperature is strongly influenced by the air temperature when the latter is lower than 0℃. Both net longwave radiation and turbulent heat flux can cause energy loss in a melt pond, but the loss by the latter is larger than that by the former. The turbulent heat flux is more than twice the net longwave radiation when the air temperature is lower than 0℃. More than 50%of the radiation energy entering the pond surface is absorbed by pond water. Very thin ice sheet on the pond surface (black ice) appears when the air temperature is lower than 0℃; on the other hand, only a small percentage (5.5%) of net longwave in the solar radiation is absorbed by such a thin ice sheet.

  20. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale

    Science.gov (United States)

    Tanaka, Hiroshi L.; Tamura, Mina

    2016-09-01

    In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.

  1. Arctic Marine Water Isotope Characteristics: In-situ, Continuous Surface and Water Column Isoscapes (δ18O and δ2H) and Linkages into the Marine Food Web

    Science.gov (United States)

    Welker, J. M.; Klein, E. S.; Collins, E.; Iken, K.; Hopcroft, R. R.; Norcross, B.

    2016-12-01

    The Arctic is under going rapid and profound sea ice, temperature, food web, ocean current, precipitation and synoptic weather changes. Delineating these changes requires a suite of tools, especially those that have the ability to depict the interactive nature of the marine system. Understanding the marine water isotope cycle is paramount to recognizing the unique isotopic properties of this region and to characterize possibly the reorganization of the Arctic. The Arctic marine water isotope system has been primarily examined with shore-based stations and or episodic station sampling; without continuous surface water sampling in combination with station-specific water column and organismic measurements. New technologies that allow in situ and continuous water isotope measurements (vapor and liquid) and the integration of inorganic and organic water isotope geochemistry provide a means to reveal in more detail the fundamental traits of the Arctic marine water isotope system. In July and August of 2016, we are measuring seawater surface (8 m depth) isotopes (δ18O and δ2H) in-situ and continuously (Picarro CWS system) along a research transect (60oN to 77oN) from the Gulf of Alaska to the Arctic Ocean Basin. These continuous surface water isotope measurements are being combined with periodic water column isotope profiling and corresponding organic δ18O and δ2H measurements of pelagic and benthic organisms (microbes to fish) to depths of up to 2600m. We measured surface seawater δ18O that from -1‰ to -6‰; while seawater profiles followed vertical separation in the water column; possibly reflecting divergent currents of the Arctic. Station based δ18O and δ2H values of surface water did not vary by more than 1‰ δ18O over the course of our 24-36 hour sampling periods. The δ18O and δ2H values of marine organism throughout the water column and by trophic level will be analyzed and a seawater-food web model will be developed in addition to surface and water

  2. Surface-enhanced in-situ Raman-sensor applied in the arctic area for analyses of water and sediment

    Science.gov (United States)

    Kolomijeca, Anna; Kwon, Yong-Hyok; Kronfeldt, Heinz-Detlef

    2012-06-01

    Investigations on the seafloor in the arctic area are of great scientific interest as well as of progressive economic importance. Therefore, measurements in the water column and of sediments were carried out by applying different analytical methods. In JCR 253 arctic cruise a microsystem diode laser with reflection Bragg grating emitting at 671 nm was introduced and integrated into an optode housing which was laboratory pressure tested up to 200 bar. The connection to the mobile spectrometer is realized through an optical fiber. All performed measurements were carried out on the James-Clark-Ross research vessel during a three week experiment in August 2011. Conventional Raman spectra and SERS spectra of arctic surface water and sediment acquired from locations around 78° N and 9° E will be presented. Selected SERS substrates developed for SERS measurements in sea-water were tested for their capability to detect different substances in the water down to very small (pmol/l) concentrations. Additionally, the applicability of shifted excitation Raman difference spectroscopy (SERDS) and a combination of SERS with SERDS for analytical applications during sea-trials for in-situ analyses of sea-water and sediments will be discussed.

  3. Directionality and maneuvering effects on a surface ship underwater acoustic signature.

    Science.gov (United States)

    Trevorrow, Mark V; Vasiliev, Boris; Vagle, Svein

    2008-08-01

    This work examines underwater source spectra of a small (560 tons, 40 m length), single-screw oceanographic vessel, focusing on directionality and effects of maneuvers. The measurements utilized a set of four, self-contained buoys with GPS positioning, each recording two calibrated hydrophones with effective acoustic bandwidth from 150 Hz to 5 kHz. In straight, constant-speed runs at speeds up to 6.2 m s(-1), the ship source spectra showed spectral levels in reasonable agreement with reference spectra. The broadband source level was observed to increase as approximately speed to the fourth power over the range of 2.6-6.1 m s(-1), partially biased at low speeds by nonpropulsion machinery signals. Source directionality patterns were extracted from variations in source spectra while the ship transited past the buoy field. The observed spectral source levels exhibited a broadside maximum, with bow and stern aspect reduced by approximately 12-9 dB, respectively, independent of frequency. An empirical model is proposed assuming that spectral source levels exhibit simultaneous variations in aspect angle, speed, and turn rate. After correction for source directionality and speed during turning maneuvers, an excess of up to 18 dB in one-third octave source levels was observed.

  4. Five Years of Land Surface Phenology in a Large Scale Hydrological Manipulation Experiment in an Arctic Tundra Landscape

    Science.gov (United States)

    Goswami, S.; Gamon, J. A.; Tweedie, C. E.

    2010-12-01

    Climate change appears to be most pronounced at high northern latitudes. Many of the observed and modeled climate change responses in arctic tundra ecosystems have profound effects on surface energy budgets, land-atmosphere carbon exchange, plant phenology, and geomorphic processes. Detecting biotic responses to a changing environment is essential for understanding the consequences of global change. Plants can work as very effective indicators of changing conditions and, depending on the nature of the change, respond by increasing or decreasing amounts of green-leaf biomass, chlorophyll, and water content. Shifts in the composition and abundance of plant species have important effects on ecosystem processes such as net primary production and nutrient cycling. Vegetation is expected to be responsive to arctic warming, although there is some uncertainty as to how the interplay between geomorphic, hydrologic, climatic and other biotic will manifest over a range of spatial scales. The NSF-supported Biocomplexity project in Barrow, Alaska, involves experimental manipulation of water table (drained, flooded, and control treatments) in a vegetated arctic thaw lake basin to investigate the effects of altered hydrology on land-atmosphere carbon balance. In each experimental treatment, hyperspectral reflectance data were collected in the visible and near IR range of the spectrum using a robotic tram system that operated along a 300m tramline during the snow free growing period between June and August 2005-09. Water table depths and soil volumetric water content was also collected along these transects. The years 2005-2007 were control or unmanipulated experimental years and 2008 and 2009 were experimental years where water table was raised (+10cm) and lowered (-10cm) in flooding and draining experiments respectively. This presentation will document the change in phenology (NDVI) between years, treatments, and land cover types. Findings from this research have implications

  5. Long-Term Record of Arctic and Antarctic Sea and Ice Surface Temperatures from Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Luis, Cristina; Dybkjær, Gorm; Eastwood, Steinar; Tonboe, Rasmus; Høyer, Jacob

    2015-04-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 µm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  6. The Impact of Submarine Depth, Speed Sonar Systems on Arctic Sea-ice Draft Measurements

    Science.gov (United States)

    2015-04-21

    speed sonar systems on Arctic sea - ice draft measurements April 21, 2015 Reporting period: Oct 5, 2010- Sept 30, 2014 Prepared for: Office...TERM GOALS Arctic sea ice thickness is critical to geophysical research into climate change, shipping, biological productivity and other things...13. SUPPLEMENTARY NOTES 14. ABSTRACT Arctic sea ice thickness is critical to geophysical research into climate change, shipping, biological

  7. A synthetic aperture radar sea surface distribution estimation by n-order Bézier curve and its application in ship detection

    Institute of Scientific and Technical Information of China (English)

    LANG Haitao; ZHANG Jie; WANG Yiduo; ZHANG Xi; MENG Junmin

    2016-01-01

    To dates, most ship detection approaches for single-pol synthetic aperture radar (SAR) imagery try to ensure a constant false-alarm rate (CFAR). A high performance ship detector relies on two key components: an accurate estimation to a sea surface distribution and a fine designed CFAR algorithm. First, a novel nonparametric sea surface distribution estimation method is developed based onn-order Bézier curve. To estimate the sea surface distribution usingn-order Bézier curve, an explicit analytical solution is derived based on a least square optimization, and the optimal selection also is presented to two essential parameters, the ordern of Bézier curve and the numberm of sample points. Next, to validate the ship detection performance of the estimated sea surface distribution, the estimated sea surface distribution byn-order Bézier curve is combined with a cell averaging CFAR (CA-CFAR). To eliminate the possible interfering ship targets in background window, an improved automatic censoring method is applied. Comprehensive experiments prove that in terms of sea surface estimation performance, the proposed method is as good as a traditional nonparametric Parzen window kernel method, and in most cases, outperforms two widely used parametric methods, K and G0 models. In terms of computation speed, a major advantage of the proposed estimation method is the time consuming only depended on the numberm of sample points while independent of imagery size, which makes it can achieve a significant speed improvement to the Parzen window kernel method, and in some cases, it is even faster than two parametric methods. In terms of ship detection performance, the experiments show that the ship detector which constructed by the proposed sea surface distribution model and the given CA-CFAR algorithm has wide adaptability to different SAR sensors, resolutions and sea surface homogeneities and obtains a leading performance on the test dataset.

  8. Design Data Sheet: Calculation of Surface Ship Annual Energy Usage, Annual Energy Cost, and Fully Burdened Cost of Energy

    Science.gov (United States)

    2012-08-07

    F76 for ship propulsion and power generation and JP5 for aircraft. JP5 is also used occasionally for ship propulsion and power generation. While...applications, the FBCE includes the acquisition cost of a barrel of ship propulsion fuel burdened with the additional indirect costs associated with...fuel used for Navy ship propulsion and electrical power generation. JP5 is primarily used for powering aircraft. The FY 2011 DoD composite standard

  9. Trends in coastal Arctic fog and its influence on the surface energy balance of glaciers

    NARCIS (Netherlands)

    Jiskoot, H.; Gueye, S.Y.; van Boxel, J.H.

    2013-01-01

    Breakup of sea ice causes advection and steam fog, which can be persistent over oceans and coasts but diminishes inland. Arctic warming has increased summer sea ice decline and open water exposure, affecting heat and moisture fluxes and therefore cloud formation. Cloudiness has generally increased o

  10. Source Attribution of Arctic Black Carbon Constrained by Surface and Aircraft measurements

    Science.gov (United States)

    Xu, J.; Martin, R.; Morrow, A.; Sharma, S.; Leaitch, R.; Huang, L.; Burkart, J.; Willis, M. D.; Henze, D. K.; Lee, C. J.; Herber, A. B.; Abbatt, J.

    2016-12-01

    The Arctic has warmed rapidly over the last decades with a substantial contribution from black carbon (BC), however sources of Arctic BC and their contributions are highly uncertain. We use the GEOS-Chem global chemical transport model to interpret measurements of Arctic BC from the ground at Alert (2009-2014), Barrow (2009-2015) and Zeppelin (2009-2014), and from aircraft performed by the NETCARE campaign in 2015 and the PAMARCMiP campaigns in 2009 and 2011. Our simulated BC concentrations are consistent with the ground-based measurements to within 40% for Alert and Barrow, and with the aircraft measurements to within 18%. Excluding flaring emissions from the model would increase the bias versus both the ground and aircraft measurements by up to 25% except at Zeppelin where the bias would decrease. Our simulations reveal spatial and seasonal variations in sources of Arctic BC. In winter and early spring, Europe, northern Asia and eastern Asia are comparable sources of BC at Alert and Barrow, whereas at Zeppelin, Europe is the predominant contributor (52%). In summer, biomass burning is the major source of BC at all stations. North America has a minor influence (gas flaring emissions in West Siberia in January and to industrial emissions in eastern China in April.

  11. Surface morphology of fans in the high-Arctic periglacial environment of Svalbard : Controls and processes

    NARCIS (Netherlands)

    De Haas, Tjalling; Kleinhans, Maarten G.; Carbonneau, Patrice E.; Rubensdotter, Lena; Hauber, Ernst

    2015-01-01

    Fan-shaped landforms occur in all climatic regions on Earth. They have been extensively studied in many of these regions, but there are few studies on fans in periglacial, Arctic and Antarctic regions. Fans in such regions are exposed to many site-specific environmental conditions in addition to the

  12. Trends in coastal Arctic fog and its influence on the surface energy balance of glaciers

    NARCIS (Netherlands)

    Jiskoot, H.; Gueye, S.Y.; van Boxel, J.H.

    2013-01-01

    Breakup of sea ice causes advection and steam fog, which can be persistent over oceans and coasts but diminishes inland. Arctic warming has increased summer sea ice decline and open water exposure, affecting heat and moisture fluxes and therefore cloud formation. Cloudiness has generally increased

  13. Understanding changes in the Arctic basin sea ice mass budget as simulated by CCSM4: Implications from melt season characteristics and the surface albedo feedback

    Science.gov (United States)

    Pollak, D. A.; Holland, M. M.; Bailey, D. A.

    2010-12-01

    Observations reveal alarming drops in Arctic sea ice extent, and climate models project that further changes will occur that could have global repercussions. An important aspect of this change is the surface albedo feedback, driven by the contrast between the albedos of snow/ice and the open ocean. In response to warming, this feedback enhances ice melt and amplifies surface warming in the Arctic. The newly released, fully coupled Community Climate System Model Version 4 (CCSM4) is used to assess long-term changes in the Arctic sea ice mass budget. Analysis of monthly-averaged mass budget time series from the 20th and 21st centuries revealed drastic changes from 1980-2050, the focus years of this study. While numerous factors determine the Arctic sea ice mass budget, we focus on the surface melt terms as they are most closely related to the surface albedo feedback. During the study period, annually averaged difference plots of sea ice thickness and area both revealed substantial decreases across the entire Arctic domain. Helping to clarify these long-term changes, new daily output data from this model allowed for the examination of melt season characteristics such as melt onset and cessation dates as well as season duration. One of the most interesting aspects was the shift to earlier melt onset dates throughout the Arctic Basin. This shift, coupled with the seasonal solar cycle has substantial implications. Earlier onset dates imply an earlier decrease of albedo that overlaps with the seasonal maximum of downward shortwave radiation. This leads to increases in shortwave absorption and results in amplified ice melt that directly impacts the strength of the surface albedo feedback. The strong relationship between earlier melt onset dates and increased absorbed radiation therefore is a key factor influencing Arctic amplification. This figure is created from daily model output and displays changes in melt season duration, end date, and onset date from the first and

  14. A crossover adjustment for improving sea surface height mapping from in-situ high rate ship-borne GNSS data using PPP technique

    Science.gov (United States)

    Guo, Jinyun; Dong, Zhenghua; Tan, Zhengguang; Liu, Xin; Chen, Chuanfa; Hwang, Cheinway

    2016-08-01

    Ship-borne global navigation satellite system (GNSS) technique can overcome the weakness of satellite altimetry and tide gauge in measuring sea surface heights (SSHs) over coastal seas. Ship-borne GNSS technique can be used to calibrate SSHs determined by the satellite altimetry and tide gauge. The ship-borne GNSS data are processed with the single-epoch precise point positioning (PPP) method to estimate SSHs which are filtered by the Gaussian filter to weaken and/or remove effects of sea wind and wave field. Tidal corrections are also taken into consideration to improve SSHs. One crossover adjustment method is put forward to calculate the bias and drift along the ship route and assess the accuracy of SSHs. We processed the in-situ ship-borne GPS data over the offshore sea around Keelung to compute precisely SSHs with the single-epoch PPP. Statistical results of SSH differences of crossover points indicate that the root mean squares error of SSHs determined by the ship-borne GPS is up to level of 12.9 cm over the offshore sea ~30 km far away to land.

  15. Arctic Security in a Warming World

    Science.gov (United States)

    2010-03-01

    is much shallower and littered with small islands. The two northern variants are the primary avenues for growth in international shipping. Figure...in the Arctic is the explosion of opportunities for tourism . This influx of large numbers of people has the potential to be the greatest threat to...lie with expanded Arctic tourism . A distressed tourist vessel in the hostile conditions and remote regions of the Arctic could quickly develop into a

  16. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean in spring

    Directory of Open Access Journals (Sweden)

    A. Tetzlaff

    2012-07-01

    Full Text Available The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and the JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model which only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I and AMSR-E data. Under nearly cloud free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 60% for Barrow using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Near-surface winds of both reanalyses show a large inconsistency in the Central Arctic, which leads to a large difference in the correlations between modeled and observed 2-m air temperatures at Tara. Explained variances amount to 70% using JRA and only 45% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 150 to 350 km radius around the site.

  17. Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway

    Science.gov (United States)

    Khan, Alia L.; Dierssen, Heidi; Schwarz, Joshua P.; Schmitt, Carl; Chlus, Adam; Hermanson, Mark; Painter, Thomas H.; McKnight, Diane M.

    2017-02-01

    Light-absorbing particles (LAPs) in snow such as dust and black carbon influence the radiative forcing at the Earth's surface, which has major implications for global climate models. LAPs also significantly influence the melting of glaciers, sea ice, and seasonal snow. Here we present an in situ study of surface snow near an active coal mine in the Norwegian Arctic. We couple measurements of spectral hemispherical directional reflectance factor (HDRF) with measurements of LAPs characterized in two ways, as refractory black carbon using a Single Particle Soot Photometer and the total light absorption of LAPs measured with the Light Absorption Heating Method. The Snow Ice and Aerosol Radiation model was constrained by LAP measurements. Results were compared to observed spectral albedo measurements. Modeled and observed albedos were similar at the cleaner and more remote sites. However, the modeled spectral albedos do not fully account for the low spectral albedo measured next to the mine. LAP measurements also showed a large variation in particle sizes (tenths to tens of microns) related to transport distance of the particles from the mine. Here we find that LAPs from coal dust reduce the spectral HDRF by up to 84% next to the mine and 55% 0.5 km downwind of the mine. The coupling of extreme LAP observations (1 ng g-1 to 4863 ng g-1) with HDRF measurements from 350 to 2500 nm has facilitated the development of spectral band pairs, which could be used in the future to remotely assess LAPs in Arctic snow.

  18. Arctic clouds and surface radiation – a critical comparison of satellite retrievals and the ERA-interim reanalysis

    Directory of Open Access Journals (Sweden)

    M. Zygmuntowska

    2011-12-01

    Full Text Available Clouds regulate Earth's radiation budget, both by reflecting part of the incoming sunlight leading to cooling and by absorbing and emitting infrared radiation which tends to have a warming effect. Globally averaged, at the top of the atmosphere the cloud radiative effect is to cool the climate, while at the Arctic surface, clouds are thought to be warming. Ground-based observations of central Arctic Ocean cloudiness are limited to sporadic field campaigns. Therefore many studies rely on satellite- or reanalysis data. Here we compare a passive instrument, the AVHRR-based retrieval from CM-SAF, with recently launched active instruments onboard CloudSat and CALIPSO and the widely used ERA-Interim reanalysis. We find that the three data sets differ significantly. In summer, the two satellite products agree having monthly means of 70–80 percent, but the reanalysis are approximately ten percent higher. In winter passive satellite instruments have serious difficulties, detecting only half the cloudiness of the reanalysis, active instruments being in between. The monthly mean long- and shortwave components of the surface cloud radiative effect obtained from the ERA-Interim reanalysis are about twice that calculated on the basis of CloudSat retrievals. We discuss these discrepancies in terms of instrument-, retrieval- and reanalysis characteristics.

  19. Changes in the modeled ice thickness distribution near the Surface Heat Budget of the Arctic Ocean (SHEBA) drifting ice camp

    Science.gov (United States)

    Lindsay, R. W.

    2003-06-01

    In the polar oceans the ice thickness distribution controls the exchange of heat between the ocean and the atmosphere and determines the strength of the ice. The Surface Heat Budget of the Arctic Ocean (SHEBA) experiment included a year-long field program centered on a drifting ice station in the Beaufort and Chukchi Seas in the Arctic Ocean from October 1997 through October 1998. Here we use camp observations and develop methods to assimilate ice thickness and open water observations into a model in order to estimate the evolution of the thickness distribution in the vicinity of the camp. A thermodynamic model is used to simulate the ice growth and melt, and an ice redistribution model is used to simulate the opening and ridging processes. Data assimilation procedures are developed and then used to assimilate observations of the thickness distribution. Assimilated observations include those of the thin end of the distribution determined by aircraft surveys of the surface temperature and helicopter photographic surveys and aircraft microwave estimates of the open water fraction. The deformation of the ice was determined primarily from buoy and RADARSAT Geophysical Processor System (RGPS) measurements of the ice velocity. Because of the substantial convergence and ridging observed in the spring and summer, the estimated mean ice thickness increases by 59%, from 1.53 to 2.44 m, over the year in spite of a net thermodynamic ice loss for most multiyear ice.

  20. The composition and origination of particles from surface water in the Chukchi Sea, Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    YU Xiaoguo; LEI Jijiang; YAO Xuying; ZHU Jihao; JIN Xiaobing

    2014-01-01

    Suspended particle samples were collected at 11 stations on the shelf and slope regions of the Chukchi Sea and the central Arctic Ocean during the fifth Chinese National Arctic Research Expedition (summer 2012). The particle concentration, total organic carbon (TOC), total nitrogen (TN) and the isotopic composition of the samples were analyzed. The suspended particle concentration varied between 0.56 and 4.01 mg.L-1;the samples collected from the sea ice margin have higher concentrations. The organic matter content is higher in the shelf area (TOC:9.78%-20.24%;TN:0.91%-2.31%), and exhibits heavier isotopic compositions (δ13C: -23.29‰ to -26.33‰ PDB;δ15N: 6.14‰-7.78‰), indicating that the organic matter is mostly marine in origin with some terrigenous input. In the slope and the central Arctic Ocean, the organic matter content is lower (TOC:8.06%-8.96%;TN:0.46%-0.72%), except for one sample (SR15), and has lighter isotopic compositions (δ13C:-26.93‰to-27.78‰PDB;δ15N:4.13‰-4.84‰). This indicates that the organic matter is mostly terrestrially-derived in these regions. The extremely high amount of terrigenous organic matter (TOC:27.94%;TN:1.16%;δ13C:-27.43‰PDB;δ15N:3.81‰) implies that it was carried by transpolar currents from the East Siberian Sea. Material, including sea ice algae, carried by sea ice are the primary source for particles in the sea ice margins. Sea ice melting released a substantial amount of biomass into the shelf, but a large amount of detrital and clay minerals in the slope and the central Arctic Ocean.

  1. Estimation of surface energy fluxes in the Arctic tundra using the remote sensing thermal-based Two-Source Energy Balance model

    Science.gov (United States)

    Cristóbal, Jordi; Prakash, Anupma; Anderson, Martha C.; Kustas, William P.; Euskirchen, Eugénie S.; Kane, Douglas L.

    2017-03-01

    The Arctic has become generally a warmer place over the past decades leading to earlier snow melt, permafrost degradation and changing plant communities. Increases in precipitation and local evaporation in the Arctic, known as the acceleration components of the hydrologic cycle, coupled with land cover changes, have resulted in significant changes in the regional surface energy budget. Quantifying spatiotemporal trends in surface energy flux partitioning is key to forecasting ecological responses to changing climate conditions in the Arctic. An extensive local evaluation of the Two-Source Energy Balance model (TSEB) - a remote-sensing-based model using thermal infrared retrievals of land surface temperature - was performed using tower measurements collected over different tundra types in Alaska in all sky conditions over the full growing season from 2008 to 2012. Based on comparisons with flux tower observations, refinements in the original TSEB net radiation, soil heat flux and canopy transpiration parameterizations were identified for Arctic tundra. In particular, a revised method for estimating soil heat flux based on relationships with soil temperature was developed, resulting in significantly improved performance. These refinements result in mean turbulent flux errors generally less than 50 W m-2 at half-hourly time steps, similar to errors typically reported in surface energy balance modeling studies conducted in more temperate climatic regimes. The MODIS leaf area index (LAI) remote sensing product proved to be useful for estimating energy fluxes in Arctic tundra in the absence of field data on the local biomass amount. Model refinements found in this work at the local scale build toward a regional implementation of the TSEB model over Arctic tundra ecosystems, using thermal satellite remote sensing to assess response of surface fluxes to changing vegetation and climate conditions.

  2. Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech

    2016-09-01

    Full Text Available Physical and chemical properties of Arctic soils and especially the properties of surface horizons of the soils are very important because they are responsible for the rate and character of plant colonization, development of vegetation cover, and influence the rate and depth of thawing of soils and development of active layer of permafrost during summer. The main aim of the present study is to determine and explain the spatial diversity of selected physical and chemical properties of surface horizons of Arctic soils from the non-glaciated Fuglebekken catchment located in the Hornsund area (SW Spitsbergen by means of geostatistical approach. Results indicate that soil surface horizons in the Fuglebekken catchment are characterized by highly variable physical and chemical properties due to a heterogeneous parent material (marine sediments, moraine, rock debris, tundra vegetation types, and non-uniform influence of seabirds. Soils experiencing the strongest influence of seabird guano have a lower pH than other soils. Soils developed on the lateral moraine of the Hansbreen glacier have the highest pH due to the presence of carbonates in the parent material and a lack or presence of a poorly developed and discontinuous A horizon. The soil surface horizons along the coast of the Hornsund exhibit the highest content of the sand fraction and SiO2. The surface of soils occurring at the foot of the slope of Ariekammen Ridge is characterized by the highest content of silt and clay fractions as well as Al2O3, Fe2O3, and K2O. Soils in the central part of the Fuglebekken catchment are depleted in CaO, MgO, and Na2O in comparison with soils in the other sampling sites, which indicates the highest rate of leaching in this part of the catchment.

  3. Present and Future Surface Mass Budget of Small Arctic Ice Caps in a High Resolution Regional Climate Model

    Science.gov (United States)

    Mottram, Ruth; Langen, Peter; Koldtoft, Iben; Midefelt, Linnea; Hesselbjerg Christensen, Jens

    2016-04-01

    Globally, small ice caps and glaciers make a substantial contribution to sea level rise; this is also true in the Arctic. Around Greenland small ice caps are surprisingly important to the total mass balance from the island as their marginal coastal position means they receive a large amount of precipitation and also experience high surface melt rates. Since small ice caps and glaciers have had a disproportionate number of long-term monitoring and observational schemes in the Arctic, likely due to their relative accessibility, they can also be a valuable source of data. However, in climate models the surface mass balance contributions are often not distinguished from the main ice sheet and the presence of high relief topography is difficult to capture in coarse resolution climate models. At the same time, the diminutive size of marginal ice masses in comparison to the ice sheet makes modelling their ice dynamics difficult. Using observational data from the Devon Ice Cap in Arctic Canada and the Renland Ice Cap in Eastern Greenland, we assess the success of a very high resolution (~5km) regional climate model, HIRHAM5 in capturing the surface mass balance (SMB) of these small ice caps. The model is forced with ERA-Interim and we compare observed mean SMB and the interannual variability to assess model performance. The steep gradient in topography around Renland is challenging for climate models and additional statistical corrections are required to fit the calculated surface mass balance to the high relief topography. Results from a modelling experiment at Renland Ice Cap shows that this technique produces a better fit between modelled and observed surface topography. We apply this statistical relationship to modelled SMB on the Devon Ice Cap and use the long time series of observations from this glacier to evaluate the model and the smoothed SMB. Measured SMB values from a number of other small ice caps including Mittivakkat and A.P. Olsen ice cap are also compared

  4. Methane Observations in the Air and Surface Waters of the Eastern Arctic Ocean during SWERUS-C3

    Science.gov (United States)

    Crill, P. M.

    2015-12-01

    The broad shelf areas of the Russian Arctic Ocean are purported to be substantial and increasing sources of atmospheric methane that are particularly sensitive to warming climate. I report here an overview of an extensive continuous record of ambient CH4 mixing ratios and surface water concentrations made during the SWERUS-C3 expedition and how these observations might fit into the conversation about Arctic CH4 emissions. During Jul and Aug 2014 continuous high-resolution measurements of CH4 were made in the atmosphere and the surface ocean as the Swedish I/B Oden crossed the middle and outer shelf areas of the Laptev and East Siberian Seas and into the Chukchi Sea. Air and water samples were analyzed with independent CRDS laser systems. Air was continuously sampled from four heights 9 to 35 m above the sea surface. Heights were switched every 2 minutes and target gases of ca. 1.800 and 4.000 ppm were run every two hours. Surface seawater was collected from 8 m below the surface. The counter flow of the equilibration sampler was analyzed with a CRDS laser. Two standards of 15 and 150 ppm were used in addition to the ambient air targets. In the Laptev Sea the air burden ranged from 1.865 to 1.908 ppm and the water 1.976 to 105 ppm. In the ice covered East Siberian Sea the range was 1.874 to 1.996 ppm in air and 2.132 to 210 ppm in water (83% were ppm). Calculated fluxes ranged from 1.6 to 7.7 mg m-2d-1 (including regions with sea ice where flux calculations are problematic). The air and water data were combined with wind data to calculate wind driven fluxes. Our mean flux of 3.1 mg m-2d-1 leads to a shelf-wide extrapolated flux of ca. 2.4 Tg yr-1. This is much higher than reported fluxes from many shelf seas but consistent with previous reports from these regions from monitoring, shipboard and aircraft data. These observations, integrated with terrestrial data, contribute to an emerging quantitative picture of Arctic CH4 dynamics and its role in the global budget.

  5. Surface layer ozone and nitric oxides in the Arctic: The inuence of boundary layer dynamics, snowpack chemistry, surface exchanges, and seasonality

    Science.gov (United States)

    Van Dam, Brie A.

    The snowpack is a region of active chemistry. Aqueous chemistry in a quasi-liquid layer on snow grains and gas-phase chemical reactions in snow interstitial air can lead to the production or destruction of important trace gases. Physical transport parameters such as wind pumping and diffusion affect the vertical distribution of gases within the snowpack. The resulting emission or uptake of trace gases at the atmosphere-snowpack interface can have significant in uence on the chemistry of the lower atmosphere. In this work the dynamic interactions between the snowpack and atmosphere are examined from multiple perspectives. The primary focus is on ozone (O3) and nitrogen oxides (NOx) in the Arctic, a region undergoing widespread environmental change. To investigate an ice-sheet location with year round snow cover, data from a two-year campaign at Summit, Greenland are implemented. At Summit this study examines (1) the processes contributing to vigorous chemistry in snow interstitial air, and (2) the role of the boundary layer over snow in determining surface layer NOx. Physical and chemical processes are shown to contribute to distinct seasonal and diurnal cycles of O3, NO, and NO2 in the snowpack. Boundary layer depths estimated from sonic anemometer turbulence quantities are used alongside sodar-derived values to show that the depth of the stable to weakly stable boundary layer at Summit was not a primary factor in determining NO x in early summer. Motivated by observations of an increase in the length of the snow-free season in the Arctic in recent decades, data from a one-year experiment at the seasonally-snow covered location of Toolik Lake, AK are also incorporated. This study shows the first observations of springtime ozone depletion events at a location over 200 km from the coast in the Arctic. FLEXPART analysis is used to illustrate that these inland events are linked to transport conditions. Lastly at this location, eddy-covariance O3 uxes were calculated to

  6. The conservative behavior of dissolved organic carbon in surface waters of the southern Chukchi Sea, Arctic Ocean, during early summer

    Science.gov (United States)

    Tanaka, Kazuki; Takesue, Nobuyuki; Nishioka, Jun; Kondo, Yoshiko; Ooki, Atsushi; Kuma, Kenshi; Hirawake, Toru; Yamashita, Youhei

    2016-01-01

    The spatial distribution of dissolved organic carbon (DOC) concentrations and the optical properties of dissolved organic matter (DOM) determined by ultraviolet-visible absorbance and fluorescence spectroscopy were measured in surface waters of the southern Chukchi Sea, western Arctic Ocean, during the early summer of 2013. Neither the DOC concentration nor the optical parameters of the DOM correlated with salinity. Principal component analysis using the DOM optical parameters clearly separated the DOM sources. A significant linear relationship was evident between the DOC and the principal component score for specific water masses, indicating that a high DOC level was related to a terrigenous source, whereas a low DOC level was related to a marine source. Relationships between the DOC and the principal component scores of the surface waters of the southern Chukchi Sea implied that the major factor controlling the distribution of DOC concentrations was the mixing of plural water masses rather than local production and degradation. PMID:27658444

  7. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    Directory of Open Access Journals (Sweden)

    J. W. Chi

    2015-06-01

    Full Text Available Sea salt aerosols (SSA are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO32, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N− mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N− line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  8. The effect of surface heat fluxes on interannual variability in the spring onset of snow melt in the central Arctic Ocean

    Science.gov (United States)

    Maksimovich, Elena; Vihma, Timo

    2012-07-01

    The timing of spring snow melt onset (SMO) on Arctic sea ice strongly affects the heat accumulation in snow and ice during the melt season. SMO itself is controlled by surface heat fluxes. Satellite passive microwave (SSM/I) observations show that the apparent melt onset (MO) varies a lot interannually and even over 50-100 km distances. The MO record appeared to be a complex blend of SMO on top of sea ice and opening of leads and polynyas due to divergent sea ice drift. We extracted SMO out of the original MO record using sea ice concentration data. Applying ERA Interim reanalysis, we evaluated the portion of SMO variance explained by radiative and turbulent surface heat fluxes in the period of 1989-2008. The anomaly of the surface net heat flux 1-7 days prior to SMO explained up to 65% of the interannual variance in SMO in the central Arctic. The main term of the net flux was the downward longwave radiation, which explained up to 90% of SMO variance within the western central Arctic. The role of the latent and sensible heat fluxes in earlier/later SMO was not to bring more/less heat to the surface but to reduce/enhance the surface heat loss. Solar radiation was not an important factor alone, but together with other fluxes improved the explained variance of SMO. Local 20-year SMO trends averaged over the central Arctic Ocean are toward earlier melt by 9 days per decade.

  9. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene.

    Science.gov (United States)

    Bowman, Jeff S; Rasmussen, Simon; Blom, Nikolaj; Deming, Jody W; Rysgaard, Søren; Sicheritz-Ponten, Thomas

    2012-01-01

    Dramatic decreases in the extent of Arctic multiyear ice (MYI) suggest this environment may disappear as early as 2100, replaced by ecologically different first-year ice. To better understand the implications of this loss on microbial biodiversity, we undertook a detailed census of the microbial community in MYI at two sites near the geographic North Pole using parallel tag sequencing of the 16S rRNA gene. Although the composition of the MYI microbial community has been characterized by previous studies, microbial community structure has not been. Although richness was lower in MYI than in underlying surface water, we found diversity to be comparable using the Simpson and Shannon's indices (for Simpson t=0.65, P=0.56; for Shannon t=0.25, P=0.84 for a Student's t-test of mean values). Cyanobacteria, comprising 6.8% of reads obtained from MYI, were observed for the first time in Arctic sea ice. In addition, several low-abundance clades not previously reported in sea ice were present, including the phylum TM7 and the classes Spartobacteria and Opitutae. Members of Coraliomargarita, a recently described genus of the class Opitutae, were present in sufficient numbers to suggest niche occupation within MYI.

  10. Distribution of branched GDGTs in surface sediments from the Colville River, Alaska: Implications for the MBT'/CBT paleothermometer in Arctic marine sediments

    Science.gov (United States)

    Hanna, Andrea J. M.; Shanahan, Timothy M.; Allison, Mead A.

    2016-07-01

    Significant climate fluctuations in the Arctic over the recent past, and additional predicted future temperature changes, highlight the need for high-resolution Arctic paleoclimate records. Arctic coastal environments supplied with terrigenous sediment from Arctic rivers have the potential to provide annual to subdecadal resolution records of climate variability over the last few millennia. A potential tool for paleotemperature reconstructions in these marine sediments is the revised methylation index of branched tetraethers (MBT')/cyclization ratio of branched tetraethers (CBT) proxy based on branched glycerol dialkyl glycerol tetraethers (brGDGTs). In this study, we examine the source of brGDGTs in the Colville River, Alaska, and the adjacent Simpson Lagoon and reconstruct temperatures from Simpson Lagoon sediments to evaluate the applicability of this proxy in Arctic estuarine environments. The Colville catchment soils, fluvial sediments, and estuarine sediments contain statistically similar brGDGT distributions, indicating that the brGDGTs throughout the system are soil derived with little alteration from in situ brGDGT production in the river or coastal waters. Temperatures reconstructed from the MBT'/CBT indices for surface samples show good agreement with regional summer (June through September) temperatures, suggesting a seasonal bias in Arctic temperature reconstructions from the Colville system. In addition, we reconstruct paleotemperatures from an estuarine sediment core that spans the last 75 years, revealing an overall warming trend in the twentieth century that is consistent with trends observed in regional instrumental records. These results support the application of this brGDGT-based paleotemperature proxy for subdecadal-scale summer temperature reconstructions in Arctic estuaries containing organic material derived from sediment-laden, episodic rivers.

  11. Empirical Requirements Analysis for Mars Surface Operations Using the Flashline Mars Arctic Research Station

    Science.gov (United States)

    Clancey, William J.; Lee, Pascal; Sierhuis, Maarten; Norvig, Peter (Technical Monitor)

    2001-01-01

    Living and working on Mars will require model-based computer systems for maintaining and controlling complex life support, communication, transportation, and power systems. This technology must work properly on the first three-year mission, augmenting human autonomy, without adding-yet more complexity to be diagnosed and repaired. One design method is to work with scientists in analog (mars-like) setting to understand how they prefer to work, what constrains will be imposed by the Mars environment, and how to ameliorate difficulties. We describe how we are using empirical requirements analysis to prototype model-based tools at a research station in the High Canadian Arctic.

  12. The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice

    NARCIS (Netherlands)

    Sterk, H.A.M.; Steeneveld, G.J.; Holtslag, A.A.M.

    2013-01-01

    To enhance the understanding of the impact of small-scale processes in the polar climate, this study focuses on the relative role of snow-surface coupling, radiation and turbulent mixing in an Arctic stable boundary layer. We extend the GABLS1 (GEWEX Atmospheric Boundary-Layer Study 1) model interco

  13. Endurance and stability of some surface meteorological sensors under land- and ship-based operating environments

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Desai, R.G.P.; Joseph, A.; VijayKumar, K.; Dabholkar, N.; Prabhudesai, S.; Nagvekar, S.; Agarvadekar, Y.

    at NIO is presented in Fig. 2. TABLE 1. PARTICULARS OF SENSORS USED IN THE AWS SYSTEM Surface meteorological parameter Sensor type Specifications Wind speed & direction Propeller & Vane (Model: 05103 from R.M. Young, U.S.A) Speed range Gust... and Mrs. Vimala Damodaran. REFERENCES [1]. R. G. Prabhudesai, P. Mehra, E. Desa, S. Nagvekar, and V. Kumar, Weather Station for Scientific Data Collection, Second Indian National Conference on Harbour and Ocean Engineering (INCHOE-97), 1997...

  14. Ship construction

    National Research Council Canada - National Science Library

    Eyres, D.J; Bruce, G.J

    2012-01-01

    .... "Acting as both a professional reference on current approaches in shipyard practice and a comprehensive introduction for students in any marine discipline, Ship Construction covers the complete...

  15. Shipping Fairways

    Data.gov (United States)

    Department of Homeland Security — Various shipping zones delineate activities and regulations for marine vessel traffic. Traffic lanes define specific traffic flow, while traffic separation zones...

  16. Ship-based Surface Flux Observations Under Atmospheric Rivers During the CALWATER 2015 Field Campaign

    Science.gov (United States)

    Blomquist, B.; Fairall, C. W.; Intrieri, J. M.; Wolfe, D. E.; Pezoa, S.

    2015-12-01

    The NOAA Physical Sciences Division portable flux system was deployed on the R/V Ron Brown as part of the surface observational strategy for the CALWATER 2015 field investigation. Measurements included turbulent fluxes of temperature, water vapor and wind stress. A refined 'best' set of bulk meteorological measurements for the duration of the cruise was produced from combined NOAA, DOE ARM-AMF2 and shipboard sensors. Direct eddy correlation and bulk model estimates of sensible and latent heat are broadly consistent (RMSE transport budget.

  17. Cloud radiative forcing sensitivity to Arctic synoptic regimes, surface type, cloud phase and cloud properties during the Fall 2014 Arctic Radiation, IceBridge and Sea-Ice Experiment (ARISE)

    Science.gov (United States)

    Segal-Rosenheimer, Michal; Redemann, Jens; Shinozuka, Yohei; Flynn, Connor; LeBanc, Samuel; Schmidt, Sebastian; Song, Shi; Bucholtz, Anthony; Reid, Elizabeth; Anderson, Bruce; Corr, Chelsea; Smith, William L.; Kato, Seiji; Spangenberg, Douglas A.; Hofton, Michelle; Moore, Richard; Winstead, Edward; Thornhill, Lee K.

    2015-04-01

    Surface cloud radiative forcing (CRF) estimates in the Arctic cover a wide range of values when comparing various datasets (e.g. MERRA, CERES), and show high bias when compared to in-situ ground-based flux measurement stations (e.g. in Greenland) [Wenshan and Zender, 2014]. These high variations and biases result from an intricate relationship between the prevailing synoptic regimes, surface types (open ocean versus sea-ice), and cloud properties [e.g. Barton et al., 2012; Bennartz et al., 2013]. To date, analyses are focused on large-scale or inter-annual comparisons [e.g. Barton et al., 2012; Taylor et al., 2014], or on several specific ground-based sites [Shupe et al., 2004; Sedlar et al., 2012]. Nevertheless, smaller scale CRF variations related to the sharp changes in sea-ice cover, cloud type and synoptic regimes in autumn are still not well understood. Here, we are focusing on assessing the CRF sensitivity to a composite variable matrix of atmospheric stability regimes, cloud profiles and properties and surface type changes during the NASA ARISE campaign conducted in the Fall of 2014 during the Arctic sea-ice minimum in the Beaufort Sea. We are interested in answering the following questions: (1) what are the combinations of distinct synoptic regimes, surface types, and cloud properties that result in the lowest or highest simulated CRF values over the Arctic Beaufort Sea during the autumn 2014 sea-ice growth period?, and (2) can we relate these simulated extremes to the observations made during the ARISE campaign? We are using the libRadtran radiative transfer modeling package to calculate the CRF sensitivity matrix, with daily gridded atmospheric profiles input from MERRA re-analysis, cloud fields and properties from CALIPSO, MODIS, AVHRR, daily variations in sea-ice margins from AMSR-2, and complementary airborne measurements collected on the C-130 during the campaign. In performing sensitivity analysis, we examine CRF extremes sorted by atmospheric

  18. Characteristics of pCO2 in surface water of the Bering Abyssal Plain and their effects on carbon cycle in the western Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    CHEN Liqi; GAO Zhongyong; WANG Weiqiang; YANG Xulin

    2004-01-01

    Characteristics of the pCO2 distribution in surface water of the Bering Abyssal Plain and their relationships with the ambient hydrological conditions were discussed using variations of the partial pressure of CO2 in surface water of the Bering Abyssal Plain and the Chukchi Sea. Data in this study are from a field investigation during the First Chinese National Arctic Research Expedition in 1999. Compared to the high productivity in the Bering Continental Shelf, much lower levels of chlorophyll a were observed in the Bering Abyssal Plain. The effect of hydrological factors on the pCO2 distribution in surface seawater of the Plain in summer has become a major driving force and dominated over biological factors. The Plain also presents a High Nutrient Low Chlorophyll (HNLC). In addition, the pCO2 distribution in the Bering Abyssal Plain has also been found to be influenced from the Bering Slope Current which would transform to the Anadyr Current when it inflows northwestward over the Plain. The Anadyr Current would bring a high nutrient water to the western Arctic Ocean where local nutrients are almost depleted in the surface water during the summer time. Resupplying nutrients would stimulate the growth of phytoplankton and enhance capacity of absorbing atmospheric CO2 in the surface water. Otherwise, in the Bering Sea the dissolved inorganic carbon brought from freshwater are not deposited down to the deep sea water but most of them would be transported into the western Arctic Ocean by the Alaska Coastal Current to form a carbon sink there. Therefore, the two carbon sinks in the western Arctic Ocean, one carried by the Anadyr Current and another by the Alaska Costal Current, will implicate the western Arctic Ocean in global change.

  19. Marine Transportation Implications of the Last Arctic Sea Ice Refuge

    Science.gov (United States)

    Brigham, L. W.

    2010-12-01

    Marine access is increasing throughout the Arctic Ocean and the 'Last Arctic Sea Ice Refuge' may have implications for governance and marine use in the region. Arctic marine transportation is increasing due to natural resource developemnt, increasing Arctic marine tourism, expanded Arctic marine research, and a general linkage of the Arctic to the gloabl economy. The Arctic Council recognized these changes with the release of the Arctic Marine Shipping Assessment of 2009. This key study (AMSA)can be viewed as a baseline assessment (using the 2004 AMSA database), a strategic guide for a host of stakeholders and actors, and as a policy document of the Arctic Council. The outcomes of AMSA of direct relevance to the Ice Refuge are within AMSA's 17 recommendations provided under three themes: Enhancing Arctic Marine Safety, Protecting Arctic People and the Environment, and Building the Arctic Marine Infrastructure. Selected recommendations of importance to the Ice Refuge include: a mandatory polar navigation code; identifying areas of heightened ecological and cultural significance; potential designation of special Arctic marine areas; enhancing the tracking and monitoring of Arctic marine traffic; improving circumpolar environmental response capacity; developing an Arctic search and rescue agreement; and, assessing the effects of marine transportation on marine mammals. A review will be made of the AMSA outcomes and how they can influence the governance, marine use, and future protection of this unique Arctic marine environment.

  20. Ship bow waves

    Institute of Scientific and Technical Information of China (English)

    NOBLESSE Francis; DELHOMMEAU Gerard; LIU Hua; WAN De-cheng; YANG Chi

    2013-01-01

    The bow wave generated by a ship hull that advances at constant speed in calm water is considered.The bow wave only depends on the shape of the ship bow (not on the hull geometry aft of the bow wave).This basic property makes it possible to determine the bow waves generated by a canonical family of ship bows defined in terms of relatively few parameters.Fast ships with fine bows generate overturning bow waves that consist of detached thin sheets of water,which are mostly steady until they hit the main free surface and undergo turbulent breaking up and diffusion.However,slow ships with blunt bows create highly unsteady and turbulent breaking bow waves.These two alternative flow regimes are due to a nonlinear constraint related to the Bernoulli relation at the free surface.Recent results about the overturning and breaking bow wave regimes,and the boundary that divides these two basic flow regimes,are reviewed.Questions and conjectures about the energy of breaking ship bow waves,and free-surface effects on flow circulation,are also noted.

  1. Distribution of radium-224 in the western Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    QIU Yusheng; CHEN Min; LI Yanping

    2005-01-01

    Radium-224 activities in the western Arctic Ocean were measured via ship-board 220Rn emanation technique during the Second Chinese National Arctic Expedition. The results showed that the 224Ra activities in the study areas ranged from being less than 0.08 to 3.58 Bq/m3, with an average of 0.23 Bq/m3. The low 224Ra concentration in the surface water was attributed to the influence of sea ice melted water. The horizontal distribution of surface 224Ra in the western Arctic Ocean showed a high 224Ra characteristics occurred along the slope around 160°W, providing evidence for the importance of ice-rafted sediments to controlling the distribution of radium isotopes in the Arctic Ocean. Mostly, 224Ra concentrations increased with the depth in the shelf region and reached a maximum at 75 m at the central Canada Basin, which further confirms the importance of the transport of shelf bottom water to maintaining the upper halocline layer in the Canada Basin.

  2. Ship Hydrodynamics

    Science.gov (United States)

    Lafrance, Pierre

    1978-01-01

    Explores in a non-mathematical treatment some of the hydrodynamical phenomena and forces that affect the operation of ships, especially at high speeds. Discusses the major components of ship resistance such as the different types of drags and ways to reduce them and how to apply those principles for the hovercraft. (GA)

  3. Characteristics of Surface Radiative Fluxes and Cloud-Radiative Forcing with a Focus on the Arctic%北极地区地面辐射量和云辐射强迫特征

    Institute of Scientific and Technical Information of China (English)

    刘凤景; 孙俊英; 张廷军; 程国栋

    2000-01-01

    In this paper the characteristics of surface radiative fluxes and cloud-radiative forcing are reviewed with a focus on the Arctic. Three aspects are addressed, including (i) changes in radiation flux over the global surface; (ii) characteristics of surface fluxes in the Arctic; and (iii) characteristics of cloud-radiative forcing in the Arctic. The clouds not only significantly reduce the peak summer radiative heating of the surface but also reduce the wintertime radiative cooling at the surface in higher latitudes. The downward longwave fluxes dominates the incident radiative fluxes in the Arctic during most of the year. Incoming shortwave fluxes are negligible during late fall, winter and early spring, and even during the midsummer the incoming shortwave fluxes are only slightly greater than the downward longwave fluxes. The total net surface radiative flux is negative for most of the year and only positive during midsummer in the Arctic. The global net cloud-radiative forcing is negative, but the cloud-radiative forcing is positive in the Arctic, showing a warming effect, except for a short period in mid-summer. Positive cloud-radiative forcing in the Arctic is attributed to the presence of snow and ice with high albedo and the absence of solar radiation during the polar night.

  4. The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure

    Science.gov (United States)

    Shephard, Grace E.; Müller, R. Dietmar; Seton, Maria

    2013-09-01

    The tectonic evolution of the circum-Arctic, including the northern Pacific, Siberian and North American margins, since the Jurassic has been punctuated by the opening and closing of ocean basins, the accretion of autochthonous and allochthonous terranes and associated deformation. This complexity is expressed in the uncertainty of plate tectonic models of the region, with the time-dependent configurations and kinematic history remaining poorly understood. The age, location, geometry and convergence rates of the subduction zones associated with these ancient ocean basins have implications for mantle structure, which can be used as an additional constraint for refining and evaluating plate boundary models. Here we integrate surface geology and geophysics with mantle tomography models to generate a digital set of tectonic blocks and plates as well as topologically closed plate boundaries with time-dependent rotational histories for the circum-Arctic. We find that subducted slabs inferred from seismic velocity anomalies from global P and S wave tomography models can be linked to various episodes of Arctic subduction since the Jurassic, in particular to the destruction of the South Anuyi Ocean. We present a refined model for the opening of the Amerasia Basin incorporating seafloor spreading between at least 142.5 and 120 Ma, a "windshield" rotation for the Canada Basin, and opening orthogonal to the Lomonosov Ridge for the northern Makarov and Podvodnikov basins. We also present a refined pre-accretionary model for the Wrangellia Superterrane, imposing a subduction polarity reversal in the early Jurassic before accretion to North America at 140 Ma. Our model accounts for the late Palaeozoic to early Mesozoic opening and closure of the Cache Creek Ocean, reconstructed between the Wrangellia Superterrane and Yukon-Tanana Terrane. We suggest that a triple junction may also explain the Mid-Palaeozoic opening of the Slide Mountain, Oimyakon and South Anuyi oceans. Our

  5. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic)

    Science.gov (United States)

    Gamboa, Adriana; Montero-Serrano, Jean-Carlos; St-Onge, Guillaume; Rochon, André; Desiage, Pierre-Arnaud

    2017-02-01

    Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.

  6. Predictionof Powering Performance for a Surface Ship Based on CFD Simulations%基于CFD模拟的水面船功率性能预报研究

    Institute of Scientific and Technical Information of China (English)

    吴乘胜; 赵峰; 张志荣; 高雷; 祁江涛

    2013-01-01

    CFD prediction of powering performance for a surface ship model KCS is carried out in this paper. Numerical computation of resistance for the ship model is performed firstly. Open water performance for propeller model KP505 is computed then. Numerical tests of self-propulsion of the ship model are carried out thirdly. Self-propulsion parameters are obtained through analyzing the results of CFD simulation. Powering performance of the full scale ship is predicted finally. It is shown that the results of numerical simulation and analysis agree quite well with the experimental results.%  论文针对水面船CFD标模KCS,进行CFD计算,模拟实船功率性能预报研究.比拟基于模型试验的水面船功率性能预报,开展了船模阻力、螺旋桨模型敞水和船模自航的数值模拟.通过对CFD模拟结果的分析,获得 KCS 实船的自航因子,并预报了设计航速下的实船功率.CFD 计算模拟、分析及预报结果,都与模型试验及基于模型试验的预报结果进行了比较,总体上符合较好.

  7. Final EIS for the Proposed Homeporting of Additional Surface Ships at Naval Station, Mayport, FL. Volume 1. Final Environmental Impact Statement

    Science.gov (United States)

    2008-11-21

    and the native population’s transition from nomadic, big game subsistence/settlement patterns to a more sedentary lifestyle residing along the...Dental Clinic, Chapel, Child Development Center, and NAVSTA Mayport Family Housing. Final EIS for the Proposed Homeporting of Additional Surface Ships...for the more coastal lifestyle (Brockington & Associates 1998, Hardy Heck Moore Inc. 2001). The Late Archaic sub-period underwent another climate

  8. Arctic ice management

    Science.gov (United States)

    Desch, Steven J.; Smith, Nathan; Groppi, Christopher; Vargas, Perry; Jackson, Rebecca; Kalyaan, Anusha; Nguyen, Peter; Probst, Luke; Rubin, Mark E.; Singleton, Heather; Spacek, Alexander; Truitt, Amanda; Zaw, Pye Pye; Hartnett, Hilairy E.

    2017-01-01

    As the Earth's climate has changed, Arctic sea ice extent has decreased drastically. It is likely that the late-summer Arctic will be ice-free as soon as the 2030s. This loss of sea ice represents one of the most severe positive feedbacks in the climate system, as sunlight that would otherwise be reflected by sea ice is absorbed by open ocean. It is unlikely that CO2 levels and mean temperatures can be decreased in time to prevent this loss, so restoring sea ice artificially is an imperative. Here we investigate a means for enhancing Arctic sea ice production by using wind power during the Arctic winter to pump water to the surface, where it will freeze more rapidly. We show that where appropriate devices are employed, it is possible to increase ice thickness above natural levels, by about 1 m over the course of the winter. We examine the effects this has in the Arctic climate, concluding that deployment over 10% of the Arctic, especially where ice survival is marginal, could more than reverse current trends of ice loss in the Arctic, using existing industrial capacity. We propose that winter ice thickening by wind-powered pumps be considered and assessed as part of a multipronged strategy for restoring sea ice and arresting the strongest feedbacks in the climate system.

  9. Organic carbon and nitrogen isotopes in surface sediments from the western Arctic Ocean and their implications for sedimentary environments

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhihua; SHI Xuefa; CAI Deling; HAN Yibing; YANG Zuosheng

    2006-01-01

    Surface sediments from the Chukchi Sea and adjacent arctic deep sea were investigated for organic carbon and nitrogen isotopes (in δ13Corg and δ15Norg) as well as biogenic silica (BSiO2). δ13Corg and δ15Norg values of surface sediments in the study area fall between the end-member values of marine and terrestrial organic matter from the surrounding lands and seas, their variations reflect the changes of marine productivity and terrestrial supply in the study area. BSiO2 shows a similar distribution pattern with δ13Corg and δ15Norg, and can be used as an indicator of marine productivity. In the central-west Chukchi Sea and the Chukchi Rise, sediments have higher δ13Corg, δ15Norg and BSiO2 values, indicating the region has high marine productivity influenced by the nutrient-rich branches of the Pacific waters. In the coastal zone off northwestern Alaska, δ13Corg and δ15Norg values become lighter, indicating a weakening marine productivity and an increasing terrigenous supply due to the effects of the least nutrient-rich branch of the Pacific waters. In the north and the northeast of the study area (including the Chukchi Plateau, the Canada Basin and the Beaufort shelf), δ13Corg, δ15Norg and BSiO2 have the lowest values, and the terrigenous organic matter becomes dominant in surface sediments because this region has the longest ice-covered duration, the least nutrient-rich seawater and the increasing supply of terrestrial materials from the Mackenzie River and the northern Alaska under the action of the clockwise Beaufort gyre. Because the subarctic Pacific waters are continuously discharged into the central basin of the Arctic Ocean through the study area, the nutrient pool in the Chukchi Sea can be considered as a typical open system, the ratio of δ15N to BSiO2 content show some tracers that the level of nutrient utilization is contrary to nutrient supply and marine productivity formed in seawater.

  10. Comparing Geophysical Methods for Determining the Thickness of Arctic Sea Ice: Is There a Correlation Between Thickness and Surface Temperature?

    Science.gov (United States)

    Robertson, R.; Bowman, T.; Eagle, J. L.; Fisher, L.; Mankowski, K.; McGrady, N.; Schrecongost, N.; Voll, H.; Zulfiqar, A.; Herman, R. B.

    2016-12-01

    Several small geophysical surveys were conducted on the Chukchi Sea ice just offshore from the Naval Arctic Research Laboratory near Barrow, Alaska, in March, 2016. The goal was to investigate a possible correlation between the surface temperature and the thickness of the sea ice, as well as to test a potential new method for more accurately determining ice thickness. Surveys were conducted using a capacitively coupled resistivity array, a custom built thermal sensor array sled, ground penetrating radar (GPR), and an ice drill. The thermal sensor array was based on an Arduino microcontroller. It used an infrared (IR) sensor to determine surface temperature, and thermistor-based sensors to determine vertical air temperatures at 6 evenly spaced heights up to a maximum of 1.5 meters. Surface temperature (IR) data show possible correlations with ice drill, resistivity, and GPR data. The vertical air sensors showed almost no variation for any survey line which we postulate is due to the constant wind during each survey. Ice drill data show ice thickness along one 200 meter line varied from 79-95 cm, with an average of 87 cm. The thickness appears to be inversely correlated to surface temperatures. Resistivity and IR data both showed abrupt changes when crossing from the shore to the sea ice along a 400 meter line. GPR and IR data showed similar changes along a separate 900 meter line, suggesting that surface temperature and subsurface composition are related. Resistivity data were obtained in two locations by using the array in an expanding dipole-dipole configuration with 2.5 meter dipoles. The depth to the ice/water boundary was calculated using a "cumulative resistivity" plot and matched the depths obtained via the ice drill to within 2%. This has initiated work to develop a microcontroller-based resistivity array specialized for thickness measurements of thin ice.

  11. Test Ship

    Data.gov (United States)

    Federal Laboratory Consortium — The U. S. Navy dedicated the decommissioned Spruance Class destroyer ex-PAUL F. FOSTER (EDD 964), Test Ship, primarily for at sea demonstration of short range weapon...

  12. Baseline monitoring of the western Arctic Ocean estimates 20% of the Canadian Basin surface waters are undersaturated with respect to aragonite

    Science.gov (United States)

    Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsavas, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro

    2013-01-01

    Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ~20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.

  13. Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem

    Science.gov (United States)

    Stiegler, Christian; Lund, Magnus; Røjle Christensen, Torben; Mastepanov, Mikhail; Lindroth, Anders

    2016-07-01

    Snow cover is one of the key factors controlling Arctic ecosystem functioning and productivity. In this study we assess the impact of strong variability in snow accumulation during 2 subsequent years (2013-2014) on the land-atmosphere interactions and surface energy exchange in two high-Arctic tundra ecosystems (wet fen and dry heath) in Zackenberg, Northeast Greenland. We observed that record-low snow cover during the winter 2012/2013 resulted in a strong response of the heath ecosystem towards low evaporative capacity and substantial surface heat loss by sensible heat fluxes (H) during the subsequent snowmelt period and growing season. Above-average snow accumulation during the winter 2013/2014 promoted summertime ground heat fluxes (G) and latent heat fluxes (LE) at the cost of H. At the fen ecosystem a more muted response of LE, H and G was observed in response to the variability in snow accumulation. Overall, the differences in flux partitioning and in the length of the snowmelt periods and growing seasons during the 2 years had a strong impact on the total accumulation of the surface energy balance components. We suggest that in a changing climate with higher temperature and more precipitation the surface energy balance of this high-Arctic tundra ecosystem may experience a further increase in the variability of energy accumulation, partitioning and redistribution.

  14. CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps

    Directory of Open Access Journals (Sweden)

    L. Gray

    2015-05-01

    Full Text Available We show that the CryoSat-2 radar altimeter can provide useful estimates of surface elevation change on a variety of Arctic ice caps, on both monthly and yearly time scales. Changing conditions, however, can lead to a varying bias between the elevation estimated from the radar altimeter and the physical surface due to changes in the contribution of subsurface to surface backscatter. Under melting conditions the radar returns are predominantly from the surface so that if surface melt is extensive across the ice cap estimates of summer elevation loss can be made with the frequent coverage provided by CryoSat-2. For example, the average summer elevation decreases on the Barnes Ice Cap, Baffin Island, Canada were 2.05 ± 0.36 m (2011, 2.55 ± 0.32 m (2012, 1.38 ± 0.40 m (2013 and 1.44 ± 0.37 m (2014, losses which were not balanced by the winter snow accumulation. As winter-to-winter conditions were similar, the net elevation losses were 1.0 ± 0.2 m (winter 2010/2011 to winter 2011/2012, 1.39 ± 0.2 m (2011/2012 to 2012/2013 and 0.36 ± 0.2 m (2012/2013 to 2013/2014; for a total surface elevation loss of 2.75 ± 0.2 m over this 3 year period. In contrast, the uncertainty in height change results from Devon Ice Cap, Canada, and Austfonna, Svalbard, can be up to twice as large because of the presence of firn and the possibility of a varying bias between the true surface and the detected elevation due to changing year-to-year conditions. Nevertheless, the surface elevation change estimates from CryoSat for both ice caps are consistent with field and meteorological measurements. For example, the average 3 year elevation difference for footprints within 100 m of a repeated surface GPS track on Austfonna differed from the GPS change by 0.18 m.

  15. Carbon dioxide, temperature, and salinity collected via surface underway survey from NOAA Ship David Starr Jordan off the West Coast of the US and Mexico from 2006-08-06 to 2007-10-28 (NODC Accession 0084176)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0084176 includes chemical, physical, and underway - surface data collected aboard NOAA Ship DAVID STARR JORDAN in Channel Islands National Marine...

  16. Physical, meteorological, and other data from surface sensors and CTD casts from NOAA Ship DISCOVERER as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1975-09-04 to 1975-09-30 (NODC Accession 7601585)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship DISCOVERER. Data were collected by the Pacific Marine...

  17. Physical, meteorological, and other data from surface sensors and CTD casts from NOAA Ship DISCOVERER as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 23 October 1980 to 04 November 1980 (NODC Accession 8200118)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship DISCOVERER from 23 October 1980 to 04 November 1980. Data...

  18. Temperature profile data from surface sensors and CTD casts from NOAA Ship DISCOVERER and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1981-10-22 to 1982-10-13 (NODC Accession 8400037)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from surface sensors and CTD casts from NOAA Ship DISCOVERER and other platforms from 22 October 1981 to 13 October 1982....

  19. Physical, meteorological, and other data from surface sensors and CTD casts from NOAA Ship DISCOVERER as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1980-11-10 to 1980-11-13 (NODC Accession 8100539)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship DISCOVERER from 10 November 1980 to 13 November 1980. Data...

  20. Physical, meteorological, and other data from surface sensors and CTD casts from the NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 15 August 1980 to 05 September 1980 (NODC Accession 8200116)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from the NOAA Ship SURVEYOR from 15 August 1980 to 05 September 1980. Data...

  1. Glacier surface temperatures in the Canadian High Arctic, 2000–15

    NARCIS (Netherlands)

    Mortimer, Colleen; Sharp, Martin; Wouters, Bert

    2016-01-01

    Canada's Queen Elizabeth Islands (QEI) contain ~14% of the world's glacier and ice-cap area. Sparse in-situ measurements indicate that interannual variability in glacier surface mass balance in this region is driven primarily by variations in summer melt, and that the annual surface mass balance of

  2. Examination of Surface Temperature Modification by Open-Top Chambers along Moisture and Latitudinal Gradients in Arctic Alaska Using Thermal Infrared Photography

    Directory of Open Access Journals (Sweden)

    Nathan C. Healey

    2016-01-01

    Full Text Available Passive warming manipulation methodologies, such as open-top chambers (OTCs, are a meaningful approach for interpretation of impacts of climate change on the Arctic tundra biome. The magnitude of OTC warming has been studied extensively, revealing an average plot-level warming of air temperature that ranges between 1 and 3 °C as measured by shielded resistive sensors or thermocouples. Studies have also shown that the amount of OTC warming depends in part on location climate, vegetation, and soil properties. While digital infrared thermometers have been employed in a few comparisons, most of the focus of the effectiveness of OTC warming has been on air or soil temperature rather than tissue or surface temperatures, which directly translate to metabolism. Here we used thermal infrared (TIR photography to quantify tissue and surface temperatures and their spatial variability at a previously unavailable resolution (3–6 mm2. We analyzed plots at three locations that are part of the International Tundra Experiment (ITEX-Arctic Observing Network (AON-ITEX network along both moisture and latitudinal gradients spanning from the High Arctic (Barrow, AK, USA to the Low Arctic (Toolik Lake, AK, USA. Our results show a range of OTC surface warming from 2.65 to 1.27 °C (31%–10% at our three sites. The magnitude of surface warming detected by TIR imagery in this study was comparable to increases in air temperatures previously reported for these sites. However, the thermal images revealed wide ranges of surface temperatures within the OTCs, with some surfaces well above ambient unevenly distributed within the plots under sunny conditions. We note that analyzing radiometric temperature may be an alternative for future studies that examine data acquired at the same time of day from sites that are in close geographic proximity to avoid the requirement of emissivity or atmospheric correction for validation of results. We foresee future studies using TIR

  3. Bacterial responses to fluctuations and extremes in temperature and brine salinity at the surface of Arctic winter sea ice.

    Science.gov (United States)

    Ewert, Marcela; Deming, Jody W

    2014-08-01

    Wintertime measurements near Barrow, Alaska, showed that bacteria near the surface of first-year sea ice and in overlying saline snow experience more extreme temperatures and salinities, and wider fluctuations in both parameters, than bacteria deeper in the ice. To examine impacts of such conditions on bacterial survival, two Arctic isolates with different environmental tolerances were subjected to winter-freezing conditions, with and without the presence of organic solutes involved in osmoprotection: proline, choline, or glycine betaine. Obligate psychrophile Colwellia psychrerythraea strain 34H suffered cell losses under all treatments, with maximal loss after 15-day exposure to temperatures fluctuating between -7 and -25 °C. Osmoprotectants significantly reduced the losses, implying that salinity rather than temperature extremes presents the greater stress for this organism. In contrast, psychrotolerant Psychrobacter sp. strain 7E underwent miniaturization and fragmentation under both fluctuating and stable-freezing conditions, with cell numbers increasing in most cases, implying a different survival strategy that may include enhanced dispersal. Thus, the composition and abundance of the bacterial community that survives in winter sea ice may depend on the extent to which overlying snow buffers against extreme temperature and salinity conditions and on the availability of solutes that mitigate osmotic shock, especially during melting.

  4. Sea water surface energy balance in the Arctic fjord (Hornsund, SW Spitsbergen) in May-November 2014

    Science.gov (United States)

    Fortuniak, Krzysztof; Przybylak, Rajmund; Araźny, Andrzej; Pawlak, Włodzimierz; Wyszyński, Przemysław

    2017-05-01

    The full surface energy balance of the sea water of the Arctic fjord was analysed for the period from May to November 2014 in Hornsund (SW Spitsbergen). The sensible and latent turbulent fluxes were measured with the aid of the open-path eddy covariance method. The measurement site was located in the Wilczek Peninsula (Wilczekodden) on the rocks, right at the seafront. At this location, and with the wind system observed there, the source area of turbulent fluxes was spread over the sea water of the Hornsundfjord. The turbulent fluxes were calculated for 1-h intervals with a standard methodology. Stationarity was checked by three independent tests, and two datasets were analysed independently: data approved by all three tests, and data approved by at least one of the tests. The sensible heat flux, Q H , undergoes a clear seasonal regularity, with downward heat transport (negative fluxes) from July to September (with mean ranges from -30 to -15 Wm-2), reaching close to zero in October, then upward in the other months of the analysed period, reaching maximum in November (50 Wm-2). The latent heat flux, Q E , was mostly positive (more than 90 %) and more intensive. The highest mean values of Q E were recorded in July and November (around 135 Wm-2), with the lowest in May, June and August (around 70 Wm-2). Very intensive latent heat fluxes, above 200 Wm-2, in extreme cases exceeding 500 Wm-2, were observed in all months.

  5. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model.

    Science.gov (United States)

    Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela

    2015-10-13

    We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).

  6. Arctic Ship Design Impacts: Green Arctic Patrol Vessel (GAPV) Project

    Science.gov (United States)

    2012-02-01

    is essential to meet mission requirements. The MH- 60 is a multi-mission helicopter selected for its flexibility and adaptable capabilities. The...Despite this volume loss, the GAPV must accommodate over 1,000 mt of fuel and oil to meet range requirements. The GAPV tankage is designed to meet...D’Eon Michael Hughes Colen Kennel Steve Ouimette Dave Ruley Alan Shane Andy Tate Wesley Wilson W. Scott Weidle is a Naval Architect at

  7. 基于 NURBS 曲面插值的船体曲面重构%Reconstruction of Ship Hull Based on NURBS Surface Interpolation

    Institute of Scientific and Technical Information of China (English)

    钱宏; 刘敏; 贺庆; 刘朕明; 荣焕宗

    2016-01-01

    A method for reconstructing the ship hull is presented. The ship hull surface is divided into numbers of panels according to the character curves on the surface. The nets in the wire frame model are dealt with homogeneously to get offset points, on which the character values are added, and the NURBS net is generated. B-spline surfaces with multiple knot points are used to interpolate the nets together with tangential vectors and multiple points, so as to get the panels connected to each other and to form a NURBS surface without gaps. Therefore the complex ship hull surface with a bulb bow, bulb tail, plane side curve, plane bottom curve, partly knuckle curve and transom stern can be constructed by smaller numbers of panels. It provides a favorable NURBS surface in the further design of ship structure, CAM and CFD.%论文提出了一种船体曲面重构方法。首先,用特征线把船体曲面划分为曲面片,便于表达复杂船体曲面和保留船体特征。其次,对船体线框模型的网格均匀化处理,得到型值点的位置,并给它们加上特征,生成NURBS 网格。最后,用带重节点的 B 样条曲面插值带切矢和重点的 NURBS 网格,并进行曲面片拼接,生成无缝隙的 NURBS 曲面。因此,可以用较少的曲面片(几至十几块)重构带有球首、球尾、平边线、平底线、部分折角线和方尾的复杂船体曲面。这给船舶结构设计、CAM 和 CFD 计算提供了良好的船体 NURBS曲面模型。

  8. Towards Arctic Resource Governance of Marine Invasive Species

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Kaiser, Brooks; Fernandez, Linda

    2015-01-01

    research into invasive species threats in the Arctic, including the ways in which known marine invasions are related to different stakeholder groups and existing disparate national and international experiences with invasive species. Stakeholdergroups include dominant industries (fishing, shipping, tourism...... gaps derived from systematic research limitations and opportunities in the Arctic environment....

  9. Changes in the Arctic: Background and Issues for Congress

    Science.gov (United States)

    2014-02-14

    and tourism (cruise ships) in the Arctic increase the risk of pollution in the region. Cleaning up oil spills in ice-covered waters will be more...resources, and expanded fishing and tourism (Figure 3). More broadly, physical changes in the Arctic include warming ocean, soil, and air temperatures...Alaska, and the Gulf of Mexico that had been in place since 1982 had not been restored in 2009 appropriations measures. Changes in the Arctic

  10. Temperature profile data from surface sensors and CTD casts in the Bering Sea and Bristol Bay from NOAA Ship DISCOVERER and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1977-04-16 to 1977-06-03 (NODC Accession 7700742)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER and NOAA Ship MILLER FREEMAN. Data were...

  11. Ikaite crystals in melting sea ice - implications for pCO(2) and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, Ronnie N.; Lennert, K.

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3 center dot 6H(2)O) in Arctic and Antarctic sea ice, which indicate...... that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km(2) (0.5-1m thick) drifting ice floe......, melt reduced the ice floe thickness by 0.2m per week and resulted in an estimated 3.8 ppm decrease of pCO(2) in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m(-2) sea ice d(-1) or to 3.3 ton km(-2) ice floe week(-1). This is markedly higher than the estimated...

  12. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    Directory of Open Access Journals (Sweden)

    R. J. G. Leakey

    2012-03-01

    Full Text Available A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (CaCO3·6H2O in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from an actively melting 1.7 km2 (0.5–1 m thick drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures gradually disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice flow thickness by ca. 0.2 m per week and resulted in an estimated 1.6 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 11 mmol m−2 sea ice d−1 or to 3.5 ton km−2 ice floe week−1.

  13. CFD prediction of self-propulsion parameters for a surface ship%水面船自航因子CFD预报研究

    Institute of Scientific and Technical Information of China (English)

    戈亮; 顾民; 吴乘胜; 邵建南

    2012-01-01

    CFD prediction of self-propulsion parameters for surface ship KCS is carried out. Numerical computation of resistance and wave for the ship model is performed. Open water performance for propeller model KP505 is computed numerically. Numerical tests of self-propulsion of the ship model are carried out. Self-propulsion parameters are obtained by analyzing the results of CFD simulation. The results of numerical simulation and analysis agree quite well with the experimental results.%针对水面船CFD标模KCS,进行基于CFD计算/模拟的自航因子预报研究.比拟基于模型试验的水面船自航因子预报,文中开展了船模阻力、螺旋桨模型敞水和船模自航的数值计算/模拟.通过对CFD计算/模拟结果的分析,获得KCS实船的自航因子.CFD计算/模拟及分析的结果(包括:船模阻力,螺旋桨推力、扭矩、效率,实船自航因子等)都与模型试验结果进行了比较,总体上符合较好.

  14. Airborne hyperspectral surface and cloud bi-directional reflectivity observations in the Arctic using a commercial, digital camera

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2011-09-01

    Full Text Available Spectral radiance measurements by a digital single-lens reflex camera were used to derive the bi-directional reflectivity of clouds and different surfaces in the Arctic. The camera has been calibrated radiometrically and spectrally to provide accurate radiance measurements with high angular resolution. A comparison with spectral radiance measurements with the SMART-Albedometer showed an agreement within the uncertainties of both instruments. The bi-directional reflectivity in terms of the hemispherical directional reflectance factor HDRF was obtained for sea ice, ice free ocean and clouds. The sea ice, with an albedo of ρ = 0.96, showed an almost isotropic HDRF, while sun glint was observed for the ocean HDRF (ρ = 0.12. For the cloud observations with ρ = 0.62, the fog bow – a backscatter feature typically for scattering by liquid water droplets – was covered by the camera. For measurements above a heterogeneous stratocumulus clouds, the required number of images to obtain a mean HDRF which clearly exhibits the fog bow has been estimated with about 50 images (10 min flight time. A representation of the HDRF as function of the scattering angle only reduces the image number to about 10 (2 min flight time.

    The measured cloud and ocean HDRF have been compared to radiative transfer simulations. The ocean HDRF simulated with the observed surface wind speed of 9 m s−1 agreed best with the measurements. For the cloud HDRF, the best agreement was obtained by a broad and weak fog bow simulated with a cloud droplet effective radius of Reff = 4 μm. This value agrees with the particle sizes from in situ measurements and retrieved from the spectral radiance of the SMART-Albedometer.

  15. Do morphometric parameters and geological conditions determine chemistry of glacier surface ice? Spatial distribution of contaminants present in the surface ice of Spitsbergen glaciers (European Arctic).

    Science.gov (United States)

    Lehmann, Sara; Gajek, Grzegorz; Chmiel, Stanisław; Polkowska, Żaneta

    2016-12-01

    The chemism of the glaciers is strongly determined by long-distance transport of chemical substances and their wet and dry deposition on the glacier surface. This paper concerns spatial distribution of metals, ions, and dissolved organic carbon, as well as the differentiation of physicochemical parameters (pH, electrical conductivity) determined in ice surface samples collected from four Arctic glaciers during the summer season in 2012. The studied glaciers represent three different morphological types: ground based (Blomlibreen and Scottbreen), tidewater which evolved to ground based (Renardbreen), and typical tidewater glacier (Recherchebreen). All of the glaciers are functioning as a glacial system and hence are subject to the same physical processes (melting, freezing) and the process of ice flowing resulting from the cross-impact force of gravity and topographic conditions. According to this hypothesis, the article discusses the correlation between morphometric parameters, changes in mass balance, geological characteristics of the glaciers and the spatial distribution of analytes on the surface of ice. A strong correlation (r = 0.63) is recorded between the aspect of glaciers and values of pH and ions, whereas dissolved organic carbon (DOC) depends on the minimum elevation of glaciers (r = 0.55) and most probably also on the development of the accumulation area. The obtained results suggest that although certain morphometric parameters largely determine the spatial distribution of analytes, also the geology of the bed of glaciers strongly affects the chemism of the surface ice of glaciers in the phase of strong recession.

  16. Time varying arctic climate change amplification

    Energy Technology Data Exchange (ETDEWEB)

    Chylek, Petr [Los Alamos National Laboratory; Dubey, Manvendra K [Los Alamos National Laboratory; Lesins, Glen [DALLHOUSIE U; Wang, Muyin [NOAA/JISAO

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  17. Atmospheric conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting open-water and sea-ice surfaces during melt and freeze-up seasons

    OpenAIRE

    Sotiropoulou, G.; Tjernström, M.; Sedlar, J.; Achtert, P; Brooks, BJ; Brooks, IM; Persson, POG; Prytherch, J.; Salisbury, DJ; Shupe, MD; Johnston, PE; Wolfe, D.

    2016-01-01

    The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces near the ice edge, offering insight into the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmo...

  18. Ekstremaľnye izmeneniya temperatury i solenosti vody arkticheskogo poverkhnostnogo sloya v 2007-2009 gg. (The extreme changes of temperature and salinity in the Arctic Ocean surface layer in 2007-2009, in Russian)

    OpenAIRE

    Timokhov, Leonid A.; Ashik, I. M.; Karpy, V. Yu.; Kassens, Heidemarie; Kirillov, Sergey A.; Polyakov, Igor V; Sokolov, V. T.; Frolov, I. Ye.; Chernyavskaya, Ekaterina A.

    2011-01-01

    This paper examines the temperature and salinity patterns and evolution in the surface layer of the Arctic Ocean in 2007-2009 and deals with the factors impacting the extreme changes both in temperature and salinity in 2007. The large areas of positive and negative anomalies in temperature and salinity have been formed over the Arctic Ocean with the apparant frontal barrier areea between Eurasian and American basins. The followed years (2008-2009) exhibit the reducing of thermohaline anomalie...

  19. 基于动态面控制的船舶航迹跟踪%Tracking Control of Ships Based on Dynamic Surface Control Methed

    Institute of Scientific and Technical Information of China (English)

    陈建锋; 王锡淮; 肖健梅

    2015-01-01

    Tracking control of surface ships is a chal enging problem.A design scheme based on the dynamic surface control methed is proposed for this problem.The addition of low pass filters in backstepping design procedure al ows the dynamic surface control methed to avoid the explosion of terms involving the calculation of the state derivatives and result in the simpler control structure.Simulation results prove that the proposed methed can implement the tracking of ships.%针对船舶航迹跟踪控制问题,引入动态面控制算法,设计了基于动态面控制的船舶航迹跟踪控制器。该算法是在backstepping算法的基础上加入了一阶低通滤波器,这样能够避免状态量微分计算时的微分膨胀问题,使得设计更为简单。仿真结果表明,所设计的控制器能够很好地实现船舶航迹跟踪。

  20. Arctic methane

    NARCIS (Netherlands)

    Dyupina, E.; Amstel, van A.R.

    2013-01-01

    What are the risks of a runaway greenhouse effect from methane release from hydrates in the Arctic? In January 2013, a dramatic increase of methane concentration up to 2000 ppb has been measured over the Arctic north of Norway in the Barents Sea. The global average being 1750 ppb. It has been

  1. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand an...

  2. Arctic methane

    NARCIS (Netherlands)

    Dyupina, E.; Amstel, van A.R.

    2013-01-01

    What are the risks of a runaway greenhouse effect from methane release from hydrates in the Arctic? In January 2013, a dramatic increase of methane concentration up to 2000 ppb has been measured over the Arctic north of Norway in the Barents Sea. The global average being 1750 ppb. It has been sugges

  3. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, R.N.; Lennert, K.

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO 2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO 3•6H 2O) in Arctic and Antarctic sea ice, which indicate that multiple...... chemical transformations occur in sea ice with a possible effect on CO 2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km 2 (0.5-1 m thick) drifting ice floe in the Fram Strait...... during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced...

  4. Climate Change and International Competition: the US Army in the Arctic Environment

    Science.gov (United States)

    2015-05-21

    newly-established Arctic Command.100 As Vladimir Putin continues to publicly express a desire to control the “entire Arctic region,” the perception...Arctic military build-up in 2014,” Russia Today, December 10, 2013, accessed December 14, 2014, http://rt.com/news/arctic- russia -military- putin -000/. 100...commercial shipping routes, the Northern Sea Route (NSR) that parallels the northern coastline of Russia , the Northwest Passage (NWP) that runs along the

  5. Ship Design

    Science.gov (United States)

    1982-01-01

    Guided missile cruiser equipped with advanced Aegis fleet defense system which automatically tracks hundreds of attacking aircraft or missiles, then fires and guides the ship's own weapons in response. Designed by Ingalls Shipbuilding for the US Navy, the U.S.S. Ticonderoga is the first of four CG-47 cruisers to be constructed. NASTRAN program was used previously in another Navy/Ingalls project involving design and construction of four DDG-993 Kidd Class guided missile destroyers.

  6. Surface Features Parameterization and Equivalent Roughness Height Estimation of a Real Subglacial Conduit in the Arctic

    Science.gov (United States)

    Chen, Y.; Liu, X.; Manko ff, K. D.; Gulley, J. D.

    2016-12-01

    The surfaces of subglacial conduits are very complex, coupling multi-scale roughness, large sinuosity, and cross-sectional variations together. Those features significantly affect the friction law and drainage efficiency inside the conduit by altering velocity and pressure distributions, thus posing considerable influences on the dynamic development of the conduit. Parameterizing the above surface features is a first step towards understanding their hydraulic influences. A Matlab package is developed to extract the roughness field, the conduit centerline, and associated area and curvature data from the conduit surface, acquired from 3D scanning. By using those data, the characteristic vertical and horizontal roughness scales are then estimated based on the structure functions. The centerline sinuosities, defined through three concepts, i.e., the traditional definition of a fluvial river, entropy-based sinuosity, and curvature-based sinuosity, are also calculated and compared. The cross-sectional area and equivalent circular diameter along the centerline are also calculated. Among those features, the roughness is especially important due to its pivotal role in determining the wall friction, and thus an estimation of the equivalent roughness height is of great importance. To achieve such a goal, the original conduit is firstly simplified into a straight smooth pipe with the same volume and centerline length, and the roughness field obtained above is then reconstructed into the simplified pipe. An OpenFOAM-based Large-eddy-simulation (LES) is then performed based on the reconstructed pipe. Considering that the Reynolds number is of the order 106, and the relative roughness is larger than 5% for 60% of the conduit, we test the validity of the resistance law for completely rough pipe. The friction factor is calculated based on the pressure drop and mean velocity in the simulation. Working together, the equivalent roughness height can be calculated. However, whether the

  7. Arctic security in an age of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kraska, James (ed.)

    2013-03-01

    Publisher review: This book examines Arctic defense policy and military security from the perspective of all eight Arctic states. In light of climate change and melting ice in the Arctic Ocean, Canada, Russia, Denmark (Greenland), Norway and the United States, as well as Iceland, Sweden and Finland, are grappling with an emerging Arctic security paradigm. This volume brings together the world's most seasoned Arctic political-military experts from Europe and North America to analyze how Arctic nations are adapting their security postures to accommodate increased shipping, expanding naval presence, and energy and mineral development in the polar region. The book analyzes the ascent of Russia as the first 'Arctic superpower', the growing importance of polar security for NATO and the Nordic states, and the increasing role of Canada and the United States in the region.(Author)

  8. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord

    DEFF Research Database (Denmark)

    Ribeiro, Sofia; Sejr, Mikael K; Limoges, Audrey;

    2017-01-01

    that IP25 records from fjords need to be carefully considered and not directly compared to marine settings. The sea ice-associated biomarker HBI III revealed an open-water signature, with highest concentrations near the mid-July ice edge. This proxy evaluation is an important step towards reliable......In order to establish a baseline for proxy-based reconstructions for the Young Sound-Tyrolerfjord system (Northeast Greenland), we analysed the spatial distribution of primary production and sea ice proxies in surface sediments from the fjord, against monitoring data from the Greenland Ecosystem...... Monitoring Programme. Clear spatial gradients in organic carbon and biogenic silica contents reflected marine influence, nutrient availability and river-induced turbidity, in good agreement with in situ measurements. The sea ice proxy IP25 was detected at all sites but at low concentrations, indicating...

  9. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord

    DEFF Research Database (Denmark)

    Ribeiro, Sofia; Sejr, Mikael K; Limoges, Audrey

    2017-01-01

    In order to establish a baseline for proxy-based reconstructions for the Young Sound–Tyrolerfjord system (Northeast Greenland), we analysed the spatial distribution of primary production and sea ice proxies in surface sediments from the fjord, against monitoring data from the Greenland Ecosystem...... Monitoring Programme. Clear spatial gradients in organic carbon and biogenic silica contents reflected marine influence, nutrient availability and river-induced turbidity, in good agreement with in situ measurements. The sea ice proxy IP25 was detected at all sites but at low concentrations, indicating...... that IP25 records from fjords need to be carefully considered and not directly compared to marine settings. The sea ice-associated biomarker HBI III revealed an open-water signature, with highest concentrations near the mid-July ice edge. This proxy evaluation is an important step towards reliable...

  10. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Science.gov (United States)

    Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred

    2017-09-01

    The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff

  11. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2017-09-01

    Full Text Available The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow. Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C.In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S, λ2 = 1650 nm (sensitive to τ, and λ3 = 2100 nm (sensitive to reff, C are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012 were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice

  12. Improving the Arctic Mean Sea Surface with CryoSat-2 Data

    DEFF Research Database (Denmark)

    Stenseng, Lars; Andersen, Ole Baltazar

    current MSS models use ICESat data, geoid models, ocean circulation models, or a combination of these to extrapolate the MSS above 82 degrees latitude. This approach makes the MSS models unsuited for deriving sea surface anomalies from short-term observations like airborne campaigns (e.g. operation Ice......Bridge). The new state of the art DTU13MSS is a global high-resolution MSS that includes retracked CryoSat-2 data and thereby extends the polar data coverage up to 88 degrees latitude. Furthermore, in the sea-ice covered areas, the SAR and SARin feature of the altimeter on-board CryoSat-2 increases the amount...... of useable observations dramatically compared to conventional altimeters like ENVISAT and ERS-1/2. Finally the continuous time-series, below 82 degrees latitude, has been extended to cover more than 20 years compared to the 17 years use for the DTU10MSS model. A comparison between DTU13MSS and DTU10MSS show...

  13. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    Directory of Open Access Journals (Sweden)

    R. J. G. Leakey

    2012-08-01

    Full Text Available A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air–sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5–1 m thick drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air–sea CO2 uptake of 10.6 mmol m−2 sea ice d−1 or to 3.3 ton km−2 ice floe week−1. This is markedly higher than the estimated primary production within the ice floe of 0.3–1.3 mmol m−2 sea ice d−1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  14. Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology.

    Science.gov (United States)

    Kalinovich, Indra; Rutter, Allison; Poland, John S; Cairns, Graham; Rowe, R Kerry

    2008-12-15

    The site BAF-5 is located on the summit of Resolution Island, Nunavut, just southeast of Baffin Island at 61 degrees 35'N and 60 degrees 40'W. The site was part of a North American military defense system established in the 1950s that became heavily contaminated with PCBs during and subsequent, its operational years. Remediation through excavation of the PCB contaminated soil at Resolution Island began in 1999 and at its completion in 2006 approximately 5 tonnes of pure PCBs in approximately 20,000 m3 of soil were remediated. Remediation strategies were based on both quantity of soil and level of contamination in the soil. Excavation removed 96% of the PCB contaminated soil on site. In 2003, a surface funnel-and-gate permeable reactive barrier was design and constructed to treat the remaining contamination left in rock crevices and inaccessible areas of the site. Excavation had destabilized contaminated soil in the area, enabling contaminant migration through erosion and runoff pathways. The barrier was designed to maximize sedimentation through settling ponds. This bulk removal enabled the treatment of highly contaminated fines and water through a permeable gate. The increased sediment loading during excavation required both modifications to the funnel and a shift to a more permeable, granular system. Granulated activated charcoal was chosen for its ability to both act as a particle retention filter and adsorptive filter. The reduction in mass of PCB and volume of soils trapped by the funnel of the barrier indicate that soils are re-stabilizing. In 2007, nonwoven geotextiles were re-introduced back into the filtration system as fine filtering could be achieved without clogging. Monitoring sites downstream indicate that the barrier system is effective. This paper describes the field progress of PCB remediation at Resolution Island.

  15. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control?

    Science.gov (United States)

    Rassner, Sara M. E.; Anesio, Alexandre M.; Girdwood, Susan E.; Hell, Katherina; Gokul, Jarishma K.; Whitworth, David E.; Edwards, Arwyn

    2016-01-01

    Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems. PMID:27446002

  16. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control?

    Science.gov (United States)

    Rassner, Sara M E; Anesio, Alexandre M; Girdwood, Susan E; Hell, Katherina; Gokul, Jarishma K; Whitworth, David E; Edwards, Arwyn

    2016-01-01

    Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems.

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the HEALY in the Arctic Ocean, Beaufort Sea and others from 2011-05-17 to 2012-10-26 (NODC Accession 0083197)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0083197 includes chemical, physical and underway - surface data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea, Coastal Waters of...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the Arctic Ocean, Beaufort Sea and others from 2010-05-07 to 2013-06-25 (NODC Accession 0109901)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109901 includes Surface underway data collected from Marcus G. Langseth in the Arctic Ocean, Beaufort Sea, Bering Sea, Caribbean Sea, Cordell Bank...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the NATHANIEL B. PALMER in the Arctic Ocean, Beaufort Sea and others from 1994-11-04 to 2012-08-31 (NODC Accession 0083189)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0083189 includes chemical, physical and underway - surface data collected from NATHANIEL B. PALMER in the Arctic Ocean, Beaufort Sea, Bering Sea,...

  20. Arctic Ecosystem Integrated Survey (Arctic Eis): Marine ecosystem dynamics in the rapidly changing Pacific Arctic Gateway

    Science.gov (United States)

    Mueter, Franz J.; Weems, Jared; Farley, Edward V.; Sigler, Michael F.

    2017-01-01

    Arctic Marine Ecosystems are undergoing rapid changes associated with ice loss and surface warming resulting from human activities (IPCC, 2013). The most dramatic changes include an earlier ice retreat and a longer ice-free season, particularly on Arctic inflow shelves such as the Barents Sea in the Atlantic Arctic and the northern Bering Sea and Chukchi Sea in the Pacific Arctic, the two major gateways into the Arctic (Danielson et al., 2016; Frey et al., 2015; Serreze et al., 2007; Wood et al., 2015). The retreat of Arctic sea ice has opened access to the Arctic marine environment and its resources, particularly during summer, and among other changes has brought with it increased research activities. For the Pacific Arctic region, these activities have led to several recent compendiums examining physical, biogeochemical, and biological patterns and trends in this rapidly changing environment (Arrigo, 2015, 2016; Arrigo et al., 2014; Bluhm et al., 2010; Dunton et al., 2014; Grebmeier and Maslowski, 2014; Hopcroft and Day, 2013; Moore and Stabeno, 2015).

  1. Glacier surface melt characterization and trend analysis (1992-2011) in the Russian High Arctic from combined resolution-enhanced scatterometer and passive microwave data

    Science.gov (United States)

    Zhao, M.; Ramage, J. M.; Semmens, K. A.

    2012-12-01

    Global warming has been pronounced in the remote glacierized archipelagoes (Severnaya Zemlya, Novaya Zemlya and Franz Josef Land) of the Russian High Arctic (RHA) and its effect on the low altitude, high latitude small ice caps needs examination. The timing and spatial variability of snow melt onset, duration and intensity are key factors influencing mass balance and the ice marginal hydrological system as well as important indicators of glacial response to anthropogenic and natural forcings. Characterization and trend analysis of RHA glacier melt behaviors provide insight about assessing the mass loss rate under recent Arctic climate change. However, due to the harsh environment, long term records of glaciological data for RHA are limited, necessitating the application of remotely sensed data to accomplish the research. The high sensitivity to liquid water and the ability to penetrate non-precipitating clouds enables microwave remote sensing to detect glacier surface melt. The appearance of melt water in snow dramatically decreases the returned scatterometer radar signal from active microwave sensors and sharply augments passive microwave emission. Based on this feature, we combined resolution-enhanced ERS-1/2 C-band (1992-2000), QuickSCAT Ku-band (2000-2009), ASCAT C-band (2009-2011) scatterometer data and SSMI 37 GHz (1995-2007) vertically polarized passive microwave products from Brigham Young University and analyzed glacier surface melt trends from 1992 to 2011 with a spatial resolution downscaled to 4.45km. We concatenated scatterometer derived melt behaviors by overlapping years and refined the results based on passive microwave data. Cross-validation shows that melt timing to be consistent between the active and passive sensors. Trend analysis (α < 0.005) reveals that the average glacier surface melt onset date occurs earlier by approximately 0.85 days/year in Severnaya Zemlya which outpaced the mean advancing rate in the pan-Arctic. Surrounded by ocean

  2. Proceedings of the Ship Control Systems Symposium (9th) Held in Bethesda, Maryland on 10-14 September 1990. Theme: Automation in Surface Ship Control Systems, Today’s Applications and Future Trends. Volume 2

    Science.gov (United States)

    1990-09-14

    University, Fisheries (Japan) ON THE MANEUVERING QUALITIES OF SHIPS 2.81 C.G. Biancardi, Istituto Universitario Navale (Italy), D.R. Dellwo, U.S. Merchant...Architects, No.209, June, 1988.(in Japanese) 2.80 I ON ’THE MANEUVERING QUALITIES OF SHIPS by Carmine G. Biancardi, Istituto Universitario Navale, Italy...Ventilation system, - High pressure air system and - Fuel load and transport system. The interface between Damocles and the DC-officer has been

  3. Information on weather and sea conditions onboard polar cruise ships

    Directory of Open Access Journals (Sweden)

    BRÂNDUŞA CHIOTOROIU

    2016-11-01

    Full Text Available The arctic and Antarctic regions are difficult to navigate because of their severe maritime conditions. Weather forecast, forecast of the sea ice and icebergs dynamics are extremely important when planning ships routes and tourism activities including embarkation/disembarkation from boats or landing operations. New meteorological services have been created in the arctic region for broadcast purposes. The information provided by these services and received onboard ships is presented in this paper. A risk assessment should be considered for Polar Water operations such as maneuvering in ice covered waters, anchoring, shore landings etc.

  4. Economic Possibilities of Shipping though Northern Sea Route1

    Directory of Open Access Journals (Sweden)

    Sung-Woo Lee

    2014-12-01

    Full Text Available Global warming and climate change haves brought a new issue in the Arctic sea. Therefore, we can now explore new shipping routes through the Arctic Ocean instead of the existing commercial route. In particular, the Northern Sea Route (NSR is one of the feasible shipping routes and, has provided tremendous shipping benefits. If the NSR becomes commercialized, we will be able to save about 5,000 nautical miles in distance and sailing time. In this study, we will emphasize some of the important results on the possibility of commercializing the shipping route in the Arctic. The NSR may bring positive economic effects in terms of shipping distance and time. For example, when utilizing the NSR, the maximum cargo traffic between Asia and Europe is expected to be around 46 million TEU. However, we also need to consider an expensive passage fee that is currently imposed by Russia. In conclusion, we maintain our efforts to protect the environment in the Arctic, in terms of logistics, and we need to explore every possible avenue to bring possible economic benefits to the North Pacific countries.

  5. Encoding the Shipping Crisis

    Institute of Scientific and Technical Information of China (English)

    Xue Lina; Lin Lin; Wang Siyuan

    2009-01-01

    @@ According to the statistics from Frech shipping advisory bod-ies,till December 21,2008,165 container ships were idle,leav-ing the fees,such as anchorage fees,ship maintaining fee,crev resettlement fee and repaying loans for ship-buying,an-noying the ship-owners.

  6. Shipping Industry Structure

    NARCIS (Netherlands)

    Wijnolst, N.; Waals, F.

    1999-01-01

    Understanding Shipping Management requires a thorough understanding of the Shipping Industry Structure. This book provides this knowledge base and should be seen in conjunction with two other books: Shipping and Design Innovation in Shipping. Shipping Industry Structure was intended as the first par

  7. Shipping Industry Structure

    NARCIS (Netherlands)

    Wijnolst, N.; Waals, F.

    1999-01-01

    Understanding Shipping Management requires a thorough understanding of the Shipping Industry Structure. This book provides this knowledge base and should be seen in conjunction with two other books: Shipping and Design Innovation in Shipping. Shipping Industry Structure was intended as the first par

  8. Shipping Industry Structure

    NARCIS (Netherlands)

    Wijnolst, N.; Waals, F.

    1999-01-01

    Understanding Shipping Management requires a thorough understanding of the Shipping Industry Structure. This book provides this knowledge base and should be seen in conjunction with two other books: Shipping and Design Innovation in Shipping. Shipping Industry Structure was intended as the first

  9. Temperature, salinity and other variables collected from underway - surface observations using PAR Sensor and other instruments from the AURORA AUSTRALIS, NOAA Ship DISCOVERER and others in the Bering Sea, Caribbean Sea and others from 1994-01-28 to 2004-07-02 (NODC Accession 0109923)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109923 includes biological, chemical, meteorological, physical and underway - surface data collected from AURORA AUSTRALIS, NOAA Ship DISCOVERER,...

  10. Spatio-Temporal Variability of Arctic Sea Ice Extent and Its Numerical Analysis with Sea Surface Temperature and Air Temperature%北极海冰范围时空变化及其与海温气温间的数值分析

    Institute of Scientific and Technical Information of China (English)

    孔爱婷; 刘健; 余旭; 左菲

    2016-01-01

    GIS software. Then, the freezing and thawing processes of the sea ice were discussed in detail. The re-sults show that the Arctic sea ice mainly freezes and thaws in various marginal seas, including the Bering sea, Okhotsk, Beaufort Sea, Chukchi Sea, East Siberian Sea, Laptev Sea, Kara Sea, Barents Sea, Hudson B. and Baffin Bay. Finally, according to the sea surface temperature and air temperature data, the relationships among Arctic sea ice extent, sea surface temperature and air tempera-ture were preliminarily discussed here. The results show that a change of the Arctic sea ice which affects the sea surface tempera-ture may cause a variation of the air temperature. However, the seasonal changes of sea ice extent occur later than the seasonal changes of sea surface temperature and air temperature. The relationships among Arctic sea ice extent, sea surface temperature and air temperature in Chukotskoye More were analyzed using the sea surface temperature data and air temperature data derived from the ship-based observations. The data show that when the sea ice extent gets closer to the North Pole, the sea surface temperature and air temperature will be lower. When the sea ice extent gets closer to the land, the sea surface temperature and air temperature will be higher.

  11. Ship?Shore and Ship?Ship Data Transfer

    Science.gov (United States)

    Heikkilä, Martti

    During recent years there has been significant development in several technologies which can contribute to the efficiency and safety of maritime traffic. The most important of these are accurate positioning systems (DGPS), digital data transmission/transponder technology, electronic chart systems (ECDIS), control of ships using electronic passage plans, and ship path prediction. With a widespread implementation of these new techniques, combined with advanced ship-shore and ship-ship data transfer, significant improvements can be achieved in traffic situation awareness both in a VTS and onboard. This paper describes the research carried out at VTT on VTS development, and especially gives an outline of new VTS functions using shipship data transfer.

  12. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean under clear skies in spring

    Directory of Open Access Journals (Sweden)

    A. Tetzlaff

    2013-01-01

    Full Text Available The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model that only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I (Special Sensor Microwave Imager and AMSR-E (Advanced Microwave Scanning Radiometer for EOS data. Under nearly cloud-free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 70% for Barrow, using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Trajectories based on 10-m wind fields from both reanalyses show large spatial differences in the Central Arctic, leading to differences in the correlations between modeled and observed 2-m air temperatures. They are most pronounced at Tara, where explained variances amount to 70% using JRA and 80% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 200 km radius around the site.

  13. Oil spill related contaminant data for Arctic marine mammals - Obtaining baseline oil spill-related contaminant exposure data for Arctic marine mammals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — With increasing oil exploration and ship traffic in the U.S. Arctic, there is concern about the increased potential for an oil spill event in this region of the...

  14. DEMON-type algorithms for determination of hydro-acoustic signatures of surface ships and of divers

    Science.gov (United States)

    Slamnoiu, G.; Radu, O.; Rosca, V.; Pascu, C.; Damian, R.; Surdu, G.; Curca, E.; Radulescu, A.

    2016-08-01

    With the project “System for detection, localization, tracking and identification of risk factors for strategic importance in littoral areas”, developed in the National Programme II, the members of the research consortium intend to develop a functional model for a hydroacoustic passive subsystem for determination of acoustic signatures of targets such as fast boats and autonomous divers. This paper presents some of the results obtained in the area of hydroacoustic signal processing by using DEMON-type algorithms (Detection of Envelope Modulation On Noise). For evaluation of the performance of various algorithm variations we have used both audio recordings of the underwater noise generated by ships and divers in real situations and also simulated noises. We have analysed the results of processing these signals using four DEMON algorithm structures as presented in the reference literature and a fifth DEMON algorithm structure proposed by the authors of this paper. The algorithm proposed by the authors generates similar results to those obtained by applying the traditional algorithms but requires less computing resources than those and at the same time it has proven to be more resilient to random noise influence.

  15. A radiocarbon-based inventory of methane and inorganic carbon dissolved in surface lake waters in arctic Alaska, USA

    Science.gov (United States)

    Czimczik, Claudia; Clayton, Elder; Xu, Xiaomei; Lehman, Jennifer; Townsend-Small, Amy

    2014-05-01

    Major uncertainties in land-atmosphere carbon (C) exchange in the rapidly warming and wetting Arctic are 1) the magnitude and timing of net losses of ancient permafrost C to the atmosphere and 2) the relative changes of C exchange as carbon dioxide (CO2) or the more powerful greenhouse gas methane (CH4). For CH4, the role of diffusive fluxes versus plant-mediated and ebullition fluxes is poorly constrained. Radiocarbon (14C) is a unique tracer for distinguishing ancient permafrost C from C rapidly cycling between the land and atmosphere. In addition, stable isotope ratios (13C/12C and D/H) provide insight to trace gas production and consumption pathways. Previous measurements, however, have focused on CH4 from ebullition fluxes due to technical and logistical challenges in 14C-CH4 analysis. We quantified the 14C content and δ13C signatures of dissolved CH4 and DIC in lake surface waters along a north-south transect on the North Slope of Alaska, USA (69.9°N to 71.28°N, -156.12°W to -156.32°W). Samples were collected at the end of winter before ice break-up (April 2013) and during summer (August 2012 & 2013) in 1 L bottles. A subset of samples was also analyzed for CH4 and CO2 concentrations and stable isotope ratios by the Circumarctic Lakes Observation Network (CALON). In addition, in August 2013, we measured the 14C content and δ13C ratios of lake-atmosphere CH4 and CO2 exchange near Barrow, AK, USA (71°N, -156°W). We obtained dissolved CH4 and CO2 sufficient for 14C analysis from lakes with concentrations as low as 0.01 mg C /L) using a novel, in situ preconcentration method (liqui-cel, Membrana). And, we measured and collected isoflux samples of simulated, near-shore ebulltion-derived CH4 and CO2 using floating headspace chambers. Isotope samples were processed using a novel, flow-through vacuum line and analyzed at the KCCAMS facility at the University of California, Irvine, USA with accelerator (0.5MV 1.5SDH-2, National Electrostatics Corporation) and

  16. Arctic decadal variability in a warming world

    Science.gov (United States)

    van der Linden, Eveline C.; Bintanja, Richard; Hazeleger, Wilco

    2017-06-01

    Natural decadal variability of surface air temperature might obscure Arctic temperature trends induced by anthropogenic forcing. It is therefore imperative to know how Arctic decadal variability (ADV) will change as the climate warms. In this study, we evaluate ADV characteristics in three equilibrium climates with present-day, double, and quadrupled atmospheric CO2 forcing. The dominant region of variability, which is located over the Barents and Greenland Sea at present, shifts to the central Arctic and Siberian regions as the climate warms. The maximum variability in sea ice cover and surface air temperature occurs in the CO2 doubling climate when sea ice becomes more vulnerable to melt over vast stretches of the Arctic. Furthermore, the links between dominant atmospheric circulation modes and Arctic surface climate characteristics vary strongly with climate change. For instance, a positive Arctic Oscillation index is associated with a colder Arctic in warmer climates, instead of a warmer Arctic at present. Such changing relationships are partly related to the retreat of sea ice because altered wind patterns influence the sea ice distribution and hence the associated local surface fluxes. The atmospheric pressure distributions governing ADV and the associated large-scale dynamics also change with climate warming. The changing character of the ADV shows that it is vital to consider (changes in) ADV when addressing Arctic warming in climate model projections.

  17. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

    DEFF Research Database (Denmark)

    andersen, susanne; Tonboe, R.; Kaleschke, L.

    2007-01-01

    [1] Measurements of sea ice concentration from the Special Sensor Microwave Imager (SSM/I) using seven different algorithms are compared to ship observations, sea ice divergence estimates from the Radarsat Geophysical Processor System, and ice and water surface type classification of 59 wide......-swath synthetic aperture radar (SAR) scenes. The analysis is confined to the high-concentration Arctic sea ice, where the ice cover is near 100%. During winter the results indicate that the variability of the SSM/I concentration estimates is larger than the true variability of ice concentration. Results from...... a trusted subset of the SAR scenes across the central Arctic allow the separation of the ice concentration uncertainty due to emissivity variations and sensor noise from other error sources during the winter of 2003-2004. Depending on the algorithm, error standard deviations from 2.5 to 5.0% are found...

  18. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2013-09-01

    annual mean Arctic BC surface concentrations due to residential combustion by 68% when using daily emissions. A large part (93% of this systematic increase can be captured also when using monthly emissions; the increase is compensated by a decreased BC burden at lower latitudes. In a comparison with BC measurements at six Arctic stations, we find that using daily-varying residential combustion emissions and introducing gas flaring emissions leads to large improvements of the simulated Arctic BC, both in terms of mean concentration levels and simulated seasonality. Case studies based on BC and carbon monoxide (CO measurements from the Zeppelin observatory appear to confirm flaring as an important BC source that can produce pollution plumes in the Arctic with a high BC / CO enhancement ratio, as expected for this source type. BC measurements taken during a research ship cruise in the White, Barents and Kara seas north of the region with strong flaring emissions reveal very high concentrations of the order of 200–400 ng m−3. The model underestimates these concentrations substantially, which indicates that the flaring emissions (and probably also other emissions in northern Siberia are rather under- than overestimated in our emission data set. Our results suggest that it may not be "vertical transport that is too strong or scavenging rates that are too low" and "opposite biases in these processes" in the Arctic and elsewhere in current aerosol models, as suggested in a recent review article (Bond et al., Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res., 2013, but missing emission sources and lacking time resolution of the emission data that are causing opposite model biases in simulated BC concentrations in the Arctic and in the mid-latitudes.

  19. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions

    Science.gov (United States)

    Stohl, A.; Klimont, Z.; Eckhardt, S.; Kupiainen, K.; Shevchenko, V. P.; Kopeikin, V. M.; Novigatsky, A. N.

    2013-09-01

    BC surface concentrations due to residential combustion by 68% when using daily emissions. A large part (93%) of this systematic increase can be captured also when using monthly emissions; the increase is compensated by a decreased BC burden at lower latitudes. In a comparison with BC measurements at six Arctic stations, we find that using daily-varying residential combustion emissions and introducing gas flaring emissions leads to large improvements of the simulated Arctic BC, both in terms of mean concentration levels and simulated seasonality. Case studies based on BC and carbon monoxide (CO) measurements from the Zeppelin observatory appear to confirm flaring as an important BC source that can produce pollution plumes in the Arctic with a high BC / CO enhancement ratio, as expected for this source type. BC measurements taken during a research ship cruise in the White, Barents and Kara seas north of the region with strong flaring emissions reveal very high concentrations of the order of 200-400 ng m-3. The model underestimates these concentrations substantially, which indicates that the flaring emissions (and probably also other emissions in northern Siberia) are rather under- than overestimated in our emission data set. Our results suggest that it may not be "vertical transport that is too strong or scavenging rates that are too low" and "opposite biases in these processes" in the Arctic and elsewhere in current aerosol models, as suggested in a recent review article (Bond et al., Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res., 2013), but missing emission sources and lacking time resolution of the emission data that are causing opposite model biases in simulated BC concentrations in the Arctic and in the mid-latitudes.

  20. Leading By Example: Canada and its Arctic Stewardship Role

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    2017-01-01

    . This paper explores the origins of Canada’s image as the steward of the Arctic environment which started with the 1970 Arctic Waters Pollution Prevention Act legislation and addresses the central research questions, how did Canada’s role as the steward of the Arctic environment begin and evolve and how...... to examine the circumstances which led to the creation and success of Canada’s stewardship role and its implications for Canadian and international shipping in the Arctic region before any changes are made to the governance of the region through unilateral legislation changes or new international agreements...... important is the Arctic Waters Pollution Prevention Act for international acceptance of Canada’s stewardship role and maritime jurisdiction in the Arctic region?...

  1. Glacier albedo change and its relationship to surface temperature change from MODIS data: Queen Elizabeth Islands, Arctic Canada, 2001-2015

    Science.gov (United States)

    Mortimer, C.; Sharp, M. J.

    2016-12-01

    Glacier and ice cap surface albedo change over the Canadian High Arctic is assessed using measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors for the period 2001-2015. Mean summer black-sky broadband surface albedo (MCD43A3 v05) over all glaciated surfaces in the Queen Elizabeth Islands south of 80°N decreased at a rate of 0.0038 ± 0.0037 yr-1 over that period. The bulk of this albedo decrease occurred from 2008 to 2012 when mean summer albedo was anomalously low. Albedo declines were greatest in the west of the QEI and at lower elevations on the ice caps. The period 2005-2012 included some of the warmest summers in the region since at least the 1950s. Between 2001 and 2015, mean summer glacier surface temperatures for the QEI (south of 80°N), derived from MODIS data (MOD11A2 v05), increased at a rate of 0.034 ± 0.037 °C yr-1. Net shortwave energy is modulated by changes in the surface albedo and is the largest source of summer melt energy in the QEI. During 2001-2015, the summer albedo record was negatively correlated with the mean summer glacier surface temperature record across 91% of the region; clusters of positive correlations between surface temperature and albedo were observed at high elevations in eastern Ellesmere Island.

  2. Research on the firing times model of the anti-missile interception for surface ship formation%编队防空反导作战拦截次数模型

    Institute of Scientific and Technical Information of China (English)

    荆发标; 康晓予

    2011-01-01

    通过对编队舰空导弹武器系统射击过程的分析,在一定的假设条件下,从被攻击舰和掩护舰两方面着手,建立整个编队舰空导弹武器系统对来袭目标的射击拦截次数模型.为进一步计算舰空导弹射击效能提供了方便;同时,仿真参数对射击次数的影响也能为部队作战训练和武器系统的进一步改进提供依据.%In hypothesis condition, the firing times model of the whole surface ship formation is established via analysis on firing process of ship-to-air missile weapon system from two aspects of attacked ship and covering ship. This method provides a convenient way to calculate firing efficiency of surface to ship-to-air missile weapon system. At the same time, simulating parameter can provide reasonable basis for training and amelioration of weapon system.

  3. Arctic Ocean Sea Ice Thickness, Bathymetry, and Water Properties from Submarine Data

    Science.gov (United States)

    Windnagel, A. K.; Fetterer, F. M.

    2014-12-01

    The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration that began in 1993 among the operational Navy, research agencies, and the marine research community to use nuclear-powered submarines for scientific studies of the Arctic Ocean. Unlike surface ships and satellites, submarines have the unique ability to operate and take measurements regardless of sea ice cover, weather conditions, and time of year. This allows for a broad and comprehensive investigation of an entire ocean basin. The goal of the program is to acquire comprehensive data about Arctic sea ice thickness; biological, chemical, and hydrographic water properties; and bathymetry to improve our understanding of the Arctic Ocean basin and its role in the Earth's climate system. Ice draft is measured with upward looking sonars mounted on the submarine's hull. The work of collaborators on the SCICEX project compared recent ice draft from the submarines with draft from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and with ice thickness estimates from ice age and have shown that SCICEX ice draft are consistent with these models. Bathymetry is measured with a bottom sounder. SCICEX bathymetry data from 1993 to 1999 are included in the International Bathymetric Chart of the Arctic Ocean (IBCAO). Collaborators have compared more recent bathymetry data collected through the SCICEX project with other IBCAO data, and they agree well. Water properties are measured with two different types of conductivity, temperature, and depth (CTD) sensors: one mounted on the submarine's hull and expendable versions that are deployed through the submarines torpedo tubes. Data from the two different CTD sensors validate one another. The breadth of instrumentation available from submarines along with their ability to be unencumbered by sea ice, weather, and season makes the data they have collected extremely valuable. The National Snow and Ice Data Center (NSIDC) manages this data

  4. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank [Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Schaepman-Strub, Gabriela [Institute of Evolutionary Biology and Environmental Studies, University of Zuerich, Winterthurerstrasse 190, 8057 Zuerich (Switzerland); Bartholomeus, Harm [Centre for Geo-Information, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Maximov, Trofim C, E-mail: daan.blok@wur.nl [Biological Problems of the Cryolithozone, Russian Academy of Sciences, Siberian Division, 41, Lenin Prospekt, Yakutsk, The Republic of Sakha, Yakutia 677980 (Russian Federation)

    2011-07-15

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  5. Physical and biogeochemical controls on the variability in surface pH and calcium carbonate saturation states in the Atlantic sectors of the Arctic and Southern Oceans

    Science.gov (United States)

    Tynan, Eithne; Clarke, Jennifer S.; Humphreys, Matthew P.; Ribas-Ribas, Mariana; Esposito, Mario; Rérolle, Victoire M. C.; Schlosser, C.; Thorpe, Sally E.; Tyrrell, Toby; Achterberg, Eric P.

    2016-05-01

    Polar oceans are particularly vulnerable to ocean acidification due to their low temperatures and reduced buffering capacity, and are expected to experience extensive low pH conditions and reduced carbonate mineral saturations states (Ω) in the near future. However, the impact of anthropogenic CO2 on pH and Ω will vary regionally between and across the Arctic and Southern Oceans. Here we investigate the carbonate chemistry in the Atlantic sector of two polar oceans, the Nordic Seas and Barents Sea in the Arctic Ocean, and the Scotia and Weddell Seas in the Southern Ocean, to determine the physical and biogeochemical processes that control surface pH and Ω. High-resolution observations showed large gradients in surface pH (0.10-0.30) and aragonite saturation state (Ωar) (0.2-1.0) over small spatial scales, and these were particularly strong in sea-ice covered areas (up to 0.45 in pH and 2.0 in Ωar). In the Arctic, sea-ice melt facilitated bloom initiation in light-limited and iron replete (dFe>0.2 nM) regions, such as the Fram Strait, resulting in high pH (8.45) and Ωar (3.0) along the sea-ice edge. In contrast, accumulation of dissolved inorganic carbon derived from organic carbon mineralisation under the ice resulted in low pH (8.05) and Ωar (1.1) in areas where thick ice persisted. In the Southern Ocean, sea-ice retreat resulted in bloom formation only where terrestrial inputs supplied sufficient iron (dFe>0.2 nM), such as in the vicinity of the South Sandwich Islands where enhanced pH (8.3) and Ωar (2.3) were primarily due to biological production. In contrast, in the adjacent Weddell Sea, weak biological uptake of CO2 due to low iron concentrations (dFe<0.2 nM) resulted in low pH (8.1) and Ωar (1.6). The large spatial variability in both polar oceans highlights the need for spatially resolved surface data of carbonate chemistry variables but also nutrients (including iron) in order to accurately elucidate the large gradients experienced by marine

  6. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model

    OpenAIRE

    Tsamados, Michel; Feltham, Danny; Petty, Alex; Schroeder, David; Flocco, Dani

    2015-01-01

    We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice–atmosphere and ice–ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice–ocean interface; and (iii) a new lateral m...

  7. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    Science.gov (United States)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  8. Proceedings of the Ship Control Systems Symposium (9th) Held in Bethesda, Maryland on 10-14 September 1990. Theme: Automation in Surface Ship Control Systems, Today’s Applications and Future Trends. Volume 4

    Science.gov (United States)

    1990-09-14

    Istituto Universitario Navale, M. Capecchi, A. Troiano, A. Trotta, Istituto Tecnico Nautico (Italy) AN OBJUCT-ORIENTUD DESIGN METHOD FOR SHIP AND MACHINERY...time delays associated with perceptual, central processing, neuromotor pathways and communication and transport delays are negligibly small compared...4.381 MARITIME MANEUVERING PILOTING AID by Carmine G. Biancardi Istituto Universitario Navale, Naples, Italy, Massimo Capecchi Istituto Tecnico

  9. Green Arctic Patrol Vessel

    Science.gov (United States)

    2011-08-01

    Search Radar (2D) Non-rotating IFF system Electro- Optical security system Naval Surface Warfare Center Carderock Division Green Arctic Patrol...Speed Endurance Modular Systems and Capabilities UUV Bluefin 21 4.93 0.53 750 kg 4,500 m 25 hours Side scan sonar, multibeam ...sensors, 256 Mb flash card USV ASV 6300 6.30 Beam: 0.65 Height: 3.50 2.0 tonnes 8 kt 96 hours @ 4 kt Multibeam , sidescan sonars, CTD

  10. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    Science.gov (United States)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing CH4 gas exchange in this lake. Preliminary results indicate that there are two regimes in wind speed that impact k - one at low wind speeds up to ~5 m s-1 and another at higher wind speeds (max ~10 m s-1). The differential wind speeds during night and day may compound the effect of convective mixing and cause the diurnal variation in observed fluxes.

  11. Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale

    Directory of Open Access Journals (Sweden)

    Christiane Schmullius

    2013-05-01

    Full Text Available Satellite-based temperature measurements are an important indicator for global climate change studies over large areas. Records from Moderate Resolution Imaging Spectroradiometer (MODIS, Advanced Very High Resolution Radiometer (AVHRR and (Advanced Along Track Scanning Radiometer ((AATSR are providing long-term time series information. Assessing the quality of remote sensing-based temperature measurements provides feedback to the climate modeling community and other users by identifying agreements and discrepancies when compared to temperature records from meteorological stations. This paper presents a comparison of state-of-the-art remote sensing-based land surface temperature data with air temperature measurements from meteorological stations on a pan-arctic scale (north of 60° latitude. Within this study, we compared land surface temperature products from (AATSR, MODIS and AVHRR with an in situ air temperature (Tair database provided by the National Climate Data Center (NCDC. Despite analyzing the whole acquisition time period of each land surface temperature product, we focused on the inter-annual variability comparing land surface temperature (LST and air temperature for the overlapping time period of the remote sensing data (2000–2005. In addition, land cover information was included in the evaluation approach by using GLC2000. MODIS has been identified as having the highest agreement in comparison to air temperature records. The time series of (AATSR is highly variable, whereas inconsistencies in land surface temperature data from AVHRR have been found.

  12. Arctic Sea Ice

    Science.gov (United States)

    Stroeve, J. C.; Fetterer, F.; Knowles, K.; Meier, W.; Serreze, M.; Arbetter, T.

    2004-12-01

    Of all the recent observed changes in the Arctic environment, the reduction of sea ice cover stands out most prominantly. Several independent analysis have established a trend in Arctic ice extent of -3% per decade from the late 1970s to the late 1990s, with a more pronounced trend in summer. The overall downward trend in ice cover is characterized by strong interannual variability, with a low September ice extent in one year typically followed by recovery the next September. Having two extreme minimum years, such as what was observed in 2002 and 2003 is unusual. 2004 marks the third year in a row of substantially below normal sea ice cover in the Arctic. Early summer 2004 appeared unusual in terms of ice extent, with May a record low for the satellite period (1979-present) and June also exhibiting below normal ice extent. August 2004 extent is below that of 2003 and large reductions in ice cover are observed once again off the coasts of Siberia and Alaska and the Greenland Sea. Neither the 2002 or 2003 anomaly appeared to be strongly linked to the positive phase of the Arctic Oscillation (AO) during the preceding winter. Similarly, the AO was negative during winter 2003/2004. In the previous AO framework of Rigor et al (2002), a positive winter AO implied preconditioning of the ice cover to extensive summer decay. In this hypothesis, the AO does not explain all aspects of the recent decline in Arctic ice cover, such as the extreme minima of 2002, 2003 and 2004. New analysis by Rigor and Wallace (2004) suggest that the very positive AO state from 1989-1995 can explain the recent sea ice minima in terms of changes in the Arctic surface wind field associated with the previous high AO state. However, it is also reasonable to expect that a general decrease in ice thickness accompanying warming would manifest itself as greater sensitivity of the ice pack to wind forcings and albedo feedbacks. The decrease in multiyear ice and attendant changes in ice thickness

  13. Green shipping management

    CERN Document Server

    Lun, Y H Venus; Wong, Christina W Y; Cheng, T C E

    2016-01-01

    This book presents theory-driven discussion on the link between implementing green shipping practices (GSP) and shipping firm performance. It examines the shipping industry’s challenge of supporting economic growth while enhancing environmental performance. Consisting of nine chapters, the book covers topics such as the conceptualization of green shipping practices (GSPs), measurement scales for evaluating GSP implementation, greening capability, greening and performance relativity (GPR), green management practice, green shipping network, greening capacity, and greening propensity. In view of the increasing quest for environment protection in the shipping sector, this book provides a good reference for firms to understand and evaluate their capability in carrying out green operations on their shipping activities.

  14. 水面舰艇编队使用舰壳声纳对潜搜索效能分析%Efficiency Analysis of the Surface-ship Formation Searching the Submarine with the Hull-mounted Sonars

    Institute of Scientific and Technical Information of China (English)

    张永生; 翁志刚; 肖雪

    2011-01-01

    This paper builds the model for the surface-ship formation using the hull-mounted sonars to search the submarine,and analyzes the affections caused by the interval distance between the ships and the speed ratio of the submarine and the ship formation.In t%文章建立了水面舰艇编队使用舰壳声纳对潜搜索模型,分析了舰艇间距及敌我舰艇航速大小等因素对搜索效能的影响,提出编队使用舰壳声纳对潜搜索基本方法。

  15. Arctic decadal variability in a warming world

    NARCIS (Netherlands)

    Linden, van der Eveline C.; Bintanja, Richard; Hazeleger, Wilco

    2017-01-01

    Natural decadal variability of surface air temperature might obscure Arctic temperature trends induced by anthropogenic forcing. It is therefore imperative to know how Arctic decadal variability (ADV) will change as the climate warms. In this study, we evaluate ADV characteristics in three

  16. Towards a rain-dominated Arctic

    NARCIS (Netherlands)

    Bintanja, Richard; Andry, Olivier

    2017-01-01

    Climate models project a strong increase in Arctic precipitation over the coming century1, which has been attributed primarily to enhanced surface evaporation associated with sea-ice retreat2. Since the Arctic is still quite cold, especially in winter, it is often (implicitly) assumed that the

  17. Sentinel-1 Contribution to Monitoring Maritime Activity in the Arctic

    Science.gov (United States)

    Santamaria, Carlos; Greidanus, Harm; Fournier, Melanie; Eriksen, Torkild; Vespe, Michele; Alvarez, Marlene; Arguedas, Virginia Fernandez; Delaney, Conor; Argentieri, Pietro

    2016-08-01

    This paper presents results on the use of Sentinel-1 combined with satellite AIS to monitor maritime activity in the Arctic. Such activities are expected to increase, even if not uniformly across the Arctic, as the ice cover in the region retreats due to changes in climate. The objectives of monitoring efforts in the region can vary from country to country, but are generally related to increasing awareness on non- cooperative, small and cruise ships, fisheries, safety at sea, and Search and Rescue. A ship monitoring study has been conducted, involving more than 2,000 Sentinel-1 images acquired during one year in the central Arctic, where the ship densities are high. The main challenges to SAR-based monitoring in this area are described, solutions for some of them are proposed, and analyses of the results are shown. With the high detection thresholds needed to prevent false alarms from sea ice, 16% of the ships detected overall in the Sentinel-1 images have not been correlated to AIS- transmitting ships, and 48% of the AIS-transmitting ships are not correlated to ships detected in the images.

  18. Retrieval of sea surface temperature and trace gas column averaged from GOSAT, IASI-A, and IASI-B over the Arctic Ocean in summer 2010 and 2013

    Science.gov (United States)

    Payan, Sébastien; Camy-Peyret, Claude; Bureau, Jérôme

    2016-04-01

    The Arctic Ocean is a very important region of the globe in which the effect of climate change can be detected over short time periods. We have used the possibility provided by the three infrared sounders TANSO-FTS on the GOSAT platform, IASI-A, and IASI-B on the MetOp platforms to retrieve the sea surface temperature (Tsurf) and the column averaged mixing ratio of several trace gases (CO2, CH4, N2O, O3) for pairs of nearly coinciding footprints (IFOVs) at small time separations (typically for IASI 46 min and 54 min depending on which satellite has first observed the corresponding scene). A strict filtering based on the AVHRR cloud fraction and the radiance analysis within the GOSAT and IASI footprints lead to a large number of quasi-coinciding IFOVs for which a 1D-var inversion (Tsurf and XCO2 as the main parameters in the state vector, plus scaling factors for the profiles of H2O and O3) has been performed. As an example, we used during retrieval the atmospheric window between 940 and 980 cm-1 (CO2 laser band) for which the sensitivity to the surface is maximum. The statistics of the comparison between IASI-A and IASI-B retrievals is presented and compared to the corresponding Eumetsat L2 products. The months of July and August for the years 2010 and 2013 have been considered since in these Arctic summer conditions the ice pack coverage is reduced. The differences between these two consecutive years is discussed and a comparison with 2010 (for which only IASI-A was in orbit) is confirming that IASI can indeed be used for climate change studies.

  19. Mechanism of seasonal Arctic sea ice evolution and Arctic amplification

    Science.gov (United States)

    Kim, Kwang-Yul; Hamlington, Benjamin D.; Na, Hanna; Kim, Jinju

    2016-09-01

    Sea ice loss is proposed as a primary reason for the Arctic amplification, although the physical mechanism of the Arctic amplification and its connection with sea ice melting is still in debate. In the present study, monthly ERA-Interim reanalysis data are analyzed via cyclostationary empirical orthogonal function analysis to understand the seasonal mechanism of sea ice loss in the Arctic Ocean and the Arctic amplification. While sea ice loss is widespread over much of the perimeter of the Arctic Ocean in summer, sea ice remains thin in winter only in the Barents-Kara seas. Excessive turbulent heat flux through the sea surface exposed to air due to sea ice reduction warms the atmospheric column. Warmer air increases the downward longwave radiation and subsequently surface air temperature, which facilitates sea surface remains to be free of ice. This positive feedback mechanism is not clearly observed in the Laptev, East Siberian, Chukchi, and Beaufort seas, since sea ice refreezes in late fall (November) before excessive turbulent heat flux is available for warming the atmospheric column in winter. A detailed seasonal heat budget is presented in order to understand specific differences between the Barents-Kara seas and Laptev, East Siberian, Chukchi, and Beaufort seas.

  20. Novel Ship Propulsion System

    Institute of Scientific and Technical Information of China (English)

    JI Yulong; SUN Yuqing; ZHANG Hongpeng; ZHANG Yindong; CHEN Haiquan

    2009-01-01

    As the development tends towards high-speed, large-scale and high-power, power of the ship main engine becomes larger and larger. This make the engine design and cabin arrangement become more and more difficult. Ship maneuverability becomes bad. A new ship propulsion system, integrated hydraulic propulsion (IHP), is put forward to meet the development of modem ship. Principle of IHP system is discussed. Working condition matching characteristic of IHP ship is studied based on its matching characteristic charts. According to their propulsion principle, dynamic mathematic models of IHP ship and direct propulsion (DP) ship are developed. These two models are verified by test sailing and test stand data. Based on the software Matlab/Simulink, comparison research between IHP ship and DP ship is conducted. The results show that cabin arrangement of IHP ship is very flexible, working condition matching characteristic of IHP ship is good, the ratio of power to weight of IHP ship is larger than DP ship, and maneuverability is excellent. IHP system is suitable for engineering ship, superpower ship and warship, etc.

  1. Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive

    Science.gov (United States)

    Howell, S.; Tivy, A. C.; Alt, B.; McCourt, S.; Chagnon, R.; Crocker, G.; Carrieres, T. G.; Yackel, J.

    2010-12-01

    The Canadian Ice Service Digital Archive (CISDA) is a compilation of weekly ice charts that cover Canadian Waters; the data set is continually updated and it extends back to the early 1960s. The ice charts are represent and integration of remotely sensed sea ice data, surface observations, airborne and ship reports, operational model results and the expertise of experience ice forecasters. Although the accuracy, type and detail of information far exceeds what is attainable from a single satellite source, errors and uncertainties in the data are non-uniform in both space and time. In part one of this study the main sources of uncertainty in the database are reviewed and the data are validated for use in climate studies. In part two, trends and variability in summer sea ice in the Canadian Arctic are investigated using CISDA. These data revealed that between 1968 and 2008, summer sea ice cover has decreased by 8.9% ± 3.1% per decade in Hudson Bay, 2.9% ± 1.2% per decade in the Canadian Arctic Archipelago, 8.9% ± 3.1% per decade in Baffin Bay, and 5.2% ± 2.4% per decade in the Beaufort Sea. In general, these reductions in sea ice cover are linked to increases in early summer surface air temperature (SAT); significant increases in SAT were observed in every season and with the exception of the Hudson Bay region they are consistently greater than the pan-Arctic change by up to ~0.2oC per decade. Within the Canadian Arctic Archipelago and Baffin Bay, the El Niño-Southern Oscillation (ENSO) index correlates well with multi-year ice coverage (positive correlation) and first-year ice coverage (negative correlation) suggesting that El Nino episodes precede summers with more multi-year ice and less first-year ice. Extending the trend calculations back to 1960 along the major shipping routes through the Canadian Arctic revealed significant decreases in summer sea ice coverage ranging between 11% and 15% per decade along the shipping route through Hudson Bay, the western

  2. SHIPS: A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    CERN Document Server

    Meinerzhagen, Florian; Bukowska, Hanna; Bender, Markus; Severin, Daniel; Herder, Matthias; Lebius, Henning; Schleberger, Marika; Wucher, Andreas

    2015-01-01

    The irradiation with fast ions with kinetic energies of > 10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in-situ analysis of differ...

  3. The shipping man adventures in ship finance

    CERN Document Server

    McCleery, Matthew

    2013-01-01

    When restless New York City hedge fund manager Robert Fairchild watches the Baltic Dry Cargo Index plunge 97%, registering an all-time high and a 25-year low within the span of just six months, he decides to buy a ship. Immediately fantasizing about naming a vessel after his wife, carrying a string of worry beads and being able to introduce himself as a "shipowner" at his upcoming college reunion, Fairchild immediately embarks on an odyssey into the most exclusive, glamorous and high stakes business in the world. From pirates off the coast of Somalia and on Wall Street to Greek and Norwegian shipping magnates, the education of Robert Fairchild is an expensive one. In the end, he loses his hedge fund, but he gains a life - as a Shipping Man. Part fast paced financial thriller, part ship finance text book, The Shipping Man is 310 pages of required reading for anyone with an interest in capital formation for shipping.

  4. From the Top: Shaping America’s Arctic Policy and Strategy

    Science.gov (United States)

    2013-03-01

    Arctic finds itself at the nexus of national security strategy once again, the current fiscal environment and the lack of perceived threat is... Frederic Lassere, “Arctic Shipping Routes: from the Panama Myth to Reality,” International Journal, (Autumn 2011), 795. 22 Ibid, 801; Brigham, “Think

  5. Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the central Arctic Ocean

    Science.gov (United States)

    Steward, Grieg F.; Fandino, Laura B.; Hollibaugh, James T.; Whitledge, Terry E.; Azam, Farooq

    2007-10-01

    Seawater samples were collected for microbial analyses between 55 and 235 m depth across the Arctic Ocean during the SCICEX 97 expedition (03 September-02 October 1997) using a nuclear submarine as a research platform. Abundances of prokaryotes (range 0.043-0.47×10 9 dm -3) and viruses (range 0.68-11×10 9 dm -3) were correlated ( r=0.66, n=150) with an average virus:prokaryote ratio of 26 (range 5-70). Biomass of prokaryotes integrated from 55 to 235 m ranged from 0.27 to 0.85 g C m -2 exceeding that of phytoplankton (0.005-0.2 g C m -2) or viruses (0.02-0.05 g C m -2) over the same depth range by an order of magnitude on average. Using transmission electron microscopy (TEM), we estimated that 0.5% of the prokaryote community on average (range 0-1.4%) was visibly infected with viruses, which suggests that very little of prokaryotic secondary production was lost due to viral lysis. Intracellular viruses ranged from 5 to >200/cell, with an average apparent burst size of 45±38 (mean±s.d.; n=45). TEM also revealed the presence of putative metal-precipitating bacteria in 8 of 13 samples, which averaged 0.3% of the total prokaryote community (range 0-1%). If these prokaryotes are accessible to protistan grazers, the Fe and Mn associated with their capsules might be an important source of trace metals to the planktonic food web. After combining our abundance and mortality data with data from the literature, we conclude that the biomass of prokaryoplankton exceeds that of phytoplankton when averaged over the upper 250 m of the central Arctic Ocean and that the fate of this biomass is poorly understood.

  6. Nonlinear ship waves and computational fluid dynamics

    National Research Council Canada - National Science Library

    MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei

    2014-01-01

    .... Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design...

  7. Infrared ship signature analysis and optimisation

    NARCIS (Netherlands)

    Neele, F.P.

    2005-01-01

    The last decade has seen an increase in the awareness of the infrared signature of naval ships. New ship designs show that infrared signature reduction measures are being incorporated, such as exhaust gas cooling systems, relocation of the exhausts and surface cooling systems. Hull and superstructur

  8. Arctic Ocean

    Science.gov (United States)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  9. Arctic Diatoms

    DEFF Research Database (Denmark)

    Tammilehto, Anna

    are often dominated by diatoms. They are single-celled, eukaryotic algae, which play an essential role in ocean carbon and silica cycles. Many species of the diatom genus Pseudo-nitzschia Peragallo produce a neurotoxin, domoic acid (DA), which can be transferred to higher levels in food webs causing amnesic...... as vectors for DA to higher levels in the arctic marine food web, posing a possible risk also to humans. DA production in P. seriata was, for the first time, found to be induced by chemical cues from C. finmarchicus, C. hyperboreus and copepodite stages C3 and C4, suggesting that DA may be related to defense...... against grazing. This thesis also quantified population genetic composition and changes of the diatom Fragilariopsis cylindrus spring bloom using microsatellite markers. Diatom-dominated spring blooms in the Arctic are the key event of the year, providing the food web with fundamental pulses of organic...

  10. Black Carbon Sources Constrained by Observations in the Russian High Arctic.

    Science.gov (United States)

    Popovicheva, Olga B; Evangeliou, Nikolaos; Eleftheriadis, Konstantinos; Kalogridis, Athina C; Sitnikov, Nikolay; Eckhardt, Sabine; Stohl, Andreas

    2017-04-04

    Understanding the role of short-lived climate forcers such as black carbon (BC) at high northern latitudes in climate change is hampered by the scarcity of surface observations in the Russian Arctic. In this study, highly time-resolved Equivalent BC (EBC) measurements during a ship campaign in the White, Barents, and Kara Seas in October 2015 are presented. The measured EBC concentrations are compared with BC concentrations simulated with a Lagrangian particle dispersion model coupled with a recently completed global emission inventory to quantify the origin of the Arctic BC. EBC showed increased values (100-400 ng m(-3)) in the Kara Strait, Kara Sea, and Kola Peninsula and an extremely high concentration (1000 ng m(-3)) in the White Sea. Assessment of BC origin throughout the expedition showed that gas-flaring emissions from the Yamal-Khanty-Mansiysk and Nenets-Komi regions contributed the most when the ship was close to the Kara Strait, north of 70° N. Near Arkhangelsk (White Sea), biomass burning in mid-latitudes, surface transportation, and residential and commercial combustion from Central and Eastern Europe were found to be important BC sources. The model reproduced observed EBC concentrations efficiently, building credibility in the emission inventory for BC emissions at high northern latitudes.

  11. The effect of Arctic sea-ice extent on the absorbed (net solar flux at the surface, based on ISCCP-D2 cloud data for 1983–2007

    Directory of Open Access Journals (Sweden)

    C. Matsoukas

    2010-01-01

    Full Text Available We estimate the effect of the Arctic sea ice on the absorbed (net solar flux using a radiative transfer model. Ice and cloud input data to the model come from satellite observations, processed by the International Satellite Cloud Climatology Project (ISCCP and span the period July 1983–June 2007. The sea-ice effect on the solar radiation fluctuates seasonally with the solar flux and decreases interannually in synchronisation with the decreasing sea-ice extent. A disappearance of the Arctic ice cap during the sunlit period of the year would radically reduce the local albedo and cause an annually averaged 19.7 W m−2 increase in absorbed solar flux at the Arctic Ocean surface, or equivalently an annually averaged 0.55 W m−2 increase on the planetary scale. In the clear-sky scenario these numbers increase to 34.9 and 0.97 W m−2, respectively. A meltdown only in September, with all other months unaffected, increases the Arctic annually averaged solar absorption by 0.32 W m−2. We examined the net solar flux trends for the Arctic Ocean and found that the areas absorbing the solar flux more rapidly are the North Chukchi and Kara Seas, Baffin and Hudson Bays, and Davis Strait. The sensitivity of the Arctic absorbed solar flux on sea-ice extent and cloud amount was assessed. Although sea ice and cloud affect jointly the solar flux, we found little evidence of strong non-linearities.

  12. Review of Department of the Navy, Judge Advocate General’s Surface Ship Fire Investigation Reports for the Period 1980 through 1986

    Science.gov (United States)

    1989-12-26

    Mar 79 Switchboard 2. 438-80 Shenandoah AD26 Fire in Paint Room 19 May 79 3. 626-80 Conyngham DDG 17 Four Arson Fires 12-14 Jul 78 4. 920-80 Paul...as TAFES) TECHEVAL - Technical Evaluation XO - Executive Officer XRAY - Watertight condition of a ship. Usually set at night. 96 YOKE - Watertight...condition of a ship (more than XRAY , less than ZEBRA). ZEBRA - Most watertight condition of a ship. Usually set with General Quarters. II. SPACE

  13. Future Arctic Research: Integrative Approaches to Scientific and Methodological Challenges

    Science.gov (United States)

    Schmale, Julia; Lisowska, Maja; Smieszek, Malgorzata

    2013-08-01

    Climate change has significant consequences for both the natural environment and the socioeconomics in the Arctic. The complex interplay between the changing atmosphere, cryosphere, and ocean is responsible for a multitude of feedbacks and cascading effects leading to changes in the marine and terrestrial ecosystems, the sea ice cycle, and atmospheric circulation patterns. The warming Arctic has also become a region of economic interest as shipping, natural resource exploitation, and tourism are becoming achievable and lucrative with declining sea ice. Such climatic and anthropogenic developments are leading to profound changes in the Arctic, its people, and their cultural heritage.

  14. Estimation of annual heat flux balance at the sea surface from sst (NOAA-satellite and ships drift data off southeast Brazil

    Directory of Open Access Journals (Sweden)

    Yoshimine Ikeda

    1985-01-01

    Full Text Available The objective of this work is to study the possibility of estimating the heat flux balance at the sea surface from GOSSTCOMP (Global Ocean Sea Surface Temperature Computation developed by NOAA/NESS, USA, and sea surface current data based from ships drift information obtained from Pilot Charts, published by the Diretoria de Hidrografia e Navegação (DHN, Brazilian Navy. The annual mean value of the heat flux balance at the sea surface off southeast Brazil for 1977, is estimated from data on the balance between the heat transported by the currents and that transported by eddy diffusion for each volume defined as 2º x 2º (Lat. x Long. square with a constant depth equivalent to an oceanic mixed layer, 100 m thick. Results show several oceanic areas where there are net flows of heat from atmosphere towards the sea surface. In front of Rio de Janeiro the heat flow was downward and up to 70 ly day-1 and is probably related to the upwellirug phenomenon normally occurring in that area. Another coastal area between Lat. 25ºS to 28ºS indicated an downward flow up to 50 ly day-1; and for an area south of Lat. 27ºS, Long. 040ºW - 048ºW an downward flow up to 200 ly day-1, where the transfer was probably due to the cold water of a nortward flux from the Falkland (Malvinas Current. Results also show several oceanic areas where net flows of heat (of about -100 ly day-1 were toward the atmosphere. In the oceanic areas Lat. 19ºS - 23ºS and Lat. 24ºS - 30ºS, the flows were probably due to the warm water of a southward flux of the Brazil Current. The resulting fluxes from the warm waters of the Brazil Current when compared with those from warm waters of the Gulf Stream and Kuroshio, indicate that the Gulf Stream carries about 3.3 times and the Kuroshio 1.7 times more heat than the Brazil Current. These values agree with those of data available on the heat fluxes of the above mentioned Currents calculated by different methods (Budyko, 1974.

  15. Light absorbing carbon emissions from commercial shipping

    Science.gov (United States)

    Lack, Daniel; Lerner, Brian; Granier, Claire; Baynard, Tahllee; Lovejoy, Edward; Massoli, Paola; Ravishankara, A. R.; Williams, Eric

    2008-07-01

    Extensive measurements of the emission of light absorbing carbon aerosol (LAC) from commercial shipping are presented. Vessel emissions were sampled using a photoacoustic spectrometer in the Gulf of Mexico region. The highest emitters (per unit fuel burnt) are tug boats, thus making significant contributions to local air quality in ports. Emission of LAC from cargo and non cargo vessels in this study appears to be independent of engine load. Shipping fuel consumption data (2001) was used to calculate a global LAC contribution of 133(+/-27) Ggyr-1, or ~1.7% of global LAC. This small fraction could have disproportionate effects on both air quality near port areas and climate in the Arctic if direct emissions of LAC occur in that region due to opening Arctic sea routes. The global contribution of this LAC burden was investigated using the MOZART model. Increases of 20-50 ng m-3 LAC (relative increases up to 40%) due to shipping occur in the tropical Atlantic, Indonesia, central America and the southern regions of South America and Africa.

  16. Hydroelastic Response of Surface-Effect Ship Bow Seals: Large-Scale Experiments and Post-Buckling Analysis

    Science.gov (United States)

    Wiggins, Andrew D.

    Bow seals are critical components on advanced marine vehicles that rely on aerostatic support to reduce drag. They consist of a series of open-ended fabric cylinders ("fingers") that contact the free surface and, when inflated, form a compliant pressure barrier. Bow seals are unique in that, unlike a majority of structures in civil and mechanical engineering, bow seals operate in a buckled state. The response characteristics of these structures are of practical interest due to unacceptable wear rates on seal components and difficulties in predicting seal performance. Despite this, the hydroelastic response of the seal system, particularly basic information on seal vibration modes and the mechanisms responsible for seal wear, remains largely unknown. Similarly, estimates of the hydrodynamic loads on the seal system are inaccurate and based on heuristic scaling of data from small-scale experiments, where similitude is challenging to maintain. Thus, a large-scale test system is necessary to obtain accurate estimates of bow seal response. The work is comprised of three parts. Part one presents detailed observations of bow seal response acquired using a large-scale test platform developed as part of the present study. These high-resolution observations, the first of their kind, show bow seal response to be characterized by complex post-buckling behavior. Part two proposes an analytical framework for interpreting the wide range of behavior observed at large scale. Using this framework, key parameters driving seal conformation and stability are identified. It is found that, due to their buckled state, bow seals are highly susceptible to a mode switching instability, which may be a potential mechanism responsible for the damaging vibrations. In part three, a benchtop experiment is used to demonstrate that the scalings identified in this study hold across a wide range of bending rigidities. This work has implications for improving drag and wear characteristics in future bow

  17. Arctic Region Policy: Information Sharing Model Options

    Science.gov (United States)

    2010-09-01

    specializations , meaning that expertise is not blended into a process that focuses on one sector over another. Figure 25 highlights APIP’s ability to...8 Figure 5. 2004 Arctic Maritime Activity (From Treadwell, 2009, p. 48) .............. 10 Figure 6. Explorer Stuck in the Antarctic (From New...been a Titanic situation, such as what happened to the cruise ship EXPLORER in the Antarctic in November 2007 as shown in Figure 6 (Browley & 11

  18. Preliminary Design Guide for Arctic Equipment

    Science.gov (United States)

    1989-05-01

    inland areas, such as central on the ships mentioned in the Introduction to Part Greenland , the Canadian Rockies and Siberia. 2 can be attributed to...periods in Greenland . connector contact springs to disengage. Meter In the Arctic, wind affects equipment operation movements may fail completely at low...cables are availa- ing snow and meltwater in the snowpack. If snow ble but are generally quite expensive. However, gets in, it will almost certainly melt

  19. Arctic Social Sciences: Opportunities in Arctic Research.

    Science.gov (United States)

    Arctic Research Consortium of the United States, Fairbanks, AK.

    The U.S. Congress passed the Arctic Research and Policy Act in 1984 and designated the National Science Foundation (NSF) the lead agency in implementing arctic research policy. In 1989, the parameters of arctic social science research were outlined, emphasizing three themes: human-environment interactions, community viability, and rapid social…

  20. MOSAiC - Multidisciplinary drifting Observatory for the Study of Arctic Climate

    Science.gov (United States)

    Shupe, M.; Persson, O. P.; Tjernstrom, M. K.; Dethloff, K.

    2012-12-01

    The climate in the Arctic is changing faster than in other regions of the Earth, with near surface temperatures rising more than twice as fast as the global average and the perennial sea-ice cover shrinking fast, especially in summer. The Arctic is transitioning towards a new climate regime dominated by first year sea-ice. At the same time, the scientific understanding of processes and feedbacks causing this rapid change is poor and climate modeling in the Arctic remains problematic. Furthermore, the key physical processes and process-interactions in this new emerging Arctic system are likely different from those in the old system that was dominated by multi-year ice. Our understanding of this complex climate system, and ability to improve climate and weather models, is limited by the lack of observations in the extreme and remote central Arctic. Multi-year, detailed and comprehensive measurements, extending from the atmosphere through the sea-ice and into the ocean in the central Arctic Basin are needed to provide process-level understanding of the central Arctic climate system. To address this need, a manned, international drifting station will be installed in the young sea-ice of the western Arctic and follow the evolution of the ice pack as it proceeds through the transpolar drift towards the Fram Strait over the course of 1-2 years. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), proposed to start in autumn 2017, will be guided by the broad theme: What are the causes and consequences of diminished Arctic sea-ice coverage? To address this theme requires a number of interdisciplinary investigations that target more specific science questions. *How do ongoing changes in the Arctic ice-ocean-atmosphere system drive heat and mass transfers of importance to climate and ecosystems? *What are the processes and feedbacks affecting sea ice cover, atmosphere-ocean stratification and energy budget in the Arctic? *Will an ice reduced

  1. Evaluation of Combat Capability Against Sea Targets of Surface Ship Based on the Both-Branch Fuzzy Comprehensive Evaluation%基于双枝模糊评判的舰艇对海作战能力评估

    Institute of Scientific and Technical Information of China (English)

    徐林; 葛伟

    2015-01-01

    The research of combat capability against sea targets of surface ship formation is based on the research of sin‐gle ship platform's .Based on the combat process against sea targets of surface ship platform ,the capability is divided into four parts as ability of detecting and warning ,ability of command and control ,ability of air attack and ability of elecronic warfare .At the same time ,the index system of combat capability against sea targets of surface ship is built after analysing the factor collection of the four abilities .Meanwhile ,considering the characteristic of index system of surface ship combat ca‐pability against sea targets ,the both‐branch fuzzy comprehensive evaluation theory is introduced to evaluate the surface ship combat capability against sea targets .Finally we take an example to prove the feasibility and universal application of this the‐ory .%单舰艇平台对海作战能力的研究是水面舰艇编队对海作战能力研究的基础。论文依据水面舰艇平台对海上目标作战的流程,将水面舰艇对海作战能力划分为侦察预警能力、指挥控制能力、火力打击能力、电子战能力四个部分,并逐一分析了影响这四个部分能力的因素集,建立了水面舰艇对海作战能力指标体系。同时,根据水面舰艇对海作战能力指标体系的特点,采用了双枝模糊综合评判法对水面舰艇对海作战能力进行评估,并通过实例验证了该方法的可行性及普遍适用性。

  2. A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model

    Science.gov (United States)

    Dong, Xiquan; Xi, Baike; Qiu, Shaoyue; Minnis, Patrick; Sun-Mack, Sunny; Rose, Fred

    2016-09-01

    Retrievals of cloud microphysical properties based on passive satellite imagery are especially difficult over snow-covered surfaces because of the bright and cold surface. To help quantify their uncertainties, single-layered overcast liquid-phase Arctic stratus cloud microphysical properties retrieved by using the Clouds and the Earth's Radiant Energy System Edition 2 and Edition 4 (CERES Ed2 and Ed4) algorithms are compared with ground-based retrievals at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site at Barrow, AK, during the period from March 2000 to December 2006. A total of 206 and 140 snow-free cases (Rsfc ≤ 0.3), and 108 and 106 snow cases (Rsfc > 0.3), respectively, were selected from Terra and Aqua satellite passes over the ARM NSA site. The CERES Ed4 and Ed2 optical depth (τ) and liquid water path (LWP) retrievals from both Terra and Aqua are almost identical and have excellent agreement with ARM retrievals under snow-free and snow conditions. In order to reach a radiation closure study for both the surface and top of atmosphere (TOA) radiation budgets, the ARM precision spectral pyranometer-measured surface albedos were adjusted (63.6% and 80% of the ARM surface albedos for snow-free and snow cases, respectively) to account for the water and land components of the domain of 30 km × 30 km. Most of the radiative transfer model calculated SW↓sfc and SW↑TOA fluxes by using ARM and CERES cloud retrievals and the domain mean albedos as input agree with the ARM and CERES flux observations within 10 W m-2 for both snow-free and snow conditions. Sensitivity studies show that the ARM LWP and re retrievals are less dependent on solar zenith angle (SZA), but all retrieved optical depths increase with SZA.

  3. Summer Arctic sea fog

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Synchronous or quasi-synchronous sea-land-air observations were conducted using advanced sea ice, atmospheric and marine instruments during China' s First Arctic Expedition. Based on the Precious data from the expedition, it was found that in the Arctic Ocean, most part of which is covered with ice or is mixed with ice, various kinds of sea fog formed such as advection fog, radiation fog and vapor fog. Each kind has its own characteristic and mechanics of creation. In the southern part of the Arctic Ocean, due to the sufficient warm and wet flow there, it is favorable for advection fog to form,which is dense and lasts a long time. On ice cap or vast floating ice, due to the strong radiation cooling effect, stable radiating fog is likely to form. In floating ice area there forms vapor fog with the appearance of masses of vapor from a boiling pot, which is different from short-lasting land fog. The study indicates that the reason why there are many kinds of sea fog form in the Arctic Ocean is because of the complicated cushion and the consequent sea-air interaction caused by the sea ice distribution and its unique physical characteristics. Sea fog is the atmospheric phenomenon of sea-air heat exchange. Especially, due to the high albedo of ice and snow surface, it is diffcult to absorb great amount of solar radiation during the polar days. Besides, ice is a poor conductor of heat; it blocks the sea-air heat exchange.The sea-air exchange is active in floating ice area where the ice is broken. The sea sends heat to the atmosphere in form of latent heat; vapor fog is a way of sea-air heat exchange influencing the climate and an indicator of the extent of the exchange. The study also indicates that the sea also transports heat to the atmosphere in form of sensible heat when vapor fog occurs.

  4. Ballast water treatment techniques: review and suggestions regarding use in the Arctic and Great Lakes

    NARCIS (Netherlands)

    Brink, van den A.M.; Kaag, N.H.B.M.; Sneekes, A.C.

    2013-01-01

    The retreating ice cover opens up the opportunity for new shipping routes, and consequently shipping traffic in the Arctic region is increasing and with this the risk of introducing non-indigenous species (NIS) via ballast water. Ballast water must therefore be treated to prevent the transport of NI

  5. Recycling of merchant ships

    Directory of Open Access Journals (Sweden)

    Magdalena Klopott

    2013-12-01

    Full Text Available The article briefly outlines the issues concerning ship recycling. It highlights ships' high value as sources of steel scrap and non-ferrous metals, without omitting the fact that they also contain a range of hazardous substances. Moreover, the article also focuses on basic ship demolition methods and their environmental impact, as well as emphasizes the importance of “design for ship recycling” philosophy.

  6. Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations.

    Science.gov (United States)

    Bullock, Robin J; Aggarwal, Srijan; Perkins, Robert A; Schnabel, William

    2017-04-01

    In the event of a marine oil spill in the Arctic, government agencies, industry, and the public have a stake in the successful implementation of oil spill response. Because large spills are rare events, oil spill response techniques are often evaluated with laboratory and meso-scale experiments. The experiments must yield scalable information sufficient to understand the operability and effectiveness of a response technique under actual field conditions. Since in-situ burning augmented with surface collecting agents ("herders") is one of the few viable response options in ice infested waters, a series of oil spill response experiments were conducted in Fairbanks, Alaska, in 2014 and 2015 to evaluate the use of herders to assist in-situ burning and the role of experimental scale. This study compares burn efficiency and herder application for three experimental designs for in-situ burning of Alaska North Slope crude oil in cold, fresh waters with ∼10% ice cover. The experiments were conducted in three project-specific constructed venues with varying scales (surface areas of approximately 0.09 square meters, 9 square meters and 8100 square meters). The results from the herder assisted in-situ burn experiments performed at these three different scales showed good experimental scale correlation and no negative impact due to the presence of ice cover on burn efficiency. Experimental conclusions are predominantly associated with application of the herder material and usability for a given experiment scale to make response decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the JAMES CLARK ROSS in the Arctic Ocean, Barents Sea and others from 2012-11-15 to 2013-08-16 (NODC Accession 0115256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115256 includes chemical, meteorological, physical and underway - surface data collected from JAMES CLARK ROSS in the Arctic Ocean, Barents Sea,...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the XUE LONG in the Arctic Ocean, Beaufort Sea and Bering Sea from 2008-07-30 to 2008-09-11 (NODC Accession 0109932)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109932 includes chemical, meteorological, physical and underway - surface data collected from XUE LONG in the Arctic Ocean, Beaufort Sea and Bering...

  9. Temperature, salinity and other variables collected from Surface underway observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from the AIRCRAFT in the Arctic Ocean from 2005-05-02 to 2009-05-18 (NODC Accession 0117695)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117695 includes Surface underway, chemical and physical data collected from AIRCRAFT in the Arctic Ocean from 2005-05-02 to 2009-05-18 and retrieved...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from HEALY in the Arctic Ocean, Beaufort Sea and others from 2011-05-27 to 2011-12-16 (NCEI Accession 0144345)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144345 includes Surface underway data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea, Coastal Waters of SE Alaska, Gulf of...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from HEALY in the Arctic Ocean, Beaufort Sea and others from 2012-08-01 to 2012-10-24 (NCEI Accession 0144338)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144338 includes Surface underway data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea, Coastal Waters of SE Alaska and North...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from HEALY in the Arctic Ocean, Beaufort Sea and others from 2015-07-14 to 2015-10-28 (NCEI Accession 0144530)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144530 includes Surface underway data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea, Coastal Waters of SE Alaska, Gulf of Alaska...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the Arctic Ocean, Beaufort Sea and others from 2011-04-13 to 2011-12-28 (NCEI Accession 0144305)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144305 includes Surface underway data collected from Marcus G. Langseth in the Arctic Ocean, Beaufort Sea, Bering Sea, Gulf of Alaska, Hawaiian...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from HEALY in the Arctic Ocean, Beaufort Sea and others from 2014-05-05 to 2014-08-30 (NCEI Accession 0144350)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144350 includes Surface underway data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea, Coastal Waters of SE Alaska, Gulf of...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from HEALY in the Arctic Ocean, Beaufort Sea and others from 2013-08-06 to 2013-10-29 (NCEI Accession 0144346)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144346 includes Surface underway data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea and Northwest Passage from 2013-08-06 to...

  16. Single-particle characterization of the High Arctic summertime aerosol

    Directory of Open Access Journals (Sweden)

    B. Sierau

    2014-01-01

    Full Text Available Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker \\textit{Oden} and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a

  17. 海上核化生安全威胁与水面舰艇集体防护%Nautical nuclear chemical and biological security threat and collective protection of surface ship

    Institute of Scientific and Technical Information of China (English)

    刘虹; 刘飞; 王斌

    2011-01-01

    为保障水面舰艇形成与其任务相适应的核化生防护能力,从核化生武器扩散新样式、核化生事故、恐怖袭击、次生核化灾害等角度深入阐述并研究了海上核化生环境对水面舰艇安全的威胁.基于此背景,分析了水面舰艇核化生集体防护的技术要素、能力的必要性及其较个人防护更适合于海上环境的技术特点.另外,通过对比国外海军主战水面舰艇的集体防护能力,为我国今后集体防护设计明确了发展方向.%For ensuring nuclear, chemical, and biological(NCB) defense ability of surface ships in accord with its mission, combining with the current international condition, the nautical NCB security situation is analyzed, and the NCB threat to surface ship security is lucubrated, surrounding several main aspects including new modality of nuclear spread, NCB accident, terror raid, derivative nuclear and chemical disaster, and so on. Aiming at this threat, the technology essentials and the ability necessary of surface ship NCB collective protection are analyzed, and the technology traits between collective protection and individual protection for nautical environment are compared. In addition, by comparing the collective protection ability of foreign naval main active surface ships, it shows clearly the further development direction of collective protection designment.

  18. The open-ocean sensible heat flux and its significance for Arctic boundary layer mixing during early fall

    Science.gov (United States)

    Ganeshan, Manisha; Wu, Dong L.

    2016-10-01

    The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multi-year Japanese cruise-ship observations from R/V Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain ˜ 10 % of the open-ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the R/V Mirai for better understanding and

  19. The Open-Ocean Sensible Heat Flux and Its Significance for Arctic Boundary Layer Mixing During Early Fall

    Science.gov (United States)

    Ganeshan, Manisha; Wu, Dongliang

    2016-01-01

    The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multiyear Japanese cruise-ship observations from RV Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain 10 of the open ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the RV Mirai for better understanding and

  20. Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer

    Directory of Open Access Journals (Sweden)

    J. B. Gilman

    2010-11-01

    Full Text Available The influence of halogen oxidation on the variabilities of ozone (O3 and volatile organic compounds (VOCs within the Arctic and sub-Arctic atmospheric boundary layer was investigated using field measurements from multiple campaigns conducted in March and April 2008 as part of the POLARCAT project. For the ship-based measurements, a high degree of correlation (r = 0.98 for 544 data points collected north of 68° N was observed between the acetylene to benzene ratio, used as a marker for chlorine and bromine oxidation, and O3 signifying the vast influence of halogen oxidation throughout the ice-free regions of the North Atlantic. Concurrent airborne and ground-based measurements in the Alaskan Arctic substantiated this correlation and were used to demonstrate that halogen oxidation influenced O3 variability throughout the Arctic boundary layer during these springtime studies. Measurements aboard the R/V Knorr in the North Atlantic and Arctic Oceans provided a unique view of the transport of O3-poor air masses from the Arctic Basin to latitudes as far south as 52° N. FLEXPART, a Lagrangian transport model, was used to quantitatively determine the exposure of air masses encountered by the ship to first-year ice (FYI, multi-year ice (MYI, and total ICE (FYI+MYI. O3 anti-correlated with the modeled total ICE tracer (r = −0.86 indicating that up to 73% of the O3 variability measured in the Arctic marine boundary layer could be related to sea ice exposure.

  1. Fuzzy Technique Tracking Control for Multiple Unmanned Ships

    OpenAIRE

    Ramzi Fraga; Liu Sheng

    2013-01-01

    A Fuzzy logic control law is presented and implemented for trajectory tracking of multiple under actuated autonomous surface vessels. In this study, an individual unmanned ship is used to be the leader that tracks the desired path; other unmanned ships are used to be the followers which track the leader only by using its position. A fuzzy controller was implemented for the ship leader position with a constant velocity; however, the ship follower needed a fuzzy controller for the position and ...

  2. Possible signals of poleward surface ocean heat transport, of Arctic basal ice melt, and of the twentieth century solar maximum in the 1904-2012 Isle of Man daily timeseries

    Directory of Open Access Journals (Sweden)

    J. B. Matthews

    2014-01-01

    Full Text Available This is the second of two papers on observational timeseries of top of ocean heat capture. The first reports hourly and daily meridional central tropical Pacific top 3 m timeseries showing high Southern Hemisphere evaporation (2.67 m yr−1 and Northern Hemisphere trapped heat (12 MJ m−2 day−1. We suggested that wind drift/geostrophic stratified gyre circulation transported warm water to the Arctic and led to three phases of Arctic basal ice melt and fluxes of brackish nutrient-rich waters to north Atlantic on centennial timescales. Here we examine daily top metre 1904–2012 timeseries at Isle of Man west coast ~54° N for evidence of tropical and polar surface waters. We compare these to Central England (CET daily land-air temperatures and to Arctic floating ice heat content and extent. We find three phases of ocean surface heating consistent with basal icemelt buffering greenhouse gas warming until a regime shift post-1986 led to the modern surface temperature rise of ~1 °C in 20 yr. Three phases were: warming +0.018 °C yr−1 from 1904–1939, slight cooling −0.002 °C yr−11940–86 and strong warming +0.037 °C yr−1 1986–2012. For the same periods CET land-air showed: warming +0.015 °C yr−1, slight cooling −0.004 °C yr−1, about half SST warming at +0.018 °C yr−1. The mid-century cooling and a 1959/1963 hot/cold event is consistent with sunspot/solar radiation maximum 1923–2008 leading to record volumes of Arctic ice meltwater and runoff that peaked in 1962/3 British Isles extreme cold winter. The warming Arctic resulted in wind regime and surface water regime shifts post 1986. This coincides with the onset of rapid Arctic annual ice melt. Continued heat imbalance is likely to lead to tidewater glacier basal icemelt and future sealevel rise after remaining relatively stable over 4000 yr. Our work needs confirmation by further fieldwork concentrating on the dynamics and thermodynamics of ocean top 3 m that controls

  3. Measurements of arctic sunrise surface ozone depletion events at Kangerlussuaq, Greenland (67°N, 51°W)

    OpenAIRE

    Miller, Henry L.; Weaver, Alex; Sanders, Ryan W.; Arpag, Karen; Solomon, Susan

    2011-01-01

    In situ measurements of surface ozone were conducted from 30 January through 22 May 1995, at the Sondrestrom Incoherent Scatter Radar Facility near Kangerlussuaq, Greenland. Several periods of depleted ozone were observed, representing the lowest latitude measurements of springtime surface polar ozone depletion in the northern hemisphere to date. The most severe ozone depletion occurred during 14-17 March, when surface ozone levels abruptly fell to below 10 ppbv from typical values of about 4...

  4. Climate Change and Risk Management Challenges in the Arctic

    DEFF Research Database (Denmark)

    Jakobsen, Uffe

    Climate change or global warming results in melting ice in the Arctic, both inland and sea ice. This opens up opportunities of natural ressource extraction and possibilities of new shipping routes, that opens up opportunities for increased maritime activities. However, with these opportunies come...... possibilies of transborder risk management and partnership building....

  5. Improving U.S. Posture in the Arctic

    Science.gov (United States)

    2012-01-01

    Posture in the Arctic 58 JFQ / issue 67, 4 th quarter 2012 ndupress .ndu.edu In addition to commercial shipping, ecotourism must also be taken into...interested states, several indigenous tribes, and select or nongovernmental organizations. Its purpose is to provide “a means for promot - ing

  6. The influence of cruise ship emissions on air pollution in Svalbard

    Science.gov (United States)

    Eckhardt, Sabine; Hermansen, Ove; Grythe, Henrik; Fiebig, Markus; Stebel, Kerstin; Cassiani, Massimo; Baecklund, Are; Stohl, Andreas

    2013-04-01

    We have analyzed whether tourist cruise ships have an influence on measured sulfur dioxide (SO2), ozone (O3), Aitken mode particle and equivalent black carbon (EBC) concentrations at Ny Ålesund and Zeppelin Mountain on Svalbard in the Norwegian Arctic, during summer. We separated the measurement data set into periods when ships were present and periods when no ships were present in the Kongsfjord area, according to a long-term record of the number of passengers visiting Ny Ålesund. We show that when ships with more than 50 passengers cruise in the Kongsfjord, measured daytime-mean concentrations of 60-nm particles and EBC in summer show enhancements of 72 and 45% relative to values when no ships are present. Even larger enhancements of 81 and 72% were found for stagnant conditions. In contrast, O3 concentrations were 5% lower on average and 7% lower under stagnant conditions, due to titration of O3 with the emitted nitric oxide (NO). The differences between the two data subsets are largest for the highest measured percentiles while relatively small differences were found for the median concentrations, indicating that ship plumes are sampled relatively infrequently even when ships are generally present but carry high concentrations. We estimate that the ships increased the total summer mean concentrations of SO2, 60-nm particles and EBC by 15, 18 and 11%, respectively. Our findings have two important implications: Firstly, even at such a remote Arctic observatory as Zeppelin, the measurements can be influenced by tourist ship emissions. Careful data screening is recommended before summer-time Zeppelin data is used for data analysis or for comparison with global chemistry transport models. However, Zeppelin remains one of the most valuable Arctic observatories, as most other Arctic observatories face even larger local pollution problems. Secondly, given landing statistics of tourist ships on Svalbard, it is suspected that large parts of the Svalbard archipelago are

  7. Single-particle characterization of summertime arctic aerosols collected at Ny-Alesund, Svalbard.

    Science.gov (United States)

    Geng, Hong; Ryu, Jiyeon; Jung, Hae-Jin; Chung, Hyeok; Ahn, Kang-Ho; Ro, Chul-Un

    2010-04-01

    Single-particle characterization of summertime Arctic aerosols is useful to understand the impact of air pollutants on the polar atmosphere. In the present study, a quantitative single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize 8100 individual particles overall in 16 sets of aerosol samples collected at Ny-Alesund, Svalbard, Norway on 25-31 July, 2007. Based on their X-ray spectral and secondary electron image data of individual particles, 13 particle types were identified, in which particles of marine origin were the most abundant, followed by carbonaceous and mineral dust particles. A number of aged (reacted) sea salt (and mixture) particles produced by the atmospheric reaction of genuine sea-salts, especially with NO(x) or HNO(3), were significantly encountered in almost all the aerosol samples. They greatly outnumbered genuine sea salt particles, implying that the summertime Arctic atmosphere, generally regarded as a clean background environment, is disturbed by anthropogenic air pollutants. The main sources of airborne NO(x) (or HNO(3)) are probably ship emissions around the Arctic Ocean, industry emission from northern Europe and northwestern Siberia, and renoxification of NO(3)(-) within or on the melting snow/ice surface.

  8. Detecting change in seabird distributions at sea in arctic and sub-arctic waters over six decades

    DEFF Research Database (Denmark)

    Gjerdrum, Carina; Wong, Sarah; Johansen, Kasper Lambert

    In the western North Atlantic and eastern Arctic, data on the distribution and abundance of seabirds at sea have been collected by the Canadian Wildlife Service from two main survey programs using ships of opportunity. The first, PIROP (Programme intégré de recherches sur les oiseaux pélagiques...

  9. ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic

    Science.gov (United States)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Bates, Brian; Willamson, Cathleen; Peterman, Kennith

    2016-04-01

    A Digital Elevation Model (DEM) of the Arctic is needed for a large number of reasons, including: measuring and understanding rapid, ongoing changes to the Arctic landscape resulting from climate change and human use and mitigation and adaptation planning for Arctic communities. The topography of the Arctic is more poorly mapped than most other regions of Earth due to logistical costs and the limits of satellite missions with low-latitude inclinations. A convergence of civilian, high-quality sub-meter stereo imagery; petascale computing and open source photogrammetry software has made it possible to produce a complete, very high resolution (2 to 8-meter posting), elevation model of the Arctic. A partnership between the US National Geospatial-intelligence Agency and a team led by the US National Science Foundation funded Polar Geospatial Center is using stereo imagery from DigitalGlobe's Worldview-1, 2 and 3 satellites and the Ohio State University's Surface Extraction with TIN-based Search-space Minimization (SETSM) software running on the University of Illinois's Blue Water supercomputer to address this challenge. The final product will be a seemless, 2-m posting digital surface model mosaic of the entire Arctic above 60 North including all of Alaska, Greenland and Kamchatka. We will also make available the more than 300,000 individual time-stamped DSM strip pairs that were used to assemble the mosaic. The Arctic DEM will have a vertical precision of better than 0.5m and can be used to examine changes in land surfaces such as those caused by permafrost degradation or the evolution of arctic rivers and floodplains. The data set can also be used to highlight changing geomorphology due to Earth surface mass transport processes occurring in active volcanic and glacial environments. When complete the ArcticDEM will catapult the Arctic from the worst to among the best mapped regions on Earth.

  10. Physical, meteorological, and other data from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska and other locations from NOAA Ship MILLER FREEMAN and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1976-09-08 to 1976-11-19 (NODC Accession 7700461)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska and other locations from NOAA Ship...

  11. Physical, meteorological, and other data from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1979-05-25 to 1979-05-31 (NODC Accession 8100446)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER. Data were collected by...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean, North Pacific Ocean and others from 2008-01-22 to 2009-01-11 (NODC Accession 0109930)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109930 includes biological, chemical, meteorological, physical and underway - surface data collected from NOAA Ship RONALD H. BROWN in the North...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship Bell M. Shimada in the Coastal Waters of SE Alaska, Cordell Bank National Marine Sanctuary and others from 2011-06-27 to 2011-08-31 (NODC Accession 0115710)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115710 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship Bell M. Shimada in the Coastal Waters of SE...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship Bell M. Shimada in the Coastal Waters of SE Alaska, Cordell Bank National Marine Sanctuary and others from 2012-02-20 to 2012-09-16 (NODC Accession 0115714)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115714 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship Bell M. Shimada in the Coastal Waters of SE...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship DAVID STARR JORDAN in the Channel Islands National Marine Sanctuary, Cordell Bank National Marine Sanctuary and others from 2007-07-25 to 2007-10-28 (NCEI Accession 0144352)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144352 includes Surface underway data collected from NOAA Ship DAVID STARR JORDAN in the Channel Islands National Marine Sanctuary, Cordell Bank...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Caribbean Sea, North Atlantic Ocean and South Atlantic Ocean from 2013-07-18 to 2013-10-31 (NODC Accession 0117689)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117689 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea, North...

  17. Physical, meteorological, and other data from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska from NOAA Ship MILLER FREEMAN as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1977-03-29 to 1977-04-02 (NODC Accession 7700681)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska from NOAA Ship MILLER FREEMAN. Data...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship OSCAR DYSON in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-03-03 to 2014-08-13 (NCEI Accession 0144980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144980 includes Surface underway data collected from NOAA Ship OSCAR DYSON in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-03-03...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Gulf of Mexico from 2008-04-03 to 2008-11-20 (NODC Accession 0117697)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117697 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Gulf of Mexico from...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2013-07-18 to 2013-10-02 (NODC Accession 0117699)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117699 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and...

  1. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from 4 trans-Pacific crossings onboard container ship Cap Blanche in the Pacific Ocean from 2015-03-28 to 2015-12-04 (NCEI Accession 0141304)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Underway measurements of pCO2, salinity, sea surface temperature, and other parameters were collected during 4 trans-Pacific crossings in 2015 on the container ship...

  2. Physical, meteorological, and other data from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska from NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1975-10-28 to 1975-11-17 (NODC Accession 7601830)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska from NOAA Ship SURVEYOR. Data were...

  3. Physical, meteorological, and other data from surface sensors and CTD casts from NOAA Ship RAINIER and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1975-02-04 to 1975-05-13 (NODC Accession 7601228)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship RAINIER and other platforms. Data were collected by the...

  4. Physical, meteorological, and other data from surface sensors, bottle casts, and CTD casts from NOAA Ship DISCOVERER as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1977-11-09 to 1977-11-16 (NODC Accession 7800384)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts from NOAA Ship DISCOVERER. Data were collected by the...

  5. Physical, meteorological, and other data from surface sensors and CTD casts in the Bering Sea and other locations from NOAA Ship DISCOVERER as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1975-08-12 to 1975-10-15 (NODC Accession 7700422)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Bering Sea and other locations from NOAA Ship DISCOVERER. Data were...

  6. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using Alkalinity titrator, CTD and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2010-03-08 to 2010-04-17 (NODC Accession 0108156)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108156 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from NOAA Ship RONALD H. BROWN in...

  7. Underway - surface and physical data collected in the North Atlantic Ocean on NOAA Ship ALBATROSS IV cruises AL9505, AL9508 and others as part of the GB project from 1995-05-09 to 1999-06-24 (NODC Accession 0099171)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — R/V Albatross Globec broadscale cruises 1995-1999, shipboard meteorology and sea surface measurements along the ship's track Comments submitted by Jim Manning These...

  8. Physical, meteorological, and other data from surface sensors, bottle casts, and CTD casts from NOAA Ship DISCOVERER as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1977-05-22 to 1977-06-09 (NODC Accession 7800308)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts from NOAA Ship DISCOVERER from 22 May 1977 to 09 June 1977....

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship McARTHUR II in the Coastal Waters of SE Alaska, Cordell Bank National Marine Sanctuary and others from 2007-06-05 to 2007-07-26 (NODC Accession 0109934)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109934 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship McARTHUR II in the Coastal Waters of SE...

  10. Temperature profile data from surface sensors and CTD casts from the Gulf of Alaska from NOAA Ship MILLER FREEMAN as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1990-04-17 to 1990-10-11 (NODC Accession 9100188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship MILLER FREEMAN from 17 April 1990 to 11 October 1990....

  11. Physical, meteorological, and other data from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1977-03-02 to 1977-03-10 (NODC Accession 7700659)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER. Data were collected by...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean from 2013-12-23 to 2014-02-04 (NODC Accession 0116979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116979 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean...

  13. Physical, meteorological, and other data from surface sensors and CTD casts from NOAA Ship MILLER FREEMAN and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1976-04-02 to 1976-06-18 (NODC Accession 7601544)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship MILLER FREEMAN and other platforms from 02 April 1976 to 18...

  14. Physical, meteorological, and other data from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1977-04-05 to 1977-06-10 (NODC Accession 7700741)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER and other platforms. Data...

  15. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from NOAA Ship Oscar Dyson in the Bering Sea and coast of Alaska from 2014-03-03 to 2014-08-13 (NCEI Accession 0132046)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters collected in 2014 on board NOAA Ship Oscar...

  16. Physical, meteorological, and other data from surface sensors and CTD casts in the Bering Sea from NOAA Ship DISCOVERER as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1977-05-22 to 1977-06-09 (NODC Accession 7700846)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Bering Sea from NOAA Ship DISCOVERER. Data were collected by the...

  17. Physical, meteorological, and other data from surface sensors and CTD casts in the Chukchi Sea from NOAA Ship DISCOVERER as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1982-07-19 to 1982-08-11 (NODC Accession 8300101)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Chukchi Sea from NOAA Ship DISCOVERER from 19 July 1982 to 11...

  18. Physical, meteorological, and other data from surface sensors and CTD casts from NOAA Ship DISCOVERER and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1978-02-20 to 1979-03-08 (NODC Accession 8000114)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship DISCOVERER and other platforms. Data were collected by the...

  19. Physical and other data from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1977-03-02 to 1977-04-01 (NODC Accession 7700660)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship DISCOVERER and other platforms. Data were collected by...

  20. Temperature profile and other data from surface sensors and CTD casts from NOAA Ship MILLER FREEMAN and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) and the Fisheries-Oceanography Cooperative Investigations (FOCI) from 1988-01-31 to 1989-09-23 (NODC Accession 9000273)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected from surface sensors and CTD casts from NOAA Ship MILLER FREEMAN and other platforms from 31 January 1988 to 23...

  1. Physical and other data from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship RAINIER as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1975-04-28 to 1975-05-07 (NODC Accession 7601226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from NOAA Ship RAINIER. Data were collected by the Pacific Marine...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship KA'IMIMOANA in the North Pacific Ocean and South Pacific Ocean from 2010-01-06 to 2010-09-17 (NODC Accession 0115170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115170 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship KA'IMIMOANA in the North Pacific Ocean and...

  3. Physical, meteorological, and other data from surface sensors and CTD casts from NOAA Ship DISCOVERER and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1981-01-30 to 1981-06-02 (NODC Accession 8300002)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from NOAA Ship DISCOVERER and other platforms. Data were collected by the...

  4. Pan-Arctic patterns in black carbon sources and fluvial discharges deduced from radiocarbon and PAH source apportionment markers in estuarine surface sediments

    Science.gov (United States)

    Elmquist, Marie; Semiletov, Igor; Guo, Laodong; Gustafsson, Örjan

    2008-06-01

    A pan-arctic geospatial picture of black carbon (BC) characteristics was obtained from the seven largest arctic rivers by combining with molecular combustion markers (polycyclic aromatic hydrocarbons) and radiocarbon (14C) analysis. The results suggested that the contribution from modern biomass burning to BC ranged from low in the Yukon (8%) and Lena (5%) Rivers to high in the Yenisey River (88%). The Mackenzie River contributed almost half of the total arctic fluvial BC export of 202 kton a-1 (kton = 109 g), with the five Russian-Arctic rivers contributing 10-36 kton a-1 each. The 14C-based source estimate of fluvially exported BC to the Arctic Ocean, weighted by the riverine BC fluxes, amount to about 20% from vegetation/biofuel burning and 80% from 14C-extinct sources such as fossil fuel combustion and relict BC in uplifted source rocks. Combining these pan-arctic data with available estimates of BC export from other rivers gave a revised estimate of global riverine BC export flux of 26 × 103 kton a-1. This is twice higher than a single previous estimate and confirms that river export of BC is a more important pathway of BC to the oceans than direct atmospheric deposition.

  5. Chemical pollution in the Arctic and Sub-Arctic marine ecosystems: an overview of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Savinova, T.N.; Gabrielsen, G.W.; Falk-Petersen, S.

    1995-02-01

    This report is part of a research project in the framework of the Norwegian-Russian Environmental Cooperation, which was initiated in 1991 to elucidate the present status of environmental contaminants in the highly sensitive Arctic aquatic ecosystem, with special focus on sea birds. Although these ecosystems are the least polluted areas in the world, they are contaminated. The main pathways of contamination into Arctic and sub-Arctic marine ecosystems are atmospheric transport, ocean currents and rivers and in some areas, dumping and ship accidents. A literature survey reveals: (1) there is a lack of data from several trophic levels, (2) previous data are difficult to compare with recent data because of increased quality requirement, (3) not much has been done to investigate the effects of contaminants on the cellular level, at individual or population levels. 389 refs., 7 figs., 32 tabs.

  6. Coupled land surface-subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

    Science.gov (United States)

    Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.

    2017-09-01

    Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface-subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets - including soil liquid water content, temperature and electrical resistivity tomography (ERT) data - to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological-thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice-liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological-thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the

  7. Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific sector of Arctic Ocean during 1982-2009

    Science.gov (United States)

    Lei, Ruibo; Tian-Kunze, Xiangshan; Leppäranta, Matti; Wang, Jia; Kaleschke, Lars; Zhang, Zhanhai

    2016-08-01

    SSM/I sea ice concentration and CLARA black-sky composite albedo were used to estimate sea ice albedo in the region 70°N-82°N, 130°W-180°W. The long-term trends and seasonal evolutions of ice concentration, composite albedo, and ice albedo were then obtained. In July-August 1982-2009, the linear trend of the composite albedo and the ice albedo was -0.069 and -0.046 units per decade, respectively. During 1 June to 19 August, melting of sea ice resulted in an increase of solar heat input to the ice-ocean system by 282 MJ·m-2 from 1982 to 2009. However, because of the counter-balancing effects of the loss of sea ice area and the enhanced ice surface melting, the trend of solar heat input to the ice was insignificant. The summer evolution of ice albedo matched the ice surface melting and ponding well at basin scale. The ice albedo showed a large difference between the multiyear and first-year ice because the latter melted completely by the end of a melt season. At the SHEBA geolocations, a distinct change in the ice albedo has occurred since 2007, because most of the multiyear ice has been replaced by first-year ice. A positive polarity in the Arctic Dipole Anomaly could be partly responsible for the rapid loss of summer ice within the study region in the recent years by bringing warmer air masses from the south and advecting more ice toward the north. Both these effects would enhance ice-albedo feedback.

  8. Assessment of climate and land use change impacts on surface water runoff and connectivity in a continuous permafrost catchment on the Arctic Coastal Plain, Alaska

    Science.gov (United States)

    Gaedeke, A.; Arp, C. D.; Liljedahl, A. K.; Daanen, R. P.; Whitman, M. S.

    2016-12-01

    A changing climate is leading to rapid transformations of hydrological processes in low-gradient Arctic terrestrial ecosystems which are dominated by lakes and ponds, wetlands, polygonised tundra, and connecting stream and river networks. The aim of this study is to gain a deeper understanding of the impacts of climate and land use change on surface water availability and connectivity by utilizing the process-based, spatially distributed hydrological model WaSiM. Crea Creek Watershed (30 km2), which is located in the National Petroleum Reserve-Alaska (NPR-A) was chosen as study area because of its permafrost landforms (bedfast and floating ice lakes, high and low centered polygons), existing observational data (discharge, snow depth, and meteorological variables since 2009), and resource management issues related to permafrost degradation and aquatic habitat dynamics. Foremost of concern is oil development scheduled to begin starting in 2017 with the construction of a permanent road and drilling pad directly within the Crea Watershed. An interdisciplinary team consisting of scientists and regional stakeholders defined the following scenarios to be simulated using WaSiM: (1) industrial development (impact of water removal from lakes (winter) for ice road construction on downstream (summer) runoff), (2) permanent road construction to allow oil companies access to develop and extract petroleum, and (3) potential modes of climate change including warmer, snowier winters and prolonged drought during summers. Downscaled meteorological output from the Weather Research & Forecasting Model (WRF) will be used as the forcing for analysis of climate scenarios alone and for assessment of land-use responses under varying climate scenarios. Our results will provide regional stakeholders with information on the impacts of climate and land use change on surface water connectivity that affects aquatic habitat, as well as lake hydrologic interactions with permafrost. These finding

  9. Combined effects of the North Atlantic Oscillation and the Arctic Oscillation on sea surface temperature in the Alborán Sea.

    Science.gov (United States)

    Báez, José C; Gimeno, Luis; Gómez-Gesteira, Moncho; Ferri-Yáñez, Francisco; Real, Raimundo

    2013-01-01

    We explored the possible effects of the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) on interannual sea surface temperature (SST) variations in the Alborán Sea, both separately and combined. The probability of observing mean annual SST values higher than average was related to NAO and AO values of the previous year. The effect of NAO on SST was negative, while that of AO was positive. The pure effects of NAO and AO on SST are obscuring each other, due to the positive correlation between them. When decomposing SST, NAO and AO in seasonal values, we found that variation in mean annual SST and mean winter SST was significantly related to the mean autumn NAO of the previous year, while mean summer SST was related to mean autumn AO of the previous year. The one year delay in the effect of the NAO and AO on the SST could be partially related to the amount of accumulated snow, as we found a significant correlation between the total snow in the North Alborán watershed for a year with the annual average SST of the subsequent year. A positive AO implies a colder atmosphere in the Polar Regions, which could favour occasional cold waves over the Iberian Peninsula which, when coupled with precipitations favoured by a negative NAO, may result in snow precipitation. This snow may be accumulated in the high peaks and melt down in spring-summer of the following year, which consequently increases the runoff of freshwater to the sea, which in turn causes a diminution of sea surface salinity and density, and blocks the local upwelling of colder water, resulting in a higher SST.

  10. Field observations and results of a 1-D boundary layer model for developing near-surface temperature maxima in the Western Arctic

    Directory of Open Access Journals (Sweden)

    Shawn G. Gallaher

    2017-03-01

    Full Text Available Summer sea ice extent in the Western Arctic has decreased significantly in recent years resulting in increased solar input into the upper ocean. Here, a comprehensive set of 'in situ' shipboard, on-ice, and autonomous ice-ocean measurements were made of the early stages of formation of the near-surface temperature maximum (NSTM in the Canada Basin. These observations along with the results from a 1-D turbulent boundary layer model indicate that heat storage associated with NSTM formation is largely due to the absorption of penetrating solar radiation just below a protective summer halocline. The depth of the summer halocline was found to be the most important factor for determining the amount of solar radiation absorbed in the NSTM layer, while halocline strength controlled the amount of heat removed from the NSTM by turbulent transport. Observations using the Naval Postgraduate School Turbulence Frame show that the NSTM was able to persist despite periods of intermittent turbulence because transport rates were too small to remove significant amounts of heat from the NSTM layer. The development of the early and late summer halocline and NSTM were found to be linked to summer season buoyancy and wind events. For the early summer NSTM, 1-D boundary layer model results show that melt pond drainage provides sufficient buoyancy to the summer halocline to prevent subsequent wind events from mixing out the NSTM. For the late summer NSTM, limited freshwater inputs reduce the strength of the summer halocline making the balance between interfacial stresses and buoyancy more tenuous. As a result, the late summer NSTM is an ephemeral feature dependent on local wind conditions, while the early summer NSTM is more persistent and able to store heat in the near-surface ocean beyond the summer season.

  11. Sea ice thickness and recent Arctic warming

    Science.gov (United States)

    Lang, Andreas; Yang, Shuting; Kaas, Eigil

    2017-01-01

    The climatic impact of increased Arctic sea ice loss has received growing attention in the last years. However, little focus has been set on the role of sea ice thickness, although it strongly determines surface heat fluxes. Here ensembles of simulations using the EC-Earth atmospheric model (Integrated Forecast System) are performed and analyzed to quantify the atmospheric impacts of Arctic sea ice thickness change since 1982 as revealed by the sea ice model assimilation Global Ice-Ocean Modeling and Assimilation System. Results show that the recent sea ice thinning has significantly affected the Arctic climate, while remote atmospheric responses are less pronounced owing to a high internal atmospheric variability. Locally, the sea ice thinning results in enhancement of near-surface warming of about 1°C per decade in winter, which is most pronounced over marginal sea ice areas with thin ice. This leads to an increase of the Arctic amplification factor by 37%.

  12. Buckling of Ship Structures

    CERN Document Server

    Shama, Mohamed

    2013-01-01

    Buckling of Ship Structures presents a comprehensive analysis of the buckling problem of ship structural members. A full analysis of the various types of loadings and stresses imposed on ship plating and primary and secondary structural members is given. The main causes and consequences of the buckling mode of failure of ship structure and the methods commonly used to control buckling failure are clarified. This book contains the main equations required to determine the critical buckling stresses for both ship plating and the primary and secondary stiffening structural members. The critical buckling stresses are given for ship plating subjected to the induced various types of loadings and having the most common boundary conditions encountered in ship structures.  The text bridges the gap existing in most books covering the subject of buckling of ship structures in the classical analytical format, by putting the emphasis on the practical methods required to ensure safety against buckling of ship structur...

  13. Surface energy balance in the ablation zone of Langfjordjøkelen, an arctic, maritime glacier in northern Norway

    NARCIS (Netherlands)

    Giesen, Rianne H.; Andreassen, Liss M.; Oerlemans, Johannes; van den Broeke, Michiel R.

    2014-01-01

    Glaciers in northern and southern Norway are subject to different daily and seasonal cycles of incoming solar radiation, which is presumably reflected in the importance of net solar radiation in their surface energy balance. We present a 3 year continuous record from an automatic weather station in

  14. Using information theory to determine optimum pixel size and shape for ecological studies: Aggregating land surface characteristics in arctic ecosystems

    NARCIS (Netherlands)

    Stoy, P.C.; Williams, M.; Spadavecchia, L.; Bell, R.A.; Prieto-Blanco, A.; Evans, J.G.; Wijk, van M.T.

    2009-01-01

    Quantifying vegetation structure and function is critical for modeling ecological processes, and an emerging challenge is to apply models at multiple spatial scales. Land surface heterogeneity is commonly characterized using rectangular pixels, whose length scale reflects that of remote sensing meas

  15. Towards Arctic Resource Governance of Marine Invasive Species

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Kaiser, Brooks; Fernandez, Linda

    2015-01-01

    Scientific and policy-oriented publications highlighting the magnitude of uncertainty in the changing Arctic and the possibilities for effective regional governance are proliferating, yet it remains a challenging task to examine Arctic marine biodiversity. Limited scientific data are currently...... available. Through analysis of marine invasions in the Arctic, we work to identify and assess patterns in the knowledge gaps regarding invasive species in the Arctic that affect the ability to generate improved governance outcomes. These patterns are expected to depend on multiple aspects of scientific......, resource exploration) and indigenous communities (regarded as resource users, citizen scientists, and recipients of goods shipped from other locations). Governance gaps are examined in the context of applied national policies (such as promoting or intercepting intentional introductions), international...

  16. Barry Lopez's Relational Arctic

    OpenAIRE

    Kjeldaas, Sigfrid

    2014-01-01

    "Arctic dreams: imagination and desire in a Northern landscape"(1986) can be read as American nature writer Barry Lopez’s attempt to evoke a more profound and ecologically sound understanding of the North American Arctic. This article investigates how Arctic Dreams uses insights from Jacob von Uexküll’s Umwelt theory, in combination with what Tim Ingold describes as a particular form of animism associated with circumpolar indigenous hunter cultures, to portray the Arctic natur...

  17. Ships as future floating farm systems?

    Science.gov (United States)

    Moustafa, Khaled

    2016-09-29

    Environmental and agriculture challenges such as severe drought, desertification, sprawling cities and shrinking arable lands in large regions in the world compel us to think about alternative and sustainable farming systems. Ongoing projects to build floating cities in the sea suggest that building specific ships for farming purposes (as farming ships or farming boats) would also be attainable to introduce new farming surfaces and boost food production worldwide to cope with food insecurity issues.

  18. Can regional climate engineering save the summer Arctic sea ice?

    Science.gov (United States)

    Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois

    2014-02-01

    Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.

  19. Research with Arctic peoples

    DEFF Research Database (Denmark)

    Smith, H Sally; Bjerregaard, Peter; Chan, Hing Man

    2006-01-01

    Arctic peoples are spread over eight countries and comprise 3.74 million residents, of whom 9% are indigenous. The Arctic countries include Canada, Finland, Greenland (Denmark), Iceland, Norway, Russia, Sweden and the United States. Although Arctic peoples are very diverse, there are a variety of...

  20. Crushing Strength of Ship Structures

    DEFF Research Database (Denmark)

    Cerup-Simonsen, Bo; Abramowicz, W.; Høstgaard-Brene, C.N.S.

    1999-01-01

    The crushing response of ship structures is of primary importance to the designers and practicing engineers concerned with accidental loading and accident reconstruction of marine vehicles. Ship to-ship collisions, ship-harbor infrastructure interaction or ship-offshore structure interaction are ...

  1. Crushing Strength of Ship Structures

    DEFF Research Database (Denmark)

    Cerup-Simonsen, Bo; Abramowicz, W.; Høstgaard-Brene, C.N.S.

    1999-01-01

    The crushing response of ship structures is of primary importance to the designers and practicing engineers concerned with accidental loading and accident reconstruction of marine vehicles. Ship to-ship collisions, ship-harbor infrastructure interaction or ship-offshore structure interaction are ...

  2. Determination of particulate organic carbon sources to the surface mixed layer of the Canada Basin, Arctic Ocean

    Science.gov (United States)

    Brown, Kristina A.; McLaughlin, Fiona; Tortell, Philippe D.; Varela, Diana E.; Yamamoto-Kawai, Michiyo; Hunt, Brian; Francois, Roger

    2014-02-01

    Stable isotope ratios of particulate organic carbon (POC), together with other tracers, were analyzed in samples from the Canada Basin surface mixed layer in 2008 and 2009. Sampling was conducted during the end of the 2008 melt season and at the beginning of the 2009 freezeup under a variety of surface conditions, including open water, newly formed seasonal ice, and multiyear ice. In both years, POC exhibited a wide isotopic range (δ13C-POC -24.5 to -31.1‰), with the most isotopically depleted material generally found in the central basin. Isotopically enriched material was found on the shelves, consistent with higher biological production and strongly correlated with in situ carbon-uptake rates. In contrast, offshore in the central basin, there was no significant relationship between δ13C-POC distributions and either chlorophyll a or aqueous CO2 concentrations, suggesting that in situ biological production was not the dominant control. Analysis of freshwater sources suggested that the sea ice melt contribution of POC to surface waters in the central Canada Basin exerted a negligible influence on δ13C-POC distributions, and instead isotopically depleted POC in the surface waters of the central Canada Basin were sourced externally through advective transport of riverine organic matter. We show that alkalinity and meteoric water content can be used to distinguish POC inputs from North American and Russian rivers and our analysis suggests that Russian river inputs are the predominant source of 13C-depleted organic matter to the mixed layer of the central Canada Basin.

  3. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-03-01

    Full Text Available Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-year sea ice and "dry" and "wet" snow types that suggest black carbon is the dominating absorbing impurity. The albedo response of first year and multi-year sea ice to increasing black carbon, from 1–1024 ng g−1, in a top 5 cm layer of a 155 cm thick sea ice was calculated using the radiative transfer model: TUV-snow. Sea ice albedo is surprisingly unresponsive to black carbon additions up to 100 ng g−1 with a decrease in albedo to 98.7% of the original albedo value due to an addition of 8 ng g−1 of black carbon in first year sea ice compared to an albedo decrease to 99.6% for the same black carbon mass ratio increase in multi-year sea ice. The first year sea ice proved more responsive to black carbon additions than the multi-year ice. Comparison with previous modelling of black carbon in sea ice suggests a more scattering sea ice environment will be less responsive to black carbon additions. Snow layers on sea ice may mitigate the effects of black carbon in sea ice. "Wet" and "dry" snow layers of 0.5, 1, 2, 5 and 10 cm were added onto the sea ice surface and the snow surface albedo calculated with the same increase in black carbon in the underlying sea ice. Just a 0.5 cm layer of snow greatly diminishes the effect of black carbon on surface albedo, and a 2–5 cm layer (less than half the e-folding depth of snow is enough to "mask" any change in surface albedo owing to additional black carbon in sea ice, but not thick enough to ignore the underlying sea ice.

  4. Feasibility test program of application of coalescing phase oil/water separators to self compensating fuel tanks in surface ships. Final report, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, J.B.; Batutis, E.

    1974-05-01

    The report covers the evaluation of the General Electric Coalescing Plate Oil/Water Separator concept as applied to ballast water discharged from a ship equipped with self compensating fuel tanks during fueling operations. It was used to remove the entrained fuel oil from de-ballasted water being discharged during routine fueling operations. This separator was chosen because it has a cross sectional area and volume very nearly equivalent to a DE-1040 forward fuel tank. By attaching the separator directly to the ship's discharge port and refuelling at several flow rates it was possible to evaluate the performance of the coalescing plate banks in a de-ballasting operation.

  5. Aerosol as a player in the Arctic Amplification - an aerosol-climate model evaluation study

    Science.gov (United States)

    Schacht, Jacob; Heinold, Bernd; Tegen, Ina

    2017-04-01

    Climate warming is much more pronounced in the Arctic than in any other region on Earth - a phenomenon referred to as the "Arctic Amplification". This is closely related to a variety of specific feedback mechanisms, which relative importance, however, is not yet sufficiently understood. The local changes in the Arctic climate are far-reaching and affect for example the general atmospheric circulation and global energy transport. Aerosol particles from long-range transport and local sources play an important role in the Arctic system by modulating the energy balance (directly by interaction with solar and thermal infrared radiation and indirectly by changing cloud properties and atmospheric dynamics). The main source regions of anthropogenic aerosol are Europe and East Asia, but also local shipping and oil/gas extraction may contribute significantly. In addition, important sources are widespread, mainly natural boreal forest fires. Most of the European aerosol is transported through the lower atmospheric layers in wintertime. The Asian aerosol is transported through higher altitudes. Because of the usually pristine conditions in the Arctic even small absolute changes in aerosol concentration can have large impacts on the Arctic climate. Using global and Arctic-focused model simulations, we aim at investigating the sources and transport pathways of natural and anthropogenic aerosol to the Arctic region, as well as their impact on radiation and clouds. Here, we present first results from an aerosol-climate model evaluation study. Simulations were performed with the global aerosol-climate model ECHAM6-HAM2, using three different state-of-the-art emission inventories (ACCMIP, ACCMIP + GFAS emissions for wildfires and ECLIPSE). The runs were performed in nudged mode at T63 horizontal resolution (approximately 1.8°) with 47 vertical levels for the 10-year period 2006-2015. Black carbon (BC) and sulphate (SO4) are of particular interest. BC is highly absorbing in the

  6. Arctic Technology Evaluation 2014 Oil-in-Ice Demonstration Report

    Science.gov (United States)

    2015-03-01

    USCGC Healy and evaluated their performance in the cold weather environment as part of Arctic Shield. Based on lessons learned in 2013, the RDC...servicing. Additional bottles were provided for cold weather . Figure 3. Aerostat and LRS (left) and aerostat deployed (right). Arctic Technology...long durations through all weather conditions; and communicate real-time data from the surface of the ocean. The model used in Arctic Shield 2014 was

  7. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic)

    Science.gov (United States)

    Ortega-Retuerta, E.; Joux, F.; Jeffrey, W. H.; Ghiglione, J. F.

    2013-04-01

    We explored the patterns of total and active bacterial community structure in a gradient covering surface waters from the Mackenzie River to the coastal Beaufort Sea in the Canadian Arctic Ocean, with a particular focus on free-living (FL) vs. particle-attached (PA) communities. Capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) showed significant differences when comparing river, coast and open sea bacterial community structures. In contrast to the river and coastal waters, total (16S rDNA-based) and active (16S rRNA-based) communities in the open sea samples were not significantly different, suggesting that most present bacterial groups were equally active in this area. Additionally, we observed significant differences between PA and FL bacterial community structure in the open sea, but similar structure in the two fractions for coastal and river samples. Direct multivariate statistical analyses showed that total community structure was mainly driven by salinity (a proxy of dissolved organic carbon and chromophoric dissolved organic matter), suspended particles, amino acids and chlorophyll a. Pyrosequencing of 16S rRNA genes from selected samples confirmed significant differences between river, coastal and sea samples. The PA fraction was only different (15.7% similarity) from the FL one in the open sea sample. Furthermore, PA samples generally showed higher diversity (Shannon, Simpson and Chao indices) than FL samples. At the class level, Opitutae was most abundant in the PA fraction of the sea sample, followed by Flavobacteria and Gammaproteobacteria, while the FL sea sample was dominated by Alphaproteobacteria. Finally, for the coast and river samples and both PA and FL fractions, Betaproteobacteria, Alphaproteobacteria and Actinobacteria were dominant. These results highlight the coexistence of particle specialists and generalists and the role of particle quality in structuring bacterial communities in the area. These results may also

  8. Shipping Information Pipeline

    DEFF Research Database (Denmark)

    Jensen, Thomas; Vatrapu, Ravi

    2015-01-01

    This paper presents a design science approach to solving persistent problems in the international shipping eco system by creating the missing common information infrastructures. Specifically, this paper reports on an ongoing dialogue between stakeholders in the shipping industry and information s...... impacts on global trade and local economies....

  9. Optimization in liner shipping

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Karsten, Christian Vad; Pisinger, David

    2017-01-01

    Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling...... research....

  10. Shipping Information Pipeline

    DEFF Research Database (Denmark)

    Jensen, Thomas; Vatrapu, Ravi

    2015-01-01

    This paper presents a design science approach to solving persistent problems in the international shipping eco system by creating the missing common information infrastructures. Specifically, this paper reports on an ongoing dialogue between stakeholders in the shipping industry and information s...

  11. Effective and Safe Ships

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Amdahl, Jørgen; Rutgersson, Olle

    1996-01-01

    A Joint Nordic Research project "Effecive and Safe Ships" is presented. The project is aiming to develop methods and tools for quantitative evaluation fo ship safety. This report is the report of the preliminary phase where the plan for the main project is developed. The objectives of the project...

  12. Forming chemical composition of surface waters in the Arctic. Case study of Lake Inari and the River Paz

    Directory of Open Access Journals (Sweden)

    Mazukhina S. I.

    2017-03-01

    Full Text Available Questions of studying the formation of surface and ground waters, their interaction with rocks, development of the basics of their rational use and protection are of great fundamental and practical importance. The influence of the northern Fennoscandian (Baltic Shield rock composition on forming surface waters' chemical composition in the border area of Finland – Russia – Norway (Lake Inari, the River Paz using physical-chemical modeling (Selector software package has been evaluated. For the physical-chemical modeling there have been made two samples of chemical analyses of the most widespread rocks forming the catchment area, with their percentage ratio taken into consideration. Since the catchment area of the prevailing majority of streams feeding Lake Inari is composed of rocks of the Lapland granulite belt (LGB and its framing, it will be the main sample (conditional influence of their composition on the chemical composition of waters is about 80 %. The second sample includes gneisses, migmatites, granite-gneisses, granites and quartz diorites typical for Inari terrane (conventional influence of their composition on the chemical composition of waters is about 20 %. It has been found that the chemical composition of the surface waters is formed by interaction of precipitation with intrusive, metamorphic and sedimentary rocks of northern Fennoskandia containing Clarke concentrations of S, C, F, Zn, Ni, Pb, Cu. It has been shown that due to interactions in the water – rock system the chemical composition of Lake Inari waters as well as upper and middle flow of the River Paz is formed by weathering of granulites of the Lapland granulite belt and Inari terrane granitoids of the northern Fennoscandia. The chemical composition of waters in the River Paz downstream is formed by weathering of metamorphosed volcanic and sedimentary rocks of the Pechenga structure and the impact of industrial pollution

  13. Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Di Biagio, C. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); University of Siena, Department of Earth Science, Siena (Italy); Di Sarra, A. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); Eriksen, P. [Danish Climate Centre, DMI, Danish Meteorological Institute, Copenhagen (Denmark); Ascanius, S.E. [DMI, Danish Meteorological Institute, Qaanaaq (Greenland); Muscari, G. [INGV, Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Holben, B. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2012-08-15

    This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth ({tau}) obtained at Thule Air Base (Greenland) in 2007-2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A ({Delta}SW{sub A}), wv ({Delta}SW{sub wv}), and aerosols ({Delta}SW{sub {tau}}) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm{sup -2} (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm{sup -2} (+4.5%). The annual mean radiative effect is estimated to be -(21-22) Wm{sup -2} for wv, and +(2-3) Wm{sup -2} for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in {Delta}SW{sub wv} by 0.93 Wm{sup -2} (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in {Delta}SW{sub A} by 0.41 Wm{sup -2} (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm{sup -2} (-6.7%). The instantaneous aerosol radiative forcing (RF{sub {tau}}) reaches values of -28 Wm{sup -2} and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FE{sub {tau}}) for solar zenith angles between 55 and 70 is estimated to be (-120.6 {+-} 4.3) for 0.1 < A < 0.2, and (-41.2 {+-} 1.6) Wm{sup -2} for 0.5 < A < 0.6. (orig.)

  14. Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment

    Directory of Open Access Journals (Sweden)

    Scott N. Williamson

    2014-01-01

    Full Text Available Spatially continuous satellite infrared temperature measurements are essential for understanding the consequences and drivers of change, at local and regional scales, especially in northern and alpine environments dominated by a complex cryosphere where in situ observations are scarce. We describe two methods for producing daily temperature fields using MODIS “clear-sky” day-time Land Surface Temperatures (LST. The Interpolated Curve Mean Daily Surface Temperature (ICM method, interpolates single daytime Terra LST values to daily means using the coincident diurnal air temperature curves. The second method calculates daily mean LST from daily maximum and minimum LST (MMM values from MODIS Aqua and Terra. These ICM and MMM models were compared to daily mean air temperatures recorded between April and October at seven locations in southwest Yukon, Canada, covering characteristic alpine land cover types (tundra, barren, glacier at elevations between 1,408 m and 2,319 m. Both methods for producing mean daily surface temperatures have advantages and disadvantages. ICM signals are strongly correlated with air temperature (R2 = 0.72 to 0.86, but have relatively large variability (RMSE = 4.09 to 4.90 K, while MMM values had a stronger correlation to air temperature (R2 = 0.90 and smaller variability (RMSE = 2.67 K. Finally, when comparing 8-day LST averages, aggregated from the MMM method, to air temperature, we found a high correlation (R2 = 0.84 with less variability (RMSE = 1.54 K. Where the trend was less steep and the y-intercept increased by 1.6 °C compared to the daily correlations. This effect is likely a consequence of LST temperature averages being differentially affected by cloud cover over warm and cold surfaces. We conclude that satellite infrared skin temperature (e.g., MODIS LST, which is often aggregated into multi-day composites to mitigate data reductions caused by cloud cover, changes in its relationship to air temperature

  15. Changing Arctic Ocean freshwater pathways.

    Science.gov (United States)

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  16. Detection of snow surface thawing and refreezing in the Eurasian Arctic with QuikSCAT: implications for reindeer herding.

    Science.gov (United States)

    Bartsch, Annett; Kumpula, Timo; Forbes, Bruce C; Stammler, Florian

    2010-12-01

    Snow conditions play an important role for reindeer herding. In particular, the formation of ice crusts after rain-on-snow (ROS) events or general surface thawing with subsequent refreezing impedes foraging. Such events can be monitored using satellite data. A monitoring scheme has been developed for observation at the circumpolar scale based on data from the active microwave sensor SeaWinds on QuikSCAT (Ku-band), which is sensitive to changes on the snow surface. Ground observations on Yamal Peninsula were used for algorithm development. Snow refreezing patterns are presented for northern Eurasia above 60 degrees N from autumn 2001 to spring 2008. Western Siberia is more affected than Central and Eastern Siberia in accordance with climate data, and most events occur in November and April. Ice layers in late winter have an especially negative effect on reindeer as they are already weakened. Yamal Peninsula is located within a transition zone between high and low frequency of events. Refreezing was observed more than once a winter across the entire peninsula during recent years. The southern part experienced refreezing events on average four times each winter. Currently, herders can migrate laterally or north-south, depending on where and when a given event occurs. However, formation of ice crusts in the northern part of the peninsula may become as common as they are now in the southern part. Such a development would further constrain the possibility to migrate on the peninsula.

  17. The continuation method for ship magnetic field based on the vector surface integral inverse model%基于矢量曲面积分反演模型的舰船磁场延拓方法

    Institute of Scientific and Technical Information of China (English)

    张朝阳; 衣军

    2012-01-01

    The vector surface integral method is a high effective method for the continuation of ship magnetic field. When only a plane magnetic field can be gotten, based on which we can calculate the field on the equivalent enveloping surface inversely, and then the objective field can be gotten by surface integral method. Compared with the magnet simulation method, the inverse method is more efficient. The mockup experiment has indicated the validity and high calculation precision of the method, which supports a new thought for the near field conversion of the ship.%舰船磁场的矢量曲面积分法是磁场延拓的一种高效方法,在只能测量舰船平面磁场时,首先由平面磁场反演得到等效包络面磁场,进而利用曲面积分法延拓得到目标平面磁场.该方法较之磁体模拟法等更加方便有效.船模实验验证了该方法的有效性,具有较高的换算精度,为舰船近场磁场的换算提供了一种新的思路.

  18. Forming chemical composition of surface waters in the Arctic as "water - rock" interaction. Case study of lake Inari and river Paz

    Science.gov (United States)

    Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia

    2017-04-01

    Due to the depletion of fresh water supplies and the deterioration of their quality as a result of anthropogenic impact on the Arctic ecosystems, the research questions of forming surface and ground waters, their interactions with the rocks, development of the foundations for their rational use and protection are of great fundamental and practical importance. The aim of the work is to evaluate the influence of the chemical composition of rocks of the northern part of the Fennoscandian (Baltic) shield on forming surface waters chemical composition (Lake Inari, river Paz) using physical-chemical modeling (Chudnenko, 2010, Selector software package). River Paz (Paatsjoki) is the largest river in North Fennoscandia and flows through the territory of three countries - Finland, Russia and Norway. It originates from Lake Inari, which a large number of streams and rivers flow into, coming from the mountain range of the northern Finland (Maanselkä hill). Within the catchment of inflows feeding the lake Inari and river Paz in its upper flow there are mainly diverse early Precambrian metamorphic and intrusive rocks of the Lapland granulite belt and its framing, and to a lesser extent - various gneisses and migmatites with relicts of amphibolites, granitic gneisses, plagioclase and plagio- and plagiomicrocline granites, and quartz diorites of Inari terrane (Meriläinen, 1976, fig 1; Hörmann et al, 1980, fig 1; Geologicalmap, 2001). Basing on the techniques developed earlier (Mazukhina, 2012), and the data of monitoring of the chemical composition of surface waters and investigation of the chemical composition of the rocks, physical-chemical modeling (FCM) (Selector software package) was carried out. FCM includes 34 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba-Co-Cr-Hg-As-Cd-H-O-e), 996 dependent components, of them 369 in aqueous solution, 76 in the gas phase, 111 liquid hydrocarbons, and 440 solid phases, organic and mineral

  19. Bathymetric variations in vertical distribution patterns of meiofauna in the surface sediments of the deep Arctic ocean (HAUSGARTEN, Fram strait)

    Science.gov (United States)

    Górska, Barbara; Grzelak, Katarzyna; Kotwicki, Lech; Hasemann, Christiane; Schewe, Ingo; Soltwedel, Thomas; Włodarska-Kowalczuk, Maria

    2014-09-01

    Deep-sea benthic communities and their structural and functional characteristics are regulated by surface water processes. Our study focused on the impact of changes in water depth and food supplies on small-sized metazoan bottom-fauna (meiobenthos) along a bathymetric transect (1200-5500 m) in the western Fram Strait. The samples were collected every summer season from 2005 to 2009 within the scope of the HAUSGARTEN monitoring program. In comparison to other polar regions, the large inflow of organic matter to the sea floor translates into relatively high meiofaunal densities in this region. Densities along the bathymetric gradient range from approximately 2400 ind. 10 cm-2 at 1200 m to approximately 300 ind. 10 cm-2 at 4000 m. Differences in meiofaunal distribution among sediment layers (i.e., vertical profile) were stronger than among stations (i.e., bathymetric gradient). At all the stations meiofaunal densities and number of taxa were the highest in the surface sediment layer (0-1 cm), and these decreased with increasing sediment depth (down to 4-5 cm). However, the shape of the decreasing pattern differed significantly among stations. Meiofaunal densities and taxonomic richness decreased gradually with increasing sediment depth at the shallower stations with higher food availability. At deeper stations, where the availability of organic matter is generally lower, meiofaunal densities decreased sharply to minor proportions at sediment depths already at 2-3 cm. Nematodes were the most abundant organisms (60-98%) in all the sediment layers. The environmental factors best correlated to the vertical patterns of the meiofaunal community were sediment-bound chloroplastic pigments that indicate phytodetrital matter.

  20. Approaching a Postcolonial Arctic

    DEFF Research Database (Denmark)

    Jensen, Lars

    2016-01-01

    This article explores different postcolonially configured approaches to the Arctic. It begins by considering the Arctic as a region, an entity, and how the customary political science informed approaches are delimited by their focus on understanding the Arctic as a region at the service...... of the contemporary neoliberal order. It moves on to explore how different parts of the Arctic are inscribed in a number of sub-Arctic nation-state binds, focusing mainly on Canada and Denmark. The article argues that the postcolonial can be understood as a prism or a methodology that asks pivotal questions to all...... approaches to the Arctic. Yet the postcolonial itself is characterised by limitations, not least in this context its lack of interest in the Arctic, and its bias towards conventional forms of representation in art. The article points to the need to develop a more integrated critique of colonial and neo...

  1. Aerosols indirectly warm the Arctic

    Directory of Open Access Journals (Sweden)

    T. Mauritsen

    2010-07-01

    Full Text Available On average, airborne aerosol particles cool the Earth's surface directly by absorbing and scattering sunlight and indirectly by influencing cloud reflectivity, life time, thickness or extent. Here we show that over the central Arctic Ocean, where there is frequently a lack of aerosol particles upon which clouds may form, a small increase in aerosol loading may enhance cloudiness thereby likely causing a climatologically significant warming at the ice-covered Arctic surface. Under these low concentration conditions cloud droplets grow to drizzle sizes and fall, even in the absence of collisions and coalescence, thereby diminishing cloud water. Evidence from a case study suggests that interactions between aerosol, clouds and precipitation could be responsible for attaining the observed low aerosol concentrations.

  2. Simulating the carbon, water, energy budgets and greenhouse gas emissions of arctic soils with the ISBA land surface model

    Science.gov (United States)

    Morel, Xavier; Decharme, Bertrand; Delire, Christine

    2017-04-01

    Permafrost soils and boreal wetlands represent an important challenge for future climate simulations. Our aim is to be able to correctly represent the most important thermal, hydrologic and carbon cycle related processes in boreal areas with our land surface model ISBA (Masson et al, 2013). This is particularly important since ISBA is part of the CNRM-CM Climate Model (Voldoire et al, 2012), that is used for projections of future climate changes. To achieve this goal, we replaced the one layer original soil carbon module based on the CENTURY model (Parton et al, 1987) by a multi-layer soil carbon module that represents C pools and fluxes (CO2 and CH4), organic matter decomposition, gas diffusion (Khvorostyanov et al., 2008), CH4 ebullition and plant-mediated transport, and cryoturbation (Koven et al., 2009). The carbon budget of the new model is closed. The soil carbon module is tightly coupled to the ISBA energy and water budget module that solves the one-dimensional Fourier law and the mixed-form of the Richards equation explicitly to calculate the time evolution of the soil energy and water budgets (Boone et al., 2000; Decharme et al. 2011). The carbon, energy and water modules are solved using the same vertical discretization. Snowpack processes are represented by a multi-layer snow model (Decharme et al, 2016). We test this new model on a pair of monitoring sites in Greenland, one in a permafrost area (Zackenberg Ecological Research Operations, Jensen et al, 2014) and the other in a region without permafrost (Nuuk Ecological Research Operations, Jensen et al, 2013); both sites are established within the GeoBasis part of the Greenland Ecosystem Monitoring (GEM) program. The site of Chokurdakh, in a permafrost area of Siberia is is our third studied site. We test the model's ability to represent the physical variables (soil temperature and water profiles, snow height), the energy and water fluxes as well as the carbon dioxyde and methane fluxes. We also test the

  3. Constraining the Time-Scale of Interaction of Sea Ice Sediments and Surface Sea Water in the Arctic Ocean Using Short-Lived Radionuclide Tracers

    Science.gov (United States)

    Baskaran, M.; Andersson, P. S.; Jweda, J.; Dahlqvist, R.; Ketterer, M. E.

    2007-12-01

    We measured the activities of short-lived radionuclides (Th-234, Be-7, Po-210, Pb-210, Cs-137, Th-234, Ra-226 and Ra-228) and concentrations of several elements (Be, Pb, Fe, Al, Co, Ni, Cu and Zn) on a suite of ice-rafted sediments (IRS) collected during BERINGIA-2005 in the Western Arctic Ocean. A suite of water samples were also collected and analyzed for particulate and dissolved Be-7, Po-210, Pb-210, Th-234, Ra-226 and Ra-228. The activities of Be-7 and Pb-210 in the IRS are 1-2 orders of magnitude higher than those reported in the source sediments. Presence of excess Th-234 in the IRS indicates that the removal of Th-234 from surface seawater took place on time scales comparable to the mean-life of Th-234. While the Po-210/Pb-210 activity ratios in the source sediments (1.0) and the atmospheric depositional input (~0.1) are known, varying ratios of 0.78 to 1.0 were found in the IRS. This ratio can be utilized to obtain the residence time of the IRS in sea ice. The activity of Ra-226 and Ra-228 in all the IRS is nearly constant (within a factor of 1.6) and are comparable to the benthic sediments in the source region. The activities of atmospherically-delivered radionuclides, Be-7 and Pb-210, in IRS varied by factors of ~4.5 and 9, respectively, and this variation is attributed to differences in the extent of interaction of surface water with IRS and differences in the mean-lives of these nuclides. While significant enrichment of Be-7 and Pb-210 has been found, there is no enrichment of stable Pb or Be. The Al-normalized enrichment factor for elements measured (Co, Ni, Cu, Zn, Pb and Be) indicate that there is no significant enrichment of these elements, with Al-normalized enrichment factors less than 1.3.

  4. Vertical structure of recent Arctic warming.

    Science.gov (United States)

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  5. Performance characterisation for risk assessment of striking ship impacts based on struck ship damaged volume

    Science.gov (United States)

    Obisesan, Abayomi; Sriramula, Srinivas

    2017-06-01

    Ship collision accidents are rare events but pose huge threat to human lives, assets, and the environment. Many researchers have sought for effective models that compute ship stochastic response during collisions by considering the variability of ship collision scenario parameters. However, the existing models were limited by the capability of the collision computational models and did not completely capture collision scenario, and material and geometric uncertainties. In this paper, a novel framework to performance characterisation of ships in collision involving a variety of striking ships is developed, by characterising the structural consequences with efficient response models. A double-hull oil carrier is chosen as the struck ship to demonstrate the applicability of the proposed framework. Response surface techniques are employed to generate the most probable input design sets which are used to sample an automated finite element tool to compute the chosen structural consequences. The resulting predictor-response relationships are fitted with suitable surrogate models to probabilistically characterise the struck ship damage under collisions. As demonstrated in this paper, such models are extremely useful to reduce the computational complexity in obtaining probabilistic design measures for ship structures. The proposed probabilistic approach is also combined with available collision frequency models from literature to demonstrate the risk tolerance computations.

  6. Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space

    NARCIS (Netherlands)

    Bintanja, R.; Graversen, R.G.; Hazeleger, W.

    2011-01-01

    Pronounced warming in the Arctic region, coined Arctic amplification, is an important feature of observed and modelled climate change1, 2. Arctic amplification is generally attributed to the retreat of sea-ice3 and snow, and the associated surface-albedo feedback4, in conjunction with other processe

  7. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.

    2012-01-01

    The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses...... that structure ecosystem biodiversity in the Arctic Ocean. We also discuss climateassociated effects on the biodiversity of Arctic marine ecosystems and discuss implications for the functioning of Arctic marine food webs. Based on the complexity and regional character of Arctic ecosystem reponses....... These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors...

  8. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network

    Directory of Open Access Journals (Sweden)

    A. Rösel

    2011-10-01

    Full Text Available Melt ponds on sea ice strongly reduce the surface albedo and accelerate the decay of Arctic sea ice. Due to different spectral properties of snow, ice, and water, the fractional coverage of these distinct surface types can be derived from multispectral sensors like MODIS using a spectral unmixing algorithm. The unmixing was implemented using a multilayer perceptron (MLP to reduce computational costs.

    Arctic-wide melt pond fractions and sea ice concentrations are derived from the level 3 MODIS surface reflectance product. The validation of the MODIS melt pond data set was conducted with aerial photos from the MELTEX campaign 2008 in the Beaufort Sea, data sets from the National Snow and Ice Data Center (NSIDC for 2000 and 2001 from four sites spread over the entire Arctic, and with ship observations from the trans-Arctic HOTRAX cruise in 2005. The root-mean-square errors (RMSE range from 3.8 % for the comparison with HOTRAX data, over 10.7 % for the comparison with NSIDC data, to 10.3 % and 11.4 % for the comparison with MELTEX data, with correlations coefficients ranging from R2 = 0.28 to R2 = 0.45. The mean annual cycle of the melt pond fraction for the entire Arctic shows a strong increase in June, reaching a maximum of 15 % by the end of June. The zonal mean of melt pond fractions indicates a dependence of the temporal development of melt ponds from the geographical latitude, and has its maximum in mid-July in latitudes between 80° and 88° N.

    Furthermore, the MODIS results are used to estimate the influence of melt ponds on retrievals of sea ice concentrations from passive microwave data. Results from a case study comparing sea ice concentrations from ASI-, NASA Team 2-, and Bootstrap-algorithms with MODIS sea ice concentrations indicate an underestimation of around 40 % for sea ice concentrations retrieved with microwave algorithms.

  9. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network

    Directory of Open Access Journals (Sweden)

    A. Rösel

    2012-04-01

    Full Text Available Melt ponds on sea ice strongly reduce the surface albedo and accelerate the decay of Arctic sea ice. Due to different spectral properties of snow, ice, and water, the fractional coverage of these distinct surface types can be derived from multispectral sensors like the Moderate Resolution Image Spectroradiometer (MODIS using a spectral unmixing algorithm. The unmixing was implemented using a multilayer perceptron to reduce computational costs.

    Arctic-wide melt pond fractions and sea ice concentrations are derived from the level 3 MODIS surface reflectance product. The validation of the MODIS melt pond data set was conducted with aerial photos from the MELTEX campaign 2008 in the Beaufort Sea, data sets from the National Snow and Ice Data Center (NSIDC for 2000 and 2001 from four sites spread over the entire Arctic, and with ship observations from the trans-Arctic HOTRAX cruise in 2005. The root-mean-square errors range from 3.8 % for the comparison with HOTRAX data, over 10.7 % for the comparison with NSIDC data, to 10.3 % and 11.4 % for the comparison with MELTEX data, with coefficient of determination ranging from R2=0.28 to R2=0.45. The mean annual cycle of the melt pond fraction per grid cell for the entire Arctic shows a strong increase in June, reaching a maximum of 15 % by the end of June. The zonal mean of melt pond fractions indicates a dependence of the temporal development of melt ponds on the geographical latitude, and has its maximum in mid-July at latitudes between 80° and 88° N.

    Furthermore, the MODIS results are used to estimate the influence of melt ponds on retrievals of sea ice concentrations from passive microwave data. Results from a case study comparing sea ice concentrations from ARTIST Sea Ice-, NASA Team 2-, and Bootstrap-algorithms with MODIS sea ice concentrations indicate an underestimation of around 40 % for sea ice concentrations retrieved with microwave

  10. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network

    Science.gov (United States)

    Rösel, A.; Kaleschke, L.; Birnbaum, G.

    2012-04-01

    Melt ponds on sea ice strongly reduce the surface albedo and accelerate the decay of Arctic sea ice. Due to different spectral properties of snow, ice, and water, the fractional coverage of these distinct surface types can be derived from multispectral sensors like the Moderate Resolution Image Spectroradiometer (MODIS) using a spectral unmixing algorithm. The unmixing was implemented using a multilayer perceptron to reduce computational costs. Arctic-wide melt pond fractions and sea ice concentrations are derived from the level 3 MODIS surface reflectance product. The validation of the MODIS melt pond data set was conducted with aerial photos from the MELTEX campaign 2008 in the Beaufort Sea, data sets from the National Snow and Ice Data Center (NSIDC) for 2000 and 2001 from four sites spread over the entire Arctic, and with ship observations from the trans-Arctic HOTRAX cruise in 2005. The root-mean-square errors range from 3.8 % for the comparison with HOTRAX data, over 10.7 % for the comparison with NSIDC data, to 10.3 % and 11.4 % for the comparison with MELTEX data, with coefficient of determination ranging from R2=0.28 to R2=0.45. The mean annual cycle of the melt pond fraction per grid cell for the entire Arctic shows a strong increase in June, reaching a maximum of 15 % by the end of June. The zonal mean of melt pond fractions indicates a dependence of the temporal development of melt ponds on the geographical latitude, and has its maximum in mid-July at latitudes between 80° and 88° N. Furthermore, the MODIS results are used to estimate the influence of melt ponds on retrievals of sea ice concentrations from passive microwave data. Results from a case study comparing sea ice concentrations from ARTIST Sea Ice-, NASA Team 2-, and Bootstrap-algorithms with MODIS sea ice concentrations indicate an underestimation of around 40 % for sea ice concentrations retrieved with microwave algorithms.

  11. Evaluating Arctic warming mechanisms in CMIP5 models

    Science.gov (United States)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2016-07-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  12. Large ancient organic matter contributions to Arctic marine sediments (Svalbard)

    NARCIS (Netherlands)

    Kim, J.-H.; Peterse, F.; Willmott, V.; Klitgaard Kristensen, D.; Baas, M.; Schouten, S.; Sinninghe Damsté, J.S.

    2011-01-01

    Soils, fine-grained ice-rafted detritus (IRD), coals, and marine surface sediments in the Arctic realm (Svalbard) were collected in 2007 and 2008 to characterize organic matter (OM) sources in Arctic marine sediments. Bulk geochemical (C : N ratio and stable carbon isotopic composition) parameters s

  13. Large ancient organic matter contributions to Arctic marine sediments (Svalbard)

    NARCIS (Netherlands)

    Kim, J.-H.; Peterse, F.; Willmott, V.; Klitgaard Kristensen, D.; Baas, M.; Schouten, S.; Sinninghe Damsté, J.S.

    2011-01-01

    Soils, fine-grained ice-rafted detritus (IRD), coals, and marine surface sediments in the Arctic realm (Svalbard)were collected in 2007 and 2008 to characterize organic matter (OM) sources in Arctic marine sediments. Bulkgeochemical (C : N ratio and stable carbon isotopic composition) parameters sug

  14. Peeking into the future : fungi in the greening Arctic

    NARCIS (Netherlands)

    Neves Morgado, Luis Miguel das

    2016-01-01

    In the last decades, average land surface temperatures in the Arctic have increased at rates up to six times higher than the global average increase. Similarly, precipitation in the Arctic also increased, especially during the cold season when most precipitation falls as snow. In this thesis, the lo

  15. Assessing the Accuracy of Sentinel-3 SLSTR Sea-Surface Temperature Retrievals Using High Accuracy Infrared Radiiometers on Ships of Opportunity

    Science.gov (United States)

    Minnett, P. J.; Izaguirre, M. A.; Szcszodrak, M.; Williams, E.; Reynolds, R. M.

    2015-12-01

    The assessment of errors and uncertainties in satellite-derived SSTs can be achieved by comparisons with independent measurements of skin SST of high accuracy. Such validation measurements are provided by well-calibrated infrared radiometers mounted on ships. The second generation of Marine-Atmospheric Emitted Radiance Interferometers (M-AERIs) have recently been developed and two are now deployed on cruise ships of Royal Caribbean Cruise Lines that operate in the Caribbean Sea, North Atlantic and Mediterranean Sea. In addition, two Infrared SST Autonomous Radiometers (ISARs) are mounted alternately on a vehicle transporter of NYK Lines that crosses the Pacific Ocean between Japan and the USA. Both M-AERIs and ISARs are self-calibrating radiometers having two internal blackbody cavities to provide at-sea calibration of the measured radiances, and the accuracy of the internal calibration is periodically determined by measurements of a NIST-traceable blackbody cavity in the laboratory. This provides SI-traceability for the at-sea measurements. It is anticipated that these sensors will be deployed during the next several years and will be available for the validation of the SLSTRs on Sentinel-3a and -3b.

  16. Marine Corps Equities in the Arctic

    Science.gov (United States)

    2013-04-18

    and Russia to China, South Korea, and Thailand . Using the cost savings figures above and assuming that the savings for each ship are relatively the...boomed as a major port city. 43 Seattle’s rise created San Francisco’s decline. San Francisco’s economy now is primarily based on tourism and...Logistics, updated 22 January 2013, accessed 4 March 2013. http://www.arctis- search.com/NSR+Transits+2012&structure=Arctic+Sea+Routes 17 “ Statistics on

  17. Ship construction and welding

    CERN Document Server

    Mandal, Nisith R

    2017-01-01

    This book addresses various aspects of ship construction, from ship types and construction materials, to welding technologies and accuracy control. The contents of the book are logically organized and divided into twenty-one chapters. The book covers structural arrangement with longitudinal and transverse framing systems based on the service load, and explains basic structural elements like hatch side girders, hatch end beams, stringers, etc. along with structural subassemblies like floors, bulkheads, inner bottom, decks and shells. It presents