WorldWideScience

Sample records for surface shear moduli

  1. K3 surfaces and their moduli

    CERN Document Server

    Farkas, Gavril; Geer, Gerard

    2016-01-01

    This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irred...

  2. Moduli spaces of convex projective structures on surfaces

    DEFF Research Database (Denmark)

    Fock, V. V.; Goncharov, A. B.

    2007-01-01

    We introduce explicit parametrisations of the moduli space of convex projective structures on surfaces, and show that the latter moduli space is identified with the higher Teichmüller space for defined in [V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, math.......AG/0311149]. We investigate the cluster structure of this moduli space, and define its quantum version....

  3. Moduli of Riemann surfaces, transcendental aspects

    International Nuclear Information System (INIS)

    Hain, R.

    2000-01-01

    These notes are an informal introduction to moduli spaces of compact Riemann surfaces via complex analysis, topology and Hodge Theory. The prerequisites for the first lecture are just basic complex variables, basic Riemann surface theory up to at least the Riemann-Roch formula, and some algebraic topology, especially covering space theory. The first lecture covers moduli in genus 0 and genus 1 as these can be understood using relatively elementary methods, but illustrate many of the points which arise in higher genus. The notes cover more material than was covered in the lectures, and sometimes the order of topics in the notes differs from that in the lectures. We have seen in genus 1 case that M 1 is the quotient Γ 1 /X 1 of a contractible complex manifold X 1 = H by a discrete group Γ 1 = SL 2 (Z). The action of Γ 1 on X 1 is said to be virtually free - that is, Γ 1 has a finite index subgroup which acts (fixed point) freely on X 1 . In this section we will generalize this to all g >= 1 - we will sketch a proof that there is a contractible complex manifold Xg, called Teichmueller space, and a group Γ g , called the mapping class group, which acts virtually freely on X g . The moduli space of genus g compact Riemann surfaces is the quotient: M g = Γ g /X g . This will imply that M g has the structure of a complex analytic variety with finite quotient singularities. Teichmueller theory is a difficult and technical subject. Because of this, it is only possible to give an overview. In this lecture, we compute the orbifold Picard group of M g for all g >= 1. Recall that an orbifold line bundle over M g is a holomorphic line bundle L over Teichmueller space X g together with an action of the mapping class group Γ g on it such that the projection L → X g is Γ g -equivariant. An orbifold section of this line bundle is a holomorphic Γ g -equivariant section X g → L of L. This is easily seen to be equivalent to fixing a level l>= 3 and considering holomorphic

  4. Simultaneous measurements of bulk moduli and particle dynamics in a sheared colloidal glass

    Science.gov (United States)

    Massa, Michael V.; Eisenmann, Christoph; Kim, Chanjoong; Weitz, David A.

    2007-03-01

    We present a novel study of glassy colloidal systems, using a stress-controlled rheometer in conjunction with a confocal microscope. This experimental setup combines the measurement of bulk moduli, using conventional rheology, with the ability to track the motion of individual particles, through confocal microscopy techniques. We explore the response of the system to applied shear, by simultaneously monitoring the macroscopic relaxation and microscopic particle dynamics, under conditions from the quiescent glass to a shear-melted liquid.

  5. Measurements of Young's and shear moduli of rail steel at elevated temperatures.

    Science.gov (United States)

    Bao, Yuanye; Zhang, Haifeng; Ahmadi, Mehdi; Karim, Md Afzalul; Felix Wu, H

    2014-03-01

    The design and modelling of the buckling effect of Continuous Welded Rail (CWR) requires accurate material constants, especially at elevated temperatures. However, such material constants have rarely been found in literature. In this article, the Young's moduli and shear moduli of rail steel at elevated temperatures are determined by a new sonic resonance method developed in our group. A network analyser is used to excite a sample hanged inside a furnace through a simple tweeter type speaker. The vibration signal is picked up by a Polytec OFV-5000 Laser Vibrometer and then transferred back to the network analyser. Resonance frequencies in both the flexural and torsional modes are measured, and the Young's moduli and shear moduli are determined through the measured resonant frequencies. To validate the measured elastic constants, the measurements have been repeated by using the classic sonic resonance method. The comparisons of obtained moduli from the two methods show an excellent consistency of the results. In addition, the material elastic constants measured are validated by an ultrasound test based on a pulse-echo method and compared with previous published results at room temperature. The measured material data provides an invaluable reference for the design of CWR to avoid detrimental buckling failure. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Charge-density-shear-moduli relationships in aluminum-lithium alloys.

    Science.gov (United States)

    Eberhart, M

    2001-11-12

    Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.

  7. NASA/University JOint VEnture (JOVE) Program: Transverse Shear Moduli Using the Torsional Responses of Rectangular Laminates

    Science.gov (United States)

    Bogan, Sam

    2001-01-01

    The first year included a study of the non-visible damage of composite overwrapped pressure vessels with B. Poe of the Materials Branch of Nasa-Langley. Early determinations showed a clear reduction in non-visible damage for thin COPVs when partially pressurized rather than unpressurized. Literature searches on Thicker-wall COPVs revealed surface damage but clearly visible. Analysis of current Analytic modeling indicated that that current COPV models lacked sufficient thickness corrections to predict impact damage. After a comprehensive study of available published data and numerous numerical studies based on observed data from Langley, the analytic framework for modeling the behavior was determined lacking and both Poe and Bogan suggested any short term (3yr) result for Jove would be overly ambitious and emphasis should be placed on transverse shear moduli studies. Transverse shear moduli determination is relevant to the study of fatigue, fracture and aging effects in composite structures. Based on the techniques developed by Daniel & Tsai, Bogan and Gates determined to verify the results for K3B and 8320. A detailed analytic and experimental plan was established and carried out that included variations in layup, width, thickness, and length. As well as loading rate variations to determine effects and relaxation moduli. The additional axial loads during the torsion testing were studied as was the placement of gages along the composite specimen. Of the proposed tasks, all of tasks I and 2 were completed with presentations given at Langley, SEM conferences and ASME/AIAA conferences. Sensitivity issues with the technique associated with the use of servohydraulic test systems for applying the torsional load to the composite specimen limited the torsion range for predictable and repeatable transverse shear properties. Bogan and Gates determined to diverge on research efforts with Gates continuing the experimental testing at Langley and Bogan modeling the apparent non

  8. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    Directory of Open Access Journals (Sweden)

    John H. Cantrell

    2015-03-01

    Full Text Available The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS of the composite. The H-bond contributions τ to the ILSS and magnitudes KN of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The KN calculations fall in the range (2.01 – 4.67 ×1017 N m−3. The average ratio KN/|τ| is calculated to be (2.59 ± 0.043 × 1010 m−1 for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of KN via a technique such as angle beam ultrasonic spectroscopy.

  9. On a new compactification of the moduli of vector bundles on a surface

    International Nuclear Information System (INIS)

    Timofeeva, N V

    2008-01-01

    A new compactification of the moduli scheme of Gieseker-stable vector bundles with prescribed Hilbert polynomial on a smooth projective polarized surface (S,H) defined over a field k=k-bar of characteristic zero is constructed. The families of locally free sheaves on the surface S are completed by locally free sheaves on surfaces that are certain modifications of S. The new moduli space has a birational morphism onto the Gieseker-Maruyama moduli space. The case when the Gieseker-Maruyama space is a fine moduli space is considered. Bibliography: 12 titles.

  10. On a new compactification of moduli of vector bundles on a surface. III: Functorial approach

    International Nuclear Information System (INIS)

    Timofeeva, Nadezhda V

    2011-01-01

    A new compactification for the scheme of moduli for Gieseker-stable vector bundles with prescribed Hilbert polynomial on the smooth projective polarized surface (S,L) is constructed. We work over the field k=k-bar of characteristic zero. Families of locally free sheaves on the surface S are completed with locally free sheaves on schemes which are modifications of S. The Gieseker-Maruyama moduli space has a birational morphism onto the new moduli space. We propose the functor for families of pairs 'polarized scheme-vector bundle' with moduli space of such type. Bibliography: 16 titles.

  11. Symplectic geometry on moduli spaces of holomorphic bundles over complex surfaces

    OpenAIRE

    Khesin, Boris; Rosly, Alexei

    2000-01-01

    We give a comparative description of the Poisson structures on the moduli spaces of flat connections on real surfaces and holomorphic Poisson structures on the moduli spaces of holomorphic bundles on complex surfaces. The symplectic leaves of the latter are classified by restrictions of the bundles to certain divisors. This can be regarded as fixing a "complex analogue of the holonomy" of a connection along a "complex analogue of the boundary" in analogy with the real case.

  12. The Picard group of the moduli space of r-Spin Riemann surfaces

    DEFF Research Database (Denmark)

    Randal-Williams, Oscar

    2012-01-01

    An r-Spin Riemann surface is a Riemann surface equipped with a choice of rth root of the (co)tangent bundle. We give a careful construction of the moduli space (orbifold) of r-Spin Riemann surfaces, and explain how to establish a Madsen–Weiss theorem for it. This allows us to prove the “Mumford...... conjecture” for these moduli spaces, but more interestingly allows us to compute their algebraic Picard groups (for g≥10, or g≥9 in the 2-Spin case). We give a complete description of these Picard groups, in terms of explicitly constructed line bundles....

  13. The homology groups of moduli spaces on non-classical Klein surfaces

    International Nuclear Information System (INIS)

    Zaw, Myint

    2001-08-01

    We describe the moduli space M-vector±(g,c) of non-classical directed Klein surfaces of genus g=h-c-1 with c≥0 distinguished points as a configuration space B ± (h,c) of classes h-slit pairs in C. Based on this model, we prove that M-vector ± (g,c) is non-orientable for any g and c and we compute the homology groups of the moduli spaces M-vector ± (g,c) for g≤2. (author)

  14. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires

    Science.gov (United States)

    Zheng, Y. G.; Zhao, Y. T.; Ye, H. F.; Zhang, H. W.

    2014-08-01

    Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent.

  15. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires

    International Nuclear Information System (INIS)

    Zheng, Y G; Zhao, Y T; Ye, H F; Zhang, H W

    2014-01-01

    Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent. (paper)

  16. Muscle Shear Moduli Changes and Frequency of Alternate Muscle Activity of Plantar Flexor Synergists Induced by Prolonged Low-Level Contraction

    Directory of Open Access Journals (Sweden)

    Ryota Akagi

    2017-09-01

    Full Text Available During prolonged low-level contractions, synergist muscles are activated in an alternating pattern of activity and silence called as alternate muscle activity. Resting muscle stiffness is considered to increase due to muscle fatigue. Thus, we investigated whether the difference in the extent of fatigue of each plantar flexor synergist corresponded to the difference in the frequency of alternate muscle activity between the synergists using muscle shear modulus as an index of muscle stiffness. Nineteen young men voluntarily participated in this study. The shear moduli of the resting medial and lateral gastrocnemius muscles (MG and LG and soleus muscle (SOL were measured using shear wave ultrasound elastography before and after a 1-h sustained contraction at 10% peak torque during maximal voluntary contraction of isometric plantar flexion. One subject did not accomplish the task and the alternate muscle activity for MG was not found in 2 subjects; therefore, data for 16 subjects were used for further analyses. The magnitude of muscle activation during the fatiguing task was similar in MG and SOL. The percent change in shear modulus before and after the fatiguing task (MG: 16.7 ± 12.0%, SOL: −4.1 ± 13.9%; mean ± standard deviation and the alternate muscle activity during the fatiguing task (MG: 33 [20–51] times, SOL: 30 [17–36] times; median [25th–75th percentile] were significantly higher in MG than in SOL. The contraction-induced change in shear modulus (7.4 ± 20.3% and the alternate muscle activity (37 [20–45] times of LG with the lowest magnitude of muscle activation during the fatiguing task among the plantar flexors were not significantly different from those of the other muscles. These results suggest that the degree of increase in muscle shear modulus induced by prolonged contraction corresponds to the frequency of alternate muscle activity between MG and SOL during prolonged contraction. Thus, it is likely that, compared with

  17. Elastic Moduli of Carbon Nanohorns

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2011-01-01

    Full Text Available Carbon nanotube is a special case of carbon nanohorns or carbon nanocones with zero apex angle. Research into carbon nanohorns started almost at the same time as the discovery of nanotubes in 1991. Most researchers focused on the investigation of nanotubes, and the exploration of nanohorns attracted little attention. To model the carbon nanohorns, we make use of a more reliable second-generation reactive empirical bond-order potential by Brenner and coworkers. We investigate the elastic moduli and conclude that these nanohorns are equally strong and require in-depth investigation. The values of Young's and Shear moduli decrease with apex angle.

  18. Moduli spaces in algebraic geometry

    International Nuclear Information System (INIS)

    Goettsche, L.

    2000-01-01

    This volume of the new series of lecture notes of the Abdus Salam International Centre for Theoretical Physics contains the lecture notes of the School on Algebraic Geometry which took place at the Abdus Salam International Centre for Theoretical Physics from 26 July to 13 August 1999. The school consisted of 2 weeks of lecture courses and one week of conference. The topic of the school was moduli spaces. More specifically the lectures were divided into three subtopics: principal bundles on Riemann surfaces, moduli spaces of vector bundles and sheaves on projective varieties, and moduli spaces of curves

  19. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.

    Science.gov (United States)

    Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2017-09-11

    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.

  20. Importance of physical vs. chemical interactions in surface shear rheology

    NARCIS (Netherlands)

    Wierenga, P.A.; Kosters, H.A.; Egmond, M.R.; Voragen, A.G.J.; Jongh, de H.H.J.

    2006-01-01

    The stability of adsorbed protein layers against deformation has in literature been attributed to the formation of a continuous gel-like network. This hypothesis is mostly based on measurements of the increase of the surface shear elasticity with time. For several proteins this increase has been

  1. Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducers

    DEFF Research Database (Denmark)

    Hecksher, Tina; Olsen, Niels Boye; Nelson, Keith Adam

    2013-01-01

    We present dynamic shear and bulk modulus measurements of supercooled tetraphenyl-tetramethyl-trisiloxane (DC704) and 5-phenyl-4-ether over a range of temperatures close to their glass transition. The data are analyzed and compared in terms of time-temperature superposition (TTS), the relaxation ...

  2. Dynamic elastic moduli of rocks under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Schock, R N [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Elastic moduli are determined as a function of confining pressure to 10 kb on rocks in which Plowshare shots are to be fired. Numerical simulation codes require accurate information on the mechanical response of the rock medium to various stress levels in order to predict cavity dimensions. The theoretical treatment of small strains in an elastic medium relates the propagation velocity of compressional and shear waves to the elastic moduli. Velocity measurements can provide, as unique code input data, the rigidity modulus, Poisson' ratio and the shear wave velocity, as well as providing checks on independent determinations of the other moduli. Velocities are determined using pulsed electro-mechanical transducers and measuring the time-of-flight in the rock specimen. A resonant frequency of 1 MHz is used to insure that the wavelength exceeds the average grain dimension and is subject to bulk rock properties. Data obtained on a variety of rock types are presented and analyzed. These data are discussed in terms of their relationship to moduli measured by static methods as well as the effect of anisotropy, porosity, and fractures. In general, fractured rocks with incipient cracks show large increases in velocity and moduli in the first 1 to 2 kb of compression as a result of the closing of these voids. After this, the velocities increase much more slowly. Dynamic moduli for these rocks are often 10% higher than corresponding static moduli at low pressure, but this difference decreases as the voids are closed until the moduli agree within experimental error. The discrepancy at low pressure is a result of the elastic energy in the wave pulse being propagated around cracks, with little effect on propagation velocity averaged over the entire specimen. (author)

  3. Dynamic elastic moduli of rocks under pressure

    International Nuclear Information System (INIS)

    Schock, R.N.

    1970-01-01

    Elastic moduli are determined as a function of confining pressure to 10 kb on rocks in which Plowshare shots are to be fired. Numerical simulation codes require accurate information on the mechanical response of the rock medium to various stress levels in order to predict cavity dimensions. The theoretical treatment of small strains in an elastic medium relates the propagation velocity of compressional and shear waves to the elastic moduli. Velocity measurements can provide, as unique code input data, the rigidity modulus, Poisson' ratio and the shear wave velocity, as well as providing checks on independent determinations of the other moduli. Velocities are determined using pulsed electro-mechanical transducers and measuring the time-of-flight in the rock specimen. A resonant frequency of 1 MHz is used to insure that the wavelength exceeds the average grain dimension and is subject to bulk rock properties. Data obtained on a variety of rock types are presented and analyzed. These data are discussed in terms of their relationship to moduli measured by static methods as well as the effect of anisotropy, porosity, and fractures. In general, fractured rocks with incipient cracks show large increases in velocity and moduli in the first 1 to 2 kb of compression as a result of the closing of these voids. After this, the velocities increase much more slowly. Dynamic moduli for these rocks are often 10% higher than corresponding static moduli at low pressure, but this difference decreases as the voids are closed until the moduli agree within experimental error. The discrepancy at low pressure is a result of the elastic energy in the wave pulse being propagated around cracks, with little effect on propagation velocity averaged over the entire specimen. (author)

  4. Geometry and quantization of moduli spaces

    CERN Document Server

    Andersen, Jørgen; Riera, Ignasi

    2016-01-01

    This volume is based on four advanced courses held at the Centre de Recerca Matemàtica (CRM), Barcelona. It presents both background information and recent developments on selected topics that are experiencing extraordinary growth within the broad research area of geometry and quantization of moduli spaces. The lectures focus on the geometry of moduli spaces which are mostly associated to compact Riemann surfaces, and are presented from both classical and quantum perspectives.

  5. Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress

    KAUST Repository

    Paterson, C.; Wilson, S. K.; Duffy, B. R.

    2014-01-01

    large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a

  6. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  7. Heterotic moduli stabilization

    International Nuclear Information System (INIS)

    Cicoli, M.; De Alwis, S.; Colorado Univ., Boulder, CO; Westphal, A.

    2013-04-01

    We perform a systematic analysis of moduli stabilization for weakly coupled heterotic string theory compactified on smooth Calabi-Yau three-folds. We focus on both supersymmetric and supersymmetry breaking vacua of generic (0,2) compactifications obtained by minimising the total (F+D)-term scalar potential. After reviewing how to stabilise all the geometric moduli in a supersymmetric way by including fractional fluxes, non-perturbative and threshold effects, we show that the inclusion of α' corrections leads to new de Sitter or nearly Minkowski vacua which break supersymmetry spontaneously. The minimum lies at moderately large volumes of all the geometric moduli, at perturbative values of the string coupling and at the right phenomenological value of the GUT gauge coupling. However the structure of the heterotic 3-form flux used for complex structure moduli stabilization does not contain enough freedom to tune the superpotential. This results in the generic prediction of high-scale supersymmetry breaking around the GUT scale. We finally provide a dynamical derivation of anisotropic compactifications with stabilized moduli which allow for perturbative gauge coupling unification around 10 16 GeV.

  8. Heterotic moduli stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, M. [Bologna Univ. (Italy). Dipt. Fisica ed Astronomia; INFN, Bologna (Italy); Adbus Salam ICTP, Trieste (Italy); De Alwis, S. [Adbus Salam ICTP, Trieste (Italy); Colorado Univ., Boulder, CO (United States). UCB 390 Physics Dept.; Westphal, A. [DESY Hamburg (Germany). Theory Group

    2013-04-15

    We perform a systematic analysis of moduli stabilization for weakly coupled heterotic string theory compactified on smooth Calabi-Yau three-folds. We focus on both supersymmetric and supersymmetry breaking vacua of generic (0,2) compactifications obtained by minimising the total (F+D)-term scalar potential. After reviewing how to stabilise all the geometric moduli in a supersymmetric way by including fractional fluxes, non-perturbative and threshold effects, we show that the inclusion of {alpha}' corrections leads to new de Sitter or nearly Minkowski vacua which break supersymmetry spontaneously. The minimum lies at moderately large volumes of all the geometric moduli, at perturbative values of the string coupling and at the right phenomenological value of the GUT gauge coupling. However the structure of the heterotic 3-form flux used for complex structure moduli stabilization does not contain enough freedom to tune the superpotential. This results in the generic prediction of high-scale supersymmetry breaking around the GUT scale. We finally provide a dynamical derivation of anisotropic compactifications with stabilized moduli which allow for perturbative gauge coupling unification around 10{sup 16} GeV.

  9. Moduli-induced baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Koji; Jeong, Kwang Sik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2013-12-15

    We study a scenario for baryogenesis in modular cosmology and discuss its implications for the moduli stabilization mechanism and the supersymmetry (SUSY) breaking scale. If moduli fields dominate the Universe and decay into the standard model particles through diatonic couplings, the right amount of baryon asymmetry can be generated through CP violating decay of gluino into quark and squark followed by baryon-number violating squark decay. We find that, in the KKLT-type moduli stabilization, at least two non-perturbative terms are required to obtain a sizable CP phase, and that the successful baryogenesis is possible for the soft SUSY breaking mass heavier than O(1) TeV. A part of the parameter space for successful baryogenesis can be probed at the collider experiments, dinucleon decay search experiment, and the measurements of electric dipole moments of neutron and electron. It is also shown that similar baryogenesis works in the case of the gravitino- or the saxion-dominated Universe.

  10. Surface waves on currents with arbitrary vertical shear

    Science.gov (United States)

    Smeltzer, Benjamin K.; Ellingsen, Simen Å.

    2017-04-01

    We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.

  11. Plutonium Elastic Moduli, Electron Localization, and Temperature

    International Nuclear Information System (INIS)

    Migliori, Albert; Mihut-Stroe, Izabella; Betts, Jon B.

    2008-01-01

    In almost all materials, compression is accompanied naturally by stiffening. Even in materials with zero or negative thermal expansion, where warming is accompanied by volume contraction it is the volume change that primarily controls elastic stiffness. Not so in the metal plutonium. In plutonium, alloying with gallium can change the sign of thermal expansion, but for the positive thermal- expansion monoclinic phase as well as the face-centered-cubic phase with either sign of thermal expansion, and the orthorhombic phase, recent measurements of elastic moduli show soften on warming by an order of magnitude more than expected, the shear and compressional moduli track, and volume seems irrelevant. These effects point toward a novel mechanism for electron localization, and have important implication for the pressure dependence of the bulk compressibility. (authors)

  12. Moduli of Parabolic Higgs Bundles and Atiyah Algebroids

    DEFF Research Database (Denmark)

    Logares, Marina; Martens, Johan

    2010-01-01

    In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid over the moduli space of parabolic vector bundle...

  13. Moduli of weighted hyperplane arrangements

    CERN Document Server

    Lahoz, Martí; Macrí, Emanuele; Stellari, Paolo

    2015-01-01

    This book focuses on a large class of geometric objects in moduli theory and provides explicit computations to investigate their families. Concrete examples are developed that take advantage of the intricate interplay between Algebraic Geometry and Combinatorics. Compactifications of moduli spaces play a crucial role in Number Theory, String Theory, and Quantum Field Theory – to mention just a few. In particular, the notion of compactification of moduli spaces has been crucial for solving various open problems and long-standing conjectures. Further, the book reports on compactification techniques for moduli spaces in a large class where computations are possible, namely that of weighted stable hyperplane arrangements.

  14. In situ determination of layer thickness and elastic moduli of asphalt pavement systems by spectral analysis of surface waves (SASW) method

    International Nuclear Information System (INIS)

    Mohd Azmi Ismail; Sri Atmaja Rosyidi; Abdul Rahim Samsudin; Abdul Ghani Rafek; Khairul Anuar Mohd Nayan

    2003-01-01

    Spectral analysis of surface waves (SASW) is a non-destructive and in situ method for determining the stiffness profile of soil and pavement sites. The method consists of generation, measurement, and processing of dispersive elastic waves in layered systems. The test is performed on the pavement surface at strain level below 0.001%, where the elastic properties are considered independent of strain amplitude. During an SASW test, the surface of the medium under investigation is subject to an impact to generate energy at various frequencies. Two vertical acceleration transducers are set up near the impact source to detect the energy transmitted through the testing media. By recording signals in digitised form using a data acquisition system and processing them, surface wave velocities can be determined by constructing a dispersion curve. Through forward modeling, the shear wave velocities can be obtained, which can be related to the variation of stiffness with depth. This paper presents the results of two case studies for near?surface profiling of two different asphalt pavement sites. (Author)

  15. Shear induced hexagonal ordering observed in an ionic viscoelastic fluid in flow past a surface

    International Nuclear Information System (INIS)

    Hamilton, W.A.; Butler, P.D.; Baker, S.M.; Smith, G.S.; Hayter, J.B.; Magid, L.J.; Pynn, R.

    1994-01-01

    We present the first clear evidence of a shear induced hexagonal phase in a polyionic fluid in flow past a plane quartz surface. The dilute surfactant solution studied is viscoelastic due to the formation and entanglement of highly extended charged threadlike micelles many thousands of A long, which are known to align along the flow direction under shear. Small-angle neutron diffraction data show that in the high shear region within a few tens of microns of the surface these micelles not only align, but form a remarkably well ordered hexagonal array separated by 370 A, 8 times their 46 A diameter

  16. Elastic moduli of a Brownian colloidal glass former

    Science.gov (United States)

    Fritschi, S.; Fuchs, M.

    2018-01-01

    The static, dynamic and flow-dependent shear moduli of a binary mixture of Brownian hard disks are studied by an event-driven molecular dynamics simulation. Thereby, the emergence of rigidity close to the glass transition encoded in the static shear modulus G_∞ is accessed by three methods. Results from shear stress auto-correlation functions, elastic dispersion relations, and the elastic response to strain deformations upon the start-up of shear flow are compared. This enables one to sample the time-dependent shear modulus G(t) consistently over several decades in time. By that a very precise specification of the glass transition point and of G_∞ is feasible. Predictions by mode coupling theory of a finite shear modulus at the glass transition, of α-scaling in fluid states close to the transition, and of shear induced decay in yielding glass states are tested and broadly verified.

  17. Moduli spaces of unitary conformal field theories

    International Nuclear Information System (INIS)

    Wendland, K.

    2000-08-01

    We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces

  18. Application and Analysis of Measurement Model for Calibrating Spatial Shear Surface in Triaxial Test

    Science.gov (United States)

    Zhang, Zhihua; Qiu, Hongsheng; Zhang, Xiedong; Zhang, Hang

    2017-12-01

    Discrete element method has great advantages in simulating the contacts, fractures, large displacement and deformation between particles. In order to analyze the spatial distribution of the shear surface in the three-dimensional triaxial test, a measurement model is inserted in the numerical triaxial model which is generated by weighted average assembling method. Due to the non-visibility of internal shear surface in laboratory, it is largely insufficient to judge the trend of internal shear surface only based on the superficial cracks of sheared sample, therefore, the measurement model is introduced. The trend of the internal shear zone is analyzed according to the variations of porosity, coordination number and volumetric strain in each layer. It shows that as a case study on confining stress of 0.8 MPa, the spatial shear surface is calibrated with the results of the rotated particle distribution and the theoretical value with the specific characteristics of the increase of porosity, the decrease of coordination number, and the increase of volumetric strain, which represents the measurement model used in three-dimensional model is applicable.

  19. Lattice Boltzmann Study of Bubbles on a Patterned Superhydrophobic Surface under Shear Flow

    Science.gov (United States)

    Chen, Wei; Wang, Kai; Hou, Guoxiang; Leng, Wenjun

    2018-01-01

    This paper studies shear flow over a 2D patterned superhydrophobic surface using lattice Boltzmann method (LBM). Single component Shan-Chen multiphase model and Carnahan-Starling EOS are adopted to handle the liquid-gas flow on superhydrophobic surface with entrapped micro-bubbles. The shape of bubble interface and its influence on slip length under different shear rates are investigated. With increasing shear rate, the bubble interface deforms. Then the contact lines are depinned from the slot edges and move downstream. When the shear rate is high enough, a continuous gas layer forms. If the protrusion angle is small, the gas layer forms and collapse periodically, and accordingly the slip length changes periodically. While if the protrusion angle is large, the gas layer is steady and separates the solid wall from liquid, resulting in a very large slip length.

  20. Wind direction dependent vertical wind shear and surface roughness parameter in two different coastal environments

    International Nuclear Information System (INIS)

    Bagavathsingh, A.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.; Sardar Maran, P.

    2016-01-01

    Atmospheric boundary layer parameters and surface layer parameterizations are important prerequisites for air pollution dispersion analysis. The turbulent flow characteristics vary at coastal and inland sites where the nuclear facilities are situated. Many pollution sources and their dispersion occur within the roughness sub layer in the lower atmosphere. In this study analysis of wind direction dependence vertical wind shear, surface roughness lengths and surface layer wind condition has been carried out at a coastal and the urban coastal site for the different wind flow regime. The differential response of the near coastal and inland urban site SBL parameters (wind shear, roughness length, etc) was examined as a function of wind direction

  1. Quality factor due to roughness scattering of shear horizontal surface acoustic waves in nanoresonators

    NARCIS (Netherlands)

    Palasantzas, G.

    2008-01-01

    In this work we study the quality factor associated with dissipation due to scattering of shear horizontal surface acoustic waves by random self-affine roughness. It is shown that the quality factor is strongly influenced by both the surface roughness exponent H and the roughness amplitude w to

  2. Moduli space of torsional manifolds

    International Nuclear Information System (INIS)

    Becker, Melanie; Tseng, L.-S.; Yau, S.-T.

    2007-01-01

    We characterize the geometric moduli of non-Kaehler manifolds with torsion. Heterotic supersymmetric flux compactifications require that the six-dimensional internal manifold be balanced, the gauge bundle be Hermitian Yang-Mills, and also the anomaly cancellation be satisfied. We perform the linearized variation of these constraints to derive the defining equations for the local moduli. We explicitly determine the metric deformations of the smooth flux solution corresponding to a torus bundle over K3

  3. [Effects of surface treatment and adhesive application on shear bond strength between zirconia and enamel].

    Science.gov (United States)

    Li, Yinghui; Wu, Buling; Sun, Fengyang

    2013-03-01

    To evaluate the effects of sandblasting and different orthodontic adhesives on shear bond strength between zirconia and enamel. Zirconia ceramic samples were designed and manufactured for 40 extracted human maxillary first premolars with CAD/CAM system. The samples were randomized into 4 groups for surface treatment with sandblasting and non-treated with adhesives of 3M Transbond XT or Jingjin dental enamel bonding resin. After 24 h of bonded fixation, the shear bond strengths were measured by universal mechanical testing machine and analyzed with factorial variance analysis. The shear bond strength was significantly higher in sandblasting group than in untreated group (Padhesives of Transbond XT and dental enamel bonding resin (P>0.05). The shear bond strength between zirconia and enamel is sufficient after sandblasting regardless of the application of either adhesive.

  4. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  5. On the link between ExB sheared flows and rational surfaces in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Erents, K.; Matthews, G.

    2000-11-01

    Experimental evidence of flattening in plasma profiles has been observed in the edge region of the JET tokamak. This observation has been interpreted in terms of the influence of rational surfaces on plasma profiles. In the framework of this interpretation, significant ExB sheared flows linked to rational surfaces have been identified. These ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes. These results can explain the link between the magnetic topology and the generation of transport barriers reported in fusion devices. (author)

  6. Shear flow generation and transport barrier formation on rational surface current sheets in tokamaks

    International Nuclear Information System (INIS)

    Wang Xiaogang; Xiao Chijie; Wang Jiaqi

    2009-01-01

    Full text: A thin current sheet with a magnetic field component in the same direction can form the electrical field perpendicularly pointing to the sheet, therefore an ExB flow with a strong shear across the current sheet. An electrical potential well is also found on the rational surface of RFP as well as the neutral sheet of the magnetotail with the E-field pointing to the rational (neutral) surface. Theoretically, a current singularity is found to be formed on the rational surface in ideal MHD. It is then very likely that the sheet current on the rational surfaces will generate the electrical potential well in its vicinity so the electrical field pointing to the sheet. It results in an ExB flow with a strong shear in the immediate neighborhood of the rational surface. It may be the cause of the transport barrier often seen near the low (m, n) rational surfaces with MHD signals. (author)

  7. Experimental Investigation of the Peak Shear Strength Criterion Based on Three-Dimensional Surface Description

    Science.gov (United States)

    Liu, Quansheng; Tian, Yongchao; Ji, Peiqi; Ma, Hao

    2018-04-01

    The three-dimensional (3D) morphology of joints is enormously important for the shear mechanical properties of rock. In this study, three-dimensional morphology scanning tests and direct shear tests are conducted to establish a new peak shear strength criterion. The test results show that (1) surface morphology and normal stress exert significant effects on peak shear strength and distribution of the damage area. (2) The damage area is located at the steepest zone facing the shear direction; as the normal stress increases, it extends from the steepest zone toward a less steep zone. Via mechanical analysis, a new formula for the apparent dip angle is developed. The influence of the apparent dip angle and the average joint height on the potential contact area is discussed, respectively. A new peak shear strength criterion, mainly applicable to specimens under compression, is established by using new roughness parameters and taking the effects of normal stress and the rock mechanical properties into account. A comparison of this newly established model with the JRC-JCS model and the Grasselli's model shows that the new one could apparently improve the fitting effect. Compared with earlier models, the new model is simpler and more precise. All the parameters in the new model have clear physical meanings and can be directly determined from the scanned data. In addition, the indexes used in the new model are more rational.

  8. Shear Evaluation by Quantitative Flow Visualization Near the Casing Surface of a Centrifugal Blood Pump

    Science.gov (United States)

    Nishida, Masahiro; Yamane, Takashi; Tsukamoto, Yuki; Ito, Kazuyuki; Konishi, Yoshiaki; Masuzawa, Toru; Tsukiya, Tomonori; Endo, Seiko; Taenaka, Yoshiyuki

    To clarify the correlation between high-shear flow and hemolysis in blood pumps, detail shear velocity distribution was quantified by an experimental method with a model centrifugal blood pump that has a series data of hemolysis tests and computational fluid dynamic analyses. Particular attention was paid to the shear velocity near the casing surface in the volute where the high shear causes in circumferentially wide region that is considerable to cause high hemolysis. Three pump models were compared concern with the radial gap width between the impeller and casing (the radial volute width) also with the outlet position whereas the impeller geometry was identical. These casing geometries were as follows: model 1-the gap width is standard 3mm and the outlet locates to make a smooth geometrical connection with the volute, model 2-the gap width is small 0.5mm and the outlet locates to make the smooth geometrical connection with the volute, and model 3-the gap width is small 0.5mm and the outlet locates to hardly make the smooth geometrical connection with the volute but be similar radial position with that of model 1. Velocity was quantified with a particle tracking velocimetry that is one of the quantitative flow visualization techniques, and the shear velocity was calculated. Results showed that all large shear velocity existed within the layers of about 0.1mm from the casing surface and that those layers were hardly affected by a vane passage even if the gap width is 0.5mm. They also showed that the maximum shear velocity appeared on the casing surface, and the shear velocities of models 2 and 3 were almost twice as large as that of model 1. This finding is in full corresponding with the results of hemolysis tests which showed that the hemolysis levels of both models 2 and 3 were 1.5 times higher than that of model 1. These results suggest that detailed high-shear evaluation near the casing surface in the volute is one of the most important keys in estimating the

  9. Moduli mediation without moduli-induced gravitino problem

    Energy Technology Data Exchange (ETDEWEB)

    Akita, Kensuke [Department of Physics, Waseda University, Tokyo, 169-8555 (Japan); Kobayashi, Tatsuo [Department of Physics, Hokkaido University,Sapporo, 060-0810 (Japan); Oikawa, Akane; Otsuka, Hajime [Department of Physics, Waseda University, Tokyo, 169-8555 (Japan)

    2016-05-30

    We study the moduli-induced gravitino problem within the framework of the phenomenologically attractive mirage mediations. The huge amount of gravitino generated by the moduli decay can be successfully diluted by introducing an extra light modulus field which does not induce the supersymmetry breaking. Since the lifetime of extra modulus field becomes longer than usually considered modulus field, our proposed mechanism is applied to both the low- and high-scale supersymmetry breaking scenarios. We also point out that such an extra modulus field appears in the flux compactification of type II string theory.

  10. Influence of surface treatment on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Ione Helena Vieira Portella Brunharo

    2013-06-01

    Full Text Available INTRODUCTION: The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. METHODS: Two hundred and eighty test samples were divided into 28 groups (n = 10, where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. RESULTS: Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27±2.78; burs 9.26±3.01; stone 7.95±3.67; aluminum oxide blasting 7.04±3.21; phosphoric acid 5.82±1.90; hydrofluoric acid 4.54±2.87, and without treatment 2.75±1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83, burs (0.98 and stone drilling (0.46. CONCLUSION: The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  11. Influence of surface treatment on shear bond strength of orthodontic brackets.

    Science.gov (United States)

    Brunharo, Ione Helena Vieira Portella; Fernandes, Daniel Jogaib; de Miranda, Mauro Sayão; Artese, Flavia

    2013-01-01

    The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. Two hundred and eighty test samples were divided into 28 groups (n = 10), where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane) was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27 ± 2.78; burs 9.26 ± 3.01; stone 7.95 ± 3.67; aluminum oxide blasting 7.04 ± 3.21; phosphoric acid 5.82 ± 1.90; hydrofluoric acid 4.54 ± 2.87, and without treatment 2.75 ± 1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83), burs (0.98) and stone drilling (0.46). The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  12. Ionic liquid nanotribology: stiction suppression and surface induced shear thinning.

    Science.gov (United States)

    Asencio, Rubén Álvarez; Cranston, Emily D; Atkin, Rob; Rutland, Mark W

    2012-07-03

    The friction and adhesion between pairs of materials (silica, alumina, and polytetrafluoroethylene) have been studied and interpreted in terms of the long-ranged interactions present. In ambient laboratory air, the interactions are dominated by van der Waals attraction and strong adhesion leading to significant frictional forces. In the presence of the ionic liquid (IL) ethylammonium nitrate (EAN) the van der Waals interaction is suppressed and the attractive/adhesive interactions which lead to "stiction" are removed, resulting in an at least a 10-fold reduction in the friction force at large applied loads. The friction coefficient for each system was determined; coefficients obtained in air were significantly larger than those obtained in the presence of EAN (which ranged between 0.1 and 0.25), and variation in the friction coefficients between systems was correlated with changes in surface roughness. As the viscosity of ILs can be relatively high, which has implications for the lubricating properties, the hydrodynamic forces between the surfaces have therefore also been studied. The linear increase in repulsive force with speed, expected from hydrodynamic interactions, is clearly observed, and these forces further inhibit the potential for stiction. Remarkably, the viscosity extracted from the data is dramatically reduced compared to the bulk value, indicative of a surface ordering effect which significantly reduces viscous losses.

  13. Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces.

    Science.gov (United States)

    Gillies, Andrew G; Henry, Amy; Lin, Hauwen; Ren, Angela; Shiuan, Kevin; Fearing, Ronald S; Full, Robert J

    2014-01-15

    The role in adhesion of the toes and lamellae - intermediate-sized structures - found on the gecko foot remains unclear. Insight into the function of these structures can lead to a more general understanding of the hierarchical nature of the gecko adhesive system, but in particular how environmental topology may relate to gecko foot morphology. We sought to discern the mechanics of the toes and lamellae by examining gecko adhesion on controlled, macroscopically rough surfaces. We used live Tokay geckos, Gekko gecko, to observe the maximum shear force a gecko foot can attain on an engineered substrate constructed with sinusoidal patterns of varying amplitudes and wavelengths in sizes similar to the dimensions of the toes and lamellae structures (0.5 to 6 mm). We found shear adhesion was significantly decreased on surfaces that had amplitudes and wavelengths approaching the lamella length and inter-lamella spacing, losing 95% of shear adhesion over the range tested. We discovered that the toes are capable of adhering to surfaces with amplitudes much larger than their dimensions even without engaging claws, maintaining 60% of shear adhesion on surfaces with amplitudes of 3 mm. Gecko adhesion can be predicted by the ratio of the lamella dimensions to surface feature dimensions. In addition to setae, remarkable macroscopic-scale features of gecko toes and lamellae that include compliance and passive conformation are necessary to maintain contact, and consequently, generate shear adhesion on macroscopically rough surfaces. Findings on the larger scale structures in the hierarchy of gecko foot function could provide the biological inspiration to drive the design of more effective and versatile synthetic fibrillar adhesives.

  14. Influence of surface treatments on the shear bond strength of orthodontic brackets to porcelain

    Science.gov (United States)

    Wang, Cong; Zeng, Jishan; Wang, Shaoan; Yang, Zheng; Huang, Qian; Chen, Pixiu; Zhou, Shujuan; Liu, Xiaoqing

    2008-11-01

    The purpose of this study was to investigate the effect of various surface treatments after different storage time and thermocycling on the shear bond strength of orthodontic brackets to the feldspathic porcelain surfaces. 128 disc-shaped porcelain specimens were randomly assigned to the following surface treatments: 9.6% HFA, 9.6% HFA combined with silane, 50 μ aluminum trioxide sandblasting followed by silane and application of silane after 37% phosphoric acid. Metal or ceramic brackets were bonded onto each treated porcelain facet with light cured resin. The samples were stored in 37 °C water 1 day or 7 days, thermocycled 500 times from 5 to 55 °C. The shear bond strengths were measured (1 mm/min), and statistically analyzed. The bond failure sites were classified according to ARI system. The surface of the glazed, sandblasted, hydrofluoric and phosphoric acid etched porcelain were examined with SEM. All groups achieved reasonable bond strengths to withstand the application of orthodontic forces. Water storage for 7 days caused lower shear bond strength than that of 1 day. But there is no statistically significant difference between the two groups. The mean shear bond strength provided by ceramic bracket with mechanical retention had no statistical difference with that of metal bracket. Therefore, the optimal treatment for orthodontic brackets bonding to feldspathic porcelain was to apply phosphoric acid combined with silane.

  15. String moduli inflation. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quevedo, Fernando [Cambridge Univ. (United Kingdom). DAMTP/CMS; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2011-06-15

    We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the {eta}-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)

  16. String moduli inflation. An overview

    International Nuclear Information System (INIS)

    Cicoli, Michele; Quevedo, Fernando

    2011-06-01

    We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the η-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)

  17. Singular moduli and Arakelov intersection

    International Nuclear Information System (INIS)

    Weng Lin.

    1994-05-01

    The value of the modular function j(τ) at imaginary quadratic arguments τ in the upper half plane is usually called singular moduli. In this paper, we use Arakelov intersection to give the prime factorizations of a certain combination of singular moduli, coming from the Hecke correspondence. Such a result may be considered as the degenerate one of Gross and Zagier on Heegner points and derivatives of L-series in their paper [GZ1], and is parallel to the result in [GZ2]. (author). 2 refs

  18. Rational surfaces, ExB sheared flows and transport interplay in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Erents, K.

    2002-01-01

    Experimental evidence of a strong interplay between magnetic topology (rational surfaces) and the generation of ExB sheared flows has been observed in the plasma edge region of stellarator (TJ-II) and tokamak (JET) devices. Both constant and varying in time ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes, but below the power threshold to trigger the formation of transport barriers. Flows driven by fluctuations are candidates to explain these experimental results. (author)

  19. Rational surfaces, ExB sheared flows and transport interplay in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, Carlos; Pedrosa, Maria A.; Erents, Kevin

    2001-01-01

    Experimental evidence of a strong interplay between magnetic topology (rational surfaces) and the generation of ExB sheared flows has been observed in the plasma edge region of stellarator (TJ-II) and tokamak (JET) devices. Constant and varying in time ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes. The plasma conditions where this has been observed are clearly below the power threshold to trigger the formation of transport barriers. Flows driven by fluctuations are candidates to explain these experimental results. (author)

  20. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans

    2017-01-01

    Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat...... subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured...... and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber...

  1. On the Moduli of Convexity

    Czech Academy of Sciences Publication Activity Database

    Guirao, A. J.; Hájek, Petr Pavel

    2007-01-01

    Roč. 135, č. 10 (2007), s. 3233-3240 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190502 Institutional research plan: CEZ:AV0Z10190503 Keywords : Banach spaces * moduli of convexity * uniformly rotund norms Subject RIV: BA - General Mathematics Impact factor: 0.520, year: 2007

  2. How to define the storage and loss moduli for a rheologically nonlinear material?

    Science.gov (United States)

    Argatov, Ivan; Iantchenko, Alexei; Kocherbitov, Vitaly

    2017-11-01

    A large amplitude oscillatory shear (LAOS) is considered in the strain-controlled regime, and the interrelation between the Fourier transform and the stress decomposition approaches is established. Several definitions of the generalized storage and loss moduli are examined in a unified conceptual scheme based on the Lissajous-Bowditch plots. An illustrative example of evaluating the generalized moduli from a LAOS flow is given.

  3. Research on differences and correlation between tensile, compression and flexural moduli of cement stabilized macadam

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-07-01

    Full Text Available In order to reveal the differences and conversion relations between the tensile, compressive and flexural moduli of cement stabilized macadam, in this paper, we develop a new test method for measuring three moduli simultaneously. By using the materials testing system, we test three moduli of the cement stabilized macadam under different loading rates, propose a flexural modulus calculation formula which considers the shearing effect, reveal the change rules of the tensile, compression and flexural moduli with the loading rate and establish the conversion relationships between the three moduli. The results indicate that: three moduli become larger with the increase of the loading rate, showing a power function pattern; with the shear effect considered, the flexural modulus is increased by 47% approximately over that in the current test method; the tensile and compression moduli of cement stabilized macadam are significantly different. Therefore, if only the compression modulus is used as the structural design parameter of asphalt pavement, there will be a great deviation in the analysis of the load response. In order to achieve scientific design and calculation, the appropriate design parameters should be chosen based on the actual stress state at each point inside the pavement structure.

  4. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    Science.gov (United States)

    Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.

    2017-12-01

    Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree -1

  5. Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.

    Science.gov (United States)

    Merna, Nick; Wong, Andrew K; Barahona, Victor; Llanos, Pierre; Kunar, Balvir; Palikuqi, Brisa; Ginsberg, Michael; Rafii, Shahin; Rabbany, Sina Y

    2018-04-17

    Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm 2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease. © 2018 John Wiley & Sons Ltd.

  6. Effects of silane application on the shear bond strength of ceramic orthodontic brackets to enamel surface

    Directory of Open Access Journals (Sweden)

    Pinandi Sri Pudyani

    2016-12-01

    Full Text Available Background: Fixed orthodontic appliances with ceramic brackets are used frequently to fulfill the aesthetic demand of patient through orthodontic treatment. Ceramic brackets have some weaknesses such as bond strength and enamel surface damage. In high bond strength the risk of damage in enamel surfaces increases after debonding. Purpose: This study aimed to determine the effect of silane on base of bracket and adhesive to shear bond strength and enamel structure of ceramic bracket. Method: Sixteen extracted upper premolars were randomly divided into four groups based on silane or no silane on the bracket base and on the adhesive surface. Design of the base on ceramic bracket in this research was microcrystalline to manage the influence of mechanical interlocking. Samples were tested in shear mode on a universal testing machine after attachment. Following it, adhesive remnant index (ARI scores were used to assess bond failure site. Statistical analysis was performed using a two-way Anova and the Mann-Whitney test. A scanning electron microscope (SEM with a magnification of 2000x was used to observe enamel structure after debonding. Result: Shear bond strength was increased between group without silane and group with silane on the base of bracket (p<0,05. There was no significance different between group without silane and group with silane on adhesive (p<0,05. Conclusion: Application of silane on base of bracket increases shear bond strength, however, application of silane on adhesive site does not increase shear bond strength of ceramic bracket. Most bonding failure occurred at the enamel adhesive interface and damage occurred on enamel structure in group contains silane of ceramic bracket.

  7. Turbulent flows over superhydrophobic surfaces with shear-dependent slip length

    Science.gov (United States)

    Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre

    2015-11-01

    Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).

  8. Moduli fields as quintessence and the chameleon

    International Nuclear Information System (INIS)

    Brax, Philippe; Martin, Jerome

    2007-01-01

    We consider models where moduli fields are not stabilized and play the role of quintessence. In order to evade gravitational tests, we investigate the possibility that moduli behave as chameleon fields. We find that, for realistic moduli superpotentials, the chameleon effect is not strong enough, implying that moduli quintessence models are gravitationally ruled out. More generally, we state a no-go theorem for quintessence in supergravity whereby models either behave like a pure cosmological constant or violate gravitational tests

  9. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates

    International Nuclear Information System (INIS)

    Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng

    2015-01-01

    Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)

  10. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    OpenAIRE

    MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo

    2009-01-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...

  11. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  12. Moduli backreaction on inflationary attractors

    International Nuclear Information System (INIS)

    Roest, Diederik; Werkman, Pelle

    2016-07-01

    We investigate the interplay between moduli dynamics and inflation, focusing on the KKLT- scenario and cosmological α-attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that this generically does not happen for α-attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory, or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The gravitino mass is independent from the inflationary scale with no fine-tuning of the parameters. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e-folds due to the interplay with moduli.

  13. Moduli Backreaction on Inflationary Attractors

    CERN Document Server

    Roest, Diederik; Werkman, Pelle

    2016-01-01

    We investigate the interplay between moduli dynamics and inflation, focusing on the KKLT-scenario and cosmological $\\alpha$-attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that this generically does not happen for $\\alpha$-attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory, or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e-folds due to the interplay with moduli.

  14. ''Over the horizon'' SANS: Measurements on near-surface Poiseuille shear-induced ordering of dilute solutions of threadlike micelles

    International Nuclear Information System (INIS)

    Hamilton, W.A.; Butler, P.D.; Hayter, J.B.; Magid, L.J.; Kreke, P.J.

    1995-01-01

    Although the behavior of a fluid under shear near a surface can be expected to be critically important to its drag and lubrication properties, most shear measurements to date have been of the bulk. This paper outlines the use of a specially developed Poiseuille shear cell at grazing incidence to measure the small-angle neutron scattering (SANS) signal from the first few tens of microns in the interfacial region. The authors illustrate the technique with measurements made on the near-surface ordering in flow past a quartz surface of dilute surfactant solutions comprising highly extended self-assembling ''threadlike'' micelles

  15. Influence of Pre-Sintered Zirconia Surface Conditioning on Shear Bond Strength to Resin Cement

    Directory of Open Access Journals (Sweden)

    Tomofumi Sawada

    2016-06-01

    Full Text Available This study analyzed the shear bond strength (SBS of resin composite on zirconia surface to which a specific conditioner was applied before sintering. After sintering of either conditioner-coated or uncoated specimens, both groups were divided into three subgroups by their respective surface modifications (n = 10 per group: no further treatment; etched with hydrofluoric acid; and sandblasted with 50 µm Al2O3 particles. Surfaces were characterized by measuring different surface roughness parameters (e.g., Ra and Rmax and water contact angles. Half of the specimens underwent thermocycling (10,000 cycles, 5–55 °C after self-adhesive resin cement build-up. The SBSs were measured using a universal testing machine, and the failure modes were analyzed by microscopy. Data were analyzed by nonparametric and parametric tests followed by post-hoc comparisons (α = 0.05. Conditioner-coated specimens increased both surface roughness and hydrophilicity (p < 0.01. In the non-thermocycled condition, sandblasted surfaces showed higher SBSs than other modifications, irrespective of conditioner application (p < 0.05. Adhesive fractures were commonly observed in the specimens. Thermocycling favored debonding and decreased SBSs. However, conditioner-coated specimens upon sandblasting showed the highest SBS (p < 0.05 and mixed fractures were partially observed. The combination of conditioner application before sintering and sandblasting after sintering showed the highest shear bond strength and indicated improvements concerning the failure mode.

  16. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadizenouz

    2016-03-01

    Full Text Available Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1; air abrasion with 50-μm aluminum oxide particles (group 2; irradiation with Er:YAG laser beams (group 3; roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4; and etching with 9% hydrofluoric acid for 120 s (group 5. Another group of Filtek Z350XT composite resin samples (4×6 mm was fabricated for the measurement of cohesive strength (group 6. A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05. Results. One-way ANOVA indicated significant differences between the groups (P < 0.05. SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used.

  17. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets

    OpenAIRE

    Cumerlato, Marina; Lima, Eduardo Martinelli de; Osorio, Leandro Berni; Mota, Eduardo Gonçalves; Menezes, Luciane Macedo de; Rizzatto, Susana Maria Deon

    2017-01-01

    ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3,...

  18. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    Science.gov (United States)

    Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo

    2009-06-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.

  19. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets.

    Science.gov (United States)

    Cumerlato, Marina; Lima, Eduardo Martinelli de; Osorio, Leandro Berni; Mota, Eduardo Gonçalves; Menezes, Luciane Macedo de; Rizzatto, Susana Maria Deon

    2017-01-01

    The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey's test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn's test. Surface treatments on PfT enhanced SBS of brackets (pgrinding) (pgrinding. There was a positive correlation between SBS and ARI.

  20. Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming

    International Nuclear Information System (INIS)

    Daniel, R.G.; Boore, D.M.

    1982-01-01

    To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/dΔ. Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation

  1. Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis

    International Nuclear Information System (INIS)

    Boaga, J; Vignoli, G; Cassiani, G

    2011-01-01

    Inversion is a critical step in all geophysical techniques, and is generally fraught with ill-posedness. In the case of seismic surface wave studies, the inverse problem can lead to different equivalent subsoil models and consequently to different local seismic response analyses. This can have a large impact on an earthquake engineering design. In this paper, we discuss the consequences of non-uniqueness of surface wave inversion on seismic responses, with both numerical and experimental data. Our goal is to evaluate the consequences on common seismic response analysis in the case of different impedance contrast conditions. We verify the implications of inversion uncertainty, and consequently of data information content, on realistic local site responses. A stochastic process is used to generate a set of 1D shear wave velocity profiles from several specific subsurface models. All these profiles are characterized as being equivalent, i.e. their responses, in terms of a dispersion curve, are compatible with the uncertainty in the same surface wave data. The generated 1D shear velocity models are then subjected to a conventional one-dimensional seismic ground response analysis using a realistic input motion. While recent analyses claim that the consequences of surface wave inversion uncertainties are very limited, our test points out that a relationship exists between inversion confidence and seismic responses in different subsoils. In the case of regular and relatively smooth increase of shear wave velocities with depth, as is usual in sedimentary plains, our results show that the choice of a specific model among equivalent solutions strongly influences the seismic response. On the other hand, when the shallow subsoil is characterized by a strong impedance contrast (thus revealing a characteristic soil resonance period), as is common in the presence of a shallow bedrock, equivalent solutions provide practically the same seismic amplification, especially in the

  2. Stability of Picard Bundle Over Moduli Space of Stable Vector ...

    Indian Academy of Sciences (India)

    Abstract. Answering a question of [BV] it is proved that the Picard bundle on the moduli space of stable vector bundles of rank two, on a Riemann surface of genus at least three, with fixed determinant of odd degree is stable.

  3. Shear-bond-strength of orthodontic brackets to aged nano-hybrid composite-resin surfaces using different surface preparation.

    Science.gov (United States)

    Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-01-01

    The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (porthodontic metal brackets to nano-hybrid composite resin surfaces.

  4. Moduli destabilization via gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong-il [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Pedro, Francisco G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Yeom, Dong-han [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics

    2013-06-15

    We examine the interplay between gravitational collapse and moduli stability in the context of black hole formation. We perform numerical simulations of the collapse using the double null formalism and show that the very dense regions one expects to find in the process of black hole formation are able to destabilize the volume modulus. We establish that the effects of the destabilization will be visible to an observer at infinity, opening up a window to a region in spacetime where standard model's couplings and masses can differ significantly from their background values.

  5. The moduli problem for plane branches

    CERN Document Server

    Zariski, Oscar

    2006-01-01

    Moduli problems in algebraic geometry date back to Riemann's famous count of the 3g-3 parameters needed to determine a curve of genus g. In this book, Zariski studies the moduli space of curves of the same equisingularity class. After setting up and reviewing the basic material, Zariski devotes one chapter to the topology of the moduli space, including an explicit determination of the rare cases when the space is compact. Chapter V looks at specific examples where the dimension of the generic component can be determined through rather concrete methods. Zariski's last chapter concerns the application of deformation theory to the moduli problem, including the determination of the dimension of the generic component for a particular family of curves. An appendix by Bernard Teissier reconsiders the moduli problem from the point of view of deformation theory. He gives new proofs of some of Zariski's results, as well as a natural construction of a compactification of the moduli space.

  6. Surface shear stress dependence of gas transfer velocity parameterizations using DNS

    Science.gov (United States)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-10-01

    Air-water gas-exchange is studied in direct numerical simulations (DNS) of free-surface flows driven by natural convection and weak winds. The wind is modeled as a constant surface-shear-stress and the gas-transfer is modeled via a passive scalar. The simulations are characterized via a Richardson number Ri=Bν/u*4 where B, ν, and u* are the buoyancy flux, kinematic viscosity, and friction velocity respectively. The simulations comprise 0Ric or kg=AShearu*Sc-n, Risurface-characteristics.

  7. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Marina Cumerlato

    Full Text Available ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT on the shear bond strength (SBS of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI. Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48: Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01, result not observed with ageing (p= 0.45. Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05. SBS was greater in the groups 3 and 4 (drilling, sandblasting than in the Group 2 (grinding (p< 0.05. SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05. Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI.

  8. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets

    Science.gov (United States)

    Cumerlato, Marina; de Lima, Eduardo Martinelli; Osorio, Leandro Berni; Mota, Eduardo Gonçalves; de Menezes, Luciane Macedo; Rizzatto, Susana Maria Deon

    2017-01-01

    ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01), result not observed with ageing (p= 0.45). Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05). SBS was greater in the groups 3 and 4 (drilling, sandblasting) than in the Group 2 (grinding) (p< 0.05). SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05). Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI. PMID:28902249

  9. A Metric for Heterotic Moduli

    Science.gov (United States)

    Candelas, Philip; de la Ossa, Xenia; McOrist, Jock

    2017-12-01

    Heterotic vacua of string theory are realised, at large radius, by a compact threefold with vanishing first Chern class together with a choice of stable holomorphic vector bundle. These form a wide class of potentially realistic four-dimensional vacua of string theory. Despite all their phenomenological promise, there is little understanding of the metric on the moduli space of these. What is sought is the analogue of special geometry for these vacua. The metric on the moduli space is important in phenomenology as it normalises D-terms and Yukawa couplings. It is also of interest in mathematics, since it generalises the metric, first found by Kobayashi, on the space of gauge field connections, to a more general context. Here we construct this metric, correct to first order in {α^{\\backprime}}, in two ways: first by postulating a metric that is invariant under background gauge transformations of the gauge field, and also by dimensionally reducing heterotic supergravity. These methods agree and the resulting metric is Kähler, as is required by supersymmetry. Checking the metric is Kähler is intricate and the anomaly cancellation equation for the H field plays an essential role. The Kähler potential nevertheless takes a remarkably simple form: it is the Kähler potential of special geometry with the Kähler form replaced by the {α^{\\backprime}}-corrected hermitian form.

  10. Effect of surface shear on cube texture formation in heavy cold-rolled Cu-45 at%Ni alloy substrates

    DEFF Research Database (Denmark)

    Tian, Hui; Suo, Hongli; Liang, Yaru

    2015-01-01

    Two types of Cu-45 at%Ni alloy thin tapes with and without surface shear were obtained by different heavy cold rolling processes. The deformation and recrystallization textures of the two tapes were thoroughly investigated by electron back scattering diffraction technique. The results showed...... that a shear texture mainly covered the surface of the heavy deformed tapes because of the fraction between the surface of rolling mills and the thin tapes when the rolling force strongly reduced at high strain, which significantly reduced the fraction of rolling texture on the surface of the Cu-45at %Ni alloy...

  11. Moduli stabilization in non-geometric backgrounds

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Vafa, Cumrun; Walcher, Johannes

    2007-01-01

    Type II orientifolds based on Landau-Ginzburg models are used to describe moduli stabilization for flux compactifications of type II theories from the world-sheet CFT point of view. We show that for certain types of type IIB orientifolds which have no Kaehler moduli and are therefore intrinsically non-geometric, all moduli can be explicitly stabilized in terms of fluxes. The resulting four-dimensional theories can describe Minkowski as well as anti-de Sitter vacua. This construction provides the first string vacuum with all moduli frozen and leading to a 4D Minkowski background

  12. The moduli and gravitino (non)-problems in models with strongly stabilized moduli

    International Nuclear Information System (INIS)

    Evans, Jason L.; Olive, Keith A.; Garcia, Marcos A.G.

    2014-01-01

    In gravity mediated models and in particular in models with strongly stabilized moduli, there is a natural hierarchy between gaugino masses, the gravitino mass and moduli masses: m 1/2 << m 3/2 << m φ . Given this hierarchy, we show that 1) moduli problems associated with excess entropy production from moduli decay and 2) problems associated with moduli/gravitino decays to neutralinos are non-existent. Placed in an inflationary context, we show that the amplitude of moduli oscillations are severely limited by strong stabilization. Moduli oscillations may then never come to dominate the energy density of the Universe. As a consequence, moduli decay to gravitinos and their subsequent decay to neutralinos need not overpopulate the cold dark matter density

  13. Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification

    DEFF Research Database (Denmark)

    Lackner, Susanne; Holmberg, Maria; Terada, Akihiko

    2009-01-01

    Polypropylene (PP) membranes and polyethylene (PE) surfaces were modified to enhance formation and shear resistance of nitrifying biofilms for wastewater treatment applications. A combination of plasma polymerization and wet chemistry was employed to ultimately introduce poly(ethyleneglycol) (PEG......) chains with two different functional groups (-PEG-NH2 and -PEG-CH3). Biofilm growth experiments using a mixed nitrifying bacterial culture revealed that the specific combination of PEG chains with amino groups resulted in most biofilm formation on both PP and PE samples. Detachment experiments showed...... structure might be possible explanations of the superiority of the -PEG-NH2 modification. The success of the-PEG-NH2 modification was independent of the original surface and might, therefore, be used in wastewater treatment bioreactors to improve reactor performance by making biofilm formation more stable...

  14. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    Energy Technology Data Exchange (ETDEWEB)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.

  15. Strong moduli stabilization and phenomenology

    CERN Document Server

    Dudas, Emilian; Mambrini, Yann; Mustafayev, Azar; Olive, Keith A

    2013-01-01

    We describe the resulting phenomenology of string theory/supergravity models with strong moduli stabilization. The KL model with F-term uplifting, is one such example. Models of this type predict universal scalar masses equal to the gravitino mass. In contrast, A-terms receive highly suppressed gravity mediated contributions. Under certain conditions, the same conclusion is valid for gaugino masses, which like A-terms, are then determined by anomalies. In such models, we are forced to relatively large gravitino masses (30-1000 TeV). We compute the low energy spectrum as a function of m_{3/2}. We see that the Higgs masses naturally takes values between 125-130 GeV. The lower limit is obtained from the requirement of chargino masses greater than 104 GeV, while the upper limit is determined by the relic density of dark matter (wino-like).

  16. Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress

    KAUST Repository

    Paterson, C.

    2014-09-14

    © 2014 © The Author, 2014. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oup.com. The steady flow of a slowly varying rivulet with prescribed flux in the azimuthal direction round a large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a solution corresponding to a rivulet flowing down at least part of one side of the cylinder. We consider both a rivulet with constant non-zero contact angle but slowly varying width (that is, de-pinned contact lines) and a rivulet with constant width but slowly varying contact angle (that is, pinned contact lines), and show that they have qualitatively different behaviour. When shear is present, a rivulet with constant non-zero contact angle can never run all the way from the top to the bottom of the cylinder, and so we consider the scenario in which an infinitely wide two-dimensional film of uniform thickness covers part of the upper half of the cylinder and \\'breaks\\' into a single rivulet with constant non-zero contact angle. In contrast, a sufficiently narrow rivulet with constant width can run all the way from the top to the bottom of the cylinder, whereas a wide rivulet can do so only if its contact lines de-pin, and so we consider the scenario in which the contact lines of a wide rivulet de-pin on the lower half of the cylinder.

  17. Moduli space of Chern-Simons gravity

    International Nuclear Information System (INIS)

    Soda, Jiro; Yamanaka, Yuki

    1990-09-01

    Conformally invariant (2+1)-dimensional gravity, Chern-Shimons gravity, is studied. Its solution space, moduli space, is investigated using the linearization method. The dimension of moduli space is determined as 18g - 18 for g > 1,6 for g = 1 and 0 for g = 0. We discuss the geometrical meaning of our investigation. (author)

  18. String moduli stabilization at the conifold

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph; Herschmann, Daniela; Wolf, Florian [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805 München (Germany)

    2016-08-18

    We study moduli stabilization for type IIB orientifolds compactified on Calabi-Yau threefolds in the region close to conifold singularities in the complex structure moduli space. The form of the periods implies new phenomena like exponential mass hierarchies even in the regime of negligible warping. Integrating out the heavy conic complex structure modulus leads to an effective flux induced potential for the axio-dilaton and the remaining complex structure moduli containing exponentially suppressed terms that imitate non-perturbative effects. It is shown that this scenario can be naturally combined with the large volume scenario so that all moduli are dynamically stabilized in the dilute flux regime. As an application of this moduli stabilization scheme, a string inspired model of aligned inflation is designed that features a parametrically controlled hierarchy of mass scales.

  19. Gravitational Particle Production and the Moduli Problem

    CERN Document Server

    Felder, G; Linde, Andrei D; Felder, Gary; Kofman, Lev; Linde, Andrei

    2000-01-01

    A theory of gravitational production of light scalar particles during and after inflation is investigated. We show that in the most interesting cases where long-wavelength fluctuations of light scalar fields can be generated during inflation, these fluctuations rather than quantum fluctuations produced after inflation give the dominant contribution to particle production. In such cases a simple analytical theory of particle production can be developed. Application of our results to the theory of quantum creation of moduli fields demonstrates that if the moduli mass is smaller than the Hubble constant then these fields are copiously produced during inflation. This gives rise to the cosmological moduli problem even if there is no homogeneous component of the classical moduli field in the universe. To avoid this version of the moduli problem it is necessary for the Hubble constant H during the last stages of inflation and/or the reheating temperature T_R after inflation to be extremely small.

  20. Motion of cells sedimenting on a solid surface in a laminar shear flow.

    Science.gov (United States)

    Tissot, O; Pierres, A; Foa, C; Delaage, M; Bongrand, P

    1992-01-01

    Cell adhesion often occurs under dynamic conditions, as in flowing blood. A quantitative understanding of this process requires accurate knowledge of the topographical relationships between the cell membrane and potentially adhesive surfaces. This report describes an experimental study made on both the translational and rotational velocities of leukocytes sedimenting of a flat surface under laminar shear flow. The main conclusions are as follows: (a) Cells move close to the wall with constant velocity for several tens of seconds. (b) The numerical values of translational and rotational velocities are inconsistent with Goldman's model of a neutrally buoyant sphere in a laminar shear flow, unless a drag force corresponding to contact friction between cells and the chamber floor is added. The phenomenological friction coefficient was 7.4 millinewton.s/m. (c) Using a modified Goldman's theory, the width of the gap separating cells (6 microns radius) from the chamber floor was estimated at 1.4 micron. (d) It is shown that a high value of the cell-to-substrate gap may be accounted for by the presence of cell surface protrusions of a few micrometer length, in accordance with electron microscope observations performed on the same cell population. (e) In association with previously reported data (Tissot, O., C. Foa, C. Capo, H. Brailly, M. Delaage, and P. Bongrand. 1991. Biocolloids and Biosurfaces. In press), these results are consistent with the possibility that cell-substrate attachment be initiated by the formation of a single molecular bond, which might be considered as the rate limiting step.

  1. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    Science.gov (United States)

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.

  2. Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow

    KAUST Repository

    Moretti, Manola; Allione, Marco; Marini, Monica; Torre, Bruno; Giugni, Andrea; Limongi, Tania; Das, Gobind; Di Fabrizio, Enzo M.

    2017-01-01

    The shear flow generated at the rim of a drop evaporating on a micro-fabricated super-hydrophobic surface has been used to suspend and orient single/few lysozyme amyloid fibrils between two pillars for substrate-free characterization. Micro Raman spectroscopy performed on extended fibers evidenced a shift of the Amide I band main peak to the value attributed to β-sheet secondary structure, characteristic of the amyloid fibers. In addition, given the orientation sensitivity of the anisotropic molecule, the Raman signal of the main secondary structure was nicely enhanced for a fiber alignment parallel to the polarization direction of the laser. The substrate-free sample generated by this suspending technique is suitable for other structural analysis methods, where fiber crystals are investigated. It could be further employed for generation of arrays and patterns in a controllable fashion, where bio-compatible material is needed.

  3. Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow

    KAUST Repository

    Moretti, Manola

    2017-05-19

    The shear flow generated at the rim of a drop evaporating on a micro-fabricated super-hydrophobic surface has been used to suspend and orient single/few lysozyme amyloid fibrils between two pillars for substrate-free characterization. Micro Raman spectroscopy performed on extended fibers evidenced a shift of the Amide I band main peak to the value attributed to β-sheet secondary structure, characteristic of the amyloid fibers. In addition, given the orientation sensitivity of the anisotropic molecule, the Raman signal of the main secondary structure was nicely enhanced for a fiber alignment parallel to the polarization direction of the laser. The substrate-free sample generated by this suspending technique is suitable for other structural analysis methods, where fiber crystals are investigated. It could be further employed for generation of arrays and patterns in a controllable fashion, where bio-compatible material is needed.

  4. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis

    Science.gov (United States)

    Park, Sunyoung; Ishii, Miaki

    2018-06-01

    A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.

  5. Observations of Near-Surface Current Shear Help Describe Oceanic Oil and Plastic Transport

    Science.gov (United States)

    Laxague, Nathan J. M.; Ö-zgökmen, Tamay M.; Haus, Brian K.; Novelli, Guillaume; Shcherbina, Andrey; Sutherland, Peter; Guigand, Cédric M.; Lund, Björn; Mehta, Sanchit; Alday, Matias; Molemaker, Jeroen

    2018-01-01

    Plastics and spilled oil pose a critical threat to marine life and human health. As a result of wind forcing and wave motions, theoretical and laboratory studies predict very strong velocity variation with depth over the upper few centimeters of the water column, an observational blind spot in the real ocean. Here we present the first-ever ocean measurements of the current vector profile defined to within 1 cm of the free surface. In our illustrative example, the current magnitude averaged over the upper 1 cm of the ocean is shown to be nearly four times the average over the upper 10 m, even for mild forcing. Our findings indicate that this shear will rapidly separate pieces of marine debris which vary in size or buoyancy, making consideration of these dynamics essential to an improved understanding of the pathways along which marine plastics and oil are transported.

  6. The effect of different surface treatments on the shear bond strength of luting cements to titanium.

    Science.gov (United States)

    Abi-Rached, Filipe de Oliveira; Fonseca, Renata Garcia; Haneda, Isabella Gagliardi; de Almeida-Júnior, Antonio Alves; Adabo, Gelson Luis

    2012-12-01

    Although titanium presents attractive physical and mechanical properties, there is a need for improving the bond at the titanium/luting cement interface for the longevity of metal ceramic restorations. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength (SBS) of resin-modified glass ionomer and resin cements to commercially pure titanium (CP Ti). Two hundred and forty CP Ti cast disks (9.0 × 3.0 mm) were divided into 8 surface treatment groups (n=30): 1) 50 µm Al(2)O(3) particles; 2) 120 µm Al(2)O(3) particles; 3) 250 µm Al(2)O(3) particles; 4) 50 µm Al(2)O(3) particles + silane (RelyX Ceramic Primer); 5) 120 µm Al(2)O(3) particles + silane; 6) 250 µm Al(2)O(3) particles + silane; 7) 30 µm silica-modified Al(2)O(3) particles (Cojet Sand) + silane; and 8) 120 µm Al(2)O(3) particles, followed by 110 µm silica-modified Al(2)O(3) particles (Rocatec). The luting cements 1) RelyX Luting 2; 2) RelyX ARC; or 3) RelyX U100 were applied to the treated CP Ti surfaces (n=10). Shear bond strength (SBS) was tested after thermal cycling (5000 cycles, 5°C to 55°C). Data were analyzed by 2-way analysis of variance (ANOVA) and the Tukey HSD post hoc test (α=.05). Failure mode was determined with a stereomicroscope (×20). The surface treatments, cements, and their interaction significantly affected the SBS (Pbehavior for all surface treatments. For both cements, only the group abraded with 50 μm Al(2)O(3) particles had lower SBS than the other groups (P<.05). For RelyX ARC, regardless of silane application, abrasion with 50 μm Al(2)O(3) particles resulted in significantly lower SBS than abrasion with 120 μm and 250 μm particles, which exhibited statistically similar SBS values to each other. Rocatec + silane promoted the highest SBS for RelyX ARC. RelyX U100 presented the highest SBS mean values (P<.001). All groups showed a predominance of adhesive failure mode. The adhesive capability of RelyX Luting 2 and RelyX U

  7. Macroscopic assessment of cartilage shear: effects of counter-surface roughness, synovial fluid lubricant, and compression offset.

    Science.gov (United States)

    Nguyen, Quynhhoa T; Wong, Benjamin L; Chun, June; Yoon, Yeoung C; Talke, Frank E; Sah, Robert L

    2010-06-18

    During joint articulation, cartilage is subjected to compression, shear, and sliding, mechanical factors that regulate and affect cartilage metabolism. The objective of this study was to use an in vitro material-on-cartilage shear test to elucidate the effects of counter-surface roughness (Polished, Mildly rough, and Rough), lubricants (phosphate buffered saline (PBS) and bovine synovial fluid (bSF)), and compression offset on the shearing and sliding of normal human talar cartilage under dynamic lateral displacement. Peak shear stress (sigma(xz,m)) and strain (E(xz,m)) increased with increasing platen roughness and compression offset, and were 30% higher with PBS than with bSF. Compared to PBS, bSF was more effective as a lubricant for P than for M and R platens as indicated by the higher reduction in kinetic friction coefficient (-60% vs. -20% and -19%, respectively), sigma(xz,m) (-50% vs. -14% and -17%) and E(xz,m) (-54% vs. -19% and -17%). Cartilage shear and sliding were evident for all counter-surfaces either at low compression offset (10%) or with high lateral displacement (70%), regardless of lubricant. An increase in tissue shear occurred with either increased compression offset or increased surface roughness. This material and biomechanical test system allow control of cartilage sigma(xz,m) and E(xz,m), and hence, sliding magnitude, for an imposed lateral displacement. It therefore can facilitate study of cartilage mechanobiological responses to distinct regimes of cartilage loading and articulation, such as shear with variable amounts of sliding. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Effect of Various Treatment Modalities on Surface Characteristics and Shear Bond Strengths of Polyetheretherketone-Based Core Materials.

    Science.gov (United States)

    Çulhaoğlu, Ahmet Kürşat; Özkır, Serhat Emre; Şahin, Volkan; Yılmaz, Burak; Kılıçarslan, Mehmet Ali

    2017-11-13

    To investigate the effect of different surface treatments on the surface roughness (Ra), wettability, and shear bond strength of polyetheretherketone (PEEK) to composite resin. One hundred ninety eight PEEK specimens were divided into six groups (n = 33). Specimen surfaces were treated with the following surface treatment modalities: silicoating (CoJet), acetone treatment, acid etching (H 2 SO 4 ), airborne particle abrasion (Al 2 O 3 ), laser irradiation (Yb:PL laser), and the nontreated surface serving as the control. Surface roughness was measured with an profilometer (n = 11) and a goniometer was used to measure the surface wettability through contact angle (θ)(n = 11). PEEK surfaces were veneered with a composite resin (n = 11). The specimens were then thermocycled for 10,000 cycles at 5 to 55°C. Shear bond strengths between the PEEK and composite resin were measured with an universal test machine. One-way ANOVA was used to analyze the data. Tukey's post-hoc test was used to determine significant differences between groups (α = 0.05). Surface roughness and wettability of PEEK surfaces along with shear bond strength of PEEK to composite resin were influenced by the surface treatments. (p PEEK surfaces treated by laser irradiation (2.85 ± 0.2 µm) followed by airborne particle abrasion (2.26 ± 0.33 µm), whereas other surface treatment modalities provided similar Ra values, with the acid-etched PEEK surfaces having the lowest mean Ra values (0.35 ± 0.14 µm). Silicoating provided the most wettable PEEK surfaces (48.04 ± 6.28º), followed by either acetone treatment (70.19 ± 4.49º) or acid treatment (76.07 ± 6.61º). Decreased wettability was observed for airborne particle abraded (84.83 ± 4.56º) and laser-treated PEEK surfaces (103.06 ± 4.88º). The highest mean shear bond strength values were observed for acid-etched PEEK surfaces (15.82 ± 4.23 MPa) followed by laser irradiated (11.46 ± 1.97 MPa), airborne particle abraded (10.81 ± 3.06 MPa

  9. Pressure derivatives of elastic moduli of fused quartz to 10 kb

    Science.gov (United States)

    Peselnick, L.; Meister, R.; Wilson, W.H.

    1967-01-01

    Measurements of the longitudinal and shear moduli were made on fused quartz to 10 kb at 24??5??C. The anomalous behavior of the bulk modulus K at low pressure, ???K ???P 0, at higher pressures. The pressure derivative of the rigidity modulus ???G ???P remains constant and negative for the pressure range covered. A 15-kb hydrostatic pressure vessel is described for use with ultrasonic pulse instrumentation for precise measurements of elastic moduli and density changes with pressure. The placing of the transducer outside the pressure medium, and the use of C-ring pressure seals result in ease of operation and simplicity of design. ?? 1967.

  10. Bohr--Sommerfeld Lagrangians of moduli spaces of Higgs bundles

    DEFF Research Database (Denmark)

    Biswas, Indranil; Gammelgaard, Niels Leth; Logares, Marina

    Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components of the n......Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components...

  11. Moduli of double EPW-sextics

    CERN Document Server

    O'Grady, Kieran G

    2016-01-01

    The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \\bigwedge^3{\\mathbb C}^6 modulo the natural action of \\mathrm{SL}_6, call it \\mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK 4-folds of Type K3^{[2]} polarized by a divisor of square 2 for the Beauville-Bogomolov quadratic form. The author will determine the stable points. His work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic 4-folds.

  12. An in vitro comparison of shear bond strength of zirconia to enamel using different surface treatments.

    Science.gov (United States)

    Zandparsa, Roya; Talua, Nayrouz A; Finkelman, Matthew D; Schaus, Scott E

    2014-02-01

    The purpose of this in vitro study was to compare the shear bond strength of an airborne-particle abraded zirconia, an acid-etched zirconia (Piranha solution), an Alloy Primer treated zirconia, and a silaned zirconia to enamel, all bonded with a phosphate-methacrylate resin luting agent. Seventy extracted intact human molars were collected, cleaned, and mounted in autopolymerizing acrylic resin, with the experimental surface of the teeth exposed. The specimens were randomly divided into seven groups of zirconia specimens (4 mm diameter, 2 mm thick). Group 1: Airborne-particle abrasion; group 2: Airborne-particle abrasion and Z-PRIME Plus; group 3: Airborne-particle abrasion and alloy primer; group 4: Piranha solution 7:1; group 5: Piranha solution 7:1 and Z-PRIME Plus; group 6: Piranha solution 7:1 and Alloy primer; group 7: CoJet and silane. All specimens were luted with a phosphate-methacrylate resin luting agent (Panavia F2.0) and stored in distilled water for 1 day, then thermocycled (5°C and 55°C) for 500 cycles and tested for shear bond strength (SBS), measured in MPa, with a universal testing machine at a 0.55 mm/min crosshead speed. All specimens were inspected under a scanning electron microscope to determine mode of failure. The mean values and standard deviations of all specimens were calculated for each group. A one-way ANOVA was performed, and multiple pairwise comparisons were then completed with post hoc Tukey test (alpha = 0.05). The airborne-particle abrasion and Z-PRIME Plus group resulted in a significantly higher SBS than the other groups (21.11 ± 6.32 MPa) (p enamel surfaces; however, groups 4, 5, and 6 showed mostly adhesive failures, which left the zirconia surface free of the adhesive materials. No cohesive failures of the substrates (ceramic, resin, or enamel) were observed. Airborne-particle abrasion followed by the application of a zirconia primer produced the highest bond strength to enamel. Therefore, it can be recommended as a

  13. On Rationality of Moduli Spaces of Vector Bundles on Real ...

    Indian Academy of Sciences (India)

    Let be a real form of a Hirzebruch surface. Let M H ( r , c 1 , c 2 ) be the moduli space of vector bundles on . Under some numerical conditions on r , c 1 and c 2 , we identify those M H ( r , c 1 , c 2 ) that are rational. Author Affiliations. Indranil Biswas1 Ronnie Sebastian2. School of Mathematics, Tata Institute of ...

  14. Studies on Impingement Effects of Low Density Jets on Surfaces — Determination of Shear Stress and Normal Pressure

    Science.gov (United States)

    Sathian, Sarith. P.; Kurian, Job

    2005-05-01

    This paper presents the results of the Laser Reflection Method (LRM) for the determination of shear stress due to impingement of low-density free jets on flat plate. For thin oil film moving under the action of aerodynamic boundary layer the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope is measured using a position sensing detector (PSD). The thinning rate of oil film is directly measured which is the major advantage of the LRM over LISF method. From the oil film slope history, direct calculation of the shear stress is done using a three-point formula. For the full range of experiment conditions Knudsen numbers varied till the continuum limit of the transition regime. The shear stress values for low-density flows in the transition regime are thus obtained using LRM and the measured values of shear show fair agreement with those obtained by other methods. Results of the normal pressure measurements on a flat plate in low-density jets by using thermistors as pressure sensors are also presented in the paper. The normal pressure profiles obtained show the characteristic features of Newtonian impact theory for hypersonic flows.

  15. Upper Mantle Shear Wave Structure Beneath North America From Multi-mode Surface Wave Tomography

    Science.gov (United States)

    Yoshizawa, K.; Ekström, G.

    2008-12-01

    The upper mantle structure beneath the North American continent has been investigated from measurements of multi-mode phase speeds of Love and Rayleigh waves. To estimate fundamental-mode and higher-mode phase speeds of surface waves from a single seismogram at regional distances, we have employed a method of nonlinear waveform fitting based on a direct model-parameter search using the neighbourhood algorithm (Yoshizawa & Kennett, 2002). The method of the waveform analysis has been fully automated by employing empirical quantitative measures for evaluating the accuracy/reliability of estimated multi-mode phase dispersion curves, and thus it is helpful in processing the dramatically increasing numbers of seismic data from the latest regional networks such as USArray. As a first step toward modeling the regional anisotropic shear-wave velocity structure of the North American upper mantle with extended vertical resolution, we have applied the method to long-period three-component records of seismic stations in North America, which mostly comprise the GSN and US regional networks as well as the permanent and transportable USArray stations distributed by the IRIS DMC. Preliminary multi-mode phase-speed models show large-scale patterns of isotropic heterogeneity, such as a strong velocity contrast between the western and central/eastern United States, which are consistent with the recent global and regional models (e.g., Marone, et al. 2007; Nettles & Dziewonski, 2008). We will also discuss radial anisotropy of shear wave speed beneath North America from multi-mode dispersion measurements of Love and Rayleigh waves.

  16. Effect of Four Methods of Surface Treatment on Shear Bond Strength of Orthodontic Brackets to Zirconium

    Directory of Open Access Journals (Sweden)

    Soghra Yassaei

    2015-10-01

    Full Text Available Objectives: Providing reliable attachment between bracket base and zirconia surface is a prerequisite for exertion of orthodontic force. The purpose of the present study was to eval- uate the effect of four zirconium surface treatment methods on shear bond strength (SBS of orthodontic brackets.Materials and Methods: One block of zirconium was trimmed into four zirconium sur- faces, which served as our four study groups and each had 18 metal brackets bonded to them. Once the glazed layer was removed, the first group was etched with 9.6% hydrofluoric acid (HF, and the other three groups were prepared by means of sandblasting and 1 W, and 2 W Er: YAG laser, respectively. After application of silane, central incisor brackets were bonded to the zirconium surfaces. The SBS values were measured by a Dartec testing ma- chine with a crosshead speed of 1 mm/min.Results: The highest SBS was achieved in the sandblasted group (7.81±1.02 MPa followed in a descending order by 2 W laser group (6.95±0.87 MPa, 1 W laser group (6.87±0.92MPa and HF acid etched group (5.84±0.78 MPa. The differences between the study groups, were statistically significant except between the laser groups (P < 0.05. Conclusion: In terms of higher bond strength and safety, sandblasting and Er: YAG laser irradiation with power output of 1 W and 2 W can be considered more appropriate alterna- tives to HF acid etching for zirconium surface treatment prior to bracket bonding.

  17. QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS

    International Nuclear Information System (INIS)

    Yeheskel, O.

    2008-01-01

    The elastic moduli of γ-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a tool for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals

  18. Shear bond strength of two bonding systems on dentin surfaces prepared with Er:YAG laser

    International Nuclear Information System (INIS)

    Dall'Magro, Eduardo

    2001-01-01

    The purpose of this study was to examine the shear bond strength of two bonding dentin systems, one 'one step' (Single Bond - 3M) and one 'self-etching' (Prompt-L-ESPE), when applied on dentin surfaces prepared with Er:YAG laser (2,94μm) that underwent ar not, acid etched. Forty one human molars just extracted were selected and after the cut with diamond disc and included in acrylic resin, resulting in 81 specimens (hemi crowns). After, the specimens were divided in one group treated with sand paper and another two groups treated with Er:YAG laser with 200 mJ and 250 mJ of energy and 2 Hz of frequency. Next, the prepared surfaces received three treatments with following application: 1) acid + Single Bond + Z 250 resin, 2) prompt-L-Pop + Z 250 resin, and 3) acid without, Single Bond + Z 250 resin. The Z 250 resin was applied and photopolymerized in increments on a Teflon matrix that belonged to an apparatus called 'Assembly Apparatus' machine producing cylinders of 3,5 mm of diameter and 5 mm of height. After these specimens were submitted to thermo cycling during 1 minute the 55 deg C and during 1 minute with 5 deg C with a total of 500 cycles for specimen, and the measures of shear bond strength were abstained using EMIC model DL 2000 rehearsed machine, with speed of 0,5 mm/min, measuring the final rupture tension (Mpa). The results showed an statistic superiority of 5% of probability level in dentin flattened with sandpaper and with laser using 200 mJ of energy with aspect to the ones flattened with laser using 250 mJ of energy. It was observed that using 'Single Bond' bonding dentin system the marks were statistically superior at 5% of probability with reference to the use of the Prompt-L-Pop adhesive system. So, it was concluded that Er:YAG Laser with 200 mJ of energy produced similar dentin cavity prepare than sandpaper and Single Bond seemed the best bonding agent system between restorative material and dentin. (author)

  19. Bifurcation Phenomena of a Magnetic Island at a Rational Surface in a Magnetic-Shear Control Experiment

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Yoshinuma, M.; Narushima, Y.; Itoh, K.; Kobuchi, T.; Watanabe, K. Y.; Funaba, H.; Sakakibara, S.; Morisaki, T.; LHD Experimental Group

    2008-01-01

    Three states of a magnetic island are observed when the magnetic shear at the rational surface is modified using inductive current associated with the neutral beam current drive in the Large Helical Device. One state is the healed magnetic island with a zero island width. The second state is the saturated magnetic island with partial flattening of the T e profile. The third state is characterized by the global flattening of the T e profile in the core region. As the plasma assumes each of the three states consecutively through a bifurcation process a clear hysteresis in the relation between the size of the magnetic island and the magnetic shear is observed

  20. An in situ estimation of anisotropic elastic moduli for a submarine shale

    Science.gov (United States)

    Miller, Douglas E.; Leaney, Scott; Borland, William H.

    1994-11-01

    Direct arrival times and slownesses from wide-aperture walkaway vertical seismic profile data acquired in a layered anisotropic medium can be processed to give direct estimate of the phase slowness surface associated with the medium at the depth of the receivers. This slowness surface can, in turn, be fit by an estimated transversely isotropic medium with a vertical symmetry axis (a 'TIV' medium). While the method requires that the medium between the receivers and the surface be horizontally stratified, no further measurement or knowledge of that medium is required. When applied to data acquired in a compacting shale sequence (here termed the 'Petronas shale') encountered by a well in the South China Sea, the method yields an estimated TIV medium that fits the data extremely well over 180 deg of propagation angles sampled by 201 source positions. The medium is strongly anisotropic. The anisotropy is significantly anelliptic and implies that the quasi-shear mode should be triplicated for off-axis propagation. Estimated density-normalized moduli (in units of sq km/sq s) for the Petronas shale are A(sub 11) = 6.99 +/- 0.21, A(sub 33) = 5.53 +/- 0.17, A(sub 55) = 0.91 +/- 0.05, and A(sub 13) = 2.64 +/- 0.26. Densities in the logged zone just below the survey lie in the range between 2200 and 2400 kg/cu m with an average value close to 2300 kg/cu m.

  1. Lunar near-surface shear wave velocities at the Apollo landing sites as inferred from spectral amplitude ratios

    Science.gov (United States)

    Horvath, P.; Latham, G. V.; Nakamura, Y.; Dorman, H. J.

    1980-01-01

    The horizontal-to-vertical amplitude ratios of the long-period seismograms are reexamined to determine the shear wave velocity distributions at the Apollo 12, 14, 15, and 16 lunar landing sites. Average spectral ratios, computed from a number of impact signals, were compared with spectral ratios calculated for the fundamental mode Rayleigh waves in media consisting of homogeneous, isotropic, horizontal layers. The shear velocities of the best fitting models at the different sites resemble each other and differ from the average for all sites by not more than 20% except for the bottom layer at station 14. The shear velocities increase from 40 m/s at the surface to about 400 m/s at depths between 95 and 160 m at the various sites. Within this depth range the velocity-depth functions are well represented by two piecewise linear segments, although the presence of first-order discontinuities cannot be ruled out.

  2. Temperature dependence of immunoreactions using shear horizontal surface acoustic wave immunosensors

    Science.gov (United States)

    Kogai, Takashi; Yatsuda, Hiromi; Kondoh, Jun

    2017-07-01

    In this paper, the temperature dependence of immunoreactions, which are antibody-antigen reactions, on a shear horizontal surface acoustic wave (SH-SAW) immunosensor is described. The immunosensor is based on a reflection-type delay line on a 36° Y-cut 90° X-propagation quartz substrate, where the delay line is composed of a floating electrode unidirectional transducer (FEUDT), a grating reflector, and a sensing area between them. In order to evaluate the temperature dependence of immunoreactions, human serum albumin (HSA) antigen-antibody reactions are investigated. The SH-SAW immunosensor chip is placed in a thermostatic chamber and the changes in the SH-SAW velocity resulting from the immunoreactions are measured at different temperatures. As a result, it is observed that the HSA immunoreactions are influenced by the ambient temperature and that higher temperatures provide more active reactions. In order to analyze the immunoreactions, an analytical approach using an exponential fitting method for changes in SH-SAW velocity is employed.

  3. Effect of Ti:sapphire laser on shear bond strength of orthodontic brackets to ceramic surfaces.

    Science.gov (United States)

    Erdur, Emire Aybuke; Basciftci, Faruk Ayhan

    2015-08-01

    With increasing demand for orthodontic treatments in adults, orthodontists continue to debate the optimal way to prepare ceramic surfaces for bonding. This study evaluated the effects of a Ti:sapphire laser on the shear bond strength (SBS) of orthodontic brackets bonded to two ceramic surfaces (feldspathic and IPS Empress e-Max) and the results were compared with those using two other lasers (Er:YAG and Nd:YAG) and 'conventional' techniques, i.e., sandblasting (50 µm) and hydrofluoric (HF) acid. In total, 150 ceramic discs were prepared and divided into two groups. In each group, the following five subgroups were prepared: Ti:sapphire laser, Nd:YAG laser, Er:YAG laser, sandblasting, and HF acid. Mandibular incisor brackets were bonded using a light-cured adhesive. The samples were stored in distilled water for 24 hours at 37°C and then thermocycled. Extra samples were prepared and examined using scanning electron microscopy (SEM). SBS testing was performed and failure modes were classified. ANOVA and Tukey's HSD tests were used to compare SBS among the five subgroups (P < 0.05). Feldspathic and IPS Empress e-Max ceramics had similar SBS values. The Ti:sapphire femtosecond laser (16.76 ± 1.37 MPa) produced the highest mean bond strength, followed by sandblasting (12.79 ± 1.42 MPa) and HF acid (11.28 ± 1.26 MPa). The Er:YAG (5.43 ± 1.21 MPa) and Nd:YAG laser (5.36 ± 1.04 MPa) groups were similar and had the lowest SBS values. More homogeneous and regular surfaces were observed in the ablation pattern with the Ti:sapphire laser than with the other treatments by SEM analysis. Within the limitations of this in vitro study, Ti:sapphire laser- treated surfaces had the highest SBS values. Therefore, this technique may be useful for the pretreatment of ceramic surfaces as an alternative to 'conventional' techniques. © 2015 Wiley Periodicals, Inc.

  4. Prediction Of Tensile And Shear Strength Of Friction Surfaced Tool Steel Deposit By Using Artificial Neural Networks

    Science.gov (United States)

    Manzoor Hussain, M.; Pitchi Raju, V.; Kandasamy, J.; Govardhan, D.

    2018-04-01

    Friction surface treatment is well-established solid technology and is used for deposition, abrasion and corrosion protection coatings on rigid materials. This novel process has wide range of industrial applications, particularly in the field of reclamation and repair of damaged and worn engineering components. In this paper, we present the prediction of tensile and shear strength of friction surface treated tool steel using ANN for simulated results of friction surface treatment. This experiment was carried out to obtain tool steel coatings of low carbon steel parts by changing contribution process parameters essentially friction pressure, rotational speed and welding speed. The simulation is performed by a 33-factor design that takes into account the maximum and least limits of the experimental work performed with the 23-factor design. Neural network structures, such as the Feed Forward Neural Network (FFNN), were used to predict tensile and shear strength of tool steel sediments caused by friction.

  5. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    Science.gov (United States)

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P Empress 2 and In-Ceram groups.

  6. Experimental Validation of the Transverse Shear Behavior of a Nomex Core for Sandwich Panels

    Science.gov (United States)

    Farooqi, M. I.; Nasir, M. A.; Ali, H. M.; Ali, Y.

    2017-05-01

    This work deals with determination of the transverse shear moduli of a Nomex® honeycomb core of sandwich panels. Their out-of-plane shear characteristics depend on the transverse shear moduli of the honeycomb core. These moduli were determined experimentally, numerically, and analytically. Numerical simulations were performed by using a unit cell model and three analytical approaches. Analytical calculations showed that two of the approaches provided reasonable predictions for the transverse shear modulus as compared with experimental results. However, the approach based upon the classical lamination theory showed large deviations from experimental data. Numerical simulations also showed a trend similar to that resulting from the analytical models.

  7. Moduli stabilization in type IIB orientifolds

    International Nuclear Information System (INIS)

    Schulgin, W.

    2007-01-01

    This thesis deals with the stabilization of the moduli fields in the compactifications of the type IIB string theory on orientifolds. A concrete procedure for the construction of solutions, in which all moduli fields are fixed, yields the KKLT scenario. We study, on which models the scenario can be applied, if approximations of the original KKLT work are abandoned. We find that in a series of models, namely such without complex-structure moduli the construction of the consistent solutions in the framework of the KKLT scenario is not possible. The nonperturbative effects, like D3 instantons and gaugino condensates are a further component of the KKLT scenario. They lead to the stabilization of the Kaehler moduli. We present criteria for the generation of the superpotential due to the D3 instantons at a Calaby-Yau manifold in presence of fluxes. Furthermore we show that although the presence of the nonperturbative superpotential in the equations of motions is correlated with the switching on of all ISD and IASD fluxes, the deciding criterium for the generation of the nonperturbative superpotential depends only on the fluxes of the type (2,1). Thereafter we discuss two models, in which we stabilize all moduli fields. Thereby it deals with Calabi-Yau orientifolds which have been obtained by a blow-up procedure from the Z 6-II and Z 2 x Z 4 orientifolds

  8. Shearing creep properties of cements with different irregularities on two surfaces

    International Nuclear Information System (INIS)

    Zhang, Qingzhao; Shen, Mingrong; Ding, Wenqi; Clark, Carl

    2012-01-01

    The study of creep properties of the rock mass structural plane is of great importance in solving practical problems in rock mass mechanics. The time-dependent deformation and long-term strength of the rock mass are controlled significantly by the creep mechanical behaviour of the structural plane, and the study of creep properties of the rock mass structural plane is an important area in rock mass deformation. This paper presents fundamental research on the mechanical properties of regular jugged discontinuities under various normal stresses, and focuses on the creep property of the structural plane with various slope angles under different normal stress through shear creep tests of the structural plane under shear stress. According to test results, the shear creep property of the structural plane is described and the creep velocity and long-term strength of the structural plane during shear creep is also investigated. Finally, an empirical formula is established to evaluate the shear strength of the discontinuity and a modified Burger model proposed to represent the shear deformation property during creep. (paper)

  9. Critical shear stress on the surface of a cuttings bed; Tensao critica de cisalhamento na superficie de um leito de cascalhos

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Luciana Mancor [Universidade Estadual Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia de Petroleo]. E-mail: luciana@lenep.uenf.br; Campos, Wellington [PETROBRAS, S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: campos@cenpes.petrobras.com.br; Braga, Luiz Carvalho [Centro Federal de Educacao Tecnologica (CEFET), Macae, RJ (Brazil). Unidade de Ensino Descentralizada]. E-mail: luiz@lenep.uenf.br

    2000-07-01

    The cuttings transport during the drilling of highly inclined and horizontal wells is hindered by the creation of a cuttings bed in the annulus. In this work, it is shown that the equilibrium height of this bed can be determined from the shear stress on its surface. This fact enables the formulation of a methodology for evaluating the equilibrium height of the cuttings bed through the introduction of a new concept, that of critical shear stress. This is the shear stress that acts on the bed surface at the imminence of movement of the particles on the bed surface. The use of the methodology requires the determination of the acting shear stress and of the required critical shear stress. The acting shear stress is calculated by means of a computer program that solve the motion differential equations in the annular space; covering the cases of the laminar and turbulent flow regimes. The actuating shear stress is a function of flow rate and of the annular geometry in the presence of a cuttings bed; it is also a function of the physical properties of the fluid. On the other hand, the required critical shear stress is a function of the particles diameters and physical properties of the fluid and particles. A mechanistic model for the critical shear stress is also presented. (author)

  10. Accidental Kähler moduli inflation

    International Nuclear Information System (INIS)

    Maharana, Anshuman; Rummel, Markus; Sumitomo, Yoske

    2015-01-01

    We study a model of accidental inflation in type IIB string theory where inflation occurs near the inflection point of a small Kähler modulus. A racetrack structure helps to alleviate the known concern that string-loop corrections may spoil Kähler Moduli Inflation unless having a significant suppression via the string coupling or a special brane setup. Also, the hierarchy of gauge group ranks required for the separation between moduli stabilization and inflationary dynamics is relaxed. The relaxation becomes more significant when we use the recently proposed D-term generated racetrack model

  11. Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/Al2O3

    Directory of Open Access Journals (Sweden)

    Jong-Eun Kim

    2016-01-01

    Full Text Available Purpose. Although several studies evaluating the mechanical properties of Ce-TZP/Al2O3 have been published, to date, no study has been published investigating the bonding protocol between Ce-TZP/Al2O3 and resin cement. The aim of this study was to evaluate the shear bond strength to air-abraded Ce-TZP/Al2O3 when primers and two different cement types were used. Materials and Methods. Two types of zirconia (Y-TZP and Ce-TZP/Al2O3 specimens were further divided into four subgroups according to primer application and the cement used. Shear bond strength was measured after water storage for 3 days or 5,000 times thermocycling for artificial aging. Results. The Y-TZP block showed significantly higher shear bond strength than the Ce-TZP/Al2O3 block generally. Primer application promoted high bond strength and less effect on bond strength reduction after thermocycling, regardless of the type of cement, zirconia block, or aging time. Conclusions. Depending on the type of the primer or resin cement used after air-abrasion, different wettability of the zirconia surface can be observed. Application of primer affected the values of shear bond strength after the thermocycling procedure. In the case of using the same bonding protocol, Y-TZP could obtain significantly higher bond strength compared with Ce-TZP/Al2O3.

  12. Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models

    Science.gov (United States)

    Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan

    2018-03-01

    While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.

  13. Moduli determination of continuous fiber ceramic composites (CFCCs)

    International Nuclear Information System (INIS)

    Liaw, P.K.; Hsu, D.K.; Miriyala, N.; Snead, L.L.; McHargue, C.J.

    1995-01-01

    Nicalon TM /silicon carbide composites were fabricated by the Forced Chemical Vapor Infiltration (FCVI) method. Both through-thickness and in-plane (fiber fabric plane) moduli were determined using ultrasonic techniques. The through-thickness elastic constants (moduli) were found to be much less than the in-plane moduli. Increased porosity significantly decreased both in-plane and through-thickness moduli. A periodic model using a homogenization method was formulated to predict the effect of porosity on the moduli of woven fabric composites. The predicted moduli were found to be in reasonably good agreement with the experimental results. ((orig.))

  14. Hydrodynamic Study of a Hollow Fiber Membrane System Using Experimental and Numerical Derived Surface Shear Stresses

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Hunze, M.; Nopens, I.

    2012-01-01

    .39 – 0.69 Pa) were in good agreement, with an error less that 15 %. Based on comparison of the cumulative frequency distribution of shear stresses from experiments and simulation: (i) moderate shear stresses (i.e. 50th percentile) were found to be accurately predicted (model: 0.24 – 0.45 Pa; experimental......Computational Fluids Dynamics (CFD) models can be used to gain insight into the shear stresses induced by air sparging on submerged hollow fiber Membrane BioReactor (MBR) systems. It was found that the average range of shear stresses obtained by the CFD model (0.30 – 0.60 Pa) and experimentally (0......: 0.25 – 0.49 Pa) with an error of less than 5 %; (ii) high shear stresses (i.e. 90th percentile) predictions were much less accurate (model: 0.60 – 1.23 Pa; experimental: 1.04 – 1.90 Pa) with an error up to 38 %. This was attributed to the fact that the CFD model only considers the two-phase flow (50...

  15. Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces

    Science.gov (United States)

    Tal, Yuval; Hager, Bradford H.

    2017-09-01

    This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.

  16. A minicourse on moduli of curves

    International Nuclear Information System (INIS)

    Looijenga, E.

    2000-01-01

    These are notes that accompany a short course given at the School on Algebraic Geometry 1999 at the ICTP, Trieste. A major goal is to outline various approaches to moduli spaces of curves. In the last part I discuss the algebraic classes that naturally live on these spaces; these can be thought of as the characteristic classes for bundles of curves. (author)

  17. Rubber friction and force transmission during the shearing process of actively-driven vacuum grippers on rough surfaces

    International Nuclear Information System (INIS)

    Kern, Patrick

    2016-01-01

    Nowadays, vacuum grippers come in many different shapes and sizes. Their stability is guaranteed through specially manufactured metal fittings. These fittings are non-positively and positively connected to the elastic part of the vacuum gripper. The design of the elastic part may vary, though. Elastomer components are used to ensure tightness for the negative pressure in the active cave chamber of the vacuum gripper, as well as for the transfer of shearing forces, which acting parallel to the surface. Some vacuum grippers feature one elastomer for both the sealing function and the transfer of shear forces; other gripper types are equipped with various elastomers for those applications. The vacuum grippers described in this work are equipped with structured rubber friction pads, their tightness being ensured by sealing lips made of a flexible foam rubber. A restraint system consisting of one or several vacuum grippers must be sized prior to its actual practical use. For the transmission of shearing forces, which acting parallel to the surface, it is necessary to take the tribological system, consisting of the suction element's elastomer and the base material, into account since these loads put shearing stress on the vacuum gripper. In practice, however, a standardized value is given for the coefficient of friction μ; i.e. the ratio of transmissible frictional force to the normal force. This does neither include a detailed description of the elastomer used nor of the roughness of the base material. The standardized friction coefficients cannot be applied to the practical design of restraint systems. The present work includes the analysis of the load transmission and the modeling of the friction coefficients μ on rough surfaces during the shearing process of actively-driven vacuum grippers. Based on current theories, the phenomenon of elastomeric friction can be attributed to the two main components of hysteresis and adhesion friction. Both components are presented

  18. Drag reduction by the introduction of shear-free surfaces in a ...

    Indian Academy of Sciences (India)

    2D simulations have been carried out for aturbulent channel flow using shear stress transport (SST) Reynolds-averaged Navier–Stokes (RANS) model and validated with the available experimental results. The interaction between the plates and the fluid is two way,and is enforced either by the use of a rigid body solver with ...

  19. A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow

    KAUST Repository

    Sullivan, J. M.; Paterson, C.; Wilson, S. K.; Duffy, B. R.

    2012-01-01

    We use the lubrication approximation to analyze three closely related problems involving a thin rivulet or ridge (i.e., a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due

  20. Fluid Effects on Shear Waves in Finely Layered Porous Media

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    Although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus for the layered system contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude the shear energy stored by this modulus by a term that ranges from the smallest to the largest shear moduli of the VTI system. But, since there are five shear moduli in play, the increase in shear energy overall is reduced by a factor of about 5 in general. We can therefore give definite bounds on the maximum increase of shear modulus, being about 20% of the permitted range, when gas is fully replaced by liquid. An attendant increase of density (depending on porosity and fluid density) by approximately 5 to 10% partially offsets the effect of this shear modulus increase. Thus, an increase of shear wave speed on the order of 5 to 10% is shown to be possible when circumstances are favorable - i.e., when the shear modulus fluctuations are large (resulting in strong anisotropy), and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well-logging or laboratory experiments), short response times also produce the requisite undrained behavior and, therefore, fluids also affect shear waves at high frequencies by increasing rigidity

  1. Quantum scattering in two black hole moduli space

    International Nuclear Information System (INIS)

    Sakamoto, Kenji; Shiraishi, Kiyoshi

    2003-01-01

    We discuss the quantum scattering process in a moduli space consisting of two maximally charged dilaton black holes. The black hole moduli space geometry has different structures for arbitrary dimensions and various values of the dilaton coupling. We study the quantum effects of the different moduli space geometries with scattering process. Then, it is found that there is a resonance state on certain moduli spaces

  2. The Effects of Realistic Geological Heterogeneity on Seismic Modeling: Applications in Shear Wave Generation and Near-Surface Tunnel Detection

    Science.gov (United States)

    Sherman, Christopher Scott

    Naturally occurring geologic heterogeneity is an important, but often overlooked, aspect of seismic wave propagation. This dissertation presents a strategy for modeling the effects of heterogeneity using a combination of geostatistics and Finite Difference simulation. In the first chapter, I discuss my motivations for studying geologic heterogeneity and seis- mic wave propagation. Models based upon fractal statistics are powerful tools in geophysics for modeling heterogeneity. The important features of these fractal models are illustrated using borehole log data from an oil well and geomorphological observations from a site in Death Valley, California. A large part of the computational work presented in this disserta- tion was completed using the Finite Difference Code E3D. I discuss the Python-based user interface for E3D and the computational strategies for working with heterogeneous models developed over the course of this research. The second chapter explores a phenomenon observed for wave propagation in heteroge- neous media - the generation of unexpected shear wave phases in the near-source region. In spite of their popularity amongst seismic researchers, approximate methods for modeling wave propagation in these media, such as the Born and Rytov methods or Radiative Trans- fer Theory, are incapable of explaining these shear waves. This is primarily due to these method's assumptions regarding the coupling of near-source terms with the heterogeneities and mode conversion. To determine the source of these shear waves, I generate a suite of 3D synthetic heterogeneous fractal geologic models and use E3D to simulate the wave propaga- tion for a vertical point force on the surface of the models. I also present a methodology for calculating the effective source radiation patterns from the models. The numerical results show that, due to a combination of mode conversion and coupling with near-source hetero- geneity, shear wave energy on the order of 10% of the

  3. Morphology and linear-elastic moduli of random network solids.

    Science.gov (United States)

    Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E

    2011-06-17

    The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dimensional reduction for D3-brane moduli

    International Nuclear Information System (INIS)

    Cownden, Brad; Frey, Andrew R.; Marsh, M.C. David; Underwood, Bret

    2016-01-01

    Warped string compactifications are central to many attempts to stabilize moduli and connect string theory with cosmology and particle phenomenology. We present a first-principles derivation of the low-energy 4D effective theory from dimensional reduction of a D3-brane in a warped Calabi-Yau compactification of type IIB string theory with imaginary self-dual 3-form flux, including effects of D3-brane motion beyond the probe approximation, and find the metric on the moduli space of brane positions, the universal volume modulus, and axions descending from the 4-form potential. As D3-branes may be considered as carrying either electric or magnetic charges for the self-dual 5-form field strength, we present calculations in both duality frames. Our results are consistent with, but extend significantly, earlier results on the low-energy effective theory arising from D3-branes in string compactifications.

  5. Special geometry on the moduli space for the two-moduli non-Fermat Calabi–Yau

    Directory of Open Access Journals (Sweden)

    Konstantin Aleshkin

    2018-01-01

    Full Text Available We clarify the recently proposed method for computing a special Kähler metric on a Calabi–Yau complex structure moduli space using the fact that the moduli space is a subspace of a particular Frobenius manifold. We use this method to compute a previously unknown special Kähler metric in a two-moduli non-Fermat model.

  6. Special geometry on the moduli space for the two-moduli non-Fermat Calabi-Yau

    Science.gov (United States)

    Aleshkin, Konstantin; Belavin, Alexander

    2018-01-01

    We clarify the recently proposed method for computing a special Kähler metric on a Calabi-Yau complex structure moduli space using the fact that the moduli space is a subspace of a particular Frobenius manifold. We use this method to compute a previously unknown special Kähler metric in a two-moduli non-Fermat model.

  7. BCFT moduli space in level truncation

    Czech Academy of Sciences Publication Activity Database

    Kudrna, Matěj; Maccaferri, C.

    2016-01-01

    Roč. 2016, č. 4 (2016), 1-33, č. článku 057. ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : deformation: marginal * field theory: string * tachyon: potential * string: open * moduli space * effective potential * nonperturbative * toy model Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.063, year: 2016

  8. Supersymmetric SU(5) GUT with Stabilized Moduli

    CERN Document Server

    Antoniadis, Ignatios; Panda, Binata

    2008-01-01

    We construct a minimal example of a supersymmetric grand unified model in a toroidal compactification of type I string theory with magnetized D9-branes. All geometric moduli are stabilized in terms of the background internal magnetic fluxes which are of "oblique" type (mutually non-commuting). The gauge symmetry is just SU(5) and the gauge non-singlet chiral spectrum contains only three families of quarks and leptons transforming in the $10+{\\bar 5}$ representations.

  9. Effect of rotation on the elastic moduli of solid 4He

    Science.gov (United States)

    Tsuiki, T.; Takahashi, D.; Murakawa, S.; Okuda, Y.; Kono, K.; Shirahama, K.

    2018-02-01

    We report measurements of elastic moduli of hcp solid 4He down to 15 mK when the samples are rotated unidirectionally. Recent investigations have revealed that the elastic behavior of solid 4He is dominated by gliding of dislocations and pinning of them by 3He impurities, which move in the solidlike Bloch waves (impuritons). Motivated by the recent controversy of torsional oscillator studies, we have performed direct measurements of shear and Young's moduli of annular solid 4He using pairs of quarter-circle-shape piezoelectric transducers (PZTs) while the whole apparatus is rotated with angular velocity Ω up to 4 rad/s. We have found that shear modulus μ is suppressed by rotation below 80 mK, when shear strain applied by PZT exceeds a critical value, above which μ decreases because the shear strain unbinds dislocations from 3He impurities. The rotation-induced decrement of μ at Ω =4 rad/s is about 14.7(12.3)% of the total change of temperature dependent μ for solid samples of pressure 3.6(5.4) MPa. The decrements indicate that the probability of pinning of 3He on dislocation segment G decreases by several orders of magnitude. We propose that the motion of 3He impuritons under rotation becomes strongly anisotropic by the Coriolis force, resulting a decrease in G for dislocation lines aligning parallel to the rotation axis.

  10. Supersymmetric moduli stabilization and high-scale inflation

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Wieck, Clemens; Winkler, Martin Wolfgang

    2014-04-01

    We study the back-reaction of moduli fields on the inflaton potential in generic models of F-term inflation. We derive the moduli corrections as a power series in the ratio of Hubble scale and modulus mass. The general result is illustrated with two examples, hybrid inflation and chaotic inflation. We find that in both cases the decoupling of moduli dynamics and inflation requires moduli masses close to the scale of grand unification. For smaller moduli masses the CMB observables are strongly affected.

  11. Braneworld gravity: Influence of the moduli fields

    International Nuclear Information System (INIS)

    Barcelo, Carlos; Visser, Matt

    2000-01-01

    We consider the case of a generic braneworld geometry in the presence of one or more moduli fields (e.g., the dilaton) that vary throughout the bulk spacetime. Working in an arbitrary conformal frame, using the generalized junction conditions of gr-qc/0008008 and the Gauss-Codazzi equations, we derive the effective ''induced'' on-brane gravitational equations. As usual in braneworld scenarios, these equations do not form a closed system in that the bulk can exchange both information and stress-energy with the braneworld. We work with an arbitrary number of moduli fields described by an arbitrary sigma model, with arbitrary curvature couplings, arbitrary self interactions, and arbitrary dimension for the bulk. (The braneworld is always codimension one.) Among the novelties we encounter are modifications of the on-brane stress-energy conservation law, anomalous couplings between on-brane gravity and the trace of the on-brane stress-energy tensor, and additional possibilities for modifying the on-brane effective cosmological constant. After obtaining the general stress-energy ''conservation'' law and the ''induced Einstein equations'' we particularize the discussion to two particularly attractive cases: for a (n-2)-brane in ([n-1]+1) dimensions we discuss both the effect of (1) generic variable moduli fields in the Einstein frame, and (2) the effect of a varying dilaton in the string frame. (author)

  12. Note on moduli stabilization, supersymmetry breaking and axiverse

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics

    2011-06-15

    We study properties of moduli stabilization in the four dimensional N=1 supergravity theory with heavy moduli and would-be saxion-axion multiplets including light string-theoretic axions. We give general formulation for the scenario that heavy moduli and saxions are stabilized while axions remain light, assuming that moduli are stabilized near the supersymmetric solution. One can find stable vacuum, i.e. nontachyonic saxions, in the non-supersymmetric Minkowski vacua. We also discuss the cases, where the moduli are coupled to the supersymmetry breaking sector and/or moduli have contributions to supersymmetry breaking. Furthermore we study the models with axions originating from matter-like fields. Our analysis on moduli stabilization is applicable even if there are not light axion multiplets. (orig.)

  13. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  14. The influence of ceramic surface treatments on the micro-shear bond strength of composite resin to IPS Empress 2.

    Science.gov (United States)

    Panah, Faride Gerami; Rezai, Sosan Mir Mohammad; Ahmadian, Leila

    2008-07-01

    An increasing demand for esthetic restorations has resulted in the development of new ceramic systems, but fracture of veneering ceramics still remains the primary cause of failure. Porcelain repair frequently involves replacement with composite resin, but the bond strength between composite resin and all-ceramic coping materials has not been studied extensively. The purpose of this study was to evaluate the influence of different ceramic surface treatments on the micro-shear bond strength of composite resin to IPS Empress 2 coping material. Sixteen 7 x 7 x 1 mm(3) lithia disilicate-based core ceramic plates were fabricated using the lost wax technique. The plates were divided into eight groups, and eight different surface treatments were performed: (1) no treatment (NT); (2) airborne-particle abrasion with 50-mum alumina particles (Al); (3) acid etching with 9.6% hydrofluoric acid for 1 min (HF); (4) silane coating (S); (5) AlHF; (6) AlS; (7) HFS; and (8) AlHFS. Then, ten composite resin cylinders (0.8-mm diameter x 0.5-mm height) were light-polymerized onto the ceramic plates in each group. Each specimen was subjected to a shear load at a crosshead speed of 0.5 mm/min until fracture occurred. The fracture sites were examined with scanning electron microscopy (SEM) to determine the location of failure during debonding and to examine the surface treatment effects. One-way analysis of variance (ANOVA) and multiple comparison (Dunnet T3) tests were used for statistical analysis of data. The mean micro-shear bond strength values (SD) in MPa were--NT: 4.10 (3.06), Al: 7.56 (4.11), HF: 14.04 (2.60), S: 14.58 (2.14), AlHF: 15.56 (3.36), AlS: 23.02 (4.17), HFS: 24.7 (4.43), AlHFS: 26.0 (3.71). ANOVA indicated the influence of surface treatment was significant (p Empress 2 was significantly different depending on the surface treatment method. Among the investigated methods, silane coating after airborne-particle abrasion and etching was the most effective surface treatment

  15. Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows

    Science.gov (United States)

    Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan

    2017-11-01

    Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.

  16. Asymptotic stability of shear-flow solutions to incompressible viscous free boundary problems with and without surface tension

    Science.gov (United States)

    Tice, Ian

    2018-04-01

    This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a rigid plane and with an upper boundary given by a free surface. The fluid is subject to a constant external force with a horizontal component, which arises in modeling the motion of such a fluid down an inclined plane, after a coordinate change. We consider the problem both with and without surface tension for horizontally periodic flows. This problem gives rise to shear-flow equilibrium solutions, and the main thrust of this paper is to study the asymptotic stability of the equilibria in certain parameter regimes. We prove that there exists a parameter regime in which sufficiently small perturbations of the equilibrium at time t=0 give rise to global-in-time solutions that return to equilibrium exponentially in the case with surface tension and almost exponentially in the case without surface tension. We also establish a vanishing surface tension limit, which connects the solutions with and without surface tension.

  17. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    Directory of Open Access Journals (Sweden)

    Mohammad Joulaei

    2012-11-01

    Full Text Available Background and aims. Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS of silica- (Spectrum TPH and zirconia-filled (Filtek Z250 composite resins. Materials and methods. Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05. Results. Analysis of data showed that the effect of composite resin type was not significant (p > 0.05, but the effects of the type of surface treatment (p = 0.01 and the type of adhesive system (p = 0.01 were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05. However, the cumulative effects of the adhesive system-surface treatment (p = 0.03 and the composite type-the adhesive system-surface treatments (p = 0.002 were significant. Conclusion. Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently.

  18. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    Science.gov (United States)

    Joulaei, Mohammad; Bahari, Mahmoud; Ahmadi, Anahid; Savadi Oskoee, Siavash

    2012-01-01

    Background and aims Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS) of silica- (Spectrum TPH) and zirconia-filled (Filtek Z250) composite resins. Materials and methods Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05). Results Analysis of data showed that the effect of composite resin type was not significant (p > 0.05), but the effects of the type of surface treatment (p = 0.01) and the type of adhesive system (p = 0.01) were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05). However, the cumulative effects of the adhesive system-surface treatment (p = 0.03) and the composite type-the adhesive system-surface treatments (p = 0.002) were significant. Conclusion Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently. PMID:23277859

  19. Arithmetic fundamental groups and moduli of curves

    International Nuclear Information System (INIS)

    Makoto Matsumoto

    2000-01-01

    This is a short note on the algebraic (or sometimes called arithmetic) fundamental groups of an algebraic variety, which connects classical fundamental groups with Galois groups of fields. A large part of this note describes the algebraic fundamental groups in a concrete manner. This note gives only a sketch of the fundamental groups of the algebraic stack of moduli of curves. Some application to a purely topological statement, i.e., an obstruction to the subjectivity of Johnson homomorphisms in the mapping class groups, which comes from Galois group of Q, is explained. (author)

  20. Effect of Reduced Phosphoric Acid Pre-etching Times 
on Enamel Surface Characteristics and Shear Fatigue Strength Using Universal Adhesives.

    Science.gov (United States)

    Tsujimoto, Akimasa; Fischer, Nicholas; Barkmeier, Wayne; Baruth, Andrew; Takamizawa, Toshiki; Latta, Mark; Miyazaki, Masashi

    2017-01-01

    To examine the effect of reduced phosphoric acid pre-etching times on enamel fatigue bond strength of universal adhesives and surface characteristics by using atomic force microscopy (AFM). Three universal adhesives were used in this study (Clearfil Universal Bond [C], G-Premio Bond [GP], Scotchbond Universal Adhesive [SU]). Four pre-etching groups were employed: enamel pre-etched with phosphoric acid and immediately rinsed with an air-water spray, and enamel pre-etched with phosphoric acid for 5, 10, or 15 s. Ground enamel was used as the control group. For the initial bond strength test, 15 specimens per etching group for each adhesive were used. For the shear fatigue test, 20 specimens per etching group for each adhesive were loaded using a sine wave at a frequency of 20 Hz for 50,000 cycles or until failure occurred. Initial shear bond strengths and fatigue shear strengths of composite adhesively bonded to ground and pre-etched enamel were determined. AFM observations of ground and pre-etched enamel were also conducted, and surface roughness as well as surface area were evaluated. The initial shear bond strengths and fatigue shear strengths of the universal adhesives in the pre-etched groups were significantly higher than those of the control group, and were not influenced by the pre-etching time. Significantly higher surface roughness and surface area of enamel surfaces in pre-etched groups were observed compared with those in the control group. While the surface area was not significantly influenced by etching time, surface roughness of the enamel surfaces in the pre-etched groups significantly increased with pre-etching time. The results of this in vitro study suggest that reduced phosphoric acid pre-etching times do not impair the fatigue bond strength of universal adhesives. Although fatigue bond strength and surface area were not influenced by phosphoric-acid etching times, surface roughness increased with increasing etching time.

  1. Elastic Moduli of Permanently Densified Silica Glasses

    Science.gov (United States)

    Deschamps, T.; Margueritat, J.; Martinet, C.; Mermet, A.; Champagnon, B.

    2014-01-01

    Modelling the mechanical response of silica glass is still challenging, due to the lack of knowledge concerning the elastic properties of intermediate states of densification. An extensive Brillouin Light Scattering study on permanently densified silica glasses after cold compression in diamond anvil cell has been carried out, in order to deduce the elastic properties of such glasses and to provide new insights concerning the densification process. From sound velocity measurements, we derive phenomenological laws linking the elastic moduli of silica glass as a function of its densification ratio. The found elastic moduli are in excellent agreement with the sparse data extracted from literature, and we show that they do not depend on the thermodynamic path taken during densification (room temperature or heating). We also demonstrate that the longitudinal sound velocity exhibits an anomalous behavior, displaying a minimum for a densification ratio of 5%, and highlight the fact that this anomaly has to be distinguished from the compressibility anomaly of a-SiO2 in the elastic domain. PMID:25431218

  2. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  3. On moduli spaces in AdS{sub 4} supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Alwis, Senarath de [Colorado Univ., Boulder, CO (United States). Dept. of Physics; Louis, Jan [Hamburg Univ. (Germany). Fachbereich 12 - Physik; Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik; McAllister, Liam [Cornell Univ., Ithaca, NY (United States). Dept. of Physics; Triendl, Hagen [CERN, Geneva (Switzerland). Theory Division, Physics Dept.; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2013-12-15

    We study the structure of the supersymmetric moduli spaces of N=1 and N=2 supergravity theories in AdS{sub 4} backgrounds. In the N=1 case, the moduli space cannot be a complex submanifold of the Kaehler field space, but is instead real with respect to the inherited complex structure. In N=2 supergravity the same result holds for the vector multiplet moduli space, while the hypermultiplet moduli space is a Kaehler submanifold of the quaternionic-Kaehler field space. These findings are in agreement with AdS/CFT considerations.

  4. The topology of moduli space and quantum field theory

    International Nuclear Information System (INIS)

    Montano, D.; Sonnenschein, J.

    1989-01-01

    We show how an SO(2,1) gauge theory with a fermionic symmetry may be used to describe the topology of the moduli space of curves. The observables of the theory correspond to the generators of the cohomology of moduli space. This is an extension of the topological quantum field theory introduced by Witten to investigate the cohomology of Yang-Mills instanton moduli space. We explore the basic structure of topological quantum field theories, examine a toy U(1) model, and then realize a full theory of moduli space topology. We also discuss why a pure gravity theory, as attempted in previous work, could not succeed. (orig.)

  5. Singular points in moduli spaces of Yang-Mills fields

    International Nuclear Information System (INIS)

    Ticciati, R.

    1984-01-01

    This thesis investigates the metric dependence of the moduli spaces of Yang-Mills fields of an SU(2) principal bundle P with chern number -1 over a four-dimensional, simply-connected, oriented, compact smooth manifold M with positive definite intersection form. The purpose of this investigation is to suggest that the surgery class of the moduli space of irreducible connections is, for a generic metric, a Z 2 topological invariant of the smooth structure on M. There are three main parts. The first two parts are local analysis of singular points in the moduli spaces. The last part is global. The first part shows that the set of metrics for which the moduli space of irreducible connections has only non-degenerate singularities has codimension at least one in the space of all metrics. The second part shows that, for a one-parameter family of moduli spaces in a direction transverse to the set of metrics for which the moduli spaces have singularities, passing through a non-degenerate singularity of the simplest type changes the moduli space by a cobordism. The third part shows that generic one-parameter families of metrics give rise to six-dimensional manifolds, the corresponding family of moduli spaces of irreducible connections. It is shown that when M is homeomorphic to S 4 the six-dimensional manifold is a proper cobordism, thus establishing the independence of the surgery class of the moduli space on the metric on M

  6. Moduli stabilization and the pattern of sparticle spectra

    International Nuclear Information System (INIS)

    Choi, Kiwoon

    2008-01-01

    We discuss the pattern of low energy sparticle spectra which appears in some class of moduli stabilization scenario. In case that light moduli are stabilized by non-perturbative effects encoded in the superpotential and a phenomenologically viable de Sitter vacuum is obtained by a sequestered supersymmetry breaking sector, the anomaly-mediated soft terms become comparable to the moduli-mediated ones, leading to a quite distinctive pattern of low energy spacticle masses dubbed the mirage mediation pattern. We also discuss low energy sparticle masses in more general mixed-mediation scenario which includes a comparable size of gauge mediation in addition to the moduli and anomaly mediations.

  7. Simultaneous measurement of field dependence of elastic moduli by laser interferometry

    CERN Document Server

    Bayon, A; Salazar, F

    2000-01-01

    A methodology is applied which allows the simultaneous determination of Young's modulus and the shear modulus to evaluate elastic moduli variations with the magnetic field (DELTA E and DELTA G). The method employed is based on the simultaneous detection of the transverse and torsional natural frequencies of a slender magnetic bar located within a solenoid. The resultant vibration is detected via a heterodyne interferometric optical system with a broad bandwidth. The vibration detection and excitation systems do not interact with the sample. The applicability of the method is demonstrated by characterizing 10-mm-diameter nickel bars. The results are compared with those obtained from longitudinal vibrations.

  8. Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar

    Science.gov (United States)

    Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.

    2017-12-01

    Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater

  9. Double Lap Shear Testing of Coating-Modified Ice Adhesion to Specific Shuttle Component Surfaces

    National Research Council Canada - National Science Library

    Ferrick, M. G; Mulherin, Nathan D; Coutermarsh, Barry A; Durell, Glenn D; Curtis, Leslie A; St. Clair, Terry L; Weiser, Erik S; Cano, Roberto J; Smith, Trent M; Stevenson, Charles G; Martinez, Eloy C

    2006-01-01

    The goals of this experimental program were to optimize the effectiveness of an icephobic coating for use on several Space Shuttle surfaces, to evaluate the effects of adding an ultraviolet light absorber (UVA...

  10. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie; Edwards, Thayne L.

    2008-10-01

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.

  11. Moduli stabilisation for chiral global models

    International Nuclear Information System (INIS)

    Cicoli, Michele; Mayrhofer, Christoph; Valandro, Roberto

    2011-10-01

    We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r< n D-term conditions on a set of n intersecting divisors. The remaining (n-r) flat directions are fixed by perturbative corrections to the Kaehler potential. We illustrate our general claims in an explicit example. We consider a K3-fibred Calabi-Yau with four Kaehler moduli, that is an hypersurface in a toric ambient space and admits a simple F-theory up-lift. We present explicit choices of brane set-ups and fluxes which lead to three different phenomenological scenarios: the first with GUT-scale strings and TeV-scale SUSY by fine-tuning the background fluxes; the second with an exponentially large value of the volume and TeV-scale SUSY without fine-tuning the background fluxes; and the third with a very anisotropic configuration that leads to TeV-scale strings and two micron-sized extra dimensions. The K3 fibration structure of the Calabi-Yau three-fold is also particularly suitable for cosmological purposes. (orig.)

  12. Moduli stabilisation for chiral global models

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-10-15

    We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating rmoduli, that is an hypersurface in a toric ambient space and admits a simple F-theory up-lift. We present explicit choices of brane set-ups and fluxes which lead to three different phenomenological scenarios: the first with GUT-scale strings and TeV-scale SUSY by fine-tuning the background fluxes; the second with an exponentially large value of the volume and TeV-scale SUSY without fine-tuning the background fluxes; and the third with a very anisotropic configuration that leads to TeV-scale strings and two micron-sized extra dimensions. The K3 fibration structure of the Calabi-Yau three-fold is also particularly suitable for cosmological purposes. (orig.)

  13. A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow

    KAUST Repository

    Sullivan, J. M.

    2012-01-01

    We use the lubrication approximation to analyze three closely related problems involving a thin rivulet or ridge (i.e., a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical "yield" value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In the Appendix, we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations. © 2012 American Institute of Physics.

  14. High resolution 3-D shear wave velocity structure in South China from surface wave tomography

    Science.gov (United States)

    Ning, S.; Guo, Z.; Chen, Y. J.

    2017-12-01

    Using continuous data from a total of 638 seismic stations, including 484 from CEArray between 2008 and 2013 and 154 from SINOPROBE between 2014 and 2015, we perform both ambient noise and earthquake Rayleigh wave tomography across South China. Combining Rayleigh wave phase velocity between 6and 40s periods from ambient noise tomography and Rayleigh wave phase velocity between 20and 140s from teleseismic two-plane-wave tomography, we obtain phase velocity maps between 6 and140 s periods. We then invert Rayleigh wave phase velocity to construct a 3-D shear wave velocity structure of South China by Markov Chain Monte Carlo method. Similar to other inversion results, our results correspond topography well. Moreover, our results also reveal that velocity structure of the eastern South China in mantle depth is similar to eastern North China, the core of the western South China, Sichuan Block (SB),still exists thick lithosphere. However, owing to much more data employed and some data quality control techniques in this research, our results reveal more detailed structures. Along Qinling-Dabie Orogenic Belt (QDOB), North-South Gravity Lineament (NSGL) and the Sichuan-Yunnan Rhombic Block (SYRB), there are obvious high speed anomalies in depths of 10-20 km, which possibly imply ancient intrusions. Moreover, it seems that Tancheng-Lujiang Fault Zone (TLFZ) has already cut through QDOB, forming a deep fracture cutting through the crust of the whole China continent. Although SB still exists thick lithosphere, there are indications for thermal erosion. At the same time, the lithosphere of the central SYRB seems to be experiencing delamination process, obviously forming a barrier to prevent the hot Tibetan Plateau (TP) mantle material from flowing further southeast. Upwelling hot mantle material possibly triggered by this delamination process might be the cause of the Emeishan Large Igneous Province. There exists an intercontinental low velocity layer in the crust of the TP

  15. Effects of surface treatment of provisional crowns on the shear bond strength of brackets

    Directory of Open Access Journals (Sweden)

    Josiane Xavier de Almeida

    2013-08-01

    Full Text Available OBJECTIVE: To assess the adhesive resistance of metallic brackets bonded to temporary crowns made of acrylic resin after different surface treatments. METHODS: 180 specimens were made of Duralay and randomly divided into 6 groups (n = 30 according to surface treatment and bonding material: G1 - surface roughening with Soflex and bonding with Duralay; G2 - roughening with aluminum oxide blasting and bonding with Duralay; G3 - application of monomer and bonding with Duralay; G4 - roughening with Soflex and bonding with Transbond XT; G5 - roughening with aluminum oxide blasting and bonding with Transbond XT and G6: application of monomer and bonding with Transbond. The results were statistically assessed by ANOVA/Games-Howell. RESULTS: The means (MPa were: G1= 18.04, G2= 22.64, G3= 22.4, G4= 9.71, G5= 11.23, G6= 9.67. The Adhesive Remnant Index (ARI ranged between 2 and 3 on G1, G2 and G3 whereas in G4, G5 and G6 it ranged from 0 to 1, showing that only the material affects the pattern of adhesive flaw. CONCLUSION: The surface treatment and the material influenced adhesive resistance of brackets bonded to temporary crowns. Roughening by aluminum blasting increased bond strength when compared to Soflex, in the group bonded with Duralay. The bond strength of Duralay acrylic resin was superior to that of Transbond XT composite resin.

  16. Shear waves in near surface 3D media-SH-wavefield separation, refraction time migration and tomography

    Science.gov (United States)

    Woelz, Susanne; Rabbel, Wolfgang; Mueller, Christof

    2009-05-01

    When investigating topographically irregular layers in the near surface with shear waves, it is of particular importance to consider the 3D-nature of wave propagation. Depending on the layer geometry and on the spatial arrangement of source- and receiver-points significant lateral ray bending can occur causing side-swipe traveltime effects and complicated polarisation patterns. As an example we present a study where 3D-shear wave refraction measurements were applied in order to reconstruct the geometry of a silted ancient harbour basin at the archaeological site of Miletus (West Turkey). Seismic signals were generated with a three-component vector force and recorded with three-component geophones arranged in 2D-arrays of 1 m grid spacing. Since a correct identification of refracted S-wave arrivals is a precondition to traveltime interpretation we investigated a method to decompose these wavefields with respect to their polarisation and azimuth of propagation. Taking advantage of the 2D-geophone arrangement we applied the following processing approach: In case of general lateral heterogeneity a decomposition can be performed by applying the curl and divergence operations to the vector wavefields recorded in 2D-arrays. The separated tangential and normal components to the wavefront in a plane are finally enhanced by combining the different force components in order to eliminate the radiation characteristics of the source. The decomposed wavefield was then the basis for 3D-refractor imaging through a newly formulated map migration of the refracted traveltime field. This technique was developed to map coherent basement structure on the meter-scale. Supplemental tomographic inversion using the refractor topography model as input provided a plausible velocity model, exhibiting characteristic anomalies such as a prominent low velocity zone overlain by a high velocity layer in the refractor. The seismic velocity structure suggests that the harbour basin was locally filled

  17. The universal connection and metrics on moduli spaces

    International Nuclear Information System (INIS)

    Massamba, Fortune; Thompson, George

    2003-11-01

    We introduce a class of metrics on gauge theoretic moduli spaces. These metrics are made out of the universal matrix that appears in the universal connection construction of M. S. Narasimhan and S. Ramanan. As an example we construct metrics on the c 2 = 1 SU(2) moduli space of instantons on R 4 for various universal matrices. (author)

  18. Molecular-scale shear response of the organic semiconductor β -DBDCS (100) surface

    Science.gov (United States)

    Álvarez-Asencio, Rubén; Moreno-Ramírez, Jorge S.; Pimentel, Carlos; Casado, Santiago; Matta, Micaela; Gierschner, Johannes; Muccioli, Luca; Yoon, Seong-Jun; Varghese, Shinto; Park, Soo Young; Gnecco, Enrico; Pina, Carlos M.

    2017-09-01

    In this work we present friction-force microscopy (FFM) lattice-resolved images acquired on the (100) facet of the semiconductor organic oligomer (2 Z ,2'Z )-3 , 3' -(1,4-phenylene)bis(2-(4-butoxyphenyl)acrylonitrile) (β -DBDCS) crystal in water at room temperature. Stick-slip contrast, lateral contact stiffness, and friction forces are found to depend strongly on the sliding direction due to the anisotropic packing of the molecular chains forming the crystal surface along the [010] and [001] directions. The anisotropy also causes the maximum value of the normal force applicable before wearing to increase by a factor of 3 when the scan is performed along the [001] direction on the (100) face. Altogether, our results contribute to achieving a better understanding of the molecular origin of friction anisotropy on soft crystalline surfaces, which has been often hypothesized but rarely investigated in the literature.

  19. Source study of local coalfield events using the modal synthesis of shear and surface waves

    Energy Technology Data Exchange (ETDEWEB)

    MacBeth, C.D.; Redmayne, D.W.

    1989-10-01

    Results from the BGS LOWNET array from the Midlothian coalfield in Scotland have been studied. Vertical component seismograms have been analysed using a waveform matching technique based on the modal summation method for constructing synthetic seismograms. Results of the analysis are applied to S and surface wave portions of the seismogram. Effects of different earth structures, source depths, source orientation, and type of event, rockburst or triggered earthquake 2-3 km from the mine workings, can be evaluated.

  20. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin

    Energy Technology Data Exchange (ETDEWEB)

    Vechiato-Filho, Aljomar José, E-mail: aljomarvechiatoflo@gmail.com [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Silva Vieira Marques, Isabella da [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Santos, Daniela Micheline dos [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Oliveira Matos, Adaias [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Rangel, Elidiane Cipriano; Cruz, Nilson Cristino da [Laboratory of Technological Plasmas (LaPTec), Engineering College, Univ. Estadual Paulista — UNESP, Sorocaba, Sao Paulo (Brazil); Barão, Valentim Adelino Ricardo [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil)

    2016-03-01

    The effect of nonthermal plasma on the surface characteristics of commercially pure titanium (cp-Ti), and on the shear bond strength between an autopolymerizing acrylic resin and cp-Ti was investigated. A total of 96 discs of cp-Ti were distributed into four groups (n = 24): Po (no surface treatment), SB (sandblasting), Po + NTP and SB + NTP (methane plasma). Surface characterization was performed through surface energy, surface roughness, scanning microscopy, energy dispersive spectroscopy, and X-ray diffraction tests. Shear bond strength test was conducted immediately and after thermocycling. Surface treatment affected the surface energy and roughness of cp-Ti discs (P < .001). SEM–EDS showed the presence of the carbide thin film. XRD spectra revealed no crystalline phase changes. The SB + NTP group showed the highest bond strength values (6.76 ± 0.70 MPa). Thermocycling reduced the bond strength of the acrylic resin/cp-Ti interface (P < .05), except for Po group. NTP is an effective treatment option for improving the shear bond strength between both materials. - Highlights: • We tested the bond strength between two widely used materials in dentistry (acrylic and titanium). • We performed an innovative surface treatment with nonthermal plasma. • Increasing adhesion will avoid complications of full-arch implant-retained prostheses.

  1. Metastable SUSY breaking, de Sitter moduli stabilisation and Kaehler moduli inflation

    International Nuclear Information System (INIS)

    Krippendorf, Sven; Quevedo, Fernando

    2009-01-01

    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N = 1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kaehler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kaehler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario also provides a purely supersymmetric realisation of Kaehler moduli (blow-up and fibre) inflation, with similar observational properties as the original proposals but without the need to include an extra (non-SUSY) uplifting term.

  2. Quantum mechanics on the moduli space from the quantum geometrodynamics of the open topological membrane

    International Nuclear Information System (INIS)

    Kogan, I.I.

    1991-01-01

    The quantum geometrodynamics of the open topological membrane is described in terms of 2+1 topologically massive gravity (TMG) where the inverse graviton mass is proportional to the 2D central charge and thus is the measure of the off-criticality. The hamiltonian quantization of TMG on Riemann surfaces is considered and the moduli space appears as the subspace of the quantum-mechanical configuration space containing, besides the moduli, the first-order time derivatives of half of the moduli. The appearance of the first-order time derivatives as coordinates, not momenta, is due to the third-order derivative in the TMG lagrangian. The hamiltonian for the latter leads us to the discrete levels picture which looks like the topologically massive gauge theory (TMGT) case, where we also get the Landau levels picture and the lowest Landau level corresponds to the Hilbert space of the Chern-Simons theory (CST). The connection between the positivity of the energy and the complex structure on the moduli space is discussed. (orig.)

  3. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  4. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    Science.gov (United States)

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  5. Heat treatment following surface silanization in rebonded tribochemical silica-coated ceramic brackets: shear bond strength analysis

    Directory of Open Access Journals (Sweden)

    Emilia Adriane Silva

    2013-07-01

    Full Text Available OBJECTIVE: This study aimed to evaluate the effects of heat treatment on the tribochemical silica coating and silane surface conditioning and the bond strength of rebonded alumina monocrystalline brackets. MATERIAL AND METHODS: Sixty alumina monocrystalline brackets were randomly divided according to adhesive base surface treatments (n=20: Gc, no treatment (control; Gt, tribochemical silica coating + silane application; Gh, as per Gt + post-heat treatment (air flux at 100ºC for 60 s. Brackets were bonded to the enamel premolars surface with a light-polymerized resin and stored in distilled water at 37ºC for 100 days. Additionally, half the specimens of each group were thermocycled (6,000 cycles between 5-55ºC (TC. The specimens were submitted to the shear bond strength (SBS test using a universal testing machine (1 mm/min. Failure mode was assessed using optical and scanning electron microscopy (SEM, together with the surface roughness (Ra of the resin cement in the bracket using interference microscopy (IM. 2-way ANOVA and the Tukey test were used to compare the data (p>0.05. RESULTS: The strategies used to treat the bracket surface had an effect on the SBS results (p=0.0, but thermocycling did not (p=0.6974. Considering the SBS results (MPa, Gh-TC and Gc showed the highest values (27.59±6.4 and 27.18±2.9 and Gt-TC showed the lowest (8.45±6.7. For the Ra parameter, ANOVA revealed that the aging method had an effect (p=0.0157 but the surface treatments did not (p=0.458. For the thermocycled and non-thermocycled groups, Ra (µm was 0.69±0.16 and 1.12±0.52, respectively. The most frequent failure mode exhibited was mixed failure involving the enamel-resin-bracket interfaces. CONCLUSION: Regardless of the aging method, Gh promoted similar SBS results to Gc, suggesting that rebonded ceramic brackets are a more effective strategy.

  6. Moduli stabilization in higher dimensional brane models

    International Nuclear Information System (INIS)

    Flachi, Antonino; Pujolas, Oriol; Garriga, Jaume; Tanaka, Takahiro

    2003-01-01

    We consider a class of warped higher dimensional brane models with topology M x Σ x S 1 /Z 2 , where Σ is a D2 dimensional manifold. Two branes of co-dimension one are embedded in such a bulk space-time and sit at the orbifold fixed points. We concentrate on the case where an exponential warp factor (depending on the distance along the orbifold) accompanies the Minkowski M and the internal space Σ line elements. We evaluate the moduli effective potential induced by bulk scalar fields in these models, and we show that generically this can stabilize the size of the extra dimensions. As an application, we consider a scenario where supersymmetry is broken not far below the cutoff scale, and the hierarchy between the electroweak and the effective Planck scales is generated by a combination of redshift and large volume effects. The latter is efficient due to the shrinking of Σ at the negative tension brane, where matter is placed. In this case, we find that the effective potential can stabilize the size of the extra dimensions (and the hierarchy) without fine tuning, provided that the internal space Σ is flat. (author)

  7. Moduli stabilization in higher dimensional brane models

    Energy Technology Data Exchange (ETDEWEB)

    Flachi, Antonino; Pujolas, Oriol [IFAE, Campus UAB, 08193 Bellaterra, Barcelona (Spain)]. E-mail: pujolas@ifae.es; Garriga, Jaume [IFAE, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Departament de Fisica Fonamental and C.E.R. en Astrofisica, Fisica de Particules i Cosmologia Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Tanaka, Takahiro [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford MA 02155 (United States); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2003-08-01

    We consider a class of warped higher dimensional brane models with topology M x {sigma} x S{sup 1}/Z{sub 2}, where {sigma} is a D2 dimensional manifold. Two branes of co-dimension one are embedded in such a bulk space-time and sit at the orbifold fixed points. We concentrate on the case where an exponential warp factor (depending on the distance along the orbifold) accompanies the Minkowski M and the internal space {sigma} line elements. We evaluate the moduli effective potential induced by bulk scalar fields in these models, and we show that generically this can stabilize the size of the extra dimensions. As an application, we consider a scenario where supersymmetry is broken not far below the cutoff scale, and the hierarchy between the electroweak and the effective Planck scales is generated by a combination of redshift and large volume effects. The latter is efficient due to the shrinking of {sigma} at the negative tension brane, where matter is placed. In this case, we find that the effective potential can stabilize the size of the extra dimensions (and the hierarchy) without fine tuning, provided that the internal space {sigma} is flat. (author)

  8. Higher-Derivative Supergravity and Moduli Stabilization

    International Nuclear Information System (INIS)

    Ciupke, David; Westphal, Alexander; Louis, Jan; Hamburg Univ.

    2015-05-01

    We review the ghost-free four-derivative terms for chiral superfields in N=1 supersymmetry and supergravity. These terms induce cubic polynomial equations of motion for the chiral auxiliary fields and correct the scalar potential. We discuss the different solutions and argue that only one of them is consistent with the principles of effective field theory. Special attention is paid to the corrections along flat directions which can be stabilized or destabilized by the higher-derivative terms. We then compute these higher-derivative terms explicitly for the type IIB string compactified on a Calabi-Yau orientifold with fluxes via Kaluza-Klein reducing the (α') 3 R 4 corrections in ten dimensions for the respective N=1 Kaehler moduli sector. We prove that together with flux and the known (α') 3 -corrections the higher-derivative term stabilizes all Calabi-Yau manifolds with positive Euler number, provided the sign of the new correction is negative.

  9. Explicitly broken supersymmetry with exactly massless moduli

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Freedman, Daniel Z. [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Center for Theoretical Physics and Department of Mathematics,Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Zhao, Yue [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-06-16

    The AdS/CFT correspondence is applied to an analogue of the little hierarchy problem in three-dimensional supersymmetric theories. The bulk is governed by a supergravity theory in which a U(1) × U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. The bulk-to-boundary propagator of the Chern-Simons fields is a total derivative with respect to the bulk coordinates. Integration by parts and the Ward identity permit evaluation of SUSY breaking effects to all orders in the strength of the deformation. The R-charges of scalars and spinors differ so large SUSY breaking mass shifts are generated. Masses of R-neutral particles such as scalar moduli are not shifted to any order in the deformation strength, despite the fact that they may couple to R-charged fields running in loops. We also obtain a universal deformation formula for correlation functions under an exactly marginal deformation by a product of holomorphic and anti-holomorphic U(1) currents.

  10. Young's moduli of cables for high field superconductive dipole magnet

    International Nuclear Information System (INIS)

    Yamada, Shunji; Shintomi, Takakazu.

    1983-01-01

    Superconductive dipole magnets for big accelerators are subjected to enormous electro-magnetic force, when they are operated with high field such as 10 Tesla. They should be constructed by means of superconductive cables, which have high Young's modulus, to obtain good performance. To develop such cables we measured the Young's moduli of cables for practical use of accelerator magnets. They are monolithic and compacted strand cables. We measured also Young's moduli of monolithic copper and brass cables for comparison. The obtained data showed the Young's moduli of 35 and 15 GPa for the monolithic and compacted strand cables, respectively. (author)

  11. Higgs, moduli problem, baryogenesis and large volume compactifications

    International Nuclear Information System (INIS)

    Higaki, Tetsutaro; Takahashi, Fuminobu

    2012-07-01

    We consider the cosmological moduli problem in the context of high-scale supersymmetry breaking suggested by the recent discovery of the standard-model like Higgs boson. In order to solve the notorious moduli-induced gravitino problem, we focus on the LARGE volume scenario, in which the modulus decay into gravitinos can be kinematically forbidden. We then consider the Affleck-Dine mechanism with or without an enhanced coupling with the inflaton, taking account of possible Q-ball formation. We show that the baryon asymmetry of the present Universe can be generated by the Affleck-Dine mechanism in LARGE volume scenario, solving the moduli and gravitino problems.

  12. Higgs, moduli problem, baryogenesis and large volume compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [RIKEN Nishina Center, Saitama (Japan). Mathematical Physics Lab.; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics

    2012-07-15

    We consider the cosmological moduli problem in the context of high-scale supersymmetry breaking suggested by the recent discovery of the standard-model like Higgs boson. In order to solve the notorious moduli-induced gravitino problem, we focus on the LARGE volume scenario, in which the modulus decay into gravitinos can be kinematically forbidden. We then consider the Affleck-Dine mechanism with or without an enhanced coupling with the inflaton, taking account of possible Q-ball formation. We show that the baryon asymmetry of the present Universe can be generated by the Affleck-Dine mechanism in LARGE volume scenario, solving the moduli and gravitino problems.

  13. The wide-spread presence of rib-like patterns in basal shear of ice streams detected by surface data inversion

    Science.gov (United States)

    Sergienko, O. V.

    2013-12-01

    The direct observations of the basal conditions under continental-scale ice sheets are logistically impossible. A possible approach to estimate conditions at the ice - bed interface is from surface observations by means of inverse methods. The recent advances in remote and ground-based observations have allowed to acquire a wealth observations from Greenland and Antarctic ice sheets. Using high-resolution data sets of ice surface and bed elevations and surface velocities, inversions for basal conditions have been performed for several ice streams in Greenland and Antarctica. The inversion results reveal the wide-spread presence of rib-like spatial structures in basal shear. The analysis of the hydraulic potential distribution shows that these rib-like structures co-locate with highs of the gradient of hydraulic potential. This suggests that subglacial water plays a role in the development and evolution of the basal shear ribs.

  14. Low Rm magnetohydrodynamics as a means of measuring the surface shear viscosity of a liquid metal: A first attempt on Galinstan

    Science.gov (United States)

    Delacroix, Jules; Davoust, Laurent; Patouillet, Kévin

    2018-01-01

    This paper introduces an experimental apparatus which generates the end-driven annular flow of a liquid metal pervaded by a uniform magnetic field. Unlike past viscometers involving an annular channel with particular values of the depth-to-width ratio, the present experiment enables us to drive the viscous shear at the surface of an annular liquid metal bath put in rotation. The magnetic interaction parameter N and the Boussinesq number related to the surface shear viscosity can be monitored from the magnitude of the applied magnetic field; the latter being set large enough for avoiding artefacts related to centrifugation and surface dilatation. This essential feature is obtained due to the ability of the magnetic field to set dimensionality of the annular flow in the channel between 2D-1/2 (swirling flow) and 2D axisymmetric (extinction of the overturning flow if N is large enough). By tracking the azimuthal velocity of tracers seeded along the oxidised surface of liquid Galinstan, an estimate for the surface shear viscosity of a liquid metal can be given.

  15. Successfully combining SUGRA hybrid inflation and moduli stabilisation

    International Nuclear Information System (INIS)

    Davis, S.C.

    2008-01-01

    Inflation and moduli stabilisation mechanisms work well independently, and many string-motivated supergravitymodels have been proposed for them. However a complete theory will contain both, and there will be (gravitational) interactions between the two sectors. These give corrections to the inflaton potential, which generically ruin inflation. This holds true even for fine-tuned moduli stabilisation schemes. We show that a viable combined model can be obtained if it is the Kaehler functions (G=K+ln vertical stroke W vertical stroke 2 ) of the two sectors that are added, rather than the superpotentials (as is usually done). Interaction between the two sectors does still impose some restrictions on the moduli stabilisation mechanism, which are derived. Significantly, we find that the (post-inflation) moduli stabilisation scale no longer needs to be above the inflationary energy scale. (orig.)

  16. Successfully combining SUGRA hybrid inflation and moduli stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique; Postma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)

    2008-01-15

    Inflation and moduli stabilisation mechanisms work well independently, and many string-motivated supergravitymodels have been proposed for them. However a complete theory will contain both, and there will be (gravitational) interactions between the two sectors. These give corrections to the inflaton potential, which generically ruin inflation. This holds true even for fine-tuned moduli stabilisation schemes. We show that a viable combined model can be obtained if it is the Kaehler functions (G=K+ln vertical stroke W vertical stroke {sup 2}) of the two sectors that are added, rather than the superpotentials (as is usually done). Interaction between the two sectors does still impose some restrictions on the moduli stabilisation mechanism, which are derived. Significantly, we find that the (post-inflation) moduli stabilisation scale no longer needs to be above the inflationary energy scale. (orig.)

  17. Aspects of Moduli Stabilization in Type IIB String Theory

    Directory of Open Access Journals (Sweden)

    Shaaban Khalil

    2016-01-01

    Full Text Available We review moduli stabilization in type IIB string theory compactification with fluxes. We focus on KKLT and Large Volume Scenario (LVS. We show that the predicted soft SUSY breaking terms in KKLT model are not phenomenological viable. In LVS, the following result for scalar mass, gaugino mass, and trilinear term is obtained: m0=m1/2=-A0=m3/2, which may account for Higgs mass limit if m3/2~O(1.5 TeV. However, in this case, the relic abundance of the lightest neutralino cannot be consistent with the measured limits. We also study the cosmological consequences of moduli stabilization in both models. In particular, the associated inflation models such as racetrack inflation and Kähler inflation are analyzed. Finally, the problem of moduli destabilization and the effect of string moduli backreaction on the inflation models are discussed.

  18. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report appendices.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  19. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : appendices.

    Science.gov (United States)

    2012-01-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  20. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  1. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded Carbon Fiber-Reinforced Polymer

    Science.gov (United States)

    2009-05-01

    "This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort...

  2. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  3. Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation

    CERN Document Server

    Krippendorf, Sven

    2009-01-01

    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N=1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kahler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kahler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario als...

  4. Evaluation of Procedures for Backcalculation of Airfield Pavement Moduli

    Science.gov (United States)

    2015-08-01

    ER D C/ G SL T R -1 5 -3 1 Evaluation of Procedures for Backcalculation of Airfield Pavement Moduli G eo te ch n ic al a n d S tr u...August 2015 Evaluation of Procedures for Backcalculation of Airfield Pavement Moduli Lucy P. Priddy and Carlos R. Gonzalez Geotechnical and...USAF’s) airfield pavement structural evaluation procedures. Determining the structural integrity of airfield pavement relies on the analysis of

  5. A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds.

    Science.gov (United States)

    de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony

    2016-10-03

    Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials.

  6. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia.

    Science.gov (United States)

    Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B

    2016-07-01

    The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A proof that Witten's open string theory gives a single cover of moduli space

    International Nuclear Information System (INIS)

    Zwiebach, B.; Massachusetts Inst. of Tech., Cambridge

    1991-01-01

    We show that Witten's open string diagrams are surfaces with metrics of minimal area under the condition that all nontrivial open Jordan curves be longer or equal to π. The minimal area property is used together with a mini-max problem to establish a new existence and uniqueness theorem for quadratic differentials in open Riemann surfaces with or without punctures on the boundaries. This theorem implies that the Feynman rules of open string theory give a single cover of the moduli of open Riemann surfaces. (orig.)

  8. Modeling, design, packing and experimental analysis of liquid-phase shear-horizontal surface acoustic wave sensors

    Science.gov (United States)

    Pollard, Thomas B

    using uniform-electrode and shear-horizontal mode configurations on potassium-niobate, langasite, and quartz substrates. Optimum configurations are determined yielding maximum sensitivity. Results show mode propagation-loss and sensitivity to viscosity are correlated by a factor independent of substrate material. The analysis is useful for designing devices meeting sensitivity and signal level requirements. A novel, rapid and precise microfluidic chamber alignment/bonding method was developed for SAW platforms. The package is shown to have little effect on device performance and permits simple macrofluidic interfacing. Lastly, prototypes were designed, fabricated, and tested for viscosity and biosensor applications; results show ability to detect as low as 1% glycerol in water and surface-bound DNA crosslinking.

  9. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Science.gov (United States)

    Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan

    2008-11-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  10. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    International Nuclear Information System (INIS)

    Han Xianglong; Liu Xiaolin; Bai Ding; Meng Yao; Huang Lan

    2008-01-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure

  11. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Energy Technology Data Exchange (ETDEWEB)

    Han Xianglong [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Liu Xiaolin [Department of Orthodontics, Stomatology Hospital, Dalian University, Dalian 116021 (China); Bai Ding [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)], E-mail: baiding88@hotmail.com; Meng Yao; Huang Lan [Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  12. Ridge regression for predicting elastic moduli and hardness of calcium aluminosilicate glasses

    Science.gov (United States)

    Deng, Yifan; Zeng, Huidan; Jiang, Yejia; Chen, Guorong; Chen, Jianding; Sun, Luyi

    2018-03-01

    It is of great significance to design glasses with satisfactory mechanical properties predictively through modeling. Among various modeling methods, data-driven modeling is such a reliable approach that can dramatically shorten research duration, cut research cost and accelerate the development of glass materials. In this work, the ridge regression (RR) analysis was used to construct regression models for predicting the compositional dependence of CaO-Al2O3-SiO2 glass elastic moduli (Shear, Bulk, and Young’s moduli) and hardness based on the ternary diagram of the compositions. The property prediction over a large glass composition space was accomplished with known experimental data of various compositions in the literature, and the simulated results are in good agreement with the measured ones. This regression model can serve as a facile and effective tool for studying the relationship between the compositions and the property, enabling high-efficient design of glasses to meet the requirements for specific elasticity and hardness.

  13. Effect of TeO2 on the elastic moduli of sodium borate glasses

    International Nuclear Information System (INIS)

    Saddeek, Y.B.; Abd El Latif, Lamia

    2004-01-01

    Sodium borate glass containing tellurite as Te x Na 2-2x B 4-4x O 7-5x with x=0, 0.05, 0.15, 0.25 and 0.35 have been prepared by rapid quenching. Ultrasonic velocity (both longitudinal and shear) measurements have been made using a transducer operated at the fundamental frequency of 4 MHz at room temperature. The density was measured by the conventional Archimedes method. The elastic moduli, the Debye temperature, Poisson's ratio, and the parameters derived from the Makishima-Mackenzie model and the bond compression model have been obtained as a function of TeO 2 content. The monotonic decrease in the velocities and the elastic moduli, and the increase in the ring diameter and the ratio K bc /K e as a function of TeO 2 modifier content reveals the loose packing structure, which is attributed to the increase in the molar volume and the reduction in the vibrations of the borate lattice. The observed results confirm that the addition of TeO 2 changes the rigid character of Na 2 B 4 O 7 to a matrix of ionic behaviour bonds (NBOs). This is due to the creation of more and more discontinuities and defects in the glasses, thus breaking down the borax structure

  14. The inversion of relative shear rigidity in different material classes at megabar pressures

    CERN Document Server

    Brazhkin, V V

    2002-01-01

    The behaviour of elastic moduli of substances is analysed in the megabar pressure range. A new effect - inversion of the shear moduli and mechanical properties upon compression - is predicted for various classes of substances. The melting-curve data for different materials confirm the predicted phenomenon. The materials traditionally considered the softest, such as rare-gas solids and molecular substances, may become the hardest in the megabar range. This should be taken into account in developing experimental high-pressure techniques.

  15. Mesoscopic Simulations of the Phase Behavior of Aqueous EO 19 PO 29 EO 19 Solutions Confined and Sheared by Hydrophobic and Hydrophilic Surfaces

    KAUST Repository

    Liu, Hongyi; Li, Yan; Krause, Wendy E.; Pasquinelli, Melissa A.; Rojas, Orlando J.

    2012-01-01

    The MesoDyn method is used to investigate associative structures in aqueous solution of a nonionic triblock copolymer consisting of poly(propylene oxide) capped on both ends with poly(ethylene oxide) chains. The effect of adsorbing (hydrophobic) and nonadsorbing (hydrophilic) solid surfaces in contact with aqueous solutions of the polymer is elucidated. The macromolecules form self-assembled structures in solution. Confinement under shear forces is investigated in terms of interfacial behavior and association. The formation of micelles under confinement between hydrophilic surfaces occurs faster than in bulk aqueous solution while layered structures assemble when the polymers are confined between hydrophobic surfaces. Micelles are deformed under shear rates of 1 μs -1 and eventually break to form persistent, adsorbed layered structures. As a result, surface damage under frictional forces is prevented. Overall, this study indicates that aqueous triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (Pluronics, EO mPO nEO m) act as a boundary lubricant for hydrophobic surfaces but not for hydrophilic ones. © 2011 American Chemical Society.

  16. Mesoscopic Simulations of the Phase Behavior of Aqueous EO 19 PO 29 EO 19 Solutions Confined and Sheared by Hydrophobic and Hydrophilic Surfaces

    KAUST Repository

    Liu, Hongyi

    2012-01-25

    The MesoDyn method is used to investigate associative structures in aqueous solution of a nonionic triblock copolymer consisting of poly(propylene oxide) capped on both ends with poly(ethylene oxide) chains. The effect of adsorbing (hydrophobic) and nonadsorbing (hydrophilic) solid surfaces in contact with aqueous solutions of the polymer is elucidated. The macromolecules form self-assembled structures in solution. Confinement under shear forces is investigated in terms of interfacial behavior and association. The formation of micelles under confinement between hydrophilic surfaces occurs faster than in bulk aqueous solution while layered structures assemble when the polymers are confined between hydrophobic surfaces. Micelles are deformed under shear rates of 1 μs -1 and eventually break to form persistent, adsorbed layered structures. As a result, surface damage under frictional forces is prevented. Overall, this study indicates that aqueous triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (Pluronics, EO mPO nEO m) act as a boundary lubricant for hydrophobic surfaces but not for hydrophilic ones. © 2011 American Chemical Society.

  17. On D-brane dynamics and moduli stabilization

    Science.gov (United States)

    Kitazawa, Noriaki

    2017-09-01

    We discuss the effect of the dynamics of D-branes on moduli stabilization in type IIB string theory compactifications, with reference to a concrete toy model of T6/Z 3 orientifold compactification with fractional D3-branes and anti-D3-branes at orbifold fixed points. The resulting attractive forces between anti-D3-branes and D3-branes, together with the repulsive forces between anti-D3-branes and O3-planes, can affect the stability of the compact space. There are no complex structure moduli in T6/Z 3 orientifold, which should thus capture some generic features of more general settings where all complex structure moduli are stabilized by three-form fluxes. The simultaneous presence of branes and anti-branes brings along the breaking of supersymmetry. Non-BPS combinations of this type are typical of “brane supersymmetry breaking” and are a necessary ingredient in the KKLT scenario for stabilizing the remaining Kähler moduli. The conclusion of our analysis is that, while mutual D-brane interactions sometimes help Kähler moduli stabilization, this is not always the case.

  18. Moduli vacuum misalignment and precise predictions in string inflation

    International Nuclear Information System (INIS)

    Cicoli, Michele; Dutta, Koushik; Maharana, Anshuman; Quevedo, Fernando

    2016-01-01

    The predictions for all the cosmological observables of any inflationary model depend on the number of e-foldings which is sensitive to the post-inflationary history of the universe. In string models the generic presence of light moduli leads to a late-time period of matter domination which lowers the required number of e-foldings and, in turn, modifies the exact predictions of any inflationary model. In this paper we compute exactly the shift of the number of e-foldings in Kähler moduli inflation which is determined by the magnitude of the moduli initial displacement caused by vacuum misalignment and the moduli decay rates. We find that the preferred number of e-foldings gets reduced from 50 to 45, causing a modification of the spectral index at the percent level. Our results illustrate the importance of understanding the full post-inflationary evolution of the universe in order to derive precise predictions in string inflation. To perform this task it is crucial to work in a setting where there is good control over moduli stabilisation.

  19. Moduli vacuum misalignment and precise predictions in string inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN sezione di Bologna,viale Berti Pichat 6/2, 40127 Bologna (Italy); Abdus Salam ICTP,Strada Costiera 11, Trieste 34014 (Italy); Dutta, Koushik [Theory Division, Saha Institute of Nuclear Physics,1/AF Salt Lake, Kolkata 700064 (India); Maharana, Anshuman [Harish Chandra Research Intitute,Chattnag Road, Jhunsi, Allahabad 211019 (India); Quevedo, Fernando [Abdus Salam ICTP,Strada Costiera 11, Trieste 34014 (Italy); DAMTP, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2016-08-03

    The predictions for all the cosmological observables of any inflationary model depend on the number of e-foldings which is sensitive to the post-inflationary history of the universe. In string models the generic presence of light moduli leads to a late-time period of matter domination which lowers the required number of e-foldings and, in turn, modifies the exact predictions of any inflationary model. In this paper we compute exactly the shift of the number of e-foldings in Kähler moduli inflation which is determined by the magnitude of the moduli initial displacement caused by vacuum misalignment and the moduli decay rates. We find that the preferred number of e-foldings gets reduced from 50 to 45, causing a modification of the spectral index at the percent level. Our results illustrate the importance of understanding the full post-inflationary evolution of the universe in order to derive precise predictions in string inflation. To perform this task it is crucial to work in a setting where there is good control over moduli stabilisation.

  20. The effect of different surface treatments of stainless steel crown and different bonding agents on shear bond strength of direct composite resin veneer

    Directory of Open Access Journals (Sweden)

    Ajami B

    2007-01-01

    Full Text Available Background and Aim: Stainless steel crown (SSC is the most durable and reliable restoration for primary teeth with extensive caries but its metalic appearance has always been a matter of concern. With advances in restorative materials and metal bonding processes, composite veneer has enhanced esthetics of these crowns in clinic. The aim of this study was to evaluate the shear bond strength of SSC to composite resin using different surface treatments and adhesives. Materials and Methods: In this experimental study, 90 stainless steel crowns were selected. They were mounted in molds and divided into 3 groups of 30 each (S, E and F. In group S (sandblast, buccal surfaces were sandblasted for 5 seconds. In group E (etch acidic gel was applied for 5 minutes and in group F (fissure bur surface roughness was created by fissure diamond bur. Each group was divided into 3 subgroups (SB, AB, P based on different adhesives: Single Bond, All Bond2 and Panavia F. Composite was then bonded to specimens. Cases were incubated in 100% humidity at 37°C for 24 hours. Shear bond strength was measured by Zwick machine with crosshead speed of 0.5 mm/min. Data were analyzed by ANOVA test with p0.05 so the two variables were studied separately. No significant difference was observed in mean shear bond strength of composite among the three kinds of adhesives (P>0.05. Similar results were obtained regarding surface treatments (P>0.05. Conclusion: Based on the results of this study, treating the SSC surface with bur and using single bond adhesive and composite can be used successfully to obtain esthetic results in pediatric restorative treatments.

  1. Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation.

    Science.gov (United States)

    Hendrikson, Wim J; Deegan, Anthony J; Yang, Ying; van Blitterswijk, Clemens A; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen

    2017-01-01

    Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress-strain distributions throughout the scaffold depend on the scaffold's internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve

  2. An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces

    CERN Document Server

    Schlichenmaier, Martin

    2007-01-01

    This book gives an introduction to modern geometry. Starting from an elementary level the author develops deep geometrical concepts, playing an important role nowadays in contemporary theoretical physics. He presents various techniques and viewpoints, thereby showing the relations between the alternative approaches. At the end of each chapter suggestions for further reading are given to allow the reader to study the touched topics in greater detail. This second edition of the book contains two additional more advanced geometric techniques: (1) The modern language and modern view of Algebraic Geometry and (2) Mirror Symmetry. The book grew out of lecture courses. The presentation style is therefore similar to a lecture. Graduate students of theoretical and mathematical physics will appreciate this book as textbook. Students of mathematics who are looking for a short introduction to the various aspects of modern geometry and their interplay will also find it useful. Researchers will esteem the book as reliable ...

  3. Natural inflation and moduli stabilization in heterotic orbifolds

    International Nuclear Information System (INIS)

    Ruehle, Fabian; Wieck, Clemens

    2015-03-01

    We study moduli stabilization in combination with inflation in heterotic orbifold compactifications in the light of a large Hubble scale and the favored tensor-to-scalar ratio r∼0.05. To account for a trans-Planckian field range we implement aligned natural inflation. Although there is only one universal axion in heterotic constructions, further axions from the geometric moduli can be used for alignment and inflation. We argue that such an alignment is rather generic on orbifolds, since all non-perturbative terms are determined by modular weights of the involved fields and the Dedekind η function. We present two setups inspired by the mini-landscape models of the Z 6-II orbifold which realize aligned inflation and stabilization of the relevant moduli. One has a supersymmetric vacuum after inflation, while the other includes a gaugino condensate which breaks supersymmetry at a high scale.

  4. Noncommutative solitons: moduli spaces, quantization, finite θ effects and stability

    Science.gov (United States)

    Hadasz, Leszek; Rocek, Martin; Lindström, Ulf; von Unge, Rikard

    2001-06-01

    We find the N-soliton solution at infinite θ, as well as the metric on the moduli space corresponding to spatial displacements of the solitons. We use a perturbative expansion to incorporate the leading θ-1 corrections, and find an effective short range attraction between solitons. We study the stability of various solutions. We discuss the finite θ corrections to scattering, and find metastable orbits. Upon quantization of the two-soliton moduli space, for any finite θ, we find an s-wave bound state.

  5. CP violation and moduli stabilization in heterotic models

    International Nuclear Information System (INIS)

    Giedt, Joel

    2002-01-01

    The role of moduli stabilization in predictions for CP violation is examined in the context of four-dimensional effective supergravity models obtained from the weakly coupled heterotic string. They point out that while stabilization of compactification moduli has been studied extensively, the determination of background values for other scalar by dynamical means has not been subjected to the same degree of scrutiny. These other complex scalars are important potential sources of CP violation and they show in a simple model how their background values (including complex phases) may be determined from the minimization of the supergravity scalar potential, subject to the constraint of vanishing cosmological constant

  6. Effects of surface treatment and artificial aging on the shear bond strength of orthodontic brackets bonded to four different provisional restorations.

    Science.gov (United States)

    Al Jabbari, Youssef S; Al Taweel, Sara M; Al Rifaiy, Mohammed; Alqahtani, Mohammed Q; Koutsoukis, Theodoros; Zinelis, Spiros

    2014-07-01

    To evaluate the combined effects of material type, surface treatment, and thermocycling on the bond strength of orthodontic brackets to materials used for the fabrication of provisional crowns. Four materials were included in this study (ProTemp, Trim Plus, Trim II, and Superpont C+B). Sixty cylindrical specimens (1 × 3 cm) were prepared from each material and equally divided into three groups. The first group was ground with silica carbide paper, the second was polished with pumice, and the last group was sandblasted with 50-µm aluminum oxide particles. Stainless-steel maxillary central incisor brackets (Victory Series, 3M) were bonded to the provisional material specimens with Transbond XT light-cured composite resin, and half of the specimens from each group were thermocycled 500 times in 5°C and 55°C water baths. Then the brackets were debonded with shear testing, and the results were statistically analyzed by three-way analysis of variance and Tukey's multiple-comparison tests at α  =  0.05. Adhesive Remnant Index (ARI) was also identified. Before and after thermocycling, ProTemp materials showed the highest shear bond strength with orthodontic brackets (10.3 and 13.1 MPa, respectively). The statistical analysis indicated an interaction among the three independent variables (P < .05) and statistically significant differences in bond strength among provisional materials (P < .001), surface treatments (P < .001), and thermocycling (P < .05). According to the ARI, most groups demonstrated adhesive failure. The provisional material type, surface treatment, and artificial aging have a significant effect on bond strength. Sandblasting treatment exerts a beneficial effect on shear bond strength.

  7. A comparative study of shear bond strength between metal and ceramic brackets and artificially aged composite restorations using different surface treatments.

    Science.gov (United States)

    Eslamian, Ladan; Borzabadi-Farahani, Ali; Mousavi, Nasim; Ghasemi, Amir

    2012-10-01

    This in vitro study evaluated the shear bond strength (SBS) between ceramic brackets (CBs) and resin composite restorations (RCRs) prepared using different surface treatments. The findings were also compared with a similar study that used stainless steel brackets (SSBs). Forty-five premolars were restored with a nano-hybrid composite resin (Tetric EvoCeram) and randomly assigned to three surface treatment groups: group 1, 5 per cent hydrofluoric acid (HF); group 2, air abrasion (50 μm alumina particles); and group 3, diamond bur. Specimens were bonded with CBs (Fascination) and exposed to thermo-cycling (500 cycles). The shear force at a crosshead speed of 1 mm/minute was transmitted to brackets. The adhesive remnant index (ARIs) scores were recorded after bracket failure. The analysis of SBS variance (P 0.05) and bond failure occurred mainly in adhesive-bracket base and resin-adhesive interfaces. The diamond bur surface treatment is recommended as a safe and cost-effective method of bonding CBs to RCRs.

  8. Shear wave velocity model beneath CBJI station West Java, Indonesia from joint inversion of teleseismic receiver functions and surface wave dispersion

    Science.gov (United States)

    Simanungkalit, R. H.; Anggono, T.; Syuhada; Amran, A.; Supriyanto

    2018-03-01

    Earthquake signal observations around the world allow seismologists to obtain the information of internal structure of the Earth especially the Earth’s crust. In this study, we used joint inversion of receiver functions and surface wave group velocities to investigate crustal structure beneath CBJI station in West Java, Indonesia. Receiver function were calculated from earthquakes with magnitude more than 5 and at distance 30°-90°. Surface wave group velocities were calculated using frequency time analysis from earthquakes at distance of 30°- 40°. We inverted shear wave velocity model beneath the station by conducting joint inversion from receiver functions and surface wave dispersions. We suggest that the crustal thickness beneath CBJI station, West Java, Indonesia is about 35 km.

  9. Elastic moduli of biological fibers in a coarse-grained model: crystalline cellulose and β-amyloids.

    Science.gov (United States)

    Poma, Adolfo B; Chwastyk, Mateusz; Cieplak, Marek

    2017-10-25

    We study the mechanical response of cellulose and β-amyloid microfibrils to three types of deformation: tensile, indentational, and shear. The cellulose microfibrils correspond to the allomorphs Iα or Iβ whereas the β-amyloid microfibrils correspond to the polymorphs of either two- or three-fold symmetry. This response can be characterized by three elastic moduli, namely, Y L , Y T , and S. We use a structure-based coarse-grained model to analyze the deformations in a unified manner. We find that each of the moduli is almost the same for the two allomorphs of cellulose but Y L is about 20 times larger than Y T (140 GPa vs. 7 GPa), indicating the existence of significant anisotropy. For cellulose we note that the anisotropy results from the involvement of covalent bonds in stretching. For β-amyloid, the sense of anisotropy is opposite to that of cellulose. In the three-fold symmetry case, Y L is about half of Y T (3 vs. 7) whereas for two-fold symmetry the anisotropy is much larger (1.6 vs. 21 GPa). The S modulus is derived to be 1.2 GPa for three-fold symmetry and one half of it for the other symmetry and 3.0 GPa for cellulose. The values of the moduli reflect deformations in the hydrogen-bond network. Unlike in our theoretical approach, no experiment can measure all three elastic moduli with the same apparatus. However, our theoretical results are consistent with various measured values: typical Y L for cellulose Iβ ranges from 133 to 155 GPa, Y T from 2 to 25 GPa, and S from 1.8 to 3.8 GPa. For β-amyloid, the experimental values of S and Y T are about 0.3 GPa and 3.3 GPa respectively, while the value of Y L has not been reported.

  10. Infinite Grassmannian and moduli space of G-bundles

    International Nuclear Information System (INIS)

    Kumar, S.; Ramanathan, A.

    1993-03-01

    Let C be a smooth irreducible projective curve and G a simply connected simple affine algebraic group of C. We study in this paper the relationship between the space of vacua defined in Conformal Field Theory and the space of sections of a line bundle on the moduli space of G-bundles over C. (author). 33 refs

  11. Moduli space for endomorphisms of finite dimension vector spaces

    International Nuclear Information System (INIS)

    Kanarek, H.

    1990-12-01

    Consider the set (End n ) of endomorphisms of vector spaces of dimension n n ). What we present here is a decomposition of (End n ) in which each element has a fine moduli space and one of them is composed by the semisimple endomorphisms as D. Mumford shows. (author). 2 refs

  12. On the L2-metric of vortex moduli spaces

    NARCIS (Netherlands)

    Baptista, J.M.

    2011-01-01

    We derive general expressions for the Kähler form of the L2-metric in terms of standard 2-forms on vortex moduli spaces. In the case of abelian vortices in gauged linear sigma-models, this allows us to compute explicitly the Kähler class of the L2-metric. As an application we compute the total

  13. Moduli for decorated tuples of sheaves and representation spaces ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    We extend the scope of a former paper to vector bundle problems involving ... the machinery of algebraic geometry to the gauge theoretic moduli space for the pairs ... A nice example of a classification problem which can be formulated in our ... Numerous famous special cases of this construction have been studied in the ...

  14. Moduli and (un)attractor black hole thermodynamics

    NARCIS (Netherlands)

    Astefanesei, D.; Goldstein, K.D.; Mahapatra, S.

    2008-01-01

    We investigate four-dimensional spherically symmetric black hole solutions in gravity theories with massless, neutral scalars non-minimally coupled to gauge fields. In the non-extremal case, we explicitly show that, under the variation of the moduli, the scalar charges appear in the first law of

  15. On the possibility of large axion moduli spaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudelius, Tom [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States)

    2015-04-28

    We study the diameters of axion moduli spaces, focusing primarily on type IIB compactifications on Calabi-Yau three-folds. In this case, we derive a stringent bound on the diameter in the large volume region of parameter space for Calabi-Yaus with simplicial Kähler cone. This bound can be violated by Calabi-Yaus with non-simplicial Kähler cones, but additional contributions are introduced to the effective action which can restrict the field range accessible to the axions. We perform a statistical analysis of simulated moduli spaces, finding in all cases that these additional contributions restrict the diameter so that these moduli spaces are no more likely to yield successful inflation than those with simplicial Kähler cone or with far fewer axions. Further heuristic arguments for axions in other corners of the duality web suggest that the difficulty observed in http://dx.doi.org/10.1088/1475-7516/2003/06/001 of finding an axion decay constant parametrically larger than M{sub p} applies not only to individual axions, but to the diagonals of axion moduli space as well. This observation is shown to follow from the weak gravity conjecture of http://dx.doi.org/10.1088/1126-6708/2007/06/060, so it likely applies not only to axions in string theory, but also to axions in any consistent theory of quantum gravity.

  16. String loop moduli stabilisation and cosmology in IIB flux compactifications

    International Nuclear Information System (INIS)

    Cicoli, M.

    2010-01-01

    We present a detailed review of the moduli stabilisation mechanism and possible cosmological implications of the LARGE Volume Scenario (LVS) that emerges naturally in the context of type IIB Calabi-Yau flux compactifications. After a quick overview of physics beyond the Standard Model, we present string theory as the most promising candidate for a consistent theory of quantum gravity. We then give a pedagogical introduction to type IIB compactifications on Calabi-Yau orientifolds where most of the moduli are stabilised by turning on background fluxes. However in order to fix the Kaehler moduli one needs to consider several corrections beyond the leading order approximations. After presenting a survey of all the existing solutions to this problem, we derive the topological conditions on an arbitrary Calabi-Yau to obtain the LVS since it requires no fine-tuning of the fluxes and provides a natural solution of the hierarchy problem. After performing a systematic study of the behaviour of string loop corrections for general type IIB compactifications, we show how they play a crucial role to achieve full Kaehler moduli stabilisation in the LVS. Before examining the possible cosmological implication of these scenarios, we present a broad overview of string cosmology. We then notice how, in the case of K3-fibrations, string loop corrections give rise naturally to an inflationary model which yields observable gravity waves. We finally study the finite-temperature behaviour of the LVS and discuss prospects for future work. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Topological recursion for chord diagrams, RNA complexes, and cells in moduli spaces

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Chekhov, Leonid O.; Penner, Robert

    2013-01-01

    and free energies are convergent for small t and all s as a perturbation of the Gaussian potential, which arises for st=0. This perturbation is computed using the formalism of the topological recursion. The corresponding enumeration of chord diagrams gives at once the number of RNA complexes of a given...... topology as well as the number of cells in Riemann's moduli spaces for bordered surfaces. The free energies are computed here in principle for all genera and explicitly for genera less than four....

  18. The relationship between 3D bone architectural parameters and elastic moduli of three orthogonal directions predicted from finite elements analysis

    International Nuclear Information System (INIS)

    Park, Kwan Soo; Lee, Sam Sun; Huh, Kyung Hoe; Yi, Wan Jin; Heo, Min Suk; Choi, Soon Chul

    2008-01-01

    To investigate the relationship between 3D bone architectural parameters and direction-related elastic moduli of cancellous bone of mandibular condyle. Two micro-pigs (Micro-pigR, PWG Genetics Korea) were used. Each pig was about 12 months old and weighing around 44 kg. 31 cylindrical bone specimen were obtained from cancellous bone of condyles for 3D analysis and measured by micro-computed tomography. Six parameters were trabecular thickness (Tb.Th), bone specific surface (BS/BV), percent bone volume (BV/TV), structure model index (SMI), degree of anisotropy (DA) and 3-dimensional fractal dimension (3DFD). Elastic moduli of three orthogonal directions (superiorinferior (SI), medial-lateral (ML), andterior-posterior (AP) direction) were calculated through finite element analysis. Elastic modulus of superior-inferior direction was higher than those of other directions. Elastic moduli of 3 orthogonal directions showed different correlation with 3D architectural parameters. Elastic moduli of SI and ML directions showed significant strong to moderate correlation with BV/TV, SMI and 3DFD. Elastic modulus of cancellous bone of pig mandibular condyle was highest in the SI direction and it was supposed that the change into plate-like structure of trabeculae was mainly affected by increase of trabeculae of SI and ML directions.

  19. Shear-induced formation of vesicles in membrane phases: Kinetics and size selection mechanisms, elasticity versus surface tension

    Science.gov (United States)

    Courbin, L.; Panizza, P.

    2004-02-01

    Multilamellar vesicles can be formed upon shearing lamellar phases (Lα) and phase-separated lamellar-sponge (Lα/L3) mixtures. In the first case, the vesicle volume fraction is always 100% and the vesicle size is monitored by elasticity (“onion textures”). In the second system the vesicle volume fraction can be tuned from 0 to 100% and the mean size results from a balance between capillary and viscous forces (“Taylor droplets”). However, despite these differences, in both systems we show that the formation of vesicles is a strain-controlled process monitored by a universal primary buckling instability of the lamellae.

  20. Moduli effective action in warped brane-world compactifications

    International Nuclear Information System (INIS)

    Garriga, Jaume; Pujolas, Oriol; Tanaka, Takahiro

    2003-01-01

    We consider a class of 5D brane-world solutions with a power-law warp factor a(y)∝y q , and bulk dilaton with profile phi∝lny, where y is the proper distance in the extra dimension. This class includes the heterotic M-theory brane-world of [Phys. Rev. D 59 (1999) 086001, and] and the Randall-Sundrum (RS) model as a limiting case. In general, there are two moduli fields y ± , corresponding to the 'positions' of two branes (which live at the fixed points of an orbifold compactification). Classically, the moduli are massless, due to a scaling symmetry of the action. However, in the absence of supersymmetry, they develop an effective potential at one loop. Local terms proportional to K ± 4 , where K ± =q/y ± is the local curvature scale at the location of the corresponding brane, are needed in order to remove the divergences in the effective potential. Such terms break the scaling symmetry and hence they may act as stabilizers for the moduli. When the branes are very close to each other, the effective potential induced by massless bulk fields behaves like V∼d -4 , where d is the separation between branes. When the branes are widely separated, the potentials for each one of the moduli generically develop a 'Coleman-Weinberg'-type behaviour of the form a 4 (y ± )K ± 4 ln(K ± /μ ± ), where μ ± are renormalization scales. In the RS case, the bulk geometry is AdS and K ± are equal to a constant, independent of the position of the branes, so these terms do not contribute to the mass of the moduli. However, for generic warp factor, they provide a simple stabilization mechanism. For q > or approx. 10, the observed hierarchy can be naturally generated by this potential, giving the lightest modulus a mass of order m - < or approx. TeV

  1. The effects of various surface treatments on the shear bond strengths of stainless steel brackets to artificially-aged composite restorations.

    Science.gov (United States)

    Eslamian, Ladan; Borzabadi-Farahani, Ali; Mousavi, Nasim; Ghasemi, Amir

    2011-05-01

    To compare the shear bond strengths (SBS) of stainless steel brackets bonded to artificially-aged composite restorations after different surface treatments. Forty-five premolar teeth were restored with a nano-hybrid composite (Tetric EvoCeram), stored in deionised water for one week and randomly divided into three equal groups: Group I, he restorations were exposed to 5 per cent hydrofluoric acid for 60 seconds; Group II, the restorations were abraded with a micro-etcher (50 Iim alumina particles); Group III, the restorations were roughened with a coarse diamond bur. Similar premolar brackets were bonded to each restoration using the same resin adhesive and the specimens were then cycled in deionised water between 5 degrees C and 55 degrees C (500 cycles). The shear bond strengths were determined with a universal testing machine at a crosshead speed of 1 mm/min. The teeth and brackets were examined under a stereomicroscope and the adhesive remnants on the teeth scored with the adhesive remnant index (ARI). Specimens treated with the diamond bur had a significantly higher SBS (Mean: 18.45 +/- 3.82 MPa) than the group treated with hydrofluoric acid (Mean: 12.85 +/- 5.20 MPa). The mean SBS difference between the air-abrasion (Mean: 15.36 +/- 4.92 MPa) and hydrofluoric acid groups was not significant. High ARI scores occurred following abrasion with a diamond bur (100 per cent) and micro-etcher (80 per cent). In approximately two thirds of the teeth no adhesive was left on the restoration after surface treatment with hydofluoric acid. Surface treatment with a diamond bur resulted in a high bond strength between stainless steel brackets and artificially-aged composite restorations and was considered to be a safe and effective method of surface treatment. Most of the adhesive remained on the tooth following surface treatment with either the micro-etcher or the diamond bur.

  2. Resonant frequency study of tensile and shear elasticity moduli of carbon fibre reinforced composites (CFRC)

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Glogar, Petr; Manocha, L.

    2000-01-01

    Roč. 38, č. 15 (2000), s. 2139-2149 ISSN 0008-6223 R&D Projects: GA ČR GA106/99/0096; GA ČR GA106/96/0596 Institutional research plan: CEZ:AV0Z3046908 Subject RIV: BI - Acoustics Impact factor: 1.715, year: 2000

  3. Analytical modeling of effect of interlayer on effective moduli of layered graphene-polymer nanocomposites

    Institute of Scientific and Technical Information of China (English)

    C.C.Roach; Y.C.Lu

    2017-01-01

    Nanocomposites enhanced with two-dimensional,layered graphene fillers are a new class of engineering materials that exhibit superior properties and characteristics to composites with conventional fillers.However,the roles of "interlayers" in layered graphene fillers have yet to be fully explored.This paper examines the effect of interlayers on mechanical properties of layered graphene polymer composites.As an effective filler,the fundamental properties (in-plane Young's modulus EL1,out-of-plane Young's modulus EL2;shear modulus GL12,major Poisson's ratio 1L12) of the layered graphene were computed by using the Arridge's lamellar model.The effects of interlayers on effective moduli of layered graphene epoxy composites were examined through the Tandon-Weng model.The properties of the interlayer show noticeable impact on elastic properties of the composites,particular the out-of-plane properties (Young's modulus E2 and shear modulus G12).The interlayer spacing is seen to have much great influence on properties of the composites.As the interlayer spacing increases from 0.34 nm to 2 nm,all elastic properties of the composites have been greatly decreased.

  4. Wave anisotropy of shear viscosity and elasticity

    Science.gov (United States)

    Rudenko, O. V.; Sarvazyan, A. P.

    2014-11-01

    The paper presents the theory of shear wave propagation in a "soft solid" material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.

  5. Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its solitary-wave solutions via mathematical methods

    Science.gov (United States)

    Seadawy, Aly R.

    2017-12-01

    In this study, we presented the problem formulations of models for internal solitary waves in a stratified shear flow with a free surface. The nonlinear higher order of extended KdV equations for the free surface displacement is generated. We derived the coefficients of the nonlinear higher-order extended KdV equation in terms of integrals of the modal function for the linear long-wave theory. The wave amplitude potential and the fluid pressure of the extended KdV equation in the form of solitary-wave solutions are deduced. We discussed and analyzed the stability of the obtained solutions and the movement role of the waves by making graphs of the exact solutions.

  6. Effect of particle size and distribution of the sizing agent on the carbon fibers surface and interfacial shear strength (IFSS) of its composites

    International Nuclear Information System (INIS)

    Zhang, R.L.; Liu, Y.; Huang, Y.D.; Liu, L.

    2013-01-01

    Effect of particle size and distribution of the sizing agent on the performance of carbon fiber and carbon fiber composites has been investigated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize carbon fiber surface topographies. At the same time, the single fiber strength and Weibull distribution were also studied in order to investigate the effect of coatings on the fibers. The interfacial shear strength and hygrothermal aging of the carbon fiber/epoxy resin composites were also measured. The results indicated that the particle size and distribution is important for improving the surface of carbon fibers and its composites performance. Different particle size and distribution of sizing agent has different contribution to the wetting performance of carbon fibers. The fibers sized with P-2 had higher value of IFSS and better hygrothermal aging resistant properties.

  7. Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds

    DEFF Research Database (Denmark)

    Spotti, Cristiano; Sun, Song

    We exhibit the first non-trivial concrete examples of Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds in all complex dimensions bigger than two (Fano K-moduli spaces). We also discuss potential applications to explicit study of moduli spaces of K-stable Fano...

  8. On rationality of moduli spaces of vector bundles on real Hirzebruch ...

    Indian Academy of Sciences (India)

    Introduction. Moduli spaces of semistable vector bundles on a smooth projective variety are studied from various points of view. One of the questions that is often addressed is the birational type of the moduli space, more precisely, the question of rationality. It is known that the moduli space of semistable vector bundles of ...

  9. Measurement of high temperature elastic moduli of an 18Cr-9Ni-2.95 Cu-0.58 Nb-0.1C (Wt %) austenitic stainless steel

    Science.gov (United States)

    Tripathy, Haraprasanna; Hajra, Raj Narayan; Sudha, C.; Raju, S.; Saibaba, Saroja

    2018-04-01

    The Young's modulus (E) and Shear modulus (G) of an indigenously developed 18Cr-9Ni-0.1C-2.95 Cu-0.58Nb (wt %) austenitic stainless steel has been evaluated in the temperature range 298 K to 1273 K (25 °C to 1000 °C), using Impulse excitation technique (IET). The Bulk modulus (K) and the poison's ratio have been estimated from the measured values of E and G. It is observed that the elastic constants (E, G and K) are found to decrease in a nonlinear fashion with increase in temperature. The Cu precipitation is found to influence the elastic moduli of the steel in the cooling cycle. The observed elastic moduli are fitted to 3rd order polynomial equations in order to describe the temperature dependence of E, G, K moduli in the temperature range 298-1273 K (25 °C to 1000 °C). The room temperature values of E,G and K moduli is found to be 207, 82 and 145 GPa respectively for the present steel.

  10. No-scale D-term inflation with stabilized moduli

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, Wilfried; Domcke, Valerie; Wieck, Clemens

    2013-09-15

    We study the consistency of hybrid inflation and moduli stabilization, using the Kallosh- Linde model as an example for the latter. We find that F-term hybrid inflation is not viable since inflationary trajectories are destabilized by tachyonic modes. On the other hand, D-term hybrid inflation is naturally compatible with moduli stabilization due to the absence of a large superpotential term during the inflationary phase. Our model turns out to be equivalent to superconformal D-term inflation and it therefore successfully accounts for the CMB data in the large-field regime. Supersymmetry breaking can be incorporated via an O'Raifeartaigh model. For GUT-scale inflation one obtains a stringent bound on the gravitino mass. A rough estimate yields m{sub 3/2}>or similar 10{sup 5} GeV, contrary to naive expectation.

  11. Structures and Elastic Moduli of Polymer Nanocomposite Thin Films

    Science.gov (United States)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2014-03-01

    Polymeric thin films generally possess unique mechanical and thermal properties due to confinement. In this study we investigated structures and elastic moduli of polymer nanocomposite thin films, which can potentially find wide applications in diverse areas such as in coating, permeation and separation. Conventional thermoplastics (PS, PMMA) and biopolymers (PLA, PCL) were chosen as polymer matrices. Various types of nanoparticles were used including nanoclay, fullerene and functionalized inorganic particles. Samples were prepared by solvent-mixing followed by spin-coating or flow-coating. Film structures were characterized using X-ray scattering and transmission electron microscopy. Elastic moduli were measured by strain-induced elastic buckling instability for mechanical measurements (SIEBIMM), and a strengthening effect was found in certain systems due to strong interaction between polymers and nanoparticles. The effects of polymer structure, nanoparticle addition and film thickness on elastic modulus will be discussed and compared with bulk materials.

  12. The Hilbert Series of the One Instanton Moduli Space

    CERN Document Server

    Benvenuti, Sergio; Mekareeya, Noppadol; 10.1007

    2010-01-01

    The moduli space of k G-instantons on R^4 for a classical gauge group G is known to be given by the Higgs branch of a supersymmetric gauge theory that lives on Dp branes probing D(p + 4) branes in Type II theories. For p = 3, these (3 + 1) dimensional gauge theories have N = 2 supersymmetry and can be represented by quiver diagrams. The F and D term equations coincide with the ADHM construction. The Hilbert series of the moduli spaces of one instanton for classical gauge groups is easy to compute and turns out to take a particularly simple form which is previously unknown. This allows for a G invariant character expansion and hence easily generalisable for exceptional gauge groups, where an ADHM construction is not known. The conjectures for exceptional groups are further checked using some new techniques like sewing relations in Hilbert Series. This is applied to Argyres-Seiberg dualities.

  13. Moduli evolution in the presence of flux compactifications

    International Nuclear Information System (INIS)

    Barreiro, Tiago; Carlos, Beatriz de; Copeland, Ed; Nunes, Nelson J.

    2005-01-01

    We study the cosmological evolution of the volume moduli in a class of recently proposed inflationary universe models of Kachru et al. arising out of Type IIB string theory, where a number of the moduli fields have been stabilized through flux compactifications. Developing an approach introduced by some of us earlier, we show, in agreement with Brustein et al., how the presence of extra sources of matter act so as to provide additional friction, slowing the modulus field as it evolves down its potential, thereby vastly increasing the region of parameter space which leads to the eventual stabilization of these fields. Extending the case to include both the real and imaginary parts of the volume modulus, we show how the parameter space of initial conditions is modified and comment on the impact for these inflationary models arising out of flux type compactifications

  14. IMPA-ICTP School on Moduli of Curves

    CERN Document Server

    Ciliberto, Ciro; Esteves, Eduardo; Melo, Margarida; Voisin, Claire

    2017-01-01

    Providing a timely description of the present state of the art of moduli spaces of curves and their geometry, this volume is written in a way which will make it extremely useful both for young people who want to approach this important field, and also for established researchers, who will find references, problems, original expositions, new viewpoints, etc. The book collects the lecture notes of a number of leading algebraic geometers and in particular specialists in the field of moduli spaces of curves and their geometry. This is an important subject in algebraic geometry and complex analysis which has seen spectacular developments in recent decades, with important applications to other parts of mathematics such as birational geometry and enumerative geometry, and to other sciences, including physics.  The themes treated are classical but with a constant look to modern developments (see Cascini, Debarre, Farkas, and Sernesi's contributions), and include very new material, such as Bridgeland stability (see M...

  15. No-scale D-term inflation with stabilized moduli

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Domcke, Valerie; Wieck, Clemens

    2013-09-01

    We study the consistency of hybrid inflation and moduli stabilization, using the Kallosh- Linde model as an example for the latter. We find that F-term hybrid inflation is not viable since inflationary trajectories are destabilized by tachyonic modes. On the other hand, D-term hybrid inflation is naturally compatible with moduli stabilization due to the absence of a large superpotential term during the inflationary phase. Our model turns out to be equivalent to superconformal D-term inflation and it therefore successfully accounts for the CMB data in the large-field regime. Supersymmetry breaking can be incorporated via an O'Raifeartaigh model. For GUT-scale inflation one obtains a stringent bound on the gravitino mass. A rough estimate yields m 3/2 >or similar 10 5 GeV, contrary to naive expectation.

  16. The Coulomb Branch Formula for Quiver Moduli Spaces

    CERN Document Server

    Manschot, Jan; Sen, Ashoke

    2014-01-01

    In recent series of works, by translating properties of multi-centered supersymmetric black holes into the language of quiver representations, we proposed a formula that expresses the Hodge numbers of the moduli space of semi-stable representations of quivers with generic superpotential in terms of a set of invariants associated to `single-centered' or `pure-Higgs' states. The distinguishing feature of these invariants is that they are independent of the choice of stability condition. Furthermore they are uniquely determined by the $\\chi_y$-genus of the moduli space. Here, we provide a self-contained summary of the Coulomb branch formula, spelling out mathematical details but leaving out proofs and physical motivations.

  17. Probing the moduli dependence of refined topological amplitudes

    Directory of Open Access Journals (Sweden)

    I. Antoniadis

    2015-12-01

    Full Text Available With the aim of providing a worldsheet description of the refined topological string, we continue the study of a particular class of higher derivative couplings Fg,n in the type II string effective action compactified on a Calabi–Yau threefold. We analyse first order differential equations in the anti-holomorphic moduli of the theory, which relate the Fg,n to other component couplings. From the point of view of the topological theory, these equations describe the contribution of non-physical states to twisted correlation functions and encode an obstruction for interpreting the Fg,n as the free energy of the refined topological string theory. We investigate possibilities of lifting this obstruction by formulating conditions on the moduli dependence under which the differential equations simplify and take the form of generalised holomorphic anomaly equations. We further test this approach against explicit calculations in the dual heterotic theory.

  18. In Silico Measurement of Elastic Moduli of Nematic Liquid Crystals

    Science.gov (United States)

    Sidky, Hythem; de Pablo, Juan J.; Whitmer, Jonathan K.

    2018-03-01

    Experiments on confined droplets of the nematic liquid crystal 5CB have questioned long-established bounds imposed on the elastic free energy of nematic systems. This elasticity, which derives from molecular alignment within nematic systems, is quantified through a set of moduli which can be difficult to measure experimentally and, in some cases, can only be probed indirectly. This is particularly true of the surfacelike saddle-splay elastic term, for which the available experimental data indicate values on the cusp of stability, often with large uncertainties. Here, we demonstrate that all nematic elastic moduli, including the saddle-splay elastic constant k24, may be calculated directly from atomistic molecular simulations. Importantly, results obtained through in silico measurements of the 5CB elastic properties demonstrate unambiguously that saddle-splay elasticity alone is unable to describe the observed confined morphologies.

  19. Moduli evolution in the presence of thermal corrections

    International Nuclear Information System (INIS)

    Barreiro, Tiago; Carlos, Beatriz de; Copeland, Edmund J.; Nunes, Nelson J.

    2008-01-01

    We study the effect of thermal corrections on the evolution of moduli in effective supergravity models. This is motivated by previous results in the literature suggesting that these corrections could alter and even erase the presence of a minimum in the zero temperature potential, something that would have disastrous consequences in these particular models. We show that, in a representative sample of flux compactification constructions, this need not be the case, although we find that the inclusion of thermal corrections can dramatically decrease the region of initial conditions for which the moduli are stabilized. Moreover, the bounds on the reheating temperature coming from demanding that the full, finite temperature potential, has a minimum can be considerably relaxed given the slow pace at which the evolution proceeds.

  20. Quantum moduli spaces of N=1 string theories

    International Nuclear Information System (INIS)

    Banks, T.; Dine, M.

    1996-01-01

    Generically, string models with N=1 supersymmetry are not expected to have moduli beyond perturbation theory; stringy nonperturbative effects as well as low energy field-theoretic phenomena such as gluino condensation will lift any flat directions. In this work, we describe models where some subspace of the moduli space survives nonperturbatively. Discrete R symmetries forbid any inherently stringy effects, and dynamical considerations control the field-theoretic effects. The surviving subspace is a space of high symmetry; the system is attracted to this subspace by a potential which we compute. Models of this type may be useful for considerations of duality and raise troubling cosmological questions about string theory. Our considerations also suggest a mechanism for fixing the expectation value of the dilaton. copyright 1996 The American Physical Society

  1. Instantons from geodesics in AdS moduli spaces

    Science.gov (United States)

    Ruggeri, Daniele; Trigiante, Mario; Van Riet, Thomas

    2018-03-01

    We investigate supergravity instantons in Euclidean AdS5 × S5/ℤk. These solutions are expected to be dual to instantons of N = 2 quiver gauge theories. On the supergravity side the (extremal) instanton solutions are neatly described by the (lightlike) geodesics on the AdS moduli space for which we find the explicit expression and compute the on-shell actions in terms of the quantised charges. The lightlike geodesics fall into two categories depending on the degree of nilpotency of the Noether charge matrix carried by the geodesic: for degree 2 the instantons preserve 8 supercharges and for degree 3 they are non-SUSY. We expect that these findings should apply to more general situations in the sense that there is a map between geodesics on moduli-spaces of Euclidean AdS vacua and instantons with holographic counterparts.

  2. On natural inflation and moduli stabilisation in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Palti, Eran [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, Heidelberg, 69120 (Germany)

    2015-10-28

    Natural inflation relies on the existence of an axion decay constant which is super-Planckian. In string theory only sub-Planckian axion decay constants have been found in any controlled regime. However in field theory it is possible to generate an enhanced super-Planckian decay constant by an appropriate aligned mixing between axions with individual sub-Planckian decay constants. We study the possibility of such a mechanism in string theory. In particular we construct a new realisation of an alignment scenario in type IIA string theory compactifications on a Calabi-Yau where the alignment is induced through fluxes. Within field theory the original decay constants are taken to be independent of the parameters which induce the alignment. In string theory however they are moduli dependent quantities and so interact gravitationally with the physics responsible for the mixing. We show that this gravitational effect of the fluxes on the moduli can precisely cancel any enhancement of the effective decay constant. This censorship of an effective super-Planckian decay constant depends on detailed properties of Calabi-Yau moduli spaces and occurs for all the examples and classes that we study. We expand these results to a general superpotential assuming only that the axion superpartners are fixed supersymmetrically and are able to show for a large class of Calabi-Yau manifolds, but not all, that the cancellation effect occurs and is independent of the superpotential. We also study simple models where the moduli are fixed non-supersymmetrically and find that similar cancellation behaviour can emerge. Finally we make some comments on a possible generalisation to axion monodromy inflation models.

  3. Von Neuman representations on self-dual Hilbert W* moduli

    International Nuclear Information System (INIS)

    Frank, M.

    1987-01-01

    Von Neumann algebras M of bounded operators on self-dual Hilbert W* moduli H possessing a cyclic-separating element x-bar in H are considered. The close relation of them to certain real subspaces of H is established. Under the supposition that the underlying W*-algebra is commutative, a Tomita-Takesaki type theorem is stated. The natural cone in H arising from the pair (M, x-bar) is investigated and its properties are obtained

  4. The Influence of Abutment Surface Treatment and the Type of Luting Cement on Shear Bond Strength between Titanium/Cement/Zirconia

    Directory of Open Access Journals (Sweden)

    Beata Śmielak

    2015-01-01

    Full Text Available Objectives. The objectives of this study were to evaluate the shear bond strength of zirconia cylinders on a modified titanium surface using different luting cement types. Material and Methods. Eighty titanium disks were divided into two groups (n=40, which were treated with either grinding or a combination of sandblasting and grinding. Then, each group was subdivided into 4 groups (n=10 and the disks were bonded to disks of sintered zirconia using one of four cement types (permanent: composite cement; temporary: polycarboxylate cement, zinc-oxide-eugenol cement, and resin cement. Shear bond strength (SBS was measured in a universal testing machine. Fracture pattern and site characteristic were recorded. A fractographic analysis was performed with SEM. The chemical analysis of the composition of the fractures was performed using energy-dispersive X-ray spectroscopy (EDS. The results of the experiment were analyzed with two-way analysis of variance and Tukey post hoc test. Results. The highest mean values of SBS were achieved when grinding was combined with sandblasting and when composite cement was used (18.18 MPa. In the temporary cement group, the highest mean values of SBS were for polycarboxylate cement after grinding (3.57 MPa. Conclusion. The choice of cement has a crucial influence on the titanium-cement-zirconia interface quality.

  5. Shear wave velocities in the upper mantle of the Western Alps: new constraints using array analysis of seismic surface waves

    Science.gov (United States)

    Lyu, Chao; Pedersen, Helle A.; Paul, Anne; Zhao, Liang; Solarino, Stefano

    2017-07-01

    It remains challenging to obtain absolute shear wave velocities of heterogeneities of small lateral extension in the uppermost mantle. This study presents a cross-section of Vs across the strongly heterogeneous 3-D structure of the western European Alps, based on array analysis of data from 92 broad-band seismic stations from the CIFALPS experiment and from permanent networks in France and Italy. Half of the stations were located along a dense sublinear array. Using a combination of these stations and off-profile stations, fundamental-mode Rayleigh wave dispersion curves were calculated using a combined frequency-time beamforming approach. We calculated dispersion curves for seven arrays of approximately 100 km aperture and 14 arrays of approximately 50 km aperture, the latter with the aim of obtaining a 2-D vertical cross-section of Vs beneath the western Alps. The dispersion curves were inverted for Vs(z), with crustal interfaces imposed from a previous receiver function study. The array approach proved feasible, as Vs(z) from independent arrays vary smoothly across the profile length. Results from the seven large arrays show that the shear velocity of the upper mantle beneath the European plate is overall low compared to AK135 with the lowest velocities in the internal part of the western Alps, and higher velocities east of the Alps beneath the Po plain. The 2-D Vs model is coherent with (i) a ∼100 km thick eastward-dipping European lithosphere west of the Alps, (ii) very high velocities beneath the Po plain, coherent with the presence of the Alpine (European) slab and (iii) a narrow low-velocity anomaly beneath the core of the western Alps (from the Briançonnais to the Dora Maira massif), and approximately colocated with a similar anomaly observed in a recent teleseismic P-wave tomography. This intriguing anomaly is also supported by traveltime variations of subvertically propagating body waves from two teleseismic events that are approximately located on

  6. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    Science.gov (United States)

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  7. Evaluation of Surface Characteristics and Shear Bond Strength of Metal Brackets Bonded to Two Different Porcelain Systems (Feldspathic/IPS-Empress-2 treated with Different Surface Conditioning Methods

    Directory of Open Access Journals (Sweden)

    Amal S Nair

    2012-01-01

    Conclusion: Surface conditioning with Co-Jet sand which produced silicatization resulted in a favorable bond strength in both feldspathic and IPS-Empress-2 ceramic surfaces. It was shown that it produced the least surface roughness among all the other surface conditioning groups.

  8. Bayesian inversion of surface-wave data for radial and azimuthal shear-wave anisotropy, with applications to central Mongolia and west-central Italy

    Science.gov (United States)

    Ravenna, Matteo; Lebedev, Sergei

    2018-04-01

    Seismic anisotropy provides important information on the deformation history of the Earth's interior. Rayleigh and Love surface-waves are sensitive to and can be used to determine both radial and azimuthal shear-wave anisotropies at depth, but parameter trade-offs give rise to substantial model non-uniqueness. Here, we explore the trade-offs between isotropic and anisotropic structure parameters and present a suite of methods for the inversion of surface-wave, phase-velocity curves for radial and azimuthal anisotropies. One Markov chain Monte Carlo (McMC) implementation inverts Rayleigh and Love dispersion curves for a radially anisotropic shear velocity profile of the crust and upper mantle. Another McMC implementation inverts Rayleigh phase velocities and their azimuthal anisotropy for profiles of vertically polarized shear velocity and its depth-dependent azimuthal anisotropy. The azimuthal anisotropy inversion is fully non-linear, with the forward problem solved numerically at different azimuths for every model realization, which ensures that any linearization biases are avoided. The computations are performed in parallel, in order to reduce the computing time. The often challenging issue of data noise estimation is addressed by means of a Hierarchical Bayesian approach, with the variance of the noise treated as an unknown during the radial anisotropy inversion. In addition to the McMC inversions, we also present faster, non-linear gradient-search inversions for the same anisotropic structure. The results of the two approaches are mutually consistent; the advantage of the McMC inversions is that they provide a measure of uncertainty of the models. Applying the method to broad-band data from the Baikal-central Mongolia region, we determine radial anisotropy from the crust down to the transition-zone depths. Robust negative anisotropy (Vsh < Vsv) in the asthenosphere, at 100-300 km depths, presents strong new evidence for a vertical component of asthenospheric

  9. Moduli effective action in warped brane-world compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume E-mail: garriga@ifae.es; Pujolas, Oriol; Tanaka, Takahiro

    2003-04-07

    We consider a class of 5D brane-world solutions with a power-law warp factor a(y){proportional_to}y{sup q}, and bulk dilaton with profile phi{proportional_to}lny, where y is the proper distance in the extra dimension. This class includes the heterotic M-theory brane-world of [Phys. Rev. D 59 (1999) 086001, and] and the Randall-Sundrum (RS) model as a limiting case. In general, there are two moduli fields y{sub {+-}}, corresponding to the 'positions' of two branes (which live at the fixed points of an orbifold compactification). Classically, the moduli are massless, due to a scaling symmetry of the action. However, in the absence of supersymmetry, they develop an effective potential at one loop. Local terms proportional to K{sub {+-}}{sup 4}, where K{sub {+-}}=q/y{sub {+-}} is the local curvature scale at the location of the corresponding brane, are needed in order to remove the divergences in the effective potential. Such terms break the scaling symmetry and hence they may act as stabilizers for the moduli. When the branes are very close to each other, the effective potential induced by massless bulk fields behaves like V{approx}d{sup -4}, where d is the separation between branes. When the branes are widely separated, the potentials for each one of the moduli generically develop a 'Coleman-Weinberg'-type behaviour of the form a{sup 4}(y{sub {+-}})K{sub {+-}}{sup 4}ln(K{sub {+-}}/{mu}{sub {+-}}), where {mu}{sub {+-}} are renormalization scales. In the RS case, the bulk geometry is AdS and K{sub {+-}} are equal to a constant, independent of the position of the branes, so these terms do not contribute to the mass of the moduli. However, for generic warp factor, they provide a simple stabilization mechanism. For q > or approx. 10, the observed hierarchy can be naturally generated by this potential, giving the lightest modulus a mass of order m{sub -} < or approx. TeV.

  10. Viscosity of dilute suspensions of rigid bead arrays at low shear: accounting for the variation in hydrodynamic stress over the bead surfaces.

    Science.gov (United States)

    Allison, Stuart A; Pei, Hongxia

    2009-06-11

    In this work, we examine the viscosity of a dilute suspension of irregularly shaped particles at low shear. A particle is modeled as a rigid array of nonoverlapping beads of variable size and geometry. Starting from a boundary element formalism, approximate account is taken of the variation in hydrodynamic stress over the surface of the individual beads. For a touching dimer of two identical beads, the predicted viscosity is lower than the exact value by 5.2%. The methodology is then applied to several other model systems including tetramers of variable conformation and linear strings of touching beads. An analysis is also carried out of the viscosity and translational diffusion of several dilute amino acids and diglycine in water. It is concluded that continuum hydrodynamic modeling with stick boundary conditions is unable to account for the experimental viscosity and diffusion data simultaneously. A model intermediate between "stick" and "slip" could possibly reconcile theory and experiment.

  11. Gauge and moduli hierarchy in a multiply warped braneworld scenario

    International Nuclear Information System (INIS)

    Das, Ashmita; SenGupta, Soumitra

    2013-01-01

    Discovery of Higgs-like boson near the mass scale ∼126 Gev generates renewed interest to the gauge hierarchy problem in the standard model related to the stabilisation of the Higgs mass within Tev scale without any unnatural fine tuning. One of the successful attempts to resolve this problem has been the Randall–Sundrum warped geometry model. Subsequently this 5-dimensional model was extended to a doubly warped 6-dimensional (or higher) model which can offer a geometric explanation of the fermion mass hierarchy in the standard model of elementary particles (D. Choudhury and S. SenGupta, 2007 [1]). In an attempt to address the dark energy issue, we in this work extend such 6-dimensional warped braneworld model to include non-flat 3-branes at the orbifold fixed points such that a small but non-vanishing brane cosmological constant is induced in our observable brane. We show that the requirements of a Planck to Tev scale warping along with a vanishingly small but non-zero cosmological constant on the visible brane with non-hierarchical moduli, each with scale close to Planck length, lead to a scenario where the 3-branes can have energy scales either close to Tev or close to Planck scale. Such a scenario can address both the gauge hierarchy as well as fermion mass hierarchy problem in standard model without introducing hierarchical scales between the two moduli. Thus simultaneous resolutions to the gauge hierarchy problem, fermion mass hierarchy problem and non-hierarchical moduli problem are closely linked with the near flatness condition of our universe.

  12. Moduli stabilization and uplifting with dynamically generated F-terms

    International Nuclear Information System (INIS)

    Dudas, Emilian; Papineau, Chloe; Pokorski, Stefan

    2007-01-01

    We use the F-term dynamical supersymmetry breaking models with metastable vacua in order to uplift the vacuum energy in the KKLT moduli stabilization scenario. The main advantage compared to earlier proposals is the manifest supersymmetric treatment and the natural coexistence of a TeV gravitino mass with a zero cosmological constant. We argue that it is generically difficult to avoid anti de-Sitter supersymmetric minima, however the tunneling rate from the metastable vacuum with zero vacuum energy towards them can be very suppressed. We briefly comment on the properties of the induced soft terms in the observable sector

  13. Moduli stabilization and uplifting with dynamically generated F-terms

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, Emilian [CERN Theory Division, CH-1211, Geneva 23 (Switzerland); Papineau, Chloe [CPhT, Ecole Polytechnique, F-91128 Palaiseau Cedex (France); Pokorski, Stefan [Institute of Theoretical Physics, Univ. of Warsaw, 00-681 Warsaw (Poland)

    2007-02-15

    We use the F-term dynamical supersymmetry breaking models with metastable vacua in order to uplift the vacuum energy in the KKLT moduli stabilization scenario. The main advantage compared to earlier proposals is the manifest supersymmetric treatment and the natural coexistence of a TeV gravitino mass with a zero cosmological constant. We argue that it is generically difficult to avoid anti de-Sitter supersymmetric minima, however the tunneling rate from the metastable vacuum with zero vacuum energy towards them can be very suppressed. We briefly comment on the properties of the induced soft terms in the observable sector.

  14. Fixing All Moduli in a Simple F-Theory Compactification

    International Nuclear Information System (INIS)

    Denef, F.

    2005-01-01

    We discuss a simple example of an F-theory compactification on a Calabi-Yau fourfold where background fluxes, together with nonperturbative effects from Euclidean D3 instantons and gauge dynamics on D7 branes, allow us to fix all closed and open string moduli. We explicitly check that the known higher order corrections to the potential, which we neglect in our leading approximation, only shift the results by a small amount. In our exploration of the model, we encounter interesting new phenomena, including examples of transitions where D7 branes absorb O3 planes, while changing topology to preserve the net D3 charge

  15. Using Ultrasonic Lamb Waves To Measure Moduli Of Composites

    Science.gov (United States)

    Kautz, Harold E.

    1995-01-01

    Measurements of broad-band ultrasonic Lamb waves in plate specimens of ceramic-matrix/fiber and metal-matrix/fiber composite materials used to determine moduli of elasticity of materials. In one class of potential applications of concept, Lamb-wave responses of specimens measured and analyzed at various stages of thermal and/or mechanical processing to determine effects of processing, without having to dissect specimens. In another class, structural components having shapes supporting propagation of Lamb waves monitored ultrasonically to identify signs of deterioration and impending failure.

  16. Non-minimal gauge mediation and moduli stabilization

    International Nuclear Information System (INIS)

    Jelinski, T.; Lalak, Z.; Pawelczyk, J.

    2010-01-01

    In this Letter we consider U(1) A -gauged Polonyi model with two spurions coupled to a twisted closed string modulus. This offers a consistent setup for metastable SUSY breakdown which allows for moduli stabilization and naturally leads to gauge or hybrid gauge/gravitational mediation mechanism. Due to the presence of the second spurion one can arrange for a solution of the μ and B μ problems in a version of modified Giudice-Masiero mechanism, which works both in the limit of pure gauge mediation and in the mixed regime of hybrid mediation.

  17. Moduli/inflaton mixing with supersymmetry breaking field

    Energy Technology Data Exchange (ETDEWEB)

    Endo, M.; Takahashi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Tokyo Univ. (Japan). Inst. for Cosmic Ray Research; Hamaguchi, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Tokyo Univ. (Japan). Dept. of Physics

    2006-05-15

    A heavy scalar field such as moduli or an inflaton generally mixes with a field responsible for the supersymmetry breaking. We study the scalar decay into the standard model particles and their superpartners, gravitinos, and the supersymmetry breaking sector, particularly paying attention to decay modes that proceed via the mixing between the scalar and the supersymmetry breaking field. The impacts of the new decay processes on cosmological scenarios are also discussed; the modulus field generically produces too much gravitinos, and most of the inflation models tend to result in too high reheating temperature and/or gravitino overproduction. (Orig.)

  18. Influence of aluminium sheet surface modification on the self-piercing riveting process and the joint static lap shear strength

    OpenAIRE

    Li, Dezhi

    2017-01-01

    Self-piercing riveting (SPR) has been widely used in automotive as one of the major joining technologies for aluminium structures due to its advantages over some of the more traditional joining technologies. Research has shown that friction is a very important factor that influences both the riveting process and the joint strength for SPR, but these influences have not been fully understood. In this paper, AA5754 sheets with different surface textures, such as original with solid wax, hot wat...

  19. Quantum-induced interactions in the moduli space of degenerate BPS domain walls

    International Nuclear Information System (INIS)

    Alonso-Izquierdo, A.; Guilarte, J. Mateos

    2014-01-01

    In this paper quantum effects are investigated in a very special two-scalar field model having a moduli space of BPS topological defects. In a (1+1)-dimensional space-time the defects are classically degenerate in mass kinks, but in (3+1) dimensions the kinks become BPS domain walls, all of them sharing the same surface tension at the classical level. The heat kernel/zeta function regularization method will be used to control the divergences induced by the quantum kink and domain wall fluctuations. A generalization of the Gilkey-DeWitt-Avramidi heat kernel expansion will be developed in order to accommodate the infrared divergences due to zero modes in the spectra of the second-order kink and domain wall fluctuation operators, which are respectively N=2×N=2 matrix ordinary or partial differential operators. Use of these tools in the spectral zeta function associated with the Hessian operators paves the way to obtain general formulas for the one-loop kink mass and domain wall tension shifts in any (1+1)- or (3+1)-dimensional N-component scalar field theory model. Application of these formulae to the BPS kinks or domain walls of the N=2 model mentioned above reveals the breaking of the classical mass or surface tension degeneracy at the quantum level. Because the main parameter distinguishing each member in the BPS kink or domain wall moduli space is essentially the distance between the centers of two basic kinks or walls, the breaking of the degeneracy amounts to the surge in quantum-induced forces between the two constituent topological defects. The differences in surface tension induced by one-loop fluctuations of BPS walls give rise mainly to attractive forces between the constituent walls except if the two basic walls are very far apart. Repulsive forces between two close walls only arise if the coupling approaches the critical value from below

  20. Preparation and Elastic Moduli of Germanate Glass Containing Lead and Bismuth

    Directory of Open Access Journals (Sweden)

    Wan M. M. Yunus

    2012-04-01

    Full Text Available This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG systems in the form of (GeO260–(PbO40−x–(½Bi2O3x where x = 0 to 40 mol%. Their densities with respect of Bi2O3 concentration were determined using Archimedes’ method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B2O320–(PbO80−x–(Bi2O3x. The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi2O3 content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young’s also increase linearly with addition of Bi2O3 but the bulk modulus did not. The Poisson’s ratio and fractal dimensionality are also found to vary linearly with the Bi2O3 concentration.

  1. Preparation and elastic moduli of germanate glass containing lead and bismuth.

    Science.gov (United States)

    Sidek, Hj A A; Bahari, Hamid R; Halimah, Mohamed K; Yunus, Wan M M

    2012-01-01

    This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG) systems in the form of (GeO(2))(60)-(PbO)(40-) (x)-(½Bi(2)O(3))(x) where x = 0 to 40 mol%. Their densities with respect of Bi(2)O(3) concentration were determined using Archimedes' method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B(2)O(3))(20)-(PbO)(80-) (x)-(Bi(2)O(3))(x). The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi(2)O(3) content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young's also increase linearly with addition of Bi(2)O(3) but the bulk modulus did not. The Poisson's ratio and fractal dimensionality are also found to vary linearly with the Bi(2)O(3) concentration.

  2. Effects of porosity on seismic velocities, elastic moduli and Poisson's ratios of solid materials and rocks

    Directory of Open Access Journals (Sweden)

    Chengbo Yu

    2016-02-01

    Full Text Available The generalized mixture rule (GMR is used to provide a unified framework for describing Young's (E, shear (G and bulk (K moduli, Lame parameter (λ, and P- and S-wave velocities (Vp and Vs as a function of porosity in various isotropic materials such as metals, ceramics and rocks. The characteristic J values of the GMR for E, G, K and λ of each material are systematically different and display consistent correlations with the Poisson's ratio of the nonporous material (ν0. For the materials dominated by corner-shaped pores, the fixed point at which the effective Poisson's ratio (ν remains constant is at ν0 = 0.2, and J(G > J(E > J(K > J(λ and J(G  0.2 and ν0  J(Vp and J(Vs  0.2 and ν0  0.2 and ν0 = 0.2, respectively. For natural rocks containing thin-disk-shaped pores parallel to mineral cleavages, grain boundaries and foliation, however, the ν fixed point decreases nonlinearly with decreasing pore aspect ratio (α: width/length. With increasing depth or pressure, cracks with smaller α values are progressively closed, making the ν fixed point rise and finally reach to the point at ν0 = 0.2.

  3. Supermanifolds and super Riemann surfaces

    International Nuclear Information System (INIS)

    Rabin, J.M.

    1986-09-01

    The theory of super Riemann surfaces is rigorously developed using Rogers' theory of supermanifolds. The global structures of super Teichmueller space and super moduli space are determined. The super modular group is shown to be precisely the ordinary modular group. Super moduli space is shown to be the gauge-fixing slice for the fermionic string path integral

  4. The output least-squares approach to estimating Lamé moduli

    Science.gov (United States)

    Gockenbach, Mark S.

    2007-12-01

    The Lamé moduli of a heterogeneous, isotropic, planar membrane can be estimated by observing the displacement of the membrane under a known edge traction, and choosing estimates of the moduli that best predict the observed displacement under a finite-element simulation. This algorithm converges to the exact moduli given pointwise measurements of the displacement on an increasingly fine mesh. The error estimates that prove this convergence also show the instability of the inverse problem.

  5. Thermodynamics and elastic moduli of fluids with steeply repulsive potentials

    Science.gov (United States)

    Heyes, D. M.

    1997-08-01

    Analytic expressions for the thermodynamic properties and elastic moduli of molecular fluids interacting with steeply repulsive potentials are derived using Rowlinson's hard-sphere perturbation treatment which employs a softness parameter, λ specifying the deviation from the hard-sphere potential. Generic potentials of this form might be used to represent the interactions between near-hard-sphere stabilized colloids. Analytic expressions for the equivalent hard-sphere diameter of inverse power [ɛ(σ/r)n where ɛ sets the energy scale and σ the distance scale] exponential and logarithmic potential forms are derived using the Barker-Henderson formula. The internal energies in the hard-sphere limit are predicted essentially exactly by the perturbation approach when compared against molecular dynamics simulation data using the same potentials. The elastic moduli are similarly accurately predicted in the hard-sphere limit, as they are trivially related to the internal energy. The compressibility factors from the perturbation expansion do not compare as favorably with simulation data, and in this case the Carnahan-Starling equation of state prediction using the analytic effective hard-sphere diameter would appear to be a preferable route for this thermodynamic property. A more refined state point dependent definition for the effective hard-sphere diameter is probably required for this property.

  6. Correlations between elastic moduli and properties in bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang Weihua

    2006-01-01

    A survey of the elastic, mechanical, fragility, and thermodynamic properties of bulk metallic glasses (BMGs) and glass-forming liquids is presented. It is found that the elastic moduli of BMGs have correlations with the glass transition temperature, melting temperature, mechanical properties, and even liquid fragility. On the other hand, the elastic constants of available BMGs show a rough correlation with a weighted average of the elastic constants for the constituent elements. Although the theoretical and physical reasons for the correlations are to be clarified, these correlations could assist in understanding the long-standing issues of glass formation and the nature of glass and simulate the work of theorists. Based on the correlation, we show that the elastic moduli can assist in selecting alloying components for controlling the elastic properties and glass-forming ability of the BMGs and thus can guide BMG design. As case study, we report the formation of the families of rare-earth-based BMGs with controllable properties

  7. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    Science.gov (United States)

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  8. Distributed Acoustic Sensing (DAS) Array near a Highway for Traffic Monitoring and Near-Surface Shear-Wave Velocity Profiles

    Science.gov (United States)

    Wang, H. F.; Fratta, D.; Lancelle, C.; Ak, E. Ms; Lord, N. E.

    2017-12-01

    Monitoring traffic is important for many technical reasons. It allows for better design of future roads and assessment of the state of current roads. The number, size, weight, and speed of vehicles control deterioration rate. Also, real-time information supplies data to intelligent information systems to help control traffic. Recently there have been studies looking at monitoring traffic seismically as vibrations from traffic are not sensitive to weather and poor visibility. Furthermore, traffic noise can be used to image S-wave velocity distribution in the near surface by capturing and interpreting Rayleigh and Love waves (Nakata, 2016; Zeng et al. 2016). The capability of DAS for high spatial sampling (1 m), temporal sampling (up to 10 kHz), and distributed nature (tens of kilometers) allows for a closer look at the traffic as it passes and how the speed of the vehicle may change over the length of the array. The potential and difficulties of using DAS for these objectives were studied using two DAS arrays. One at Garner Valley in Southern California (a 700-meter array adjacent to CA Highway 74) and another in Brady Hot Springs, Nevada (an 8700-meter array adjacent to Interstate 80). These studies experimentally evaluated the use of DAS data for monitoring traffic and assessing the use of traffic vibration as non-localized sources for seismic imaging. DAS arrays should also be resilient to issues with lighting conditions that are problematic for video monitoring and it may be sensitive to the weight of a vehicle. This study along a major interstate provides a basis for examining DAS' potential and limitations as a key component of intelligent highway systems.

  9. Real-time monitoring of methanol concentration using a shear horizontal surface acoustic wave sensor for direct methanol fuel cell without reference liquid measurement

    Science.gov (United States)

    Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun

    2017-07-01

    In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.

  10. Shear wave velocity investigation of soil liquefaction sites from the Tangshan, China M7.8 earthquake of 1976 using active and passive surface wave methods

    Science.gov (United States)

    Kayen, Robert E; Tao, Xiaxin; Shi, Lijing; Shi, Hailiang

    2008-01-01

    An initial investigation of soil liquefaction sites from the July, 28 1976 Tangshan M7.8 earthquake was conducted between 1976 and 1978 by the National Ministry of Railways, China. These data are the basis of the ‘Chinese Method’ for assessment of liquefaction potential of silty-sand deposits, and are an important component of the worldwide data set for modern probabilistic methods for assessment of soil liquefaction using Bayesian updating and system reliability tools. We revisited 26 sites identified in the maps and published 198 report of the Ministry of Railways in order to investigate these locations with a suite of active- and passive-array surface wave methods. These sites are clustered along the north coast of the Bo Hai Sea in three areas: Lutai, Tianjin; Tangshan City and outlying village, Hebei; and Luannan county, Hebei. First, we gathered and evaluated the Rayleigh wave dispersion characteristics of the ground by comparing dispersion curves from the active source harmonic wave-spectral analysis of surface waves (SASW) method and the passive array Spatial Auto-Correlation method (SPAC). The dispersive properties of the liquefied ground as measured by these two methods were found to be almost identical. These tests were hybridized and the data sets merged in order to invert of shear wave velocities for analysis of liquefaction potential using a probabilistic framework. The data from high-values of seismic intensity near Tangshan city to low-intensities distant of the event in Luannan County segregate out into clusters of liquefied and non liquefied points clearly separated by liquefaction boundary curves developed from a large global data set of 310 sites

  11. Exact moduli space metrics for hyperbolic vortex polygons

    International Nuclear Information System (INIS)

    Krusch, S.; Speight, J. M.

    2010-01-01

    Exact metrics on some totally geodesic submanifolds of the moduli space of static hyperbolic N-vortices are derived. These submanifolds, denoted as Σ n,m , are spaces of C n -invariant vortex configurations with n single vortices at the vertices of a regular polygon and m=N-n coincident vortices at the polygon's center. The geometric properties of Σ n,m are investigated, and it is found that Σ n,n-1 is isometric to the hyperbolic plane of curvature -(3πn) -1 . The geodesic flow on Σ n,m and a geometrically natural variant of geodesic flow recently proposed by Collie and Tong ['The dynamics of Chern-Simons vortices', Phys. Rev. D Part. Fields Gravit. Cosmol. 78, 065013 (2008);e-print arXiv:hep-th/0805.0602] are analyzed in detail.

  12. Dynamics of moduli and gaugino condensates in an expanding universe

    International Nuclear Information System (INIS)

    Papineau, C.; Ramos-Sanchez, S.; Postma, M.

    2009-08-01

    We study dynamical moduli stabilization driven by gaugino condensation in supergravity. In the presence of background radiation, there exists a region of initial conditions leading to successful stabilization. We point out that most of the allowed region corresponds to initial Hubble rate H close to the scale of condensation Λ, which is the natural cutoff of the effective theory. We first show that including the condensate dynamics sets a strong bound on the initial conditions. We then find that (complete) decoupling of the condensate happens at H about two orders of magnitude below Λ. This bound implies that in the usual scenario with the condensate integrated out, only the vicinity of the minimum leads to stabilization. Finally, we discuss the effects of thermal corrections. (orig.)

  13. Yukawa unification in moduli-dominant SUSY breaking

    International Nuclear Information System (INIS)

    Khalil, S.; Tatsuo Kobayashi

    1997-07-01

    We study Yukawa in string models with moduli-dominant SUSY breaking. This type of SUSY breaking in general leads to non-universal soft masses, i.e. soft scalar masses and gaugino masses. Such non-universality is important for phenomenological aspects of Yukawa unification, i.e., successful electroweak breaking, SUSY corrections to the bottom mass and the branching ratio of b → sγ. We show three regions in the whole parameter space which lead to successful electroweak breaking and allow small SUSY corrections to the bottom mass. For these three regions we investigated the b → sγ decay and mass spectra. (author). 26 refs, 6 figs

  14. Instanton transition in thermal and moduli deformed de Sitter cosmology

    International Nuclear Information System (INIS)

    Kounnas, Costas; Partouche, Herve

    2008-01-01

    We consider the de Sitter cosmology deformed by the presence of a thermal bath of radiation and/or time-dependent moduli fields. Depending on the parameters, either a first or second-order phase transition can occur. In the first case, an instanton allows a double analytic continuation. It induces a probability to enter the inflationary evolution by tunnel effect from another cosmological solution. The latter starts with a big bang and, in the case the transition does not occur, ends with a big crunch. A temperature duality exchanges the two cosmological branches. In the limit where the pure de Sitter universe is recovered, the tunnel effect reduces to a 'creation from nothing', due to the vanishing of the big bang branch. However, the latter may be viable in some range of the deformation parameter. In the second case, there is a smooth evolution from a big bang to the inflationary phase

  15. Moduli Spaces for Linear Differential Equations and the Painlevé Equations

    NARCIS (Netherlands)

    Put, Marius van der; Saito, Masa-Hiko

    2009-01-01

    A systematic construction of isomonodromic families of connections of rank two on the Riemarm sphere is obtained by considering the analytic Riemann-Hilbert map RH : M -> R, where M is a moduli space of connections and 72, the monodromy space, is a moduli space for analytic data (i.e., ordinary

  16. Ultrasonic measurements at elevated pressures (9 GPa) to determine Poisson's ratio and other elastic moduli of NaCl and NaF

    International Nuclear Information System (INIS)

    Morris, C.E.; Jamieson, J.C.; Yarger, F.L.

    1976-01-01

    Transit times of longitudinal and transverse ultrasonic waves were measured simultaneously in NaCl and NaF as a function of ''quasihydrostatic'' pressure to 9 GPa. The dimensionless ratio of these transit times yields directly the ratio of the longitudinal to shear velocity. This velocity ratio is independent of sample length. Using third-order elasticity theory a correction for a probable superimposed uniaxial stress component may be made. When done, this allows the direct determination of Poisson's ratio for each pressure. Shock-wave data are used to obtain other elastic moduli and velocities of shear and longitudinal waves. Apparatus for making these measurements is described and data for NaCl and NaF are presented

  17. Simulations of Granular Particles Under Cyclic Shear

    Science.gov (United States)

    Royer, John; Chaikin, Paul

    2012-02-01

    We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.

  18. A first-principles study of cementite (Fe{sub 3}C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, G., E-mail: g-ghosh@northwestern.edu [Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108 (United States)

    2015-08-15

    A comprehensive computational study of elastic properties of cementite (Fe{sub 3}C) and its alloyed counterparts (M{sub 3}C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr{sub 2}FeC and CrFe{sub 2}C) having the crystal structure of Fe{sub 3}C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, C{sub ij}, of above M{sub 3}Cs; (ii) anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated C{sub ij}s, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio) of M{sub 3}Cs by homogenization of calculated C{sub ij}s; and (iv) acoustic Debye temperature, θ{sub D}, of M{sub 3}Cs based on calculated C{sub ij}s. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  19. HIGH-RESOLUTION CALCULATION OF THE SOLAR GLOBAL CONVECTION WITH THE REDUCED SPEED OF SOUND TECHNIQUE. II. NEAR SURFACE SHEAR LAYER WITH THE ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, H.; Rempel, M. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Yokoyama, T., E-mail: hotta@ucar.edu [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-01-01

    We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R {sub ☉} and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R {sub ☉}. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 results from rotationally aligned convection cells ({sup b}anana cells{sup )}. The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.

  20. The Infinitesimal Moduli Space of Heterotic G 2 Systems

    Science.gov (United States)

    de la Ossa, Xenia; Larfors, Magdalena; Svanes, Eirik E.

    2018-06-01

    Heterotic string compactifications on integrable G 2 structure manifolds Y with instanton bundles {(V,A), (TY,\\tilde{θ})} yield supersymmetric three-dimensional vacua that are of interest in physics. In this paper, we define a covariant exterior derivative D and show that it is equivalent to a heterotic G 2 system encoding the geometry of the heterotic string compactifications. This operator D acts on a bundle Q}=T^*Y \\oplus End(V) \\oplus End(TY)} and satisfies a nilpotency condition \\check{{D^2=0} , for an appropriate projection of D. Furthermore, we determine the infinitesimal moduli space of these systems and show that it corresponds to the finite-dimensional cohomology group H^1_{D}(Q). We comment on the similarities and differences of our result with Atiyah's well-known analysis of deformations of holomorphic vector bundles over complex manifolds. Our analysis leads to results that are of relevance to all orders in the {α'} expansion.

  1. Interface effects on effective elastic moduli of nanocrystalline materials

    International Nuclear Information System (INIS)

    Wang Gangfeng; Feng Xiqiao; Yu Shouwen; Nan Cewen

    2003-01-01

    Interfaces often play a significant role in many physical properties and phenomena of nanocrystalline materials (NcMs). In the present paper, the interface effects on the effective elastic property of NcMs are investigated. First, an atomic potential method is suggested for estimating the effective elastic modulus of an interface phase. Then, the Mori-Tanaka effective field method is employed to determine the overall effective elastic moduli of a nanocrystalline material, which is regarded as a binary composite consisting of a crystal or inclusion phase with regular lattice connected by an amorphous-like interface or matrix phase. Finally, the stiffening effects of strain gradients are examined on the effective elastic property by using the strain gradient theory to analyze a representative unit cell. Our analysis shows two physical mechanisms of interfaces that influence the effective stiffness and other mechanical properties of materials. One is the softening effect due to the distorted atomic structures and the increased atomic spacings in interface regions, and another is the baffling effect due to the existence of boundary layers between the interface phase and the crystalline phase

  2. Quantum triangulations. Moduli spaces, strings, and quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, Mauro; Marzouli, Annalisa [Univ. degli Studi di Pavia (Italy). Dipt. Fisica Nucleare e Teorica; Istituto Nazionale di Fisica Nucleare e Teorica, Pavia (Italy)

    2012-07-01

    Research on polyhedral manifolds often points to unexpected connections between very distinct aspects of Mathematics and Physics. In particular triangulated manifolds play quite a distinguished role in such settings as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, and critical phenomena. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is rather often a consequence of an underlying structure which naturally calls into play non-trivial aspects of representation theory, of complex analysis and topology in a way which makes manifest the basic geometric structures of the physical interactions involved. Yet, in most of the existing literature, triangulated manifolds are still merely viewed as a convenient discretization of a given physical theory to make it more amenable for numerical treatment. The motivation for these lectures notes is thus to provide an approachable introduction to this topic, emphasizing the conceptual aspects, and probing, through a set of cases studies, the connection between triangulated manifolds and quantum physics to the deepest. This volume addresses applied mathematicians and theoretical physicists working in the field of quantum geometry and its applications. (orig.)

  3. Effective moduli of high volume fraction particulate composites

    International Nuclear Information System (INIS)

    Kwon, P.; Dharan, C.K.H.

    1995-01-01

    Predictions using current micromechanics theories for the effective moduli of particulate-reinforced composites tend to break down at high volume fractions of the reinforcing phase. The predictions are usually well below experimentally measured values of the Young's modulus for volume fractions exceeding about 0.6. In this paper, the concept of contiguity, which is a measure of phase continuity, is applied to Mori-Tanaka micromechanics theory. It is shown that contiguity of the second phase increases with volume fraction, leading eventually to a reversal in the roles of the inclusion and matrix. In powder metallurgy practice, it is well known that at high volume fractions, sintering and consolidation of the reinforcement make it increasingly continuous and more like the matrix phase, while the former matrix tends to become more like the inclusion phase. The concept of contiguity applied to micromechanics theory results in very good agreement between the predicted Young's modulus and experimental data on tungsten carbide particulate-reinforced cobalt

  4. Explaining the electroweak scale and stabilizing moduli in M theory

    International Nuclear Information System (INIS)

    Acharya, Bobby S.; Bobkov, Konstantin; Kane, Gordon L.; Kumar, Piyush; Shao Jing

    2007-01-01

    In a recent paper [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).] it was shown that in fluxless M theory vacua with at least two hidden sectors undergoing strong gauge dynamics and a particular form of the Kaehler potential, all moduli are stabilized by the effective potential and a stable hierarchy is generated, consistent with standard gauge unification. This paper explains the results of [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).] in more detail and generalizes them, finding an essentially unique de Sitter vacuum under reasonable conditions. One of the main phenomenological consequences is a prediction which emerges from this entire class of vacua: namely, gaugino masses are significantly suppressed relative to the gravitino mass. We also present evidence that, for those vacua in which the vacuum energy is small, the gravitino mass, which sets all the superpartner masses, is automatically in the TeV-100 TeV range

  5. Explaining the electroweak scale and stabilizing moduli in M theory

    Science.gov (United States)

    Acharya, Bobby S.; Bobkov, Konstantin; Kane, Gordon L.; Kumar, Piyush; Shao, Jing

    2007-12-01

    In a recent paper [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).PRLTAO0031-900710.1103/PhysRevLett.97.191601] it was shown that in fluxless M theory vacua with at least two hidden sectors undergoing strong gauge dynamics and a particular form of the Kähler potential, all moduli are stabilized by the effective potential and a stable hierarchy is generated, consistent with standard gauge unification. This paper explains the results of [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).PRLTAO0031-900710.1103/PhysRevLett.97.191601] in more detail and generalizes them, finding an essentially unique de Sitter vacuum under reasonable conditions. One of the main phenomenological consequences is a prediction which emerges from this entire class of vacua: namely, gaugino masses are significantly suppressed relative to the gravitino mass. We also present evidence that, for those vacua in which the vacuum energy is small, the gravitino mass, which sets all the superpartner masses, is automatically in the TeV 100 TeV range.

  6. Moduli Potentials in Type IIA Compactifications with RR and NS Flux

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, S.

    2004-12-01

    We describe a simple class of type IIA string compactifications on Calabi-Yau manifolds where background fluxes generate a potential for the complex structure moduli, the dilaton, and the Kaehler moduli. This class of models corresponds to gauged {Nu} = 2 supergravities, and the potential is completely determined by a choice of gauging and by data of the {Nu} = 2 Calabi-Yau model--the prepotential for vector multiplets and the quaternionic metric on the hypermultiplet moduli space. Using mirror symmetry, one can determine many (though not all) of the quantum corrections which are relevant in these models.

  7. Rubber friction and force transmission during the shearing process of actively-driven vacuum grippers on rough surfaces; Elastomerreibung und Kraftuebertragung beim Abscheren von aktiv betriebenen Vakuumgreifern auf rauen Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kern, Patrick

    2016-12-21

    Nowadays, vacuum grippers come in many different shapes and sizes. Their stability is guaranteed through specially manufactured metal fittings. These fittings are non-positively and positively connected to the elastic part of the vacuum gripper. The design of the elastic part may vary, though. Elastomer components are used to ensure tightness for the negative pressure in the active cave chamber of the vacuum gripper, as well as for the transfer of shearing forces, which acting parallel to the surface. Some vacuum grippers feature one elastomer for both the sealing function and the transfer of shear forces; other gripper types are equipped with various elastomers for those applications. The vacuum grippers described in this work are equipped with structured rubber friction pads, their tightness being ensured by sealing lips made of a flexible foam rubber. A restraint system consisting of one or several vacuum grippers must be sized prior to its actual practical use. For the transmission of shearing forces, which acting parallel to the surface, it is necessary to take the tribological system, consisting of the suction element's elastomer and the base material, into account since these loads put shearing stress on the vacuum gripper. In practice, however, a standardized value is given for the coefficient of friction μ; i.e. the ratio of transmissible frictional force to the normal force. This does neither include a detailed description of the elastomer used nor of the roughness of the base material. The standardized friction coefficients cannot be applied to the practical design of restraint systems. The present work includes the analysis of the load transmission and the modeling of the friction coefficients μ on rough surfaces during the shearing process of actively-driven vacuum grippers. Based on current theories, the phenomenon of elastomeric friction can be attributed to the two main components of hysteresis and adhesion friction. Both components are

  8. An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms

    Science.gov (United States)

    Moulik, P.; Ekström, G.

    2014-12-01

    We use normal-mode splitting functions in addition to surface wave phase anomalies, body wave traveltimes and long-period waveforms to construct a 3-D model of anisotropic shear wave velocity in the Earth's mantle. Our modelling approach inverts for mantle velocity and anisotropy as well as transition-zone discontinuity topographies, and incorporates new crustal corrections for the splitting functions that are consistent with the non-linear corrections we employ for the waveforms. Our preferred anisotropic model, S362ANI+M, is an update to the earlier model S362ANI, which did not include normal-mode splitting functions in its derivation. The new model has stronger isotropic velocity anomalies in the transition zone and slightly smaller anomalies in the lowermost mantle, as compared with S362ANI. The differences in the mid- to lowermost mantle are primarily restricted to features in the Southern Hemisphere. We compare the isotropic part of S362ANI+M with other recent global tomographic models and show that the level of agreement is higher now than in the earlier generation of models, especially in the transition zone and the lower mantle. The anisotropic part of S362ANI+M is restricted to the upper 300 km in the mantle and is similar to S362ANI. When radial anisotropy is allowed throughout the mantle, large-scale anisotropic patterns are observed in the lowermost mantle with vSV > vSH beneath Africa and South Pacific and vSH > vSV beneath several circum-Pacific regions. The transition zone exhibits localized anisotropic anomalies of ˜3 per cent vSH > vSV beneath North America and the Northwest Pacific and ˜2 per cent vSV > vSH beneath South America. However, small improvements in fits to the data on adding anisotropy at depth leave the question open on whether large-scale radial anisotropy is required in the transition zone and in the lower mantle. We demonstrate the potential of mode-splitting data in reducing the trade-offs between isotropic velocity and

  9. Separate structure of two branches of sheared slab ηi mode and effects of plasma rotation shear in weak magnetic shear region

    International Nuclear Information System (INIS)

    Jiquan Li; Kishimoto, Y.; Tuda, T.

    2000-01-01

    The separate structure of two branches of the sheared slab η i mode near the minimum-q magnetic surface is analysed and the effects of plasma rotation shears are considered in the weak magnetic shear region. Results show that the separation condition depends on the non-monotonous q profile and the deviation of rational surface from the minimum-q surface. Furthermore, it is found that the diamagnetic rotation shear may suppress the perturbation of the sheared slab η i mode at one side of the minimum-q surface, the poloidal rotation shear from the sheared E-vector x B-vector flow has a similar role to the slab mode structure when it possesses a direction same as the diamagnetic shear. A plausible interrelation between the separate structures of the two branches of the sheared slab mode and the discontinuity or gap of the radially global structure of the drift wave near the minimum-q surface observed in the toroidal particle simulation (Kishimoto Y et al 1998 Plasma Phys. Control. Fusion 40 A663) is discussed. It seems to support such a viewpoint: the double or/and global branches of the sheared slab η i mode near the minimum-q surface may become a bridge to connect the radially global structures of the drift wave at two sides of the minimum-q surface and the discontinuity may originate from the separate structures of these slab modes for a flatter q profile. (author)

  10. 3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise

    Science.gov (United States)

    Xie, Jun; Chu, Risheng; Yang, Yingjie

    2018-05-01

    Ambient noise seismic tomography has been widely used to study crustal and upper-mantle shear velocity structures. Most studies, however, concentrate on short period (structure on a continental scale. We use broadband Rayleigh wave phase velocities to obtain a 3-D V S structures beneath the contiguous United States at period band of 10-150 s. During the inversion, 1-D shear wave velocity profile is parameterized using B-spline at each grid point and is inverted with nonlinear Markov Chain Monte Carlo method. Then, a 3-D shear velocity model is constructed by assembling all the 1-D shear velocity profiles. Our model is overall consistent with existing models which are based on multiple datasets or data from earthquakes. Our model along with the other post-USArray models reveal lithosphere structures in the upper mantle, which are consistent with the geological tectonic background (e.g., the craton root and regional upwelling provinces). The model has comparable resolution on lithosphere structures compared with many published results and can be used for future detailed regional or continental studies and analysis.

  11. Compositional dependence of Young's moduli for amorphous FeCo-SiO2 thin films

    International Nuclear Information System (INIS)

    Zhang, L.; Xie, J. L.; Deng, L. J.; Guo, Q.; Zhu, Z. W.; Bi, L.

    2011-01-01

    Systematic force-deflection measurements with microcantilevers and a combinatorial-deposition method have been used to investigate the Young's moduli of amorphous composite FeCo-SiO 2 thin films as a function of film composition, with high compositional resolution. It is found that the modulus decreases monotonically with increasing FeCo content. Such a trend can be explained in terms of the metalloid atoms having a significant effect on the Young's moduli of metal-metalloid composites, which is associated with the strong chemical interaction between the metalloid and themetallic atoms rather than that between the metallic components themselves. This work provides an efficient and effective method to study the moduli of magnetic thin films over a largecomposition coverage, and to compare the relative magnitudes of moduli for differentcompositions at high compositional resolution.

  12. Moduli of mathematical instanton vector bundles with odd c2 on projective space

    International Nuclear Information System (INIS)

    Tikhomirov, Aleksandr S

    2012-01-01

    We study the moduli space I n of mathematical instanton vector bundles of rank 2 with second Chern class n≥1 on the projective space P 3 , and prove the irreducibility of I n for arbitrary odd n≥1.

  13. An Efficient and Accurate Genetic Algorithm for Backcalculation of Flexible Pavement Layer Moduli : Executive Summary Report

    Science.gov (United States)

    2012-12-01

    Backcalculation of pavement moduli has been an intensively researched subject for more than four decades. Despite the existence of many backcalculation programs employing different backcalculation procedures and algorithms, accurate inverse of the la...

  14. A flux-scaling scenario for high-scale moduli stabilization in string theory

    Directory of Open Access Journals (Sweden)

    Ralph Blumenhagen

    2015-08-01

    Full Text Available Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi–Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.

  15. A flux-scaling scenario for high-scale moduli stabilization in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Font, Anamaría [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany); Fuchs, Michael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Herschmann, Daniela, E-mail: herschma@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Plauschinn, Erik [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sekiguchi, Yuta; Wolf, Florian [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany)

    2015-08-15

    Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi–Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.

  16. Correlation between temperature dependence of elastic moduli and Debye temperature of paramagnetic metal

    International Nuclear Information System (INIS)

    Bodryakov, V.Yu.; Povzner, A.A.

    2000-01-01

    The correlation between the temperature dependence of elastic moduli and the Debye temperature of paramagnetic metal is analyzed in neglect of the temperature dependence of the Poison coefficient σ within the frames of the Debye-Grueneisen presentations. It is shown, that namely the temperature dependence of the elastic moduli determines primarily the temperature dependence of the Debye temperature Θ(T). On the other hand, the temperature dependence Θ(T) very weakly effects the temperature dependence of the elastic moduli. The later made it possible to formulate the self-consistent approach to calculation of the elastic moduli temperature dependence. The numerical estimates of this dependence parameters are conducted by the example of the all around compression modulus of the paramagnetic lutetium [ru

  17. Designing shear-thinning

    Science.gov (United States)

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  18. Deformations, moduli stabilisation and gauge couplings at one-loop

    Energy Technology Data Exchange (ETDEWEB)

    Honecker, Gabriele; Koltermann, Isabel [PRISMA Cluster of Excellence, MITP & Institut für Physik (WA THEP),Johannes Gutenberg-Universität,Staudingerweg 9, 55128 Mainz (Germany); Staessens, Wieland [Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid Cantoblanco,Calle de Nicolás Cabrera 13-15, 28049 Madrid (Spain); Departamento de Física Teórica, Universidad Autónoma de Madrid Cantoblanco,Calle de Nicolás Cabrera 13-15, 28049 Madrid (Spain)

    2017-04-05

    We investigate deformations of ℤ{sub 2} orbifold singularities on the toroidal orbifold T{sup 6}/(ℤ{sub 2}×ℤ{sub 6}) with discrete torsion in the framework of Type IIA orientifold model building with intersecting D6-branes wrapping special Lagrangian cycles. To this aim, we employ the hypersurface formalism developed previously for the orbifold T{sup 6}/(ℤ{sub 2}×ℤ{sub 2}) with discrete torsion and adapt it to the (ℤ{sub 2}×ℤ{sub 6}×ΩR) point group by modding out the remaining ℤ{sub 3} subsymmetry and the orientifold projection ΩR. We first study the local behaviour of the ℤ{sub 3}×ΩR invariant deformation orbits under non-zero deformation and then develop methods to assess the deformation effects on the fractional three-cycle volumes globally. We confirm that D6-branes supporting USp(2N) or SO(2N) gauge groups do not constrain any deformation, while deformation parameters associated to cycles wrapped by D6-branes with U(N) gauge groups are constrained by D-term supersymmetry breaking. These features are exposed in global prototype MSSM, Left-Right symmetric and Pati-Salam models first constructed in (DOI: 10.1016/j.nuclphysb.2015.10.009; 10.1002/prop.201400066), for which we here count the number of stabilised moduli and study flat directions changing the values of some gauge couplings. Finally, we confront the behaviour of tree-level gauge couplings under non-vanishing deformations along flat directions with the one-loop gauge threshold corrections at the orbifold point and discuss phenomenological implications, in particular on possible LARGE volume scenarios and the corresponding value of the string scale M{sub string}, for the same global D6-brane models.

  19. Picard-Fuchs equations and the moduli space of superconformal field theories

    International Nuclear Information System (INIS)

    Cadavid, A.C.; Ferrara, S.

    1991-01-01

    We derive simple techniques which allow us to relate Picard-Fuchs differential equations for the periods of holomorphic p-forms on certain complex manifolds, to their moduli space and its modular group (target space duality). For Calabi-Yau manifolds the special geometry of moduli space gives the Zamolodchikov metric and the Yukawa couplings in terms of the periods. For general N=2 superconformal theories these equations exactly determine perturbed correlation functions of the chiral rings of primary fields. (orig.)

  20. On the reconstruction of a unitary matrix from its moduli. Existence of continuous ambiguities

    International Nuclear Information System (INIS)

    Auberson, G.

    1989-01-01

    It is shown that, for an n x n unitary matrix with n ≥ 4, the knowledge of the moduli of its elements is not always sufficient to determine this matrix up to 'trivial' or 'discrete' ambiguities. Using a parametrization a la Kobayashi-Maskawa in the case n=4, we exhibit various configurations of the moduli for which a continuous ambiguity appears (i.e., some non-trivial phase remains free). (orig.)

  1. Ceramic strengthening by tuning the elastic moduli of resin-based luting agents.

    Science.gov (United States)

    Spazzin, Aloísio O; Bacchi, Ataís; Alessandretti, Rodrigo; Santos, Mateus B; Basso, Gabriela R; Griggs, Jason; Moraes, Rafael R

    2017-03-01

    Resin-based luting agents (RBLAs) with tuned elastic moduli (E) were prepared and their influence on the strengthening, reliability, and mode of failure of luted feldspar ceramic was investigated. RBLAs with low E (2.6GPa), intermediate E (6.6GPa), and high E (13.3GPa) were prepared and used to coat acid-etched ceramic disks. Positive (untreated ceramic) and negative (acid-etched ceramic) control groups were tested. The response variables (n=30) were biaxial flexural strength (σ bf , MPa), characteristic strength (σ 0 , MPa), and Weibull modulus at the ceramic surface (z=0) and luting agent surface (z=-t 2 ). A 3D finite element analysis simulated the biaxial flexural test. Fractographic analysis and morphology of the bonded interfaces were analyzed using scanning electron microscopy. The RBLAs improved σ bf and σ 0 at z=0, particularly those with intermediate and high E, whereas the mechanical reliability was only affected in the negative control. At z=-t 2 , differences between all RBLAs were observed but the structural reliability was independent of the RBLA tested. Increasing E of the RBLA was associated with increased stress concentration at the RBLA and reduced stresses reaching the ceramic. Failures originated on the ceramic surface at the ceramic-cement interface. In the high E group, failure sometimes originated from the RBLA free surface. All RBLAs completely filled the ceramic irregularities. Increased E of the RBLA reduced the variability of strength, the stress reaching the ceramic structure, and sometimes altered the origin of failure. The use of high E RBLAs seems beneficial for luting feldspar ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  3. On the stability of a rod adhering to a rigid surface: Shear-induced stable adhesion and the instability of peeling

    Science.gov (United States)

    Majidi, Carmel; O'Reilly, Oliver M.; Williams, John A.

    2012-05-01

    Using variational methods, we establish conditions for the nonlinear stability of adhesive states between an elastica and a rigid halfspace. The treatment produces coupled criteria for adhesion and buckling instabilities by exploiting classical techniques from Legendre and Jacobi. Three examples that arise in a broad range of engineered systems, from microelectronics to biologically inspired fiber array adhesion, are used to illuminate the stability criteria. The first example illustrates buckling instabilities in adhered rods, while the second shows the instability of a peeling process and the third illustrates the stability of a shear-induced adhesion. The latter examples can also be used to explain how microfiber array adhesives can be activated by shearing and deactivated by peeling. The nonlinear stability criteria developed in this paper are also compared to other treatments.

  4. Temperature- and thickness-dependent elastic moduli of polymer thin films

    Directory of Open Access Journals (Sweden)

    Ao Zhimin

    2011-01-01

    Full Text Available Abstract The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T and thickness (h-dependent elastic moduli of polymer thin films Ef(T,h is developed with verification by the reported experimental data on polystyrene (PS thin films. For the PS thin films on a passivated substrate, Ef(T,h decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*, at which thickness Ef(T,h deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ.

  5. Research Status on Bonding Behavior of Prefabricated Concrete Shear Wall

    Science.gov (United States)

    Wang, Donghui; Liu, Xudong; Wang, Sheng; Li, Shanshan

    2018-03-01

    Prefabricated shear wall structure adapts to the development and requirements of China’s residential industrialization. The key to the prefabricated concrete shear wall structure is the connection between the prefabricated members, where the reliability of the connection of the concrete joint is related to the overall performance and seismic effect of the structure. In this paper, the microstructures of the joint surface and shear properties are analysed, and the formula for calculating the shear strength of the joint is obtained.

  6. Extrapolation of bulk rock elastic moduli of different rock types to high pressure conditions and comparison with texture-derived elastic moduli

    Science.gov (United States)

    Ullemeyer, Klaus; Lokajíček, Tomás; Vasin, Roman N.; Keppler, Ruth; Behrmann, Jan H.

    2018-02-01

    In this study elastic moduli of three different rock types of simple (calcite marble) and more complex (amphibolite, micaschist) mineralogical compositions were determined by modeling of elastic moduli using texture (crystallographic preferred orientation; CPO) data, experimental investigation and extrapolation. 3D models were calculated using single crystal elastic moduli, and CPO measured using time-of-flight neutron diffraction at the SKAT diffractometer in Dubna (Russia) and subsequently analyzed using Rietveld Texture Analysis. To define extrinsic factors influencing elastic behaviour, P-wave and S-wave velocity anisotropies were experimentally determined at 200, 400 and 600 MPa confining pressure. Functions describing variations of the elastic moduli with confining pressure were then used to predict elastic properties at 1000 MPa, revealing anisotropies in a supposedly crack-free medium. In the calcite marble elastic anisotropy is dominated by the CPO. Velocities continuously increase, while anisotropies decrease from measured, over extrapolated to CPO derived data. Differences in velocity patterns with sample orientation suggest that the foliation forms an important mechanical anisotropy. The amphibolite sample shows similar magnitudes of extrapolated and CPO derived velocities, however the pattern of CPO derived velocity is closer to that measured at 200 MPa. Anisotropy decreases from the extrapolated to the CPO derived data. In the micaschist, velocities are higher and anisotropies are lower in the extrapolated data, in comparison to the data from measurements at lower pressures. Generally our results show that predictions for the elastic behavior of rocks at great depths are possible based on experimental data and those computed from CPO. The elastic properties of the lower crust can, thus, be characterized with an improved degree of confidence using extrapolations. Anisotropically distributed spherical micro-pores are likely to be preserved, affecting

  7. The effect of physiological conditions on the surface structure of proteins: Setting the scene for human digestion of emulsions

    Science.gov (United States)

    Maldonado-Valderrama, J.; Gunning, A. P.; Ridout, M. J.; Wilde, P. J.; Morris, V. J.

    2009-10-01

    Understanding and manipulating the interfacial mechanisms that control human digestion of food emulsions is a crucial step towards improved control of dietary intake. This article reports initial studies on the effects of the physiological conditions within the stomach on the properties of the film formed by the milk protein ( β -lactoglobulin) at the air-water interface. Atomic force microscopy (AFM), surface tension and surface rheology techniques were used to visualize and examine the effect of gastric conditions on the network structure. The effects of changes in temperature, pH and ionic strength on a pre-formed interfacial structure were characterized in order to simulate the actual digestion process. Changes in ionic strength had little effect on the surface properties. In isolation, acidification reduced both the dilatational and the surface shear modulus, mainly due to strong repulsive electrostatic interactions within the surface layer and raising the temperature to body temperature accelerated the rearrangements within the surface layer, resulting in a decrease of the dilatational response and an increase of surface pressure. Together pH and temperature display an unexpected synergism, independent of the ionic strength. Thus, exposure of a pre-formed interfacial β -lactoglobulin film to simulated gastric conditions reduced the surface dilatational modulus and surface shear moduli. This is attributed to a weakening of the surface network in which the surface rearrangements of the protein prior to exposure to gastric conditions might play a crucial role.

  8. Comparison of low-amplitude oscillatory shear in experimental and computational studies of model foams.

    Science.gov (United States)

    Lundberg, Micah; Krishan, Kapilanjan; Xu, Ning; O'Hern, Corey S; Dennin, Michael

    2009-04-01

    A fundamental difference between fluids and solids is their response to applied shear. Solids possess static shear moduli, while fluids do not. Complex fluids such as foams display an intermediate response to shear with nontrivial frequency-dependent shear moduli. In this paper, we conduct coordinated experiments and numerical simulations of model foams subjected to boundary-driven oscillatory planar shear. Our studies are performed on bubble rafts (experiments) and the bubble model (simulations) in two dimensions. We focus on the low-amplitude flow regime in which T1 events, i.e., bubble rearrangement events where originally touching bubbles switch nearest neighbors, do not occur, yet the system transitions from solid- to liquidlike behavior as the driving frequency is increased. In both simulations and experiments, we observe two distinct flow regimes. At low frequencies omega, the velocity profile of the bubbles increases linearly with distance from the stationary wall, and there is a nonzero total phase shift between the moving boundary and interior bubbles. In this frequency regime, the total phase shift scales as a power law Delta approximately omegan with n approximately 3. In contrast, for frequencies above a crossover frequency omega>omegap, the total phase shift Delta scales linearly with the driving frequency. At even higher frequencies above a characteristic frequency omeganl>omegap, the velocity profile changes from linear to nonlinear. We fully characterize this transition from solid- to liquidlike flow behavior in both the simulations and experiments and find qualitative and quantitative agreements for the characteristic frequencies.

  9. A comparative study of shear bond strength of orthodontic bracket after acid-etched and Er:YAG treatment on enamel surface

    Science.gov (United States)

    Leão, Juliana C.; Mota, Cláudia C. B. O.; Cassimiro-silva, Patricia F.; Gomes, Anderson S. L.

    2016-02-01

    This study aimed to evaluate the shear bond strength (SBS) of teeth prepared for orthodontic bracket bonding with 37% phosphoric acid and Er:YAG laser. Forty bovine incisors were divided into two groups. In Group I, the teeth were conditioned with 37% phosphoric acid and brackets were bonded with Transbond XT; in Group II, the teeth were irradiated with Er:YAG and bonding with Transbond XT. After SBS test, the adhesive remnant index was determined. Adhesion to dental hard tissues after Er:YAG laser etching was inferior to that obtained after acid etching but exceeded what is believed to be clinically sufficient strength, and therefore can be used in patients.

  10. Lectures on moduli of principal G-bundles over algebraic curves

    International Nuclear Information System (INIS)

    Sorger, C.

    2000-01-01

    These notes are supposed to be an introduction to the moduli of G-bundles on curves. Therefore I will lay stress on ideas in order to make these notes more readable. In the last years the moduli spaces of G-bundles over algebraic curves have attracted some attention from various subjects like from conformal field theory or Beilinson and Drinfeld's geometric Langlands program. In both subjects it turned out that the 'stacky' point of view is more convenient and as the basic motivation of these notes is to introduce to the latter subject our moduli spaces will be moduli stacks (and not coarse moduli spaces). As people may feel uncomfortable with stacks I have included a small introduction to them. Actually there is a forthcoming book of Laumon and Moret-Bailly based on their preprint and my introduction merely does the step -1, i.e. explains why we are forced to use them here and recalls the basic results I need later. So here is the plan of the lectures: after some generalities on G-bundles, I will classify them topologically. Actually the proof is more interesting than the result as it will give a flavor of the basic theorem on G-bundles which describes the moduli stack as a double quotient of loop-groups. This 'uniformization theorem', which goes back to A. Weil as a bijection on sets, will be proved in the section following the topological classification. Then I will introduce two line bundles on the moduli stack: the determinant and the paffian bundle. The first one can be used to describe the canonical bundle on the moduli stack and the second to define a square-root of it. Unless G is simply connected the square root depends on the choice of a theta-characteristic. This square root plays an important role in the geometric Langlands program. Actually, in order to get global differential operators on the moduli stack one has to consider twisted differential operators with values in these square-roots. The rest of the lectures will be dedicated to describe the

  11. The Effects of Shear Strain, Fabric, and Porosity Evolution on Elastic and Mechanical Properties of Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Marone, C.

    2017-12-01

    Ultrasonic/seismic waves are widely used for probing fault zone elastic and mechanical properties (gouge composition, frictional strength, density) and elastic properties (Vp, Vs, bulk and shear moduli), as it can provide insight into key processes and fault properties during shearing. These include fabric and force chain formation, porosity evolution, and fault zone stiffness, which are in turn factors in fault slip, damage, and healing. We report on a suite of direct shear experiments on synthetic fault gouge composed of 50% smectite /50% quartz at a normal stress of 25 MPa, in which we use ultrasonic wave transmission to continuously monitor compressional and shear wave velocities (Vp, Vs) up to shear strains of 25, while simultaneously measuring friction and monitoring the evolution of density and porosity. We find that wavespeeds vary with shear strain, due to fabric development and the evolution of density and porosity. The coefficient of friction peaks at μ .47 at a shear strain of .5 - 1, decreases to a steady state value of μ .43 by shear strains of 4.5- 6 and then remains rather constant to shear strains of 6 - 25, consistent with previous work. Density increases rapidly from 1.78 g/cm3 to 1.83 g/cm3 at shear strains from 0-2 (porosity decreases from 33% to 25% over that range), and then more gradually increases to a density of 2.08 g/cm3 (porosity of 21%) at a shear strain of 25. Vp increases from 2400 m/s to 2900 m/s during the onset of shear until a shear strain of 3, and then decreases to 2400-2500 by shear strain of 7-9. At shear strains above 9, Vp slowly increases as the layer becomes denser and less porous. We interpret the co-evolving changes in friction, porosity, and elastic moduli/wavespeed to reflect fabric development and alignment of clay particles as a function of shearing. More specifically, the decrease in Vp at a shear strain of 3 reflects the clay particles gradually aligning. Once the particles are aligned, the gradual increase of

  12. Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, Elham [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Li, Jun; Jasiuk, Iwona [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); McKittrick, Joanna [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2015-09-01

    The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds.

  13. Moduli Dark Matter and the Search for Its Decay Line using Suzaku X-Ray Telescope

    Science.gov (United States)

    Kusenko, Alexander; Loewenstein, Michael; Yanagida, Tsutomu T.

    2013-01-01

    Light scalar fields called moduli arise from a variety of different models involving supersymmetry and/or string theory; thus their existence is a generic prediction of leading theories for physics beyond the standard model. They also present a formidable, long-standing problem for cosmology. We argue that an anthropic solution to the moduli problem exists in the case of small moduli masses and that it automatically leads to dark matter in the form of moduli. The recent discovery of the 125 GeV Higgs boson implies a lower bound on the moduli mass of about a keV. This form of dark matter is consistent with the observed properties of structure formation, and it is amenable to detection with the help of x-ray telescopes. We present the results of a search for such dark matter particles using spectra extracted from the first deep x-ray observations of the Draco and Ursa Minor dwarf spheroidal galaxies, which are darkmatter- dominated systems with extreme mass-to-light ratios and low intrinsic backgrounds. No emission line is positively detected, and we set new constraints on the relevant new physics.

  14. Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents

    International Nuclear Information System (INIS)

    Hamed, Elham; Novitskaya, Ekaterina; Li, Jun; Jasiuk, Iwona; McKittrick, Joanna

    2015-01-01

    The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds

  15. On the compactification of the moduli space of branched minimal immersions of S2 into S4

    International Nuclear Information System (INIS)

    Loo, B.

    1992-01-01

    We study the natural compactification of the moduli space of branched minimal immersions of S 2 into S 4 . We prove that the (compactified) moduli space M d is a connected projective variety of dimension 2d+4. It is irreducible when d=1,2, and it has two irreducible components when d ≥ 3. We discuss the bubbling phenomenon at the boundary of the moduli space. (author). 26 refs, 3 figs

  16. IMAGE ANALYSIS FOR MODELLING SHEAR BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Philippe Lopez

    2011-05-01

    Full Text Available Through laboratory research performed over the past ten years, many of the critical links between fracture characteristics and hydromechanical and mechanical behaviour have been made for individual fractures. One of the remaining challenges at the laboratory scale is to directly link fracture morphology of shear behaviour with changes in stress and shear direction. A series of laboratory experiments were performed on cement mortar replicas of a granite sample with a natural fracture perpendicular to the axis of the core. Results show that there is a strong relationship between the fracture's geometry and its mechanical behaviour under shear stress and the resulting damage. Image analysis, geostatistical, stereological and directional data techniques are applied in combination to experimental data. The results highlight the role of geometric characteristics of the fracture surfaces (surface roughness, size, shape, locations and orientations of asperities to be damaged in shear behaviour. A notable improvement in shear understanding is that shear behaviour is controlled by the apparent dip in the shear direction of elementary facets forming the fracture.

  17. Quantization vial real polarization of the moduli space of flat connections and Chern-Simons gauge theory in genus one

    International Nuclear Information System (INIS)

    Weitsman, J.; Harvard Univ., Cambridge, MA

    1991-01-01

    We study the quantization of the moduli space of flat connections on a surface of genus one, using the real polarization of this space. The quantum wave functions in this formalism are exponential functions supported along the integral fibres of the polarization. The space of wave functions obtained in this way is isomorphic to a space of theta functions. We use our construction to cunstruct part of what may be a topological field theory in genus one, and to compute the associated invariants of some three manifolds. These computations agree with those of Witten, but the invariants are expressed as sums of quantities computed at a discrete set of connections with curvature concentrated on a link in the three manifold. A similar prescription is used to produce knot invariants. (orig.)

  18. Line Crack Subject to Antiplane Shear.

    Science.gov (United States)

    1978-07-01

    shear is obtained for the initiation of fracture. If the concept of the surface tension is usedone is able to calculate the cohesive stress for brittle ...Expression of the Griffith -racture criterion for brittle fracture. We have arrived at this result via the maximum shear-stress hypothesis, rather than...Crescent Beach Road, Glen Cove Prof. G.S. Heller Long Island, New York 11542 Division of Engineering Brown University Prof. Daniel

  19. Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics

    International Nuclear Information System (INIS)

    Gibbons, G.; Kallosh, R.; Kol, B.

    1996-01-01

    We show that under variation of moduli fields φ the first law of black hole thermodynamics becomes dM=κdA/8π +ΩdJ+ψdq+χdp-Σdφ, where Σ are the scalar charges. Also the ADM mass is extremized at fixed A, J, (p,q) when the moduli fields take the fixed value φ fix (p,q) which depend only on electric and magnetic charges. Thus the double-extreme black hole minimizes the mass for fixed conserved charges. We can now explain the fact that extreme black holes fix the moduli fields at the horizon φ=φ fix (p,q): φ fix is such that the scalar charges vanish: Σ(φ fix ,(p,q))=0. copyright 1996 The American Physical Society

  20. On moduli stabilisation and de Sitter vacua in MSSM heterotic orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Dept. of Physics and Astronomy; Ramos-Sanchez, Saul [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zavala, Ivonne [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Inst.

    2010-09-15

    We study the problem of moduli stabilisation in explicit heterotic orbifold compactifications, whose spectra contain the MSSM plus some vector-like exotics that can be decoupled. Considering all the bulk moduli, we obtain the 4D low energy effective action for the compactification, which has contributions from various, computable, perturbative and non-perturbative effects. Hidden sector gaugino condensation and string worldsheet instantons result in a combination of racetrack, KKLT and cusp-form contributions to the superpotential, which lift all the bulk moduli directions. We point out the properties observed in our concrete models, which tend to be missed when only ''generic'' features of a model are assumed. We search for interesting vacua and find several de Sitter solutions, but so far, they all turn out to be unstable. (orig.)

  1. On the Young's moduli of Ti-6Al-4V alloys

    International Nuclear Information System (INIS)

    Fan, Zhongyun

    1993-01-01

    In this paper, the authors will present an iterative approach to Young's modulus of multi-phase composites developed by Fan et al. The iterative approach will then be applied to Ti-6Al-4V alloys to predict their effective Young's moduli. It is hoped that the theoretical predictions will offer a quantitative explanation to the peculiar shape of the E c -f β curve and will shed some light on controlling the Young's moduli of Ti-6Al-4V alloys by choosing the proper heat treatment procedure

  2. The information metric on the moduli space of instantons with global symmetries

    Directory of Open Access Journals (Sweden)

    Emanuel Malek

    2016-02-01

    Full Text Available In this note we revisit Hitchin's prescription [1] of the Fisher metric as a natural measure on the moduli space of instantons that encodes the space–time symmetries of a classical field theory. Motivated by the idea of the moduli space of supersymmetric instantons as an emergent space in the sense of the gauge/gravity duality, we extend the prescription to encode also global symmetries of the underlying theory. We exemplify our construction with the instanton solution of the CPN sigma model on R2.

  3. Canonical generators of the cohomology of moduli of parabolic bundles on curves

    International Nuclear Information System (INIS)

    Biswas, I.; Raghavendra, N.

    1994-11-01

    We determine generators of the rational cohomology algebras of moduli spaces of parabolic vector bundles on a curve, under some 'primality' conditions on the parabolic datum. These generators are canonical in a precise sense. Our results are new even for usual vector bundles (i.e., vector bundles without parabolic structure) whose rank is greater than 2 and is coprime to the degree; in this case, they are generalizations of a theorem of Newstead on the moduli of vector bundles of rank 2 and odd degree. (author). 11 refs

  4. The Relationship between Elastic Properties and Shear Fabric in Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Ryan, K. L.; Marone, C.

    2016-12-01

    The low mechanical strength of major crustal faults remains a fundamental problem in geophysics and earthquake mechanics. Although both clay abundance and shear fabric are known as key controls on the frictional weakening of faults, the detailed links between fabric, elastic properties, composition, and fault strength remain poorly understood. This gap in information is in part because data are lacking to fully characterize the evolution of gouge microstructures and elastic properties during shearing. Here, we use seismic wave propagation to probe gouge ultrasonic and elastic properties, as a proxy for the development of shear fabrics. We report on a suite of direct shear experiments that include ultrasonic wave transmission to monitor compressional and shear wave velocities (Vp, Vs), during progressive shear of synthetic, clay-rich fault gouge. In order to better understand when and how clay grain alignment and nano-coatings begin to dominate the affect of shear fabric and local gouge density on elastic properties and shear strength, we studied a suite of synthetic gouges composed of Ca-montmorillonite and quartz ranging from 0-100% clay. Our laboratory experiments document friction coefficients (μ) ranging from 0.21 for gouges composed of 100% smectite to 0.62 for 100% quartz, with μ decreasing as clay content increases. We find that Vp and Vs increases as shear progresses and porosity decreases. Ongoing analyses of ultrasonic waves will assess variations of Vp, Vs, and elastic moduli throughout shear and as a function of gouge composition. We anticipate that these variations will be linked to formation of fabric elements observed via microstructural analysis, and will be indicative of whether quartz or clay is dominating how the fabrics form. Finally, we expect that clay content will be the dominant factor controlling shear fabric evolution and, consequently, the key control on the evolution of elastic properties with shear.

  5. Time resolved investigations on flow field and quasi wall shear stress of an impingement configuration with pulsating jets by means of high speed PIV and a surface hot wire array

    International Nuclear Information System (INIS)

    Janetzke, Timm; Nitsche, Wolfgang

    2009-01-01

    The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin-Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes. Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82.

  6. Moduli spaces for linear differential equations and the Painlev'e equations

    NARCIS (Netherlands)

    Put, Marius van der; Saito, Masa-Hiko

    2009-01-01

    In this paper, we give a systematic construction of ten isomonodromic families of connections of rank two on P1 inducing Painlev´e equations. The classification of ten families is given by considering the Riemann-Hilbert morphism from a moduli space of connections with certain type of regular and

  7. Digitally controlled measurement of sonic elastic moduli and internal friction by phase analysis

    International Nuclear Information System (INIS)

    O'Brien, M.H.; Hunter, O. Jr.; Rasmussen, M.D.; Skank, H.D.

    1983-01-01

    An automated system is described for measuring internal friction and elastic moduli using sonic resonance techniques. This mirocomputer-controlled device does phase angle analysis in addition to traditional decay and peak-width internal friction measurement. The apparatus may be programmed to make measurements at any sequence of temperatures between room temperature and 1600 0 C

  8. Determination of static moduli in fractured rocks by T-matrix model

    Czech Academy of Sciences Publication Activity Database

    Chalupa, F.; Vilhelm, J.; Petružálek, Matěj; Bukovská, Z.

    2017-01-01

    Roč. 22, č. 1 (2017), s. 22-31 ISSN 1335-1788 Institutional support: RVO:67985831 Keywords : fractured rocks * dynamic and static moduli * T-matrix model * elastic wave velocity * well logging Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 0.769, year: 2016 http://actamont.tuke.sk/pdf/2017/n1/3chalupa.pdf

  9. The fine structure of the moduli space of abelian differentials in genus 3

    NARCIS (Netherlands)

    Looijenga, Eduard; Gabriele, Mondello

    2014-01-01

    The moduli space of curves endowed with a nonzero abelian differential admits a natural stratification according to the configuration of its zeroes. We give a description of these strata for genus 3 in terms of root system data. For each non-open stratum we obtain a presentation of its orbifold

  10. Hurwitz numbers, moduli of curves, topological recursion, Givental's theory and their relations

    NARCIS (Netherlands)

    Spitz, L.

    2014-01-01

    The study of curves is an important area of research in algebraic geometry and mathematical physics. In my thesis I study so-called moduli spaces of curves; these are spaces that parametrize all curves with some specified properties. In particular, I study maps from curves to other spaces, recursive

  11. Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula

    International Nuclear Information System (INIS)

    Jeffrey, L.C.; Weitsman, J.

    1992-01-01

    We show how the moduli space of flat SU(2) connections on a two-manifold can be quantized. The dimension of the quantization, given by the number of integral fibres of the polarization, matches the Verlinde formula, which is known to give the dimension of the quantization of this space in a Kaehler polarization. (orig./HSI)

  12. Influence of seed layer moduli on FEM based modulus backcalculation results

    CSIR Research Space (South Africa)

    Matsui, K

    2006-01-01

    Full Text Available This paper presents recentupdates of DBALM (Dynamic Back Analysis for Layer Moduli) software whose solver is based on exi-symmetric FEM and was first developed in 1993. Examples of airfield pavement application are also presented. The results...

  13. REDUCED ISOTROPIC CRYSTAL MODEL WITH RESPECT TO THE FOURTH-ORDER ELASTIC MODULI

    Directory of Open Access Journals (Sweden)

    O. Burlayenko

    2018-04-01

    Full Text Available Using a reduced isotropic crystal model the relationship between the fourth-order elastic moduli of an isotropic medium and the independent components of the fourth-order elastic moduli tensor of real crystals of various crystal systems is found. To calculate the coefficients of these relations, computer algebra systems Redberry and Mathematica for working with high order tensors in the symbolic and explicit form were used, in light of the overly complex computation. In an isotropic medium, there are four independent fourth order elastic moduli. This is due to the presence of four invariants for an eighth-rank tensor in the three-dimensional space, that has symmetries over the pairs of indices. As an example, the moduli of elasticity of an isotropic medium corresponding to certain crystals of cubic system are given (LiF, NaCl, MgO, CaF2. From the obtained results it can be seen that the reduced isotropic crystal model can be most effectively applied to high-symmetry crystal systems.

  14. A family of metrics on the moduli space of CP2 instantons

    International Nuclear Information System (INIS)

    Habermann, L.

    1992-01-01

    A family of Riemannian metrics on the moduli space of irreducible self-dual connections of instanton number k=1 over CP 2 is considered. We find explicit formulas for these metrics and deduce conclusions concerning the geometry of the instant space. (orig.)

  15. Mirror symmetry and the moduli space for generic hypersurfaces in toric varieties

    CERN Document Server

    Berglund, P; Klemm, A D

    1995-01-01

    The moduli dependence of (2,2) superstring compactifications based on Calabi--Yau hypersurfaces in weighted projective space has so far only been investigated for Fermat-type polynomial constraints. These correspond to Landau-Ginzburg orbifolds with c=9 whose potential is a sum of A-type singularities. Here we consider the generalization to arbitrary quasi-homogeneous singularities at c=9. We use mirror symmetry to derive the dependence of the models on the complexified K\\"ahler moduli and check the expansions of some topological correlation functions against explicit genus zero and genus one instanton calculations. As an important application we give examples of how non-algebraic (``twisted'') deformations can be mapped to algebraic ones, hence allowing us to study the full moduli space. We also study how moduli spaces can be nested in each other, thus enabling a (singular) transition from one theory to another. Following the recent work of Greene, Morrison and Strominger we show that this corresponds to bla...

  16. Chaotic inflation in no-scale supergravity with string inspired moduli stabilization

    International Nuclear Information System (INIS)

    Li, Tianjun; Li, Zhijin; Nanopoulos, Dimitri V.

    2015-01-01

    The simple chaotic inflation is highly consistent with the BICEP2 experiment, and no-scale supergravity can be realized naturally in various string compactifications. Thus, we construct a chaotic inflation model in no-scale supergravity inspired from Type IIB string compactification with an anomalous U(1) X gauged symmetry. We introduce two moduli T 1 and T 2 which transform non-trivially under U(1) X , and some pairs of fundamental quarks charged under the SU(N) x U(1) X gauge group. The non-trivial transformations of moduli under U(1) X lead to a moduli-dependent Fayet-Iliopoulos (FI) term. The modulus T 2 and the real component of T 1 are stabilized by the non-perturbative effect from quark condensation and the U(1) X D-term. In particular, the stabilization from the anomalous U(1) X D-term with moduli-dependent FI term is crucial for inflation since it gives heavy mass to the real component of the modulus T 1 while keeping its axionic part light. Choosing the proper parameters, we obtain a global Minkowski vacuum where the imaginary part of T 1 has a quadratic potential for chaotic inflation. (orig.)

  17. Towards completely miscible PMMA nanocomposites reinforced by shear-stiff, nano-mica.

    Science.gov (United States)

    Ziadeh, Mazen; Weiss, Stephan; Fischer, Bianca; Förster, Stephan; Altstädt, Volker; Müller, Axel H E; Breu, Josef

    2014-07-01

    Optimizing the reinforcement of polymers with nanoplatelets requires optimization of the aspect ratio and the moduli of the filler while providing a complete stress transfer. Employing a novel shear-stiff, nano-mica with large aspect ratio, we focus on maximizing the interfacial interaction between filler and matrix. External surfaces of the nano-mica were selectively modified by a polycationic macro-initiator and two PMMA-polymer brushes of length below and above critical entanglement length, respectively, and the mechanical properties of the three PMMA nanocomposites were measured. The multiple electrostatic anchoring groups of the macro-initiator not only provide reliable adhesion but at the same time allow the variation of the degree of protonation providing a local match between the charge densities of the clay surface and the adsorbed macro-initiator. PMMA coating of the nano-mica via surface initiated polymerization yielded long-term stable suspensions in THF that showed birefringence of a nematic phase. Solution blending of the PMMA coated nano-mica allows for dispersing single clay tactoids in the translucent PMMA nanocomposites at 5 wt% clay loading as determined by transmission electron microscopy (TEM). Although significantly improved mechanical properties could be achieved as compared to nanocomposites made with conventional clay fillers, the full potential - as expressed by Halpin-Tsai equations - of the PMMA coated nano-mica can still not be completely utilized. This is attributed to the non-wetting character of the densely packed PMMA brushes attached to planar nanoplatelets. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Moduli of families of curves for conformal and quasiconformal mappings

    CERN Document Server

    Vasil’ev, Alexander

    2002-01-01

    The monograph is concerned with the modulus of families of curves on Riemann surfaces and its applications to extremal problems for conformal, quasiconformal mappings, and the extension of the modulus onto Teichmüller spaces. The main part of the monograph deals with extremal problems for compact classes of univalent conformal and quasiconformal mappings. Many of them are grouped around two-point distortion theorems. Montel's functions and functions with fixed angular derivatives are also considered. The last portion of problems is directed to the extension of the modulus varying the complex structure of the underlying Riemann surface that sheds some new light on the metric problems of Teichmüller spaces.

  19. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  20. Brauer groups and obstruction problems moduli spaces and arithmetic

    CERN Document Server

    Hassett, Brendan; Várilly-Alvarado, Anthony; Viray, Bianca

    2017-01-01

    The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman...

  1. Analysis of Shear Stress and Energy Consumption in a Tubular Airlift Membrane System

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Chan, C.C.V.; Berube, P.R.

    2011-01-01

    of fouling by imposing high shear stress near the surface of the membrane. Previously, shear stress histograms (SSH) have been introduced to summarize results from an experimental setup developed to investigate the shear stress imposed on the surface of a membrane under different two-phase flow conditions...

  2. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  3. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  4. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  5. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.

    1999-11-01

    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  6. Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers

    Science.gov (United States)

    Kalita, Viktor M.; Snarskii, Andrei A.; Shamonin, Mikhail; Zorinets, Denis

    2017-03-01

    The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016), 10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.

  7. Fracture mode, microstructure and temperature-dependent elastic moduli for thermoelectric composites of PbTe-PbS with SiC nanoparticle additions

    Science.gov (United States)

    Ni, Jennifer E.; Case, Eldon D.; Schmidt, Robert D.; Wu, Chun-I.; Hogan, Timothy P.; Trejo, Rosa M.; Lara-Curzio, Edgar; Kanatzidis, Mercouri G.

    2013-12-01

    Twenty-six (Pb0.95Sn0.05Te)0.92(PbS)0.08-0.055% PbI2-SiC nanoparticle (SiCnp) composite thermoelectric specimens were either hot pressed or pulsed electric current sintered (PECS). Bloating (a thermally induced increase in porosity, P, for as-densified specimens) was observed during annealing at temperatures >603 K for hot-pressed specimens and PECS-processed specimens from wet milled powders, but in contrast seven out of seven specimens densified by PECS from dry milled powders showed no observable bloating following annealing at temperatures up to 936 K. In this study, bloating in the specimens was accessed via thermal annealing induced changes in (i) porosity measured by scanning electron microscopy on fractured specimen surfaces, (ii) specimen volume and (iii) elastic moduli. The moduli were measured by resonant ultrasound spectroscopy. SiCnp additions (1-3.5 vol.%) changed the fracture mode from intergranular to transgranular, inhibited grain growth, and limited bloating in the wet milled PECS specimens. Inhibition of bloating likely occurs due to cleaning of contamination from powder particle surfaces via PECS processing which has been reported previously in the literature.

  8. Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates

    Science.gov (United States)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2011-03-01

    Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu

  9. Quantum triangulations moduli space, quantum computing, non-linear sigma models and Ricci flow

    CERN Document Server

    Carfora, Mauro

    2017-01-01

    This book discusses key conceptual aspects and explores the connection between triangulated manifolds and quantum physics, using a set of case studies ranging from moduli space theory to quantum computing to provide an accessible introduction to this topic. Research on polyhedral manifolds often reveals unexpected connections between very distinct aspects of mathematics and physics. In particular, triangulated manifolds play an important role in settings such as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, critical phenomena and complex systems. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is also often a consequence of an underlying structure that naturally calls into play non-trivial aspects of representation theory, complex analysis and topology in a way that makes the basic geometric structures of the physical interactions involv...

  10. Anti-D3 branes and moduli in non-linear supergravity

    Science.gov (United States)

    Garcia del Moral, Maria P.; Parameswaran, Susha; Quiroz, Norma; Zavala, Ivonne

    2017-10-01

    Anti-D3 branes and non-perturbative effects in flux compactifications spontaneously break supersymmetry and stabilise moduli in a metastable de Sitter vacua. The low energy 4D effective field theory description for such models would be a supergravity theory with non-linearly realised supersymmetry. Guided by string theory modular symmetry, we compute this non-linear supergravity theory, including dependence on all bulk moduli. Using either a constrained chiral superfield or a constrained vector field, the uplifting contribution to the scalar potential from the anti-D3 brane can be parameterised either as an F-term or Fayet-Iliopoulos D-term. Using again the modular symmetry, we show that 4D non-linear supergravities that descend from string theory have an enhanced protection from quantum corrections by non-renormalisation theorems. The superpotential giving rise to metastable de Sitter vacua is robust against perturbative string-loop and α' corrections.

  11. Instanton counting, Macdonald function and the moduli space of D-branes

    International Nuclear Information System (INIS)

    Awata, Hidetoshi; Kanno, Hiroaki

    2005-01-01

    We argue the connection of Nekrasov's partition function in the Ω background and the moduli space of D-branes, suggested by the idea of geometric engineering and Gopakumar-Vafa invariants. In the instanton expansion of N = 2 SU(2) Yang-Mills theory the Nakrasov's partition function with equivariant parameters ε 1 ,ε 2 of toric action on C 2 factorizes correctly as the character of SU(2) L x SU(2) R spin representation. We show that up to two instantons the spin contents are consistent with the Lefschetz action on the moduli space of D2-branes on (local) F 0 . We also present an attempt at constructing a refined topological vertex in terms of the Macdonald function. The refined topological vertex with two parameters of T 2 action allows us to obtain the generating functions of equivariant χ y and elliptic genera of the Hilbert scheme of n points on C 2 by the method of topological vertex

  12. Global D-brane models with stabilised moduli and light axions

    Science.gov (United States)

    Cicoli, Michele

    2014-03-01

    We review recent attempts to try to combine global issues of string compactifications, like moduli stabilisation, with local issues, like semi-realistic D-brane constructions. We list the main problems encountered, and outline a possible solution which allows globally consistent embeddings of chiral models. We also argue that this stabilisation mechanism leads to an axiverse. We finally illustrate our general claims in a concrete example where the Calabi-Yau manifold is explicitly described by toric geometry.

  13. Distribution of flux vacua around singular points in Calabi-Yau moduli space

    International Nuclear Information System (INIS)

    Eguchi, Tohru; Tachikawa, Yuji

    2006-01-01

    We study the distribution of type-IIB flux vacua in the moduli space near various singular loci, e.g. conifolds, ADE singularities on P 1 , Argyres-Douglas point etc, using the Ashok-Douglas density det (R+ω). We find that the vacuum density is integrable around each of them, irrespective of the type of the singularities. We study in detail an explicit example of an Argyres-Douglas point embedded in a compact Calabi-Yau manifold

  14. Experimental and theoretical investigation of the elastic moduli of silicate glasses and crystals

    Science.gov (United States)

    Philipps, Katharina; Stoffel, Ralf Peter; Dronskowski, Richard; Conradt, Reinhard

    2017-02-01

    A combined quantum-mechanical and thermodynamic approach to the mechanical properties of multicomponent silicate glasses is presented. Quantum chemical calculations based on density-functional theory (DFT) on various silicate systems were performed to explore the crystalline polymorphs existing for a given chemical composition. These calculations reproduced the properties of known polymorphs even in systems with extensive polymorphism, like MgSiO3. Properties resting on the atomic and electronic structure, i.e., molar volumes (densities) and bulk moduli were predicted correctly. The theoretical data (molar equilibrium volumes, bulk moduli) were then used to complement the available experimental data. In a phenomenological evaluation, experimental data of bulk moduli, a macroscopic property resting on phononic structure, were found to linearly scale with the ratios of atomic space demand to actual molar volume in a universal way. Silicates ranging from high-pressure polymorphs to glasses were represented by a single master line. This suggests that above the Debye limit (in practice: above room temperature), the elastic waves probe the short range order coordination polyhedra and their next-neighbor linkage only, while the presence or absence of an extended translational symmetry is irrelevant. As a result, glasses can be treated - with respect to the properties investigated - as commensurable members of polymorphic series. Binary glasses fit the very same line as their one-component end-members, again both in the crystalline and glassy state. Finally, it is shown that the macroscopic properties of multicomponent glasses also are linear superpositions of the properties of their constitutional phases (as determined from phase diagrams or by thermochemical calculations) taken in their respective glassy states. This is verified experimentally for heat capacities and Young’s moduli of industrial glass compositions. It can be concluded, that the combined quantum

  15. Anomaly matching conditions and the moduli space of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Dotti, G.; Manohar, A.V.

    1998-01-01

    The structure of the moduli space of N=1 supersymmetric gauge theories is analyzed from an algebraic geometric viewpoint. The connection between the fundamental fields of the ultraviolet theory, and the gauge-invariant composite fields of the infrared theory is explained in detail. The results are then used to prove an anomaly matching theorem. The theorem is used to study anomaly matching for supersymmetric QCD, and can explain all the known anomaly matching results for this case. (orig.)

  16. Tangent moduli of the Hencky material model derived from the stored energy function at finite strains

    Czech Academy of Sciences Publication Activity Database

    Poživilová, Alena; Plešek, Jiří

    2005-01-01

    Roč. 482, č. 482 (2005), s. 327-330 ISSN 0255-5476 R&D Projects: GA ČR(CZ) GA101/03/0331; GA ČR(CZ) GP106/03/D038 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustoelasticity * large strains * third order elastic moduli Subject RIV: JG - Metallurgy Impact factor: 0.399, year: 2005

  17. Functional Apparent Moduli (FAMs) as Predictors of Oral Implant Osseointegration Dynamics

    OpenAIRE

    Chang, Po-Chun; Seol, Yang-Jo; Kikuchi, Noboru; Goldstein, Steven A.; Giannobile, William V.

    2010-01-01

    At present, limited functional data exists regarding the application and use of biomechanical and imaging technologies for oral implant osseointegration assessment. The objective of this investigation was to determine the functional apparent moduli (FAMs) that could predict the dynamics of oral implant osseointegration. Using an in vivo dental implant osseous healing model, two FAMs, functional bone apparent modulus (FBAM) and composite tissue apparent modulus (FCAM), of the selected peri-imp...

  18. Realistic D-brane models on warped throats: Fluxes, hierarchies and moduli stabilization

    International Nuclear Information System (INIS)

    Cascales, J.F.G.; Garcia del Moral, M.P.; Quevedo, F.; Uranga, A.

    2004-01-01

    We describe the construction of string theory models with semirealistic spectrum in a sector of (anti) D3-branes located at an orbifold singularity at the bottom of a highly warped throat geometry, which is a generalisation of the Klebanov-Strassler deformed conifold. These models realise the Randall-Sundrum proposal to naturally generate the Planck/electroweak hierarchy in a concrete string theory embedding, and yielding interesting chiral open string spectra. We describe examples with Standard Model gauge group (or left-right symmetric extensions) and three families of SM fermions, with correct quantum numbers including hypercharge. The dilaton and complex structure moduli of the geometry are stabilised by the 3-form fluxes required to build the throat. We describe diverse issues concerning the stabilisation of geometric Kahler moduli, like blow-up modes of the orbifold singularities, via D term potentials and gauge theory non-perturbative effects, like gaugino condensation. This local geometry, once embedded in a full compactification, could give rise to models with all moduli stabilised, and with the potential to lead to de Sitter vacua. Issues of gauge unification, proton stability, supersymmetry breaking and Yukawa couplings are also discussed. (author)

  19. N=2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant

    International Nuclear Information System (INIS)

    Blau, M.; Thompson, G.

    1991-11-01

    Gauge theory with a topological N=2 symmetry is discussed. This theory captures the de Rahm complex and Riemannian geometry of some underlying moduli space M and the partition function equals the Euler number χ (M) of M. Moduli spaces of instantons and of flat connections in 2 and 3 dimensions are explicitly dealt with. To motivate the constructions the relation between the Mathai-Quillen formalism and supersymmetric quantum mechanics are explained and a new kind of supersymmetric quantum mechanics is introduced, based on the Gauss-Codazzi equations. The gauge theory actions are interpreted from the Atiyah-Jeffrey point of view and related to super-symmetric quantum mechanics on spaces of connections. As a consequence of these considerations the Euler number χ (M) of the moduli space of flat connections as a generalization to arbitrary three-manifolds of the Casson invariant. The possibility of constructing a topological version of the Penner matrix model is also commented. (author). 63 refs

  20. Degenerate conformal theories on higher-genus surfaces

    International Nuclear Information System (INIS)

    Gerasimov, A.A.

    1989-01-01

    Two-dimensional degenerate field theories on higher-genus surfaces are investigated. Objects are built on the space of moduli, whose linear combinations are hypothetically conformal blocks in degenerate theories

  1. To determine the slow shearing rate for consolidation drained shear box tests

    Science.gov (United States)

    Jamalludin, Damanhuri; Ahmad, Azura; Nordin, Mohd Mustaqim Mohd; Hashim, Mohamad Zain; Ibrahim, Anas; Ahmad, Fauziah

    2017-08-01

    Slope failures always occur in Malaysia especially during the rainy seasons. They cause damage to properties and fatalities. In this study, a total of 24 one dimensional consolidation tests were carried out on soil samples taken from 16 slope failures in Penang Island and in Baling, Kedah. The slope failures in Penang Island are within the granitic residual soil while in Baling, Kedah they are situated within the sedimentary residual soil. Most of the disturbed soil samples were taken at 100mm depth from the existing soil surface while some soil samples were also taken at 400, 700 and 1000mm depths from the existing soil surface. They were immediately placed in 2 layers of plastic bag to prevent moisture loss. Field bulk density tests were also carried out at all the locations where soil samples were taken. The field bulk density results were later used to re-compact the soil samples for the consolidation tests. The objective of the research is to determine the slow shearing rate to be used in consolidated drained shear box for residual soils taken from slope failures so that the effective shear strength parameters can be determined. One dimensional consolidation tests were used to determine the slow shearing rate. The slow shearing rate found in this study to be used in the consolidated drained shear box tests especially for Northern Malaysian residual soils was 0.286mm/minute.

  2. Influence exerted by the shape of the surfaces of working roll barrels upon the course of the MEFASS (Metal Forming Aided by Shear Stresses rolling process

    Directory of Open Access Journals (Sweden)

    Świątoniowski A.

    2017-03-01

    Full Text Available The essential aspect of the MEFASS rolling process is introducing the cyclic axial counter movement of the rolls transverse to the direction of rolling in the course of a band pass through a rolling gap. The effect of a change in the way of deformation obtained in this manner makes it possible to set in one roll pass a deformation several times larger than it is possible in a conventional process. In this paper, upon the basis of the computer model of the MES process, supported by experimental research, the analysis of the influence exerted by the shape of the surface of roll barrels upon the distribution of the intensity of stresses σi and deformations εi in the section of the band being rolled, and also upon the kinematic and force parameters of the process.

  3. Shear bond strength of two bonding systems on dentin surfaces prepared with Er:YAG laser; Resistencia de uniao ao cisalhamento de dois sistemas adesivos em superficies dentinarias preparadas com laser de Er:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Magro, Eduardo

    2001-07-01

    The purpose of this study was to examine the shear bond strength of two bonding dentin systems, one 'one step' (Single Bond - 3M) and one 'self-etching' (Prompt-L-ESPE), when applied on dentin surfaces prepared with Er:YAG laser (2,94{mu}m) that underwent ar not, acid etched. Forty one human molars just extracted were selected and after the cut with diamond disc and included in acrylic resin, resulting in 81 specimens (hemi crowns). After, the specimens were divided in one group treated with sand paper and another two groups treated with Er:YAG laser with 200 mJ and 250 mJ of energy and 2 Hz of frequency. Next, the prepared surfaces received three treatments with following application: 1) acid + Single Bond + Z 250 resin, 2) prompt-L-Pop + Z 250 resin, and 3) acid without, Single Bond + Z 250 resin. The Z 250 resin was applied and photopolymerized in increments on a Teflon matrix that belonged to an apparatus called 'Assembly Apparatus' machine producing cylinders of 3,5 mm of diameter and 5 mm of height. After these specimens were submitted to thermo cycling during 1 minute the 55 deg C and during 1 minute with 5 deg C with a total of 500 cycles for specimen, and the measures of shear bond strength were abstained using EMIC model DL 2000 rehearsed machine, with speed of 0,5 mm/min, measuring the final rupture tension (Mpa). The results showed an statistic superiority of 5% of probability level in dentin flattened with sandpaper and with laser using 200 mJ of energy with aspect to the ones flattened with laser using 250 mJ of energy. It was observed that using 'Single Bond' bonding dentin system the marks were statistically superior at 5% of probability with reference to the use of the Prompt-L-Pop adhesive system. So, it was concluded that Er:YAG Laser with 200 mJ of energy produced similar dentin cavity prepare than sandpaper and Single Bond seemed the best bonding agent system between restorative material and dentin

  4. Direct Shear Behavior of Fiber Reinforced Concrete Elements

    Directory of Open Access Journals (Sweden)

    Hussein Al-Quraishi

    2018-01-01

    Full Text Available Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks. This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC and reactive powder concrete (RPC. The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressive strength, volume fraction of steel fiber, and shear reinforcement ratio on shear transfer capacity were considered in this study. Furthermore, failure modes, shear stress-slip behavior, and shear stress-crack width behavior were also presented in this study. Tests’ results showed that volume fraction of steel fiber and compressive strength of concrete in NSC and RPC play a major role in improving the shear strength of concrete. As expectedly, due to dowel action, the shear reinforcement is the predominant factor in resisting the shear stress. The shear failure of NSC and RPC has the sudden mode of failure (brittle failure with the approximately linear behavior of shear stress-slip relationship till failure. Using RPC instead of NSC with the same amount of steel fibers in constructing the push-off specimen result in high shear strength. In NSC, shear strength influenced by the three major factors; crack surface friction, aggregate interlock and steel fiber content if present. Whereas, RPC has only steel fiber and cracks surface friction influencing the shear strength. Due to cementitious nature of RPC in comparisons with NSC, the RPC specimen shows greater cracks width. It is observed that the Mattock model gives very satisfactory

  5. (2+1)-dimensional pure gravity for an arbitrary closed initial surface

    International Nuclear Information System (INIS)

    Hosoya, Akio; Nakao, Ken-ichi.

    1989-04-01

    The (2+1)-dimensional pure Einstein gravity is studied in the ADM formalism. We completely solve the initial value and the time evolution problems with a closed Riemann surface being an initial surface, choosing the time slicing so that the trace of the extrinsic curvature is independent of spatial coordinates. The possible topology of the two-surface is either a torus or a Riemann surface of genus g≥2. It is shown that the moduli parameters of the torus follow the geodesic curve in the moduli space, while the motion of the moduli is static for the case g≥2. (author)

  6. Keyed shear joints

    DEFF Research Database (Denmark)

    Hansen, Klaus

    This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...

  7. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  8. An underwater shear compactor

    International Nuclear Information System (INIS)

    Biver, E.; Sims, J.

    1997-01-01

    This paper, originally presented at the WM'96 Conference in Tucson Arizona, describes a concept of a specialised decommissioning tool designed to operate underwater and to reduce the volume of radioactive components by shearing and compacting. The shear compactor was originally conceived to manage the size reduction of a variety of decommissioned stainless steel tubes stored within a reactor fuel cooling pond and which were consuming a substantial volume of the pond. The main objective of this tool was to cut the long tubes into shorter lengths and to compact them into a flat rectangular form which could be stacked on the pond floor, thus saving valuable space. The development programme, undertaken on this project, investigated a wide range of factors which could contribute to an extended cutting blade performance, ie: materials of construction, cutting blade shape and cutting loads required, shock effects, etc. The second phase was to review other aspects of the design, such as radiological protection, cutting blade replacement, maintenance, pond installation and resultant wall loads, water hydraulics, collection of products of shearing/compacting operations, corrosion of the equipment, control system, operational safety and the ability of the equipment to operate in dry environments. The paper summarises the extended work programme involved with this shear compactor tool. (author)

  9. Ultrasound viscoelasticity assessment using an adaptive torsional shear wave propagation method

    Energy Technology Data Exchange (ETDEWEB)

    Ouared, Abderrahmane [Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9, Canada and Institute of Biomedical Engineering, University of Montréal, Montréal, Québec H3T 1J4 (Canada); Kazemirad, Siavash; Montagnon, Emmanuel [Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9 (Canada); Cloutier, Guy, E-mail: guy.cloutier@umontreal.ca [Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9 (Canada); Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montréal, Montréal, Québec H3T 1J4 (Canada); Institute of Biomedical Engineering, University of Montréal, Montréal, Québec H3T 1J4 (Canada)

    2016-04-15

    Purpose: Different approaches have been used in dynamic elastography to assess mechanical properties of biological tissues. Most techniques are based on a simple inversion based on the measurement of the shear wave speed to assess elasticity, whereas some recent strategies use more elaborated analytical or finite element method (FEM) models. In this study, a new method is proposed for the quantification of both shear storage and loss moduli of confined lesions, in the context of breast imaging, using adaptive torsional shear waves (ATSWs) generated remotely with radiation pressure. Methods: A FEM model was developed to solve the inverse wave propagation problem and obtain viscoelastic properties of interrogated media. The inverse problem was formulated and solved in the frequency domain and its robustness to noise and geometric constraints was evaluated. The proposed model was validated in vitro with two independent rheology methods on several homogeneous and heterogeneous breast tissue-mimicking phantoms over a broad range of frequencies (up to 400 Hz). Results: Viscoelastic properties matched benchmark rheology methods with discrepancies of 8%–38% for the shear modulus G′ and 9%–67% for the loss modulus G″. The robustness study indicated good estimations of storage and loss moduli (maximum mean errors of 19% on G′ and 32% on G″) for signal-to-noise ratios between 19.5 and 8.5 dB. Larger errors were noticed in the case of biases in lesion dimension and position. Conclusions: The ATSW method revealed that it is possible to estimate the viscoelasticity of biological tissues with torsional shear waves when small biases in lesion geometry exist.

  10. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...

  11. Examining shear processes during magma ascent

    Science.gov (United States)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  12. Current status of the quantification of roughness and the peak shear strength criteria for rock joints

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Yoon; Kang, Chul Hyung

    1999-04-01

    In order to understand the effects of spent nuclear fuel on the hydraulic behaviour of the rock mass it is necessary to have knowledge about the relationship between the stresses and hydraulic properties of the fractures. The roughness of a fracture surface govern the dilation of the fracture and the displacement of the fracture surface under shear stress. The peak shear strength and hydraulic flow properties of fractures depend very much on the surface roughness. This report describes different methods and techniques used in the characterization of rock joint surfaces and their applications in rock mechanics. Joint roughness is an important factor in the shear resistance of a joint. The joint shear strength shows anisotropic properties due to roughness variation with the shearing direction in direct shear tests. Various shear strength criteria are described in this report. (author)

  13. Line operators in theories of class S, quantized moduli space of flat connections, and Toda field theory

    International Nuclear Information System (INIS)

    Coman, Ioana; Teschner, Joerg

    2015-05-01

    Non-perturbative aspects of N=2 supersymmetric gauge theories of class S are deeply encoded in the algebra of functions on the moduli space M flat of at SL(N)-connections on Riemann surfaces. Expectation values of Wilson and 't Hooft line operators are related to holonomies of flat connections, and expectation values of line operators in the low-energy effective theory are related to Fock-Goncharov coordinates on M flat . Via the decomposition of UV line operators into IR line operators, we determine their noncommutative algebra from the quantization of Fock-Goncharov Laurent polynomials, and find that it coincides with the skein algebra studied in the context of Chern-Simons theory. Another realization of the skein algebra is generated by Verlinde network operators in Toda field theory. Comparing the spectra of these two realizations provides non-trivial support for their equivalence. Our results can be viewed as evidence for the generalization of the AGT correspondence to higher-rank class S theories.

  14. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  15. Shear flows induced by nonlinear evolution of double tearing modes

    International Nuclear Information System (INIS)

    Wang Zhengxiong; Kishimoto, Y.; Li, J. Q.; Wang Xiaogang; Dong, J. Q.

    2008-01-01

    Shear flows induced by nonlinear evolution of double tearing modes are investigated in a resistive magnetohydrodynamic model with slab geometry. It is found that intensive and thin poloidal shear flow layers are generated in the magnetic island region driven by coupled reconnection process at both rational surfaces. The structure of the flow layers keeps evolving after the merging of magnetic separatrices and forms a few narrow vortices along the open field lines in the final stage of magnetic reconnection. The effects of the distance between both rational surfaces and the initial magnetic shear on the nonlinear evolution of the plasma flows are also taken into consideration and the relevant mechanism is discussed

  16. CAT LIDAR wind shear studies

    Science.gov (United States)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  17. Gelation under shear

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  18. Forflytning: shear og friktion

    DEFF Research Database (Denmark)

    2005-01-01

    friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...

  19. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed . The

  20. Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells

    International Nuclear Information System (INIS)

    Mas, Josep; Berg-Sørensen, Kirstine; Richardson, Andrew C; Reihani, S Nader S; Oddershede, Lene B

    2013-01-01

    With the success of in vitro single-molecule force measurements obtained in recent years, the next step is to perform quantitative force measurements inside a living cell. Optical traps have proven excellent tools for manipulation, also in vivo, where they can be essentially non-invasive under correct wavelength and exposure conditions. It is a pre-requisite for in vivo quantitative force measurements that a precise and reliable force calibration of the tweezers is performed. There are well-established calibration protocols in purely viscous environments; however, as the cellular cytoplasm is viscoelastic, it would be incorrect to use a calibration procedure relying on a viscous environment. Here we demonstrate a method to perform a correct force calibration inside a living cell. This method (theoretically proposed in Fischer and Berg-Sørensen (2007 J. Opt. A: Pure Appl. Opt. 9 S239)) takes into account the viscoelastic properties of the cytoplasm and relies on a combination of active and passive recordings of the motion of the cytoplasmic object of interest. The calibration procedure allows us to extract absolute values for the viscoelastic moduli of the living cell cytoplasm as well as the force constant describing the optical trap, thus paving the way for quantitative force measurements inside the living cell. Here, we determine both the spring constant of the optical trap and the elastic contribution from the cytoplasm, influencing the motion of naturally occurring tracer particles. The viscoelastic moduli that we find are of the same order of magnitude as moduli found in other cell types by alternative methods. (paper)

  1. GUT scale extra dimensions and light moduli in supergravity and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Jan

    2010-05-15

    We study the dynamical properties of geometric moduli in five- and six-dimensional supergravity compactified on flat orbifolds, focusing on the impact of the Kaehler potential. In both cases, the Kaehler potential exhibits no-scale structure at tree level. In five dimensions, the volume modulus (radion) can be stabilized by means of perturbative Kaehler corrections. In six dimensions, the same holds for size and shape of the extra dimensions, only if the dilaton can be stabilized in a Minkowski vacuum by nonperturbative effects. We develop a systematic description of almost no-scale models and derive a model independent formula for the radion mass. The radion mass is suppressed compared to the gravitino mass. The supression factor reflects the hierarchy between the Planck and the compactification scale. We analyze a specific example, where the compactification scale is determined by Fayet-Iliopoulos terms of a locally anomalous Abelian gauge group, which are O(M{sub GUT}). In a scenario with gravitino dark matter, this leads to a radion mass of 1-10 MeV. In this mass range, the radion is cosmologically stable and contributes to the dark matter density. Based on galactic gamma ray data, we derive a tight bound on the initial displacement of the field value from its low energy vacuum. We also investigate implications of typical moduli Kaehler potentials on the cosmological evolution of the scalar fields. In particular, we discuss a class of models with steep exponential potentials and non-canonical kinetic terms, motivated by our radion example. We consider the overshooting problem of cosmological moduli dynamics, and the possibility of slow-roll solutions despite the steepness of the scalar potential. (orig.)

  2. In vitro behaviors of rat mesenchymal stem cells on bacterial celluloses with different moduli

    International Nuclear Information System (INIS)

    Taokaew, Siriporn; Phisalaphong, Muenduen; Zhang Newby, Bi-min

    2014-01-01

    Compressive moduli of bacteria-synthesized cellulose (BC) were altered by two drying techniques: ambient-air drying and freeze drying. While no significant differences in dry weight were found, their cross-sectional structures and thickness varied greatly. Freeze dried BCs had loose cross-sectional structures and a thickness of ∼ 4.7 mm, whereas air dried BCs had more compacted cross-sectional structures and a thickness of ∼ 0.1 mm. The compressive moduli of the rehydrated freeze dried and rehydrated air dried BCs were measured to be 21.06 ± 0.22 kPa and 90.09 ± 21.07 kPa, respectively. When rat mesenchymal stem cells (rMSCs) were seeded on these BCs, they maintained a round morphology in the first 3 days of cultivation. More spread-out morphology and considerable proliferation on freeze dried BCs were observed in 7 days, but not on air-dried BCs. The cells were further grown for 3 weeks in the absence and presence of differentiation agents. Without using any differentiation agents, no detectable differentiation was noticed for rMSCs further cultivated on both types of BC. With differentiation inducing agents, chondrogenic differentiation, visualized by histological staining, was observed in some area of the rehydrated freeze dried BCs; while osteogenic differentiation was noticed on the stiffer rehydrated air dried BCs. - Graphical abstract: In the presence of induction agents, rat mesenchymal stem cells (rMSCs) preferentially differentiated into osteocytes on stiffer air dried BC films. - Highlights: • Bacterial cellulose (BC) sheets with different moduli generated by drying differently • Air-dried BC exhibited a modulus similar to that of bone. • Freeze-dried BC showed a modulus in the range of that of muscle. • Air-dried BC promoted the differentiation of rMSCs into osteocytes. • Freeze-dried BC promoted the differentiation of rMSCs into chondrocytes

  3. GUT scale extra dimensions and light moduli in supergravity and cosmology

    International Nuclear Information System (INIS)

    Moeller, Jan

    2010-05-01

    We study the dynamical properties of geometric moduli in five- and six-dimensional supergravity compactified on flat orbifolds, focusing on the impact of the Kaehler potential. In both cases, the Kaehler potential exhibits no-scale structure at tree level. In five dimensions, the volume modulus (radion) can be stabilized by means of perturbative Kaehler corrections. In six dimensions, the same holds for size and shape of the extra dimensions, only if the dilaton can be stabilized in a Minkowski vacuum by nonperturbative effects. We develop a systematic description of almost no-scale models and derive a model independent formula for the radion mass. The radion mass is suppressed compared to the gravitino mass. The supression factor reflects the hierarchy between the Planck and the compactification scale. We analyze a specific example, where the compactification scale is determined by Fayet-Iliopoulos terms of a locally anomalous Abelian gauge group, which are O(M GUT ). In a scenario with gravitino dark matter, this leads to a radion mass of 1-10 MeV. In this mass range, the radion is cosmologically stable and contributes to the dark matter density. Based on galactic gamma ray data, we derive a tight bound on the initial displacement of the field value from its low energy vacuum. We also investigate implications of typical moduli Kaehler potentials on the cosmological evolution of the scalar fields. In particular, we discuss a class of models with steep exponential potentials and non-canonical kinetic terms, motivated by our radion example. We consider the overshooting problem of cosmological moduli dynamics, and the possibility of slow-roll solutions despite the steepness of the scalar potential. (orig.)

  4. In vitro behaviors of rat mesenchymal stem cells on bacterial celluloses with different moduli

    Energy Technology Data Exchange (ETDEWEB)

    Taokaew, Siriporn [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906 (United States); Phisalaphong, Muenduen [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Zhang Newby, Bi-min, E-mail: bimin@uakron.edu [Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906 (United States)

    2014-05-01

    Compressive moduli of bacteria-synthesized cellulose (BC) were altered by two drying techniques: ambient-air drying and freeze drying. While no significant differences in dry weight were found, their cross-sectional structures and thickness varied greatly. Freeze dried BCs had loose cross-sectional structures and a thickness of ∼ 4.7 mm, whereas air dried BCs had more compacted cross-sectional structures and a thickness of ∼ 0.1 mm. The compressive moduli of the rehydrated freeze dried and rehydrated air dried BCs were measured to be 21.06 ± 0.22 kPa and 90.09 ± 21.07 kPa, respectively. When rat mesenchymal stem cells (rMSCs) were seeded on these BCs, they maintained a round morphology in the first 3 days of cultivation. More spread-out morphology and considerable proliferation on freeze dried BCs were observed in 7 days, but not on air-dried BCs. The cells were further grown for 3 weeks in the absence and presence of differentiation agents. Without using any differentiation agents, no detectable differentiation was noticed for rMSCs further cultivated on both types of BC. With differentiation inducing agents, chondrogenic differentiation, visualized by histological staining, was observed in some area of the rehydrated freeze dried BCs; while osteogenic differentiation was noticed on the stiffer rehydrated air dried BCs. - Graphical abstract: In the presence of induction agents, rat mesenchymal stem cells (rMSCs) preferentially differentiated into osteocytes on stiffer air dried BC films. - Highlights: • Bacterial cellulose (BC) sheets with different moduli generated by drying differently • Air-dried BC exhibited a modulus similar to that of bone. • Freeze-dried BC showed a modulus in the range of that of muscle. • Air-dried BC promoted the differentiation of rMSCs into osteocytes. • Freeze-dried BC promoted the differentiation of rMSCs into chondrocytes.

  5. Shear thinning behaviors in magmas

    Science.gov (United States)

    Vetere, F. P.; Cassetta, M.; Perugini, D.

    2017-12-01

    Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour

  6. Feeding strategies as revealed by the section moduli of the humerus bones in bipedal theropod dinosaurs

    Science.gov (United States)

    Lee, Scott; Richards, Zachary

    2015-03-01

    The section modulus of a bone is a measure of its ability to resist bending torques. Carnivorous dinosaurs presumably had strong arm bones to hold struggling prey during hunting. Some theropods are believed to have become herbivorous and such animals would not have needed such strong arms. In this work, the section moduli of the humerus bones of bipedal theropod dinosaurs (from Microvenator celer to Tyrannosaurus rex) are studied to determine the maximum bending loads their arms could withstand. The results show that bending strength is not of uniform importance to these magnificent animals. The predatory theropods had strong arms for use in hunting. In contrast, the herbivorous dinosaurs had weaker arms.

  7. Equivalent elastic moduli of a zigzag single-walled carbon nanotube given by uniform radial deformation

    International Nuclear Information System (INIS)

    Li Ying; Qiu Xinming; Yin Yajun; Yang Fan; Fan Qinshan

    2009-01-01

    Under hydrostatic pressure, the equivalent elastic moduli of a zigzag single-walled carbon nanotube (SWNT) are analytically determined by energy conservation, with the consideration of the covalent bond deformation. The theoretical predictions on the transverse mechanical properties of a zigzag SWNT agree reasonably well with those given by the molecular structures mechanics simulations and also the ab initio calculations. From the simple geometry calculation, the circumferential strain is about 2-3 times of the axial strain of a zigzag SWNT under hydrostatic pressure. The bulk modulus of a zigzag SWNT is found to be 3/7 times of its radial Young's modulus.

  8. Stability of Picard bundle over moduli space of stable vector bundles ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Since the morphism ϕ is given by the universal property of the moduli space, the pullback of the universal bundle E on X × M to X × P by the map idX × ϕ is isomorphic (up to a twist by a line bundle coming from P) to ˜E. In other words, there is an integer k such that. 0 −→ (idX × ϕ)∗E −→ W ⊠ OP (k) −→ Ox×P (k + 1) −→ 0.

  9. Numerical solution of the ekpyrotic scenario in the moduli space approximation

    International Nuclear Information System (INIS)

    Soerensen, Torquil MacDonald

    2005-01-01

    A numerical solution to the equations of motion for the ekpyrotic bulk brane scenario in the moduli space approximation is presented. The visible universe brane has positive tension, and we use a potential that goes to zero exponentially at large distance, and also goes to zero at small distance. In the case considered, no bulk brane, visible brane collision occurs in the solution. This property and the general behavior of the solution is qualitatively the same when the visible brane tension is negative, and for many different parameter choices

  10. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....

  11. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Science.gov (United States)

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  12. Results of shear studies with 241-AY-101 sludge

    International Nuclear Information System (INIS)

    WARRANT, R.W.

    2001-01-01

    of the mixing pump may well produce similar shearing effects as the tissue homogenizer. (Mechanical shear represents the shear caused by direct contact between a particle and a metal surface; hydraulic shear is caused by the particle moving between fluids traveling at different speeds.)

  13. Shear stiffness in nanolaminar Ti3SiC2 challenges ab initio calculations

    International Nuclear Information System (INIS)

    Kisi, E H; Zhang, J F; Kirstein, O; Riley, D P; Styles, M J; Paradowska, A M

    2010-01-01

    Nanolaminates such as the M n+1 AX n (MAX) phases are a material class with ab initio derived elasticity tensors published for over 250 compounds. We have for the first time experimentally determined the full elasticity tensor of the archetype MAX phase, Ti 3 SiC 2 , using polycrystalline samples and in situ neutron diffraction. The experimental elastic constants show extreme shear stiffness, with c 44 more than five times greater than expected for an isotropic material. Such shear stiffness is quite rare in hexagonal materials and strongly contradicts the predictions of all published MAX phase elastic constants derived from ab initio calculations. It is concluded that second order properties such as elastic moduli derived from ab initio calculations require careful experimental verification. The diffraction technique used currently provides the only method of verification for the elasticity tensor for the majority of new materials where single crystals are not available. (fast track communication)

  14. Surface Shear Rheology of Saponin Adsorption Layers

    NARCIS (Netherlands)

    Golemanov, K.; Tcholakova, S.; Denkov, N.; Pelan, E.; Stoyanov, S.D.

    2012-01-01

    Saponins are a wide class of natural surfactants, with molecules containing a rigid hydrophobic group (triterpenoid or steroid), connected via glycoside bonds to hydrophilic oligosaccharide chains. These surfactants are very good foam stabiliziers and emulsifiers, and show a range of nontrivial

  15. N=2→0 super no-scale models and moduli quantum stability

    Directory of Open Access Journals (Sweden)

    Costas Kounnas

    2017-06-01

    Full Text Available We consider a class of heterotic N=2→0 super no-scale Z2-orbifold models. An appropriate stringy Scherk–Schwarz supersymmetry breaking induces tree level masses to all massless bosons of the twisted hypermultiplets and therefore stabilizes all twisted moduli. At high supersymmetry breaking scale, the tachyons that occur in the N=4→0 parent theories are projected out, and no Hagedorn-like instability takes place in the N=2→0 models (for small enough marginal deformations. At low supersymmetry breaking scale, the stability of the untwisted moduli is studied at the quantum level by taking into account both untwisted and twisted contributions to the 1-loop effective potential. The latter depends on the specific branch of the gauge theory along which the background can be deformed. We derive its expression in terms of all classical marginal deformations in the pure Coulomb phase, and in some mixed Coulomb/Higgs phases. In this class of models, the super no-scale condition requires having at the massless level equal numbers of untwisted bosonic and twisted fermionic degrees of freedom. Finally, we show that N=1→0 super no-scale models are obtained by implementing a second Z2 orbifold twist on N=2→0 super no-scale Z2-orbifold models.

  16. Young's moduli of carbon materials investigated by various classical molecular dynamics schemes

    Science.gov (United States)

    Gayk, Florian; Ehrens, Julian; Heitmann, Tjark; Vorndamme, Patrick; Mrugalla, Andreas; Schnack, Jürgen

    2018-05-01

    For many applications classical carbon potentials together with classical molecular dynamics are employed to calculate structures and physical properties of such carbon-based materials where quantum mechanical methods fail either due to the excessive size, irregular structure or long-time dynamics. Although such potentials, as for instance implemented in LAMMPS, yield reasonably accurate bond lengths and angles for several carbon materials such as graphene, it is not clear how accurate they are in terms of mechanical properties such as for instance Young's moduli. We performed large-scale classical molecular dynamics investigations of three carbon-based materials using the various potentials implemented in LAMMPS as well as the EDIP potential of Marks. We show how the Young's moduli vary with classical potentials and compare to experimental results. Since classical descriptions of carbon are bound to be approximations it is not astonishing that different realizations yield differing results. One should therefore carefully check for which observables a certain potential is suited. Our aim is to contribute to such a clarification.

  17. Moduli dynamics as a predictive tool for thermal maximally supersymmetric Yang-Mills at large N

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Takeshi [Department of Physics, Shizuoka University,836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Department of Physics and Astronomy, University of Kentucky,Lexington, KY 40506 (United States); Shiba, Shotaro [Maskawa Institute for Science and Culture, Kyoto Sangyo University,Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555 (Japan); Wiseman, Toby [Theoretical Physics Group, Blackett Laboratory, Imperial College,Exhibition Road, London SW7 2AZ (United Kingdom); Withers, Benjamin [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom)

    2015-07-09

    Maximally supersymmetric (p+1)-dimensional Yang-Mills theory at large N and finite temperature, with possibly compact spatial directions, has a rich phase structure. Strongly coupled phases may have holographic descriptions as black branes in various string duality frames, or there may be no gravity dual. In this paper we provide tools in the gauge theory which give a simple and unified picture of the various strongly coupled phases, and transitions between them. Building on our previous work we consider the effective theory describing the moduli of the gauge theory, which can be computed precisely when it is weakly coupled far out on the Coulomb branch. Whilst for perturbation theory naive extrapolation from weak coupling to strong gives little information, for this moduli theory naive extrapolation from its weakly to its strongly coupled regime appears to encode a surprising amount of information about the various strongly coupled phases. We argue it encodes not only the parametric form of thermodynamic quantities for these strongly coupled phases, but also certain transcendental factors with a geometric origin, and allows one to deduce transitions between the phases. We emphasise it also gives predictions for the behaviour of other observables in these phases.

  18. Third-order elastic moduli for alkali-halide crystals possessing the sodium chloride structure

    International Nuclear Information System (INIS)

    Ray, U.

    2010-01-01

    The values of third-order elastic moduli for alkali halides, having NaCl-type crystal structure are calculated according to the Born-Mayer potential model, considering the repulsive interactions up to the second nearest neighbours and calculating the values of the potential parameters for each crystal, independently, from the compressibility data. This work presents the first published account of the calculation of the third-order elastic moduli taking the actual value of the potential parameter unlike the earlier works. Third-order elastic constants have been computed for alkali halides at 0 and 300 K. The results of the third-order elastic constants are compared with the available experimental and theoretical data. Very good agreement between experimental and theoretical third-order elastic constant data (except C 123 ) is found. We have also computed the values of the pressure derivatives of second-order elastic constants and Anderson-Grueneisen parameter for alkali halides, which agree reasonably well with the experimental values, indicating the satisfactory nature of our computed data for third-order elastic constants.

  19. Moduli dynamics as a predictive tool for thermal maximally supersymmetric Yang-Mills at large N

    International Nuclear Information System (INIS)

    Morita, Takeshi; Shiba, Shotaro; Wiseman, Toby; Withers, Benjamin

    2015-01-01

    Maximally supersymmetric (p+1)-dimensional Yang-Mills theory at large N and finite temperature, with possibly compact spatial directions, has a rich phase structure. Strongly coupled phases may have holographic descriptions as black branes in various string duality frames, or there may be no gravity dual. In this paper we provide tools in the gauge theory which give a simple and unified picture of the various strongly coupled phases, and transitions between them. Building on our previous work we consider the effective theory describing the moduli of the gauge theory, which can be computed precisely when it is weakly coupled far out on the Coulomb branch. Whilst for perturbation theory naive extrapolation from weak coupling to strong gives little information, for this moduli theory naive extrapolation from its weakly to its strongly coupled regime appears to encode a surprising amount of information about the various strongly coupled phases. We argue it encodes not only the parametric form of thermodynamic quantities for these strongly coupled phases, but also certain transcendental factors with a geometric origin, and allows one to deduce transitions between the phases. We emphasise it also gives predictions for the behaviour of other observables in these phases.

  20. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    Science.gov (United States)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  1. Living bacteria rheology: Population growth, aggregation patterns, and collective behavior under different shear flows

    Science.gov (United States)

    Patrício, P.; Almeida, P. L.; Portela, R.; Sobral, R. G.; Grilo, I. R.; Cidade, T.; Leal, C. R.

    2014-08-01

    The activity of growing living bacteria was investigated using real-time and in situ rheology—in stationary and oscillatory shear. Two different strains of the human pathogen Staphylococcus aureus—strain COL and its isogenic cell wall autolysis mutant, RUSAL9—were considered in this work. For low bacteria density, strain COL forms small clusters, while the mutant, presenting deficient cell separation, forms irregular larger aggregates. In the early stages of growth, when subjected to a stationary shear, the viscosity of the cultures of both strains increases with the population of cells. As the bacteria reach the exponential phase of growth, the viscosity of the cultures of the two strains follows different and rich behaviors, with no counterpart in the optical density or in the population's colony-forming units measurements. While the viscosity of strain COL culture keeps increasing during the exponential phase and returns close to its initial value for the late phase of growth, where the population stabilizes, the viscosity of the mutant strain culture decreases steeply, still in the exponential phase, remains constant for some time, and increases again, reaching a constant plateau at a maximum value for the late phase of growth. These complex viscoelastic behaviors, which were observed to be shear-stress-dependent, are a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties. The viscous and elastic moduli of strain COL culture, obtained with oscillatory shear, exhibit power-law behaviors whose exponents are dependent on the bacteria growth stage. The viscous and elastic moduli of the mutant culture have complex behaviors, emerging from the different relaxation times that are associated with the large molecules of the medium and the self-organized structures of bacteria. Nevertheless, these behaviors reflect the bacteria growth stage.

  2. Cargo Release from Polymeric Vesicles under Shear

    Directory of Open Access Journals (Sweden)

    Yingying Guo

    2018-03-01

    Full Text Available In this paper we study the release of cargo from polymeric nano-carriers under shear. Vesicles formed by two star block polymers— A 12 B 6 C 2 ( A B C and A 12 B 6 A 2 ( A B A —and one linear block copolymer— A 14 B 6 ( A B , are investigated using dissipative particle dynamics (DPD simulations. A - and C -blocks are solvophobic and B -block is solvophilic. The three polymers form vesicles of different structures. The vesicles are subjected to shear both in bulk and between solvophobic walls. In bulk shear, the mechanisms of cargo release are similar for all vesicles, with cargo travelling through vesicle membrane with no preferential release location. When sheared between walls, high cargo release rate is only observed with A B C vesicle after it touches the wall. For A B C vesicle, the critical condition for high cargo release rate is the formation of wall-polymersome interface after which the effect of shear rate in promoting cargo release is secondary. High release rate is achieved by the formation of solvophilic pathway allowing cargo to travel from the vesicle cavity to the vesicle exterior. The results in this paper show that well controlled target cargo release using polymersomes can be achieved with polymers of suitable design and can potentially be very useful for engineering applications. As an example, polymersomes can be used as carriers for surface active friction reducing additives which are only released at rubbing surfaces where the additives are needed most.

  3. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  4. Shear-induced chaos

    International Nuclear Information System (INIS)

    Lin, Kevin K; Young, Lai-Sang

    2008-01-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed

  5. Shear-induced chaos

    Science.gov (United States)

    Lin, Kevin K.; Young, Lai-Sang

    2008-05-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed.

  6. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  7. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  8. Evaluation of shear bond strength of different treatments of ceramic bracket surfaces Avaliação da resistência ao cisalhamento de diferentes tratamentos na superfície de braquetes cerâmicos

    Directory of Open Access Journals (Sweden)

    Patrícia Helou Ramos Andrade

    2012-08-01

    Full Text Available OBJECTIVE: To evaluate the bonding strength of the ceramic bracket and composite resin restoration interface, using four types of treatment on the base of the bracket. METHODOLOGY: 48 photoactivated composite resin discs were used (FiltekTM Z250 contained in specimens and divided into 4 groups of 12 specimens for each group according to the type of treatment performed on the base of the brackets. Once the brackets were bonded, the specimens were subjected to shear stress carried out in a universal testing machine (MTS: 810 Material Test System calibrated with a fixed speed of 0.5 mm / minute. The values obtained were recorded and compared by means of appropriate statistical tests - analysis of variance and then Tukey's test. RESULTS AND CONCLUSIONS: The surfaces of ceramic brackets conditioned with 10% hydrofluoric acid for 1 minute, followed by aluminum oxide blasting, 50µ, after silane application and primer application, was considered the best method to prepare surfaces of ceramic brackets prior to orthodontic esthetic bonding.OBJETIVO: avaliar a resistência à união da interface entre braquete cerâmico e restauração de resina composta, empregando quatro tipos de tratamento na base do braquete. MÉTODOS: foram utilizados 48 discos de resina fotoativada (Filtek® Z250 incluídos em corpos de prova, divididos em quatro grupos, com 12 espécimes em cada grupo, de acordo com o tipo de tratamento realizado na base do braquete. Uma vez colados os braquetes, os corpos de prova foram submetidos à tensão de cisalhamento, realizado numa máquina universal de ensaios (MTS: 810 Material Test System calibrada com velocidade fixa de 0,5mm/min. Os valores obtidos foram registrados e comparados por meio de médias, utilizando-se testes estatísticos adequados (análise de Variância e, posteriormente, teste de Tukey. RESULTADOS E CONCLUSÕES: o condicionamento das superfícies dos braquetes cerâmicos com ácido hidrofluorídrico a 10% por 1 minuto

  9. Excited waves in shear layers

    Science.gov (United States)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  10. Inductive shearing of drilling pipe

    Science.gov (United States)

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  11. Wall shear stress hot film sensor for use in gases

    International Nuclear Information System (INIS)

    Osorio, O D; Silin, N

    2011-01-01

    The purpose of this work is to present the construction and characterization of a wall shear stress hot film sensor for use in gases made with MEMS technology. For this purpose, several associated devices were used, including a constant temperature feedback bridge and a shear stress calibration device that allows the sensor performance evaluation. The sensor design adopted here is simple, economical and is manufactured on a flexible substrate allowing its application to curved surfaces. Stationary and transient wall shear stress tests were carried on by means of the calibration device, determining its performance for different conditions.

  12. The moduli space of two U(1) instantons on noncommutative $R^4$ and $R^3\\times S^1$

    OpenAIRE

    Lee, Kimyeong; Tong, David; Yi, Sangheon

    2000-01-01

    We employ the ADHM method to derive the moduli space of two instantons in U(1) gauge theory on a noncommutative space. We show by an explicit hyperK\\"ahler quotient construction that the relative metric of the moduli space of two instantons on $R^4$ is the Eguchi-Hanson metric and find a unique threshold bound state. For two instantons on $R^3\\times S^1$, otherwise known as calorons, we give the asymptotic metric and conjecture a completion. We further discuss the relationship of caloron modu...

  13. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  14. Measurement of viscosity of slush at high shear rates

    OpenAIRE

    小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru

    1988-01-01

    Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.

  15. Anomalous transport due to shear-Alfven waves

    International Nuclear Information System (INIS)

    Lee, W.W.; Chance, M.S.; Okuda, H.

    1980-10-01

    The behavior of shear-Alfven eigenmodes and the accompanied anomalous transport have been investigated. In the particle simulation, equilibrium thermal fluctuations associated with the eigenmodes have been observed to nullify the zeroth-order shear near the rational surface through the induced second-order eddy current, and, in turn, give rise to the formation of magnetic islands which cause rapid electron energy transport in the region. The theoretical verification of the observed behavior is discussed

  16. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions.In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding...

  17. Nonlinear shear behavior of rock joints using a linearized implementation of the Barton–Bandis model

    Directory of Open Access Journals (Sweden)

    Simon Heru Prassetyo

    2017-08-01

    Full Text Available Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing, inducing dilation and resulting in nonlinear joint shear strength and shear stress vs. shear displacement behaviors. The Barton–Bandis (BB joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints. The BB model accounts for asperity roughness and strength through the joint roughness coefficient (JRC and joint wall compressive strength (JCS parameters. Nevertheless, many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr–Coulomb (M−C model, which is only appropriate for smooth and non-dilatant joints. This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior. To bridge the BB and the M−C models, this paper aims to provide a linearized implementation of the BB model using a tangential technique to obtain the equivalent M−C parameters that can satisfy the nonlinear shear behavior of rock joints. These equivalent parameters, namely the equivalent peak cohesion, friction angle, and dilation angle, are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing. The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre- and post-peak regions of shear displacement, respectively. Likewise, the pre- and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established. Verifications of the linearized implementation of the BB model show that the shear stress-shear displacement curves, the dilation behavior, and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.

  18. Influence of Young's moduli in 3D fluid-structure coupled models of the human cochlea

    Science.gov (United States)

    Böhnke, Frank; Semmelbauer, Sebastian; Marquardt, Torsten

    2015-12-01

    The acoustic wave propagation in the human cochlea was studied using a tapered box-model with linear assumptions respective to all mechanical parameters. The discretisation and evaluation is conducted by a commercial finite element package (ANSYS). The main difference to former models of the cochlea was the representation of the basilar membrane by a 3D elastic solid. The Young's moduli of this solid were modified to study their influence on the travelling wave. The lymph in the scala vestibuli and scala tympani was represented by a viscous and nearly incompressible fluid finite element approach. Our results show the maximum displacement for f = 2kHz at half of the length of the cochlea in accordance with former experiments. For low frequencies f <200 Hz nearly zero phase shifts were found, whereas for f =1 kHz it reaches values up to -12 cycles depending on the degree of orthotropy.

  19. On Type IIB moduli stabilization and N=4,8 supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Aldazabal, Gerardo [Centro Atomico Bariloche, Instituto Balseiro (CNEA-UNC) and CONICET, 8400 S.C. de Bariloche (Argentina); Marques, Diego [Institut de Physique Theorique, CEA/ Saclay, 91191 Gif-sur-Yvette Cedex (France); Nunez, Carmen, E-mail: carmen@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and Departamento de Fisica, FCEN, Universidad de Buenos Aires, C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Rosabal, Jose A. [Centro Atomico Bariloche, Instituto Balseiro (CNEA-UNC) and CONICET, 8400 S.C. de Bariloche (Argentina)

    2011-08-01

    We analyze D=4 compactifications of Type IIB theory with generic, geometric and non-geometric, dual fluxes turned on. In particular, we study N=1 toroidal orbifold compactifications that admit an embedding of the untwisted sector into gauged N=4,8 supergravities. Truncations, spontaneous breaking of supersymmetry and the inclusion of sources are discussed. The algebraic identities satisfied by the supergravity gaugings are used to implement the full set of consistency constraints on the background fluxes. This allows to perform a generic study of N=1 vacua and identify large regions of the parameter space that do not admit complete moduli stabilization. Illustrative examples of AdS and Minkowski vacua are presented.

  20. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    International Nuclear Information System (INIS)

    Qiu, S.; Clausen, B.; Padula, S.A.; Noebe, R.D.; Vaidyanathan, R.

    2011-01-01

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  1. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S. [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Padula, S.A.; Noebe, R.D. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Vaidyanathan, R., E-mail: raj@mail.ucf.edu [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States)

    2011-08-15

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  2. Exploring Lovelock theory moduli space for Schrödinger solutions

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2016-09-01

    Full Text Available We look for Schrödinger solutions in Lovelock gravity in D>4. We span the entire parameter space and determine parametric relations under which the Schrödinger solution exists. We find that in arbitrary dimensions pure Lovelock theories have Schrödinger solutions of arbitrary radius, on a co-dimension one locus in the Lovelock parameter space. This co-dimension one locus contains the subspace over which the Lovelock gravity can be written in the Chern–Simons form. Schrödinger solutions do not exist outside this locus and on this locus they exist for arbitrary dynamical exponent z. This freedom in z is due to the degeneracy in the configuration space. We show that this degeneracy survives certain deformation away from the Lovelock moduli space.

  3. Exploring Lovelock theory moduli space for Schrödinger solutions

    Science.gov (United States)

    Jatkar, Dileep P.; Kundu, Nilay

    2016-09-01

    We look for Schrödinger solutions in Lovelock gravity in D > 4. We span the entire parameter space and determine parametric relations under which the Schrödinger solution exists. We find that in arbitrary dimensions pure Lovelock theories have Schrödinger solutions of arbitrary radius, on a co-dimension one locus in the Lovelock parameter space. This co-dimension one locus contains the subspace over which the Lovelock gravity can be written in the Chern-Simons form. Schrödinger solutions do not exist outside this locus and on this locus they exist for arbitrary dynamical exponent z. This freedom in z is due to the degeneracy in the configuration space. We show that this degeneracy survives certain deformation away from the Lovelock moduli space.

  4. Enabling real-time ultrasound imaging of soft tissue mechanical properties by simplification of the shear wave motion equation.

    Science.gov (United States)

    Engel, Aaron J; Bashford, Gregory R

    2015-08-01

    Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.

  5. An analytical study of the effects of transverse shear deformation and anisotropy on buckling loads of laminated cylinders. M.S. Thesis - George Washington Univ.

    Science.gov (United States)

    Jegley, Dawn C.

    1987-01-01

    Buckling loads of thick-walled orthotropic and anisotropic simply supported circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of buckling loads predicted by the conventional first-order transverse-shear deformation theory and the higher-order theory show that the additional allowance for transverse shear deformation has a negligible effect on the predicted buckling loads of medium-thick metallic isotropic cylinders. However, the higher-order theory predicts buckling loads which are significantly lower than those predicted by the first-order transverse-shear deformation theory for certain short, thick-walled cylinders which have low through-the-thickness shear moduli. A parametric study of the effects of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 45 degree plies are most sensitive to transverse-shear deformation effects. Interaction curves for buckling loads of cylinders subjected to axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are as sensitive to transverse-shear deformation effects as buckling loads due to axial compressive loadings. The effects of anisotropy are important over a much wider range of cylinder geometries than the effects of transverse shear deformation.

  6. Optimization of multiplane ?PIV for wall shear stress and wall topography characterization

    NARCIS (Netherlands)

    Rossi, M.; Lindken, R.; Westerweel, J.

    2009-01-01

    Multiplane ?PIV can be utilized to determine the wall shear stress and wall topology from the measured flow over a structured surface. A theoretical model was developed to predict the measurement error for the surface topography and shear stress, based on a theoretical analysis of the precision in

  7. Forward and inverse viscoelastic wave scattering by irregular inclusions for shear wave elastography.

    Science.gov (United States)

    Bernard, Simon; Cloutier, Guy

    2017-10-01

    Inversion methods in shear wave elastography use simplifying assumptions to recover the mechanical properties of soft tissues. Consequently, these methods suffer from artifacts when applied to media containing strong stiffness contrasts, and do not provide a map of the viscosity. In this work, the shear wave field recorded inside and around an inclusion was used to estimate the viscoelastic properties of the inclusion and surrounding medium, based on an inverse problem approach assuming local homogeneity of both media. An efficient semi-analytical method was developed to model the scattering of an elastic wave by an irregular inclusion, based on a decomposition of the field by Bessel functions and on a decomposition of the boundaries as Fourier series. This model was validated against finite element modeling. Shear waves were experimentally induced by acoustic radiation force in soft tissue phantoms containing stiff and soft inclusions, and the displacement field was imaged at a high frame rate using plane wave imaging. A nonlinear least-squares algorithm compared the model to the experimental data and adjusted the geometrical and mechanical parameters. The estimated shear storage and loss moduli were in good agreement with reference measurements, as well as the estimated inclusion shape. This approach provides an accurate estimation of geometry and viscoelastic properties for a single inclusion in a homogeneous background in the context of radiation force elastography.

  8. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  9. A Mechanics Model for Sensors Imperfectly Bonded to the Skin for Determination of the Young's Moduli of Epidermis and Dermis

    Science.gov (United States)

    Yuan, J. H.; Shi, Y.; Pharr, M.; Feng, X.; Rogers, John A.; Huang, Yonggang

    2016-01-01

    A mechanics model is developed for the encapsulated piezoelectric thin-film actuators/sensors system imperfectly bonded to the human skin to simultaneously determine the Young's moduli of the epidermis and dermis as well as the thickness of epidermis. PMID:27330219

  10. The moduli space of instantons on an ALE space from 3d $\\mathcal{N}=4$ field theories

    CERN Document Server

    Mekareeya, Noppadol

    2015-01-01

    The moduli space of instantons on an ALE space is studied using the moduli space of $\\mathcal{N}=4$ field theories in three dimensions. For instantons in a simple gauge group $G$ on $\\mathbb{C}^2/\\mathbb{Z}_n$, the Hilbert series of such an instanton moduli space is computed from the Coulomb branch of the quiver given by the affine Dynkin diagram of $G$ with flavour nodes of unitary groups attached to various nodes of the Dynkin diagram. We provide a simple prescription to determine the ranks and the positions of these flavour nodes from the order of the orbifold $n$ and from the residual subgroup of $G$ that is left unbroken by the monodromy of the gauge field at infinity. For $G$ a simply laced group of type $A$, $D$ or $E$, the Higgs branch of such a quiver describes the moduli space of instantons in projective unitary group $PU(n) \\cong U(n)/U(1)$ on orbifold $\\mathbb{C}^2/\\hat{G}$, where $\\hat{G}$ is the discrete group that is in McKay correspondence to $G$. Moreover, we present the quiver whose Coulomb ...

  11. The Determination of ’In Situ’ Anisotropic Elastic Moduli from Laboratory Ultrasonic and Field Seismic Measurements.

    Science.gov (United States)

    feet of the uppermost Kayenta sandstone unit at the Mixed Company site, for which the in situ elastic moduli are determined to be as follows: C11...and plastic anisotropic properties of Kayenta sandstone from the Mixed Company site are in poor agreement with newly generated data. (Author)

  12. Time-dependent behavior of rough discontinuities under shearing conditions

    Science.gov (United States)

    Wang, Zhen; Shen, Mingrong; Ding, Wenqi; Jang, Boan; Zhang, Qingzhao

    2018-02-01

    The mechanical properties of rocks are generally controlled by their discontinuities. In this study, the time-dependent behavior of rough artificial joints under shearing conditions was investigated. Based on Barton’s standard profile lines, samples with artificial joint surfaces were prepared and used to conduct the shear and creep tests. The test results showed that the shear strength of discontinuity was linearly related to roughness, and subsequently an empirical equation was established. The long-term strength of discontinuity can be identified using the inflection point of the isocreep-rate curve, and it was linearly related to roughness. Furthermore, the ratio of long-term and instantaneous strength decreased with the increase of roughness. The shear-stiffness coefficient increased with the increase of shear rate, and the influence of shear rate on the shear stiffness coefficient decreased with the decrease of roughness. Further study of the mechanism revealed that these results could be attributed to the different time-dependent behavior of intact and joint rocks.

  13. Edge-Induced Shear Banding in Entangled Polymeric Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Fielding, Suzanne M

    2018-03-30

    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ[over ˙] (for states of homogeneous shear) is monotonic, or has a region of negative slope, dσ/dγ[over ˙]<0, which would trigger banding. Attempts to settle the question experimentally via velocimetry of the flow field inside the fluid are often confounded by an instability of the free surface where the sample meets the outside air, known as "edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances-which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally-can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  14. An in silico framework to analyze the anisotropic shear wave mechanics in cardiac shear wave elastography

    Science.gov (United States)

    Caenen, Annette; Pernot, Mathieu; Peirlinck, Mathias; Mertens, Luc; Swillens, Abigail; Segers, Patrick

    2018-04-01

    Shear wave elastography (SWE) is a potential tool to non-invasively assess cardiac muscle stiffness. This study focused on the effect of the orthotropic material properties and mechanical loading on the performance of cardiac SWE, as it is known that these factors contribute to complex 3D anisotropic shear wave propagation. To investigate the specific impact of these complexities, we constructed a finite element model with an orthotropic material law subjected to different uniaxial stretches to simulate SWE in the stressed cardiac wall. Group and phase speed were analyzed in function of tissue thickness and virtual probe rotation angle. Tissue stretching increased the group and phase speed of the simulated shear wave, especially in the direction of the muscle fiber. As the model provided access to the true fiber orientation and material properties, we assessed the accuracy of two fiber orientation extraction methods based on SWE. We found a higher accuracy (but lower robustness) when extracting fiber orientations based on the location of maximal shear wave speed instead of the angle of the major axis of the ellipsoidal group speed surface. Both methods had a comparable performance for the center region of the cardiac wall, and performed less well towards the edges. Lastly, we also assessed the (theoretical) impact of pathology on shear wave physics and characterization in the model. It was found that SWE was able to detect changes in fiber orientation and material characteristics, potentially associated with cardiac pathologies such as myocardial fibrosis. Furthermore, the model showed clearly altered shear wave patterns for the fibrotic myocardium compared to the healthy myocardium, which forms an initial but promising outcome of this modeling study.

  15. Dynamic moduli and damping ratios of soil evaluated from pressuremeter test

    International Nuclear Information System (INIS)

    Yoshida, Yasuo; Ezashi, Yasuyuki; Kokusho, Takaji; Nishi, Yoshikazu

    1984-01-01

    Dynamic and static properties of soils are investigated using the newly developed equipment of in-situ test, which imposes dynamic repeated pressure on borehole wall at any depth covering a wide range of strain amplitude. This paper describes mainly the shear modulus and damping characteristics of soils obtained by using the equipment in several sites covering wide variety of soils. The test results are compared and with those obtained by other test methods such as the dynamic triaxial test, the simple shear test and the shear wave velocity test, and discussions are made with regard to their relation ships to each other, which demonstrates the efficiency of this in-situ test. (author)

  16. Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes basal shear distributions inferred from surface observations - surface ice velocities (Joughin et al., 2010, Rignot et al., 2011), bed and...

  17. Shear viscosity enhancement in water–nanoparticle suspensions

    International Nuclear Information System (INIS)

    Balasubramanian, Ganesh; Sen, Swarnendu; Puri, Ishwar K.

    2012-01-01

    Equilibrium molecular dynamics simulations characterize the increase in the shear viscosity of water around a suspended silicon dioxide nanoparticle. Water layering on the solid surface decreases the fraction of adjacent fluid molecules that are more mobile and hence less viscous, thereby increasing the shear viscosity. The contribution of the nanoparticle surface area to this rheological behavior is identified and an empirical model that accounts for it is provided. The model successfully reproduces the shear viscosity predictions from previous experimental measurements as well as our simulations. -- Highlights: ► Layering of water on the solid surfaces increases the fraction of less mobile molecules adjacent to them. ► A nondimensional parameter predicts of viscosity enhancement due to particle shape, volume fraction. ► Model predictions agree with the results of atomistic simulations and experimental measurements.

  18. Contact stresses by rounded punch subject to axial and transverse shear

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-05-01

    Contact shear stresses by rounded punch were evaluated numerically. Numerical program was successfully implemented by using an influence function method. To simulate the physical fretting problem, a closed load path of shear was considered. The influence functions on surface displacements fo both axial and transverse direction were calculated using a triangular shear traction element. Behaviour of the contact surface, such as stick and slip region during the load path was investigated together with compliance change. Irreversibility of the shear stress was shown. The importance and the utilization of the present research were discussed for analyzing the material failure induced by contact such as fretting wear and fatigue.

  19. Contact stresses by rounded punch subject to axial and transverse shear

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu

    1999-01-01

    Contact shear stresses by rounded punch were evaluated numerically. Numerical program was successfully implemented by using an influence function method. To simulate the physical fretting problem, a closed load path of shear was considered. The influence functions on surface displacements fo both axial and transverse direction were calculated using a triangular shear traction element. Behaviour of the contact surface, such as stick and slip region during the load path was investigated together with compliance change. Irreversibility of the shear stress was shown. The importance and the utilization of the present research were discussed for analyzing the material failure induced by contact such as fretting wear and fatigue

  20. Impedance method for measuring shear elasticity of liquids

    Science.gov (United States)

    Badmaev, B. B.; Dembelova, T. S.; Damdinov, B. B.; Gulgenov, Ch. Zh.

    2017-11-01

    Experimental results of studying low-frequency (74 kHz) shear elasticity of polymer liquids by the impedance method (analogous to the Mason method) are presented. A free-volume thick liquid layer is placed on the horizontal surface of a piezoelectric quartz crystal with dimensions 34.7 × 12 × 5.5 cm. The latter performs tangential vibrations at resonance frequency. The liquid layer experiences shear strain, and shear waves should propagate in it. From the theory of the method, it follows that, with an increase in the layer thickness, both real and imaginary resonance frequency shifts should exhibit damped oscillations and tend to limiting values. For the liquids under study, the imaginary frequency shift far exceeds the real one, which testifies to the presence of bulk shear elasticity.

  1. Sheared flow layer formation in tokamak plasmas with reversed magnetic shear

    International Nuclear Information System (INIS)

    Dong, J.Q.; Long, Y.X.; Mou, Z.Z.; Zhang, J.H.; Li, J.Q.

    2005-01-01

    Sheared flow layer (SFL) formation due to magnetic energy release through tearing-reconnections in tokamak plasmas is investigated. The characteristics of the SFLs created in the development of double tearing mode, mediated by electron viscosity in configurations with non-monotonic safety factor q profiles and, therefore, two rational flux surfaces of same q value, are analyzed in detail as an example. Quasi-linear simulations demonstrate that the sheared flows induced by the mode have desirable characteristics (lying at the boundaries of the magnetic islands), and sufficient levels required for internal transport barrier (ITB) formation. A possible correlation of the SFLs with experimental observations, that double transport barrier structures are preferentially formed in proximity of the two rational surfaces, is also proffered. (author)

  2. Shear-Rate-Dependent Behavior of Clayey Bimaterial Interfaces at Landslide Stress Levels

    Science.gov (United States)

    Scaringi, Gianvito; Hu, Wei; Xu, Qiang; Huang, Runqiu

    2018-01-01

    The behavior of reactivated and first-failure landslides after large displacements is controlled by the available shear resistance in a shear zone and/or along slip surfaces, such as a soil-bedrock interface. Among the factors influencing the resistance parameter, the dependence on the shear rate can trigger catastrophic evolution (rate-weakening) or exert a slow-down feedback (rate-strengthening) upon stress perturbation. We present ring-shear test results, performed under various normal stresses and shear rates, on clayey soils from a landslide shear zone, on its parent lithology and other lithologies, and on clay-rock interface samples. We find that depending on the materials in contact, the normal stress, and the stress history, the shear-rate-dependent behaviors differ. We discuss possible models and underlying mechanisms for the time-dependent behavior of landslides in clay soils.

  3. Temperature and shear rate characteristics of electrorheological gel applied to a clutch

    International Nuclear Information System (INIS)

    Koyanagi, K; Takata, Y; Motoyoshi, T; Oshima, T; Kakinuma, Y; Anzai, H; Sakurai, K

    2013-01-01

    This investigation reports the physical characteristics of electrorheological (ER) gels, which are a type of functional material having controlled surface friction. We previously developed slip clutches using ER gels sandwiched between electrodes, and verified their responses and controllability. We newly report the temperature and shear rate characteristics of ER gel in this study because the input and output electrodes of the clutch continuously slip past each other. While the temperature of ER gels increased when energized, the shear stress hardly changed. Instead, wearing and adaptation to the electrode affect the property. The shear rate hardly affected the shear stress in the high-shear-rate region. Conversely, the shear stress depended on the shear rate in the lower region.

  4. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  5. Effect of Surface Modification of Nanosilica on the Viscoelastic Properties of Its Polystyrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Mortezaei

    2008-12-01

    Full Text Available The preparation and characterization of the vinyltriethoxysilane-modified silica nanoparticles were investigated. Also the surface tension of polystyrene, native (hydrophilic silica and silane-modified (hydrophobic silica were determined. Two kinds of polystyrene/silica (treated and non-treated nanocomposites were prepared with different filler loadings by solution method. Their viscoelastic properties were studied by dynamic stress controlled rotary shear rheometer. Solid-like response of polystyrene/native silica nanocomposites were observed in the terminal zone. Solid inclusionsincrease the storage modulus more than the loss modulus, hence decrease the material damping. By increasing filler volume fraction, the particles tend to agglomerate and build clusters. The presence of clusters increases the viscosity, the moduli and the viscoelastic non-linearity of the composites.Treating the filler surface reduces its tendency to agglomerate as well as the adhesion between the particles and the polystyrene, leading to lower viscosity and interfacial slippage. Also the loss modulus peak is affected significantly by the particle surface area and its surface property in silica-filled polystyrene, which corresponds to its glass transition.

  6. Analytic approximations for the elastic moduli of two-phase materials

    DEFF Research Database (Denmark)

    Zhang, Z. J.; Zhu, Y. K.; Zhang, P.

    2017-01-01

    Based on the models of series and parallel connections of the two phases in a composite, analytic approximations are derived for the elastic constants (Young's modulus, shear modulus, and Poisson's ratio) of elastically isotropic two-phase composites containing second phases of various volume...

  7. Rock Physical Interpretation of the Relationship between Dynamic and Static Young's Moduli of Sedimentary Rocks

    Science.gov (United States)

    Takahashi, T.

    2017-12-01

    The static Young's modulus (deformability) of a rock is indispensable for designing and constructing tunnels, dams and underground caverns in civil engineering. Static Young's modulus which is an elastic modulus at large strain level is usually obtained with the laboratory tests of rock cores sampled in boreholes drilled in a rock mass. A deformability model of the entire rock mass is then built by extrapolating the measurements based on a rock mass classification obtained in geological site characterization. However, model-building using data obtained from a limited number of boreholes in the rock mass, especially a complex rock mass, may cause problems in the accuracy and reliability of the model. On the other hand, dynamic Young's modulus which is the modulus at small strain level can be obtained from seismic velocity. If dynamic Young's modulus can be rationally converted to static one, a seismic velocity model by the seismic method can be effectively used to build a deformability model of the rock mass. In this study, we have, therefore, developed a rock physics model (Mavko et al., 2009) to estimate static Young's modulus from dynamic one for sedimentary rocks. The rock physics model has been generally applied to seismic properties at small strain level. In the proposed model, however, the sandy shale model, one of rock physics models, is extended for modeling the static Young's modulus at large strain level by incorporating the mixture of frictional and frictionless grain contacts into the Hertz-Mindlin model. The proposed model is verified through its application to the dynamic Young's moduli derived from well log velocities and static Young's moduli measured in the tri-axial compression tests of rock cores sampled in the same borehole as the logs were acquired. This application proves that the proposed rock physics model can be possibly used to estimate static Young's modulus (deformability) which is required in many types of civil engineering applications

  8. Determination of wall shear stress from mean velocity and Reynolds shear stress profiles

    Science.gov (United States)

    Volino, Ralph J.; Schultz, Michael P.

    2018-03-01

    An analytical method is presented for determining the Reynolds shear stress profile in steady, two-dimensional wall-bounded flows using the mean streamwise velocity. The method is then utilized with experimental data to determine the local wall shear stress. The procedure is applicable to flows on smooth and rough surfaces with arbitrary pressure gradients. It is based on the streamwise component of the boundary layer momentum equation, which is transformed into inner coordinates. The method requires velocity profiles from at least two streamwise locations, but the formulation of the momentum equation reduces the dependence on streamwise gradients. The method is verified through application to laminar flow solutions and turbulent DNS results from both zero and nonzero pressure gradient boundary layers. With strong favorable pressure gradients, the method is shown to be accurate for finding the wall shear stress in cases where the Clauser fit technique loses accuracy. The method is then applied to experimental data from the literature from zero pressure gradient studies on smooth and rough walls, and favorable and adverse pressure gradient cases on smooth walls. Data from very near the wall are not required for determination of the wall shear stress. Wall friction velocities obtained using the present method agree with those determined in the original studies, typically to within 2%.

  9. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  10. Size effects in shear interfaces

    OpenAIRE

    GARNIER, J

    2001-01-01

    In physical modelling (centrifuge tests, calibration chambers, laboratory tests), the size of the soil particles may not be negligible when compared to the dimensions of the models. Size effects may so disturb the response of the models and the experimental data obtained on these cannot be extended to true scale conditions. Different tests have been performed to study and quantify the size effects that may happen in shear interfaces between soils and structures : modified shear box tests, pul...

  11. Multifractal spectra in shear flows

    Science.gov (United States)

    Keefe, L. R.; Deane, Anil E.

    1989-01-01

    Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.

  12. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.

    1982-12-01

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  13. Assessment of UVA-Riboflavin Corneal Cross-Linking Using Small Amplitude Oscillatory Shear Measurements.

    Science.gov (United States)

    Aslanides, Ioannis M; Dessi, Claudia; Georgoudis, Panagiotis; Charalambidis, Georgios; Vlassopoulos, Dimitris; Coutsolelos, Athanassios G; Kymionis, George; Mukherjee, Achyut; Kitsopoulos, Theofanis N

    2016-04-01

    The effect of ultraviolet (UV)-riboflavin cross-linking (CXL) has been measured primarily using the strip extensometry technique. We propose a simple and reliable methodology for the assessment of CXL treatment by using an established rheologic protocol based on small amplitude oscillatory shear (SAOS) measurements. It provides information on the average cross-link density and the elastic modulus of treated cornea samples. Three fresh postmortem porcine corneas were used to study the feasibility of the technique, one serving as control and two receiving corneal collagen cross-linking treatment. Subsequently, five pairs of fresh postmortem porcine corneas received corneal collagen cross-linking treatment with riboflavin and UVA-irradiation (370 nm; irradiance of 3 mW/cm2) for 30 minutes (Dresden protocol); the contralateral porcine corneas were used as control samples. After the treatment, the linear viscoelastic moduli of the corneal samples were measured using SAOS measurements and the average cross-linking densities extracted. For all cases investigated, the dynamic moduli of the cross-linked corneas were higher compared to those of the corresponding control samples. The increase of the elastic modulus of the treated samples was between 122% and 1750%. The difference was statistically significant for all tested samples (P = 0.018, 2-tailed t-test). We report a simple and accurate methodology for quantifying the effects of cross-linking on porcine corneas treated with the Dresden protocol by means of SAOS measurements in the linear regime. The measured dynamic moduli, elastic and viscous modulus, represent the energy storage and energy dissipation, respectively. Hence, they provide a means to assess the changing physical properties of the cross-linked collagen networks after CXL treatment.

  14. Localized Donaldson-Thomas theory of surfaces

    DEFF Research Database (Denmark)

    Gholampour, Amin; Sheshmani, Artan; Yau, Shing-Tung

    2017-01-01

    Let S be a projective simply connected complex surface and  be a line bundle on S. We study the moduli space of stable compactly supported 2-dimensional sheaves on the total spaces of . The moduli space admits a ℂ∗-action induced by scaling the fibers of . We identify certain components of the......  is the canonical bundle of S, the Vafa-Witten invariants defined recently by Tanaka-Thomas, can be extracted from these localized DT invariants. VW invariants are expected to have modular properties as predicted by S-duality....

  15. Structural control of elastic moduli in ferrogels and the importance of non-affine deformations

    Science.gov (United States)

    Pessot, Giorgio; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-09-01

    One of the central appealing properties of magnetic gels and elastomers is that their elastic moduli can reversibly be adjusted from outside by applying magnetic fields. The impact of the internal magnetic particle distribution on this effect has been outlined and analyzed theoretically. In most cases, however, affine sample deformations are studied and often regular particle arrangements are considered. Here we challenge these two major simplifications by a systematic approach using a minimal dipole-spring model. Starting from different regular lattices, we take into account increasingly randomized structures, until we finally investigate an irregular texture taken from a real experimental sample. On the one hand, we find that the elastic tunability qualitatively depends on the structural properties, here in two spatial dimensions. On the other hand, we demonstrate that the assumption of affine deformations leads to increasingly erroneous results the more realistic the particle distribution becomes. Understanding the consequences of the assumptions made in the modeling process is important on our way to support an improved design of these fascinating materials.

  16. Multi-Regge kinematics and the moduli space of Riemann spheres with marked points

    Energy Technology Data Exchange (ETDEWEB)

    Duca, Vittorio Del [Institute for Theoretical Physics, ETH Zürich,Hönggerberg, 8093 Zürich (Switzerland); Druc, Stefan; Drummond, James [School of Physics & Astronomy, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom); Duhr, Claude [Theoretical Physics Department, CERN,Route de Meyrin, CH-1211 Geneva 23 (Switzerland); Center for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain,Chemin du Cyclotron 2, 1348 Louvain-La-Neuve (Belgium); Dulat, Falko [SLAC National Accelerator Laboratory, Stanford University,Stanford, CA 94309 (United States); Marzucca, Robin [Center for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain,Chemin du Cyclotron 2, 1348 Louvain-La-Neuve (Belgium); Papathanasiou, Georgios [SLAC National Accelerator Laboratory, Stanford University,Stanford, CA 94309 (United States); Verbeek, Bram [Center for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain,Chemin du Cyclotron 2, 1348 Louvain-La-Neuve (Belgium)

    2016-08-25

    We show that scattering amplitudes in planar N=4 Super Yang-Mills in multi-Regge kinematics can naturally be expressed in terms of single-valued iterated integrals on the moduli space of Riemann spheres with marked points. As a consequence, scattering amplitudes in this limit can be expressed as convolutions that can easily be computed using Stokes’ theorem. We apply this framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove that at L loops all MHV amplitudes are determined by amplitudes with up to L+4 external legs. We also investigate non-MHV amplitudes, and we show that they can be obtained by convoluting the MHV results with a certain helicity flip kernel. We classify all leading singularities that appear at LLA in the Regge limit for arbitrary helicity configurations and any number of external legs. Finally, we use our new framework to obtain explicit analytic results at LLA for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to eight external legs and four loops.

  17. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  18. Modeling Shear Induced Von Willebrand Factor Binding to Collagen

    Science.gov (United States)

    Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong

    2017-11-01

    Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).

  19. Swimming efficiency in a shear-thinning fluid

    Science.gov (United States)

    Nganguia, Herve; Pietrzyk, Kyle; Pak, On Shun

    2017-12-01

    Micro-organisms expend energy moving through complex media. While propulsion speed is an important property of locomotion, efficiency is another factor that may determine the swimming gait adopted by a micro-organism in order to locomote in an energetically favorable manner. The efficiency of swimming in a Newtonian fluid is well characterized for different biological and artificial swimmers. However, these swimmers often encounter biological fluids displaying shear-thinning viscosities. Little is known about how this nonlinear rheology influences the efficiency of locomotion. Does the shear-thinning rheology render swimming more efficient or less? How does the swimming efficiency depend on the propulsion mechanism of a swimmer and rheological properties of the surrounding shear-thinning fluid? In this work, we address these fundamental questions on the efficiency of locomotion in a shear-thinning fluid by considering the squirmer model as a general locomotion model to represent different types of swimmers. Our analysis reveals how the choice of surface velocity distribution on a squirmer may reduce or enhance the swimming efficiency. We determine optimal shear rates at which the swimming efficiency can be substantially enhanced compared with the Newtonian case. The nontrivial variations of swimming efficiency prompt questions on how micro-organisms may tune their swimming gaits to exploit the shear-thinning rheology. The findings also provide insights into how artificial swimmers should be designed to move through complex media efficiently.

  20. Shear Stress-Relative Slip Relationship at Concrete Interfaces

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2016-01-01

    Full Text Available This study develops a simple and rational shear stress-relative slip model of concrete interfaces with monolithic castings or smooth construction joints. In developing the model, the initial shear cracking stress and relative slip amount at peak stress were formulated from a nonlinear regression analysis using test data for push-off specimens. The shear friction strength was determined from the generalized equations on the basis of the upper-bound theorem of concrete plasticity. Then, a parametric fitting analysis was performed to derive equations for the key parameters determining the shapes of the ascending and descending branches of the shear stress-relative slip curve. The comparisons of predictions and measurements obtained from push-off tests confirmed that the proposed model provides superior accuracy in predicting the shear stress-relative slip relationship of interfacial shear planes. This was evidenced by the lower normalized root mean square error than those in Xu et al.’s model and the CEB-FIB model, which have many limitations in terms of the roughness of the substrate surface along an interface and the magnitude of equivalent normal stress.

  1. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  2. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  3. Investigation of sheared liquids by neutron backscattering and reflectivity

    CERN Document Server

    Wolff, M; Hock, R; Frick, B; Zabel, H

    2002-01-01

    We have investigated by neutron scattering structural and dynamical properties of water solutions of the triblock copolymer P85 under shear. To this end a shear cell that suits the requirements for neutron backscattering and another for reflectivity experiments have been built. In reflectivity measurements we find the polymer concentration (nominal concentration of 33% by weight) to vary right at the surface between 12% and 52% for hydrophilic or hydrophobic coated silicon wavers, for temperatures between 18 C and 73 C and for shear rates up to 2500 s sup - sup 1. Additional structural changes deeper in the bulk are also observed. On the backscattering instrument (IN10 at ILL) we find that the liquid appears to stick to the plates of the shear cell, implying an unusual macroscopic velocity distribution that differs from that found earlier for lubrication oils. We report further on changes of the quasielastic line width in the direction of the shear gradient for different temperatures and shear rates. (orig.)

  4. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.

    Science.gov (United States)

    Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M

    2010-12-01

    Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.

  5. Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe-PbS thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jennifer E [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Case, Eldon D., E-mail: casee@egr.msu.edu [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Khabir, Kristen N; Stewart, Ryan C [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Wu, Chun-I; Hogan, Timothy P [Electrical and Computer Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Timm, Edward J [Mechanical Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Girard, Steven N; Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University, Evanston, IL (United States)

    2010-06-15

    Two-phase PbTe-PbS materials, in which PbS is a nanostructured phase, are promising thermoelectric materials for the direct conversion of heat energy into electricity. In this study, a Vickers indentation mean hardness of 1.18 {+-} 0.09 GPa was measured for hot pressed specimens Pb{sub 0.95}Sn{sub 0.05}Te-PbS 8% while the mean hardness of cast specimens was 0.68 {+-} 0.07 GPa. The mean fracture toughness of the not pressed specimens was estimated as 0.35 {+-} 0.04 MPa m{sup 1/2} via Vickers indentation. Resonant Ultrasound Spectroscopy (RUS) measurements on hot pressed specimens gave mean values of Young's modulus, shear modulus and Poisson's ratio of 53.1 GPa, 21.4 GPa and 0.245, respectively while for the cast specimens the Young's and shear moduli were about 10% lower than for the hot pressed, with a mean value of Poisson's ratio of 0.245. The differences between the hardness and elastic moduli values for the cast and hot pressed specimens are discussed.

  6. Comparison of slowness profiles of lamb wave with elastic moduli and crystal structure in single crystalline silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Min, Young Jae; Yun, Gyeong Won; Kim, Kyung Min; Roh, Yuji; Kim, Young H. [Applied Acoustics Lab, Korea Science Academy of KAIST, Busan (Korea, Republic of)

    2016-02-15

    Single crystalline silicon wafers having (100), (110), and (111) directions are employed as specimens for obtaining slowness profiles. Leaky Lamb waves (LLW) from immersed wafers were detected by varying the incident angles of the specimens and rotating the specimens. From an analysis of LLW signals for different propagation directions and phase velocities of each specimen, slowness profiles were obtained, which showed a unique symmetry with different symmetric axes. Slowness profiles were compared with elastic moduli of each wafer. They showed the same symmetries as crystal structures. In addition, slowness profiles showed expected patterns and values that can be inferred from elastic moduli. This implies that slowness profiles can be used to examine crystal structures of anisotropic solids.

  7. MPL-A program for computations with iterated integrals on moduli spaces of curves of genus zero

    Science.gov (United States)

    Bogner, Christian

    2016-06-01

    We introduce the Maple program MPL for computations with multiple polylogarithms. The program is based on homotopy invariant iterated integrals on moduli spaces M0,n of curves of genus 0 with n ordered marked points. It includes the symbol map and procedures for the analytic computation of period integrals on M0,n. It supports the automated computation of a certain class of Feynman integrals.

  8. An experimental investigation for external RC shear wall applications

    Science.gov (United States)

    Kaltakci, M. Y.; Ozturk, M.; Arslan, M. H.

    2010-09-01

    The strength and rigidity of most reinforced concrete (RC) buildings in Turkey, which are frequently hit by destructive earthquakes, is not at a sufficient level. Therefore, the result of earthquakes is a significant loss of life and property. The strengthening method most commonly preferred for these type of RC buildings is the application of RC infilled walls (shear walls) in the frame openings of the building. However, since the whole building has to be emptied and additional heavy costs arise during this type of strengthening, users prefer not to strengthen their buildings despite the heavy risk they are exposed to. Therefore, it is necessary to develop easier-to-apply and more effective methods for the rapid strengthening of housing and the heavily-used public buildings which cannot be emptied during the strengthening process (such as hospitals and schools). This study empirically analyses the different methods of a new system which can meet this need. In this new system, named "external shear wall application", RC shear walls are applied on the external surface of the building, along the frame plane rather than in the building. To this end, 7 test samples in 1/2 and 1/3 geometrical scale were designed to analyse the efficiency of the strengthening technique where the shear wall leans on the frame from outside of the building (external shear wall application) and of the strengthening technique where a specific space is left between the frame and the external shear wall by using a coupling beam to connect elements (application of external shear wall with coupling beam). Test results showed that the maximum lateral load capacity, initial rigidity and energy dissipation behaviours of the samples strengthened with external shear wall were much better than those of the bare frames.

  9. An experimental investigation for external RC shear wall applications

    Directory of Open Access Journals (Sweden)

    M. Y. Kaltakci

    2010-09-01

    Full Text Available The strength and rigidity of most reinforced concrete (RC buildings in Turkey, which are frequently hit by destructive earthquakes, is not at a sufficient level. Therefore, the result of earthquakes is a significant loss of life and property. The strengthening method most commonly preferred for these type of RC buildings is the application of RC infilled walls (shear walls in the frame openings of the building. However, since the whole building has to be emptied and additional heavy costs arise during this type of strengthening, users prefer not to strengthen their buildings despite the heavy risk they are exposed to. Therefore, it is necessary to develop easier-to-apply and more effective methods for the rapid strengthening of housing and the heavily-used public buildings which cannot be emptied during the strengthening process (such as hospitals and schools. This study empirically analyses the different methods of a new system which can meet this need. In this new system, named "external shear wall application", RC shear walls are applied on the external surface of the building, along the frame plane rather than in the building. To this end, 7 test samples in 1/2 and 1/3 geometrical scale were designed to analyse the efficiency of the strengthening technique where the shear wall leans on the frame from outside of the building (external shear wall application and of the strengthening technique where a specific space is left between the frame and the external shear wall by using a coupling beam to connect elements (application of external shear wall with coupling beam. Test results showed that the maximum lateral load capacity, initial rigidity and energy dissipation behaviours of the samples strengthened with external shear wall were much better than those of the bare frames.

  10. A mixed-effects model approach for the statistical analysis of vocal fold viscoelastic shear properties.

    Science.gov (United States)

    Xu, Chet C; Chan, Roger W; Sun, Han; Zhan, Xiaowei

    2017-11-01

    A mixed-effects model approach was introduced in this study for the statistical analysis of rheological data of vocal fold tissues, in order to account for the data correlation caused by multiple measurements of each tissue sample across the test frequency range. Such data correlation had often been overlooked in previous studies in the past decades. The viscoelastic shear properties of the vocal fold lamina propria of two commonly used laryngeal research animal species (i.e. rabbit, porcine) were measured by a linear, controlled-strain simple-shear rheometer. Along with published canine and human rheological data, the vocal fold viscoelastic shear moduli of these animal species were compared to those of human over a frequency range of 1-250Hz using the mixed-effects models. Our results indicated that tissues of the rabbit, canine and porcine vocal fold lamina propria were significantly stiffer and more viscous than those of human. Mixed-effects models were shown to be able to more accurately analyze rheological data generated from repeated measurements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed in uncracked concrete.Proposals have been made on how the derived standard solutions may be applied to more complicated cases, such as continuous beams, beams......The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model...

  12. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  13. Modeling of shear wall buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A K [North Carolina State Univ., Raleigh (USA). Dept. of Civil Engineering

    1984-05-01

    Many nuclear power plant buildings, for example, the auxiliary building, have reinforced concrete shear walls as the primary lateral load resisting system. Typically, these walls have low height to length ratio, often less than unity. Such walls exhibit marked shear lag phenomenon which would affect their bending stiffness and the overall stress distribution in the building. The deformation and the stress distribution in walls have been studied which is applicable to both the short and the tall buildings. The behavior of the wall is divided into two parts: the symmetric flange action and the antisymmetry web action. The latter has two parts: the web shear and the web bending. Appropriate stiffness equations have been derived for all the three actions. These actions can be synthesized to solve any nonlinear cross-section. Two specific problems, that of lateral and torsional loadings of a rectangular box, have been studied. It is found that in short buildings shear lag plays a very important role. Any beam type formulation which either ignores shear lag or includes it in an idealized form is likely to lead to erroneous results. On the other hand a rigidity type approach with some modifications to the standard procedures would yield nearly accurate answers.

  14. Influence of shear and deviatoric stress on the evolution of permeability in fractured rock

    NARCIS (Netherlands)

    Faoro, Igor; Niemeijer, André; Marone, Chris; Elsworth, Derek

    The evolution of permeability in fractured rock as a function of effective normal stress, shear displacement, and damage remains a complex issue. In this contribution, we report on experiments in which rock surfaces were subject to direct shear under controlled pore pressure and true triaxial stress

  15. The effects of shear and normal stress paths on rock friction

    International Nuclear Information System (INIS)

    Olsson, W.A.

    1990-01-01

    The effect of variable normal stress on the coefficient of friction of smooth artificial surfaces in welded tuff was studied. The shear stress response to changes in normal stress during constant-velocity sliding suggests that friction depends on the history of the normal stress; or, more generally, the path in shear/normal stress space. 6 refs., 5 figs

  16. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    Science.gov (United States)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    On gentle clayey slopes in weathered argillaceous rock areas, there exist many landslides which repeatedly reactivate with slow movement. The slip surface soils of these landslides are sometimes composed dominantly of swelling clay mineral (smectite) which is well known to show extremely low residual friction angle. From field data monitored at landslide sites in Japan, it has become clear that some landslides with relatively shallow slip surface begin to move and become active in late autumn or early winter every year. In such cases, the triggering mechanisms of landslides have not been understood well enough, because landslide initiation and movement are not always clearly linked with rises in pore water pressures (ground water levels). In this study, we focus on the influence of seasonal variation in ground temperature on slope stability and have investigated the effect of temperature on the shear strength of slip surface soils. Undisturbed soil samples were collected by boring from the Busuno landslide in Japan. We performed box shear experiments on undisturbed slip surface soils at low temperature ranges (approximately 5-25 °C). XRD analysis revealed that these soils contain high fraction of smectite. Slickensided slip surface within test specimen was coincided with the shearing plane of the shear box and shear displacement was applied precisely along the localized slip surface. Experiments were performed under slow shearing rate condition (0.005mm/min) and the results showed that shear strength decreased with decreasing temperature. Temperature effect was rather significant on frictional angle than on cohesion. Ring shear experiments were also performed on normally-consolidated remoulded samples. Under residual strength condition, temperature-change experiments (cooling-event tests) ranging approximately from 5 to 25 °C were performed on smectite-rich landslide soils and commercial bentonites. As well as the results by box shear test, shear weakening

  17. Shear Bond Strength of a Novel Porcelain Repair System for ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... Each fracture type was examined under a stereomicroscope .... fracture types. Statistical analysis. The normal distribution of data was examined using the Kolmogorov–Smirnov test. Shear bond strength data of repaired CAD/CAM .... adhesives to enamel, dentine, and porcelain surfaces can be compared.

  18. Revisiting the two formulations of Bianchi identities and their implications on moduli stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Pramod [ICTP - International Centre for Theoretical Physics,Strada Costiera 11, Trieste 34151 (Italy)

    2016-08-24

    In the context of non-geometric type II orientifold compactifications, there have been two formulations for representing the various NS-NS Bianchi-identities. In the first formulation, the standard three-form flux (H{sub 3}), the geometric flux (ω) and the non-geometric fluxes (Q and R) are expressed by using the real six-dimensional indices (e.g. H{sub ijk},ω{sub ij}{sup k},Q{sub i}{sup jk} and R{sup ijk}), and this formulation has been heavily utilized for simplifying the scalar potentials in toroidal-orientifolds. On the other hand, relevant for the studies beyond toroidal backgrounds, a second formulation is utilized in which all flux components are written in terms of various involutively even/odd (2,1)- and (1,1)-cohomologies of the complex threefold. In the lights of recent model building interests and some observations made in http://dx.doi.org/10.1088/1126-6708/2007/08/043, http://dx.doi.org/10.1088/1126-6708/2007/12/058, in this article, we revisit two most commonly studied toroidal examples in detail to illustrate that the present forms of these two formulations are not completely equivalent. To demonstrate the same, we translate all the identities of the first formulation into cohomology ingredients, and after a tedious reshuffling of the subsequent constraints, interestingly we find that all the identities of the second formulation are embedded into the first formulation which has some additional constraints. In addition, we look for the possible solutions of these Bianchi identities in a detailed analysis, and we find that some solutions can reduce the size of scalar potential very significantly, and in some cases are too strong to break the no-scale structure completely. Finally, we also comment on the influence of imposing some of the solutions of Bianchi identities in studying moduli stabilization.

  19. Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow

    Science.gov (United States)

    Courbin, Laurent; Panizza, Pascal; Salmon, Jean-Baptiste

    2004-01-01

    Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress, whereas for intermediate shear rates it becomes a periodic function of time. A possible mechanism for such kinds of oscillations is discussed.

  20. Riemann surfaces with boundaries and string theory

    International Nuclear Information System (INIS)

    Morozov, A.Yu.; Roslyj, A.A.

    1989-01-01

    A consideration of the cutting and joining operations for Riemann surfaces permits one to express the functional integral on a Riemann surface in terms of integrals over its pieces which are suarfaces with boundaries. This yields an expression for the determinant of the Laplacian on a Riemann surface in terms of Krichever maps for its pieces. Possible applications of the methods proposed to a study of the string perturbation theory in terms of an universal moduli space are mentioned