WorldWideScience

Sample records for surface shape analysis

  1. Shape Error Analysis of Functional Surface Based on Isogeometrical Approach

    Science.gov (United States)

    YUAN, Pei; LIU, Zhenyu; TAN, Jianrong

    2017-05-01

    The construction of traditional finite element geometry (i.e., the meshing procedure) is time consuming and creates geometric errors. The drawbacks can be overcame by the Isogeometric Analysis (IGA), which integrates the computer aided design and structural analysis in a unified way. A new IGA beam element is developed by integrating the displacement field of the element, which is approximated by the NURBS basis, with the internal work formula of Euler-Bernoulli beam theory with the small deformation and elastic assumptions. Two cases of the strong coupling of IGA elements, "beam to beam" and "beam to shell", are also discussed. The maximum relative errors of the deformation in the three directions of cantilever beam benchmark problem between analytical solutions and IGA solutions are less than 0.1%, which illustrate the good performance of the developed IGA beam element. In addition, the application of the developed IGA beam element in the Root Mean Square (RMS) error analysis of reflector antenna surface, which is a kind of typical functional surface whose precision is closely related to the product's performance, indicates that no matter how coarse the discretization is, the IGA method is able to achieve the accurate solution with less degrees of freedom than standard Finite Element Analysis (FEA). The proposed research provides an effective alternative to standard FEA for shape error analysis of functional surface.

  2. Surface shape analysis with an application to brain surface asymmetry in schizophrenia.

    Science.gov (United States)

    Brignell, Christopher J; Dryden, Ian L; Gattone, S Antonio; Park, Bert; Leask, Stuart; Browne, William J; Flynn, Sean

    2010-10-01

    Some methods for the statistical analysis of surface shapes and asymmetry are introduced. We focus on a case study where magnetic resonance images of the brain are available from groups of 30 schizophrenia patients and 38 controls, and we investigate large-scale brain surface shape differences. Key aspects of shape analysis are to remove nuisance transformations by registration and to identify which parts of one object correspond with the parts of another object. We introduce maximum likelihood and Bayesian methods for registering brain images and providing large-scale correspondences of the brain surfaces. Brain surface size-and-shape analysis is considered using random field theory, and also dimension reduction is carried out using principal and independent components analysis. Some small but significant differences are observed between the the patient and control groups. We then investigate a particular type of asymmetry called torque. Differences in asymmetry are observed between the control and patient groups, which add strength to other observations in the literature. Further investigations of the midline plane location in the 2 groups and the fitting of nonplanar curved midlines are also considered.

  3. A Statistical Theory for Shape Analysis of Curves and Surfaces with Applications in Image Analysis, Biometrics, Bioinformatics and Medical Diagnostics

    Science.gov (United States)

    2010-05-10

    targets in noisy/corrupted images (Bayesian active contours), finding shape models in point clouds derived from images, shape analysis of facial surfaces...Srivastava and I. H. Jermyn, Bayesian Classification of Shapes Hidden in Point Clouds , Proceedings of 13th Digital Signal Processing Workshop, Marco...CA, June 2010. 18. J. Su, Z. Zhu, F. Huffer, and A. Srivastava, Detecting Shapes in 2D Point Clouds Generated from Images, International Conference on

  4. Estimation of surface curvature from full-field shape data using principal component analysis

    Science.gov (United States)

    Sharma, Sameer; Vinuchakravarthy, S.; Subramanian, S. J.

    2017-01-01

    Three-dimensional digital image correlation (3D-DIC) is a popular image-based experimental technique for estimating surface shape, displacements and strains of deforming objects. In this technique, a calibrated stereo rig is used to obtain and stereo-match pairs of images of the object of interest from which the shapes of the imaged surface are then computed using the calibration parameters of the rig. Displacements are obtained by performing an additional temporal correlation of the shapes obtained at various stages of deformation and strains by smoothing and numerically differentiating the displacement data. Since strains are of primary importance in solid mechanics, significant efforts have been put into computation of strains from the measured displacement fields; however, much less attention has been paid to date to computation of curvature from the measured 3D surfaces. In this work, we address this gap by proposing a new method of computing curvature from full-field shape measurements using principal component analysis (PCA) along the lines of a similar work recently proposed to measure strains (Grama and Subramanian 2014 Exp. Mech. 54 913-33). PCA is a multivariate analysis tool that is widely used to reveal relationships between a large number of variables, reduce dimensionality and achieve significant denoising. This technique is applied here to identify dominant principal components in the shape fields measured by 3D-DIC and these principal components are then differentiated systematically to obtain the first and second fundamental forms used in the curvature calculation. The proposed method is first verified using synthetically generated noisy surfaces and then validated experimentally on some real world objects with known ground-truth curvatures.

  5. Surface displacement based shape analysis of central brain structures in preterm-born children

    Science.gov (United States)

    Garg, Amanmeet; Grunau, Ruth E.; Popuri, Karteek; Miller, Steven; Bjornson, Bruce; Poskitt, Kenneth J.; Beg, Mirza Faisal

    2016-03-01

    Many studies using T1 magnetic resonance imaging (MRI) data have found associations between changes in global metrics (e.g. volume) of brain structures and preterm birth. In this work, we use the surface displacement feature extracted from the deformations of the surface models of the third ventricle, fourth ventricle and brainstem to capture the variation in shape in these structures at 8 years of age that may be due to differences in the trajectory of brain development as a result of very preterm birth (24-32 weeks gestation). Understanding the spatial patterns of shape alterations in these structures in children who were born very preterm as compared to those who were born at full term may lead to better insights into mechanisms of differing brain development between these two groups. The T1 MRI data for the brain was acquired from children born full term (FT, n=14, 8 males) and preterm (PT, n=51, 22 males) at age 8-years. Accurate segmentation labels for these structures were obtained via a multi-template fusion based segmentation method. A high dimensional non-rigid registration algorithm was utilized to register the target segmentation labels to a set of segmentation labels defined on an average-template. The surface displacement data for the brainstem and the third ventricle were found to be significantly different (p spatially localized clusters with inward and outward deformation were found to be associated with lower gestational age. The results from this study present a shape analysis method for pediatric MRI data and reveal shape changes that may be due to preterm birth.

  6. Accuracy of surface tension measurement from drop shapes: the role of image analysis.

    Science.gov (United States)

    Kalantarian, Ali; Saad, Sameh M I; Neumann, A Wilhelm

    2013-11-01

    Axisymmetric Drop Shape Analysis (ADSA) has been extensively used for surface tension measurement. In essence, ADSA works by matching a theoretical profile of the drop to the extracted experimental profile, taking surface tension as an adjustable parameter. Of the three main building blocks of ADSA, i.e. edge detection, the numerical integration of the Laplace equation for generating theoretical curves and the optimization procedure, only edge detection (that extracts the drop profile line from the drop image) needs extensive study. For the purpose of this article, the numerical integration of the Laplace equation for generating theoretical curves and the optimization procedure will only require a minor effort. It is the aim of this paper to investigate how far the surface tension accuracy of drop shape techniques can be pushed by fine tuning and optimizing edge detection strategies for a given drop image. Two different aspects of edge detection are pursued here: sub-pixel resolution and pixel resolution. The effect of two sub-pixel resolution strategies, i.e. spline and sigmoid, on the accuracy of surface tension measurement is investigated. It is found that the number of pixel points in the fitting procedure of the sub-pixel resolution techniques is crucial, and its value should be determined based on the contrast of the image, i.e. the gray level difference between the drop and the background. On the pixel resolution side, two suitable and reliable edge detectors, i.e. Canny and SUSAN, are explored, and the effect of user-specified parameters of the edge detector on the accuracy of surface tension measurement is scrutinized. Based on the contrast of the image, an optimum value of the user-specified parameter of the edge detector, SUSAN, is suggested. Overall, an accuracy of 0.01mJ/m(2) is achievable for the surface tension determination by careful fine tuning of edge detection algorithms.

  7. Pairwise harmonics for shape analysis

    KAUST Repository

    Zheng, Youyi

    2013-07-01

    This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.

  8. Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems.

    Science.gov (United States)

    Kim, Won Hwa; Chung, Moo K; Singh, Vikas

    2013-01-01

    The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.

  9. Droplet Motion on a Shape Gradient Surface.

    Science.gov (United States)

    Zheng, Yanfen; Cheng, Jiang; Zhou, Cailong; Xing, Haiting; Wen, Xiufang; Pi, Pihui; Xu, Shouping

    2017-05-02

    We demonstrate a facile method to induce water droplet motion on an wedge-shaped superhydrophobic copper surface combining with a poly(dimethylsiloxane) (PDMS) oil layer on it. The unbalanced interfacial tension from the shape gradient offers the actuating force. The superhydrophobicity critically eliminates the droplet contact line pinning and the slippery PDMS oil layer lubricates the droplet motion, which makes the droplet move easily. The maximum velocity and furthest position of droplet motion were recorded and found to be influenced by the gradient angle. The mechanism of droplet motion on the shape gradient surface is systematically discussed, and the theoretical model analysis is well matched with the experimental results.

  10. Silicone hydrogel contact lens surface analysis by atomic force microscopy: shape parameters

    Science.gov (United States)

    Giraldez, M. J.; Garcia-Resua, C.; Lira, M.; Sánchez-Sellero, C.; Yebra-Pimentel, E.

    2011-05-01

    Purpose: Average roughness (Ra) is generally used to quantify roughness; however it makes no distinction between spikes and troughs. Shape parameters as kurtosis (Rku) and skewness (Rsk) serve to distinguish between two profiles with the same Ra. They have been reported in many biomedical fields, but they were no applied to contact lenses before. The aim of this study is to analyze surface properties of four silicone hydrogel contact lenses (CL) by Atomic Force Microscopy (AFM) evaluating Ra, Rku and Rsk. Methods: CL used in this study were disposable silicone hydrogel senofilcon A, comfilcon A, balafilcon A and lotrafilcon B. Unworn CL surfaces roughness and topography were measured by AFM (Veeco, multimode-nanoscope V) in tapping modeTM. Ra, Rku and Rsk for 25 and 196 μm2 areas were determined. Results: Surface topography and parameters showed different characteristics depending on the own nature of the contact lens (Ra/Rku/Rsk for 25 and 196 μm2 areas were: senofilcon A 3,33/3,74/0,74 and 3,76/18,16/1,75; comfilcon A: 1,56/31,09/2,93 and 2,76/45,82/3,60; balafilcon A: 2,01/33,62/-2,14 and 2,54/23,36/-1,96; lotrafilcon B: 26,97/4,11/-0,34 and 29,25/2,82/-0,23). In lotrafilcon B, with the highest Ra, Rku showed a lower degree of peakedness of its distribution. Negative Rsk value obtained for balafilcon A showed a clear predominance of valleys in this lens. Conclusions: Kku and Rsk are two statistical parameters useful to analyse CL surfaces, which complete information from Ra. Differences in values distribution and symmetry were observed between CL.

  11. Perspectives in shape analysis

    CERN Document Server

    Bruckstein, Alfred; Maragos, Petros; Wuhrer, Stefanie

    2016-01-01

    This book presents recent advances in the field of shape analysis. Written by experts in the fields of continuous-scale shape analysis, discrete shape analysis and sparsity, and numerical computing who hail from different communities, it provides a unique view of the topic from a broad range of perspectives. Over the last decade, it has become increasingly affordable to digitize shape information at high resolution. Yet analyzing and processing this data remains challenging because of the large amount of data involved, and because modern applications such as human-computer interaction require real-time processing. Meeting these challenges requires interdisciplinary approaches that combine concepts from a variety of research areas, including numerical computing, differential geometry, deformable shape modeling, sparse data representation, and machine learning. On the algorithmic side, many shape analysis tasks are modeled using partial differential equations, which can be solved using tools from the field of n...

  12. [A geometrical analysis of the shape of the response surface in ecologico-toxicologic experiments].

    Science.gov (United States)

    Maksimov, V N; Kadomtsev, S V; Korsak, M N; Lifshits, A V

    1989-01-01

    A new method of working up results of factorial toxicological experiments is put forward and illustrated by a number of examples. It is based on the profound comparison of values of reactions as consequences of toxic influence and aimed at revealing the combinations of toxicant concentrations that break the monotonous character of a surface which graphically depicts the effect of pollutants. The geometrical analysis allows us to have a new vision of numerous results of factorial experiments, gives some complimentary possibilities for quantitative evaluation of impact of pollutants by mean of surface diagrams and for experimental assessment of environmental parameters of natural communities.

  13. Do skeletal cephalometric characteristics correlate with condylar volume, surface and shape? A 3D analysis

    Directory of Open Access Journals (Sweden)

    Saccucci Matteo

    2012-05-01

    Full Text Available Abstract Objective The purpose of this study was to determine the condylar volume in subjects with different mandibular divergence and skeletal class using cone-beam computed tomography (CBCT and analysis software. Materials and methods For 94 patients (46 females and 48 males; mean age 24.3 ± 6.5 years, resultant rendering reconstructions of the left and right temporal mandibular joints (TMJs were obtained. Subjects were then classified on the base of ANB angle the GoGn-SN angle in three classes (I, II, III . The data of the different classes were compared. Results No significant difference was observed in the whole sample between the right and the left sides in condylar volume. The analysis of mean volume among low, normal and high mandibular plane angles revealed a significantly higher volume and surface in low angle subjects (p  Class III subjects also tended to show a higher condylar volume and surface than class I and class II subjects, although the difference was not significant. Conclusions Higher condylar volume was a common characteristic of low angle subjects compared to normal and high mandibular plane angle subjects. Skeletal class also appears to be associated to condylar volume and surface.

  14. Simultaneous measurement of contact angle and surface tension using axisymmetric drop-shape analysis-no apex (ADSA-NA).

    Science.gov (United States)

    Kalantarian, A; David, R; Chen, J; Neumann, A W

    2011-04-05

    Axisymmetric drop-shape analysis-no apex (ADSA-NA) is a recent drop-shape method that allows the simultaneous measurement of contact angles and surface tensions of drop configurations without an apex (i.e., a sessile drop with a capillary protruding into the drop). Although ADSA-NA significantly enhanced the accuracy of contact angle and surface tension measurements compared to that of original ADSA using a drop with an apex, it is still not as accurate as a surface tension measurement using a pendant drop suspended from a holder. In this article, the computational and experimental aspects of ADSA-NA were scrutinized to improve the accuracy of the simultaneous measurement of surface tensions and contact angles. It was found that the results are relatively insensitive to different optimization methods and edge detectors. The precision of contact angle measurement was enhanced by improving the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. To optimize the experimental design, the capillary was replaced with an inverted sharp-edged pedestal, or holder, to control the drop height and to ensure the axisymmetry of the drops. It was shown that the drop height is the most important experimental parameter affecting the accuracy of the surface tension measurement, and larger drop heights yield lower surface tension errors. It is suggested that a minimum nondimensional drop height (drop height divided by capillary length) of 1.7 is required to reach an error of less than 0.2 mJ/m(2) for the measured surface tension. As an example, the surface tension of water was measured to be 72.46 ± 0.04 at 24 °C by ADSA-NA, compared to 72.39 ± 0.01 mJ/m(2) obtained with pendant drop experiments.

  15. 3-D shape analysis of palatal surface in patients with unilateral complete cleft lip and palate.

    Science.gov (United States)

    Rusková, Hana; Bejdová, Sárka; Peterka, Miroslav; Krajíček, Václav; Velemínská, Jana

    2014-07-01

    Facial development of patients with unilateral complete cleft lip and palate (UCLP) is associated with many problems including deformity of the palate. The aim of this study was to evaluate palatal morphology and variability in patients with UCLP compared with Czech norms using methods of geometric morphometrics. The study was based on virtual dental cast analysis of 29 UCLP patients and 29 control individuals at the age of 15 years. The variability of palatal shape in UCLP patients was greater than that in nonclefted palates. Only 24% of clefted palates fell within the variability of controls. The palatal form of UCLP patients (range from 11.8 to 17.2 years) was not correlated with age. Compared with control palates, palates of UCLP patients were narrower, more anteriorly than posteriorly. Apart from the praemaxilla region, they were also shallower, and the difference increased posteriorly. The UCLP palate was characterised by the asymmetry of its vault. The maximum height of the palatal vault was anterior on the clefted side, whereas it was posterior on the nonclefted side. The slope of the UCLP palate was more inclined compared with the control group. The praemaxilla was therefore situated more inferiorly.

  16. High-precision drop shape analysis on inclining flat surfaces: Introduction and comparison of this special method with commercial contact angle analysis

    Science.gov (United States)

    Schmitt, Michael; Heib, Florian

    2013-10-01

    Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in

  17. High-precision drop shape analysis on inclining flat surfaces: introduction and comparison of this special method with commercial contact angle analysis.

    Science.gov (United States)

    Schmitt, Michael; Heib, Florian

    2013-10-07

    Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in

  18. Generalized Models for Rock Joint Surface Shapes

    Directory of Open Access Journals (Sweden)

    Shigui Du

    2014-01-01

    Full Text Available Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough.

  19. Plasma effect on weld pool surface reconstruction by shape-from-polarization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, N.; Mathieu, A., E-mail: alexandre.mathieu@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS/Université de Bourgogne, 12 rue de la Fonderie, 71200 Le Creusot (France); Aubreton, O.; Stolz, C. [Université de Bourgogne Laboratoire Le2i UMR CNRS 6306, allée Alain Savary, 21000 Dijon (France)

    2014-03-31

    The polarimetric state of the thermal radiations emitted by the weld metal contains geometric information about the emitting surface. Even though the analysed thermal radiation has a wavelength corresponding to a blind spectral window of the arc plasma, the physical presence of the arc plasma itself interferes with the rays radiated by the weld pool surface before attaining the polarimeter, thus modifying the geometric information transported by the ray. In the present work, the effect of the arc plasma-surrounding zone on the polarimetric state and propagation direction of the radiated ray is analyzed. The interaction with the arc plasma zone induces a drop in ray intensity and a refraction of ray optical path.

  20. Do skeletal cephalometric characteristics correlate with condylar volume, surface and shape? A 3D analysis

    OpenAIRE

    Saccucci Matteo; Polimeni Antonella; Festa Felice; Tecco Simona

    2012-01-01

    Abstract Objective The purpose of this study was to determine the condylar volume in subjects with different mandibular divergence and skeletal class using cone-beam computed tomography (CBCT) and analysis software. Materials and methods For 94 patients (46 females and 48 males; mean age 24.3 ± 6.5 years), resultant rendering reconstructions of the left and right temporal mandibular joints (TMJs) were obtained. Subjects were then classified on the base of ANB angle the GoGn-SN angle in three ...

  1. Lunar Regolith Particle Shape Analysis

    Science.gov (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  2. Transient stability and control of renewable generators based on Hamiltonian surface shaping and power flow control. Part II, analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Robinett, Rush D., III; Wilson, David Gerald

    2010-11-01

    The swing equations for renewable generators connected to the grid are developed and a wind turbine is used as an example. The swing equations for the renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generators system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. The first step is to analyze the system as a conservative natural Hamiltonian system with no externally applied non-conservative forces. The Hamiltonian surface of the swing equations is related to the Equal-Area Criterion and the PEBS method to formulate the nonlinear transient stability problem. This formulation demonstrates the effectiveness of proportional feedback control to expand the stability region. The second step is to analyze the system as natural Hamiltonian system with externally applied non-conservative forces. The time derivative of the Hamiltonian produces the work/rate (power flow) equation which is used to ensure balanced power flows from the renewable generators to the loads. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generators system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate

  3. Shape analysis in medical image analysis

    CERN Document Server

    Tavares, João

    2014-01-01

    This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...

  4. SHAPE BIFURCATION OF AN ELASTIC WAFER DUE TO SURFACE STRESS

    Institute of Scientific and Technical Information of China (English)

    闫琨; 何陵辉; 刘人怀

    2003-01-01

    A geometrically nonlinear analysis was proposed for the deformation of a freestanding elastically isotropic wafer caused by the surface stress change on one surface. Thelink between the curvature and the change in surface stress was obtained analytically fromenergetic consideration. In contrast to the existing linear analysis, a remarkableconsequence is that, when the wafer is very thin or the surface stress difference between thetwo major surfaces is large enough, the shape of the wafer will bifurcate.

  5. Surface analysis.

    Science.gov (United States)

    Kinsella, T

    2006-10-01

    Surface analysis techniques are important tools to use in the verification of surface cleanliness and medical device functionality. How these techniques can be employed and some example applications are described.

  6. Analysis of () Line Shape

    Indian Academy of Sciences (India)

    Xu Wei; Li Yan

    2014-09-01

    The particles energy distribution is derived directly from the () line shape, which is measured by two sets of OMA. The dissociative excitation of molecular is dominating when the local electron temperature is > 10 eV. The line shape is also simulated by the Monte–Carlo method, the molecular dissociation contributes to 57% neutral atoms and 53% emission intensity in front of the limiter, and 85% neutral atoms and 82% emission intensity in front of the wall. The processes of atoms and molecules influence on the energy balance is discussed in SOL, the power loss from molecular dissociation is 6 × 104 kW at SOL.

  7. Statistical shape analysis with applications in R

    CERN Document Server

    Dryden, Ian L

    2016-01-01

    A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded `Statistical Shape Analysis’ by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while reta...

  8. Functional and shape data analysis

    CERN Document Server

    Srivastava, Anuj

    2016-01-01

    This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling fu...

  9. Functional 2D Procrustes Shape Analysis

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2005-01-01

    Using a landmark based approach to Procrustes alignment neglects the functional nature of outlines and surfaces. In order to re-introduce this functional nature into the analysis we will consider alignment of shapes with functional representations. First functional Procrustes analysis of curve sh...

  10. Quantitative Morphologic Analysis of Boulder Shape and Surface Texture to Infer Environmental History: A Case Study of Rock Breakdown at the Ephrata Fan, Channeled Scabland, Washington

    Science.gov (United States)

    Ehlmann, Bethany L.; Viles, Heather A.; Bourke, Mary C.

    2008-01-01

    Boulder morphology reflects both lithology and climate and is dictated by the combined effects of erosion, transport, and weathering. At present, morphologic information at the boulder scale is underutilized as a recorder of environmental processes, partly because of the lack of a systematic quantitative parameter set for reporting and comparing data sets. We develop such a parameter set, incorporating a range of measures of boulder form and surface texture. We use standard shape metrics measured in the field and fractal and morphometric classification methods borrowed from landscape analysis and applied to laser-scanned molds. The parameter set was pilot tested on three populations of basalt boulders with distinct breakdown histories in the Channeled Scabland, Washington: (1) basalt outcrop talus; (2) flood-transported boulders recently excavated from a quarry; and (3) flood-transported boulders, extensively weathered in situ on the Ephrata Fan surface. Size and shape data were found to distinguish between flood-transported and untransported boulders. Size and edge angles (approximately 120 degrees) of flood-transported boulders suggest removal by preferential fracturing along preexisting columnar joints, and curvature data indicate rounding relative to outcrop boulders. Surface textural data show that boulders which have been exposed at the surface are significantly rougher than those buried by fan sediments. Past signatures diagnostic of flood transport still persist on surface boulders, despite ongoing overprinting by processes in the present breakdown environment through roughening and fracturing in situ. Further use of this quantitative boulder parameter set at other terrestrial and planetary sites will aid in cataloging and understanding morphologic signatures of environmental processes.

  11. Quantitative Morphologic Analysis of Boulder Shape and Surface Texture to Infer Environmental History: A Case Study of Rock Breakdown at the Ephrata Fan, Channeled Scabland, Washington

    Science.gov (United States)

    Ehlmann, Bethany L.; Viles, Heather A.; Bourke, Mary C.

    2008-01-01

    Boulder morphology reflects both lithology and climate and is dictated by the combined effects of erosion, transport, and weathering. At present, morphologic information at the boulder scale is underutilized as a recorder of environmental processes, partly because of the lack of a systematic quantitative parameter set for reporting and comparing data sets. We develop such a parameter set, incorporating a range of measures of boulder form and surface texture. We use standard shape metrics measured in the field and fractal and morphometric classification methods borrowed from landscape analysis and applied to laser-scanned molds. The parameter set was pilot tested on three populations of basalt boulders with distinct breakdown histories in the Channeled Scabland, Washington: (1) basalt outcrop talus; (2) flood-transported boulders recently excavated from a quarry; and (3) flood-transported boulders, extensively weathered in situ on the Ephrata Fan surface. Size and shape data were found to distinguish between flood-transported and untransported boulders. Size and edge angles (approximately 120 degrees) of flood-transported boulders suggest removal by preferential fracturing along preexisting columnar joints, and curvature data indicate rounding relative to outcrop boulders. Surface textural data show that boulders which have been exposed at the surface are significantly rougher than those buried by fan sediments. Past signatures diagnostic of flood transport still persist on surface boulders, despite ongoing overprinting by processes in the present breakdown environment through roughening and fracturing in situ. Further use of this quantitative boulder parameter set at other terrestrial and planetary sites will aid in cataloging and understanding morphologic signatures of environmental processes.

  12. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces.

  13. Shape analysis of synthetic diamond

    CERN Document Server

    Mullan, C

    1997-01-01

    Two-dimensional images of synthetic industrial diamond particles were obtained using a camera, framegrabber and PC-based image analysis software. Various methods for shape quantification were applied, including two-dimensional shape factors, Fourier series expansion of radius as a function of angle, boundary fractal analysis, polygonal harmonics, and comer counting methods. The shape parameter found to be the most relevant was axis ratio, defined as the ratio of the minor axis to the major axis of the ellipse with the same second moments of area as the particle. Axis ratio was used in an analysis of the sorting of synthetic diamonds on a vibrating table. A model was derived based on the probability that a particle of a given axis ratio would travel to a certain bin. The model described the sorting of bulk material accurately but it was found not to be applicable if the shape mix of the feed material changed dramatically. This was attributed to the fact that the particle-particle interference was not taken int...

  14. Investigations of OTR screen surfaces and shapes

    CERN Document Server

    Welsch, C P; Lefèvre, T

    2006-01-01

    Optical transition radiation (OTR) has proven to be a flexible and effective tool for measuring a wide range of beam parameters, in particular the beam divergence and the transverse beam profile. It is today an established and widely used diagnostic method providing linear real-time measurements. Measurements in the CLIC Test Facility (CTF3) showed that the performance of the present profile monitors is limited by the optical acceptance of the imaging system. In this paper, two methods to improve the systems' performance are presented and results from measurements are shown. First, the influence of the surface quality of the OTR screen itself is addressed. Several possible screen materials have been tested to which different surface treatment techniques were applied. Results from the measured optical characteristics are given. Second, a parabolic-shaped screen support was investigated with the aim of providing an initial focusing of the emitted radiation and thus to reduce the problem of aperture limitation.

  15. Isogeometric Analysis and Shape Optimisation

    DEFF Research Database (Denmark)

    Gravesen, Jens; Evgrafov, Anton; Gersborg, Allan Roulund

    obtained and also some of the problems we have encountered. One of these problems is that the geometry of the shape is given by the boundary alone. And, it is the parametrisation of the boundary which is changed by the optimisation procedure. But isogeometric analysis requires a parametrisation......One of the attractive features of isogeometric analysis is the exact representation of the geometry. The geometry is furthermore given by a relative low number of control points and this makes isogeometric analysis an ideal basis for shape optimisation. I will describe some of the results we have...... of the whole domain. So in every optimisation cycle we need to extend a parametrisation of the boundary of a domain to the whole domain. It has to be fast in order not to slow the optimisation down but it also has to be robust and give a parametrisation of high quality. These are conflicting requirements so we...

  16. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  17. Low-Bond Axisymmetric Drop Shape Analysis for Surface Tension and Contact Angle Measurements of Sessile Drops

    OpenAIRE

    Stalder, A.F.; Melchior, T.; Müller, M.; Sage, D; T. Blu; Unser, M

    2010-01-01

    A new method based on the Young-Laplace equation for measuring contact angles and surface tensions is presented. In this approach, a first-order perturbation technique helps to analytically solve the Young-Laplace equation according to photographic images of axisymmetric sessile drops. When appropriate, the calculated drop contour is extended by mirror symmetry so that reflection of the drop into substrate allows the detection of position of the contact points. To keep a wide range of applica...

  18. Shape-memory-actuated compliant control surface

    Science.gov (United States)

    Maclean, Brian J.; Carpenter, Bernie F.; Draper, Jerry L.; Misra, Mohan S.

    1993-09-01

    Advanced submarine stern configurations require a variety of control surfaces to actively manage aftbody boundary layer flow, vorticity, propulsor inflow and intrapropulsor flow, as well as vehicle attitude. Two necessary attributes of advanced control surface designs include (1) integrated actuation to provide placement flexibility at remote locations with minimal structural interfacing and control interconnects, and (2) improved lift efficiency and flow using variable or adaptive camber control. To demonstrate these attributes, a shape memory alloy (SMA) actuated compliant control fin (CCF) with a planform area of 620 sq. cm was developed for evaluation as rudder and sternplane appendages on a radio control submarine model at velocities up to 5.1 m/s (Reynolds No. approximately equals 1,000,000) and up to 0.2 Hz full cycle actuation. A completely fixed root design was developed to reduce turbulence at the hull/fine interface, with compliant deformation of the foil to improve flow characteristics over the baseline full-flying and trailing-edge-flap designs.

  19. Correlation of centroid-based breast size, surface-based breast volume, and asymmetry-score-based breast symmetry in three-dimensional breast shape analysis

    Directory of Open Access Journals (Sweden)

    Henseler, Helga

    2016-06-01

    Full Text Available Objective: The aim of this study was to investigate correlations among the size, volume, and symmetry of the female breast after reconstruction based on previously published data. Methods: The centroid, namely the geometric center of a three-dimensional (3D breast-landmark-based configuration, was used to calculate the size of the breast. The surface data of the 3D breast images were used to measure the volume. Breast symmetry was assessed by the Procrustes analysis method, which is based on the 3D coordinates of the breast landmarks to produce an asymmetry score. The relationship among the three measurements was investigated. For this purpose, the data of 44 patients who underwent unilateral breast reconstruction with an extended latissimus dorsi flap were analyzed. The breast was captured by a validated 3D imaging system using multiple cameras. Four landmarks on each breast and two landmarks marking the midline were used.Results: There was a significant positive correlation between the centroid-based breast size of the unreconstructed breast and the measured asymmetry (p=0.024; correlation coefficient, 0.34. There was also a significant relationship between the surface-based breast volume of the unaffected side and the overall asymmetry score (p<0.001; correlation coefficient, 0.556. An increase in size and especially in volume of the unreconstructed breast correlated positively with an increase in breast asymmetry in a linear relationship.Conclusions: In breast shape analysis, the use of more detailed surface-based data should be preferred to centroid-based size data. As the breast size increases, the latissimus dorsi flap for unilateral breast reconstruction increasingly falls short in terms of matching the healthy breast in a linear relationship. Other reconstructive options should be considered for larger breasts. Generally plastic surgeons should view the two breasts as a single unit when assessing breast aesthetics and not view each

  20. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heib, F., E-mail: f.heib@mx.uni-saarland.de [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Hempelmann, R. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Munief, W.M.; Ingebrandt, S. [Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibrücken (Germany); Fug, F.; Possart, W. [Department of Adhesion and Interphases in Polymers, Saarland University, 66123 Saarbrücken (Germany); Groß, K.; Schmitt, M. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany)

    2015-07-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ{sub a} and the receding θ{sub r} contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple

  1. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    Science.gov (United States)

    Heib, F.; Hempelmann, R.; Munief, W. M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-07-01

    Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θa and the receding θr contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis relative to the first boundary points XB,10. Therefore, sessile drops during the inclination of the sample surface are video recorded and different specific contact angle events in dependence on the acceleration/deceleration of the triple line motion are analyzed. This procedure results in characteristically density distributions in dependence on the surface properties. The used procedures lead to the possibility to investigate influences on contact

  2. Surface Aesthetics and Analysis.

    Science.gov (United States)

    Çakır, Barış; Öreroğlu, Ali Rıza; Daniel, Rollin K

    2016-01-01

    Surface aesthetics of an attractive nose result from certain lines, shadows, and highlights with specific proportions and breakpoints. Analysis emphasizes geometric polygons as aesthetic subunits. Evaluation of the complete nasal surface aesthetics is achieved using geometric polygons to define the existing deformity and aesthetic goals. The relationship between the dome triangles, interdomal triangle, facet polygons, and infralobular polygon are integrated to form the "diamond shape" light reflection on the nasal tip. The principles of geometric polygons allow the surgeon to analyze the deformities of the nose, define an operative plan to achieve specific goals, and select the appropriate operative technique.

  3. Mathematical and computer modeling of component surface shaping

    Science.gov (United States)

    Lyashkov, A.

    2016-04-01

    The process of shaping technical surfaces is an interaction of a tool (a shape element) and a component (a formable element or a workpiece) in their relative movements. It was established that the main objects of formation are: 1) a discriminant of a surfaces family, formed by the movement of the shape element relatively the workpiece; 2) an enveloping model of the real component surface obtained after machining, including transition curves and undercut lines; 3) The model of cut-off layers obtained in the process of shaping. When modeling shaping objects there are a lot of insufficiently solved or unsolved issues that make up a single scientific problem - a problem of qualitative shaping of the surface of the tool and then the component surface produced by this tool. The improvement of known metal-cutting tools, intensive development of systems of their computer-aided design requires further improvement of the methods of shaping the mating surfaces. In this regard, an important role is played by the study of the processes of shaping of technical surfaces with the use of the positive aspects of analytical and numerical mathematical methods and techniques associated with the use of mathematical and computer modeling. The author of the paper has posed and has solved the problem of development of mathematical, geometric and algorithmic support of computer-aided design of cutting tools based on computer simulation of the shaping process of surfaces.

  4. THE INFLUENCE OF DROPLET VOLUME AND CONTACT-ANGLE ON LIQUID SURFACE-TENSION MEASUREMENTS BY AXISYMMETRICAL DROP SHAPE ANALYSIS-PROFILE (ADSA-P)

    NARCIS (Netherlands)

    BUSSCHER, HJ

    1991-01-01

    The axisymmetric drop shape analysis-profile (ADSA-P) technique was evaluated with respect to the influence of contact angle and droplet volume. The system was implemented on our standard contact angle measuring apparatus employing a Vidicon video camera and a 512 x 256 pixels framegrabber. For cali

  5. Research on Complexity of Surface Undulating Shapes of Rock Joints

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The surface undulating shapes of rock joints have been described qualitatively or experimental-quantitatively for a long time. The non-determined describing method can not fit quantitative evaluation of mechanical parameters of rock joints in engineering. In this paper, relative amplitude (RA) is chosen as a quantitative-describing index of surface measurement of 1 023 surface undulating curves which conducted by profile curve device(PCD). We discuss the nonuniformity,anisotropy and unhomogeneity of surface undulating shapes of joints. A new method that analyzes the complexity of surface undulating shapes of rock joints directional-statistically in various rock joints is also put forward.

  6. Robust Segmentation of Voxel Shapes using Medial Surfaces

    NARCIS (Netherlands)

    Reniers, Dennie; Telea, Alexandru

    2008-01-01

    We present a new patch-type segmentation method for 3D voxel shapes based on the medial surface, also called surface skeleton. The boundaries of the simplified fore- and background skeletons map one-to-one to increasingly fuzzy, soft convex, respectively concave, edges of the shape. Using this prope

  7. Aging and the haptic perception of 3D surface shape.

    Science.gov (United States)

    Norman, J Farley; Kappers, Astrid M L; Beers, Amanda M; Scott, A Kate; Norman, Hideko F; Koenderink, Jan J

    2011-04-01

    Two experiments evaluated the ability of older and younger adults to perceive the three-dimensional (3D) shape of object surfaces from active touch (haptics). The ages of the older adults ranged from 64 to 84 years, while those of the younger adults ranged from 18 to 27 years. In Experiment 1, the participants haptically judged the shape of large (20 cm diameter) surfaces with an entire hand. In contrast, in Experiment 2, the participants explored the shape of small (5 cm diameter) surfaces with a single finger. The haptic surfaces varied in shape index (Koenderink, Solid shape, 1990; Koenderink, Image and Vision Computing, 10, 557-564, 1992) from -1.0 to +1.0 in steps of 0.25. For both types of surfaces (large and small), the participants were able to judge surface shape reliably. The older participants' judgments of surface shape were just as accurate and precise as those of the younger participants. The results of the current study demonstrate that while older adults do possess reductions in tactile sensitivity and acuity, they nevertheless can effectively perceive 3D surface shape from haptic exploration.

  8. Event Shape Analysis in ALICE

    CERN Document Server

    Ortiz Velasquez, Antonio

    2009-01-01

    The jets are the final state manifestation of the hard parton scattering. Since at LHC energies the production of hard processes in proton-proton collisions will be copious and varied, it is important to develop methods to identify them through the study of their final states. In the present work we describe a method based on the use of some shape variables to discriminate events according their topologies. A very attractive feature of this analysis is the possibility of using the tracking information of the TPC+ITS in order to identify specific events like jets. Through the correlation between the quantities: thrust and recoil, calculated in minimum bias simulations of proton-proton collisions at 10 TeV, we show the sensitivity of the method to select specific topologies and high multiplicity. The presented results were obtained both at level generator and after reconstruction. It remains that with any kind of jet reconstruction algorithm one will confronted in general with overlapping jets. The present meth...

  9. Analysis Of Scoliosis By Back Shape Topography

    Science.gov (United States)

    Turner-Smith, Alan R.; Harris, John D.

    1983-07-01

    The use of surface topography for the assessment of scoliotic deformity in the clinic depends firstly on the quality of measures which reliably characterise deformity of the back, and secondly on the ease and speed with which these measures can be applied. A method of analysis of back shape measurements is presented which can be applied to any topographic measurement system. Measures presented are substantially independent of minor changes in the patient's posture in rotation and flexion from one clinic to the next, and yet sensitive enough to indicate significant improvement or degeneration of the disease. The presentation shows (1) horizontal cross-sections at ten levels up the back from sacrum to vertebra prominens, (2) angles of rotation of the surface over a small region about the spine, (3) three vertical profiles following the line of the spine, and (4) measures of maximum kyphosis and lordosis. Dependence on the operator has been reduced to a minimum. Extreme care in positioning the patient is unnecessary and those spinous processes which are easily palpable, the vertebra prominens and the two dimples over the posterior superior iliac spines are marked. Analysis proceeds entirely automatically once the basic shape data have been supplied. Applications of the technique to indirect moire topography and a television topographic measurement system are described.

  10. Microstructured shape memory polymer surfaces with reversible dry adhesion.

    Science.gov (United States)

    Eisenhaure, Jeffrey D; Xie, Tao; Varghese, Stephen; Kim, Seok

    2013-08-28

    We present a shape memory polymer (SMP) surface with repeatable, very strong (>18 atm), and extremely reversible (strong to weak adhesion ratio of >1 × 10(4)) dry adhesion to a glass substrate. This was achieved by exploiting bulk material properties of SMP and surface microstructuring. Its exceptional dry adhesive performance is attributed to the SMP's rigidity change in response to temperature and its capabilities of temporary shape locking and permanent shape recovery, which when combined with a microtip surface design enables time-independent control of contact area.

  11. Reconstruction and analysis of shapes from 3D scans

    NARCIS (Netherlands)

    ter Haar, F.B.

    2009-01-01

    In this thesis we use 3D laser range scans for the acquisition, reconstruction, and analysis of 3D shapes. 3D laser range scanning has proven to be a fast and effective way to capture the surface of an object in a computer. Thousands of depth measurements represent a part of the surface geometry as

  12. Pulse shapes and surface effects in segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Daniel

    2010-03-24

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of {sup 76}Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope {sup 76}Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  13. Shape selection of surface-bound helical filaments: biopolymers on curved membranes

    CERN Document Server

    Quint, D A; Grason, G M

    2016-01-01

    Motivated to understand the behavior of biological filaments interacting with membranes of various types, we study a theoretical model for the shape and thermodynamics of intrinsically-helical filaments bound to curved membranes. We show filament-surface interactions lead to a host of non-uniform shape equilibria, in which filaments progressively unwind from their native twist with increasing surface interaction and surface curvature, ultimately adopting uniform-contact curved shapes. The latter effect is due to non-linear coupling between elastic twist and bending of filaments on anisotropically-curved surfaces, such as the cylindrical surfaces considered here. Via a combination of numerical solutions and asymptotic analysis of shape equilibria we show that filament conformations are critically sensitive to the surface curvature in both the strong- and weak-binding limits. These results suggest that local structure of membrane-bound chiral filaments is generically sensitive to the curvature-radius of the sur...

  14. ANALYSIS OF BODY SHAPES AMONG BARBUS TRIMACULATUS ...

    African Journals Online (AJOL)

    nb

    variations existed. The relative warps analysis for Barbus trimaculatus and Barbus jacksonii ... due to its statistically comparable shape variables, it is possible to .... new set of shape variables together with the ... to test for all uniform and non-uniform measures .... discriminate between congeneric species of B. trimaculatus ...

  15. Shape design sensitivity analysis using domain information

    Science.gov (United States)

    Seong, Hwal-Gyeong; Choi, Kyung K.

    1985-01-01

    A numerical method for obtaining accurate shape design sensitivity information for built-up structures is developed and demonstrated through analysis of examples. The basic character of the finite element method, which gives more accurate domain information than boundary information, is utilized for shape design sensitivity improvement. A domain approach for shape design sensitivity analysis of built-up structures is derived using the material derivative idea of structural mechanics and the adjoint variable method of design sensitivity analysis. Velocity elements and B-spline curves are introduced to alleviate difficulties in generating domain velocity fields. The regularity requirements of the design velocity field are studied.

  16. Photonic surfaces for designable nonlinear power shaping

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Roshni, E-mail: rbiswas@usc.edu; Povinelli, Michelle L. [Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States)

    2015-02-09

    We propose a method for designing nonlinear input-output power response based on absorptive resonances of nanostructured surfaces. We show that various power transmission trends can be obtained by placing a photonic resonance mode at the appropriate detuning from the laser wavelength. We demonstrate our results in a silicon photonic crystal slab at a laser wavelength of 808 nm. We quantify the overall spectral red shift as a function of laser power. The shift results from absorptive heating and the thermo-optic effect. We then demonstrate devices with increasing, decreasing, and non-monotonic transmission as a function of laser power. The transmission changes are up to 7.5 times larger than in unpatterned silicon. The strong nonlinear transmission is due to a combination of resonantly enhanced absorption, reduced thermal conductivity, and the resonant transmission lineshape. Our results illustrate the possibility of designing different nonlinear power trends within a single materials platform at a given wavelength of interest.

  17. Simulating anisotropic droplet shapes on chemically striped patterned surfaces

    NARCIS (Netherlands)

    Jansen, H.P.; Bliznyuk, O.; Kooij, E.S.; Poelsema, B.; Zandvliet, H.J.W.

    2012-01-01

    The equilibrium shape of droplets on surfaces, functionalized with stripes of alternating wettability, have been investigated using simulations employing a finite element method. Experiments show that a droplet deposited on a surface with relatively narrow hydrophobic stripes compared to the hydroph

  18. Shape of a large drop on a rough hydrophobic surface

    Science.gov (United States)

    Park, Joonsik; Park, Jaebum; Lim, Hyuneui; Kim, Ho-Young

    2013-02-01

    Large drops on solid surfaces tend to flatten due to gravitational effect. Their shapes can be predicted by solving the Young-Laplace equation when their apparent contact angles are precisely given. However, for large drops sitting on rough surfaces, the apparent contact angles are often unavailable a priori and hard to define. Here we develop a model to predict the shape of a given volume of large drop placed on a rough hydrophobic surface using an overlapping geometry of double spheroids and the free energy minimization principle. The drop shape depends on the wetting state, thus our model can be used not only to predict the shape of a drop but also to infer the wetting state of a large drop through the comparison of theory and experiment. The experimental measurements of the shape of large water drops on various micropillar arrays agree well with the model predictions. Our theoretical model is particularly useful in predicting and controlling shapes of large drops on surfaces artificially patterned in microscopic scales, which are frequently used in microfluidics and lab-on-a-chip technology.

  19. Innovative changes in the cylinder liners surface shaping methods

    Directory of Open Access Journals (Sweden)

    Gruszka Jozef

    2017-01-01

    Full Text Available The main directions of changes in new internal combustion engine designs are determined not only by legislation on the toxic components emission in the exhaust gases, but also by the changes resulting from technological development, which are the results of research and development activities. One of the basic systems that has undergone intensive development recently is the piston-rings-cylinder (PRC node. This article contains an original analysis of the direction of changes in cylinder surface shaping in terms of the cylinder’s main functional features in the PRC system (the casting material and the opening surface topography after the finishing process. The results of the research on cast iron materials for cylinder liner castings with strength of Rm > 300 MPa were analyzed based on the centrifugal casting method and their finishing stage in the finishing process meeting the criteria for reduction of oil consumption and particle emissions for new HDD type engine designs. The author also points to innovations in surface structure metrology based on new 3D optical measurement methods and the quality rating method by Mercedes company.

  20. Exploration of Shape Variation Using Localized Components Analysis

    OpenAIRE

    Alcantara, Dan A; Carmichael, Owen; Harcourt-Smith, Will; Sterner, Kirstin; Frost, Stephen R.; Dutton, Rebecca; Thompson, Paul; Delson, Eric; Amenta, Nina

    2009-01-01

    Localized Components Analysis (LoCA) is a new method for describing surface shape variation in an ensemble of objects using a linear subspace of spatially localized shape components. In contrast to earlier methods, LoCA optimizes explicitly for localized components and allows a flexible trade-off between localized and concise representations, and the formulation of locality is flexible enough to incorporate properties such as symmetry. This paper demonstrates that LoCA can provide intuitive p...

  1. Shape analysis for mobile ambients

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    2001-01-01

    The ambient calculus is a calculus of computation that allows active processes to move between sites. We present an analysis inspired by state-of-the-art pointer analyses that safely and accurately predicts which processes may turn up at what sites during the execution of a composite system...

  2. Shape analysis for Mobile Ambients

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    2000-01-01

    The ambient calculus is a calculus of computation that allows active processes to move between sites. We present an analysis inspired by state-of-the-art pointer analyses that safety and accurately predicts which processes may turn up at what sites during the execution of a composite system...

  3. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  4. Exploration of shape variation using localized components analysis.

    Science.gov (United States)

    Alcantara, Dan A; Carmichael, Owen; Harcourt-Smith, Will; Sterner, Kirstin; Frost, Stephen R; Dutton, Rebecca; Thompson, Paul; Delson, Eric; Amenta, Nina

    2009-08-01

    Localized Components Analysis (LoCA) is a new method for describing surface shape variation in an ensemble of objects using a linear subspace of spatially localized shape components. In contrast to earlier methods, LoCA optimizes explicitly for localized components and allows a flexible trade-off between localized and concise representations, and the formulation of locality is flexible enough to incorporate properties such as symmetry. This paper demonstrates that LoCA can provide intuitive presentations of shape differences associated with sex, disease state, and species in a broad range of biomedical specimens, including human brain regions and monkey crania.

  5. Isogeometric analysis and shape optimization in electromagnetism

    DEFF Research Database (Denmark)

    Nguyen, Dang Manh

    In this thesis a recently proposed numerical method for solving partial differential equations, isogeometric analysis (IGA), is utilized for the purpose of shape optimization, with a particular emphasis on applications to two-dimensional design problems arising in electromagnetic applications...... parametrization are combined into an iterative algorithm for shape optimization of two dimensional electromagnetic problems. The algorithm may also be relevant for problems in other engineering disciplines. Using the methods developed in this thesis, remarkably we have obtained antennas that perform one million...... times better than an earlier topology optimization result. This shows a great potential of shape optimization using IGA in the area of electromagnetic antenna design in particular, and for electromagnetic...

  6. Conveying the 3D Shape of Transparent Surfaces Via Texture

    Science.gov (United States)

    Interrante, Victoria; Fuchs, Henry; Pizer, Stephen

    1997-01-01

    Transparency can be a useful device for depicting multiple overlapping surfaces in a single image. The challenge is to render the transparent surfaces in such a way that their three-dimensional shape can be readily understood and their depth distance from underlying structures clearly perceived. This paper describes our investigations into the use of sparsely-distributed discrete, opaque texture as an 'artistic device' for more explicitly indicating the relative depth of a transparent surface and for communicating the essential features of its 3D shape in an intuitively meaningful and minimally occluding way. The driving application for this work is the visualization of layered surfaces in radiation therapy treatment planning data, and the technique is illustrated on transparent isointensity surfaces of radiation dose. We describe the perceptual motivation and artistic inspiration for defining a stroke texture that is locally oriented in the direction of greatest normal curvature (and in which individual strokes are of a length proportional to the magnitude of the curvature in the direction they indicate), and discuss several alternative methods for applying this texture to isointensity surfaces defined in a volume. We propose an experimental paradigm for objectively measuring observers' ability to judge the shape and depth of a layered transparent surface, in the course of a task relevant to the needs of radiotherapy treatment planning, and use this paradigm to evaluate the practical effectiveness of our approach through a controlled observer experiment based on images generated from actual clinical data.

  7. Polymeric Shape-Memory Micro-Patterned Surface for Switching Wettability with Temperature

    Directory of Open Access Journals (Sweden)

    Nuria García-Huete

    2015-09-01

    Full Text Available An innovative method to switch the wettability of a micropatterned polymeric surface by thermally induced shape memory effect is presented. For this purpose, first polycyclooctene (PCO is crosslinked with dycumil peroxide (DCP and its melting temperature, which corresponds with the switching transition temperature (Ttrans, is measured by Dynamic Mechanical Thermal Analysis (DMTA in tension mode. Later, the shape memory behavior of the bulk material is analyzed under different experimental conditions employing a cyclic thermomechanical analysis (TMA. Finally, after creating shape memory micropillars by laser ablation of crosslinked thermo-active polycyclooctene (PCO, shape memory response and associated effect on water contact angle is analyzed. Thus, deformed micropillars cause lower contact angle on the surface from reduced roughness, but the original hydrophobicity is restored by thermally induced recovery of the original surface structure.

  8. Global point signature for shape analysis of carpal bones

    Science.gov (United States)

    Chaudhari, Abhijit J.; Leahy, Richard M.; Wise, Barton L.; Lane, Nancy E.; Badawi, Ramsey D.; Joshi, Anand A.

    2014-02-01

    We present a method based on spectral theory for the shape analysis of carpal bones of the human wrist. We represent the cortical surface of the carpal bone in a coordinate system based on the eigensystem of the two-dimensional Helmholtz equation. We employ a metric—global point signature (GPS)—that exploits the scale and isometric invariance of eigenfunctions to quantify overall bone shape. We use a fast finite-element-method to compute the GPS metric. We capitalize upon the properties of GPS representation—such as stability, a standard Euclidean (ℓ2) metric definition, and invariance to scaling, translation and rotation—to perform shape analysis of the carpal bones of ten women and ten men from a publicly-available database. We demonstrate the utility of the proposed GPS representation to provide a means for comparing shapes of the carpal bones across populations.

  9. Screening with rubber screen surfaces with variously shaped apertures

    Energy Technology Data Exchange (ETDEWEB)

    Bock, B.; Kraemer, T.

    1984-07-01

    Rubber screen surfaces are advantageous for bulk materials screening because of their low rate of wear and low noise emission and because they tend to prevent clogging. Screens with four different aperture shapes and sizes were available for experimental research. The cut sizes were determined in relation to the above-mentioned parameters with round and with crushed feed materials.

  10. Aging and the haptic perception of 3D surface shape

    NARCIS (Netherlands)

    Norman, J.F.; Kappers, A.M.L.; Beers, A.M.; Scott, A.K.; Norman, H.F.; Koenderink, J.J.

    2011-01-01

    Two experiments evaluated the ability of older and younger adults to perceive the three-dimensional (3D) shape of object surfaces from active touch (haptics). The ages of the older adults ranged from 64 to 84 years, while those of the younger adults ranged from 18 to 27 years. In Experiment 1, the p

  11. Aging and the haptic perception of 3D surface shape

    NARCIS (Netherlands)

    Norman, J.F.; Kappers, A.M.L.; Beers, A.M.; Scott, A.K.; Norman, H.F.; Koenderink, J.J.

    2010-01-01

    Two experiments evaluated the ability of older and younger adults to perceive the three-dimensional (3D) shape of object surfaces from active touch (haptics). The ages of the older adults ranged from 64 to 84 years, while those of the younger adults ranged from 18 to 27 years. In Experiment 1, the p

  12. The Shape Parameter in the Shifted Surface Spline

    CERN Document Server

    Luh, Lin-Tian

    2010-01-01

    There is a constant c contained in the famous radial basis function shifted surface spline. It's called shape parameter. RBF people only know that this constant is very influential, while its optimal choice is unknown. This paper presents criteria of its optimal choice.

  13. RECONSTRUCTION OF WELD POOL SURFACE BASED ON SHAPE FROM SHADING

    Institute of Scientific and Technical Information of China (English)

    DU Quanying; CHEN Shanben; LIN Tao

    2006-01-01

    A valid image-processing algorithm of weld pool surface reconstruction according to an input image of weld pool based on shape from shading (SFS) in computer vision is presented. The weld pool surface information is related to the backside weld width, which is crucial to the quality of weldjoint. The image of weld pool is recorded with an optical sensing method. Firstly, the reflectance map model, which specifies the imaging process, is estimated. Then, the algorithm of weld pool surface reconstruction based on SFS is implemented by iteration scheme and speeded by hierarchical structure. The results indicate the accuracy and effectiveness of the approach.

  14. Surface reproduction of elastomeric materials: viscosity and groove shape effects

    OpenAIRE

    Mahmood, N.; Abu Kasim, N.H.; Azuddin, M.; Kasim, N.L. Abu

    2010-01-01

    Objective: To evaluate the effect of viscosity and type of grooves on surface detail reproduction of elastomeric impression materials. Methods: Express putty/light-, Impregum medium- and heavy/light-bodied and Aquasil medium- and putty/light-bodied elastomeric impression materials were chosen for this study. Five impressions were made using a cylindrical aluminum reference block with U- and V- shaped grooves and to produce 35 master dies. Each master die was immersed in distilled water at 370...

  15. Surface shapes and surrounding environment analysis of single- and double-stranded DNA-binding proteins in protein-DNA interface.

    Science.gov (United States)

    Wang, Wei; Liu, Juan; Sun, Lin

    2016-07-01

    Protein-DNA bindings are critical to many biological processes. However, the structural mechanisms underlying these interactions are not fully understood. Here, we analyzed the residues shape (peak, flat, or valley) and the surrounding environment of double-stranded DNA-binding proteins (DSBs) and single-stranded DNA-binding proteins (SSBs) in protein-DNA interfaces. In the results, we found that the interface shapes, hydrogen bonds, and the surrounding environment present significant differences between the two kinds of proteins. Built on the investigation results, we constructed a random forest (RF) classifier to distinguish DSBs and SSBs with satisfying performance. In conclusion, we present a novel methodology to characterize protein interfaces, which will deepen our understanding of the specificity of proteins binding to ssDNA (single-stranded DNA) or dsDNA (double-stranded DNA). Proteins 2016; 84:979-989. © 2016 Wiley Periodicals, Inc.

  16. A Finger-Shaped Tactile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch

    Directory of Open Access Journals (Sweden)

    Haihua Hu

    2014-03-01

    Full Text Available Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM. The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures.

  17. Joint Effects of Illumination Geometry and Object Shape in the Perception of Surface Reflectance

    Directory of Open Access Journals (Sweden)

    Maria Olkkonen

    2011-12-01

    Full Text Available Surface properties provide useful information for identifying objects and interacting with them. Effective utilization of this information, however, requires that the perception of object surface properties be relatively constant across changes in illumination and changes in object shape. Such constancy has been studied separately for changes in these factors. Here we ask whether the separate study of the illumination and shape effects is sufficient, by testing whether joint effects of illumination and shape changes can be predicted from the individual effects in a straightforward manner. We found large interactions between illumination and object shape in their effects on perceived glossiness. In addition, analysis of luminance histogram statistics could not account for the interactions.

  18. Sensitivity Analysis of Criticality for Different Nuclear Fuel Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Sik; Jang, Misuk; Kim, Seoung Rae [NESS, Daejeon (Korea, Republic of)

    2016-10-15

    Rod-type nuclear fuel was mainly developed in the past, but recent study has been extended to plate-type nuclear fuel. Therefore, this paper reviews the sensitivity of criticality according to different shapes of nuclear fuel types. Criticality analysis was performed using MCNP5. MCNP5 is well-known Monte Carlo codes for criticality analysis and a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron or coupled neutron / photon / electron transport, including the capability to calculate eigenvalues for critical systems. We performed the sensitivity analysis of criticality for different fuel shapes. In sensitivity analysis for simple fuel shapes, the criticality is proportional to the surface area. But for fuel Assembly types, it is not proportional to the surface area. In sensitivity analysis for intervals between plates, the criticality is greater as the interval increases, but if the interval is greater than 8mm, it showed an opposite trend that the criticality decrease by a larger interval. As a result, it has failed to obtain the logical content to be described in common for all cases. The sensitivity analysis of Criticality would be always required whenever subject to be analyzed is changed.

  19. Determination of ocean surface wave shape from forward scattered sound.

    Science.gov (United States)

    Walstead, Sean P; Deane, Grant B

    2016-08-01

    Forward scattered sound from the ocean surface is inverted for wave shape during three periods: low wind, mix of wind and swell, and stormy. Derived wave profiles are spatially limited to a Fresnel region at or near the nominal surface specular reflection point. In some cases, the surface wave profiles exhibit unrealistic temporal and spatial properties. To remedy this, the spatial gradient of inverted waves is constrained to a maximum slope of 0.88. Under this global constraint, only surface waves during low wind conditions result in a modeled surface multipath that accurately matches data. The power spectral density of the inverted surface wave field saturates around a frequency of 8 Hz while upward looking SONAR saturates at 1 Hz. Each shows a high frequency spectral slope of -4 that is in agreement with various empirical ocean wave spectra. The improved high frequency resolution provided by the scattering inversion indicates that it is possible to remotely gain information about high frequency components of ocean waves. The inability of the inversion algorithm to determine physically realistic surface waves in periods of high wind indicates that bubbles and out of plane scattering become important in those operating scenarios.

  20. Shape Selection of Surface-Bound Helical Filaments: Biopolymers on Curved Membranes.

    Science.gov (United States)

    Quint, David A; Gopinathan, Ajay; Grason, Gregory M

    2016-10-04

    Motivated to understand the behavior of biological filaments interacting with membranes of various types, we employ a theoretical model for the shape and thermodynamics of intrinsically helical filaments bound to curved membranes. We show that filament-surface interactions lead to a host of nonuniform shape equilibria, in which filaments progressively unwind from their native twist with increasing surface interaction and surface curvature, ultimately adopting uniform-contact curved shapes. The latter effect is due to nonlinear coupling between elastic twist and bending of filaments on anisotropically curved surfaces such as the cylindrical surfaces considered here. Via a combination of numerical solutions and asymptotic analysis of shape equilibria, we show that filament conformations are critically sensitive to the surface curvature in both the strong- and weak-binding limits. These results suggest that local structure of membrane-bound chiral filaments is generically sensitive to the curvature radius of the surface to which it is bound, even when that radius is much larger than the filament's intrinsic pitch. Typical values of elastic parameters and interaction energies for several prokaryotic and eukaryotic filaments indicate that biopolymers are inherently very sensitive to the coupling between twist, interactions, and geometry and that this could be exploited for regulation of a variety of processes such as the targeted exertion of forces, signaling, and self-assembly in response to geometric cues including the local mean and Gaussian curvatures. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Micro-Shaping of Nanopatterned Surfaces by Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2016-04-01

    Full Text Available We show that planar nanopatterned thin films on standard polycarbonate (PC compact discs (CD can be micro-shaped in a non-contact manner via direct e-beam exposure. The shape of the film can be controlled by proper selection of the e-beam parameters. As an example of application, we demonstrate a two-dimensional (2D array of micro-lenses/reservoirs conformally covered by an Al 2D nanohole array (NHA film on a PC CD substrate. It is also shown that such a curvilinear Al NHA layer can be easily transferred onto a flexible polymeric support. The presented technique provides a new tool for creating lab-on-CD architectures and developing multifunctional (flexible non-planar nanostructured films and surfaces.

  2. Reconstruction and Analysis of Shapes from 3D Scans

    NARCIS (Netherlands)

    Haar, F.B. ter

    2009-01-01

    In this thesis, we measure 3D shapes with the use of 3D laser technology, a recent technology that combines physics, mathematics, and computer science to acquire the surface geometry of 3D shapes in the computer. We use this surface geometry to fully reconstruct real world shapes as computer models,

  3. Shape Classification Using Wasserstein Distance for Brain Morphometry Analysis.

    Science.gov (United States)

    Su, Zhengyu; Zeng, Wei; Wang, Yalin; Lu, Zhong-Lin; Gu, Xianfeng

    2015-01-01

    Brain morphometry study plays a fundamental role in medical imaging analysis and diagnosis. This work proposes a novel framework for brain cortical surface classification using Wasserstein distance, based on uniformization theory and Riemannian optimal mass transport theory. By Poincare uniformization theorem, all shapes can be conformally deformed to one of the three canonical spaces: the unit sphere, the Euclidean plane or the hyperbolic plane. The uniformization map will distort the surface area elements. The area-distortion factor gives a probability measure on the canonical uniformization space. All the probability measures on a Riemannian manifold form the Wasserstein space. Given any 2 probability measures, there is a unique optimal mass transport map between them, the transportation cost defines the Wasserstein distance between them. Wasserstein distance gives a Riemannian metric for the Wasserstein space. It intrinsically measures the dissimilarities between shapes and thus has the potential for shape classification. To the best of our knowledge, this is the first. work to introduce the optimal mass transport map to general Riemannian manifolds. The method is based on geodesic power Voronoi diagram. Comparing to the conventional methods, our approach solely depends on Riemannian metrics and is invariant under rigid motions and scalings, thus it intrinsically measures shape distance. Experimental results on classifying brain cortical surfaces with different intelligence quotients demonstrated the efficiency and efficacy of our method.

  4. The role of surface-based representations of shape in visual object recognition.

    Science.gov (United States)

    Reppa, Irene; Greville, W James; Leek, E Charles

    2015-01-01

    This study contrasted the role of surfaces and volumetric shape primitives in three-dimensional object recognition. Observers (N = 50) matched subsets of closed contour fragments, surfaces, or volumetric parts to whole novel objects during a whole-part matching task. Three factors were further manipulated: part viewpoint (either same or different between component parts and whole objects), surface occlusion (comparison parts contained either visible surfaces only, or a surface that was fully or partially occluded in the whole object), and target-distractor similarity. Similarity was varied in terms of systematic variation in nonaccidental (NAP) or metric (MP) properties of individual parts. Analysis of sensitivity (d') showed a whole-part matching advantage for surface-based parts and volumes over closed contour fragments--but no benefit for volumetric parts over surfaces. We also found a performance cost in matching volumetric parts to wholes when the volumes showed surfaces that were occluded in the whole object. The same pattern was found for both same and different viewpoints, and regardless of target-distractor similarity. These findings challenge models in which recognition is mediated by volumetric part-based shape representations. Instead, we argue that the results are consistent with a surface-based model of high-level shape representation for recognition.

  5. SHAPE ANALYSIS OF FINE AGGREGATES USED FOR CONCRETE

    Directory of Open Access Journals (Sweden)

    Huan He

    2016-12-01

    Full Text Available Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed digital image analysis systems are employed as the main approaches for the purpose. Some other technical methods, e.g. sieve test, laser diffraction method are also used for the comparable references. Shape characteristics of fine aggregates with different origins but in similar size ranges are revealed by this study. Compared with coarse aggregate, fine grains of different origins generally have similar shape differences. These differences are more significant in surface texture properties, which can be easily identified by an advanced shape parameter: bluntness. The new image analysis method is then approved to be efficient for the shape characterization of fine aggregate in concrete.

  6. A Mathematical Model for Calculating Deviations of the Shape, Size and Geometric Relationship of Flat Surfaces

    Directory of Open Access Journals (Sweden)

    I. I. Kravchenko

    2016-01-01

    Full Text Available There is a variety of objectives for measuring deviations of flatness, size and mutual arrangement of flat surfaces, namely: processing accuracy control, machinery condition monitoring, treatment process control in terms of shape deviation, comparative analysis of machine rigidity. If for a processing accuracy control it is sufficient to obtain the flatness deviation, as the maximum adjoining surface deviation, the choice of the adjoining surface as a zero reference datum deviation leads to considerable difficulties in creating devices and in particular devices for measuring size and shape variations. The flat surface is characterized by mutual arrangement of its points and can be represented by equation in the selected coordinate system. The objective of this work is to provide analytical construction of the vector field F, which describes the real surface with an appropriate approximation upon modelling the face milling of the flat surfaces of body parts in conditions of anisotropic rigidity of technological system. To determine the numerical value of shape and size deviation characteristics the average surfaces can serve a basis for the zero reference values of vectors. A mean value theorem allows to obtain measurement information about deviations in shape, size and arrangement of processed flat surfaces in terms of metrology, as well as about the process parameters such as depth of cut, feed, cutting speed, anisotropic rigidity of technological system that characterize the specific processing conditions. The machining center MS 12-250 was used to carry out a number of experiments with processing the surfaces of the prism-shaped body parts (300x300x250 and the subsequent measurements of flatness on the IS-49 optical line to prove the correlation between expected and observed values of the vectors of flatness deviations.

  7. Shape classification and analysis theory and practice

    CERN Document Server

    Costa, Luciano da Fona

    2009-01-01

    INTRODUCTIONINTRODUCTION TO SHAPE ANALYSISCASE STUDIESCOMPUTATIONAL SHAPE ANALYSISADDITIONAL MATERIALORGANIZATION OF THE BOOK BASIC MATHEMATICAL CONCEPTSBASIC CONCEPTSLINEAR ALGEBRADIFFERENTIAL GEOMETRYMULTIVARIATE CALCULUSCONVOLUTION AND CORRELATIONPROBABILITY AND STATISTICSFOURIER ANALYSISGRAPHS AND COMPLEX NETWORKS SHAPE ACQUISITION AND PROCESSINGIMAGE REPRESENTATIONIMAGE PROC

  8. Surface Characterization of Laser Surface Melted NiTi Shape Memory Alloy in Hanks' Solution

    Institute of Scientific and Technical Information of China (English)

    CUIZhen-duo; ZHUSheng-li; MANHauchung; YANGXian-jin

    2004-01-01

    The surface of Ti-50.8Ni at% shape memory alloy was melted by an Nd-YAG laser. The Ti/Ni and Ti4+/ Tiatomic concentration ratios at the surface were changed significantly. The Ni ion release rate of the laser melted surface was much lower than that of the mechanical polished samples. A calcium-phosphorous layer with high Ca/P ratio was detected after immersion in Hanks' solution.

  9. Surface Characterization of Laser Surface Melted NiTi Shape Memory Alloy in Hanks' Solution

    Institute of Scientific and Technical Information of China (English)

    CUI Zhen-duo; ZHU Sheng-li; MAN Hauchung; YANG Xian-jin

    2004-01-01

    The surface of Ti-50.8Ni at% shape memory alloy was melted by an Nd-YAG laser. The Ti/Ni and Ti4+/Ti atomic concentration ratios at the surface were changed significantly. The Ni ion release rate of the laser melted surface was much lower than that of the mechanical polished samples. A calcium-phosphorous layer with high Ca/P ratio was detected after immersion in Hanks' solution.

  10. Active Shape Analysis of Mandibular Growth

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Larsen, Rasmus; Kreiborg, Sven;

    2003-01-01

    This work contains a clinical validation using biological landmarks of a Geometry Constrained Diffusion registration of mandibular surfaces. Canonical Correlations Analysis is extended to analyse 3D landmarks and the correlations are used as similarity measures for landmark clustering. A novel Ac...

  11. Geometric Methods for ATR: Shape Analysis, Object/Image Metrics, Shape Reconstruction, and Shape Statistics

    Science.gov (United States)

    2011-08-15

    small numbers of sensed features associated with locations on the target geometry, although we plan to consider larger point clouds , or even...Correspondence Problem 7. Shapelets 8. Point Clouds 9. 3D Shape Reconstruction and Shape from Motion 10. Probability and Statistics of Shape...ideas can be used to align ladar data to CAD models and to speed various algorithms for matching point clouds to target models. In some cases it can be

  12. Estimation of shape model parameters for 3D surfaces

    DEFF Research Database (Denmark)

    Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen;

    2008-01-01

    Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D s...

  13. Multiscale characterization and analysis of shapes

    Science.gov (United States)

    Prasad, Lakshman; Rao, Ramana

    2002-01-01

    An adaptive multiscale method approximates shapes with continuous or uniformly and densely sampled contours, with the purpose of sparsely and nonuniformly discretizing the boundaries of shapes at any prescribed resolution, while at the same time retaining the salient shape features at that resolution. In another aspect, a fundamental geometric filtering scheme using the Constrained Delaunay Triangulation (CDT) of polygonized shapes creates an efficient parsing of shapes into components that have semantic significance dependent only on the shapes' structure and not on their representations per se. A shape skeletonization process generalizes to sparsely discretized shapes, with the additional benefit of prunability to filter out irrelevant and morphologically insignificant features. The skeletal representation of characters of varying thickness and the elimination of insignificant and noisy spurs and branches from the skeleton greatly increases the robustness, reliability and recognition rates of character recognition algorithms.

  14. The influence of size, shape, and surface coating on the stability of aqueous nanoparticle suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Mulvihill, M.J.; Habas, S.E.; La Plante, I.J.; Wan, J.; Mokari, T.

    2010-09-03

    In response to the rapid development and emerging commercialization of nanoparticles, fundamental studies concerning the fate of nanoparticles in the environment are needed. Precise control over the nanoparticle size, shape, and surface coating of cadmium selenide particles modified with thiolate ligands has been used to analyze the effects of nanoparticle design on their stability in aqueous environments. Nanoparticle stability was quantified using the concept of critical coagulation concentration (CCC) in solutions of sodium chloride. These investigations characterized the instability of the ligand coatings, which varied directly with chain length of the capping ligands. The stability of the ligand coatings were characterized as a function of time, pH, and ionic strength. Ligand dissociation has been shown to be a primary mechanism for nanoparticle aggregation when short-chain (C2-C6) ligands are used in the ligand shell. Stable nanoparticle suspensions prepared with long chain ligands (C11) were used to characterize nanoparticle stability as a function of size and shape. A linear relationship between particle surface area and the CCC was discovered and was found to be independent of nanoparticle shape. Quantitative analysis of nanoparticle size, shape, and surface coating demonstrated the importance of ligand stability and particle surface area for the prediction of nanoparticle stability.

  15. On the Acoustic Absorption of Porous Materials with Different Surface Shapes and Perforated Plates

    Science.gov (United States)

    CHEN, WEN-HWA; LEE, FAN-CHING; CHIANG, DAR-MING

    2000-10-01

    In architectural acoustic design, perforated plates are often used to protect porous materials from erosion. Although porous materials are usually applied to passive noise control, the effects of their surface shapes are seldom studied. To study the acoustic absorption of porous materials with different surface shapes and perforated plates, an efficient finite element procedure, which is derived by the Galerkin residual method and Helmholtz wave propagation equation, is used in this work. The two-microphone transfer function method and the modified Ingard and Dear impedance tube testing system are employed to measure the parameters deemed necessary for the finite element analysis, such as complex wave propagation constant, characteristic impedance and flow resistivity. For verifying the finite element results, the two-microphone transfer function method is also applied to measure the absorption coefficients of the discussed acoustic absorbers. Four surface shapes of commercially available porous materials, i.e., triangle, semicircle, convex rectangle and plate shapes, are chosen for analysis. The porosity of perforated plates is then evaluated. Finally, the distinct effect of the flow resistivity of porous materials on the acoustic absorption is demonstrated.

  16. Quantitative Hydrocarbon Surface Analysis

    Science.gov (United States)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  17. Updated Methods for Seed Shape Analysis

    Directory of Open Access Journals (Sweden)

    Emilio Cervantes

    2016-01-01

    Full Text Available Morphological variation in seed characters includes differences in seed size and shape. Seed shape is an important trait in plant identification and classification. In addition it has agronomic importance because it reflects genetic, physiological, and ecological components and affects yield, quality, and market price. The use of digital technologies, together with development of quantification and modeling methods, allows a better description of seed shape. Image processing systems are used in the automatic determination of seed size and shape, becoming a basic tool in the study of diversity. Seed shape is determined by a variety of indexes (circularity, roundness, and J index. The comparison of the seed images to a geometrical figure (circle, cardioid, ellipse, ellipsoid, etc. provides a precise quantification of shape. The methods of shape quantification based on these models are useful for an accurate description allowing to compare between genotypes or along developmental phases as well as to establish the level of variation in different sets of seeds.

  18. Shape and Deformation Analysis of the Human Ear Canal

    DEFF Research Database (Denmark)

    Darkner, Sune

    This thesis presents work on the analysis of the dynamic behavior of the human ear canal. The work is based on two studies designed during the project, a pilot study with 30 normal hearing subjects and a main study with 42 hearing impaired subjects, all hearing-aid users. The main focus is on the......This thesis presents work on the analysis of the dynamic behavior of the human ear canal. The work is based on two studies designed during the project, a pilot study with 30 normal hearing subjects and a main study with 42 hearing impaired subjects, all hearing-aid users. The main focus...... is on the extraction and analysis of the shape and deformation of the ear canal due to movements of the mandible, leaning over, and turning of the head. Methods for surface registration with focus on non-rigid registration are presented, as well as a wide range of statistical methods used for analyzing the shapes...... and deformation fields. The results show that the ear canal changes shape significantly in all subjects and that the deformation is more complicated than previously described in the literature. It is shown that the deformation at specific locations in the ear is significantly correlated to comfort issues reported...

  19. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    In this paper, shape optimisation of flapping wings in forward flight is considered. This analysis is performed by combining a local gradient-based optimizer with the unsteady vortex lattice method (UVLM). Although the UVLM applies only to incompressible, inviscid flows where the separation lines are known a priori, Persson et al. [1] showed through a detailed comparison between UVLM and higher-fidelity computational fluid dynamics methods for flapping flight that the UVLM schemes produce accurate results for attached flow cases and even remain trend-relevant in the presence of flow separation. As such, they recommended the use of an aerodynamic model based on UVLM to perform preliminary design studies of flapping wing vehicles Unlike standard computational fluid dynamics schemes, this method requires meshing of the wing surface only and not of the whole flow domain [2]. From the design or optimisation perspective taken in our work, it is fairly common (and sometimes entirely necessary, as a result of the excessive computational cost of the highest fidelity tools such as Navier-Stokes solvers) to rely upon such a moderate level of modelling fidelity to traverse the design space in an economical manner. The objective of the work, described in this paper, is to identify a set of optimised shapes that maximise the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. The shape of the wings is modelled using B-splines, a technology used in the computer-aided design (CAD) field for decades. This basis can be used to smoothly discretize wing shapes with few degrees of freedom, referred to as control points. The locations of the control points constitute the design variables. The results suggest that changing the shape yields significant improvement in the performance of the flapping wings. The optimisation pushes the design to "bird-like" shapes with substantial increase in the time

  20. Shape-aware surface reconstruction from sparse 3D point-clouds.

    Science.gov (United States)

    Bernard, Florian; Salamanca, Luis; Thunberg, Johan; Tack, Alexander; Jentsch, Dennis; Lamecker, Hans; Zachow, Stefan; Hertel, Frank; Goncalves, Jorge; Gemmar, Peter

    2017-05-01

    The reconstruction of an object's shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process of aligning intra-operative navigation and preoperative planning data. In such scenarios, one usually has to deal with sparse data, which significantly aggravates the problem of reconstruction. However, medical applications often provide contextual information about the 3D point data that allow to incorporate prior knowledge about the shape that is to be reconstructed. To this end, we propose the use of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is represented by a point distribution model (PDM), which is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we formulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given points are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are "oriented" according to the surface normals at the PDM points, a surface-based fitting is accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner yields the reconstruction of the surface from the given data points. We compare our method to the extensively used Iterative Closest Points method on several different anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior accuracy and robustness on sparse data. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Laplacian drop shapes and effect of random perturbations on accuracy of surface tension measurement for different drop constellations.

    Science.gov (United States)

    Saad, Sameh M I; Neumann, A Wilhelm

    2015-08-01

    Theoretical drop shapes are calculated for three drop constellations: pendant drops, constrained sessile drops, and unconstrained sessile drops. Based on total Gaussian curvature, shape parameter and critical shape parameter are discussed as a function of different drop sizes and surface tensions. The shape parameter is linked to physical parameters for every drop constellation. The as yet unavailable detailed dimensional analysis for the unconstrained sessile drop is presented. Results show that the unconstrained sessile drop shape depends on a dimensionless volume term and the contact angle. Random perturbations are introduced and the accuracy of surface tension measurement is assessed for precise and perturbed profiles of the three drop constellations. It is concluded that pendant drops are the best method for accurate surface tension measurement, followed by constrained sessile drops. The unconstrained sessile drops come last because they tend to be more spherical at low and moderate contact angles. Of course, unconstrained sessile drops are the only option if contact angles are to be measured.

  2. Effect of shape of elastic beam hair on its adhesion with wavy surfaces

    Science.gov (United States)

    Hemthavy, Pasomphone; Yazaki, Takehiko; Wang, Boqing; Sekiguchi, Yu; Takahashi, Kunio

    2014-08-01

    An analysis on a tapered elastic beam whose side surface partially adhered to a rigid surface was carried out to study the effect of the beam shape on the gripping force. Considering the total energy of the system, the relation between the gripping force and the displacement was obtained analytically in closed form. The analytical result is significant because it provides an intuitive picture of the gripping force. Although, an individually tapered beam can generate less gripping force for flat or slightly wavy surfaces, compared to a rectangular beam, the analysis result suggests that the tapered beam has more ability to absorb surface waviness. This result can be applied to a multi-beam structure.

  3. ASSESSMENT OF BACTERIAL BIOSURFACTANT PRODUCTION THROUGH AXISYMMETRICAL DROP SHAPE-ANALYSIS BY PROFILE

    NARCIS (Netherlands)

    VANDERVEGT, W; VANDERMEI, HC; BUSSCHER, HJ

    1991-01-01

    Axisymmetric drop shape analysis by profile (ADSA-P) is a technique developed in colloid and surface science to simultaneously determine the contact angle and liquid surface tension from the profile of a droplet resting on a solid surface. In this paper is described how ADSA-P can be employed to ass

  4. Analysis of {sup 2}H NMR spectra of water molecules on the surface of nano-silica material MCM-41: Deconvolution of the signal into a Lorentzian and a powder pattern line shapes

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, J., E-mail: jamal.hassan@kustar.ac.ae [Applied Mathematics and Sciences, KUSTAR, UAE and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2012-01-01

    Water {sup 2}H NMR signal on the surface of nano-silica material MCM-41 consists of two overlapping resonances. The {sup 2}H water spectrum shows a superposition of a Lorentzian line shape and the familiar NMR powder pattern line shape, indicating the existence of two spin components. Exchange occurs between these two groups. Decomposition of the two signals is a crucial starting point to study the exchange process. In this article we have determined these spin component populations along with other important parameters for the {sup 2}H water NMR signal over a temperature range between 223 K and 343 K.

  5. Prediction of dementia by hippocampal shape analysis

    DEFF Research Database (Denmark)

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom;

    2010-01-01

    This work investigates the possibility of predicting future onset of dementia in subjects who are cognitively normal, using hippocampal shape and volume information extracted from MRI scans. A group of 47 subjects who were non-demented normal at the time of the MRI acquisition, but were diagnosed...... and, if necessary, manually corrected by a trained observer. From this data a statistical model of hippocampal shape was constructed, using an entropy-based particle system. This shape model provided the input for a Support Vector Machine classifier to predict dementia. Cross validation experiments...... showed that shape information can predict future onset of dementia in this dataset with an accuracy of 70%. By incorporating both shape and volume information into the classifier, the accuracy increased to 74%....

  6. Stakeholder Analysis To Shape the Enterprise

    Science.gov (United States)

    McCaughin, Keith; Derosa, Joseph

    An enterprise is a complex adaptive social system that should maximize stakeholder, not shareholder, value — value to employees, customers, shareholders and others. We expand upon Russell Ackoff s direction to distribute value among stakeholders, to propose a schema of rules that guide the interactions among autonomous agents in the transactional environment of an enterprise. We define an enterprise as an organization and its transactional environment interacting with and adapting to each other. Enterprise behavior can only be understood in the context of this transactional environment where everything depends on everything else and interactions cannot be controlled, but can be influenced if they are guided by an understanding of the internal rules of the autonomous agents. The schema has four complementary rules (control, autonomy, return and value) derived from the work of Russell Ackoff and Michael Porter. The basic rules are applied in combination to eight stakeholder types derived from Richard Hopeman and Raymond McLeod (Leaders, Competitors, Customers, Public, Workers, Collaborators, Suppliers and Regulators). An enterprise can use this schema and rules in a process of stakeholder analysis to develop and continually refine strategies to encourage behaviors that benefit the enterprise and discourage behaviors that harm the enterprise. These strategies are implemented in a relationship management program in support of enterprise strategic management to consciously and explicitly shape the environment to reduce risks and increase opportunities for success.

  7. Crack shape analysis of PWSCC in S/G tubings

    Energy Technology Data Exchange (ETDEWEB)

    Park, I. K. [Sunmon Univ., Chonan (Korea, Republic of)

    2000-10-01

    Crack shape of PWSCC was analyzed, based on the fractured pulled-out S/G tubings of Ulchin-1 steam generator. The shape of the cracks in kiss roll transitions was elliptical shape for short cracks, and car shape for long cracks with flat crack front. The bulging was observed under the inner wall after shot-peening. Crack shape change after shot-peening was resulted from the crack growth restraint in axial direction due to compressive residual stresses on the primary side surface.

  8. Land surface temperature shaped by urban fractions in megacity region

    Science.gov (United States)

    Zhang, Xiaoxuan; Hu, Yonghong; Jia, Gensuo; Hou, Meiting; Fan, Yanguo; Sun, Zhongchang; Zhu, Yuxiang

    2017-02-01

    Large areas of cropland and natural vegetation have been replaced by impervious surfaces during the recent rapid urbanization in China, which has resulted in intensified urban heat island effects and modified local or regional warming trends. However, it is unclear how urban expansion contributes to local temperature change. In this study, we investigated the relationship between land surface temperature (LST) change and the increase of urban land signals. The megacity of Tianjin was chosen for the case study because it is representative of the urbanization process in northern China. A combined analysis of LST and urban land information was conducted based on an urban-rural transect derived from Landsat 8 Thermal Infrared Sensor (TIRS), Terra Moderate Resolution Imaging Spectrometer (MODIS), and QuickBird images. The results indicated that the density of urban land signals has intensified within a 1-km2 grid in the urban center with an impervious land fraction >60 %. However, the construction on urban land is quite different with low-/mid-rise buildings outnumbering high-rise buildings in the urban-rural transect. Based on a statistical moving window analysis, positive correlation ( R 2 > 0.9) is found between LST and urban land signals. Surface temperature change (ΔLST) increases by 0.062 °C, which was probably caused by the 1 % increase of urbanized land (ΔIF) in this case region.

  9. Universal natural shapes: from unifying shape description to simple methods for shape analysis and boundary value problems

    NARCIS (Netherlands)

    Gielis, J.; Caratelli, D.; Fougerolle, Y.; Ricci, P.E.; Tavkelidze, I.; Gerats, T.

    2012-01-01

    Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt

  10. Temporal shape analysis via the spectral signature.

    Science.gov (United States)

    Bernardis, Elena; Konukoglu, Ender; Ou, Yangming; Metaxas, Dimitris N; Desjardins, Benoit; Pohl, Kilian M

    2012-01-01

    In this paper, we adapt spectral signatures for capturing morphological changes over time. Advanced techniques for capturing temporal shape changes frequently rely on first registering the sequence of shapes and then analyzing the corresponding set of high dimensional deformation maps. Instead, we propose a simple encoding motivated by the observation that small shape deformations lead to minor refinements in the spectral signature composed of the eigenvalues of the Laplace operator. The proposed encoding does not require registration, since spectral signatures are invariant to pose changes. We apply our representation to the shapes of the ventricles extracted from 22 cine MR scans of healthy controls and Tetralogy of Fallot patients. We then measure the accuracy score of our encoding by training a linear classifier, which outperforms the same classifier based on volumetric measurements.

  11. Optimal wavy surface to suppress vortex shedding using second-order sensitivity to shape changes

    CERN Document Server

    Tammisola, Outi

    2016-01-01

    A method to find optimal 2nd-order perturbations is presented, and applied to find the optimal spanwise-wavy surface for suppression of cylinder wake instability. Second-order perturbations are required to capture the stabilizing effect of spanwise waviness, which is ignored by standard adjoint-based sensitivity analyses. Here, previous methods are extended so that (i) 2nd-order sensitivity is formulated for base flow changes satisfying linearised Navier-Stokes, and (ii) the resulting method is applicable to a 2D global instability problem. This makes it possible to formulate 2nd-order sensitivity to shape modifications. Using this formulation, we find the optimal shape to suppress the a cylinder wake instability. The optimal shape is then perturbed by random distributions in full 3D stability analysis to confirm that it is a local optimal at the given amplitude and wavelength. Furthermore, it is shown that none of the 10 random wavy shapes alone stabilize the wake flow at Re=50, while the optimal shape does....

  12. Surface analysis in microelectronics.

    Science.gov (United States)

    Pignataro, S

    1995-10-01

    The contribution given by surface analysis to solve some problems encountered in the production of electronic power devices have been discussed. Mainly two types of problems have been faced. One of these deal with interfacial chemistry. Three examples have been investigated. The first applies to the improvement of the quality and the reliability of plastic packages through the optimization of the resin/metal and resin/die adhesion. The second relies to the adhesion between polyimide and silicon nitride used in the multilevel technology. The third example refers to the so called die-attach process and related problems. Another area of interest in microelectronics is that of the erosion of various types of surfaces and the possibility of wrong etching. A few examples of the application of surface analytical techniques for these problems will be presented. XPS and SIMS working in imaging and multipoint analysis mode, scanning acoustic microscopy, contact angle measurements as well as peeling and tensile strength measurements are the main tools used to obtain useful data.

  13. Spline Based Shape Prediction and Analysis of Uniformly Rotating Sessile and Pendant Droplets.

    Science.gov (United States)

    Jakhar, Karan; Chattopadhyay, Ashesh; Thakur, Atul; Raj, Rishi

    2017-06-06

    Prediction and analysis of the shapes of liquid-vapor interface of droplets under the influence of external forces is critical for various applications. In this regard, a geometric model that can capture the macroscopic shape of the liquid-vapor interface in tandem with the subtleties near the contact line, particularly in the regime where the droplet shape deviates significantly from the idealized spherical cap geometry, is desirable. Such deviations may occur when external forces such as gravity or centrifugal dominate over the surface tension force. Here we use vector parametrized cubic spline representation for axisymmetric fluid-fluid interfaces along with a novel thermodynamic free energy minimization based heuristic to determine the shape of liquid-vapor interface of droplets. We show that the current scheme can easily predict the shapes of sessile and pendant droplets under the action of centrifugal force over a broad range of surface contact angle values and droplet sizes encountered in practical applications. Finally, we show that the cubic spline based modeling approach makes it convenient to perform the inverse analysis as well, i.e., predict interfacial properties from the shape of a droplet under the action of various types of external forces including gravity and centrifugal. We believe that this versatile modeling approach can be extended to model droplet shapes under various other external forces including electric and acoustic. In addition, the simple shape analysis approach is also promising for the development of inexpensive interfacial analysis tools such as surface tensiometers.

  14. The relative contributions of facial shape and surface information to perceptions of attractiveness and dominance.

    Directory of Open Access Journals (Sweden)

    Jaimie S Torrance

    Full Text Available Although many studies have investigated the facial characteristics that influence perceptions of others' attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions or shape information had been standardized (i.e., surface-only versions. For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men's facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women's facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others' attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics.

  15. The relative contributions of facial shape and surface information to perceptions of attractiveness and dominance.

    Science.gov (United States)

    Torrance, Jaimie S; Wincenciak, Joanna; Hahn, Amanda C; DeBruine, Lisa M; Jones, Benedict C

    2014-01-01

    Although many studies have investigated the facial characteristics that influence perceptions of others' attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions) or shape information had been standardized (i.e., surface-only versions). For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men's facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women's facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others' attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics.

  16. The shape operator for differential analysis of images.

    Science.gov (United States)

    Avants, Brian; Gee, James

    2003-07-01

    This work provides a new technique for surface oriented volumetric image analysis. The method makes no assumptions about topology, instead constructing a local neighborhood from image information, such as a segmentation or edge map, to define a surface patch. Neighborhood constructions using extrinsic and intrinsic distances are given. This representation allows one to estimate differential properties directly from the image's Gauss map. We develop a novel technique for this purpose which estimates the shape operator and yields both principal directions and curvatures. Only first derivatives need be estimated, making the method numerically stable. We show the use of these measures for multi-scale classification of image structure by the mean and Gaussian curvatures. Finally, we propose to register image volumes by surface curvature. This is particularly useful when geometry is the only variable. To illustrate this, we register binary segmented data by surface curvature, both rigidly and non-rigidly. A novel variant of Demons registration, extensible for use with differentiable similarity metrics, is also applied for deformable curvature-driven registration of medical images.

  17. Improved shape hardening function for bounding surface model for cohesive soils

    Directory of Open Access Journals (Sweden)

    Andrés Nieto-Leal

    2014-08-01

    Full Text Available A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.

  18. Patch-type Segmentation of Voxel Shapes using Simplified Surface Skeletons

    NARCIS (Netherlands)

    Reniers, Dennie; Telea, Alexandru

    2008-01-01

    We present a new method for decomposing a 3D voxel shape into disjoint segments using the shape’s simplified surface-skeleton. The surface skeleton of a shape consists of 2D manifolds inside its volume. Each skeleton point has a maximally inscribed ball that touches the boundary in at least two cont

  19. Improved shape hardening function for bounding surface model for cohesive soils

    Institute of Scientific and Technical Information of China (English)

    Andrés Nieto-Leal; Victor N.Kaliakin

    2014-01-01

    A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.

  20. Event shape analysis in ultrarelativistic nuclear collisions

    CERN Document Server

    Kopecna, Renata

    2016-01-01

    We present a novel method for sorting events. So far, single variables like flow vector magnitude were used for sorting events. Our approach takes into account the whole azimuthal angle distribution rather than a single variable. This method allows us to determine the good measure of the event shape, providing a multiplicity-independent insight. We discuss the advantages and disadvantages of this approach, the possible usage in femtoscopy, and other more exclusive experimental studies.

  1. Analysis of Global Properties of Shapes

    Science.gov (United States)

    2010-06-01

    only with single objects, with with scenes. Towards this end, we investigate the design of a system for recognizing objects in 3D point clouds of...represent, and classify small objects in scanned point clouds of a city. Data representing geometry of this scale is relatively new, and not many...4.2 Related Work We describe related work in detection of objects in point clouds , labeling of individual points in point clouds , and shape descriptors

  2. RNA structural analysis by evolving SHAPE chemistry.

    Science.gov (United States)

    Spitale, Robert C; Flynn, Ryan A; Torre, Eduardo A; Kool, Eric T; Chang, Howard Y

    2014-01-01

    RNA is central to the flow of biological information. From transcription to splicing, RNA localization, translation, and decay, RNA is intimately involved in regulating every step of the gene expression program, and is thus essential for health and understanding disease. RNA has the unique ability to base-pair with itself and other nucleic acids to form complex structures. Hence the information content in RNA is not simply its linear sequence of bases, but is also encoded in complex folding of RNA molecules. A general chemical functionality that all RNAs have is a 2'-hydroxyl group in the ribose ring, and the reactivity of the 2'-hydroxyl in RNA is gated by local nucleotide flexibility. In other words, the 2'-hydroxyl is reactive at single-stranded and conformationally flexible positions but is unreactive at nucleotides constrained by base-pairing. Recent efforts have been focused on developing reagents that modify RNA as a function of RNA 2' hydroxyl group reactivity. Such RNA structure probing techniques can be read out by primer extension in experiments termed RNA SHAPE (selective 2'- hydroxyl acylation and primer extension). Herein, we describe the efforts devoted to the design and utilization of SHAPE probes for characterizing RNA structure. We also describe current technological advances that are being applied to utilize SHAPE chemistry with deep sequencing to probe many RNAs in parallel. The merging of chemistry with genomics is sure to open the door to genome-wide exploration of RNA structure and function.

  3. RNA Structural Analysis by Evolving SHAPE Chemistry

    Science.gov (United States)

    Spitale, Robert C.; Flynn, Ryan A.; Torre, Eduardo A.; Kool, Eric T.; Chang, Howard Y.

    2017-01-01

    RNA is central to the flow of biological information. From transcription to splicing, RNA localization, translation, and decay, RNA is intimately involved in regulating every step of the gene expression program, and is thus essential for health and understanding disease. RNA has the unique ability to base-pair with itself and other nucleic acids to form complex structures. Hence the information content in RNA is not simply its linear sequence of bases, but is also encoded in complex folding of RNA molecules. A general chemical functionality that all RNAs have is a 2’-hydroxyl group in the ribose ring, and the reactivity of the 2'-hydroxyl in RNA is gated by local nucleotide flexibility. In other words, the 2'-hydroxyl is reactive at single-stranded and conformationally flexible positions but is unreactive at nucleotides constrained by base pairing. Recent efforts have been focused on developing reagents that modify RNA as a function of RNA 2’ hydroxyl group flexibility. Such RNA structure probing techniques can be read out by primer extension in experiments termed RNA SHAPE (Selective 2’ Hydroxyl Acylation and Primer Extension). Herein we describe the efforts devoted to the design and utilization of SHAPE probes for characterizing RNA structure. We also describe current technological advances that are being used to utilize SHAPE chemistry with deep sequencing to probe many RNAs in parallel. The merger of chemistry with genomics is sure to open the door to genome-wide exploration of RNA structure and function. PMID:25132067

  4. Surface quality of extruding metal special-shape products and frictional behavior in optimized die cavity

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yuan; ZHU Heng-jun

    2004-01-01

    With the help of Complex Function Mapping theory, the complicated three-dimensional deformation problems are transferred into two-dimensional problems, and the function of strain ratio field is analyzed in the metal plastic extruding deformation. Taking the strain-hardening effect of metal deformation into account, the relationship between friction behavior and optimized mathematical model is analyzed by the numerical analysis friction energy dissipation function. As a result, the method of lowering the material hardening and decreasing the reduction ratio over multi-procedures can be used to improve the surface quality of metal special-shape extrusion products.

  5. Influence of Surface Topography on ICESat/GLAS Forest Height Estimation and Waveform Shape

    Directory of Open Access Journals (Sweden)

    Claudia Hilbert

    2012-07-01

    Full Text Available This study explores ICESat/GLAS waveform data in Thuringian Forest, a low mountain range located in central Germany. Lidar remote sensing has been proven to directly derive tree height as a key variable of forest structure. The GLAS signal is, however, very sensitive to surface topography because of the large footprint size. This study therefore focuses on forests in a mountainous area to assess the potential of GLAS data to derive terrain elevation and tree height. The work enhances the empirical knowledge about the interaction between GLAS waveform and landscape structure regarding a special temperate forest site with a complex terrain. An algorithm to retrieve tree height directly from GLA01 waveform data is proposed and compared to an approach using GLA14 Gaussian parameters. The results revealed that GLAS height estimates were accurate for areas with a slope up to 10° whereas waveforms of areas above 15° were problematic. Slopes between 10–15° have been found to be a critical crossover. Further, different waveform shape types and landscape structure classes were developed as a new possibility to explore the waveform in its whole structure. Based on the detailed analysis of some waveform examples, it could be demonstrated that the waveform shape can be regarded as a product of the complex interaction between surface and canopy structure. Consequently, there is a great variety of waveform shapes which in turn considerably hampers GLAS tree height extraction in areas with steep slopes and complex forest conditions.

  6. Contributions of feature shapes and surface cues to the recognition of facial expressions.

    Science.gov (United States)

    Sormaz, Mladen; Young, Andrew W; Andrews, Timothy J

    2016-10-01

    Theoretical accounts of face processing often emphasise feature shapes as the primary visual cue to the recognition of facial expressions. However, changes in facial expression also affect the surface properties of the face. In this study, we investigated whether this surface information can also be used in the recognition of facial expression. First, participants identified facial expressions (fear, anger, disgust, sadness, happiness) from images that were manipulated such that they varied mainly in shape or mainly in surface properties. We found that the categorization of facial expression is possible in either type of image, but that different expressions are relatively dependent on surface or shape properties. Next, we investigated the relative contributions of shape and surface information to the categorization of facial expressions. This employed a complementary method that involved combining the surface properties of one expression with the shape properties from a different expression. Our results showed that the categorization of facial expressions in these hybrid images was equally dependent on the surface and shape properties of the image. Together, these findings provide a direct demonstration that both feature shape and surface information make significant contributions to the recognition of facial expressions.

  7. Effect of shape of protrusions and roughness on the hydrophilicity of a surface

    Science.gov (United States)

    Chowdhury, Sheelan Sengupta; Pandey, Prithvi Raj; Kumar, Rajnish; Roy, Sudip

    2017-10-01

    We have investigated wetting of model rough surfaces made up of hydrophilic triangular and hexagonal pillars (protrusions). The surface roughnesses are altered by varying the area of the rough surface, the height of the pillars, and the surface interactions to the water. We have established a correlation between structure i.e., the shape of a pillar, which actually depends on the number of edges (due to shape), and the wetting phenomena. We have found that surface with higher number of edges repels water at lower roughness value. We explain the correlation by analyzing the variation of interactions energy components and density profiles of water on the structured surfaces.

  8. Variable-Domain Displacement Transfer Functions for Converting Surface Strains into Deflections for Structural Deformed Shape Predictions

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2015-01-01

    Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions

  9. GEOMETRIC ANALYSIS OF PLANAR SHAPES WITH APPLICATIONS TO CELL DEFORMATIONS

    Directory of Open Access Journals (Sweden)

    Ximo Gual-Arnau

    2015-09-01

    Full Text Available Shape analysis is of great importance in many fields such as computer vision, medical imaging, and computational biology. In this paper we focus on a shape space in which shapes are represented by means of planar closed curves. In this shape space a new metric was recently introduced with the result that this shape space has the property of being isometric to an infinite-dimensional Grassmann manifold of 2-dimensional subspaces. Using this isometry it is possible, from Younes et al. (2008, to explicitly describe geodesics, a task that previously was not at all easy. Our aim is twofold, namely: to use this general theory in order to show some applications to the study of erythrocytes, using digital images of peripheral blood smears, in the treatment of sickle cell disease; and, since normal erythrocytes are almost circular and many Sickle cells have elliptical shape, to particularize the computation of geodesics and distances between shapes using this metric to planar objects considered as deformations of a template (circle or ellipse. The applications considered include: shape interpolation, shape classification, and shape clustering.

  10. Static analysis of C-shape SMA middle ear prosthesis

    Science.gov (United States)

    Latalski, Jarosław; Rusinek, Rafał

    2017-08-01

    Shape memory alloys are a family of metals with the ability to change specimen shape depending on their temperature. This unique property is useful in many areas of mechanical and biomechanical engineering. A new half-ring middle ear prosthesis design made of a shape memory alloy, that is undergoing initial clinical tests, is investigated in this research paper. The analytical model of the studied structure made of nonlinear constitutive material is solved to identify the temperature-dependent stiffness characteristics of the proposed design on the basis of the Crotti-Engesser theorem. The final integral expression for the element deflection is highly complex, thus the solution has to be computed numerically. The final results show the proposed shape memory C-shape element to behave linearly in the analysed range of loadings and temperatures. This is an important observation that significantly simplifies the analysis of the prototype structure and opens wide perspectives for further possible applications of shape memory alloys.

  11. Transcriptomic analysis of incised leaf-shape determination in birch.

    Science.gov (United States)

    Mu, Huaizhi; Lin, Lin; Liu, Guifeng; Jiang, Jing

    2013-12-01

    Plant researchers have focused much attention on leaf shape because of its importance in the identification. To evaluate the impact of intraspecies leaf-shape variation on the transcriptome, a series of Betula pendula 'Dalecarlica' and B. pendula saplings were generated through tissue culture. The leaf shapes and transcriptomes of B. pendula 'Dalecarlica' clones were compared with those of B. pendula clones. The leaf shape of B. pendula 'Dalecarlica' was incised and that of B. pendula was ovate. Transcriptome data revealed numerous changes in gene expression between B. pendula 'Dalecarlica' and B. pendula, including upregulation of 8767 unigenes and downregulation of 8379 unigenes in B. pendula 'Dalecarlica'. A pathway analysis revealed that the transport and signal transduction of auxin were altered in 'Dalecarlica', which may have contributed to its altered leaf shape. These results shed light on variation in birch leaf shape and help identify important genes for the genetic engineering of birch trees. © 2013.

  12. Surface structure and properties of biomedical NiTi shape memory alloy after Fenton's oxidation.

    Science.gov (United States)

    Chu, C L; Hu, T; Wu, S L; Dong, Y S; Yin, L H; Pu, Y P; Lin, P H; Chung, C Y; Yeung, K W K; Chu, Paul K

    2007-09-01

    Fenton's oxidation is traditionally used to remove inorganic and organic pollutants from water in waster water treatment. It is an advanced oxidation process in which H2O2 is catalytically decomposed by ferrous irons into hydroxyl radicals (*OH) which have a higher oxidation potential (2.8V) than H2O2. In the work reported here, we for the first time use Fenton's oxidation to modify the surface of biomedical NiTi shape memory alloy (SMA). The influences of Fenton's oxidation on the surface microstructure, blood compatibility, leaching of harmful Ni ions and corrosion resistance in simulated body fluids is assessed using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma mass spectrometry, electrochemical tests, hemolysis analysis and the blood platelet adhesion test. The mechanical stability of the surface titania film produced by Fenton's oxidation as well as their effects on the shape memory behavior of the SMA are studied by bending tests. Our results show that Fenton's oxidation produces a novel nanostructured titania gel film with a graded structure on the NiTi substrate without an intermediate Ni-rich layer that is typical of high-temperature oxidation. Moreover, there is a clear Ni-free zone near the top surface of the titania film. The surface structural changes introduced by Fenton's oxidation improve the electrochemical corrosion resistance and mitigate Ni release. The latter effects are comparable to those observed after oxygen plasma immersion ion implantation reported previously and better than those of high-temperature oxidation. Aging in boiling water improves the crystallinity of the titania film and further reduces Ni leaching. Blood platelet adhesion is remarkably reduced after Fenton's oxidation, suggesting that the treated SMA has improved thrombo resistance. Enhancement of blood compatibility is believed to stem from the improved hemolysis resistance, the surface wettability and the

  13. Elliptic Fourier analysis of crown shapes in Quercus petraea trees

    Directory of Open Access Journals (Sweden)

    Ovidiu Hâruţa

    2011-06-01

    Full Text Available Shape is a fundamental morphological descriptor, significant in taxonomic research as well as in ecomorphology, one method of estimation being from digitally processed images. In the present study, were analysed shapes of Q. petraea crowns, pertaining to five different stem diameter classes, from three similar stands. Based on measurements on terrestrial digital vertical photos, crown size analysis was performed and correlations between crown and stem variables were tested. Linear regression equations between crown volumes and dbh, and crown volumes and stem volumes were derived, explaining more than half of data variability. Employment of elliptic Fourier analysis (EFA, a powerful analysis tool, permitted the extraction of the mean shape from crowns, characterized by high morphological variability. The extracted, most important, coefficients were used to reconstruct the average shape of the crowns, using Inverse Fourier Transform. A mean shape of the crown, corresponding to stand conditions in which competition is added as influential shaping factor, aside genetic program of the species, is described for each stem diameter class. Crown regions with highest shape variability, from the perspective of stage development of the trees, were determined. Accordingly, the main crown shape characteristics are: crown elongation, centroid position, asymmetry with regard to the main axis, lateral regions symmetrical and asymmetrical variations. 

  14. Elliptic Fourier analysis of crown shapes in Quercus petraea trees

    Directory of Open Access Journals (Sweden)

    Ovidiu Hâruţa

    2011-02-01

    Full Text Available Shape is a fundamental morphological descriptor, significant in taxonomic research as well as in ecomorphology, one method of estimation being from digitally processed images. In the present study, were analysed shapes of Q. petraea crowns, pertaining to five different stem diameter classes, from three similar stands. Based on measurements on terrestrial digital vertical photos, crown size analysis was performed and correlations between crown and stem variables were tested. Linear regression equations between crown volumes and dbh, and crown volumes and stem volumes were derived, explaining more than half of data variability. Employment of elliptic Fourier analysis (EFA, a powerful analysis tool, permitted the extraction of the mean shape from crowns, characterized by high morphological variability. The extracted, most important, coefficients were used to reconstruct the average shape of the crowns, using Inverse Fourier Transform. A mean shape of the crown, corresponding to stand conditions in which competition is added as influential shaping factor, aside genetic program of the species, is described for each stem diameter class. Crown regions with highest shape variability, from the perspective of stage developmentof the trees, were determined. Accordingly, the main crown shape characteristics are: crown elongation, mass center, asymmetry with regard to the main axis, lateral regions symmetrical and asymmetrical variations.

  15. Contributions of feature shapes and surface cues to the recognition and neural representation of facial identity.

    Science.gov (United States)

    Andrews, Timothy J; Baseler, Heidi; Jenkins, Rob; Burton, A Mike; Young, Andrew W

    2016-10-01

    A full understanding of face recognition will involve identifying the visual information that is used to discriminate different identities and how this is represented in the brain. The aim of this study was to explore the importance of shape and surface properties in the recognition and neural representation of familiar faces. We used image morphing techniques to generate hybrid faces that mixed shape properties (more specifically, second order spatial configural information as defined by feature positions in the 2D-image) from one identity and surface properties from a different identity. Behavioural responses showed that recognition and matching of these hybrid faces was primarily based on their surface properties. These behavioural findings contrasted with neural responses recorded using a block design fMRI adaptation paradigm to test the sensitivity of Haxby et al.'s (2000) core face-selective regions in the human brain to the shape or surface properties of the face. The fusiform face area (FFA) and occipital face area (OFA) showed a lower response (adaptation) to repeated images of the same face (same shape, same surface) compared to different faces (different shapes, different surfaces). From the behavioural data indicating the critical contribution of surface properties to the recognition of identity, we predicted that brain regions responsible for familiar face recognition should continue to adapt to faces that vary in shape but not surface properties, but show a release from adaptation to faces that vary in surface properties but not shape. However, we found that the FFA and OFA showed an equivalent release from adaptation to changes in both shape and surface properties. The dissociation between the neural and perceptual responses suggests that, although they may play a role in the process, these core face regions are not solely responsible for the recognition of facial identity.

  16. Detection of Veneer Moisture Content by Surface-circle-shaped Resistance

    Institute of Scientific and Technical Information of China (English)

    Sa Chao; Du Hongbo; Zhang Biguang; Wang Guozhu

    2003-01-01

    This paper, with veneer as a particularly detected target, deals with a new method for detecting veneer moisture content. Surface resistance is measured by the fixed pressure, circle-shaped point and surface-touched detector. With the help of the computer, the veneer moisture and its distribution will be detected in a faster way with no harm to the veneer surface.

  17. Light capsules shaped by curvilinear meta-surfaces

    CERN Document Server

    Naserpour, Mahin; Zakery, A; Miret, Juan J

    2015-01-01

    We propose a simple yet efficient method for generating in-plane hollow beams with a nearly-full circular light shell without the contribution of backward propagating waves. The method relies on modulating the phase in the near field of a centro-symmetric optical wavefront, such as that from a high-numericalaperture focused wave field. We illustrate how beam acceleration may be carried out by using an ultranarrow non-flat meta-surface formed by engineered plasmonic nanoslits. A mirrorsymmetric, with respect to the optical axis, circular caustic surface is numerically demonstrated that can be used as an optical bottle.

  18. Asymmetric interference between the perception of shape and the perception of surface properties.

    Science.gov (United States)

    Cant, Jonathan S; Goodale, Melvyn A

    2009-05-14

    We previously showed that the processing of shape and the processing of surface properties linked to material properties engage different regions of the ventral stream (J. S. Cant & M. A. Goodale, 2007). Moreover, we recently used Garner's speeded-classification task to show that varying the surface (material) properties of objects does not interfere with shape judgments and vice versa (J. S. Cant, M. E. Large, L. McCall, & M. A. Goodale, 2008). In the present study, we looked at Garner interference when surface cues contributed to the perception of object shape and hypothesized that this would interfere with judgments about the width and the length of the objects. In contrast, we predicted that varying the width and the length of the objects would not interfere with surface-property judgments. This is precisely what we found. These results suggest that the shape and the surface properties of an object cannot be processed independently when both these sets of cues are linked to the perception of the object's overall shape. These observations, together with our previous findings, suggest that the surface cues that contribute to object shape are processed quite separately from the surface cues that are linked to an object's material properties.

  19. Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces

    Science.gov (United States)

    Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W

    2012-10-23

    An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.

  20. [Shape conservatism and shaping variability. The comparative analysis of Hydrozoa and Scyphozoa early development].

    Science.gov (United States)

    Kraus, Iu A

    2002-01-01

    The morphogenetic pathways based on the self-organization take an important part in the early development of White Sea Cnidarians--Dynamena pumila (Hydrozoa) and Aurelia aurita (Scyphozoa). Comparative analysis of their early development revealed two patterns of embryonic spatial structure reproduced in the morphogenesis of both species in spite of the differences of morphogenetic paths. These are toroidal and bilaterally symmetrical shapes. It is possible that these shapes correspond to the equilibrium states of developing system and their stable reproduction is a result of epigenetic rather than genetic program.

  1. Descriptor Based Analysis of Digital 3D Shapes

    DEFF Research Database (Denmark)

    Welnicka, Katarzyna

    challenges. One such challenge, which is addressed in this thesis, is to develop computational methods for classifying shapes which are in agreement with the human way of understanding and classifying shapes. In this dissertation we first present a shape descriptor based on the process of diffusion......Analysis and processing of 3D digital shapes is a significant research area with numerous medical, industrial, and entertainment applications which has gained enormously in importance as optical scanning modalities have started to make acquired 3D geometry commonplace. The area holds many......, in conjunction with the method of Reeb graphs for skeletonization, it is an effective tool for generating scale dependent skeletons of shapes represented as 3D triangle meshes. The second part of the thesis aims at capturing the style phenomenon. The style of an object is easily recognized by humans...

  2. On the Interaction of Capillary Shapes with Solid Surfaces

    NARCIS (Netherlands)

    Musterd, M.

    2015-01-01

    Control over the interaction of droplets with solid surfaces is commonplace in nature. Famous examples are the water-shedding capabilities of the lotus leaf and the water-harvesting skin of certain types of beetles. To date, this type of control remains a challenge in engineering applications. Consi

  3. On the Interaction of Capillary Shapes with Solid Surfaces

    NARCIS (Netherlands)

    Musterd, M.

    2015-01-01

    Control over the interaction of droplets with solid surfaces is commonplace in nature. Famous examples are the water-shedding capabilities of the lotus leaf and the water-harvesting skin of certain types of beetles. To date, this type of control remains a challenge in engineering applications.

  4. Translational symmetry of high order tokamak flux surface shaping in gyrokinetics

    CERN Document Server

    Ball, Justin; Barnes, Michael

    2015-01-01

    A particular translational symmetry of the local nonlinear $\\delta f$ gyrokinetic model is demonstrated analytically and verified numerically. This symmetry shows that poloidally translating all the flux surface shaping effects with large poloidal mode number by a single tilt angle has an exponentially small effect on the transport properties of a tokamak. This is shown using a generalization of the Miller local equilibrium model to specify an arbitrary flux surface geometry. With this geometry specification we find that, when performing an expansion in large flux surface shaping mode number, the governing equations of gyrokinetics are symmetric in the poloidal translation of the high order shaping effects. This allows us to take the fluxes from a single configuration and calculate the fluxes in any configuration that can be produced by translating the large mode number shaping effects. This creates a distinction between tokamaks with mirror symmetric flux surfaces and tokamaks without mirror symmetry, which ...

  5. Shape-based discriminative analysis of combined bilateral hippocampi using multiple object alignment

    Science.gov (United States)

    Shen, Li; Makedon, Fillia; Saykin, Andrew

    2004-05-01

    Shape analysis of hippocampi in schizophrenia has been preformed previously using the spherical harmonic SPHARM description. In these studies, the left and right hippocampi are aligned independently and the spatial relation between them is not explored. This paper presents a new SPHARM-based technique which examines not only the individual shape information of the two hippocampi but also the spatial relation between them. The left and right hippocampi are treated as a single shape configuration. A ploy-shape alignment algorithm is developed for aligning configurations of multiple SPHARM surfaces as follows: (1) the total volume is normalized; (2) the parameter space is aligned for creating the surface correspondence; (3) landmarks are created by a uniform sampling of multiple surfaces for each configuration; (4) a quaternion-based algorithm is employed to align each landmark representation to the mean configuration through the least square rotation and translation iteratively until the mean converges. After applying the poly-shape alignment algorithm, a point distribution model is applied to aligned landmarks for feature extraction. Classification is performed using Fisher's linear discriminant with an effective feature selection scheme. Applying the above procedure to our hippocampal data (14 controls versus 25 schizophrenics, all right-handed males), we achieve the best cross-validation accuracy of 92%, supporting the idea that the whole shape configuration of the two hippocampi provides valuable information in detecting schizophrenia. The results of an ROC analysis and a visualization of discriminative patterns are also included.

  6. Shape Optimization of an Hydrofoil by Isogeometric Analysis

    OpenAIRE

    Simeoni, Matthieu Martin Jean-Andre

    2014-01-01

    We use Isogeometric Analysis as a framework for NURBS-based shape optimization of hydrofoils. We present geometrical representations by NURBS and some of their properties to design an hydrofoil. Then, we consider an irrotational flow around an hydrofoil and solve the Laplace equation in the stream function formulation. Finally, we perform the shape optimization of the hydrofoil by considering the stream function formulation as the state problem and different objective functionals.

  7. Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement

    Science.gov (United States)

    Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing

    2010-10-01

    In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.

  8. Surface structure and biomedical properties of chemically polished and electropolished NiTi shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chu, C.L. [School of Materials Science and Engineering, Southeast University, Nanjing, 211189 (China)], E-mail: clchu@seu.edu.cn; Wang, R.M. [School of Materials Science and Engineering, Southeast University, Nanjing, 211189 (China); Hu, T. [School of Materials Science and Engineering, Southeast University, Nanjing, 211189 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Yin, L.H.; Pu, Y.P. [School of Public Health, Southeast University, Nanjing 210096 (China); Lin, P.H. [School of Materials Science and Engineering, Southeast University, Nanjing, 211189 (China); Wu, S.L.; Chung, C.Y.; Yeung, K.W.K.; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2008-12-01

    The surface structure and biomedical properties of NiTi shape memory alloy (SMA) samples after undergoing electropolishing and chemical polishing are determined and compared employing scanning electron microscopy, X-ray photoelectron spectroscopy, inductively-coupled plasma mass spectrometry, hemolysis analysis, blood platelet adhesion test, and MTT test. The results indicate that after chemical polishing, there is still a high Ni concentration on the surface of the NiTi SMA. On the other hand, electropolishing can form a thin surface titanium oxide film (about 10 nm thickness) with depleted Ni. In addition to the TiO{sub 2} phase, some titanium suboxides (TiO and Ti{sub 2}O{sub 3}) are found in the surface film. Compared to chemical polishing, electropolishing can more effectively mitigate out-diffusion of Ni ions and the wettability, blood compatibility, and thromboresistance are also better. However, no difference on the cytocompatibility can be observed from samples that have been chemically polished or electropolished.

  9. Laser shock wave assisted patterning on NiTi shape memory alloy surfaces

    Science.gov (United States)

    Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Karaca, Haluk E.; Er, Ali O.

    2017-02-01

    An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning electron microscope (SEM) and optical microscope images of square pattern with different sizes were studied. One dimensional profile analysis shows that the depth of the patterned sample initially increase linearly with the laser energy until 125 mJ/pulse where the plasma further absorbs and reflects the laser beam. In addition, light the microscope image show that the surface of NiTi alloy was damaged due to the high power laser energy which removes the graphite layer.

  10. Formation of Combined Surface Features of Protrusion Array and Wrinkles atop Shape-Memory Polymer

    Science.gov (United States)

    Sun, L.; Zhao, Y.; Huang, W. M.; Tong, T. H.

    We demonstrate a simple and cost-effective approach to realize two combined surface features of different scales together, namely submillimeter-sized protrusion array and microwrinkles, atop a polystyrene shape-memory polymer. Two different types of protrusions, namely flat-top protrusion and crown-shaped protrusion, were studied. The array of protrusions was produced by the Indentation-Polishing-Heating (IPH) process. Compactly packed steel balls were used for making array of indents. A thin gold layer was sputter deposited atop the polymer surface right after polishing. After heating for shape recovery, array of protrusions with wrinkles on the top due to the buckling of gold layer was produced.

  11. Surface tension driven shaping of adhesive microfluidic channel walls

    DEFF Research Database (Denmark)

    Janting, Jakob; Storm, Elisabeth K.; Geschke, Oliver

    2005-01-01

    The feasibility of making microfluidic channels with different wall geometries using adjacent lines of dispensed adhesive between substrates has been studied. Important parameters for the geometry have been identified to be: surface tension (adhesive / substrates), adhesive viscosity / thixotropy......, line height and distance, and temperature. Focus of the work has been on predicting the equilibrium geometries with FEM simulations using as input measured adhesive wetting angles, different adhesive line distances and height. The studied substrates are glass microscope slides, PEEK and PMMA....... The studied adhesives are DYMAX 9-20318-F, 3070, 9001 version 3.5, and Sylgard 184 PDMS....

  12. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    OpenAIRE

    D. Myszka

    2013-01-01

    The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to...

  13. Surface analysis the principal techniques

    CERN Document Server

    Vickerman, John C

    2009-01-01

    This completely updated and revised second edition of Surface Analysis: The Principal Techniques, deals with the characterisation and understanding of the outer layers of substrates, how they react, look and function which are all of interest to surface scientists. Within this comprehensive text, experts in each analysis area introduce the theory and practice of the principal techniques that have shown themselves to be effective in both basic research and in applied surface analysis. Examples of analysis are provided to facilitate the understanding of this topic and to show readers how they c

  14. Simulation Analysis of Tilted Polyhedron-Shaped Thermoelectric Elements

    Science.gov (United States)

    Meng, Xiangning; Suzuki, Ryosuke O.

    2015-06-01

    The generation of thermoelectricity is considered a promising approach to harness the waste heat generated in industries, automobiles, gas fields, and other man-made processes. The waste heat can be converted to electricity via a thermoelectric (TE) generator. In this light, the generator performance depends on the geometric configuration of its constituent elements as well as their material properties. Our previous work reported TE behaviors for modules consisting of parallelogram-shaped elements, because elements with tilted laminate structures provide increased mechanical stability and efficient heat-transferring ability from the hot surface to the cold surface. Here, we study TE elements in the shape of a polyhedron that is obtained by mechanically truncating the edges of a parallelogram element in order to further enhance the generator performance and reduce TE material usage. The TE performance of the modules consisting of these polyhedron elements is numerically simulated by using the finite-volume method. The output power, voltage, and current of the polyhedral TE module are greater than those of the parallelogram-element module. The polyhedron shape positively affects heat transfer and the flow of electric charges in the light of increasing the efficiency of conversion from heat to electricity. By varying the shape of the truncated portions, we determine the optimal shape that enables homogeneous heat flux distribution and slow diffusion of thermal energy to obtain the better efficiency of conversion of heat into electricity. We believe that the findings of our study can significantly contribute to the design policy in TE generation.

  15. From Curves to Trees: A Tree-like Shapes Distance Using the Elastic Shape Analysis Framework.

    Science.gov (United States)

    Mottini, A; Descombes, X; Besse, F

    2015-04-01

    Trees are a special type of graph that can be found in various disciplines. In the field of biomedical imaging, trees have been widely studied as they can be used to describe structures such as neurons, blood vessels and lung airways. It has been shown that the morphological characteristics of these structures can provide information on their function aiding the characterization of pathological states. Therefore, it is important to develop methods that analyze their shape and quantify differences between their structures. In this paper, we present a method for the comparison of tree-like shapes that takes into account both topological and geometrical information. This method, which is based on the Elastic Shape Analysis Framework, also computes the mean shape of a population of trees. As a first application, we have considered the comparison of axon morphology. The performance of our method has been evaluated on two sets of images. For the first set of images, we considered four different populations of neurons from different animals and brain sections from the NeuroMorpho.org open database. The second set was composed of a database of 3D confocal microscopy images of three populations of axonal trees (normal and two types of mutations) of the same type of neurons. We have calculated the inter and intra class distances between the populations and embedded the distance in a classification scheme. We have compared the performance of our method against three other state of the art algorithms, and results showed that the proposed method better distinguishes between the populations. Furthermore, we present the mean shape of each population. These shapes present a more complete picture of the morphological characteristics of each population, compared to the average value of certain predefined features.

  16. From analysis to surface

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2014-01-01

    of Sheer Pluck (1984), a twelve-tone composition for guitar by Milton Babbitt (1916–2011). This analysis focuses on the all-partition array structure on which the piece is based. Having pre- sented this analysis, we formalize some constraints on the structure of the piece and explore some computational...

  17. Surface-preserving robust watermarking of 3-D shapes.

    Science.gov (United States)

    Luo, Ming; Bors, Adrian G

    2011-10-01

    This paper describes a new statistical approach for watermarking mesh representations of 3-D graphical objects. A robust digital watermarking method has to mitigate among the requirements of watermark invisibility, robustness, embedding capacity and key security. The proposed method employs a mesh propagation distance metric procedure called the fast marching method (FMM), which defines regions of equal geodesic distance width calculated with respect to a reference location on the mesh. Each of these regions is used for embedding a single bit. The embedding is performed by changing the normalized distribution of local geodesic distances from within each region. Two different embedding methods are used by changing the mean or the variance of geodesic distance distributions. Geodesic distances are slightly modified statistically by displacing the vertices in their existing triangle planes. The vertex displacements, performed according to the FMM, ensure a minimal surface distortion while embedding the watermark code. Robustness to a variety of attacks is shown according to experimental results.

  18. Isogeometric Analysis and Shape Optimization in Fluid Mechanics

    DEFF Research Database (Denmark)

    Nielsen, Peter Nørtoft

    unites the power to solve complex engineering problems from finite element analysis (FEA) with the ability to effectively represent complex shapes from computer aided design (CAD). The methodology is appealing for flow modeling purposes also due to the inherent high regularity of velocity and pressure......This thesis brings together the fields of fluid mechanics, as the study of fluids and flows, isogeometric analysis, as a numerical method to solve engineering problems using computers, and shape optimization, as the art of finding "best" shapes of objects based on some notion of goodness. The flow...... is given of how isogeometric analysis is applied to flow problems. We present several new discretizations of the velocity and pressure spaces, we investigate these in terms of stability and error convergence properties, and a benchmark flow problem is analyzed. As the second contribution, we show how...

  19. Shape analysis applied in heavy ion reactions near Fermi energy

    Science.gov (United States)

    Zhang, S.; Huang, M.; Wada, R.; Liu, X.; Lin, W.; Wang, J.

    2017-03-01

    A new method is proposed to perform shape analyses and to evaluate their validity in heavy ion collisions near the Fermi energy. In order to avoid erroneous values of shape parameters in the calculation, a test particle method is utilized in which each nucleon is represented by n test particles, similar to that used in the Boltzmann–Uehling–Uhlenbeck (BUU) calculations. The method is applied to the events simulated by an antisymmetrized molecular dynamics model. The geometrical shape of fragments is reasonably extracted when n = 100 is used. A significant deformation is observed for all fragments created in the multifragmentation process. The method is also applied to the shape of the momentum distribution for event classification. In the momentum case, the errors in the eigenvalue calculation become much smaller than those of the geometrical shape analysis and the results become similar between those with and without the test particle method, indicating that in intermediate heavy ion collisions the shape analysis of momentum distribution can be used for the event classification without the test particle method.

  20. Surface-plasmon resonances of arbitrarily shaped nanometallic structures in the small-Fermi-wavelength limit

    CERN Document Server

    Schnitzer, Ory; Maier, Stefan A; Craster, Richard V

    2016-01-01

    Surface-plasmon resonances of metallic nanostructures blueshift owing to the nonlocal response of the metal's electron gas. The Fermi wavelength, characterising the nonlocal effect, is often small relative to the overall dimensions of the metallic structure, which enables us to derive a coarse-grained nonlocal description using matched asymptotic expansions; a perturbation theory for the blueshifts of arbitrary shaped nanometallic structures is then developed. The effect of nonlocality is not always a perturbation and we present a detailed analysis of the "bonding" modes of a dimer of nearly touching nanowires where the leading-order eigenfrequencies and eigenmode distributions are shown to be a renormalisation of those predicted assuming a local metal permittivity.

  1. Pulmonary lobe segmentation based on ridge surface sampling and shape model fitting

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James C., E-mail: jross@bwh.harvard.edu [Channing Laboratory, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Surgical Planning Lab, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Laboratory of Mathematics in Imaging, Brigham and Women' s Hospital, Boston, Massachusetts 02126 (United States); Kindlmann, Gordon L. [Computer Science Department and Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States); Okajima, Yuka; Hatabu, Hiroto [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Díaz, Alejandro A. [Pulmonary and Critical Care Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02215 and Department of Pulmonary Diseases, Pontificia Universidad Católica de Chile, Santiago (Chile); Silverman, Edwin K. [Channing Laboratory, Brigham and Women' s Hospital, Boston, Massachusetts 02215 and Pulmonary and Critical Care Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02215 (United States); Washko, George R. [Pulmonary and Critical Care Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02215 (United States); Dy, Jennifer [ECE Department, Northeastern University, Boston, Massachusetts 02115 (United States); Estépar, Raúl San José [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Surgical Planning Lab, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Laboratory of Mathematics in Imaging, Brigham and Women' s Hospital, Boston, Massachusetts 02126 (United States)

    2013-12-15

    Purpose: Performing lobe-based quantitative analysis of the lung in computed tomography (CT) scans can assist in efforts to better characterize complex diseases such as chronic obstructive pulmonary disease (COPD). While airways and vessels can help to indicate the location of lobe boundaries, segmentations of these structures are not always available, so methods to define the lobes in the absence of these structures are desirable. Methods: The authors present a fully automatic lung lobe segmentation algorithm that is effective in volumetric inspiratory and expiratory computed tomography (CT) datasets. The authors rely on ridge surface image features indicating fissure locations and a novel approach to modeling shape variation in the surfaces defining the lobe boundaries. The authors employ a particle system that efficiently samples ridge surfaces in the image domain and provides a set of candidate fissure locations based on the Hessian matrix. Following this, lobe boundary shape models generated from principal component analysis (PCA) are fit to the particles data to discriminate between fissure and nonfissure candidates. The resulting set of particle points are used to fit thin plate spline (TPS) interpolating surfaces to form the final boundaries between the lung lobes. Results: The authors tested algorithm performance on 50 inspiratory and 50 expiratory CT scans taken from the COPDGene study. Results indicate that the authors' algorithm performs comparably to pulmonologist-generated lung lobe segmentations and can produce good results in cases with accessory fissures, incomplete fissures, advanced emphysema, and low dose acquisition protocols. Dice scores indicate that only 29 out of 500 (5.85%) lobes showed Dice scores lower than 0.9. Two different approaches for evaluating lobe boundary surface discrepancies were applied and indicate that algorithm boundary identification is most accurate in the vicinity of fissures detectable on CT. Conclusions: The

  2. Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode.

    Science.gov (United States)

    Takino, Hideo; Yamamura, Kazuya; Sano, Yasuhisa; Mori, Yuzo

    2012-01-20

    We propose a plasma chemical vaporization machining device with a hemispherical tip electrode for optical fabrication. Radio-frequency plasma is generated close to the electrode under atmospheric conditions, and a workpiece is scanned relative to the stationary electrode under three-axis motion control to remove target areas on a workpiece surface. Experimental results demonstrate that surface removal progresses although process gas is not forcibly supplied to the plasma. The correction of shape errors on conventionally polished spheres is performed. As a result, highly accurate smooth surfaces with the desired rms shape accuracy of 3 nm are successfully obtained, which confirms that the device is effective for the fabrication of optics.

  3. Effects of surface characteristics on the plantar shape of feet and subjects' perceived sensations.

    Science.gov (United States)

    Witana, Channa P; Goonetilleke, Ravindra S; Xiong, Shuping; Au, Emily Y L

    2009-03-01

    Orthotics and other types of shoe inserts are primarily designed to reduce injury and improve comfort. The interaction between the plantar surface of the foot and the load-bearing surface contributes to foot and surface deformations and hence to perceived comfort, discomfort or pain. The plantar shapes of 16 participants' feet were captured when standing on three support surfaces that had different cushioning properties in the mid-foot region. Foot shape deformations were quantified using 3D laser scans. A questionnaire was used to evaluate the participant's perceptions of perceived shape and perceived feeling. The results showed that the structure in the mid-foot could change shape, independent of the rear-foot and forefoot regions. Participants were capable of identifying the shape changes with distinct preferences towards certain shapes. The cushioning properties of the mid-foot materials also have a direct influence on perceived feelings. This research has strong implications for the design and material selection of orthotics, insoles and footwear.

  4. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.

    Science.gov (United States)

    Banerjee, Amrita; Qi, Jianping; Gogoi, Rohan; Wong, Jessica; Mitragotri, Samir

    2016-09-28

    Nanoparticles find intriguing applications in oral drug delivery since they present a large surface area for interactions with the gastrointestinal tract and can be modified in various ways to address the barriers associated with oral delivery. The size, shape and surface chemistry of nanoparticles can greatly impact cellular uptake and efficacy of the treatment. However, the interplay between particle size, shape and surface chemistry has not been well investigated especially for oral drug delivery. To this end, we prepared sphere-, rod- and disc-shaped nanoparticles and conjugated them with targeting ligands to study the influence of size, shape and surface chemistry on their uptake and transport across intestinal cells. A triple co-culture model of intestinal cells was utilized to more closely mimic the intestinal epithelium. Results demonstrated higher cellular uptake of rod-shaped nanoparticles in the co-culture compared to spheres regardless of the presence of active targeting moieties. Transport of nanorods across the intestinal co-culture was also significantly higher than spheres. The findings indicate that nanoparticle-mediated oral drug delivery can be potentially improved with departure from spherical shape which has been traditionally utilized for the design of nanoparticles. We believe that understanding the role of nanoparticle geometry in intestinal uptake and transport will bring forth a paradigm shift in nanoparticle engineering for oral delivery and non-spherical nanoparticles should be further investigated and considered for oral delivery of therapeutic drugs and diagnostic materials.

  5. Metabolism and cell shape in cancer: a fractal analysis.

    Science.gov (United States)

    D'Anselmi, Fabrizio; Valerio, Mariacristina; Cucina, Alessandra; Galli, Luca; Proietti, Sara; Dinicola, Simona; Pasqualato, Alessia; Manetti, Cesare; Ricci, Giulia; Giuliani, Alessandro; Bizzarri, Mariano

    2011-07-01

    Fractal analysis in cancer cell investigation provided meaningful insights into the relationship between morphology and phenotype. Some reports demonstrated that changes in cell shape precede and trigger dramatic modifications in both gene expression and enzymatic function. Nonetheless, metabolomic pattern in cells undergoing shape changes have been not still reported. Our study was aimed to investigate if modifications in cancer cell morphology are associated to relevant transition in tumour metabolome, analyzed by nuclear magnetic resonance spectroscopy and principal component analysis. MCF-7 and MDA-MB-231 breast cancer cells, exposed to an experimental morphogenetic field, undergo a dramatic change in their membrane profiles. Both cell lines recover a more rounded shape, loosing spindle and invasive protrusions, acquiring a quite "normal" morphology. This result, quantified by fractal analysis, shows that normalized bending energy (a global shape characterization expressing the amount of energy needed to transform a specific shape into its lowest energy state) decreases after 48 h. Later on, a significant shift from a high to a low glycolytic phenotype was observed on both cell lines: glucose flux begins to drop off at 48 h, leading to reduced lactate accumulation, and fatty acids and citrate synthesis slow-down after 72 h. Moreover, de novo lipidogenesis is inhibited and nucleotide synthesis is reduced, as indicated by the positive correlation between glucose and formate. In conclusion, these data indicate that the reorganization of cell membrane architecture, induced by environmental cues, is followed by a relevant transition of the tumour metabolome, suggesting cells undergo a dramatic phenotypic reversion.

  6. Structural Analysis: Shape Information via Points-To Computation

    CERN Document Server

    Marron, Mark

    2012-01-01

    This paper introduces a new hybrid memory analysis, Structural Analysis, which combines an expressive shape analysis style abstract domain with efficient and simple points-to style transfer functions. Using data from empirical studies on the runtime heap structures and the programmatic idioms used in modern object-oriented languages we construct a heap analysis with the following characteristics: (1) it can express a rich set of structural, shape, and sharing properties which are not provided by a classic points-to analysis and that are useful for optimization and error detection applications (2) it uses efficient, weakly-updating, set-based transfer functions which enable the analysis to be more robust and scalable than a shape analysis and (3) it can be used as the basis for a scalable interprocedural analysis that produces precise results in practice. The analysis has been implemented for .Net bytecode and using this implementation we evaluate both the runtime cost and the precision of the results on a num...

  7. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  8. Thermal analysis and evolution of shape loss phenomena during polymer burnout in powder metal processing

    Science.gov (United States)

    Enneti, Ravi Kumar

    2005-07-01

    Powder metallurgy technology involves manufacturing of net shape or near net shape components starting from metal powders. Polymers are used to provide lubrication during shaping and handling strength to the shaped component. After shaping, the polymers are removed from the shaped components by providing thermal energy to burnout the polymers. Polymer burnout is one of the most critical step in powder metal processing. Improper design of the polymer burnout cycle will result in formation of defects, shape loss, or carbon contamination of the components. The effect of metal particles on polymer burnout and shape loss were addressed in the present research. The study addressing the effect of metal powders on polymer burnout was based on the hypothesis that metal powders act to catalyze polymer burnout. Thermogravimetric analysis (TGA) on pure polymer, ethylene vinyl acetate (EVA), and on admixed powders of 316L stainless steel and 1 wt. % EVA were carried out to verify the hypothesis. The effect of metal powders additions was studied by monitoring the onset temperature for polymer degradation and the temperature at which maximum rate of weight loss occurred from the TGA data. The catalytic behavior of the powders was verified by varying the particle size and shape of the 316L stainless powder. The addition of metal particles lowered the polymer burnout temperatures. The onset temperature for burnout was found to be sensitive to the surface area of the metal particle as well as the polymer distribution. Powders with low surface area and uniform distribution of polymer showed a lower burnout temperature. The evolution of shape loss during polymer burnout was based on the hypothesis that shape loss occurs during the softening of the polymer and depends on the sequence of chemical bonding in the polymer during burnout. In situ observation of shape loss was carried out on thin beams compacted from admixed powders of 316L stainless steel and 1 wt. % ethylene vinyl acetate

  9. The curved shape of Caulobacter crescentus enhances surface colonization in flow

    Science.gov (United States)

    Persat, Alexandre; Stone, Howard A.; Gitai, Zemer

    2014-05-01

    Each bacterial species has a characteristic shape, but the benefits of specific morphologies remain largely unknown. To understand potential functions for cell shape, we focused on the curved bacterium Caulobacter crescentus. Paradoxically, C. crescentus curvature is robustly maintained in the wild but straight mutants have no known disadvantage in standard laboratory conditions. Here we demonstrate that cell curvature enhances C. crescentus surface colonization in flow. Imaging the formation of microcolonies at high spatial and temporal resolution indicates that flow causes curved cells to orient such that they arc over the surface, thereby decreasing the distance between the surface and polar adhesive pili, and orienting pili to face the surface. C. crescentus thus repurposes pilus retraction, typically used for surface motility, for surface attachment. The benefit provided by curvature is eliminated at high flow intensity, raising the possibility that diversity in curvature adapts related species for life in different flow environments.

  10. Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop

    Science.gov (United States)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-04-01

    The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996), 10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects—surface charge convection and shape deformation—towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.

  11. Pulse shape analysis in cryogenic detectors for rare event search

    Energy Technology Data Exchange (ETDEWEB)

    Hitzler, Ferdinand [Physik Department E15, Technische Universitaet Muenchen, 85748 Muenchen (Germany); Collaboration: CRESST-Collaboration

    2015-07-01

    Based on an established pulse shape analysis with an Artificial Neural Network (ANN) we investigate new network designs. To study this an extended pulse simulation is necessary and is therefore explained in this talk. Furthermore, we introduce ideas to increase the overall performance of the nets. First results concerning the cut efficiency and the purity of the signal with these new ANNs are shown.

  12. Shape analysis of corpus callosum in autism subtype using planar conformal mapping

    Science.gov (United States)

    He, Qing; Duan, Ye; Yin, Xiaotian; Gu, Xianfeng; Karsch, Kevin; Miles, Judith

    2009-02-01

    A number of studies have documented that autism has a neurobiological basis, but the anatomical extent of these neurobiological abnormalities is largely unknown. In this study, we aimed at analyzing highly localized shape abnormalities of the corpus callosum in a homogeneous group of autism children. Thirty patients with essential autism and twenty-four controls participated in this study. 2D contours of the corpus callosum were extracted from MR images by a semiautomatic segmentation method, and the 3D model was constructed by stacking the contours. The resulting 3D model had two openings at the ends, thus a new conformal parameterization for high genus surfaces was applied in our shape analysis work, which mapped each surface onto a planar domain. Surface matching among different individual meshes was achieved by re-triangulating each mesh according to a template surface. Statistical shape analysis was used to compare the 3D shapes point by point between patients with autism and their controls. The results revealed significant abnormalities in the anterior most and anterior body in essential autism group.

  13. Differential surface models for tactile perception of shape and on-line tracking of features

    Science.gov (United States)

    Hemami, H.

    1987-01-01

    Tactile perception of shape involves an on-line controller and a shape perceptor. The purpose of the on-line controller is to maintain gliding or rolling contact with the surface, and collect information, or track specific features of the surface such as edges of a certain sharpness. The shape perceptor uses the information to perceive, estimate the parameters of, or recognize the shape. The differential surface model depends on the information collected and on the a priori information known about the robot and its physical parameters. These differential models are certain functionals that are projections of the dynamics of the robot onto the surface gradient or onto the tangent plane. A number of differential properties may be directly measured from present day tactile sensors. Others may have to be indirectly computed from measurements. Others may constitute design objectives for distributed tactile sensors of the future. A parameterization of the surface leads to linear and nonlinear sequential parameter estimation techniques for identification of the surface. Many interesting compromises between measurement and computation are possible.

  14. Surface profiling of X-ray mirrors for shaping focused beams.

    Science.gov (United States)

    Laundy, David; Alianelli, Lucia; Sutter, John; Evans, Gwyndaf; Sawhney, Kawal

    2015-01-26

    Grazing incidence mirrors are a standard optic for focusing X-rays. Active mirrors, whose surface profile can be finely adjusted, allow control of beam shape and size at the sample. However, progress towards their routine use for beam shaping has been hampered by the strong striations in reflected beams away from the focal plane. Re-entrant (partly concave and partly convex) surface modifications are proposed for shaping X-ray beams to a top-hat in the focal plane while reducing the striations caused by unavoidable polishing errors. A method for constructing such surfaces with continuous height and slope (but only piecewise continuous curvature) will be provided. Ray tracing and wave propagation calculations confirm its effectiveness. A mirror system is proposed allowing vertical beam sizes in the range 0.5 to 10μm. A prototype will be fabricated and is expected to have applications on many synchrotron X-ray beamlines.

  15. AFM characterization of the shape of surface structures with localization factor.

    Science.gov (United States)

    Bonyár, Attila

    2016-08-01

    Although with the use of scanning probe microscopy (SPM) methods the topographical imaging of surfaces is now widely available, the characterization of surface structures, especially their shape, and the processes which change these features is not trivial with the existing surface describing parameters. In this work the application of a parameter called localization factor is demonstrated for the quantitative characterization of surface structures and for processes which alter the shape of these structures. The theory and optimal operation range of this parameter are discussed with three application examples: microstructure characterization of gold thin films, characterization of the changes in the grain structure of these films during thermal annealing, and finally, characterization of the oxidation processes on a polished tin surface.

  16. DIAGONAL POINT BY POINT SURFACE DEVELOPMENT METHOD BASED ON NURBS SURFACE FOR BLANK SHAPE ESTIMATION OF COVER PANEL

    Institute of Scientific and Technical Information of China (English)

    Guo Yuqin; Li Fuzhu; Jiang Hong; Wang Xiaochun

    2005-01-01

    According to the characteristics of a complex cover panel, its geometry shape is described by the NURBS surface with great description capability. With the reference to the surface classification determined by Gauss curvature, the proportion of the mid-surface area between before and after being developed is derived from the displacement variation of the mid-surface in the normal vector direction of the sheet metal during the sheet metal forming process. Hereby, based on the curve development theory in differential geometry, a novel diagonal point by point surface development method is put forward to estimate a complex cover panel's blank contour efficiently. By comparing the sample's development result of diagonal point by point surface development method with that of available one-step method, the validity of the proposed surface development method is verified.

  17. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  18. Model-based inverse estimation for active contraction stresses of tongue muscles using 3D surface shape in speech production.

    Science.gov (United States)

    Koike, Narihiko; Ii, Satoshi; Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo

    2017-09-14

    This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control. Copyright © 2017. Published by Elsevier Ltd.

  19. Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures

    DEFF Research Database (Denmark)

    Beermann, Jonas; Novikov, Sergey Mikhailovich; Albrektsen, Ole;

    2009-01-01

    Surface-enhanced Raman scattering (SERS) from Rhodamine 6G (R6G) homogenously adsorbed on fractal shaped 170-nm-period square arrays formed by 50-nm-high gold nanoparticles (diameters of 80, 100, or 120 nm are constant within each array), fabricated on a smooth gold film by electron-beam lithogra......Surface-enhanced Raman scattering (SERS) from Rhodamine 6G (R6G) homogenously adsorbed on fractal shaped 170-nm-period square arrays formed by 50-nm-high gold nanoparticles (diameters of 80, 100, or 120 nm are constant within each array), fabricated on a smooth gold film by electron...

  20. Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Verma, R K; Gupta, B D [Physics Department, Indian Institute of Technology Delhi, New Delhi-110016 (India)], E-mail: bdgupta@physics.iitd.ernet.in

    2008-05-07

    Theoretical analysis of a surface plasmon resonance based fibre optic sensor with a uniform semi-metal coated U-shaped probe is carried out using a bi-dimensional model. All the rays of the p-polarized light launched in the fibre and their electric vectors are assumed to be confined in the plane of bending of the U-shaped probe. The effect of the bending radius of the probe on the sensitivity of the sensor is studied. The study shows that as the bending radius of the probe decreases the sensitivity of the sensor increases. For the light launching conditions used, the maximum sensitivity achieved is several times more than that reported for a fibre optic tapered probe. In addition to high sensitivity, the most advantageous feature of a U-shaped probe is that it can be used as a point sensor.

  1. Continuously Tunable Wettability by Using Surface Patterned Shape Memory Polymers with Giant Deformability.

    Science.gov (United States)

    Zhao, Lingyu; Zhao, Jun; Liu, Yayun; Guo, Yufeng; Zhang, Liangpei; Chen, Zhuo; Zhang, Hui; Zhang, Zhong

    2016-06-01

    Designing smart surfaces with tunable wettability has drawn much attention in recent years for academic research and practical applications. Most of the previous methods to achieve such surfaces demand some particular materials that inherently have special features or complicated structures which are usually not easy to obtain. A novel strategy to achieve such smart surfaces is proposed by using the surface patterned shape memory polymers of chemically crosslinked polycyclooctene which shows a giant deformability of up to ≈730% strain. The smart surfaces possess the ability to continuously tune the wettability by controlling the recovery temperature and/or time. Coating the modified titanium dioxide nanoparticles onto such surfaces renders the surface superhydrophobicity and expands the tunable range of contact angles (CAs). Theoretical calculations of the CAs at different strains via modified Cassie model well explain the tunable wettability behaviors of such smart surfaces.

  2. Morphological and mechanical analysis of electrospun shape memory polymer fibers

    Science.gov (United States)

    Budun, Sinem; İşgören, Erkan; Erdem, Ramazan; Yüksek, Metin

    2016-09-01

    Shape memory block co-polymer Polyurethane (PU) fibers were fabricated by electrospinning technique. Four different solution concentrations (5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%) were prepared by using Tetrahydrofuran (THF)/N,N-dimethylformamide (DMF) (50:50, v/v) as solvents, and three different voltages (30 kV, 35 kV and 38.9 kV) were determined for the electrospinning process. Solution properties were explored in terms of viscosity and electrical conductivity. It was observed that as the polymer concentration increased in the solution, the conductivity declined. Morphological characteristics of the obtained fibers were analyzed through Scanning Electron Microscopy (SEM) measurements. Findings indicated that fiber morphology varied especially with polymer concentration and applied voltage. Obtained fiber diameter ranged from 112 ± 34 nm to 2046 ± 654 nm, respectively. DSC analysis presented that chain orientation of the polymer increased after electrospinning process. Shape fixity and shape recovery calculations were realized. The best shape fixity value (92 ± 4%) was obtained for Y10K30 and the highest shape recovery measurement (130 ± 4%) was belonged to Y15K39. Mechanical properties of the electrospun webs were also investigated in both machine and transverse directions. Tensile and elongation values were also affected from fiber diameter distribution and morphological characteristics of the electrospun webs.

  3. Surface treatment of NiTi shape memory alloy by modified advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    CHU Cheng-lin; WANG Ru-meng; YIN Li-hong; PU Yue-pu; DONG Yin-sheng; GUO Chao; SHENG Xiao-bo; LIN Ping-hua; CHU Paul-K

    2009-01-01

    A modified advanced oxidation process(AOP) utilizing a UV/electrochemically-generated peroxide system was used to fabricate titania films on chemically polished NiTi shape memory alloy(SMA). The microstructure and biomedical properties of the film were characterized by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), inductively-coupled plasma mass spectrometry(ICPMS), hemolysis analysis, and blood platelet adhesion test. It is found that the modified AOP has a high processing effectiveness and can result in the formation of a dense titania film with a Ni-free zone near its top surface. In comparison, Ni can still be detected on the outer NiTi surface by the conventional AOP using the UV/H2O2 system. The depth profiles of O, Ni, Ti show that the film possesses a smooth graded interface structure next to the NiTi substrate and this structure enhances the mechanical stability of titania film. The titania film can dramatically reduce toxic Ni ion release and also improve the hemolysis resistance and thromboresistance of biomedical NiTi SMA.

  4. Modal Analysis in Lined Wedge-Shaped Ducts

    Science.gov (United States)

    Mechel, F. P.

    1998-10-01

    It has been suggested to describe the sound field in a wedge-shaped duct in a cylindrical co-ordinate system in which the boundaries of the wedge lie in a co-ordinate surface. This suggestion was developed in a companion paper [1]. The wave equation can be separated only if the boundaries are ideally reflecting (rigid or soft). Two solutions were proposed in reference [1] for absorbing boundaries. In the first solution the sound field is composed of “ideal modes” (modes in a wedge with ideally reflecting boundaries); the boundary condition at the absorbing boundary then leads to a system of equations for the mode amplitudes. The problem with this method lies in the fact that there is no radial orthogonality of the ideal modes so that the precision of the field synthesis by ideal modes is doubtful. In the second method in reference [1] one defines “fictitious modes” which satisfy the boundary conditions at the flanks exactly and which are based on hypergeometric functions as radial functions, but which produce a “rest” in the wave equation. It was described how this rest can be minimized; this procedure leads to slow numerical integrations. In the present paper, the wedge is subdivided into duct sections with parallel walls (the boundary is stepped); the fields in the sections are composed of duct modes (modes in a straight lined duct); the mode amplitudes are determined from the boundary conditions at the section limits. The advantages of the present method are (analytically) the duct modes are orthogonal across the sections, so the mode amplitudes can be determined with the usual precision of a modal analysis, and (numerically) no numerical integrations are needed.

  5. A novel method about online monitoring surface shape of optical elements in continuous polishing

    Science.gov (United States)

    Yin, Jin; Zhu, Jianqiang; Jiao, Xiang; Wu, Yongzhong

    2016-10-01

    In conventional continuous polishing process, the surface shape of work-piece was measured by an optical plane template after being placed in such environment with constant temperature for 1 to 2 hours. During this period, uncertain influence may occur on the polishing pad due to the change of system state. Meanwhile, the regular off-line testing may cause re-processing. In this paper, a new method about on-line monitoring surface shape of optical elements is proposed by the theory of run sphere, and the change in curvature radius of the work-piece which lead to its radial tilt angle change. The change in work-piece surface shape indirectly obtain by the correction plate small angle with respect to the horizontal, and the angle were detected on line by the high-precision goniometer with the resolution 0.04 ''. According to theoretical calculations, the diameter of 200mm precision work-piece PV value up to 0.02λ (λ = 632.8nm). The fused quartz glass was measured by above method. The test results showed that the surface accuracy and processing efficiency were significantly promoted, and also improving the controllability of surface shape of work-piece based on this method.

  6. Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization

    Science.gov (United States)

    Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin

    2017-09-01

    Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.

  7. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis

    Science.gov (United States)

    Newman, Peter; Galenano-Niño, Jorge Luis; Graney, Pamela; Razal, Joselito M.; Minett, Andrew I.; Ribas, João; Ovalle-Robles, Raquel; Biro, Maté; Zreiqat, Hala

    2016-12-01

    The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.

  8. Wavefront shaping with an electrowetting liquid lens using surface harmonics (Conference Presentation)

    Science.gov (United States)

    Strauch, Matthias; Konijnenberg, Sander; Shao, Yifeng; Urbach, H. Paul

    2017-02-01

    Liquid lenses are used to correct for low order wavefront aberrations. Electrowetting liquid lenses can nowadays control defocus and astigmatism effectively, so they start being used for ophthalmology applications. To increase the performance and applicability, we introduce a new driving mechanism to create, detect and correct higher order aberrations using standing waves on the liquid interface. The speed of a liquid lens is in general limited, because the liquid surface cannot follow fast voltage changes, while providing a spherical surface. Surface waves are created instead and with them undesired aberrations. We try to control those surface waves to turn them into an effective wavefront shaping tool. We introduce a model, which treats the liquid lens as a circular vibrating membrane with adjusted boundary conditions. Similar to tunable acoustic gradient (TAG) lenses, the nature of the surface modes are predicted to be Bessel functions. Since Bessel functions are a full set of orthogonal basis functions any surface can be created as a linear combination of different Bessel functions. The model was investigated experimentally in two setups. First the point spread functions were studied and compared to a simulation of the intensity distribution created by Fresnel propagated Bessel surfaces. Second the wavefronts were measured directly using a spatial light modulator. The surface resonance frequencies confirm the predictions made by the model as well as the wavefront measurements. By superposition of known surface modes, it is possible to create new surface shapes, which can be used to simulate and measure the human eye.

  9. Study for region-regenerating shape of the granular medium surface

    Directory of Open Access Journals (Sweden)

    Yousheng Yu

    2015-12-01

    Full Text Available When an object rolls on the surface of the mountain, the structure of surface may be destroyed subsequently with a regeneration region. Corresponding experimental simulation presents that the regenerating region exists three regions: compression, thin, and accumulation regions; the shape of regeneration region, as a quasi-parabola, is related to the size and initial velocity of the sphere as well as the slope of surface. Our study suggests that the length maximum of regenerating region is not associated with the initial velocity of sphere; it is found that the length of thin region increases with both the sphere size and the slope of surface.

  10. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2013-01-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  11. Microstructural Analysis of Ti-Based Shape Memory Alloys Following the Electrochemical Corrosion in Artificial Saliva

    Science.gov (United States)

    Baciu, C.; Baciu, E. R.; Cimpoeșu, R.; Levente, C. G.; Bosinceanu, D. G.; Baciu, M.; Bejinariu, C.

    2017-06-01

    The investigations carried out aimed to highlight the structural modifications occurred in the Ti-based shape memory alloys subject to electrocorrosion in Afnor artificial saliva. The behavior to corrosion was highlighted by fast electrochemical tests, mainly by dynamic potentiometry. From the microstructural analysis we noticed that the specimens of the two Ti-based shape memory alloys show traces of “pitting” corrosion on their surface of diverse sizes, a fact that will raise issues in terms of cytotoxicity due to the corrosion products released.

  12. Multidimensionally constrained covariant density functional theories—nuclear shapes and potential energy surfaces

    Science.gov (United States)

    Zhou, Shan-Gui

    2016-06-01

    The intrinsic nuclear shapes deviating from a sphere not only manifest themselves in nuclear collective states but also play important roles in determining nuclear potential energy surfaces (PES’s) and fission barriers. In order to describe microscopically and self-consistently nuclear shapes and PES’s with as many shape degrees of freedom as possible included, we developed multidimensionally constrained covariant density functional theories (MDC-CDFTs). In MDC-CDFTs, the axial symmetry and the reflection symmetry are both broken and all deformations characterized by {β }λ μ with even μ are considered. We have used the MDC-CDFTs to study PES’s and fission barriers of actinides, the non-axial octupole Y 32 correlations in N = 150 isotones and shapes of hypernuclei. In this Review we will give briefly the formalism of MDC-CDFTs and present the applications to normal nuclei.

  13. Multidimensionally-constrained covariant density functional theories --- nuclear shapes and potential energy surfaces

    CERN Document Server

    Zhou, Shan-Gui

    2016-01-01

    The intrinsic nuclear shapes deviating from a sphere not only manifest themselves in nuclear collective states but also play important roles in determining nuclear potential energy surfaces (PES's) and fission barriers. In order to describe microscopically and self-consistently nuclear shapes and PES's with as many shape degrees of freedom as possible included, we developed multidimensionally-constrained covariant density functional theories (MDC-CDFTs). In MDC-CDFTs, the axial symmetry and the reflection symmetry are both broken and all deformations characterized by $\\beta_{\\lambda\\mu}$ with even $\\mu$ are considered. We have used the MDC-CDFTs to study PES's and fission barriers of actinides, the non-axial octupole $Y_{32}$ correlations in $N = 150$ isotones and shapes of hypernuclei. In this Review we will give briefly the formalism of MDC-CDFTs and present the applications to normal nuclei.

  14. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change

    Science.gov (United States)

    Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.

    2010-01-01

    Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.

  15. EFFECT OF PLASMA CUTTING PARAMETERS UPON SHAPES OF BEARING CURVE OF C45 STEEL SURFACE

    Directory of Open Access Journals (Sweden)

    Agnieszka Skoczylas

    2015-08-01

    Full Text Available The article presents the results of studies on the effect of plasma cutting technological parameters upon the shape of bearing curves and the parameters of the curve. The topography of surface formed by plasma cutting were analyzed. For measuring surface roughness and determining the bearing curve the appliance T8000 RC120 – 400 by Hommel-Etamic was used together with software.

  16. 3D shape measurement of optical free-form surface based on fringe projection

    Science.gov (United States)

    Li, Shaohui; Liu, Shugui; Zhang, Hongwei

    2011-05-01

    Present a novel method of 3D shape measurement of optical free-from surface based on fringe projection. A virtual reference surface is proposed which can be used to improve the detection efficiency and realize the automation of measuring process. Sinusoidal fringe patterns are projected to the high reflected surface of the measured object. The deflection fringe patterns that modulated by the object surface are captured by the CCD camera. The slope information can be obtained by analyzing the relationship between the phase deflectometry and the slope of the object surface. The wave-front reconstruction method is used to reconstruct the surface. With the application of fringe projection technology the accuracy of optical free-form surfaces measurement could reach the level of tens of micrometer or even micrometer.

  17. Shaping of steel mold surface of lens array by electrical discharge machining with spherical ball electrode.

    Science.gov (United States)

    Takino, Hideo; Hosaka, Takahiro

    2016-06-20

    We propose a method for fabricating a spherical lens array mold by electrical discharge machining (EDM) with a ball-type electrode. The electrode is constructed by arranging conductive spherical balls in an array. To fundamentally examine the applicability of the proposed EDM method to the fabrication of lens array molds, we use an electrode having a single ball to shape a lens array mold made of stainless steel with 16 spherical elements, each having a maximum depth of 0.5 mm. As a result, a mold surface is successfully shaped with a peak-to-valley shape accuracy of approximately 10 μm, and an average surface roughness of 0.85 μm.

  18. Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis

    Science.gov (United States)

    Zhong, Ming

    In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with

  19. Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Su [Sungkyunkwan University, Suwon (Korea, Republic of); Oh, Jeongsu [Daejoo Machinery Co., Daegu (Korea, Republic of); Han, Jeong Sam [Andong National University, Andong (Korea, Republic of)

    2014-06-15

    This paper discusses a one-way fluid structural interaction (FSI) analysis and shape optimization of the impeller blades for a 15,000 HP centrifugal compressor using the response surface method (RSM). Because both the aerodynamic performance and the structural safety of the impeller are affected by the shape of its blades, shape optimization is necessary using the FSI analysis, which includes a structural analysis for the induced fluid pressure and centrifugal force. The FSI analysis is performed in ANSYS Workbench: ANSYS CFX is used for the flow field and ANSYS Mechanical is used for the structural field. The response surfaces for the FSI results (efficiency, pressure ratio, maximum stress, etc.) generated based on the design of experiments (DOE) are used to find an optimal shape for the impeller blades, which provides the maximum aerodynamic performance subject to the structural safety constraints.

  20. PHOTOMETRIC STEREO SHAPE-AND-ALBEDO-FROM-SHADING FOR PIXEL-LEVEL RESOLUTION LUNAR SURFACE RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    W. C. Liu

    2017-07-01

    Full Text Available Shape and Albedo from Shading (SAfS techniques recover pixel-wise surface details based on the relationship between terrain slopes, illumination and imaging geometry, and the energy response (i.e., image intensity captured by the sensing system. Multiple images with different illumination geometries (i.e., photometric stereo can provide better SAfS surface reconstruction due to the increase in observations. Photometric stereo SAfS is suitable for detailed surface reconstruction of the Moon and other extra-terrestrial bodies due to the availability of photometric stereo and the less complex surface reflecting properties (i.e., albedo of the target bodies as compared to the Earth. Considering only one photometric stereo pair (i.e., two images, pixel-variant albedo is still a major obstacle to satisfactory reconstruction and it needs to be regulated by the SAfS algorithm. The illumination directional difference between the two images also becomes an important factor affecting the reconstruction quality. This paper presents a photometric stereo SAfS algorithm for pixel-level resolution lunar surface reconstruction. The algorithm includes a hierarchical optimization architecture for handling pixel-variant albedo and improving performance. With the use of Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC photometric stereo images, the reconstructed topography (i.e., the DEM is compared with the DEM produced independently by photogrammetric methods. This paper also addresses the effect of illumination directional difference in between one photometric stereo pair on the reconstruction quality of the proposed algorithm by both mathematical and experimental analysis. In this case, LROC NAC images under multiple illumination directions are utilized by the proposed algorithm for experimental comparison. The mathematical derivation suggests an illumination azimuthal difference of 90 degrees between two images is recommended to achieve

  1. Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: from shape to surface.

    Science.gov (United States)

    Oyarzún, Simón; Tamion, Alexandre; Tournus, Florent; Dupuis, Véronique; Hillenkamp, Matthias

    2015-10-06

    Strong size-dependent variations of the magnetic anisotropy of embedded cobalt clusters are evidenced quantitatively by combining magnetic experiments and advanced data treatment. The obtained values are discussed in the frame of two theoretical models that demonstrate the decisive role of the shape in larger nanoparticles and the predominant role of the surface anisotropy in clusters below 3 nm diameter.

  2. Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: from shape to surface

    OpenAIRE

    Simón Oyarzún; Alexandre Tamion; Florent Tournus; Véronique Dupuis; Matthias Hillenkamp

    2015-01-01

    Strong size-dependent variations of the magnetic anisotropy of embedded cobalt clusters are evidenced quantitatively by combining magnetic experiments and advanced data treatment. The obtained values are discussed in the frame of two theoretical models that demonstrate the decisive role of the shape in larger nanoparticles and the predominant role of the surface anisotropy in clusters below 3 nm diameter.

  3. Finite-difference time domain solution of light scattering by arbitrarily shaped particles and surfaces

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Sun, Wenbo

    2012-01-01

    This chapter reviews the fundamental methods and some of the applications of the three-dimensional (3D) finite-difference time-domain (FDTD) technique for the modeling of light scattering by arbitrarily shaped dielectric particles and surfaces. The emphasis is on the details of the FDTD algorithms...

  4. Tuning kinetics to control droplet shapes on chemically stripe patterned surfaces

    NARCIS (Netherlands)

    Jansen, H.P.; Sotthewes, K.; Ganser, C.; Teichert, C.; Zandvliet, H.J.W.; Kooij, E.S.

    2012-01-01

    The typically elongated shape of droplets on chemically microstriped surfaces has been suggested to depend strongly on the kinetics during deposition. Here, we unequivocally establish the importance of impact kinetics by comparing the geometry of pico- to microliter droplets deposited from an inkjet

  5. Finite-difference time domain solution of light scattering by arbitrarily shaped particles and surfaces

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Sun, Wenbo

    2012-01-01

    This chapter reviews the fundamental methods and some of the applications of the three-dimensional (3D) finite-difference time-domain (FDTD) technique for the modeling of light scattering by arbitrarily shaped dielectric particles and surfaces. The emphasis is on the details of the FDTD algorithms...

  6. Effects of surface reflectance on local second order shape estimation in dynamic scenes

    NARCIS (Netherlands)

    Dövencioglu, D.N.; Wijntjes, M.W.A.; Ben-Sharar, O.; Doerschner, K.

    2015-01-01

    In dynamic scenes, relative motion between the object, the observer, and/or the environment projects as dynamic visual information onto the retina (optic flow) that facilitates 3D shape perception. When the object is diffusely reflective, e.g. a matte painted surface, this optic flow is directly lin

  7. Investigation of the Influence of Shapes-Texture on Surface Deformation of UHMWPE as a Bearing Material in Static Normal Load and Rolling Contact

    Science.gov (United States)

    Lestari, W. D.; Ismail, R.; Jamari, J.; Bayuseno, A. P.

    2017-05-01

    Surface texture is a common method for improving wear properties of a tribo-pair of soft and hard bearing material. The reduction of wear rates on the contacting surface material is becoming important issues. In the present study, analysis of the contact pressure on the flat surface of UHMWPE (Ultra High Molecular Weight Polyethylene) under the static- and rolling motion with the surface of steel ball used the 3D finite element method (FEM) (the ABAQUS software version 6.12). Five shaped-texture models (square, circle, ellipse, triangle, and chevron) were presented on the flat surface for analysis. The normal load of 17, 30 and 50 N was deliberately set-up for static and rolling contact analysis. The contact pressure was determined to predict the wear behavior of the shaped-texture on the flat surface of UHMWPE. The results have shown that the static normal load yielded the lowest von-Mises stress distribution on the shaped-texture of the ellipse for all values applied a load, while the square shape experienced the highest stress distribution. Under rolling contact, however, the increasing load yielded the increasing von Mises stress distribution for the texture with a triangle shape. Moreover, the texture shapes for circle, ellipse, and chevron respectively, may undergo the lowest stress distribution for all load. The wear calculation provided that the circle and square shape may undergo the highest wear rates. Obviously, the surface texture of circle, ellipse, and chevron may experience the lowest wear rates and is potential for use in the surface engineering of bearing materials.

  8. Morphological and mechanical analysis of electrospun shape memory polymer fibers

    Energy Technology Data Exchange (ETDEWEB)

    Budun, Sinem [Institute of Pure and Applied Science, Marmara University, 34722 Istanbul (Turkey); İşgören, Erkan [Textile Technology, Technical Education Faculty, Marmara University, 34722 Istanbul (Turkey); Erdem, Ramazan, E-mail: ramazanerdem@akdeniz.edu.tr [Textile Technologies, Serik G-S. Sural Vocational School of Higher Education, Akdeniz University, 07500 Antalya (Turkey); Yüksek, Metin [Textile Engineering, Technology Faculty, Marmara University, 34722 Istanbul (Turkey)

    2016-09-01

    Highlights: • Fiber morphology of PU based shape memory fibers varied especially with polymer concentration and applied voltage. • The smallest diameter (381 ± 165 nm) and almost uniform (without bead) fibers were belonged to the sample Y10K30 with a feeding rate of 1 ml/h and an applied voltage of 30 kV at 24.5 cm distance. • All calculated shape fixity results were above 80% and the best value (92 ± 4%) was obtained for Y10K30. • All gained shape recovery results were determined above 100% and the highest measurement (130 ± 4%) was belonged to Y15K39. • The greatest tensile property was obtained for Y10K30 (14.7 ± 3.2 MPa) in machine direction and for Y10K39 (12.9 ± 0.8 MPa) in transverse direction. Y15K39 (411 ± 24%) and Y20K30 (402 ± 34%) possessed the highest elongation results compared with the other electrospun webs. - Abstract: Shape memory block co-polymer Polyurethane (PU) fibers were fabricated by electrospinning technique. Four different solution concentrations (5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%) were prepared by using Tetrahydrofuran (THF)/N,N-dimethylformamide (DMF) (50:50, v/v) as solvents, and three different voltages (30 kV, 35 kV and 38.9 kV) were determined for the electrospinning process. Solution properties were explored in terms of viscosity and electrical conductivity. It was observed that as the polymer concentration increased in the solution, the conductivity declined. Morphological characteristics of the obtained fibers were analyzed through Scanning Electron Microscopy (SEM) measurements. Findings indicated that fiber morphology varied especially with polymer concentration and applied voltage. Obtained fiber diameter ranged from 112 ± 34 nm to 2046 ± 654 nm, respectively. DSC analysis presented that chain orientation of the polymer increased after electrospinning process. Shape fixity and shape recovery calculations were realized. The best shape fixity value (92 ± 4%) was obtained for Y10K30 and the highest shape

  9. Computational Approach to Dendritic Spine Taxonomy and Shape Transition Analysis

    Science.gov (United States)

    Bokota, Grzegorz; Magnowska, Marta; Kuśmierczyk, Tomasz; Łukasik, Michał; Roszkowska, Matylda; Plewczynski, Dariusz

    2016-01-01

    The common approach in morphological analysis of dendritic spines of mammalian neuronal cells is to categorize spines into subpopulations based on whether they are stubby, mushroom, thin, or filopodia shaped. The corresponding cellular models of synaptic plasticity, long-term potentiation, and long-term depression associate the synaptic strength with either spine enlargement or spine shrinkage. Although a variety of automatic spine segmentation and feature extraction methods were developed recently, no approaches allowing for an automatic and unbiased distinction between dendritic spine subpopulations and detailed computational models of spine behavior exist. We propose an automatic and statistically based method for the unsupervised construction of spine shape taxonomy based on arbitrary features. The taxonomy is then utilized in the newly introduced computational model of behavior, which relies on transitions between shapes. Models of different populations are compared using supplied bootstrap-based statistical tests. We compared two populations of spines at two time points. The first population was stimulated with long-term potentiation, and the other in the resting state was used as a control. The comparison of shape transition characteristics allowed us to identify the differences between population behaviors. Although some extreme changes were observed in the stimulated population, statistically significant differences were found only when whole models were compared. The source code of our software is freely available for non-commercial use1. Contact: d.plewczynski@cent.uw.edu.pl. PMID:28066226

  10. A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices

    Directory of Open Access Journals (Sweden)

    Tina Govindarajan

    2014-08-01

    Full Text Available The search for a single material with ideal surface properties and necessary mechanical properties is on-going, especially with regard to cardiovascular stent materials. Since the majority of stent problems arise from surface issues rather than bulk material deficiencies, surface optimization of a material that already contains the necessary bulk properties is an active area of research. Polymers can be surface-modified using a variety of methods to increase hemocompatibilty by reducing either late-stage restenosis or acute thrombogenicity, or both. These modification methods can be extended to shape memory polymers (SMPs, in an effort to make these materials more surface compatible, based on the application. This review focuses on the role of surface modification of materials, mainly polymers, to improve the hemocompatibility of stent materials; additional discussion of other materials commonly used in stents is also provided. Although shape memory polymers are not yet extensively used for stents, they offer numerous benefits that may make them good candidates for next-generation stents. Surface modification techniques discussed here include roughening, patterning, chemical modification, and surface modification for biomolecule and drug delivery.

  11. SHAPE RESTORATIONS OF OBJECT SURFACE ON POLARIZATION STRUCTURE OF REFLECTED ELECTROMAGNETIC WAVE FIELD

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available A problem of electromagnetic wave backscattering on a chosen 3D object is solved. A differential equation which is linked change of polarization coefficient of reflected wave with variation of matrix elements of object scattering is ob- tained. Obtained relation enables to develop algorithms of fast numerical solution of inverse problem of scattering on this object that is determination of complex function of object surface scattering and restoration of unknown object shape on phase distribution of reflected wave. The method uses ray representation of scattering fields based on principle Huygens- Fresnel. The algorithm of object shape restoration on phase of reflected wave allows to restore not only smooth surfaces, but also object surfaces with smaller roughness than a wave length.

  12. The Design of Case Products’ Shape Form Information Database Based on NURBS Surface

    Science.gov (United States)

    Liu, Xing; Liu, Guo-zhong; Xu, Nuo-qi; Zhang, Wei-she

    2017-07-01

    In order to improve the computer design of product shape design,applying the Non-uniform Rational B-splines(NURBS) of curves and surfaces surface to the representation of the product shape helps designers to design the product effectively.On the basis of the typical product image contour extraction and using Pro/Engineer(Pro/E) to extract the geometric feature of scanning mold,in order to structure the information data base system of value point,control point and node vector parameter information,this paper put forward a unified expression method of using NURBS curves and surfaces to describe products’ geometric shape and using matrix laboratory(MATLAB) to simulate when products have the same or similar function.A case study of electric vehicle’s front cover illustrates the access process of geometric shape information of case product in this paper.This method can not only greatly reduce the capacity of information debate,but also improve the effectiveness of computer aided geometric innovation modeling.

  13. Development of Control Models and a Robust Multivariable Controller for Surface Shape Control

    Energy Technology Data Exchange (ETDEWEB)

    Winters, Scott Eric [Univ. of California, Davis, CA (United States)

    2003-06-18

    Surface shape control techniques are applied to many diverse disciplines, such as adaptive optics, noise control, aircraft flutter control and satellites, with an objective to achieve a desirable shape for an elastic body by the application of distributed control forces. Achieving the desirable shape is influenced by many factors, such as, actuator locations, sensor locations, surface precision and controller performance. Building prototypes to complete design optimizations or controller development can be costly or impractical. This shortfall, puts significant value in developing accurate modeling and control simulation approaches. This thesis focuses on the field of adaptive optics, although these developments have the potential for application in many other fields. A static finite element model is developed and validated using a large aperture interferometer system. This model is then integrated into a control model using a linear least squares algorithm and Shack-Hartmann sensor. The model is successfully exercised showing functionality for various wavefront aberrations. Utilizing a verified model shows significant value in simulating static surface shape control problems with quantifiable uncertainties. A new dynamic model for a seven actuator deformable mirror is presented and its accuracy is proven through experiment. Bond graph techniques are used to generate the state space model of the multi-actuator deformable mirror including piezo-electric actuator dynamics. Using this verified model, a robust multi-input multi-output (MIMO) H controller is designed and implemented. This controller proved superior performance as compared to a standard proportional-integral controller (PI) design.

  14. Flow, heat transfer, and free surface shape during the optical fiber drawing process

    Science.gov (United States)

    Xiao, Zhihui

    1997-12-01

    A two-dimensional finite element model is introduced for analyzing glass and gas flows, heat transfer, and fiber formation during the optical fiber drawing process. This study consists of simulations in three different areas: the upper region, the tip region, and the whole furnace region. Conjugating the glass and gas flows and heat transfer, the shapes of an optical fiber as free surfaces in the upper neck-down and the tip regions are separately obtained by solving the coupled continuity, momentum, and energy equations. In the upper region simulation, a surface-to-surface radiation model is used for the enclosure which consists of the wall and the glass surface, and the Rosseland approximation radiation model is employed to account for the radiation effect in the glass region. In the tip region simulation, only the glass fiber region is considered and a convective heat transfer model on the fiber surface is employed to account for the energy exchange between the fiber surface and the purge gas. In the fiber, radiation in the axial direction is included. The whole furnace simulation uses a calculated fiber neck-down shape and an assumed fiber tip shape as a fixed interface and computes the convective heat transfer coefficient profile in the tip region which was used in the tip region simulation. The glass viscosity is temperature-dependent and significantly affects the fiber shape. The finite element code FIDAP is used in the study. The effects of various operating conditions such as draw speed, wall temperature distribution, and gas flow rate are studied.

  15. Frabrication of Au Nanoparticles in Various Shapes and Their Application in Surface-enhanced Raman Scattering

    Institute of Scientific and Technical Information of China (English)

    Chen-yang XUE; Hui-juan WANG; Yong-feng LIANG; Rong CHEN; Jun LIU

    2010-01-01

    Anisotropic metallic Nanoparticles (NPs) have unique optical properties, such as Surface Enhanced Raman Scattering (SERS)spectroscopy. In this paper, star-shaped and sphere gold NPs were prepared by seed-mediated growth and Frence methods respectively. The reaction process and the effect of reagent in seed-mediated growth of gold nanostar particles were systematically described. After fabricating NPs the authors test their Raman enhancement using Crystal Violet (CV) molecules apart. The experimental results indicated that star-shaped Au NPs had stronger Raman enhancement spectrum than that of sphere Au NPs.

  16. 3D shape matching and Teichm\\"uller spaces of pointed Riemann surfaces

    CERN Document Server

    Fontanari, Claudio

    2011-01-01

    Shape matching represents a challenging problem in both information engineering and computer science, exhibiting not only a wide spectrum of multimedia applications, but also a deep relation with conformal geometry. After reviewing the theoretical foundations and the practical issues involved in this fashinating subject, we focus on two state-of-the-art approaches relying respectively on local features (landmark points) and on global properties (conformal parameterizations). Finally, we introduce the Teichm\\"uller space of n-pointed Riemann surfaces of genus g into the realm of multimedia, showing that its beautiful geometry provides a natural unified framework for three-dimensional shape matching.

  17. Analysis and improvement of the MAC shaping mechanism in RPR

    Science.gov (United States)

    Li, Jing; Xu, Zhanqi; Yu, Shaohua

    2005-11-01

    Resilient Packet Ring (RPR) specified by IEEE 802.17 is a new standard for Metropolitan Area Networks (MANs). One of RPR's characteristics is that it can support three priorities traffic in a single datapath, i.e., class A, class B and class C, ranging from high priority to low priority, respectively. Different entities such as shaping, scheduling, fairness, topology and protection coordinate to guarantee the Quality of Service (QoS) for different services. Various pieces of the datapath in RPR are tied together through logical queues, thus we investigate the datapath from the view of logical queues in this paper. With a detailed analysis of the MAC shaping mechanism in RPR, we propose some improvement to achieve better transport performance for RPR's three priorities traffic. Simulation results show that our improvement is efficient.

  18. Accurate analysis of arbitrarily-shaped helical groove waveguide

    Institute of Scientific and Technical Information of China (English)

    Liu Hong-Tao; Wei Yan-Yu; Gong Yu-Bin; Yue Ling-Na; Wang Wen-Xiang

    2006-01-01

    This paper presents a theory on accurately analysing the dispersion relation and the interaction impedance of electromagnetic waves propagating through a helical groove waveguide with arbitrary groove shape, in which the complex groove profile is synthesized by a series of rectangular steps. By introducing the influence of high-order evanescent modes on the connection of any two neighbouring steps by an equivalent susceptance under a modified admittance matching condition, the assumption of the neglecting discontinuity capacitance in previously published analysis is avoided, and the accurate dispersion equation is obtained by means of a combination of field-matching method and admittancematching technique. The validity of this theory is proved by comparison between the measurements and the numerical calculations for two kinds of helical groove waveguides with different groove shapes.

  19. Wave-shape function analysis -- when cepstrum meets time-frequency analysis

    CERN Document Server

    Lin, Chen-Yun; Wu, Hau-tieng

    2016-01-01

    We propose to combine cepstrum and nonlinear time-frequency (TF) analysis to study mutiple component oscillatory signals with time-varying frequency and amplitude and with time-varying non-sinusoidal oscillatory pattern. The concept of cepstrum is applied to eliminate the wave-shape function influence on the TF analysis, and we propose a new algorithm, named de-shape synchrosqueezing transform (de-shape SST). The mathematical model, adaptive non-harmonic model, is introduced and the de-shape SST algorithm is theoretically analyzed. In addition to simulated signals, several different physiological, musical and biological signals are analyzed to illustrate the proposed algorithm.

  20. Inspection of Complex Internal Surface Shape with Fiber-optic Sensor II: for Specular Tilted Surface Measurement

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Complex surface shape measurement has been a focus topic in the CAD/CAM field. A popular method for measuring dimensional information is using a 3D coordinate measuring machine (CMM)with a touch trigger probe. The measurement set up with CMM, however, is a time consuming task and the accuracy of the measurement deteriorates as the speed of measurement increase. Non-contact measurement is favored since high speed measurement can be achieved and problems with vibration and friction can be eliminated. Although much research has been conducted in non-contact measurement using image capturing and processing schemes, accuracy is poor and measurement is limited. Some optical technologies developed provide a good accuracy but the dynamic range and versatility is very limited. A novel fiber-optic sensor used for the inspection of complex internal contours is presented in this paper, which is able to measure a surface shape in a non-contact manner with high accuracy and high speed, and is compact and flexible to be incorporated into a CMM. Modulation functions for tilted surface shape measurement, based on the Gaussian distribution of the emitting beam from single-mode fiber (SMF), were derived for specular reflection. The feasibility of the proposed measurement principle was verified by simulations.

  1. SYNTHESIS OF AMPHIPHILIC COMB-SHAPED COPOLYMERS USED FOR SURFACE MODIFICATION OF PVDF MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Jian-hua Li; You-yi Xu; Jian-hua Wang; Chun-hui Du

    2009-01-01

    The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4-hydroxyphenyl) maleimide) (SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate (PEGMA) side groups was achieved by atom transfer radical polymerization (ATRP). The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC). From thermogravimetric analysis (TGA), the decomposition temperature of SHMI-g-PEGMA is lower than that of SHMI, and the graft ratio of PEGMA in the SHMI is 18.6%. The experimental results of solubilities showed that SHMI, SHMI-Br and SHMI-g-PEGMA had excellent solubility in polar solvents, such as DMF, DMSO and NMP. SHMI-g-PEGMA had higher solubilities in H_2O and methanol, while lower solubility in CHCl_3 than SHMI and SHMI-Br. PVDF blend membranes were prepared via the standard immersion precipitation phase inversion process, using amphiphilic SHMI-g-PEGMA copolymer as additives. The morphology and hydrophilicity of the blend membrane surfaces were characterized by SEM and water contact angle. It is demonstrated that the blend membranes display enhanced hydrophilicity compared to unmodified PVDF membranes. Finally, the permeation and anti-fouling properties were investigated. The result shows that amphiphilic SHMI-g-PEGMA copolymer increases the permeatability and anti-fouling property of PVDF membranes greatly.

  2. Extrusion Honed Surface Characteristics of Inconel 625 Fabricated By EDM for Square Shape

    Directory of Open Access Journals (Sweden)

    N.L. Murali Krishna

    2014-07-01

    Full Text Available Extrusion Honing (EH is also known as Abrasive flow machining (AFM is an effective method that is used to deburr, clean, polish, remove recast layer and micro cracks by flowing pressurized semisolid abrasive laden visco-elastic media over those surfaces. Inconel 625 is one of the most difficult-to-cut materials because of its low thermal diffusive property, high hardness and high strength at elevated temperature. In this paper, the influence of the process parameters on surface roughness is investigated on Inconel 625 material of square shape fabricated by Electric discharge machining (EDM. The processed surfaces were measured and analyzed with the help of surface roughness tester and Scanning Electron Microscope (SEM. Results show a significant improvement in surface finish and EH/AFM is capable of removing the micro cracks and recast layer.

  3. The influence of CNC milling and ball burnishing on shaping complex 3D surfaces

    Science.gov (United States)

    Bachtiak-Radka, Emilia; Dudzińska, Sara; Grochała, Daniel; Berczyński, Stefan; Olszak, Wiesław

    2017-03-01

    Hybrid techniques for surface treatment should ensure compliance with exterior layer state and stress requirements. The more factors which influence final treatment effects, the more difficult it is to conduct a technological process combining different treatment methods. A combination of shaping milling with finishing burnishing can provide very good smoothness and satisfactory stress conditions. However, implementation of predefined geometric surface specifications (GPS) is very difficult. This article presents the results of the effect of technological parameters of both treatments combined into a single operation on surface topography. A new surface geometry evaluation approach, combining both relative and absolute changes of isotropy and surface roughness, enabling an objective efficiency comparison of machining operations combined in a single operation, is presented.

  4. Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure

    Science.gov (United States)

    Ordaz, Irian; Li, Wu

    2013-01-01

    The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.

  5. The curved shape of the bacterium Caulobacter crescentus enhances colonization of surfaces in flow

    Science.gov (United States)

    Persat, Alexandre; Gitai, Zemer; Stone, Howard

    2014-11-01

    Bacteria thrive in all types of fluid environments; flow is thus a ubiquitous aspect of their lives. Bacteria have evolved a variety of cellular components contributing to their growth in specific environments. However, cellular features that help them survive and develop in flow have been rarely characterized. Here, we show that Caulobacter crescentus may have evolved its curved shape to enhance the colonization of surfaces in flow. C. crescentus curvature is preserved in the wild but straight mutants have no known growth disadvantage in standard laboratory conditions. Leveraging microfluidics and single-cell imaging, we demonstrate that curvature enhances surface colonization in flow, promoting the formation of larger microcolonies. Cells attach to a surface from a single pole, so that flow affects their orientation. In flow, viscous forces generate a torque on the curved cell body, which reorients the cell in the direction of the flow. The curved cell appears to arc above the surface, optimally orienting its unattached pole towards the surface. This reduces the distance between the surface and the pole, thereby enhancing attachment of its progeny. Additionally, we show that curved shape enhances colony spreading across the direction of the flow, generating more robust biofilm compared to straight mutants.

  6. Controlled wettability based on reversible micro-cracking on a shape memory polymer surface.

    Science.gov (United States)

    Han, Yu; Liu, Yuxuan; Wang, Wenxin; Leng, Jinsong; Jin, Peng

    2016-03-14

    Wettability modification on a polymer surface is of immense importance for flexible electronics and biomedical applications. Herein, controlled wettability of a styrene-based shape memory polymer has been realized by introducing micro-cracks on the polymer surface for the first time. The cracks were purposely prepared by thin metal film constrained deformation on the polymer. After the removal of the metallic film, wettability was dramatically enhanced by showing a remarkable reduction in the contact angle with water droplets from 85° to 25°. Subsequent systematic characterization techniques like XPS and SEM revealed that such observation could be attributed to the increased density of hydrophilic groups and the roughened surface. In addition, by controlling the temperature for annealing the treated polymer, the surface could be switched reversely to water-repellent. Therefore, this paper offers a smart tactic to manipulate the surface wettability of a shape memory polymer freely. The features of the controlled wettability surface such as high tenability, high stability and easy fabrication are promising for microfluidic switching and molecule/cell capture-release.

  7. Near-field radiative heat transfer between arbitrarily-shaped objects and a surface

    CERN Document Server

    Edalatpour, Sheila

    2016-01-01

    A fluctuational electrodynamics-based formalism for calculating near-field radiative heat transfer between objects of arbitrary size and shape and an infinite surface is presented. The surface interactions are treated analytically via Sommerfeld's theory of electric dipole radiation above an infinite plane. The volume integral equation for the electric field is discretized using the thermal discrete dipole approximation (T-DDA). The framework is verified against exact results in the sphere-surface configuration, and is applied to analyze near-field radiative heat transfer between a complex-shaped probe and an infinite plane both made of silica. It is found that when the probe tip size is approximately equal to or smaller than the gap d separating the probe and the surface, coupled localized surface phonon (LSPh)-surface phonon-polariton (SPhP) mediated heat transfer occurs. In this regime, the net spectral heat rate exhibits four resonant modes due to LSPhs along the minor axis of the probe while the net tota...

  8. Three-dimensional surface reconstruction via a robust binary shape-coded structured light method

    Science.gov (United States)

    Tang, Suming; Zhang, Xu; Song, Zhan; Jiang, Hualie; Nie, Lei

    2017-01-01

    A binary shape-coded structured light method for single-shot three-dimensional reconstruction is presented. The projected structured pattern is composed with eight geometrical shapes with a coding window size of 2×2. The pattern element is designed as rhombic with embedded geometrical shapes. The pattern feature point is defined as the intersection of two adjacent rhombic shapes, and a multitemplate-based feature detector is presented for its robust detection and precise localization. Based on the extracted grid-points, a topological structure is constructed to separate the pattern elements from the obtained image. In the decoding stage, a training dataset is first established from training samples that are collected from a variety of target surfaces. Then, the deep neural network technique is applied for the classification of pattern elements. Finally, an error correction algorithm is introduced based on the epipolar and neighboring constraints to refine the decoding results. The experimental results show that the proposed method not only owns high measurement precision but also has strong robustness to surface color and texture.

  9. Effects of contact cap dimension on dry adhesion of bioinspired mushroom-shaped surfaces

    Science.gov (United States)

    Wang, Yue; Shao, Jinyou; Ding, Yucheng; Li, Xiangming; Tian, Hongmiao; Hu, Hong

    2015-03-01

    Dry adhesion observed in small creatures, such as spiders, insects, and geckos, has many great advantages such as repeatability and strong adhesiveness. In order to mimic these unique performances, fibrillar surface with a mushroom shaped end has drawn lots of attentions because of its advantage in efficiently enhancing adhesion compared with other sphere or simple flat ends. Here, in order to study the effects of contact cap dimension on adhesion strength, patterned surfaces of mushroom-shaped micropillars with differing cap diameters are fabricated based on the conventional photolithography and molding. The normal adhesion strength of these dry adhesives with varying cap diameters is measured with home-built equipment. The strength increases with the rise of cap diameter, and interestingly it becomes strongest when the mushroom caps join together.

  10. Simultaneous measurement of surface shape and optical thickness using wavelength tuning and a polynomial window function.

    Science.gov (United States)

    Kim, Yangjin; Hibino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2015-12-14

    In this study, a 6N - 5 phase shifting algorithm comprising a polynomial window function and discrete Fourier transform is developed for the simultaneous measurement of the surface shape and optical thickness of a transparent plate with suppression of the coupling errors between the higher harmonics and phase shift error. The characteristics of the 6N - 5 algorithm were estimated by connection with the Fourier representation in the frequency domain. The phase error of the measurements performed using the 6N - 5 algorithm is discussed and compared with those of measurements obtained using other algorithms. Finally, the surface shape and optical thickness of a transparent plate were measured simultaneously using the 6N - 5 algorithm and a wavelength tuning interferometer.

  11. Moving shape analysis and control applications to fluid structure interactions

    CERN Document Server

    Moubachir, Marwan

    2006-01-01

    Problems involving the evolution of two- and three-dimensional domains arise in many areas of science and engineering. Emphasizing an Eulerian approach, Moving Shape Analysis and Control: Applications to Fluid Structure Interactions presents valuable tools for the mathematical analysis of evolving domains. The book illustrates the efficiency of the tools presented through different examples connected to the analysis of noncylindrical partial differential equations (PDEs), such as Navier-Stokes equations for incompressible fluids in moving domains. The authors first provide all of the details of existence and uniqueness of the flow in both strong and weak cases. After establishing several important principles and methods, they devote several chapters to demonstrating Eulerian evolution and derivation tools for the control of systems involving fluids and solids. The book concludes with the boundary control of fluid-structure interaction systems, followed by helpful appendices that review some of the advanced m...

  12. Probing Compressed Bottom Squarks with Boosted Jets and Shape Analysis

    CERN Document Server

    Dutta, Bhaskar; Hatakeyama, Kenichi; Johns, Will; Kamon, Teruki; Sheldon, Paul; Sinha, Kuver; Wu, Sean; Wu, Zhenbin

    2015-01-01

    A feasibility study is presented for the search of the lightest bottom squark (sbottom) in a compressed scenario, where its mass difference from the lightest neutralino is 5 GeV. Two separate studies are performed: $(1)$ final state containing two VBF-like tagging jets, missing transverse energy, and zero or one $b$-tagged jet; and $(2)$ final state consisting of initial state radiation (ISR) jet, missing transverse energy, and at least one $b$-tagged jet. An analysis of the shape of the missing transverse energy distribution for signal and background is performed in each case, leading to significant improvement over a cut and count analysis, especially after incorporating the consideration of systematics and pileup. The shape analysis in the VBF-like tagging jet study leads to a $3\\sigma$ exclusion potential of sbottoms with mass up to $530 \\, (380)$ GeV for an integrated luminosity of $300$ fb$^{-1}$ at 14 TeV, with $5\\%$ systematics and PU $= 0 \\, (140)$.

  13. 3D shape reconstruction of specular surfaces by using phase measuring deflectometry

    Science.gov (United States)

    Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan

    2016-10-01

    The existing estimation methods for recovering height information from surface gradient are mainly divided into Modal and Zonal techniques. Since specular surfaces used in the industry always have complex and large areas, considerations must be given to both the improvement of measurement accuracy and the acceleration of on-line processing speed, which beyond the capacity of existing estimations. Incorporating the Modal and Zonal approaches into a unifying scheme, we introduce an improved 3D shape reconstruction version of specular surfaces based on Phase Measuring Deflectometry in this paper. The Modal estimation is firstly implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified Zonal wave-front reconstruction algorithm. By combining the advantages of Modal and Zonal estimations, the proposed method simultaneously achieves consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive overrelaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. Both simulation and experimentally measurement demonstrate the validity and efficiency of the proposed improved method. According to the experimental result, the computation time decreases approximately 74.92% in contrast to the Zonal estimation and the surface error is about 6.68 μm with reconstruction points of 391×529 pixels of an experimentally measured sphere mirror. In general, this method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable and real-time approach for the shape reconstruction of specular surfaces in practical situations.

  14. Capturing the surface texture and shape of pollen: a comparison of microscopy techniques.

    Directory of Open Access Journals (Sweden)

    Mayandi Sivaguru

    Full Text Available Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques, and brightfield and differential interference contrast microscopy (DIC (transmitted light techniques. We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae, Mabea occidentalis (Euphorbiaceae and Agropyron repens (Poaceae. No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (~250 nm; NDL presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical

  15. Substrate Integrated Waveguide Leaky-Wave Antenna Conforming to Conical Shape Surface

    Directory of Open Access Journals (Sweden)

    W. N. Huang

    2015-01-01

    Full Text Available A conical conformal leaky-wave antenna based on substrate integrated waveguide (SIW technology is proposed and demonstrated in this paper. This antenna conforms to a conical shape surface with the angle of 40°. It has a narrow beam that scans from 80° to 97° with varying frequency (34 GHz~37 GHz. Both conformal and nonconformal antennas are fabricated through the standard PCB process. Their performances are compared within the desired frequency.

  16. Experimental study of slot jet impingement heat transfer on a wedge-shaped surface

    Science.gov (United States)

    Rahimi, Mostafa; Irani, Mohammad

    2012-12-01

    An experimental investigation was conducted to study the convective heat transfer rate from a wedge-shaped surface to a rectangular subsonic air jet impinging onto the apex of the wedge. The jet Reynolds number, nozzle-to-surface distance and the wedge angle were considered as the main parameters. Jet Reynolds number was ranged from 5,000 to 20,000 and two dimensionless nozzle-to-surface distances h/w = 4 and 10 were examined. The apex angle of the wedge ranged from 30° to 180° where the latter case corresponds with that of a flat surface. Velocity profile and turbulence intensity were provided for free jet flow using hot wire anemometer. Local and average Nusselt numbers on the impinged surface are presented for all the configurations. Based on the results presented, the local Nusselt number at the stagnation region increases as the wedge angle is decreased but, it then decreases over the remaining area of the impinged surface. Average Nusselt number over the whole surface is maximum when the wedge angle is 180° (i.e. plane surface) for any jet and nozzle-to-surface configuration.

  17. Shaping of steel mold surface of lens array by electrical discharge machining with single rod electrode.

    Science.gov (United States)

    Takino, Hideo; Hosaka, Takahiro

    2014-11-20

    We propose a method for fabricating a lens array mold by electrical discharge machining (EDM). In this method, the tips of rods are machined individually to form a specific surface, and then a number of the machined rods are arranged to construct an electrode for EDM. The repetition of the EDM process using the electrode enables a number of lens elements to be produced on the mold surface. The effectiveness of our proposed method is demonstrated by shaping a lens array mold made of stainless steel with 16 spherical elements, in which the EDM process with a single rod electrode is repeatedly conducted.

  18. Registering a methodology for imaging and analysis of residual-limb shape after transtibial amputation

    Directory of Open Access Journals (Sweden)

    Alexander S. Dickinson, PhD

    2016-03-01

    Full Text Available Successful prosthetic rehabilitation following lower-limb amputation depends upon a safe and comfortable socket-residual limb interface. Current practice predominantly uses a subjective, iterative process to establish socket shape, often requiring several visits to a prosthetist. This study proposes an objective methodology for residual-limb shape scanning and analysis by high-resolution, automated measurements. A 3-D printed "analog" residuum was scanned with three surface digitizers on 10 occasions. Accuracy was measured by the scan-height error between repeat analog scans and the computer-aided design (CAD geometry and the scan versus CAD volume. Subsequently, 20 male residuum casts from ambulatory individuals with transtibial amputation were scanned by two observers, and 10 were repeat-scanned by one observer. The shape files were aligned spatially, and geometric measurements were extracted. Repeatability was evaluated by intraclass correlation, Bland-Altman analysis of scan volumes, and pairwise root-mean-square error ranges of scan area and width profiles. Submillimeter accuracy was achieved when scanning the analog shape using white light and laser scanning technologies. Scanning male residuum casts was highly repeatable within and between observers. The analysis methodology technique provides clinical researchers and prosthetists the capability to establish their own quantitative, objective, multipatient datasets. This could provide an evidence base for training, long-term follow-up, and interpatient outcome comparison, for decision support in socket design.

  19. Statistical group differences in anatomical shape analysis using Hotelling T2 metric

    Science.gov (United States)

    Styner, Martin; Oguz, Ipek; Xu, Shun; Pantazis, Dimitrios; Gerig, Guido

    2007-03-01

    Shape analysis has become of increasing interest to the neuroimaging community due to its potential to precisely locate morphological changes between healthy and pathological structures. This manuscript presents a comprehensive set of tools for the computation of 3D structural statistical shape analysis. It has been applied in several studies on brain morphometry, but can potentially be employed in other 3D shape problems. Its main limitations is the necessity of spherical topology. The input of the proposed shape analysis is a set of binary segmentation of a single brain structure, such as the hippocampus or caudate. These segmentations are converted into a corresponding spherical harmonic description (SPHARM), which is then sampled into a triangulated surfaces (SPHARM-PDM). After alignment, differences between groups of surfaces are computed using the Hotelling T2 two sample metric. Statistical p-values, both raw and corrected for multiple comparisons, result in significance maps. Additional visualization of the group tests are provided via mean difference magnitude and vector maps, as well as maps of the group covariance information. The correction for multiple comparisons is performed via two separate methods that each have a distinct view of the problem. The first one aims to control the family-wise error rate (FWER) or false-positives via the extrema histogram of non-parametric permutations. The second method controls the false discovery rate and results in a less conservative estimate of the false-negatives. Prior versions of this shape analysis framework have been applied already to clinical studies on hippocampus and lateral ventricle shape in adult schizophrenics. The novelty of this submission is the use of the Hotelling T2 two-sample group difference metric for the computation of a template free statistical shape analysis. Template free group testing allowed this framework to become independent of any template choice, as well as it improved the

  20. Extracting the Shape and Size of Biomolecules Attached to a Surface as Suspended Discrete Nanoparticles.

    Science.gov (United States)

    Milioni, Dimitra; Tsortos, Achilleas; Velez, Marisela; Gizeli, Electra

    2017-03-22

    The ability to derive information on the conformation of surface attached biomolecules by using simple techniques such as biosensors is currently considered of great importance in the fields of surface science and nanotechnology. Here we present a nanoshape sensitive biosensor where a simple mathematical expression is used to relate acoustic measurements to the geometrical features of a surface-attached biomolecule. The underlying scientific principle is that the acoustic ratio (ΔD/ΔF) is a measure of the hydrodynamic volume of the attached entity, mathematically expressed by its intrinsic viscosity [η]. A methodology is presented in order to produce surfaces with discretely bound biomolecules where their native conformation is maintained. Using DNA anchors we attached a spherical protein (streptavidin) and a rod-shaped DNA (47bp) to a quartz crystal microbalance (QCM) device in a suspended way and predicted correctly through acoustic measurements their conformation, i.e., shape and length. The methodology can be widely applied to draw conclusions on the conformation of any biomolecule or nanoentity upon specific binding on the surface of an acoustic wave device.

  1. Optical feather and foil for shape and dynamic load sensing of critical flight surfaces

    Science.gov (United States)

    Black, Richard J.; Costa, Joannes M.; Faridian, Fereydoun; Moslehi, Behzad; Pakmehr, Mehrdad; Schlavin, Jon; Sotoudeh, Vahid; Zagrai, Andrei

    2014-04-01

    Future flight vehicles may comprise complex flight surfaces requiring coordinated in-situ sensing and actuation. Inspired by the complexity of the flight surfaces on the wings and tail of a bird, it is argued that increasing the number of interdependent flight surfaces from just a few, as is normal in an airplane, to many, as in the feathers of a bird, can significantly enlarge the flight envelope. To enable elements of an eco-inspired Dynamic Servo-Elastic (DSE) flight control system, IFOS is developing a multiple functionality-sensing element analogous to a feather, consisting of a very thin tube with optical fiber based strain sensors and algorithms for deducing the shape of the "feather" by measuring strain at multiple points. It is envisaged that the "feather" will act as a unit of sensing and/or actuation for establishing shape, position, static and dynamic loads on flight surfaces and in critical parts. Advanced sensing hardware and software control algorithms will enable the proposed DSE flight control concept. The hardware development involves an array of optical fiber based sensorized needle tubes for attachment to key parts for dynamic flight surface measurement. Once installed the optical fiber sensors, which can be interrogated over a wide frequency range, also allow damage detection and structural health monitoring.

  2. Microscopic analysis of quadrupole-octupole shape evolution

    Directory of Open Access Journals (Sweden)

    Nomura Kosuke

    2015-01-01

    Full Text Available We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdf interacting boson model (IBM, that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in large sets of nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 – β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  3. AUTO-SHAPE ANALYSIS OF IMAGE TEXTURES IN FRACTOGRAPHY

    Directory of Open Access Journals (Sweden)

    Hynek Lauschmann

    2011-05-01

    Full Text Available The aim of this study is to estimate the velocity of fatigue crack growth (crack growth rate - CGR from the texture in SEM images of crack surfaces. A simple and quick method is based on fitting training images as a linear combination of several small subimages selected from the images themselves. The size of basic subimages is derived from autocorrelation functions of the image in row and column direction. The selection of basic subimages is based on two indicators: "appeal" evaluating their shape content, and mutual coefficient of correlation. The method is easy to implement and quick in computations, while results of testing application are fully comparable with best ones obtained within textural fractography of fatigue failures.

  4. The Effects of Different Electrode Types for Obtaining Surface Machining Shape on Shape Memory Alloy Using Electrochemical Machining

    Science.gov (United States)

    Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.

    2017-06-01

    Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.

  5. Multichannel analysis of surface waves

    Science.gov (United States)

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  6. Shape sensitivity analysis in numerical modelling of solidification

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2007-12-01

    Full Text Available The methods of sensitivity analysis constitute a very effective tool on the stage of numerical modelling of casting solidification. It is possible, among others, to rebuilt the basic numerical solution on the solution concerning the others disturbed values of physical and geometrical parameters of the process. In this paper the problem of shape sensitivity analysis is discussed. The non-homogeneous casting-mould domain is considered and the perturbation of the solidification process due to the changes of geometrical dimensions is analyzed. From the mathematical point of view the sensitivity model is rather complex but its solution gives the interesting information concerning the mutual connections between the kinetics of casting solidification and its basic dimensions. In the final part of the paper the example of computations is shown. On the stage of numerical realization the finite difference method has been applied.

  7. Stability Analysis of BLDC Motor Drive based on Input Shaping

    Directory of Open Access Journals (Sweden)

    M.Murugan

    2013-10-01

    Full Text Available The main objective of this work is to analyze the brushless DC (BLDC motor drive system with input shaping using classical control theory. In this paper, different values of damping ratio are used to understand the generalized drive performance. The transient response of the BLDC motor drive system is analyzed using time response analysis. The dynamic behaviour and steady state performance of the BLDC motor drive system is judged and compared by its steady state error to various standard test signals. The relative stability of this drive system is determined by Bode Plot. These analysis spotlights that it is possible to obtain a finite-time setting response without oscillation in BLDC motor drive by applying input in four steps of different amplitude to the drive system. These analyses are helpful to design a precise speed control system and current control system for BLDC motor drive with fast response. The Matlab/Simulink software is used to perform the simulation.

  8. Determination of the Dissolution Slowness Surface by Study of Etched Shapes: II. Comparison of 2D Experimental and Theoretical Etching Shapes

    Science.gov (United States)

    Leblois, T.; Tellier, C. R.; Messaoudi, T.

    1997-03-01

    The anisotropic etching behavior of quartz crystal in concentrated ammonium bifluoride solution is studied and analyzed in the framework of a tensorial model. This model allows to simulate bi- or three-dimensional etching shapes from the equation for the representative surface of the dissolution slowness. In this paper, we present experimental results such as surface profile and initially circular cross-sectional profiles of differently singly- or doubly-rotated cuts. The polar diagrams of the dissolution slowness vector in several planes are deduced from experimental data. The comparison between predicted surface and cross-sectional profiles and experimental results is detailed and shows a good agreement. In particular, several examples give evidence that the final etched shapes are correlated to the extrema of the dissolution slowness. However, in several cases, experimental shapes cannot be simply correlated to the presence of extrema. Simulation gives effectively evidence for an important role played by more progressive changes in the curvature of the slowness surface. Consequently, analysis of data merits to be treated carefully. Nous nous proposons d'étudier et d'analyser à l'aide du modèle tensoriel de la dissolution l'attaque chimique anisotrope du cristal de quartz dans une solution concentrée de bifluorure d'ammonium. Ce modèle permet de simuler des formes usinées à deux ou trois dimensions à partir de l'équation de la surface représentative de la lenteur de dissolution du cristal de quartz. Dans cet article, nous présentons des résultats expérimentaux concernant des profils de surface et des sections initialement cylindriques de coupes à simple et double rotation. Les diagrammes polaires du vecteur lenteur de dissolution dans différents plans sont déduits de données expérimentales. La comparaison entre les profils de surface et de section théoriques et les résultats expérimentaux est détaillée et montre un bon accord. En

  9. The Effect of Surface Finish on Sculptured Shape Utilizing Scanned Data – Reversed Engineering (CATIA V5 & DELCAM

    Directory of Open Access Journals (Sweden)

    Syahrul Azwan Sundi

    2017-01-01

    Full Text Available The ultimate aim of this study was to investigate the effect of surface finish for a machined part which was programmed by two popular CAD/CAM software namely Catia V5 and Delcam using scanned data obtained from one of the Reverse Engineering methods namely Three-Dimensional (3D scanning process. A gaming mouse was chosen as the physical part to be scanned and machined because of its sculptured shape and wavy looks. In this study, simultaneous three-axis machining programs were created and machined using three-axis Computer Numerical Control (CNC Milling machine. Initially, the physical gaming mouse gone through the first process called scanning process using a 3D scanner; model 700 CX in order to capture the 3D CAD data in points cloud form. The raw scanning data then gone through editing process to obtain better surfaces. Moreover, the stable and edited CAD model then undergone CAD/CAM programming process for both mentioned software respectively. There were ten random points chosen to be analyzed for the surface roughness analysis. The arithmetic mean value (Ra was used as the roughness value reference. The results reveal that the average surface roughness for the ten points was 0.232 μm for Catia V5 whilst for Delcam was around 0.274 μm. Ultimately, Catia V5 producing better surface finish compared to Delcam software concluded from the analysis carried out as presented in this paper.

  10. Laser forming of a bowl shaped surface with a stationary laser beam

    Science.gov (United States)

    Chakraborty, Shitanshu Shekhar; More, Harshit; Nath, Ashish Kumar

    2016-02-01

    Despite a lot of research done in the field of laser forming, generation of a symmetric bowl shaped surface by this process is still a challenge mainly because only a portion of the sheet is momentarily deformed in this process, unlike conventional sheet metal forming like deep drawing where the entire blank undergoes forming simultaneously reducing asymmetry to a minimum. The motion of laser beam also makes the process asymmetric. To counter these limitations this work proposes a new approach for laser forming of a bowl shaped surface by irradiating the centre of a flat circular blank with a stationary laser beam. With high power lasers, power density sufficient for laser forming, can be availed at reasonably large spot sizes. This advantage is exploited in this technique. Effects of duration of laser irradiation and beam spot diameter on the amount of bending and asymmetry in the formed surface were investigated. Laser power was kept constant while varying irradiation time. While varying laser spot diameter laser power was chosen so as to keep the surface temperature nearly constant at just below melting. Experimental conditions promoted almost uniform heating through sheet thickness. The amount of bending increased with irradiation time and spot diameter. It was interesting to observe that blanks bent towards the laser beam for smaller laser beam diameters and the reverse happened for larger spot diameters (~10 times of the sheet thickness). Effect of spot diameter variation has been explained with the help of coupled thermal-structural finite element simulations.

  11. Deciphering the shape and deformation of secondary structures through local conformation analysis

    Directory of Open Access Journals (Sweden)

    Camproux Anne-Claude

    2011-02-01

    Full Text Available Abstract Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  12. Effect of Ag shapes and surface compositions on the photocatalytic performance of Ag/ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jia [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan (China); School of Mechanical Engineering, Hubei University of Technology, Wuhan (China); Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan (China); Wang, Huihu, E-mail: wanghuihu@mail.hbut.edu.cn [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan (China); School of Mechanical Engineering, Hubei University of Technology, Wuhan (China); Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan (China); Dong, Shijie [School of Mechanical Engineering, Hubei University of Technology, Wuhan (China); Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan (China); Wang, Fanqiang; Dong, Yifan [School of Mechanical Engineering, Hubei University of Technology, Wuhan (China)

    2014-12-25

    Highlights: • Ag/ZnO nanorods were synthesized via photoreduction and hydrothermal methods. • Ag presents nanosheet and nanoparticle shapes in different synthesis methods. • SPR effect and Ag{sup +} is observed only for Ag/ZnO prepared by hydrothermal method. • Ag nanosheets modified ZnO shows the high activity under UV–Vis. irradiation. • Only Ag nanoparticles modified ZnO nanorods has the visible-light-driven activity. - Abstract: Photoreduction and hydrothermal methods were used respectively to prepare Ag surface modified ZnO nanorods in this paper. The surface microstructure and photocatalytic performance of Ag/ZnO nanorods for methyl orange degradation were evaluated in detail. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS) and UV–Vis. diffuse reflectance spectroscopy (DRS) were used for microstructure analysis of as-prepared Ag/ZnO nanorods. FESEM images showed that Ag presented nanosheets in Ag/ZnO sample (AZP) prepared by photoreduction method, while it exhibited nanoparticles in the sample (AZH) using hydrothermal method. DRS studies clearly displayed surface plasmon resonance (SPR) effect of Ag in AZH samples. Furthermore, there was a red shift on absorption edge for AZH samples compared with bare ZnO and AZP samples. The XPS results revealed that Ag{sup +} ions existed on the surface of AZH samples. In contrast to AZH sample, AZP sample demonstrated the higher photocatalytic activity under UV–Vis. light illumination. However, it was interesting that AZH samples exhibited the visible-light-driven photocatalytic activity, which may be due to the cooperation role of the existence of Ag{sup +} ions and SPR effect of Ag nanoparticles. All these results illustrated that the shapes and surface compositions of Ag may be important factors that influence the photocatalytic performance of Ag/ZnO nanorods. The surface microstructure related photocatalytic mechanism was finally

  13. Tetrahedral shape and surface density wave of $^{16}$O caused by $\\alpha$-cluster correlations

    CERN Document Server

    Kanada-En'yo, Yoshiko

    2016-01-01

    $\\alpha$-cluster correlations in the $0^+_1$ and $3^-_1$ states of $^{12}$C and $^{16}$O are studied using the method of antisymmetrized molecular dynamics, with which nuclear structures are described from nucleon degrees of freedom without assuming existence of clusters. The intrinsic states of $^{12}$C and $^{16}$O have triangle and tetrahedral shapes, respectively, because of the $\\alpha$-cluster correlations. These shapes can be understood as spontaneous symmetry breaking of rotational invariance, and the resultant surface density oscillation is associated with density wave (DW) caused by the instability of Fermi surface with respect to particle-hole correlations with the wave number $\\lambda=3$. $^{16}$O($0^+_1$) and $^{16}$O($3^-_1$) are regarded as a set of parity partners constructed from the rigid tetrahedral intrinsic state, whereas $^{12}$C($0^+_1$) and $^{12}$C($3^-_1$) are not good parity partners as they have triangle intrinsic states of different sizes with significant shape fluctuation because...

  14. Influence of Er:YAG laser ablation on cavity surface and cavity shape

    Science.gov (United States)

    Jelinkova, Helena; Dostalova, Tatjana; Krejsa, Otakar; Hamal, Karel; Kubelka, Jiri; Prochazka, Stanislav

    1996-04-01

    The cavity surface and shape after Er:YAG laser ablation at different energies, number of pulses and at a different repetition rate were observed. Longitudinal sections of extracted human incisors and transverse sections of ivory tusk were cut and polished to flat and glazed surfaces. The samples thickness was from 3 to 5 mm. The Er:YAG laser was operating in a free-running (long pulse) mode. The laser radiation was focused onto the tooth surface by CaF2 lens (f equals 55 mm). During the experiment, the teeth were steady and the radiation was delivered by a special mechanical arm fixed in a special holder; fine water mist was also used (water-mJ/min, a pressure of two atm, air-pressure three atm). The shapes of the prepared cavities were studied either by using a varying laser energies (from 70 mJ to 500 mJ) for a constant number of pulses, or a varying number of pulses (from one to thirty) for constant laser energy. The repetition rate was changed from 1 to 2 Hz. For evaluating the surfaces, shapes, and profiles, scanning electron microscopy and photographs from a light microscope were used. The results were analyzed both quantitatively and qualitatively. It is seen that there is no linear relation between the radiation pulse energy and the size of the prepared holes. With increasing the incident energy the cavity depth growth is limited. There exists some saturation not only in the enamel and dentin but especially in the homogeneous ivory.

  15. Shape, thermal and surface properties determination of a candidate spacecraft target asteroid (175706) 1996 FG3

    Science.gov (United States)

    Yu, LiangLiang; Ji, Jianghui; Wang, Su

    2014-04-01

    In this paper, a 3D convex shape model of (175706) 1996 FG3, which consists of 2040 triangle facets and 1022 vertices, is derived from the known light curves. The best-fitting orientation of the asteroid's spin axis is determined to be λ = 237.27° and β = -83.8° considering the observation uncertainties, and its rotation period is ˜3.5935 h. Using the derived shape model, we adopt the so-called advanced thermophysical model (ATPM) to fit three published sets of mid-infrared observations of 1996 FG3, so as to evaluate its surface properties. Assuming the primary and the secondary bear identical shape, albedo, thermal inertia and surface roughness, the best-fitting parameters are obtained from the observations. The geometric albedo and effective diameter of the asteroid are reckoned to be pv = 0.045 ± 0.002, D_eff=1.69^{+0.05}_{-0.02} km. The diameters of the primary and secondary are determined to be D1=1.63^{+0.04}_{-0.03} km and D2=0.45^{+0.04}_{-0.03} km, respectively. The surface thermal inertia Γ is derived to be a low value of 80 ± 40 Jm-2 s-0.5 K-1 with a roughness fraction fR of 0.8^{+0.2}_{-0.4}. This indicates that the primary possibly has a regolith layer on its surface, which is likely to be covered by a mixture of dust, fragmentary rocky debris and sand. The minimum regolith depth is estimated to be 5-20 mm from the simulations of subsurface temperature distribution, indicating that 1996 FG3 could be a very suitable target for a sample return mission.

  16. Aerodynamic shape optimization of a HSCT type configuration with improved surface definition

    Science.gov (United States)

    Thomas, Almuttil M.; Tiwari, Surendra N.

    1994-01-01

    Two distinct parametrization procedures of generating free-form surfaces to represent aerospace vehicles are presented. The first procedure is the representation using spline functions such as nonuniform rational b-splines (NURBS) and the second is a novel (geometrical) parametrization using solutions to a suitably chosen partial differential equation. The main idea is to develop a surface which is more versatile and can be used in an optimization process. Unstructured volume grid is generated by an advancing front algorithm and solutions obtained using an Euler solver. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an automatic differentiator precompiler software tool. Aerodynamic shape optimization of a complete aircraft with twenty four design variables is performed. High speed civil transport aircraft (HSCT) configurations are targeted to demonstrate the process.

  17. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr; Jeffrey W.

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  18. The Favourable Choice of the Shape of Billet's Contact Surface to Quality of Extruded Aluminium Profiles

    Directory of Open Access Journals (Sweden)

    G. Skorulski

    2010-07-01

    Full Text Available The theoretical and experimental method of optimization the aluminium billet’s contact surface during extrusion have been presented inthis paper. The theoretical assumption, based on welding criteria, have been confirmed by experimental researches. The technique ofmeasurement has been shown as well. Experiments are made using plasticine as a substiute material. Some kind of different variants have been investigated. The theory and experiments have been provided to optimize the modeling shape and may help in design and technology.The theory has been tested experimentally using a plasticine as a substitute material and a plexiglass die such that the velocity fields at the surfaces could be observed and measured during plastic flow, allowing the empirical coefficients in the mathematical formulation to be estimated. On the basis of the theory and experiments an optimal billet’s contact surface was proposed.

  19. Interfacial tension measurements using MRI drop shape analysis.

    Science.gov (United States)

    Hussain, R; Vogt, S J; Honari, A; Hollingsworth, K G; Sederman, A J; Mitchell, J; Johns, M L

    2014-02-18

    Accurate interfacial tension data for fluid systems such as hydrocarbons and water is essential to many applications such as reservoir oil and gas recovery predictions. Conventional interfacial tension measurement techniques typically use optical images to analyze droplet shapes but require that the continuous-phase fluid be optically transparent and that the fluids are not refractive index matched. Magnetic resonance images obtain contrast between fluids using other mechanisms such as magnetic relaxation weighting, so systems that are impossible to measure with optical methods may be analyzed. In this article, we present high-field (9.4 T) MRI images of various droplets analyzed with axisymmetric drop shape analysis. The resultant interfacial tension data show good agreement with literature data. The method is subsequently demonstrated using both opaque continuous phases and refractive-index-matched fluids. We conclude with a brief consideration of the potential to extrapolate the methodology to lower magnetic fields (0.3 T), featuring more accessible hardware; although droplet imaging is possible, resolution and stability do not currently permit accurate interfacial tension measurements.

  20. Calcium Pectinate Beads Formation: Shape and Size Analysis

    Directory of Open Access Journals (Sweden)

    Boon-Beng Lee

    2014-04-01

    Full Text Available The aim of this study was to investigate the inter-relationship between process variables and the size and shape of pectin solution droplets upon detachment from a dripping tip as well as Ca-pectinate beads formed after gelation via image analysis. The sphericity factor (SF of the droplets was generally smaller than 0.05. There was no specific trend between the SF of the droplets and the pectin concentration or the dripping tip radius. The SF the beads formed from high-concentration pectin solutions and a small dripping tip was smaller than 0.05. The results show that the Reynolds number and Ohnesorge number of the droplets fall within the operating region for forming spherical beads in the shape diagram, with the exception to the lower boundary. The lower boundary of the operating region has to be revised to Oh = 2.3. This is because the critical viscosity for Ca-pectinate bead formation is higher than that of Ca-alginate beads. On the other hand, the radius of the droplets and beads increased as the dripping tip radius increased. The bead radius can easily be predicted by Tate’s law equation.

  1. A mechanical analysis of myomere shape in fish.

    Science.gov (United States)

    Van Leeuwen, J L

    1999-12-01

    An architectural analysis is offered of the trunk muscles in fish, which are arranged in a longitudinal series of geometrically complex myomeres. The myomeres are separated by myosepta, collagenous sheets with complex fibre patterns. The muscle fibres in the myomeres are also arranged in complex three-dimensional patterns. Previously, it has been proposed that the muscle fibre arrangement allows for a uniform strain distribution within the muscle. Physical constraints limit the range of shapes that fibre-reinforced materials such as muscles can adopt, irrespective of their genetic profile. The three-dimensional shapes of myosepta are predicted by mechanical modelling from the requirements for mechanical stability and prescribed muscle fibre arrangements. The model can also be used to study the force transmission and likely locations of ligaments and bones in the myosepta. The model shows that the dorsal and ventral fins are located such that unfavourable mechanical interactions with the trunk muscles are avoided. In bony fish, extensive muscular deformations (notably in the region of the horizontal septum) that would not contribute to bending are avoided by the mechanical support of the skin, intramuscular bones and ribs. In sharks, the skin plays a more prominent role in avoiding such deformations because of the absence of bony elements.

  2. ANALYSIS OF TIPOVER STABILITY FOR NOVEL SHAPE SHIFTING MODULAR ROBOT

    Institute of Scientific and Technical Information of China (English)

    LIU Jinguo; WANG Yuechao; MA Shugen; LI Bin

    2006-01-01

    A novel three-module robot has been introduced. It can change its configuration toadapt to the uneven terrain and to improve its tipover stability. This three-module tracked robot has three kinds of symmetry configuration. They are line type, triangle type, and row type. After the factors and the countermeasures of mobile robot's tipover problem are analyzed, stability pyramid and tipover stability index are proposed to globally determinate the mobile robot's static stability and dynamic stability.The shape shifting robot is tested by this technique under the combined disturbance of pitch, roll and yaw in simulation. The simulation result shows that this technique is effective for the analysis of mobile robot's tipover stability, especially for the reconfigurable or shape shifting modular robot.Experiments on three symmetry configurations are made under unstructured environments. The environment experiment shows the same result as that of the simulation that the triangle type configuration has the best stability. Both simulation and experiment provide a valid reference for the reconfigurable robot's potential application.

  3. Information extraction from topographic map using colour and shape analysis

    Indian Academy of Sciences (India)

    Nikam Gitanjali Ganpatrao; Jayanta Kumar Ghosh

    2014-10-01

    The work presented in this paper is related to symbols and toponym understanding with application to scanned Indian topographic maps. The proposed algorithm deals with colour layer separation of enhanced topographic map using kmeans colour segmentation followed by outline detection and chaining, respectively. Outline detection is performed through linear filtering using canny edge detector. Outline is then encoded in a Freeman way, the x-y offsets have been used to obtain a complex representation of outlines. Final matching of shapes is done by computing Fourier descriptors from the chain-codes; comparison of descriptors having same colour index is embedded in a normalized scalar product of descriptors. As this matching process is not rotation invariant (starting point selection), an interrelation function has been proposed to make the method shifting invariant. The recognition rates of symbols, letters and numbers are 84.68, 91.73 and 92.19%, respectively. The core contribution is dedicated to a shape analysis method based on contouring and Fourier descriptors. To improve recognition rate, obtaining most optimal segmentation solution for complex topographic map will be the future scope of work.

  4. Geometry- and Length Scale-Dependent Deformation and Recovery on Micro- and Nanopatterned Shape Memory Polymer Surfaces

    Science.gov (United States)

    Lee, Wei Li; Low, Hong Yee

    2016-03-01

    Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets.

  5. Application specific beam profiles: new surface and thin-film refinement processes using beam shaping technologies

    Science.gov (United States)

    Hauschild, Dirk

    2017-02-01

    Today, the use of laser photons for materials processing is a key technology in nearly all industries. Most of the applications use circular beam shapes with Gaussian intensity distribution that is given by the resonator of the laser or by the power delivery via optical fibre. These beam shapes can be typically used for material removal with cutting or drilling and for selective removal of material layers with ablation processes. In addition to the removal of materials, it is possible to modify and improve the material properties in case the dose of laser photons and the resulting light-material interaction addresses a defined window of energy and dwell-time. These process windows have typically dwell-times between µs and s because of using sintering, melting, thermal diffusion or photon induced chemical and physical reaction mechanisms. Using beam shaping technologies the laser beam profiles can be adapted to the material properties and time-temperature and the space-temperature envelopes can be modified to enable selective annealing or crystallization of layers or surfaces. Especially the control of the process energy inside the beam and at its edges opens a large area of laser applications that can be addressed only with an optimized spatial and angular beam profile with down to sub-percent intensity variation used in e.g. immersion lithography tools with ArF laser sources. LIMO will present examples for new beam shapes and related material refinement processes even on large surfaces and give an overview about new mechanisms in laser material processing for current and coming industrial applications.

  6. Electrochemical behavior of Cu-Zn-Al shape memory alloy after surface modification by electroless plated Ni-P

    Institute of Scientific and Technical Information of China (English)

    LIANG Chenghao; CHEN Bangyi; CHEN Wan; WANG Hua

    2004-01-01

    The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with and without electroless plated Ni-P was investigated by electrochemical methods in artificial Tyrode's solution. The results showed that Cu-Zn-Al SMA engendered dezincification corrosion in Tyrode's solution. The anodic active current densities as well as electrochemical dissolution sensitivity of the electroless plated Ni-P Cu-Zn-Al SMA increased with NaCl concentration rising, pH of solution decreasing and environmental temperature uprising. X-ray diffraction analysis indicated that after surface modification by electroless plated Ni-P, an amorphous plated film formed on the surface of Cu-Zn-Al SMA. This film can effectively isolate matrix metal from corrosion media and significantly improve the electrochemical property of Cu-Zn-Al SMA in artificial Tyrode's solution.

  7. EarthShape: A Strategy for Investigating the Role of Biota on Surface Processes

    Science.gov (United States)

    Übernickel, Kirstin; Ehlers, Todd Alan; von Blanckenburg, Friedhelm; Paulino, Leandro

    2017-04-01

    EarthShape - "Earth surface shaping by biota" is a 6-year priority research program funded by the German science foundation (DFG-SPP 1803) that performs soil- and landscape-scale critical zone research at 4 locations along a climate gradient in Chile, South America. The program is in its first year and involves an interdisciplinary collaboration between geologists, geomorphologists, ecologists, soil scientists, microbiologists, geophysicists, geochemists, hydrogeologists and climatologists including 18 German and 8 Chilean institutions. EarthShape is composed of 4 research clusters representing the process chain from weathering of substrate to deposition of eroded material. Cluster 1 explores micro-biota as the "weathering engine". Investigations in this cluster quantify different mechanisms of biogenic weathering whereby plants, fungi, and bacteria interact with rock in the production of soil. Cluster 2 explores bio-mediated redistribution of material within the weathering zone. Studies in this cluster focus on soil catenas along hill slope profiles to investigate the modification of matter along its transport path. Cluster 3 explores biotic modulation of erosion and sediment routing at the catchment scale. Investigations in this cluster explore the effects of vegetation cover on solute and sediment transport from hill slopes to the channel network. Cluster 4 explores the depositional legacy of coupled biogenic and Earth surface systems. This cluster investigates records of vegetation-land surface interactions in different depositional settings. A final component of EarthShape lies in the integration of results from these 4 clusters using numerical models to bridging between the diverse times scales used by different disciplines. The Chilean Coastal Cordillera between 25° and 40°S was selected to carry out this research because its north-south orientation captures a large ecological and climate gradient. This gradient ranges from hyper-arid (Atacama desert) to

  8. Light scattering resonances in arbitrarily shaped one-dimensional reentrant surfaces

    Science.gov (United States)

    Negrete-Regagnon, Pedro; Hernandez-Walls, Rafael; Ruiz-Cortes, Victor

    2000-09-01

    Multiple scattering and shape-related effects are an active and important field of research in the area of diffraction and scattering of electromagnetic waves by rough surfaces. Most of the rigorous numerical techniques for dealing with this problem were limited to the treatment of single-valued surfaces. We have extended the formulation of Mendoza- Suarez and Mendez (1997) for dealing with multi-valued profile functions in order to study the scattering of reentrant surfaces or cavities in both, the near and far-field. We have evaluated the near-field in circular cavities with narrow entrances, as well as in the case of clusters of rods or cylinders. Resonant frequencies are clearly identified for these structures. We have also found that our model could be useful to predict wave-induced oscillations in harbors of arbitrary geometry. This comes form the fact that the mathematical formulation of the problem of light scattering by cavities (in the case of p polarization) is similar to the one employed in the case of harbors of arbitrary shape, when a water wave arrives at its entrance (Hwang and Tuck, 1970; Lee, 1971). The results obtained with our model are in close agreement with previously reported theories and experimental data.

  9. A smart car for the surface shape measurement of large antenna based on laser tracker

    Science.gov (United States)

    Gu, Yonggang; Hu, Jing; Jin, Yi; Zhai, Chao

    2012-09-01

    The geometric accuracy of the surface shape of large antenna is an important indicator of antenna’s quality. Currently, high-precision measurement of large antenna surface shape can be performed in two ways: photogrammetry and laser tracker. Photogrammetry is a rapid method, but its accuracy is not enough good. Laser tracker can achieve high precision, but it is very inconvenient to move the reflector (target mirror) on the surface of the antenna by hand during the measurement. So, a smart car is designed to carry the reflector in this paper. The car, controlled by wireless, has a small weight and a strong ability for climbing, and there is a holding bracket gripping the reflector and controlling reflector rise up and drop down on the car. During the measurement of laser tracker, the laser beam between laser tracker and the reflector must not be interrupted, so two high-precision three-dimensional miniature electronic compasses, which can real-time monitor the relative angle between the holding bracket and the laser tracker’s head, are both equipped on the car and the head of laser tracker to achieve automatic alignment between reflector and laser beam. With the aid of the smart car, the measurement of laser tracker has the advantages of high precision and rapidity.

  10. Superhydrophobic Surface With Shape Memory Micro/Nanostructure and Its Application in Rewritable Chip for Droplet Storage.

    Science.gov (United States)

    Lv, Tong; Cheng, Zhongjun; Zhang, Dongjie; Zhang, Enshuang; Zhao, Qianlong; Liu, Yuyan; Jiang, Lei

    2016-09-21

    Recently, superhydrophobic surfaces with tunable wettability have aroused much attention. Noticeably, almost all present smart performances rely on the variation of surface chemistry on static micro/nanostructure, to obtain a surface with dynamically tunable micro/nanostructure, especially that can memorize and keep different micro/nanostructures and related wettabilities, is still a challenge. Herein, by creating micro/nanostructured arrays on shape memory polymer, a superhydrophobic surface that has shape memory ability in changing and recovering its hierarchical structures and related wettabilities was reported. Meanwhile, the surface was successfully used in the rewritable functional chip for droplet storage by designing microstructure-dependent patterns, which breaks through current research that structure patterns cannot be reprogrammed. This article advances a superhydrophobic surface with shape memory hierarchical structure and the application in rewritable functional chip, which could start some fresh ideas for the development of smart superhydrophobic surface.

  11. Modeling and simulating of V-shaped piezoelectric micro-cantilevers using MCS theory considering the various surface geometries

    Science.gov (United States)

    Korayem, A. H.; Kianfar, A.; Korayem, M. H.

    2016-10-01

    Atomic force microscopy (AFM) is widely used as a tool in studying surfaces and mechanical properties of materials at nanoscale. This paper deals with mechanical and vibration analysis of AFM vibration in the non-contact and tapping modes for V-shaped piezoelectric micro-cantilever (MC) with geometric discontinuities and cross section variation in the air ambient. In the vibration analysis, Euler-Bernoulli beam theory based on modified couple stress (MCS) theory has been used. The governing equation of motion has been derived by using Hamilton's principle. By adopting finite element method (FEM), the MC differential equation has been solved. Damping matrix was considered in the modal space. Frequency response was obtained by using Laplace transform, and it has been compared with experimental results. Newmark algorithm has been used based on constant average acceleration to analyze time response of MC, and then time response results in the vibration mode, far from the sample surface have been compared with experimental data. In vicinity of sample surface, MC is influenced by various nonlinear forces between the probe tip and sample surface, including van der Waals, contact, and capillary forces. Time response was examined at different distances between MC base and sample surface, and the best distance was selected for topography. Topography results of different types of roughness showed that piezoelectric MC has been improved in the air ambient. Topography showed more accurate forms of roughness, when MC passes through sample surface at higher frequencies. The surface topography investigation for tapping and non-contact modes showed that using of these two modes are suitable for topography.

  12. Application of nondiffracting Bessel beams for shaping of surface metal microstructures

    Science.gov (United States)

    Drampyan, Rafael; Leonov, Nikita; Vartanyan, Tigran

    2016-08-01

    A novel method of laser-controlled shaping of metal microstructures based on the processes of metal atoms adsorption on the surface of crystalline substrate and simultaneous control of photostimulated desorption of atoms by spatially modulated nondiffracting laser beam illumination is presented. The experiments were performed for sodium atoms deposition to the sapphire substrate, which was illuminated by Bessel beam at 532 nm wavelength and 2 W/cm2 intensity. Experiments showed that the optical pattern was well reproduced in the sodium deposits thus creating the annularly microstructured metal film with few tens nanometre thickness.

  13. The shape and surface variation of 2 Pallas from the Hubble Space Telescope.

    Science.gov (United States)

    Schmidt, B E; Thomas, P C; Bauer, J M; Li, J-Y; McFadden, L A; Mutchler, M J; Radcliffe, S C; Rivkin, A S; Russell, C T; Parker, J Wm; Stern, S A

    2009-10-09

    We obtained Hubble Space Telescope images of 2 Pallas in September 2007 that reveal distinct color and albedo variations across the surface of this large asteroid. Pallas's shape is an ellipsoid with radii of 291 (+/-9), 278 (+/-9), and 250 (+/-9) kilometers, implying a density of 2400 (+/-250) kilograms per cubic meter-a value consistent with a body that formed from water-rich material. Our observations are consistent with the presence of an impact feature, 240 (+/-25) kilometers in diameter, within Pallas's ultraviolet-dark terrain. Our observations imply that Pallas is an intact protoplanet that has undergone impact excavation and probable internal alteration.

  14. An optical pressure sensor based on π-shaped surface plasmon polariton resonator

    Science.gov (United States)

    Duan, Gaoyan; Lang, Peilin; Wang, Lulu; Yu, Li; Xiao, Jinghua

    2016-07-01

    We propose a metal-insulator-metal (MIM) structure which consists of a π-shaped resonator and a surface plasmon polariton (SPP) waveguide. The finite element method (FEM) is employed in the simulation. The results show that this structure forms an optical pressure sensor. The transmission spectra have a redshift with increasing pressure, and the relation between the wavelength shift and the pressure is linear. The nanoscale pressure sensor shows a high sensitivity and may have potential applications in biological and biomedical engineering.

  15. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    CERN Document Server

    Lei, Zeyu

    2015-01-01

    We report the design and experimental realization of a kind of miniaturized devices for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two dimensional launching efficiency of about 51%, under the normal illumination of a 5-{\\mu}m waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel and Airy profiles are launched and imaged with leakage radiation microscopy.

  16. The effect of nanoparticle size, shape, and surface chemistry on biological systems.

    Science.gov (United States)

    Albanese, Alexandre; Tang, Peter S; Chan, Warren C W

    2012-01-01

    An understanding of the interactions between nanoparticles and biological systems is of significant interest. Studies aimed at correlating the properties of nanomaterials such as size, shape, chemical functionality, surface charge, and composition with biomolecular signaling, biological kinetics, transportation, and toxicity in both cell culture and animal experiments are under way. These fundamental studies will provide a foundation for engineering the next generation of nanoscale devices. Here, we provide rationales for these studies, review the current progress in studies of the interactions of nanomaterials with biological systems, and provide a perspective on the long-term implications of these findings.

  17. Shape matching algorithm to validate the tracing protocol of placental chorionic surface vessel networks

    Science.gov (United States)

    Shah, R.G.; Salafia, C.M.; Girardi, T.; Conrad, L.; Keaty, K.

    2015-01-01

    Variability in placental chorionic surface vessel networks (PCSVNs) may mark developmental and functional changes in fetal health. Here we report a protocol of manually tracing PCSVNs from digital 2D images of post-delivery placentas and its validation by a shape matching method to compare the similarity between paint-injected and unmanipulated (uninjected and deflated vessels) tracings of PCSVNs. We show that tracings of unmanipulated vessels produce networks that are very comparable to the networks obtained by tracing paint-injected PCSVNs. We suggest that manual tracings of unmanipulated PCSVNs can extract features of PCSVN growth and structure that may impact fetal wellbeing. PMID:26100723

  18. Laser surface alloying fabricated porous coating on NiTi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Song; ZHANG Chun-hua; MAN Hau-chung; LIU Chang-sheng

    2007-01-01

    Laser surface alloying technique was applied to fabricate a metallic porous coating on a solid NiTi shape memory alloy. By laser surface alloying a 40%TiH2-60%NiTi powder mixture on the surface of NiTi alloy using optimized laser process parameters, a porous but crack-free NiTi layer can be fabricated on the NiTi substrate. The porous coating is metallurgically bonded to the substrate NiTi alloy. The pores are uniformly distributed and are interconnected with each other in the coating. An average pore size of less than 10 μm is achieved. The Ni content of the porous layer is much less than that of the original NiTi surface. The existence of the porous coating on the NiTi alloy causes a 37% reduction of the tensile strength and 55% reduction of the strain as compared with the NiTi alloy. Possible biomedical or other applications for this porous surface with good mechanical strength provided by the substrate are prospective.

  19. Application of software for the optimization of the surface shape of nets for chestnut harvesting

    Directory of Open Access Journals (Sweden)

    Andrea Formato

    2013-09-01

    Full Text Available In this research conveyance nets for the chestnuts harvest have been considered and the optimization of the surface shape of the chestnuts harvest nets has been performed. Indeed, a steep zone with chestnut trees has been considered, with maximum length of 90 m and maximum width of 60 m and the geometric model of the considered zone has been obtained, by mean GIS system and “Archicad 14” program code, obtaining also the soil local slope distribution. The chestnuts fallen have been simulated by mean a “rain device” available in “Sitetopo” program code. This program has allowed to evaluate the rain draining in function of the considered surface slope. Further, the zone with lower quote, for the considered surface, is the zone in that the chestnuts have to be convoyed, “basin zone”. Indeed, by mean “Sitetopo” program code, it has been possible to evaluate the rain draining contour-plot, and the conveyance effect, that is, where the rain flow is convoyed. This has been obtained by changing of the net surface slope on that, the rain (simulating the chestnuts fallen. Indeed the nets have been located following the determined optimal surface. In such way all the fallen chestnuts have been convoyed and picked in a determined zone, “basin zone”, and subsequently they have been loaded on the truck for the following workmanships. The evaluated losses have been of around 6-8 % due to chestnuts entangle or little branches obstacle.

  20. Root surface strain during canal shaping and its influence on apical microcrack development: a preliminary investigation.

    Science.gov (United States)

    Jamleh, A; Komabayashi, T; Ebihara, A; Nassar, M; Watanabe, S; Yoshioka, T; Miyara, K; Suda, H

    2015-12-01

    To determine the root surface strain (RSS) generated during root canal shaping and its effects on apical microcrack development. Twenty-five extracted human mandibular premolars were selected and decoronated. The teeth were instrumented with either the ProTaper (PT) or WaveOne (WO) (Dentsply Maillefer) NiTi rotary systems (n = 10 per group) or used as controls (n = 5). Instrumented root canals were enlarged to ProTaper F4 (size 40, 0.06 taper) or using WaveOne LARGE (size 40, 0.08 taper) instruments according to the manufacturer's instructions. An electrical strain gage (KFG02-120-C1-16, Kyowa Dengyo, Tokyo, Japan) was fixed on the proximal root surface and connected to a strain amplifier via a bridge box in order to measure RSS. During canal shaping, the strain output of the amplifier was recorded. The instantaneous RSS induced by each instrument and the maximum RSSs were determined. All teeth were then stained with contrast media and imaged with micro-computed tomography (micro-CT) at an isotropic resolution of 10 μm to detect microcracks. The mean maximum RSS values (microstrain) and mean number of microcracks recorded for both groups were tested for statistical significance using Mann-Whitney U-test. Presence/absence of microcracks in both groups was compared by chi-square tests. Increased baseline RSS from strain accumulation during canal shaping was observed, with similar maximum RSS (mean ± SD) for PT (416.6 ± 185.1 μstrain) and WO (398.2 ± 163.8 μstrain) (P = 0.94). The interevaluator reliability for microcrack detection using micro-CT had a kappa value of 0.998. Compared to the PT group, there was a trend for fewer samples with microcracks in the WO group (P = 0.051). On the micro-CT images, apical microcracks were detected in 20 PT and 11 WO samples (P = 0.10). The microcracks were observed in the buccolingual direction in all WO and 81% of PT samples. No vertical root fractures were found. The maximum RSS obtained during canal

  1. Multicamera fusion for shape estimation and visibility analysis of unknown deforming objects

    Science.gov (United States)

    Nuger, Evgeny; Benhabib, Beno

    2016-07-01

    A method is proposed for fused three-dimensional (3-D) shape estimation and visibility analysis of an unknown, markerless, deforming object through a multicamera vision system. Complete shape estimation is defined herein as the process of 3-D reconstruction of a model through fusion of stereo triangulation data and a visual hull. The differing accuracies of both methods rely on the number and placement of the cameras. Stereo triangulation yields a high-density, high-accuracy reconstruction of a surface patch from a small surface area, while a visual hull yields a complete, low-detail volumetric approximation of the object. The resultant complete 3-D model is, then, temporally projected based on the tracked object's deformation, yielding a robust deformed shape prediction. Visibility and uncertainty analyses, on the projected model, estimate the expected accuracy of reconstruction at the next sampling instant. In contrast to common techniques that rely on a priori known models and identities of static objects, our method is distinct in its direct application to unknown, markerless, deforming objects, where the object model and identity are unknown to the system. Extensive simulations and comparisons, some of which are presented herein, thoroughly demonstrate the proposed method and its benefits over individual reconstruction techniques.

  2. Monocular occlusions determine the perceived shape and depth of occluding surfaces.

    Science.gov (United States)

    Tsirlin, Inna; Wilcox, Laurie M; Allison, Robert S

    2010-06-01

    Recent experiments have established that monocular areas arising due to occlusion of one object by another contribute to stereoscopic depth perception. It has been suggested that the primary role of monocular occlusions is to define depth discontinuities and object boundaries in depth. Here we use a carefully designed stimulus to demonstrate empirically that monocular occlusions play an important role in localizing depth edges and defining the shape of the occluding surfaces in depth. We show that the depth perceived via occlusion in our stimuli is not due to the presence of binocular disparity at the boundary and discuss the quantitative nature of depth perception in our stimuli. Our data suggest that the visual system can use monocular information to estimate not only the sign of the depth of the occluding surface but also its magnitude. We also provide preliminary evidence that perceived depth of illusory occluders derived from monocular information can be biased by binocular features.

  3. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.

    2011-03-09

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  4. A surface plasmon resonance sensor based on a single mode D-shape polymer optical fiber

    Science.gov (United States)

    Gasior, Katarzyna; Martynkien, Tadeusz; Napiorkowski, Maciej; Zolnacz, Kinga; Mergo, Pawel; Urbanczyk, Waclaw

    2017-02-01

    For the first time to our knowledge, we report a successful fabrication of surface plasmon resonance (SPR) sensors in a specially developed single-mode birefringent polymer D-shape fiber with a core made of PMMA/PS copolymer. A small distance between the core and the cladding boundary allows to deposit a gold layer directly onto the flat fiber surface, which significantly simplifies the sensors fabrication process. The developed SPR sensor exhibits a sensitivity of 2765 nm RIU-1 for the refractive index of external medium equal to 1.410, which is similar to the sensitivity of the SPR sensors based on conventional side-polished single-mode silica fibers. Using the finite element method, we also numerically studied the sensor performance. The sensor characteristics obtained in the simulations are in a relatively good agreement with the experimental results.

  5. Parametric analysis of a shape memory alloy actuated arm

    Science.gov (United States)

    Wright, Cody; Bilgen, Onur

    2016-04-01

    Using a pair of antagonistic Shape Memory Allow (SMA) wires, it may be possible to produce a mechanism that replicates human musculoskeletal movement. The movement of interest is the articulation of the elbow joint actuated by the biceps brachii muscle. In an effort to understand the bio-mechanics of the arm, a single degree of freedom crankslider mechanism is used to model the movement of the arm induced by the biceps brachii muscle. First, a purely kinematical analysis is performed on a rigid body crank-slider. Force analysis is also done modeling the muscle as a simple linear spring. Torque, rocking angle, and energy are calculated for a range of crank-slider geometries. The SMA wire characteristics are experimentally determined for the martensite detwinned and full austenite phases. Using the experimental data, an idealized actuator characteristic curve is produced for the SMA wire. Kinematic and force analyses are performed on the nonlinear wire characteristic curve and a linearized wire curve; both cases are applied to the crankslider mechanism. Performance metrics for both cases are compared, followed by discussion.

  6. Erythrocyte shape analysis by means of laser diffraction

    Science.gov (United States)

    Bayer, Rainer; Schauf, Burkhard; Guenther, Bernd

    1992-05-01

    In quite a large number of disorders, reduced flexibility of red blood cells (RBC) can be detected. In cardiovascular diseases it is supposed that rigidification of RBC may be regarded as a pathogenetic factor aggravating ischemia by disturbing capillary perfusion. Most methods established so far to estimate RBC deformability are hard to standardize and include large measurement errors. We present a low-cost system to determine RBC shape and flexibility. It combines laser diffraction of RBC in Couette flow with automated computer assisted image analysis. Effortless handling allows the system to be used for RBC elongation measurements even in routine diagnostics. Analysis of the whole information content of diffraction patterns reduces errors due to noisy diffraction patterns of working a little off axis. The system allows detection of very small changes in flexibility (less than 5%). The accuracy of measurement is not affected by variation of hematocrit or the intensity of transmitted light. Using the newly developed system it is demonstrated (1) that mechanically induced RBC rigidification may occur without hemolysis; (2) that in photodynamic therapy (e.g., pheophorbide A) RBC rigidification occurs during irridation; and (3) that in-vitro aging of conserved blood may partly be inhibited by calmodulin antagonists (e.g., fendiline).

  7. Description of shape characteristics through Fourier and wavelet analysis

    Directory of Open Access Journals (Sweden)

    Yuan Zhanwei

    2014-02-01

    Full Text Available In this paper, Fourier and Wavelet transformation were adopted to analyze shape characteristics, with twelve simple shapes and two types of second phases from real microstructure morphology. According to the results of Fast Fourier transformation (FFT, the Fourier descriptors can be used to characterize the shape from the aspects of the first eight Normalization amplitudes, the number of the largest amplitudes to inverse reconstruction, similarity of shapes and profile roughness. And the Diepenbroek Roughness was rewritten by Normalization amplitudes of FFT results. Moreover, Sum Square of Relative Errors (SSRE of Wavelet transformation (WT signal sequence, including approximation signals and detail signals, was introduced to evaluate the similarity and relative orientation among shapes. As a complement to FFT results, the WT results can retain more detailed information of shapes including their orientations. Besides, the geometric signatures of the second phases were extracted by image processing and then were analyzed by means of FFT and WT.

  8. Description of shape characteristics through Fourier and wavelet analysis

    Institute of Scientific and Technical Information of China (English)

    Yuan Zhanwei; Li Fuguo; Zhang Peng; Chen Bo

    2014-01-01

    In this paper, Fourier and Wavelet transformation were adopted to analyze shape char-acteristics, with twelve simple shapes and two types of second phases from real microstructure mor-phology. According to the results of Fast Fourier transformation (FFT), the Fourier descriptors can be used to characterize the shape from the aspects of the first eight Normalization amplitudes, the number of the largest amplitudes to inverse reconstruction, similarity of shapes and profile roughness. And the Diepenbroek Roughness was rewritten by Normalization amplitudes of FFT results. Moreover, Sum Square of Relative Errors (SSRE) of Wavelet transformation (WT) signal sequence, including approximation signals and detail signals, was introduced to evaluate the simi-larity and relative orientation among shapes. As a complement to FFT results, the WT results can retain more detailed information of shapes including their orientations. Besides, the geometric sig-natures of the second phases were extracted by image processing and then were analyzed by means of FFT and WT.

  9. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering

    Science.gov (United States)

    Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2016-06-01

    Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H2O2 as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H2O2 under the acidic conditions provided by HCl. We investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.

  10. Buoyancy-driven detachment of a wall-bound pendant drop: Interface shape at pinchoff and nonequilibrium surface tension

    Science.gov (United States)

    Lamorgese, A.; Mauri, R.

    2015-09-01

    We present numerical results from phase-field simulations of the buoyancy-driven detachment of an isolated, wall-bound pendant emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. Our theoretical approach follows a diffuse-interface model for partially miscible binary mixtures which has been extended to include the influence of static contact angles other than 90∘, based on a Hermite interpolation formulation of the Cahn boundary condition as first proposed by Jacqmin [J. Fluid Mech. 402, 57 (2000), 10.1017/S0022112099006874]. In a previous work, this model has been successfully employed for simulating triphase contact line problems in stable emulsions with nearly immiscible components, and, in particular, applied to the determination of critical Bond numbers for buoyancy-driven detachment as a function of static contact angle. Herein, the shapes of interfaces at pinchoff are investigated as a function of static contact angle and distance to the critical condition. Furthermore, we show numerical results on the nonequilibrium surface tension that help to explain the discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart based on a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we show the influence of static contact angle and distance to the critical condition on the temporal evolution of the minimum neck radius in the necking regime of drop detachment.

  11. Buoyancy-driven detachment of a wall-bound pendant drop: interface shape at pinchoff and nonequilibrium surface tension.

    Science.gov (United States)

    Lamorgese, A; Mauri, R

    2015-09-01

    We present numerical results from phase-field simulations of the buoyancy-driven detachment of an isolated, wall-bound pendant emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. Our theoretical approach follows a diffuse-interface model for partially miscible binary mixtures which has been extended to include the influence of static contact angles other than 90^{∘}, based on a Hermite interpolation formulation of the Cahn boundary condition as first proposed by Jacqmin [J. Fluid Mech. 402, 57 (2000)JFLSA70022-112010.1017/S0022112099006874]. In a previous work, this model has been successfully employed for simulating triphase contact line problems in stable emulsions with nearly immiscible components, and, in particular, applied to the determination of critical Bond numbers for buoyancy-driven detachment as a function of static contact angle. Herein, the shapes of interfaces at pinchoff are investigated as a function of static contact angle and distance to the critical condition. Furthermore, we show numerical results on the nonequilibrium surface tension that help to explain the discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart based on a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we show the influence of static contact angle and distance to the critical condition on the temporal evolution of the minimum neck radius in the necking regime of drop detachment.

  12. Influences of stress dilation on shape of failure surface for shallow tunnels

    Institute of Scientific and Technical Information of China (English)

    杨小礼; 王金明

    2008-01-01

    For shallow tunnels of single-lane railway and four-lane road,numerical simulation using finite differential code was conducted.The mechanical behavior of loose rock masses was studied considering the influences of shear dilation on the shape of the failure surface for the shallow tunnels,and the break angles using numerical simulation was compared with those using the Rankine’s analytical solutions and design code.From the comparisons,it is found that the difference between the break angle by numerical simulation and the design code is small when the shear dilation angle is equal to 0,with the maximum relative difference being less than 0.2% in road tunnels.With the dilation angle’s increase,the loose plasticity zone area of surrounding rock reduces obviously,and the break angle increases gradually.When the dilation angle is equal to the internal friction angle,the materials follow associated flow rule,and the numerical solution of the break angle is larger than the analytical solution,with the maximum relative difference being greater than 16.7% in road tunnels.Therefore,associated flow rule leads to overestimating break angle,and the dilation angle has an important influence on the failure surface shape for shallow tunnels in the loose surrounding rocks.

  13. Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses.

    Science.gov (United States)

    Almeida, G F B; Martins, R J; Otuka, A J G; Siqueira, J P; Mendonca, C R

    2015-10-19

    We investigated the effect of temporal shaped femtosecond pulses on silicon laser micromachining. By using sinusoidal spectral phases, pulse trains composed of sub-pulses with distinct temporal separations were generated and applied to the silicon surface to produce Laser Induced Periodic Surface Structures (LIPSS). The LIPSS obtained with different sub-pulse separation were analyzed by comparing the intensity of the two-dimensional fast Fourier Transform (2D-FFT) of the AFM images of the ripples (LIPSS). It was observed that LIPSS amplitude is more emphasized for the pulse train with sub-pulses separation of 128 fs, even when compared with the Fourier transform limited pulse. By estimating the carrier density achieved at the end of each pulse train, we have been able to interpret our results with the Sipe-Drude model, that predicts that LIPSS efficacy is higher for a specific induced carrier density. Hence, our results indicate that temporal shaping of the excitation pulse, performed by spectral phase modulation, can be explored in fs-laser microstructuring.

  14. Performance of PRD Welled Surfaces in T Shape Noise Barriers for Controlling Environmental Noise

    Directory of Open Access Journals (Sweden)

    S Momen Bellah

    2010-07-01

    Full Text Available "n "n "nBackgrounds and Objectives: There is a considerable notice in the use of noise barriers in recent years. Noise barriers as a control noise solution can increase the insertion loss to protect receivers. This paper presents the results of an investigation about the acoustic efficiency of primitive root sequence diffuser (PRD on environmental single T-shape barrier."nMaterials and Methods: A 2D boundary element method (BEM is used to predict the insertion loss of the tested barriers. The results of rigid and with quadratic residue diffuser (QRD coverage are also predicted for comparison."nResults: It is found that decreasing the design frequency of PRD shifts the frequency effects towards lower frequencies, and therefore the overall A-weighted insertion loss is improved. It is also found that using wire mesh with reasonably efficient resistivity on the top surface of PRD improves the efficiency of the reactive barriers; however utilizing wire meshes with flow resistivity higher than specific acoustic impedance of air on the PRD top of a diffuser barrier significantly reduces the performance of the barrier within the frequency bandwidth of the diffuser. The performance of PRD covered T-shape barrier at 200 Hz was found to be higher than that of its equivalent QRD barriers in both the far field and areas close to the ground. The amount of improvement compared made by PRD barrier compared with its equivalent rigid barrier at far field is about 2 to 3 dB, while this improvement relative to barrier model .QR4. can reach up to 4- 6 dB."nConclusion: Employing PRD on the top surface of T-shape barrier is found to improve the performance of barriers compared with using rigid and QRD coverage at the examined receiver locations.

  15. Long-range surface plasmon resonance and surface-enhanced Raman scattering on X-shaped gold plasmonic nanohole arrays.

    Science.gov (United States)

    Hou, Chao; Galvan, Daniel David; Meng, Guowen; Yu, Qiuming

    2017-09-13

    A multilayered architecture including a thin Au film supporting an X-shaped nanohole array and a thick continuous Au film separated by a Cytop dielectric layer is reported in this work. Long-range surface plasmon resonance (LR-SPR) was generated at the top Au/water interface, which also resulted in a long-range surface-enhanced Raman scattering (LR-SERS) effect. LR-SPR originates from the coupling of surface plasmons (SPs) propagating along the opposite sides of the thin Au film embedded in a symmetric refractive index environment with Cytop (n = 1.34) and water (n = 1.33). The finite-difference time-domain (FDTD) simulation method was used to investigate the optimal dimensions of the substrate by studying the reflectance spectra and electric field profiles. The calculated optimal structure was then fabricated via electron beam lithography, and its LR-SERS performance was demonstrated by detecting rhodamine 6G and 4-mercaptobenzoic acid in the refractive index-matched environment. We believe that this structure as a LR-SPR or LR-SERS substrate can have broad applications in biosensing.

  16. A novel method of aligning molecules by local surface shape similarity

    Science.gov (United States)

    Cosgrove, D. A.; Bayada, D. M.; Johnson, A. P.

    2000-08-01

    A novel shape-based method has been developed for overlaying a series of molecule surfaces into a common reference frame. The surfaces are represented by a set of circular patches of approximately constant curvature. Two molecules are overlaid using a clique-detection algorithm to find a set of patches in the two surfaces that correspond, and overlaying the molecules so that the similar patches on the two surfaces are coincident. The method is thus able to detect areas of local, rather than global, similarity. A consensus overlay for a group of molecules is performed by examining the scores of all pairwise overlays and performing a set of overlays with the highest scores. The utility of the method has been examined by comparing the overlaid and experimental configurations of 4 sets of molecules for which there are X-ray crystal structures of the molecules bound to a protein active site. Results for the overlays are generally encouraging. Of particular note is the correct prediction of the `reverse orientation' for ligands binding to human rhinovirus coat protein HRV14.

  17. Surface characterizations of laser modified biomedical grade NiTi shape memory alloys.

    Science.gov (United States)

    Pequegnat, A; Michael, A; Wang, J; Lian, K; Zhou, Y; Khan, M I

    2015-05-01

    Laser processing of shape memory alloys (SMAs) promises to enable the multifunctional capabilities needed for medical device applications. Prior to clinical implementation, the surface characterisation of laser processed SMA is essential in order to understand any adverse biological interaction that may occur. The current study systematically investigated two Ni-49.8 at.% Ti SMA laser processed surface finishes, including as-processed and polished, while comparing them to a chemically etched parent material. Spectrographic characterisation of the surface included; X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), and Raman spectroscopy. Corrosion performance and Ni ion release were also assessed using potentiodynamic cyclic polarization testing and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. Results showed that surface defects, including increased roughness, crystallinity and presence of volatile oxide species, overshadowed any possible performance improvements from an increased Ti/Ni ratio or inclusion dissolution imparted by laser processing. However, post-laser process mechanical polishing was shown to remove these defects and restore the performance, making it comparable to chemically etched NiTi material. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Shape Effect Analysis of Aluminum Projectile Impact on Whipple Shields

    Science.gov (United States)

    Carrasquilla, Maria J.; Miller, Joshua E.

    2017-01-01

    The informed design with respect to hypervelocity collisions involving micrometeoroid and orbital debris (MMOD) is influential to the success of space missions. For an orbit comparable to that of the International Space Station, velocities for MMOD can range from 1 to 15 km/s, with an average velocity around 10 km/cu s. The high energy released during collisions at these speeds can result in damage to a spacecraft, or worst-case, loss of the spacecraft, thus outlining the importance of methods to predict the likelihood and extent of damage due to an impact. Through experimental testing and numerical simulations, substantial work has been conducted to better understand the effects of hypervelocity impacts (HVI) on spacecraft systems and shields; however, much of the work has been focused on spherical impacting particles. To improve environment models for the analysis of MMOD, a large-scale satellite break-up test was performed at the Arnold Engineering and Development Complex to better understand the varied impactor geometries that could be generated from a large impact. As a part of the post-experiment analysis, an undertaking to characterize the irregular fragments generated is currently being performed by the University of Florida under the management of NASA's Orbital Debris Program Office at Johnson Space Center (JSC). DebriSat was a representative, modern LEO satellite that was catastrophically broken up in a HVI test. The test chamber was lined with a soft-catch system of foam panels that captured the fragments after impact. Initial predictions put the number of fragments larger than 2mm generated from the HVI at roughly 85,000. The number of fragments thus far extracted from the foam panels has exceeded 100,000, with that number continuously increasing. The shapes of the fragments vary dependent upon the material. Carbon-fiber reinforced polymer pieces, for instance, are abundantly found as thin, flat slivers. The characterization of these fragments with

  19. Shape and surface effects on the cytotoxicity of nanoparticles: Gold nanospheres versus gold nanostars.

    Science.gov (United States)

    Favi, Pelagie Marlene; Gao, Ming; Johana Sepúlveda Arango, Liuda; Ospina, Sandra Patricia; Morales, Mariana; Pavon, Juan Jose; Webster, Thomas Jay

    2015-11-01

    Gold nanoparticles are materials with unique optical properties that have made them very attractive for numerous biomedical applications. With the increasing discovery of techniques to synthesize novel nanoparticles such as star-shaped gold nanoparticles for biomedical applications, the safety and performance of these new nanomaterials must be systematically assessed before use. In this study, gold nanostars (AuNSTs) with multibranched surface structures were synthesized, and their influence on the cytotoxicity of human skin fibroblasts and rat fat pad endothelial cells (RFPECs) were assessed and compared with that of gold nanospheres (AuNSPs) with unbranched surfaces. Results showed that the AuNSPs with diameters of approximately 61.46 nm showed greater toxicity with fibroblast cells and RFPECs compared with the synthesized AuNSTs with diameters of approximately 33.69 nm. The AuNSPs were lethal at concentrations of 40 μg/mL for both cell lines, whereas the AuNSTs were less toxic at higher concentrations (400 μg/mL). The calculated IC50 (50% inhibitory concentration) values of the AuNSPs exposed to fibroblast cells were greater at 1 and 4 days of culture (26.4 and 27.7 μg/mL, respectively) compared with the RFPECs (13.6 and 13.8 μg/mL, respectively), indicating that the AuNSPs have a greater toxicity to endothelial cells. It was proposed that possible factors that could be promoting the reduced toxicity effects of the AuNSTs to fibroblast cells and RFPECs, compared with the AuNSPs may be size, surface chemistry, and shape of the gold nanoparticles. The reduced cell toxicity observed with the AuNSTs suggests that AuNSTs may be a promising material for use in biomedical applications.

  20. Measurement of shape by ultrasonic waves and surface inspection of the cold neutron source vertical hole

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kook Nam; Choi, Chang Oong; Sim, Cheul Mu; Choi, Young Hyun; Koo, Kil Mo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    Considerations in design of CNS containment, which will be put into the CNS installation hole, should be taken into obtaining the maximum gain by minimizing thickness of water film existing between walls of CN hole and the inserted containment and easy maintenance of the in-pile structures including the containment. In this experiment, inside diameter and thickness of the CN hole were measured and the possibility of the surface degradation was inspected in Hanaro which has been operated for about 4 years since its criticality in Feb, 1995. The result will be used in the design of containment. The data were obtained by measuring inside diameter and thickness for 550 points of CN hole using 2 channels of ultrasonic sensor. The result showed that the thickness is in the range of 3.3 {approx} 6.7 mm and inside diameter is in the range of {phi} 156 {approx} {phi} 165 mm. And this result was analyzed using plots and tables for making the visual shape understood better. Status of surface treatment and corrosion during 4 years of operation in highly radiated water was investigated through the surface inspection and the result was recorded on video-tape. This report will be used in design of the CNS containment, and the experiment for inserting the containment model will be followed next year. The 4-axis measuring manipulator developed in this measurement will be used for measuring shape of other experimental holes of Hanaro reactor, and also for detecting some indications in the radiation zone. This device will be applied in the other useful inspections in pool water during Hanaro ISI(In-service Inspection) after introducing automatic system for acquisition of ultrasonic signals. The 4-axis measuring manipulator will be applied for a patent with ultrasonic measuring system. (author). 19 refs., 99 figs., 5 tabs.

  1. Minimum energy shapes of one-side-pinned static drops on inclined surfaces.

    Science.gov (United States)

    Thampi, Sumesh P; Govindarajan, Rama

    2011-10-01

    The shape that a liquid drop will assume when resting statically on a solid surface inclined to the horizontal is studied here in two dimensions. Earlier experimental and numerical studies yield multiple solutions primarily because of inherent differences in surface characteristics. On a solid surface capable of sustaining any amount of hysteresis, we obtain the global, and hence unique, minimum energy shape as a function of equilibrium contact angle, drop volume, and plate inclination. It is shown, in the energy minimization procedure, how the potential energy of this system is dependent on the basis chosen to measure it from, and two realistic bases, front-pinned and back-pinned, are chosen for consideration. This is at variance with previous numerical investigations where both ends of the contact line are pinned. It is found that the free end always assumes Young's equilibrium angle. Using this, simple equations that describe the angles and the maximum volume are then derived. The range of parameters where static drops are possible is presented. We introduce a detailed force balance for this problem and study the role of the wall in supporting the drop. We show that a portion of the wall reaction can oppose gravity while the other portion aids it. This determines the maximum drop volume that can be supported at a given plate inclination. This maximum volume is the least for a vertical wall, and is higher for all other wall inclinations. This study can be extended to three-dimensional drops in a straightforward manner and, even without this, lends itself to experimental verification of several of its predictions.

  2. Pressure Transient Analysis of Arbitrarily Shaped Fractured Reservoirs

    Institute of Scientific and Technical Information of China (English)

    Gao Huimei; He Yingfu; Jiang Hanqiao; Chen Minfeng

    2007-01-01

    Reservoir boundary shape has a great influence on the transient pressure response of oil wells located in arbitrarily shaped reservoirs.Conventional analytical methods can only be used to calculate transient pressure response in regularly shaped reservoirs.Under the assumption that permeability varies exponentially with pressure drop,a mathematical model for well test interpretation of arbitrarily shaped deformable reservoirs was established.By using the regular perturbation method and the boundary element method,the model could be solved.The pressure behavior of wells with wellbore storage and skin effects was obtained by using the Duhamel principle.The type curves were plotted and analyzed by considering the effects of permeability modulus,arbitrary shape and impermeable region.

  3. Flocking shape analysis of multi-agent systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,we consider the shape control in flocking behavior of a multi-agent system with a virtual leader.Besides the traditional flocking control terms,which include a gradient-based term,a velocity consensus term and a navigational feed-back in general,a new piecewise smooth neighbor-based local controller is added to regulate the configuration to the desired flocking shape.All agent velocities approach the desired velocity asymptotically,while collisions among agents can be avoided.Furthermore,based on the proved stability,we obtain three kinds of flocking shapes,such as those in a single line,vee shape or corner shape.Some numerical simulation results are provided to demonstrate theoretical issues.

  4. Influence of Installing Error on the Surface Shape Precision of the Axial Symmetry Aspheric Workpiece in Lapping

    Institute of Scientific and Technical Information of China (English)

    SHANG Chun-min; ZHANG Dong-mei; YANG Jian-dong; ZHANG Xin-ming

    2006-01-01

    A method to calculate the surface shape error, which is caused by the installing error between the workpiece and the lapping tool in the process of form lapping, is proposed. The mathematical model which the installing translation error influences on the workpiece surface shape error is established. The changing rule of the error is simulated through the calculating example of the paraboloid workpiece. The results indicate that the surface shape error of the workpiece is increasing with the increase of the installing translation error, it is also increasing gradually along the center point of the curve surface to the edge, and the influence is severer to the curve surface with great curvature than that of the small curvature when the translation error is the same.

  5. Thermal analysis on the EAST tungsten plasma facing components with shaping structure counteracting the misalignment issues

    Science.gov (United States)

    Baoguo, Wang; Dahuan, Zhu; Rui, Ding; Junling, Chen

    2017-02-01

    Tungsten monoblock type tiles with ITER dimensions along with supporting cassette components were installed at EAST’s upper diverter during 2014 and EAST’s lower diverter will also be upgraded in the future. These cassette structures pose critical issues on the high cumulative incident heat flux due to the leading edges and misalignments (0 ˜ 1.5 mm), which may result in the destruction or even melting of the tungsten tile. The present work summarizes the thermal analysis using ANSYS multiphysics software 15.0 performed on the actively cooled W tiles to evaluate the shaping effect on surface temperature. In the current heat flux conditions (Q|| ˜ 100 MW m-2), the adopted chamfer shaping (1 × 1 mm) can only reduce the maximum temperature by about 14%, but it also has a melting risk at the maximum misalignment of 1.5 mm. The candidate shaping solutions elliptical (round) edge, dome and fish-scale are analyzed for comparison and are identified not as good as the dual chamfer structure. A relatively good dual chamfer (2 × 13 mm) shaping forming a symmetrical sloping roof structure can effectively counteract the 1.5 mm misalignment, reducing the maximum temperature by up to 50%. However, in the future heat flux conditions (Q|| ˜ 287 MW m-2), it may only endure about 0.5 mm misalignment. Moreover, no proper shaping solution has been found that can avoid melting at the maximum misalignment of 1.5 mm. Thus, the engineering misalignment has to be limited to an acceptable level. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB107004 and 2013GB105003) and National Natural Science Foundation of China (No. 11405209).

  6. Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata

    Directory of Open Access Journals (Sweden)

    Bettina Prüm

    2012-01-01

    Full Text Available Plant surfaces showing hierarchical structuring are frequently found in plant organs such as leaves, petals, fruits and stems. In our study we focus on the level of cell shape and on the level of superimposed microstructuring, leading to hierarchical surfaces if both levels are present. While it has been shown that epicuticular wax crystals and cuticular folds strongly reduce insect attachment, and that smooth papillate epidermal cells in petals improve the grip of pollinators, the impact of hierarchical surface structuring of plant surfaces possessing convex or papillate cells on insect attachment remains unclear. We performed traction experiments with male Colorado potato beetles on nine different plant surfaces with different structures. The selected plant surfaces showed epidermal cells with either tabular, convex or papillate cell shape, covered either with flat films of wax, epicuticular wax crystals or with cuticular folds. On surfaces possessing either superimposed wax crystals or cuticular folds we found traction forces to be almost one order of magnitude lower than on surfaces covered only with flat films of wax. Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex or papillate cells enhancing attachment and both wax crystals or cuticular folds reducing attachment. However, the overall magnitude of traction force mainly depends on the presence or absence of superimposed microstructuring.

  7. Analysis for Cellinoid shape model in inverse process from lightcurves

    Science.gov (United States)

    Lu, Xiao-Ping; Ip, Wing-Huen; Huang, Xiang-Jie; Zhao, Hai-Bin

    2017-01-01

    Based on the special shape first introduced by Alberto Cellino, which consists of eight ellipsoidal octants with the constraint that adjacent octants must have two identical semi-axes, an efficient algorithm to derive the physical parameters, such as the rotational period, pole orientation, and overall shape from either lightcurves or sparse photometric data of asteroids, is developed by Lu et al. and named as 'Cellinoid' shape model. For thoroughly investigating the relationship between the morphology of the synthetic lightcurves generated by the Cellinoid shape and its six semi-axes as well as rotational period and pole, the numerical tests are implemented to compare the synthetic lightcurves generated by three Cellinoid models with different parameters in this article. Furthermore, from the synthetic lightcurves generated by two convex shape models of (6) Hebe and (4179) Toutatis, the inverse process based on Cellinoid shape model is applied to search the best-fit parameters. Especially, for better simulating the real observations, the synthetic lightcurves are generated under the orbit limit of the two asteroids. By comparing the results derived from synthetic lightcurves observed in one apparition and multiple apparitions, the performance of Cellinoid shape model is confirmed and the suggestions for observations are presented. Finally, the whole process is also applied to real observed lightcurves of (433) Eros and the derived results are consistent with the known results.

  8. Transient stability and control of wind turbine generation based on Hamiltonian surface shaping and power flow control

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, David G.; Robinett, Rush D. III [Sandia National Laboratories, Albuquerque, NM (United States). Energy, Resources and Systems Analysis Center

    2010-07-01

    The swing equations for renewable generators connected to the grid are developed and a simple wind turbine with UPFC is used as an example. The swing equations for renewable generator are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generators system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and nonconservative systems to enable a two-step, serial analysis and design procedure. This paper presents the analysis and numerical simulation results for a nonlinear control design example that includes the One-Machine Infinite Bus (OMIB) system with a Unified Power Flow Control (UPEC) and applied to a simplified wind turbine generator. The needed power and energy storage/charging responses are also determined. (orig.)

  9. Cross-Spectral Analysis of Earth's Geoid and Shape Reveals Dynamic Topography

    Science.gov (United States)

    Patton, R. L.; Menard, J.; Watkinson, A. J.

    2016-12-01

    Vertical deviations of the planet's surface due to large-scale dynamics should be expressed as topography measured with respect to an equipotential `level' surface, like the geoid. However, this dynamic effect must be separated from others affecting topography, such as isostatic compensation, effective rigidity, and enhancement via crustal deformation and volcanism. Conventional procedures used to isolate `dynamic topography' involve model-dependent corrections to Earth's shape, which introduce additional assumptions and uncertainties related to the density, strength, thickness, and thermal properties of crustal and mantle rock layers. Alternatively, global cross-spectral analysis of gravity and shape data offers a means of isolating the dynamic signal prior to the introduction of geophysical hypotheses. It is well-known that Earth's gravity and shape are poorly-correlated at long wavelengths. This is expressed in regional gravity disturbance maps as a low amplitude bias, the origin of which, although unknown, is reasonably associated with large-scale dynamics. This signal dominates the harmonic geoid, leading to the counter-intuitive observations that trenches and island arcs are associated with geoid highs, and that the Himalaya-Tibet plateau occupies a geoid low. Here it is shown that Earth's geoid-shape admittance exhibits a distinct change at spherical harmonic degree 13, from high-and-variable to low and nearly constant. This is coincident with a change in the gravity-topography degree correlation, from low-and-variable, to consistently above 0.57. Thus the `dynamic anomaly', defined as the 13th partial sum of the disturbance gravity field, exhibits a range of -82 to +56 mGal. Scaled by the mean surface gravity gradient of -0.3082 mGal/m, and referenced to the harmonic geoid, a long-wavelength topographic surface is found with range -121 to +170 m. Coincidentally, all earthquakes with centroids deeper than about 255 km have epicenters within or adjacent to

  10. Equilibrium shape of liquid lenses and correlations of beating cilia on the surface of frog embryos

    Science.gov (United States)

    Huisman, Fawn Mitsu

    This thesis reports the results of two unrelated projects: liquid lenses and cilia motion. A liquid lens is the equilibrium configuration of a non-wetting 3-fluid system, and the profile of the 3 interfaces can, in principle, be determined by solving the Young-Laplace differential equation for each interface if the surface tensions of all three interfaces are accurately known. Fluid interfacial tensions are not tabulated and are spectacularly sensitive to impurities, so in practice these quantities must be measured. We have developed a method of measuring these parameters by comparing the observed shape of liquid lenses to calculated equilibrium shapes. We have experimentally studied lenses of alkanes floating on water. These results were compared with various liquid lens systems. The profile of these lens systems was measured using ray tracing and Morie imaging, and found to be in excellent agreement with the calculated lens shapes for pure fluids. Upon the introduction of a surfactant, dodecyltrimethylammonium bromide(DTAB), we find that there is a minimum in the dihedral angle of the lens as a function of surfactant concentration, corresponding to the transition from partial-wetting to pseudo-partial wetting. The development and orientation of ciliated cells on Xenopus laevis larval skin was examined using high speed video microscopy. The intercellular orientation of wild-type, dominant negative mutants, and Vangl2MO morpholinos was studied by scoring the beating direction of ciliated cells and measuring the correlation with nearest neighbors. No significant difference between the mutant and wild type was found. Time lapse videos of developing cilia indicate that intracellular ordering is non-existent in early development, with ordering occurring by maturity. Further work needs to be done to determine what role fluid flow plays in that ordering.

  11. Experimental investigation of Lissajous figure shapes in planar and surface dielectric barrier discharges

    Science.gov (United States)

    Biganzoli, I.; Barni, R.; Gurioli, A.; Pertile, R.; Riccardi, C.

    2014-11-01

    Dielectric Barrier Discharges (DBDs) operating in air at atmospheric pressure are widely employed as cold plasma sources for plasma processing and applications, in both volume and surface configurations. Surface dielectric barrier discharges, however, are mainly known for the manipulation of the boundary layer of an airflow surrounding a body, and thus for aeronautical applications. Lissajous figures, obtained by means of a high-voltage and a capacitive probes, are usually adopted for both these types of DBDs as a method for measuring the power consumption by the discharge. In this work, we propose to integrate this diagnostic tool with the measurement of current pulses, which are associated to microdischarges that usually develop in these plasmas because of the presence of the dielectric barrier. We have studied both planar and surface DBDs in presence of a continuous sinusoidal voltage feeding, and we have demonstrated that this method is promising in order to gain additional information about the discharge characteristics from the shape of the Lissajous figures.

  12. Simulation of imperfections in plastic lenses - transferring local refractive index changes into surface shape modifications

    Science.gov (United States)

    Arasa, Josep; Pizarro, Carles; Blanco, Patricia

    2016-06-01

    Injection molded plastic lenses have continuously improved their performance regarding optical quality and nowadays are as usual as glass lenses in image forming devices. However, during the manufacturing process unavoidable fluctuations in material density occur, resulting in local changes in the distribution of refractive index, which degrade the imaging properties of the polymer lens. Such material density fluctuations correlate to phase delays, which opens a path for their mapping. However, it is difficult to transfer the measured variations in refractive index into conventional optical simulation tool. Thus, we propose a method to convert the local variations in refractive index into local changes of one surface of the lens, which can then be described as a free-form surface, easy to introduce in conventional simulation tools. The proposed method was tested on a commercial gradient index (GRIN) lens for a set of six different object positions, using the MTF sagittal and tangential cuts to compare the differences between the real lens and a lens with homogenous refractive index, and the last surface converted into a free-form shape containing the internal refractive index changes. The same procedure was used to reproduce the local refractive index changes of an injected plastic lens with local index changes measured using an in-house built polariscopic arrangement, showing the capability of the method to provide successful results.

  13. Surface characterization through shape oscillations of drops in microgravity and 1-g

    Science.gov (United States)

    Apfel, Robert E.; Holt, R. Glynn; Tian, Yuren; Shi, Tao; Zheng, Xiao-Yu

    1994-01-01

    The goal of these experiments is to determine the rheological properties of liquid drops of single or multiple components in the presence or absence of surface active materials by exciting drops into their quadrupole resonance and observing their free decay. The resulting data coupled with appropriate theory should give a better description of the physics of the underlying phenomena, providing a better foundation than earlier empirical results could. The space environment makes an idealized geometry available (spherical drops) so that theory and experiment can be properly compared, and allows a 'clean' environment, by which is meant an environment in which no solid surfaces come in contact with the drops during the test period. Moreover, by considering the oscillations of intentionally deformed drops in microgravity, a baseline is established for interpreting surface characterization experiments done on the ground by other groups and ours. Experiments performed on the United States Microgravity Laboratory Laboratory (USML-1) demonstrated that shape oscillation experiments could be performed over a wide parameter range, and with a variety of surfactant materials. Results, however, were compromised by an unexpected, slow drop tumbling, some problems with droplet injection, and the presence of bubbles in the drop samples. Nevertheless, initial data suggests that the space environment will be useful in providing baseline data that can serve to validate theory and permit quantitative materials characterization at 1-g.

  14. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape.

    Science.gov (United States)

    Beaumont, Caroline A A; Knoops, Paul G M; Borghi, Alessandro; Jeelani, N U Owase; Koudstaal, Maarten J; Schievano, Silvia; Dunaway, David J; Rodriguez-Florez, Naiara

    2017-06-01

    Three-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed tomography. The purpose of this study was to compare standard anthropometric cranial measurements with measurements taken from images acquired with 3D surface scanners. Two 3D scanners of different cost were used to acquire head shape data from thirteen adult volunteers: M4D scan and Structure Sensor. Head circumference and cephalic index were measured directly on the patients as well as on 3D scans acquired with the two scanners. To compare head volume measurements with a gold standard, magnetic resonance imaging scans were used. Repeatability and accuracy of both devices were evaluated. Intra-rater repeatability for both scanners was excellent (intraclass correlation coefficients > 0.99, p < 0.001). Direct and digital measures of head circumference, cephalic index and head volume were strongly correlated (0.85 < r < 0.91, p < 0.001). Compared to direct measurements, accuracy was highest for M4D scan. Both 3D scanners provide reproducible data of head circumference, cephalic index and head volume and show a strong correlation with traditional measurements. However, care must be taken when using absolute values. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Surface nanostructures orienting self-protection of an orthodontic nickel-titanium shape memory alloys wire

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Shape memory alloys (SMA) have been applied to a wide variety of applications in a number of different fields such as aeronautical applications, sensors/actuators, medical sciences as well as orthodontics. It is a hot topic to enhance the anti-corrosion ability of orthodontic wires for clinical applications. In this letter, a very nice fractal structure, micro-domains with identical nanometer sized grooves, was obtained on the surfaces of the orthodontic wires with an oxygen plasma and acid corrosion. The concave parts of the grooves were dominated by titanium and convex parts were the same as the bulk wires. The micro-nano fractal structure generated a hydrophobic surface with the largest contact angle to water being about 157°. The titanium dominated nanolayer and the hydrophobicity of the surface resulted in jointly the great improvement of the anti-corrosion ability of the orthodontic wires. Because the fractal structures of the wires were formed automatically when they immersed in acidic environment, hence, the self-protection of the oxygen plasma-treated orthodontic wires in acidic environment indicates their potential applications in orthodontics, and should be also inspirable for other applications of SMA materials.

  16. 3D shape measurement of objects with high dynamic range of surface reflectivity.

    Science.gov (United States)

    Liu, Gui-hua; Liu, Xian-Yong; Feng, Quan-Yuan

    2011-08-10

    This paper presents a method that allows a conventional dual-camera structured light system to directly acquire the three-dimensional shape of the whole surface of an object with high dynamic range of surface reflectivity. To reduce the degradation in area-based correlation caused by specular highlights and diffused darkness, we first disregard these highly specular and dark pixels. Then, to solve this problem and further obtain unmatched area data, this binocular vision system was also used as two camera-projector monocular systems operated from different viewing angles at the same time to fill in missing data of the binocular reconstruction. This method involves producing measurable images by integrating such techniques as multiple exposures and high dynamic range imaging to ensure the capture of high-quality phase of each point. An image-segmentation technique was also introduced to distinguish which monocular system is suitable to reconstruct a certain lost point accurately. Our experiments demonstrate that these techniques extended the measurable areas on the high dynamic range of surface reflectivity such as specular objects or scenes with high contrast to the whole projector-illuminated field.

  17. Three-Dimensional Mapping of Gyral Shape and Cortical Surface Asymmetries in Schizophrenia: Gender Effects

    Science.gov (United States)

    Narr, Katherine L.; Thompson, Paul M.; Sharma, Tonmoy; Moussai, Jacob; Zoumalan, Chris; Rayman, Janice; Toga, Arthur W.

    2008-01-01

    Objective People with schizophrenia exhibit abnormalities in brain structure, often in the left hemisphere. Disturbed structural lateralization is controversial, however, and effects appear mediated by gender. The authors mapped differences between schizophrenic and normal subjects in gyral asymmetries, complexity, and variability across the entire cortex. Method Asymmetry and shape profiles for 25 schizophrenic patients (15 men) and 28 demographically similar normal subjects (15 men) were obtained for 38 gyral regions, including the sylvian fissure and temporal and postcentral gyri, by using magnetic resonance data and a novel surface-based mesh-modeling approach. Cortical complexity was examined for sex and diagnosis effects in lobar regions. Intragroup variability was quantified and visualized to assess regional group abnormalities at the cortical surface. Results The patients showed greater variability in frontal areas than the comparison subjects. They also had significant deviations in gyral complexity asymmetry in the superior frontal cortex. In temporoparietal regions, significant gyral asymmetries were present in both groups. Sex differences were apparent in superior temporal gyral measures, and cortical complexity in inferior frontal regions was significantly greater in men. Conclusions Cortical variability and complexity show regional abnormalities in the frontal cortex potentially specific to schizophrenia. The results indicate highly significant temporoparietal gyral asymmetries in both diagnostic groups, contrary to reports of less lateralization in schizophrenia. Substantially larger study groups are necessary to isolate smaller deviations in surface asymmetries, if present in schizophrenia, suggesting their diagnostic value is minimal. PMID:11156807

  18. Laser and Surface Processes of NiTi Shape Memory Elements for Micro-actuation

    Science.gov (United States)

    Nespoli, Adelaide; Biffi, Carlo Alberto; Previtali, Barbara; Villa, Elena; Tuissi, Ausonio

    2014-04-01

    In the current microtechnology for actuation field, shape memory alloys (SMA) are considered one of the best candidates for the production of mini/micro devices thanks to their high power-to-weight ratio as function of the actuator weight and hence for their capability of generating high mechanical performance in very limited spaces. In the microscale the most suitable conformation of a SMA actuator is given by a planar wavy formed arrangement, i.e., the snake-like shape, which allows high strokes, considerable forces, and devices with very low sizes. This uncommon and complex geometry becomes more difficult to be realized when the actuator dimensions are scaled down to micrometric values. In this work, micro-snake-like actuators are laser machined using a nanosecond pulsed fiber laser, starting from a 120- μm-thick NiTi sheet. Chemical and electrochemical surface polishes are also investigated for the removal of the thermal damages of the laser process. Calorimetric and thermo-mechanical tests are accomplished to assess the NiTi microdevice performance after each step of the working process. It is shown that laser machining has to be followed by some post-processes in order to obtain a micro-actuator with good thermo-mechanical properties.

  19. Bond–slip behavior of superelastic shape memory alloys for near-surface-mounted strengthening applications

    Science.gov (United States)

    Daghash, Sherif M.; Ozbulut, Osman E.

    2017-03-01

    The use of superelastic shape memory alloy (SMA) bars in the near-surface-mounted (NSM) strengthening application can offer advantages such as improved bond behavior, enhanced deformation capacity, and post-event functionality. This study investigates bond characteristics and load transfer mechanisms between NSM SMA reinforcement and concrete. A modified pull-out test specimen that consists of a C-shaped concrete block, where the NSM reinforcement are placed at the center of gravity of the block, was used for experimental investigations. The effects of various parameters such as epoxy type, bonded length, bar diameter, and mechanical anchorage on the bond behavior were studied. The slip of the SMA reinforcement relative to concrete was measured using an optical measurement system and the bond–slip curves were developed. Results indicate that the sandblasted SMA bars exhibit satisfactory bond behavior when used with the correct filling material in NSM strengthening applications, while the mechanical anchorage of SMA bars can significantly increase the bond resistance.

  20. Heat Balance Analysis of EPS Products Shaping Process

    Directory of Open Access Journals (Sweden)

    Władysiak R.

    2013-09-01

    Full Text Available The work is a part of research into the reduction of energy consumption in the production of EPSthrough the modernization of technological equipment used. This paper presents the results of research and analysis of heat transfer process between the water vapor that was provided to machine, the mold, the product and the environment. The paper shows the calculation of the heat balance of the production cycle for two types of mold: standard and modernized. The performance tests used an infrared imaging camera. The results were used to develop a computer image analysis and statistical analysis. This paper presents the main stages of the production process and the construction of technological equipment used, changing the mold surface temperature field during the production cycle and the structure of the heat balance for the mold and its instrumentation. It has been shown that the modernization of construction of technological equipment has reduced the temperature field and as a consequence of decreased of demand for process steam production cycle.

  1. Heat Balance Analysis of EPS Products Shaping Process

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2013-07-01

    Full Text Available The work is a part of research into the reduction of energy consumption in the production of EPSthrough the modernization of technological equipment used. This paper presents the results of research and analysis of heat transfer process between the water vapor that was provided to machine, the mold, the product and the environment. The paper shows the calculation of the heat balance of the production cycle for two types of mold: standard and modernized. The performance tests used an infrared imaging camera. The results were used to develop a computer image analysis and statistical analysis. This paper presents the main stages of the production process and the construction of technological equipment used, changing the mold surface temperature field during the production cycle and the structure of the heat balance for the mold and its instrumentation. It has been shown that the modernization of construction of technological equipment has reduced the temperature field and as a consequence of decreased of demand for process steam production cycle.

  2. Effect of surface free energy of ceramic glaze on oil droplet shape and its behavior in water

    Institute of Scientific and Technical Information of China (English)

    LIANG Jin-sheng; MENG Jun-ping; LIANG Guang-chuan; WANG Li-juan; ZHANG Jin; LI Ji-yuan

    2006-01-01

    A super-hydrophilic functional ceramic was prepared by adjusting the chemical components of ceramic glaze. Effect of surface free energy of ceramic glaze on oil droplet shape and its behavior in water were studied. The results show that water can spread on ceramic surface with high surface free energy,and oil droplet can aggregate rapidly and separate from the ceramic surface in water. For the ceramic with lower surface free energy,the polar shares are dependant on its easy-cleaning property. The higher the polar shares,the better the easy-cleaning property,and the easier the droplet separates from the ceramic surface in water.

  3. Aerodynamic Shape Sensitivity Analysis and Design Optimization of Complex Configurations Using Unstructured Grids

    Science.gov (United States)

    Taylor, Arthur C., III; Newman, James C., III; Barnwell, Richard W.

    1997-01-01

    A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.

  4. Self-Restoration of Superhydrophobicity on Shape Memory Polymer Arrays with Both Crushed Microstructure and Damaged Surface Chemistry.

    Science.gov (United States)

    Lv, Tong; Cheng, Zhongjun; Zhang, Enshuang; Kang, Hongjun; Liu, Yuyan; Jiang, Lei

    2017-01-01

    Recently, self-healing superhydrophobic surfaces have become a new research focus due to their recoverable wetting performances and wide applications. However, until now, on almost all reported surfaces, only one factor (surface chemistry or microstructure) can be restored. In this paper, a new superhydrophobic surface with self-healing ability in both crushed microstructure and damaged surface chemistry is prepared by creating lotus-leaves-like microstructure on the epoxy shape memory polymer (SMP). Through a simple heating process, the crushed surface microstructure, the damaged surface chemistry, and the surface superhydrophobicity that are destroyed under the external pressure and/or O2 plasma action can be recovered, demonstrating that the obtained superhydrophobic surface has a good self-healing ability in both of the two factors that govern the surface wettability. The special self-healing ability is ascribed to the good shape memory effect of the polymer and the reorganization effect of surface molecules. This paper reports the first use of SMP material to demonstrate the self-healing ability of surface superhydrophobicity, which opens up some new perspectives in designing self-healing superhydrophobic surfaces. Given the properties of this surface, it could be used in many applications, such as self-cleaning coatings, microfluidic devices, and biodetection.

  5. Global Analysis of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J

    2010-01-01

    Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of 'edge-crawling' along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integ

  6. Wind flow and wind loads on the surface of a tower- shaped building: Numerical simulations and wind tunnel experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flow structure and wind pressure distribution caused by obtuse obstacles are usually the focuses in Computational Wind Engineer researches (CWE). By solving the non- hydrostatical dynamic equations, PUMA model (Peking University Model of Atmospheric Environment) was developed and applied to simulating the flow structure and wind pressure distribution around a tower-shaped building. Evaluation about the wind environment and wind loads around the building was obtained through the analysis of the numerical simulation results and wind tunnel data. Comparisons between the simulation and wind tunnel study indicate that numerical simulation results agree well in the flow field and wind pressure distribution around the tower-shaped building. On the other hand, the horizontal grid interval of 2 m and the vertical grid of 3 m were still too crude to simulate the flow structure and wind pressure distribution on the building surface more exactly in detail; and the absence of suitable pressure perturbation parameterization scheme between the solid and the adjacent space also limits the accuracy of the numerical simulation. The numerical simulation model can be used to evaluate the wind environment and wind load around high buildings.

  7. Hypocentral trend surface analysis: Probing the geometry of Benioff Zones

    Science.gov (United States)

    Bevis, Michael; Isacks, Bryan L.

    1984-07-01

    A hypocentral trend surface is a continuous function of latitude and longtitude fitted by least squares to a set of hypocenters so that it predicts depth to the "middle" of a Benioff Zone. In this paper we take a relatively simple approach to hypocentral trend surface analysis. The hypocentral trend surface is constructed from a spherical surface harmonic expansion whose coefficients are selected so as to minimize the standard vertical deviation between hypocenters and trend surface. The vertical deviation of a hypocenter from the hypocentral trend surface is called its residual. Consideration of a hypocentral trend surface cannot be divorced from consideration of the associated residuals and their spatial distribution. Any analysis of Benioff Zone geometry trades-off presumed thickness of the zone with its presumed shape. This trade-off can be investigated by examining suites of candidate hypocentral trend surfaces (together with their associated residual distributions) generated by varying the number of degrees of freedom available to the trend surface. Hypocentral trend surfaces are generated for three high quality sets of hypocenters obtained by local seismic networks in Honshu (Japan), Cook Inlet (Alaska) and South Peru. Hypocenters beneath Honshu generate a bimodal distribution of residuals about their trend surface. The vertical separation of the upper and lower sheets of this Double Benioff Zone averages about 33 km. No Double Benioff Zone configuration is discovered below Cook Inlet or South Peru. Regional trend surfaces are established for intermediate-depth teleseismic data from South and Middle America. In South America (0°-40°S) teleseismic data suggest that along-strike transitions between "flat" and moderately steeply dipping sections of the Benioff Zone are achieved by flexure of a coherent slab rather than by fragmentation of the slab into tear-bound flaps or separate tongues of lithosphere. Hypocentral trend surface analysis of teleseismic data

  8. Thin film surface reconstruction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Imperatori, P. [CNR, Monterotondo Stazione, Rome (Italy). Istituto di Chimica dei materiali

    1996-09-01

    The study of the atomic structure of surfaces and interfaces is a fundamental step in the knowledge and the development of new materials. Among the several surface-sensitive techniques employed to characterise the atomic arrangements, grazing incidence x-ray diffraction (GIXD) is one of the most powerful. With a simple data treatment, based on the kinematical theory, and using the classical methods of x-ray bulk structure determination, it gives the atomic positions of atoms at a surface or an interface and the atomic displacements of subsurface layers for a complete determination of the structure. In this paper the main features of the technique will be briefly reviewed and selected of application to semiconductor and metal surfaces will be discussed.

  9. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously...

  10. Analysis of the three-dimensional tongue shape using a three-index factor analysis model

    Science.gov (United States)

    Zheng, Yanli; Hasegawa-Johnson, Mark; Pizza, Shamala

    2003-01-01

    Three-dimensional tongue shape during vowel production is analyzed using the three-mode PARAFAC (parallel factors) model. Three-dimensional MRI images of five speakers (9 vowels) are analyzed. Sixty-five virtual fleshpoints (13 segments along the rostral-caudal dimension and 5 segments along the right-left direction) are chosen based on the interpolated tongue shape images. Methods used to adjust the alignment of MRI images, to set up the fleshpoints, and to measure the position of the fleshpoints are presented. PARAFAC analysis of this 3D coordinate data results in a stable two-factor solution that explains about 70% of the variance.

  11. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Wierzchoń, Tadeusz, E-mail: twierz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland)

    2015-04-15

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  12. SECTION 6.2 SURFACE TOPOGRAPHY ANALYSIS

    DEFF Research Database (Denmark)

    Seah, M. P.; De Chiffre, Leonardo

    2005-01-01

    Surface physical analysis, i.e. topography characterisation, encompasses measurement, visualisation, and quantification. This is critical for both component form and for surface finish at macro-, micro- and nano-scales. The principal methods of surface topography measurement are stylus profilomet...

  13. Fabrication and surface photovoltage study of hematite microparticles with hollow spindle-shaped structure

    Science.gov (United States)

    Li, Hong; Zhao, Qidong; Li, Xinyong; Shi, Yong; Chen, Guohua

    2012-07-01

    Hematite (α-Fe2O3) particles with hollow spindle-shaped microstructure were successfully synthesized by a one-pot hydrothermal approach in large scale. The structural properties of the sample were systematically investigated by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, high resolution transmission electron microscopy, selected-area electron diffraction techniques, UV-vis diffuse reflectance spectroscopy and infrared spectroscopy techniques. The characterization results revealed that the α-Fe2O3 microparticles with a single-domain crystalline structure was mainly grown along the (1 0 4) crystal plane. The valence states and the surface chemical compositions of α-Fe2O3 were further identified by X-ray photoelectron spectroscopy. The feature of photo-induced charge separation on spectrum was demonstrated by the surface photovoltage measurement under different external biases. The observed photoelectric characteristics of the as-fabricated material are beneficial for various optical and electronic applications.

  14. A novel binary shape context for 3D local surface description

    Science.gov (United States)

    Dong, Zhen; Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Li, Bijun; Zang, Yufu

    2017-08-01

    3D local surface description is now at the core of many computer vision technologies, such as 3D object recognition, intelligent driving, and 3D model reconstruction. However, most of the existing 3D feature descriptors still suffer from low descriptiveness, weak robustness, and inefficiency in both time and memory. To overcome these challenges, this paper presents a robust and descriptive 3D Binary Shape Context (BSC) descriptor with high efficiency in both time and memory. First, a novel BSC descriptor is generated for 3D local surface description, and the performance of the BSC descriptor under different settings of its parameters is analyzed. Next, the descriptiveness, robustness, and efficiency in both time and memory of the BSC descriptor are evaluated and compared to those of several state-of-the-art 3D feature descriptors. Finally, the performance of the BSC descriptor for 3D object recognition is also evaluated on a number of popular benchmark datasets, and an urban-scene dataset is collected by a terrestrial laser scanner system. Comprehensive experiments demonstrate that the proposed BSC descriptor obtained high descriptiveness, strong robustness, and high efficiency in both time and memory and achieved high recognition rates of 94.8%, 94.1% and 82.1% on the considered UWA, Queen, and WHU datasets, respectively.

  15. Gold Nanoparticles With Special Shapes: Controlled Synthesis, Surface-enhanced Raman Scattering, and The Application in Biodetection

    Directory of Open Access Journals (Sweden)

    Jinghong Li

    2007-12-01

    Full Text Available Specially shaped gold nanoparticles have intrigued considerable attention becausethey usually possess high-sensitivity surface-enhanced Raman scattering (SERS and thusresult in large advantages in trace biodetermination. In this article, starch-capped goldnanoparticles with hexagon and boot shapes were prepared through using a nontoxic andbiologically benign aqueous-phase synthetic route. Shape effects of gold nanoparticles onSERS properties were mainly investigated, and found that different-shaped goldnanoparticles possess different SERS properties. Especially, the boot-shaped nanoparticlescould induce more 100-fold SERS enhancements in sensitivity as compared with those fromgold nanospheres. The extremely strong SERS properties of gold nanoboots have beensuccessfully applied to the detection of avidin. The unique nanoboots with high-sensitivitySERS properties are also expected to find use in many other fields such as biolabel,bioassay, biodiagnosis, and even clinical diagnosis and therapy.

  16. Effects of surface shape on the geometry and surface topography of the melt pool in low-power density laser melting

    KAUST Repository

    Kim, Youngdeuk

    2011-04-15

    The quantitative correlations between workpiece volume and melt pool geometry, as well as the flow and thermal features of the melt pool are established. Thermocapillary convections in melt pool with a deformable free surface are investigated with respect to surface shape and laser intensity. When the contact angle between the tangent to the top surface and the vertical wall at the hot center is acute, the free surface flattens, compared with that of the initial free surface. Otherwise, the free surface forms a bowl-like shape with a deep crater and a low peripheral rim when the contact angle at the hot center is obtuse. Increasing the workpiece volume at a fixed laser intensity and a negative radial height gradient cause linear decreases in the geometric size and magnitude of flow and temperature of the melt pool. Conversely, linear increases are observed with a positive radial height gradient. © 2011 American Institute of Chemical Engineers (AIChE).

  17. Melt-spun shaped fibers with enhanced surface effects: fiber fabrication, characterization and application to woven scaffolds.

    Science.gov (United States)

    Park, S J; Lee, B-K; Na, M H; Kim, D S

    2013-08-01

    Scaffolds with a high surface-area-to-volume ratio (SA:V) are advantageous with regard to the attachment and proliferation of cells in the field of tissue engineering. This paper reports on the development of novel melt-spun fibers with a high SA:V, which enhanced the surface effects of a fiber-based scaffold while maintaining its mechanical strength. The cross-section of the fibers was altered to a non-circular shape, producing a higher SA:V for a similar cross-sectional area. To obtain fibers with non-circular cross-sectional shape, or shaped fibers, three different types of metal spinnerets were fabricated for the melt-spinning process, each with circular, triangular or cruciform capillaries, using deep X-ray lithography followed by nickel electroforming. Using these spinnerets, circular and shaped fibers were manufactured with biodegradable polyester, polycaprolactone. The SA:V increase in the shaped fibers was experimentally investigated under different processing conditions. Tensile tests on the fibers and indentation tests on the woven fiber scaffolds were performed. The tested fibers and scaffolds exhibited similar mechanical characteristics, due to the similar cross-sectional area of the fibers. The degradation of the shaped fibers was notably faster than that of circular fibers, because of the enlarged surface area of the shaped fibers. The woven scaffolds composed of the shaped fibers significantly increased the proliferation of human osteosarcoma MG63 cells. This approach to increase the SA:V in shaped fibers could be useful for the fabrication of programmable, biodegradable fiber-based scaffolds in tissue engineering.

  18. Analysis of international one meter class hull shapes

    OpenAIRE

    Pons Forn, Ariadna

    2015-01-01

    It has been observed that up to 23 different model were racing the IOM worlds in 2014. These means that skippers has a broad range of designs when buying a new boat. This project aims to analyse different hull shapes of International One Metre Class in order to have the necessary technical information to know how the hull shapes affect the seakeeping and boat performance. Every year the number of skippers and design keep increasing (2825 last year), therefore understanding how an IOM boat per...

  19. Analysis of laser alloyed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D.C.; Augustyniak, W.M.; Buene, L.; Draper, C.W.; Poate, J.M.

    1981-04-01

    Surface alloys of precious metals have many advantages over bulk alloys, the most obvious of which is cost reduction due to the reduced consumption of precious metal. There are several techniques for producing surface alloys. In this paper the laser irradiation technique is presented. The following lasers: CW CO/sub 2/, Q-switched Nd-YAG, frequency double Q-switched Nd-YAG, and pulsed ruby were used to irradiate and melt thin solid films of precious metals on metal substrates. This causes the surfaces to melt to a depth of approximately 10,000A. Alloying then takes place in the liquid phase where most metals are miscible. The high quench rates obtainable by this method of melting can result in the forming of metastable alloys. This melting and regrowth process is well understood and has been discussed in the literature over the last few years. This paper deals with two binary alloy systems, Au-Ni and Pd-Ti. Surface alloys of Au-Ni with a wide range of concentrations have been produced by laser irradiation of thin Au films on Ni. These films have been analyzed using Rutherford backscattering (RBS) and channeling. Many thin film metals other than Au have also been successfully alloyed using these methods. An example of a potential application is the laser surface alloying of Pd to Ti for corrosion passivation.

  20. SECTION 6.2 SURFACE TOPOGRAPHY ANALYSIS

    DEFF Research Database (Denmark)

    Seah, M. P.; De Chiffre, Leonardo

    2005-01-01

    Surface physical analysis, i.e. topography characterisation, encompasses measurement, visualisation, and quantification. This is critical for both component form and for surface finish at macro-, micro- and nano-scales. The principal methods of surface topography measurement are stylus profilometry...... representing some average property of the surface under examination. Measurement methods, as well as their application and limitations, are briefly reviewed, including standardisation and traceability issues....

  1. Shape mode analysis exposes movement patterns in biology: flagella and flatworms as case studies.

    Science.gov (United States)

    Werner, Steffen; Rink, Jochen C; Riedel-Kruse, Ingmar H; Friedrich, Benjamin M

    2014-01-01

    We illustrate shape mode analysis as a simple, yet powerful technique to concisely describe complex biological shapes and their dynamics. We characterize undulatory bending waves of beating flagella and reconstruct a limit cycle of flagellar oscillations, paying particular attention to the periodicity of angular data. As a second example, we analyze non-convex boundary outlines of gliding flatworms, which allows us to expose stereotypic body postures that can be related to two different locomotion mechanisms. Further, shape mode analysis based on principal component analysis allows to discriminate different flatworm species, despite large motion-associated shape variability. Thus, complex shape dynamics is characterized by a small number of shape scores that change in time. We present this method using descriptive examples, explaining abstract mathematics in a graphic way.

  2. Shape mode analysis exposes movement patterns in biology: flagella and flatworms as case studies.

    Directory of Open Access Journals (Sweden)

    Steffen Werner

    Full Text Available We illustrate shape mode analysis as a simple, yet powerful technique to concisely describe complex biological shapes and their dynamics. We characterize undulatory bending waves of beating flagella and reconstruct a limit cycle of flagellar oscillations, paying particular attention to the periodicity of angular data. As a second example, we analyze non-convex boundary outlines of gliding flatworms, which allows us to expose stereotypic body postures that can be related to two different locomotion mechanisms. Further, shape mode analysis based on principal component analysis allows to discriminate different flatworm species, despite large motion-associated shape variability. Thus, complex shape dynamics is characterized by a small number of shape scores that change in time. We present this method using descriptive examples, explaining abstract mathematics in a graphic way.

  3. Shape Mode Analysis Exposes Movement Patterns in Biology: Flagella and Flatworms as Case Studies

    Science.gov (United States)

    Werner, Steffen; Rink, Jochen C.; Riedel-Kruse, Ingmar H.; Friedrich, Benjamin M.

    2014-01-01

    We illustrate shape mode analysis as a simple, yet powerful technique to concisely describe complex biological shapes and their dynamics. We characterize undulatory bending waves of beating flagella and reconstruct a limit cycle of flagellar oscillations, paying particular attention to the periodicity of angular data. As a second example, we analyze non-convex boundary outlines of gliding flatworms, which allows us to expose stereotypic body postures that can be related to two different locomotion mechanisms. Further, shape mode analysis based on principal component analysis allows to discriminate different flatworm species, despite large motion-associated shape variability. Thus, complex shape dynamics is characterized by a small number of shape scores that change in time. We present this method using descriptive examples, explaining abstract mathematics in a graphic way. PMID:25426857

  4. Efficient Measurement of Shape Dissimilarity between 3D Models Using Z-Buffer and Surface Roving Method

    Directory of Open Access Journals (Sweden)

    In Kyu Park

    2002-10-01

    Full Text Available Estimation of the shape dissimilarity between 3D models is a very important problem in both computer vision and graphics for 3D surface reconstruction, modeling, matching, and compression. In this paper, we propose a novel method called surface roving technique to estimate the shape dissimilarity between 3D models. Unlike conventional methods, our surface roving approach exploits a virtual camera and Z-buffer, which is commonly used in 3D graphics. The corresponding points on different 3D models can be easily identified, and also the distance between them is determined efficiently, regardless of the representation types of the 3D models. Moreover, by employing the viewpoint sampling technique, the overall computation can be greatly reduced so that the dissimilarity is obtained rapidly without loss of accuracy. Experimental results show that the proposed algorithm achieves fast and accurate measurement of shape dissimilarity for different types of 3D object models.

  5. Deformation Analysis of Surface Crack in Rolling and Wire Drawing

    Science.gov (United States)

    Shinohara, Tetsuo; Yoshida, Kazunari

    The surface flaw of a drawn wire has a significant influence on the quality of a product. High-surface-quality drawn wires and rods have been required for the manufacture of automobiles and machines. Wire breaks due to large surface defects are common problems in wire drawing. The authors carried out rolling and multi-pass drawing of a stainless-steel wire with an artificial scratch, and investigated the growth and disappearance of a scratch from both sides by experiments and Finite Element Analysis (FEA). When the scratch angle is small, the scratch side surfaces are pushed toward each other and the scratch becomes an overlap defect. In contrast, when the scratch angle is large, the bottom of the scratch rises, and the scratch is recovered satisfactorily. Furthermore, the scratch shape and the drawing conditions were varied, and the deformation state of a scratch was clarified.

  6. Shape Analysis of 3D Head Scan Data for U.S. Respirator Users

    Science.gov (United States)

    Zhuang, Ziqing; Slice, DennisE; Benson, Stacey; Lynch, Stephanie; Viscusi, DennisJ

    2010-12-01

    In 2003, the National Institute for Occupational Safety and Health (NIOSH) conducted a head-and-face anthropometric survey of diverse, civilian respirator users. Of the 3,997 subjects measured using traditional anthropometric techniques, surface scans and 26 three-dimensional (3D) landmark locations were collected for 947 subjects. The objective of this study was to report the size and shape variation of the survey participants using the 3D data. Generalized Procrustes Analysis (GPA) was conducted to standardize configurations of landmarks associated with individuals into a common coordinate system. The superimposed coordinates for each individual were used as commensurate variables that describe individual shape and were analyzed using Principal Component Analysis (PCA) to identify population variation. The first four principal components (PC) account for 49% of the total sample variation. The first PC indicates that overall size is an important component of facial variability. The second PC accounts for long and narrow or short and wide faces. Longer narrow orbits versus shorter wider orbits can be described by PC3, and PC4 represents variation in the degree of ortho/prognathism. Geometric Morphometrics provides a detailed and interpretable assessment of morphological variation that may be useful in assessing respirators and devising new test and certification standards.

  7. Shape Analysis of 3D Head Scan Data for U.S. Respirator Users

    Directory of Open Access Journals (Sweden)

    Slice DennisE

    2010-01-01

    Full Text Available In 2003, the National Institute for Occupational Safety and Health (NIOSH conducted a head-and-face anthropometric survey of diverse, civilian respirator users. Of the 3,997 subjects measured using traditional anthropometric techniques, surface scans and 26 three-dimensional (3D landmark locations were collected for 947 subjects. The objective of this study was to report the size and shape variation of the survey participants using the 3D data. Generalized Procrustes Analysis (GPA was conducted to standardize configurations of landmarks associated with individuals into a common coordinate system. The superimposed coordinates for each individual were used as commensurate variables that describe individual shape and were analyzed using Principal Component Analysis (PCA to identify population variation. The first four principal components (PC account for 49% of the total sample variation. The first PC indicates that overall size is an important component of facial variability. The second PC accounts for long and narrow or short and wide faces. Longer narrow orbits versus shorter wider orbits can be described by PC3, and PC4 represents variation in the degree of ortho/prognathism. Geometric Morphometrics provides a detailed and interpretable assessment of morphological variation that may be useful in assessing respirators and devising new test and certification standards.

  8. Landmark based shape analysis for cerebellar ataxia classification and cerebellar atrophy pattern visualization

    Science.gov (United States)

    Yang, Zhen; Abulnaga, S. Mazdak; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    Cerebellar dysfunction can lead to a wide range of movement disorders. Studying the cerebellar atrophy pattern associated with different cerebellar disease types can potentially help in diagnosis, prognosis, and treatment planning. In this paper, we present a landmark based shape analysis pipeline to classify healthy control and different ataxia types and to visualize the characteristic cerebellar atrophy patterns associated with different types. A highly informative feature representation of the cerebellar structure is constructed by extracting dense homologous landmarks on the boundary surfaces of cerebellar sub-structures. A diagnosis group classifier based on this representation is built using partial least square dimension reduction and regularized linear discriminant analysis. The characteristic atrophy pattern for an ataxia type is visualized by sampling along the discriminant direction between healthy controls and the ataxia type. Experimental results show that the proposed method can successfully classify healthy controls and different ataxia types. The visualized cerebellar atrophy patterns were consistent with the regional volume decreases observed in previous studies, but the proposed method provides intuitive and detailed understanding about changes of overall size and shape of the cerebellum, as well as that of individual lobules.

  9. Statistical 2D and 3D shape analysis using Non-Euclidean Metrics

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Hilger, Klaus Baggesen; Wrobel, Mark Christoph

    2002-01-01

    We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition. Furtherm......We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition...

  10. Surface computing and collaborative analysis work

    CERN Document Server

    Brown, Judith; Gossage, Stevenson; Hack, Chris

    2013-01-01

    Large surface computing devices (wall-mounted or tabletop) with touch interfaces and their application to collaborative data analysis, an increasingly important and prevalent activity, is the primary topic of this book. Our goals are to outline the fundamentals of surface computing (a still maturing technology), review relevant work on collaborative data analysis, describe frameworks for understanding collaborative processes, and provide a better understanding of the opportunities for research and development. We describe surfaces as display technologies with which people can interact directly, and emphasize how interaction design changes when designing for large surfaces. We review efforts to use large displays, surfaces or mixed display environments to enable collaborative analytic activity. Collaborative analysis is important in many domains, but to provide concrete examples and a specific focus, we frequently consider analysis work in the security domain, and in particular the challenges security personne...

  11. Application of Elliptic Fourier analysis to describe the lamina cribrosa shape with age and intraocular pressure.

    Science.gov (United States)

    Sanfilippo, P G; Grimm, J L; Flanagan, J G; Lathrop, K L; Sigal, I A

    2014-11-01

    The lamina cribrosa (LC) plays an important biomechanical role in the optic nerve head (ONH). We developed a statistical shape model of the LC and tested if the shape varies with age or IOP. The ONHs of 18 donor eyes (47-91 years, mean 76 years) fixed at either 5 or 50 mmHg of IOP were sectioned, stained, and imaged under a microscope. A 3D model of each ONH was reconstructed and the outline of the vertical sagittal section closest to the geometric center of the LC extracted. The outline shape was described using Elliptic Fourier analysis, and principal components analysis (PCA) employed to identify the primary modes of LC shape variation. Linear mixed effect models were used to determine if the shape measurements were associated with age or IOP. The analysis revealed several modes of shape variation: thickness and depth directly (PC 1), or inversely (PC 2) related, and superior-inferior asymmetry (PC 3). Only PC 3 was associated with IOP, with higher IOP correlating with greater curvature of the LC superiorly compared to inferiorly. Our analysis enabled a concise and complete characterization of LC shape, revealing variations without defining them a priori. No association between LC shape and age was found for the relatively old population studied. Superior-inferior asymmetry of LC shape was associated with IOP, with more asymmetry at higher IOP. Increased IOP was not associated with LC thickness or depth.

  12. Analysis of fundus shape in highly myopic eyes by using curvature maps constructed from optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Masahiro Miyake

    Full Text Available PURPOSE: To evaluate fundus shape in highly myopic eyes using color maps created through optical coherence tomography (OCT image analysis. METHODS: We retrospectively evaluated 182 highly myopic eyes from 113 patients. After obtaining 12 lines of 9-mm radial OCT scans with the fovea at the center, the Bruch's membrane line was plotted and its curvature was measured at 1-µm intervals in each image, which was reflected as a color topography map. For the quantitative analysis of the eye shape, mean absolute curvature and variance of curvature were calculated. RESULTS: The color maps allowed staphyloma visualization as a ring of green color at the edge and as that of orange-red color at the bottom. Analyses of mean and variance of curvature revealed that eyes with myopic choroidal neovascularization tended to have relatively flat posterior poles with smooth surfaces, while eyes with chorioretinal atrophy exhibited a steep, curved shape with an undulated surface (P<0.001. Furthermore, eyes with staphylomas and those without clearly differed in terms of mean curvature and the variance of curvature: 98.4% of eyes with staphylomas had mean curvature ≥7.8×10-5 [1/µm] and variance of curvature ≥0.26×10-8 [1/µm]. CONCLUSIONS: We established a novel method to analyze posterior pole shape by using OCT images to construct curvature maps. Our quantitative analysis revealed that fundus shape is associated with myopic complications. These values were also effective in distinguishing eyes with staphylomas from those without. This tool for the quantitative evaluation of eye shape should facilitate future research of myopic complications.

  13. A Dynamic Bayesian Approach to Computational Laban Shape Quality Analysis

    Directory of Open Access Journals (Sweden)

    Dilip Swaminathan

    2009-01-01

    kinesiology. LMA (especially Effort/Shape emphasizes how internal feelings and intentions govern the patterning of movement throughout the whole body. As we argue, a complex understanding of intention via LMA is necessary for human-computer interaction to become embodied in ways that resemble interaction in the physical world. We thus introduce a novel, flexible Bayesian fusion approach for identifying LMA Shape qualities from raw motion capture data in real time. The method uses a dynamic Bayesian network (DBN to fuse movement features across the body and across time and as we discuss can be readily adapted for low-cost video. It has delivered excellent performance in preliminary studies comprising improvisatory movements. Our approach has been incorporated in Response, a mixed-reality environment where users interact via natural, full-body human movement and enhance their bodily-kinesthetic awareness through immersive sound and light feedback, with applications to kinesiology training, Parkinson's patient rehabilitation, interactive dance, and many other areas.

  14. Applications of surface analysis and surface theory in tribology

    Science.gov (United States)

    Ferrante, John

    1989-01-01

    Tribology, the study of adhesion, friction and wear of materials, is a complex field which requires a knowledge of solid state physics, surface physics, chemistry, material science, and mechanical engineering. It has been dominated, however, by the more practical need to make equipment work. With the advent of surface analysis and advances in surface and solid-state theory, a new dimension has been added to the analysis of interactions at tribological interfaces. In this paper the applications of tribological studies and their limitations are presented. Examples from research at the NASA Lewis Research Center are given. Emphasis is on fundamental studies involving the effects of monolayer coverage and thick films on friction and wear. A summary of the current status of theoretical calculations of defect energetics is presented. In addition, some new theoretical techniques which enable simplified quantitative calculations of adhesion, fracture, and friction are discussed.

  15. A Cephalometric Analysis on Magnitudes and Shape of Sella Turcica.

    Science.gov (United States)

    Rai, Ashwin R; Rai, Rohan; Pc, Vani; Rai, Rajalakshmi; Vadgaonkar, Rajanigandha; Tonse, Mamatha

    2016-07-01

    Familiarity with the shape and dimensions of sella turcica is important to recognize and manage pathological conditions of pituitary gland as well as for orthodontic treatment planning. The present study aims to describe the morphology and dimensions of sella turcica from Indian population, using lateral cephalograms to set a reference data for comparison among different races. The study used 36 lateral skull radiographs of both sexes between age group of 13 to 18 years. Shape of sella turcica was noted by visual inspection. Length, height anterior, height median, height posterior, distance between frontonasal suture and mental spine to midpoint of posterior clinoid process, and tuberculum sella were measured using digital vernier caliper with reference to Frankfort line. The results of the study revealed that mean length, height anterior, height median, height posterior were larger in females than in males. The morphological types identified include pointed posterior clinoid process with rounded hypophyseal fossa, hooked posterior clinoid process with rounded hypophyseal fossa, hooked posterior clinoid process with flask-shaped hypophyseal fossa. These observations would be beneficial for the clinicians and orthodontists to design treatment planning in pathology of pituitary gland and in correcting dentofacial anomalies.

  16. Defect analysis of complex-shape aluminum alloy forging

    Institute of Scientific and Technical Information of China (English)

    SHAN De-bin; ZHANG Yan-qiu; WANG Yong; XU Fu-chang; XU Wen-chen; L(U) Yan

    2006-01-01

    The isothermal precision forging was applied for the purpose of forming aluminum alloy with complex shape. The complexity of forging is easy to lead to the occurrence of the defects, such as underfilling, folding, metal flow lines disturbance and fibre breaking. The reasons for the defects were analyzed on the basis of experiments and finite element method(FEM). The results show that the size of flash gutter bridge, the lubricating condition and the deformation process are the main factors influencing the filling qualities of complex-shape aluminum alloy forging. The folding defect is mainly caused by different velocities of filling cavities, fast flow of much metal in one direction and confluence of two or multi metal strands. Improper metal distribution in different regions can cause the flow lines disturbance and fast metal flow in one direction is also a cause of the flow lines disturbance According to the reasons, some measures were taken to improve the quality of the forged parts. These studies can contribute to offering some experiences in making process project and optimizing the process parameters for forging complex-shape aviation products.

  17. Surface properties of bionic micro-pillar arrays with various shapes of tips

    Science.gov (United States)

    Wang, Dapeng; Zhao, Aiwu; Jiang, Rui; Li, Da; Zhang, Maofeng; Gan, Zibao; Tao, Wenyu; Guo, Hongyan; Mei, Tao

    2012-10-01

    Gecko-inspired micro-pillar arrays with various tip structures including spatular, spherical and concave tips were fabricated by a facile soft-molding method. The tip structures of micro-pillar arrays strongly depend on different curing processes in soft-molding using the same template. The adhesion and the wetting properties of these micro-pillar arrays are investigated by means of triboindenter and optical contact angle measurement. The results suggest that the surface properties are determined by different tip structures of micro-pillars. The spatular tip and concave tip are helpful for the adhesion enhancement and the shape of tip can control the contact angles and stabilities of water droplets on the micro-pillar arrays. In addition, the procedures demonstrate that the present route to fabricate gecko-inspired micro-pillar arrays with various tip structures is reliable and convenient. We believe that this research may pave the road to further understanding the gecko-inspired attachment systems and designing new artificial structures for dry adhesives.

  18. Motion and shape of partially non-wetting drops on inclined surfaces

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Senthilkumar K, Vijaya; Hopfinger, E. J.; IIT Madras-LEGI Collaboration

    2011-11-01

    We study high Reynolds number (Re) motion of partially non- wetting liquid drops on inclined surfaces using (i) water on Fluoro-Alkyl Silane (FAS) coated glass and (ii) mercury on glass. The high hysteresis (35°) water drop experiments have been conducted for a range of inclination angles 26° mercury on glass experiments, 5 .5° >103 for water and Re >> 19 for mercury, the observed velocities are accounted for by a boundary layer flow model. The dimensionless velocity in the inertial regime, Ca√{ Re } scales as the modified Bond number (Bom), while Ca Bom at low Re . We show that even at high Re , the dynamic contact angles (θd) depend only on Ca , similar to that in low Re drops. Only the model by Shikhmurzaev is consistent with the variation of dynamic contact angles in both mercury and water drops. We show that the corner transition at the rear of the mercury drop occurs at a finite, receding contact angle, which is predicted by a wedge flow model that we propose. For water drops, there is a direct transition to a rivulet from the oval shape at a critical ratio of receding to static contact angles.

  19. IJBlob: An ImageJ Library for Connected Component Analysis and Shape Analysis

    OpenAIRE

    2013-01-01

    The IJBlob library is a free ImageJ library for connected component analysis. Furthermore, it implements several contour based shape features to describe, filter or classify binary objects in images. Other features are extensible by the IJBlob extension framework. Because connected component labeling is a fundamental operation in many image processing pipelines (e.g. pattern recognition), the library could be useful for many ImageJ projects. The library is written in Java and the recent relea...

  20. Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis

    CERN Document Server

    Yan, Daikang; Gades, Lisa; Jacobsen, Chris; Madden, Timothy; Miceli, Antonino

    2016-01-01

    We present a method using principal component analysis (PCA) to process x-ray pulses with severe shape variation where traditional optimal filter methods fail. We demonstrate that PCA is able to noise-filter and extract energy information from x-ray pulses despite their different shapes. We apply this method to a dataset from an x-ray thermal kinetic inductance detector which has severe pulse shape variation arising from position-dependent absorption.

  1. Sensitivity analysis based preform die shape design using the finite element method

    Science.gov (United States)

    Zhao, G. Q.; Hufi, R.; Hutter, A.; Grandhi, R. V.

    1997-06-01

    This paper uses a finite element-based sensitivity analysis method to design the preform die shape for metal forming processes. The sensitivity analysis was developed using the rigid visco-plastic finite element method. The preform die shapes are represented by cubic B-spline curves. The control points or coefficients of the B-spline are used as the design variables. The optimization problem is to minimize the difference between the realized and the desired final forging shapes. The sensitivity analysis includes the sensitivities of the objective function, nodal coordinates, and nodal velocities with respect to the design variables. The remeshing procedure and the interpolation/transfer of the history/dependent parameters are considered. An adjustment of the volume loss resulting from the finite element analysis is used to make the workpiece volume consistent in each optimization iteration and improve the optimization convergence. In addition, a technique for dealing with fold-over defects during the forming simulation is employed in order to continue the optimization procedures of the preform die shape design. The method developed in this paper is used to design the preform die shape for both plane strain and axisymmetric deformations with shaped cavities. The analysis shows that satisfactory final forging shapes are obtained using the optimized preform die shapes.

  2. Growth and characterization of ZnO multipods on functional surfaces with different sizes and shapes of Ag particles

    Institute of Scientific and Technical Information of China (English)

    A Kamalianfar; S A Halim; Mahmoud Godarz Naseri; M Navasery; Fasih Ud Din; J A M Zahedi; Kasra Behzad

    2013-01-01

    Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube.The functional surfaces,which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires,are coated onto silicon substrates before the growth of ZnO nanostructures.The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy.The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures,resulting in different numbers and shapes of multipods.They also influence the orientation and growth quality of the rods.The optical properties are studied by photoluminescence,UV-vis,and Raman spectroscopy.The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.

  3. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating

    Science.gov (United States)

    Yan, Haitao; Han, Daofu; Li, Ming; Lin, Bo

    2017-01-01

    This paper presents the design, fabrication, and characterization of a D-shaped fiber coated with polyvinyl alcohol (PVA) embedding an Au grating-based relative humidity (RH) sensor. The Au grating is fabricated on a D-shaped fiber to match the wave-vector and excite the surface plasmon, and the PVA is embedded in the Au grating as a sensitive cladding film. The refractive index of PVA changes with the ambient humidity. Measurements in a controlled environment show that the RH sensor can achieve a sensitivity of 5.4 nm per relative humidity unit in the RH range from 0% to 70% RH. Moreover, the surface plasmon resonance can be realized and used for RH sensing at the C band of optical fiber communication instead of the visible light band due to the metallic grating microstructure on the D-shaped fiber.

  4. Observation and simulation of microdroplet shapes on surface-energy-patterned substrates: Contact line engineering for printed electronics

    Science.gov (United States)

    Noda, Yuki; Matsui, Hiroyuki; Minemawari, Hiromi; Yamada, Toshikazu; Hasegawa, Tatsuo

    2013-07-01

    Equilibrium microdroplet shapes on hydrophilic/hydrophobic patterned surfaces were investigated both by experimental observation using an inkjet printing technique and by computer simulation. We demonstrated that the hybrid energy minimization simulation can accurately reproduce the equilibrium shapes of observed microdroplets, including the droplet contact line in the vicinity of a sharp corner in the hydrophilic region. We found that the relative ratio of nonwetting areas by the droplets around a rectangular corner can be used as a useful index to check the reliability of the simulation as well as to estimate the surface-energy distribution within the hydrophilic region. Based on the estimation of the additional local force acting on the contact lines, we discuss the design rules for printed electronics circuits, such as the shapes of the integrated electrode to realize the ideal spreading.

  5. Investigation of Utilizing a Secant Stiffness Matrix for 2D Nonlinear Shape Optimization and Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Asghar Vatani Oskouie

    2016-12-01

    Full Text Available In this article the general non-symmetric parametric form of the incremental secant stiffness matrix for nonlinear analysis of solids have been investigated to present a semi analytical sensitivity analysis approach for geometric nonlinear shape optimization. To approach this aim the analytical formulas of secant stiffness matrix are presented. The models were validated and used to perform investigating different parameters affecting the shape optimization. Numerical examples utilized for this investigating sensitivity analysis with detailed discussions presented.

  6. Multi-resolutional shape features via non-Euclidean wavelets: Applications to statistical analysis of cortical thickness

    Science.gov (United States)

    Kim, Won Hwa; Singh, Vikas; Chung, Moo K.; Hinrichs, Chris; Pachauri, Deepti; Okonkwo, Ozioma C.; Johnson, Sterling C.

    2014-01-01

    Statistical analysis on arbitrary surface meshes such as the cortical surface is an important approach to understanding brain diseases such as Alzheimer’s disease (AD). Surface analysis may be able to identify specific cortical patterns that relate to certain disease characteristics or exhibit differences between groups. Our goal in this paper is to make group analysis of signals on surfaces more sensitive. To do this, we derive multi-scale shape descriptors that characterize the signal around each mesh vertex, i.e., its local context, at varying levels of resolution. In order to define such a shape descriptor, we make use of recent results from harmonic analysis that extend traditional continuous wavelet theory from the Euclidean to a non-Euclidean setting (i.e., a graph, mesh or network). Using this descriptor, we conduct experiments on two different datasets, the Alzheimer’s Disease NeuroImaging Initiative (ADNI) data and images acquired at the Wisconsin Alzheimer’s Disease Research Center (W-ADRC), focusing on individuals labeled as having Alzheimer’s disease (AD), mild cognitive impairment (MCI) and healthy controls. In particular, we contrast traditional univariate methods with our multi-resolution approach which show increased sensitivity and improved statistical power to detect a group-level effects. We also provide an open source implementation. PMID:24614060

  7. Sensitivity Analysis of the Forward Electroencephalographic Problem Depending on Head Shape Variations

    Directory of Open Access Journals (Sweden)

    Michael Doschoris

    2015-01-01

    Full Text Available A crucial aspect in clinical practice is the knowledge of whether Electroencephalographic (EEG measurements can be assigned to the functioning of the brain or to geometrical deviations of the human cranium. The present work is focused on continuing to advance understanding on how sensitive the solution of the forward EEG problem is in regard to the geometry of the head. This has been achieved by developing a novel analytic algorithm by performing a perturbation analysis in the linear regime using a homogenous spherical model. Notably, the suggested procedure provides a criterion which recognizes whether surface deformations will have an impact on EEG recordings. The presented deformations represent two major cases: (1 acquired alterations of the surface inflicted by external forces and (2 deformations of the upper part of the human head where EEG signals are recorded. Our results illustrate that neglecting geometric variations present on the heads surface leads to errors in the recorded EEG measurements less than 2%. However, for severe instances of deformations combined with cortical brain activity in the vicinity of the distortion site, the errors rise to almost 25%. Therefore, the accurate description of the head shape plays an important role in understanding the forward EEG problem only in these cases.

  8. Nonlinear Radon Transform Using Zernike Moment for Shape Analysis

    Directory of Open Access Journals (Sweden)

    Ziping Ma

    2013-01-01

    Full Text Available We extend the linear Radon transform to a nonlinear space and propose a method by applying the nonlinear Radon transform to Zernike moments to extract shape descriptors. These descriptors are obtained by computing Zernike moment on the radial and angular coordinates of the pattern image's nonlinear Radon matrix. Theoretical and experimental results validate the effectiveness and the robustness of the method. The experimental results show the performance of the proposed method in the case of nonlinear space equals or outperforms that in the case of linear Radon.

  9. Role of nanoclay shape and surface characteristics on the morphology and thermal properties of polystyrene nanocomposites synthesized via emulsion polymerization

    CSIR Research Space (South Africa)

    Greesh, N

    2013-10-01

    Full Text Available This work evaluates the role of the surface properties and shape of clay type on the morphology, thermal, and thermo-mechanical properties of the polystyrene (PS)/clay nanocomposites prepared via free-radical emulsion polymerization. Attapulgite...

  10. Approach to solution of coupled heat transfer problem on the surface of hypersonic vehicle of arbitrary shape

    Science.gov (United States)

    Bocharov, A. N.; Bityurin, V. A.; Golovin, N. N.; Evstigneev, N. M.; Petrovskiy, V. P.; Ryabkov, O. I.; Teplyakov, I. O.; Shustov, A. A.; Solomonov, Yu S.; Fortov, V. E.

    2016-11-01

    In this paper, an approach to solve conjugate heat- and mass-transfer problems is considered to be applied to hypersonic vehicle surface of arbitrary shape. The approach under developing should satisfy the following demands. (i) The surface of the body of interest may have arbitrary geometrical shape. (ii) The shape of the body can change during calculation. (iii) The flight characteristics may vary in a wide range, specifically flight altitude, free-stream Mach number, angle-of-attack, etc. (iv) The approach should be realized with using the high-performance-computing (HPC) technologies. The approach is based on coupled solution of 3D unsteady hypersonic flow equations and 3D unsteady heat conductance problem for the thick wall. Iterative process is applied to account for ablation of wall material and, consequently, mass injection from the surface and changes in the surface shape. While iterations, unstructured computational grids both in the flow region and within the wall interior are adapted to the current geometry and flow conditions. The flow computations are done on HPC platform and are most time-consuming part of the whole problem, while heat conductance problem can be solved on many kinds of computers.

  11. Contact Analysis of Nominally Flat Surfaces

    Science.gov (United States)

    2008-06-01

    specifically surface topography. Starting with the Weierstrass- Mandelbrot Equation (fractal equation), the engineers approximated the power spectrum, and...Komvopoulos, the Weierstrass- Mandelbrot function was used to model the surface topography. A finite element analysis was performed using the commercial... Mandelbrot of Poland. Mandelbrot was the first to point out the feasibility of modeling natural, physical objects with the concept. The property

  12. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    Science.gov (United States)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  13. Refinement of Stereo Image Analysis Using Photometric Shape Recovery as AN Alternative to Bundle Adjustment

    Science.gov (United States)

    Grumpe, A.; Schröer, C.; Kauffmann, S.; Fricke, T.; Wöhler, C.; Mall, U.

    2016-06-01

    Topographic mapping, e.g. the generation of Digital Elevation Models (DEM), is of general interest to the remote sensing community and scientific research. Commonly, photogrammetric methods, e.g. stereo image analysis methods (SIAM) or bundle adjustment methods (BAM), are applied to derive 3D information based on multiple images of an area. These methods require the detection of control points, i.e. common points within multiple images, which relies on a similarity measure and usually yields a sparse map of 3D points. The full spatial DEM is then obtained by interpolation techniques or imposed restrictions, e.g. smoothness constraints. Since BAM utilizes all images of the area, it is assumed to provide a more accurate DEM than SIAM which utilizes only pairs of images. Intensity-based shape recovery, e.g. shape from shading (SfS), utilizes the reflectance behavior of the object surface and thus provides a dense map of relative height changes, which provide the possibility to refine the photogrammetric DEMs. Based on Rosetta NavCam images of 67P/Churyumov-Gerasimenko we compare intensity-based DEM refinement methods which use DEMs obtained based on SIAM and BAM as a reference. We show that both the SIAM based DEM refinement and the BAM based DEM refinement are of similar quality. It is thus possible to derive DEMs of high lateral resolution by applying the intensity-based refinement to the less complex SIAM.

  14. Wavelet Denoising and Surface Electromyography Analysis

    OpenAIRE

    Hussain, M.S.; Md. Mamun

    2012-01-01

    In this research, Surface Electromyography (SEMG) signal analysis from the right rectus femoris muscle is performed during walk. Wavelet Transform (WT) has been applied for removing noise from the surface SEMG. Gaussianity tests are conducted to understand changes in muscle contraction and to quantify the effectiveness of the noise removal process. Results show that the proposed method can effectively remove noise from the raw SEMG signals for further analysis.

  15. Infrared thermographic analysis of shape memory polymer during cyclic loading

    Science.gov (United States)

    Staszczak, Maria; Pieczyska, Elżbieta A.; Maj, Michał; Kukla, Dominik; Tobushi, Hisaaki

    2016-12-01

    In this paper we present the effects of thermomechanical couplings occurring in polyurethane shape memory polymer subjected to cyclic tensile loadings conducted at various strain rates. Stress-strain characteristics were elaborated using a quasistatic testing machine, whereas the specimen temperature changes accompanying the deformation process were obtained with an infrared camera. We demonstrate a tight correlation between the mechanical and thermal results within the initial loading stage. The polymer thermomechanical behaviour in four subsequent loading-unloading cycles and the influence of the strain rate on the stress and the related temperature changes were also examined. In the range of elastic deformation the specimen temperature drops below the initial level due to thermoelastic effect whereas at the higher strains the temperature always increased, due to the dissipative deformation mechanisms. The difference in the characteristics of the specimen temperature has been applied to determine a limit of the polymer reversible deformation and analyzed for various strain rates. It was shown that at the higher strain rates higher values of the stress and temperature changes are obtained, which are related to higher values of the polymer yield points. During the cyclic loading a significant difference between the first and the second cycle was observed. The subsequent loading-unloading cycles demonstrated similar sharply shaped stress and temperature profiles and gradually decrease in values.

  16. Analysis of Beaulieu Pulse Shaping Family Based FIR Filter for WCDMA

    CERN Document Server

    Kang, A S

    2010-01-01

    The analysis and simulation of transmit and receive pulse shaping filter is an important aspect of digital wireless communication since it has a direct effect on error probabilities. Pulse shaping for wireless communication over time as well as frequency selective channels is the need of hour for 3G and 4G systems. The pulse shaping filter is a useful means to shape the signal spectrum and avoid interferences. Basically digital filters are used to modify the characteristics of signal in time and frequency domain and have been recognized as primary digital signal processing operations.

  17. THREE DIMENSIONAL COMPLEX SHAPES ANALYSIS FROM 3D LOCAL CURVATURE MEASUREMENTS. APPLICATION TO INTERMETALLIC PARTICLES IN ALUMINIUM ALLOY 5XXX

    Directory of Open Access Journals (Sweden)

    Estelle Parra-Denis

    2011-05-01

    Full Text Available The studied material is a 5xxx aluminium alloys containing 2 types of intermetallic particles : Alx(Fe;Mn and Mg2Si. It is usually used in car industry as reinforcement pieces or in packaging industry, such as bottle liquid box lid. Scanning electronic microscope coupled with EDX analysis shows complex shapes of intermetallic particles. The particle shape is obtained during the solidification of alloys. Particles fill vacant spaces between aluminium grains. Therefore final sheet properties depend on intermetallic particles shapes and notably on the matrix-particle interface properties. The goal of the present study is to classify intermetallic particles versus their shapes using local curvature information. The aluminium alloys sample is observed by X ray micro tomography performed at the ESRF. Three dimensional images are segmented, and intermetallic particles are identified in a data base. Each particle is stored as a set of voxels. The surface of each particle is meshed by a marching cubes triangular meshing with the software Amira©. A simplification of the surface is performed by an algorithm contracting the edges. Finally, principal curvatures: kmin and kmax are estimated by Amira© on each facet centre of the mesh. From the full intermetallic population, the bivariate distribution of kmin and kmax is estimated. The obtained graph kmin ¡kmax shows geometrical properties of interface portions of the surface of particles. A factorial correspondence analysis is performed to summarize the information on all intermetallic particles. In the obtained subspace, particles are classified into five shape families, in relation with their interface geometrical properties.

  18. Decorin core protein (decoron shape complements collagen fibril surface structure and mediates its binding.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    Full Text Available Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM. With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein and binding sites in the d and e(1 bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1 bands. This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  19. The role of the interplanetary shock surface fluctuations in shaping energetic storm particle events

    Science.gov (United States)

    Lario, D.; Decker, R. B.

    2006-12-01

    Solar cycle 23 has provided us with a large variety of shocks and associated energetic particle storm (ESP) events. Statistical analysis of shocks and ESP events detected by ACE has shown a tendency for observing more quasi-perpendicular shocks; whereas the most common types of event are those that do not display any >47 keV ion intensity increase [Lario et al., 2005a; Proc. SW11, ESA SP-592, pp. 81-86]. Faster and stronger shocks have greater effects on the particle intensities at their passage by 1 AU, but the shock parameters do not determine unequivocally the characteristics of the ESP events. A few of these events show characteristics similar to those predicted by the theory of diffusive shock acceleration, although detailed analysis reveals significant inconsistencies between observations and theory [Lario et al., 2005b; Proc. 4th IGPP Conf., AIP-781, pp. 180-184]. A common type of event has irregular structure, showing multiple intensity bursts before and/or after the shock passage. We present both the observations of one of these events and the results of a test-particle, full-orbit-integration simulation of ion shock-acceleration in a corrugated shock surface [Decker, 1990; JGR 95, pp. 11993-12003]. Although meso-scale fluctuations of the shock surface or in magnetic field direction, or both, can produce similar features in shock-accelerated particle distributions, we invoke the rippled shock model in this case because the measured pre-shock field is relatively steady. These simulations allow us to reproduce not only the evolution of the ion intensities but also the observed ion anisotropies and energy spectra. Fluctuations of both the solar wind plasma where the shock travels and of the shock surface may determine the main features of those ESP events with irregular variations of intensities and angular distributions. This presentation constitutes a progress report on NASA LWS TR{&}T grant NAG5-13487.

  20. Finite element contact analysis of fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Prasanta; Ghosh, Niloy [Department of Mechanical Engineering, Jadavpur University, Kolkata 700032 (India)

    2007-07-21

    The present study considers finite element analysis of non-adhesive, frictionless elastic/elastic-plastic contact between a rigid flat plane and a self-affine fractal rough surface using the commercial finite element package ANSYS. Three-dimensional rough surfaces are generated using a modified two-variable Weierstrass-Mandelbrot function with given fractal parameters. Parametric studies are done to consider the general relations between contact properties and key material and surface parameters. The present analysis is validated with available experimental results in the literature. Non-dimensional contact area and displacement are obtained as functions of non-dimensional load for varying fractal surface parameters in the case of elastic contact and for varying rates of strain hardening in the case of elastic-plastic contact of fractal surfaces.

  1. Electron - nuclear recoil discrimination by pulse shape analysis

    CERN Document Server

    Elbs, J; Collin, E; Godfrin, H; Suvorova, O

    2007-01-01

    In the framework of the ``ULTIMA'' project, we use ultra cold superfluid 3He bolometers for the direct detection of single particle events, aimed for a future use as a dark matter detector. One parameter of the pulse shape observed after such an event is the thermalization time constant. Until now it was believed that this parameter only depends on geometrical factors and superfluid 3He properties, and that it is independent of the nature of the incident particles. In this report we show new results which demonstrate that a difference for muon- and neutron events, as well as events simulated by heater pulses exist. The possibility to use this difference for event discrimination in a future dark matter detector will be discussed.

  2. Recoverable stress induced two-way shape memory effect on NiTi surface using laser-produced shock wave

    Science.gov (United States)

    Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Thomas, Zachary; Alal, Orhan; Karaca, Haluk E.; Er, Ali O.

    2017-02-01

    The surfaces of Ni50Ti50 shape memory alloys (SMAs) were patterned by laser scribing. This method is more simplistic and efficient than traditional indentation techniques, and has also shown to be an effective method in patterning these materials. Different laser energy densities ranging from 5 mJ/pulse to 56 mJ/pulse were used to observe recovery on SMA surface. The temperature dependent heat profiles of the NiTi surfaces after laser scribing at 56 mJ/pulse show the partially-recovered indents, which indicate a "shape memory effect (SME)" Experimental data is in good agreement with theoretical simulation of laser induced shock wave propagation inside NiTi SMAs. Stress wave closely followed the rise time of the laser pulse to its peak values and initial decay. Further investigations are underway to improve the SME such that the indents are recovered to a greater extent.

  3. STUDY ON THE TANTALIZING ON THE SURFACE OF TITANIUM ALLOY BY NET-SHAPE CATHODE GLOW DISCHARGING

    Institute of Scientific and Technical Information of China (English)

    F. Chen; H. Zhou; Y.F. Zhang; J.D. Pan

    2005-01-01

    A new net-shape cathode sputtering target which has a simple structure and a high sputtering was put forward. The multiple-structure made of alloying and coating layers of tantalum was achieved on the surface of TC4 (Ti6Al4V) using this method in double glow surface alloying process. The tantalized samples were investigated by SEM, XRD and electrochemical corrosion method .Results show the complicated tissue of pure tantalizing layer and diffusion layer was successfully formed on the surface of TC4 with the method of net-shape cathode glow discharge, which further improved the corrosion-resistance of TC4 and formed good corrosion-resistant alloys.

  4. CAD based design sensitivity analysis and shape optimization of scaffolds for bio-root regeneration in swine.

    Science.gov (United States)

    Luo, Xiangyou; Yang, Bo; Sheng, Lei; Chen, Jinlong; Li, Hui; Xie, Li; Chen, Gang; Yu, Mei; Guo, Weihua; Tian, Weidong

    2015-07-01

    Tooth root supports dental crown and bears occlusal force. While proper root shape and size render the force being evenly delivered and dispersed into jawbone. Yet it remains unclear what shape and size of a biological tooth root (bio-root), which is mostly determined by the scaffold geometric design, is suitable for stress distributing and mastication performing. Therefore, this study hypothesized scaffold fabricated in proper shape and size is better for regeneration of tooth root with approving biomechanical functional features. In this study, we optimized shape and size of scaffolds for bio-root regeneration using computer aided design (CAD) modeling and finite element analysis (FEA). Statical structural analysis showed the total deformation (TD) and equivalent von-mises stress (EQV) of the restored tooth model mainly concentrated on the scaffold and the post, in accordance with the condition in a natural post restored tooth. Design sensitivity analysis showed increasing the height and upper diameter of the scaffold can tremendously reduce the TD and EQV of the model, while increasing the bottom diameter of scaffold can, to some extent, reduce the EQV in post. However, increase on post height had little influence on the whole model, only slightly increased the native EQV stress in post. Through response surface based optimization, we successfully screened out the optimal shape of the scaffold used in tissue engineering of tooth root. The optimal scaffold adopted a slightly tapered shape with the upper diameter of 4.9 mm, bottom diameter of 3.4 mm; the length of the optimized scaffold shape was 9.4 mm. While the analysis also suggested a height of about 9 mm for a metal post with a diameter of 1.4 mm suitable for crown restoration in bio-root regeneration. In order to validate the physiological function of the shape optimized scaffold in vivo, we transplanted the shape optimized treated dentin matrix (TDM) scaffold, seeding with dental stem cells, into alveolar

  5. Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment

    Science.gov (United States)

    Lin, Hui; Gao, Jian; Mei, Qing; Zhang, Guanjin; He, Yunbo; Chen, Xin

    2017-04-01

    Conventional methods based on analyses of the absolute gray levels of pixels in fringe pattern images are affected by the problems of image saturation, interreflection, and high sensitivity to noise when obtaining three-dimensional (3D) shape measurements of shiny surfaces. This study presents a robust, adaptive, and fast 3D shape measurement technique, which adaptively adjusts the pixel-wise intensity of the projected patterns, thus it avoids image saturation and has a high signal to noise ratio (SNR) during 3D shape measurement for shiny surfaces. Compared with previous time-consuming methods using multiple exposures and the projection of fringe patterns with multiple intensities, where a large number of fringe pattern images need to be captured, the proposed technique needs to capture far fewer pattern images for measurement. In addition, it can greatly reduce the time costs to obtain the optimal projection intensities by the fusion of uniform gray level patterns and coordinates mapping. Our experimental results demonstrate that the proposed technique can achieve highly accurate and efficient 3D shape measurement for shiny surfaces.

  6. First-and Second-Order Displacement Transfer Functions for Structural Shape Calculations Using Analytically Predicted Surface Strains

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    New first- and second-order displacement transfer functions have been developed for deformed shape calculations of nonuniform cross-sectional beam structures such as aircraft wings. The displacement transfer functions are expressed explicitly in terms of beam geometrical parameters and surface strains (uniaxial bending strains) obtained at equally spaced strain stations along the surface of the beam structure. By inputting the measured or analytically calculated surface strains into the displacement transfer functions, one could calculate local slopes, deflections, and cross-sectional twist angles of the nonuniform beam structure for mapping the overall structural deformed shapes for visual display. The accuracy of deformed shape calculations by the first- and second-order displacement transfer functions are determined by comparing these values to the analytically predicted values obtained from finite element analyses. This comparison shows that the new displacement transfer functions could quite accurately calculate the deformed shapes of tapered cantilever tubular beams with different tapered angles. The accuracy of the present displacement transfer functions also are compared to those of the previously developed displacement transfer functions.

  7. A study on soil–structure interaction analysis in canyon-shaped topographies

    Indian Academy of Sciences (India)

    Oguz Akin Duzgun; Ahmet Budak

    2010-06-01

    In this paper, a coupled finite and infinite element system is used to study the effects of canyon-shaped topography and geotechnical characteristics of the soil on the dynamic response of free surface and of 2- soil–structure systems under ground motion. A parametric study is carried out for canyon-shaped topographies. It is concluded that topographic conditions may have important effects on the ground motion along the canyon. Geotechnical properties of the soil also have significant amplification effects on the whole system motion, which cannot be neglected for design purposes. Thus, the dynamic response of both free surface and a soil–structure system are primarily affected by surface shapes and geotechnical properties of the soil. Location of the structure is another parameter affecting the whole system response.

  8. Atlas-Based Ventricular Shape Analysis for Understanding Congenital Heart Disease.

    Science.gov (United States)

    Farrar, Genevieve; Suinesiaputra, Avan; Gilbert, Kathleen; Perry, James C; Hegde, Sanjeet; Marsden, Alison; Young, Alistair A; Omens, Jeffrey H; McCulloch, Andrew D

    2016-12-01

    Congenital heart disease is associated with abnormal ventricular shape that can affect wall mechanics and may be predictive of long-term adverse outcomes. Atlas-based parametric shape analysis was used to analyze ventricular geometries of eight adolescent or adult single-ventricle CHD patients with tricuspid atresia and Fontans. These patients were compared with an "atlas" of non-congenital asymptomatic volunteers, resulting in a set of z-scores which quantify deviations from the control population distribution on a patient-by-patient basis. We examined the potential of these scores to: (1) quantify abnormalities of ventricular geometry in single ventricle physiologies relative to the normal population; (2) comprehensively quantify wall motion in CHD patients; and (3) identify possible relationships between ventricular shape and wall motion that may reflect underlying functional defects or remodeling in CHD patients. CHD ventricular geometries at end-diastole and end-systole were individually compared with statistical shape properties of an asymptomatic population from the Cardiac Atlas Project. Shape analysis-derived model properties, and myocardial wall motions between end-diastole and end-systole, were compared with physician observations of clinical functional parameters. Relationships between altered shape and altered function were evaluated via correlations between atlas-based shape and wall motion scores. Atlas-based shape analysis identified a diverse set of specific quantifiable abnormalities in ventricular geometry or myocardial wall motion in all subjects. Moreover, this initial cohort displayed significant relationships between specific shape abnormalities such as increased ventricular sphericity and functional defects in myocardial deformation, such as decreased long-axis wall motion. These findings suggest that atlas-based ventricular shape analysis may be a useful new tool in the management of patients with CHD who are at risk of impaired ventricular

  9. Curve/surface representation and evolution using vector level sets with application to the shape-based segmentation problem.

    Science.gov (United States)

    Abd El Munim, Hossam E; Farag, Aly A

    2007-06-01

    In this paper, we revisit the implicit front representation and evolution using the vector level set function (VLSF) proposed in [1]. Unlike conventional scalar level sets, this function is designed to have a vector form. The distance from any point to the nearest point on the front has components (projections) in the coordinate directions included in the vector function. This kind of representation is used to evolve closed planar curves and 3D surfaces as well. Maintaining the VLSF property as the distance projections through evolution will be considered together with a detailed derivation of the vector partial differential equation (PDE) for such evolution. A shape-based segmentation framework will be demonstrated as an application of the given implicit representation. The proposed level set function system will be used to represent shapes to give a dissimilarity measure in a variational object registration process. This kind of formulation permits us to better control the process of shape registration, which is an important part in the shape-based segmentation framework. The method depends on a set of training shapes used to build a parametric shape model. The color is taken into consideration besides the shape prior information. The shape model is fitted to the image volume by registration through an energy minimization problem. The approach overcomes the conventional methods problems like point correspondences and weighing coefficients tuning of the evolution (PDEs). It is also suitable for multidimensional data and computationally efficient. Results in 2D and 3D of real and synthetic data will demonstrate the efficiency of the framework.

  10. Sparse Principal Component Analysis in Medical Shape Modeling

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Stegmann, Mikkel Bille; Larsen, Rasmus

    2006-01-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims...

  11. QUARRY STABILITY ANALYSIS FOR COMPLEX SLIP SURFACES USING THE MATHSLOPE METHOD

    Directory of Open Access Journals (Sweden)

    Petar Hrženjak

    2004-12-01

    Full Text Available Due to the specific characteristics of rock mass compared to other geological materials, the calculation of rock slope stability is very complex. One of the basic characteristics of rock masses is discontinuity, which, to the most degree, is formed by the geological structure and its elements. Because of discontinuities the slip surfaces of complex shapes are formed in rock slopes, mostly of straight and curved segments. The calculation of the stability factor of rock slopes for complex shapes of slip surfaces has been made possible by the development of the MathSlope method. The complex shape of slip surface has been achieved by introduction of planes of discontinuities in the slip surface. Thus, the setting up and searching procedure of critical slip surfaces of complex shapes is very different in the MathSlope method than in other ones. The example of back analysis for the quarry Vukov Dol shows the successfulness in determining the critical slip surface, as well as the calculation factor of stability for the complex shape of slip surface. Apart from calculating the factor of stability for the complex slip surface, the solution for the position of discontinuity on the slope is obtained, which matches with the real position on the quarry.

  12. PHOTOGRAMMETRIC TECHNIQUES FOR ROAD SURFACE ANALYSIS

    Directory of Open Access Journals (Sweden)

    V. A. Knyaz

    2016-06-01

    Full Text Available The quality and condition of a road surface is of great importance for convenience and safety of driving. So the investigations of the behaviour of road materials in laboratory conditions and monitoring of existing roads are widely fulfilled for controlling a geometric parameters and detecting defects in the road surface. Photogrammetry as accurate non-contact measuring method provides powerful means for solving different tasks in road surface reconstruction and analysis. The range of dimensions concerned in road surface analysis can have great variation from tenths of millimetre to hundreds meters and more. So a set of techniques is needed to meet all requirements of road parameters estimation. Two photogrammetric techniques for road surface analysis are presented: for accurate measuring of road pavement and for road surface reconstruction based on imagery obtained from unmanned aerial vehicle. The first technique uses photogrammetric system based on structured light for fast and accurate surface 3D reconstruction and it allows analysing the characteristics of road texture and monitoring the pavement behaviour. The second technique provides dense 3D model road suitable for road macro parameters estimation.

  13. Photogrammetric Techniques for Road Surface Analysis

    Science.gov (United States)

    Knyaz, V. A.; Chibunichev, A. G.

    2016-06-01

    The quality and condition of a road surface is of great importance for convenience and safety of driving. So the investigations of the behaviour of road materials in laboratory conditions and monitoring of existing roads are widely fulfilled for controlling a geometric parameters and detecting defects in the road surface. Photogrammetry as accurate non-contact measuring method provides powerful means for solving different tasks in road surface reconstruction and analysis. The range of dimensions concerned in road surface analysis can have great variation from tenths of millimetre to hundreds meters and more. So a set of techniques is needed to meet all requirements of road parameters estimation. Two photogrammetric techniques for road surface analysis are presented: for accurate measuring of road pavement and for road surface reconstruction based on imagery obtained from unmanned aerial vehicle. The first technique uses photogrammetric system based on structured light for fast and accurate surface 3D reconstruction and it allows analysing the characteristics of road texture and monitoring the pavement behaviour. The second technique provides dense 3D model road suitable for road macro parameters estimation.

  14. Laser Beam Shaping For Lithography on Inclined and Curved Surfaces Using a liquid crystal Spatial Light Modulator

    Science.gov (United States)

    Gatabi, Javad R.; Geerts, Wilhelmus; Tamir, Dan; Pandey, Kumar

    2013-03-01

    An exposure tool for lithography on non-flat substrates that includes a real time photoresist thickness and surface topography monitor is under development at Texas State University. Exposure dose and focusing are corrected on curved parts of the sample using novel laser beam shaping techniques: two approaches using a Holoeye liquid crystal spatial light modulator (LC-SLM) are being investigated: (1) the implementation of multiple lenses with different focal lengths to split the beam into several parts and keeping each part in focus depending on sample topography; (2) the implementation of a tilted lens function resulting in a tilt of the image plane. Image quality is limited by quantization aberration, caused by the phase modulator's bit depth limitation, and pixelation aberration, caused by the modulator's pixel size. A statistical analysis on lenses with different focal lengths provides a detailed description of the mentioned aberrations. The image quality, i.e. resolution and contrast of both techniques, are determined from developed photoresist patterns on curved samples and compared to the theory.

  15. Turbulent momentum transport due to the beating between different tokamak flux surface shaping effects

    CERN Document Server

    Ball, Justin

    2016-01-01

    Introducing up-down asymmetry into the tokamak magnetic equilibria appears to be a feasible method to drive fast intrinsic toroidal rotation in future large devices. In this paper we investigate how the intrinsic momentum transport generated by up-down asymmetric shaping scales with the mode number of the shaping effects. Making use the gyrokinetic tilting symmetry (Ball et al (2016) Plasma Phys. Control. Fusion 58 045023), we study the effect of envelopes created by the beating of different high-order shaping effects. This reveals that the presence of an envelope can change the scaling of the momentum flux from exponentially small in the limit of large shaping mode number to just polynomially small. This enhancement of the momentum transport requires the envelope to be both up-down asymmetric and have a spatial scale on the order of the minor radius.

  16. Turbulent momentum transport due to the beating between different tokamak flux surface shaping effects

    Science.gov (United States)

    Ball, Justin; Parra, Felix I.

    2017-02-01

    Introducing up-down asymmetry into the tokamak magnetic equilibria appears to be a feasible method to drive fast intrinsic toroidal rotation in future large devices. In this paper we investigate how the intrinsic momentum transport generated by up-down asymmetric shaping scales with the mode number of the shaping effects. Making use the gyrokinetic tilting symmetry (Ball et al 2016 Plasma Phys. Control. Fusion 58 045023), we study the effect of envelopes created by the beating of different high-order shaping effects. This reveals that the presence of an envelope can change the scaling of the momentum flux from exponentially small in the limit of large shaping mode number to just polynomially small. This enhancement of the momentum transport requires the envelope to be both up-down asymmetric and have a spatial scale on the order of the minor radius.

  17. [Morphometric analysis of nasal shapes and angles in young adults].

    Science.gov (United States)

    Uzun, Ahmet; Ozdemir, Fikri

    2014-01-01

    The size, angle, shape and type of nose are a signature indicating race, age and sex. Describe and compare nasal angles, nose types, nostril models, and nasal profiles in young Turkish males and females. The study group consisted of university students, 56 males and 59 females. Nasal measurements were obtained from all subjects, using anthropometric methods. The nose types of females and males were 78% and 70% narrow nose, respectively. The means of females' nasofrontal, nasal tip, nasolabial, and alar slope angles were 133.16° ± 8.88°; 77.91° ± 9.80°; 98.91° ± 10.01°, and 80.89° ± 8.33°, respectively. The means of males' nasofrontal, nasal tip, nasolabial, and alar slope angles were 123.85° ± 13.23°; 82.16° ± 9.98°; 97.91° ± 8.78° and 85.98° ± 8.72°, respectively. The average values of the nose in this population may be used as a guide to plan corrective esthetic-cosmetic surgery and for burn scars of the nose. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. Sharpening the shape analysis for higher-dimensional operator searches

    Science.gov (United States)

    Fichet, Sylvain; Tonero, Alberto; Teles, Patricia Rebello

    2017-08-01

    When the Standard Model is interpreted as the renormalizable sector of a low-energy effective theory, the effects of new physics are encoded into a set of higher-dimensional operators. These operators potentially deform the shapes of Standard Model differential distributions of final states observable at colliders. We describe a simple and systematic method to obtain optimal estimations of these deformations when using numerical tools, like Monte Carlo simulations. A crucial aspect of this method is minimization of the estimation uncertainty: We demonstrate how the operator coefficients have to be set in the simulations in order to get optimal results. The uncertainty on the interference term turns out to be the most difficult to control and grows very quickly when the interference is suppressed. We exemplify our method by computing the deformations induced by the O3 W operator in W+W- production at the LHC, and by deriving a bound on O3 W using 8 TeV CMS data.

  19. Wind and sunlight shape microbial diversity in surface waters of the North Pacific Subtropical Gyre

    Science.gov (United States)

    Bryant, Jessica A; Aylward, Frank O; Eppley, John M; Karl, David M; Church, Matthew J; DeLong, Edward F

    2016-01-01

    Few microbial time-series studies have been conducted in open ocean habitats having low seasonal variability such as the North Pacific Subtropical Gyre (NPSG), where surface waters experience comparatively mild seasonal variation. To better describe microbial seasonal variability in this habitat, we analyzed rRNA amplicon and shotgun metagenomic data over two years at the Hawaii Ocean Time-series Station ALOHA. We postulated that this relatively stable habitat might reveal different environmental factors that influence planktonic microbial community diversity than those previously observed in more seasonally dynamic habitats. Unexpectedly, the data showed that microbial diversity at 25 m was positively correlated with average wind speed 3 to 10 days prior to sampling. In addition, microbial community composition at 25 m exhibited significant correlations with solar irradiance. Many bacterial groups whose relative abundances varied with solar radiation corresponded to taxa known to exhibit strong seasonality in other oceanic regions. Network co-correlation analysis of 25 m communities showed seasonal transitions in composition, and distinct successional cohorts of co-occurring phylogenetic groups. Similar network analyses of metagenomic data also indicated distinct seasonality in genes originating from cyanophage, and several bacterial clades including SAR116 and SAR324. At 500 m, microbial community diversity and composition did not vary significantly with any measured environmental parameters. The minimal seasonal variability in the NPSG facilitated detection of more subtle environmental influences, such as episodic wind variation, on surface water microbial diversity. Community composition in NPSG surface waters varied in response to solar irradiance, but less dramatically than reported in other ocean provinces. PMID:26645474

  20. Online tomato sorting based on shape, maturity, size, and surface defects using machine vision

    OpenAIRE

    ARJENAKI, Omid Omidi; MOGHADDAM, Parviz Ahmadi; MOTLAGH, Asad Moddares

    2013-01-01

    Online sorting of tomatoes according to their features is an important postharvest procedure. The purpose of this research was to develop an efficient machine vision-based experimental sorting system for tomatoes. Relevant sorting parameters included shape (oblong and circular), size (small and large), maturity (color), and defects. The variables defining shape, maturity, and size of the tomatoes were eccentricity, average of color components, and 2-D pixel area, respectively. Tomato defects ...

  1. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  2. Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo.

    Science.gov (United States)

    Jedlovszky-Hajdú, Angéla; Bombelli, Francesca Baldelli; Monopoli, Marco P; Tombácz, Etelka; Dawson, Kenneth A

    2012-10-23

    Superparamagnetic iron oxide nanoparticles (SPIONs) have proved their use in many biomedical applications, such as drug delivery, hyperthermia, and MRI (magnetic resonance imaging) contrast agents. Due to their instability in fluids, several surface coatings have been used to both stabilize and tune the properties of these nanoparticles (NPs) according to their applications. These coatings will strongly modify their surface properties and influence their interaction with the environment proteins in a relevant biological medium with a clear impact on their function. It is well-accepted that a protein corona is immediately formed when nanoparticles come in contact with a biological milieu, and the emergent bionano interface represents the biological identity of the particles. Here, we investigate how a different coating on the same magnetic core can influence the protein corona composition and structure with clear relevance to application of these NPs in medicine. In particular, we have studied the structure and composition of the protein corona-SPION complexes of magnetite nanoparticles stabilized with citric acid, poly(acrylic acid), or double layer oleic acid by a range of approaches, including dynamic light scattering, nanoparticle tracking analysis, differential centrifugal sedimentation, infrared spectroscopy, 1-D SDS gel electrophoresis, and mass spectroscopy.

  3. Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles

    Science.gov (United States)

    Liu, Yue; Huang, Cheng Zhi

    2013-07-01

    Understanding the localized surface plasmon resonance (LSPR) of differently shaped plasmonic nanoparticles benefits screening and designing highly sensitive single nanoparticle sensors. Herein, in the present work, we systematically investigated the shape-dependent scattering light colours and refractive index (RI) sensitivity of Ag nanoparticles (AgNPs) at the single nanoparticle level using conventional dark-field light scattering microscopy and spectroscopy. AgNPs in various shapes and scattering colourful light were synthesized, and the shape effect on the scattering light colour was determined by the colocalization of the same nanoparticles with dark-field microscopy (DFM) and scanning electron microscopy (SEM). The results showed that the AgNPs that scattered blue, cyan, yellow, and red light are spheres, cubes, triangular bipyramids, and rods, respectively, which enable us to directly recognize the shape of AgNPs through dark-field microscopy instead of electron microscopy. Further studies on investigation of the scattering spectral responses of single AgNPs to their surrounding solvents show that the RI sensitivity of AgNPs of different shapes followed the order of rods > cubes > triangular bipyramids > spheres. Among the commonly studied AgNPs, Ag nanorods have the highest RI sensitivity, which increases as the aspect ratio increases. Then, AgNPs of various shapes were used as single nanoparticle sensors for probing the adsorption of small molecules.Understanding the localized surface plasmon resonance (LSPR) of differently shaped plasmonic nanoparticles benefits screening and designing highly sensitive single nanoparticle sensors. Herein, in the present work, we systematically investigated the shape-dependent scattering light colours and refractive index (RI) sensitivity of Ag nanoparticles (AgNPs) at the single nanoparticle level using conventional dark-field light scattering microscopy and spectroscopy. AgNPs in various shapes and scattering colourful

  4. Constrained Ordination Analysis with Enrichment of Bell-Shaped Response Functions.

    Science.gov (United States)

    Zhang, Yingjie; Thas, Olivier

    2016-01-01

    Constrained ordination methods aims at finding an environmental gradient along which the species abundances are maximally separated. The species response functions, which describe the expected abundance as a function of the environmental score, are according to the ecological fundamental niche theory only meaningful if they are bell-shaped. Many classical model-based ordination methods, however, use quadratic regression models without imposing the bell-shape and thus allowing for meaningless U-shaped response functions. The analysis output (e.g. a biplot) may therefore be potentially misleading and the conclusions are prone to errors. In this paper we present a log-likelihood ratio criterion with a penalisation term to enforce more bell-shaped response shapes. We report the results of a simulation study and apply our method to metagenomics data from microbial ecology.

  5. Statistical Contact Angle Analyses with the High-Precision Drop Shape Analysis (HPDSA Approach: Basic Principles and Applications

    Directory of Open Access Journals (Sweden)

    Florian Heib

    2016-11-01

    Full Text Available Surface science, which includes the preparation, development and analysis of surfaces and coatings, is essential in both fundamental and applied as well as in engineering and industrial research. Contact angle measurements using sessile drop techniques are commonly used to characterize coated surfaces or surface modifications. Well-defined surfaces structures at both nanoscopic and microscopic level can be achieved but the reliable characterization by means of contact angle measurements and their interpretation often remains an open question. Thus, we focused our research effort on one main problem of surface science community, which is the determination of correct and valid definitions and measurements of contact angles. In this regard, we developed the high-precision drop shape analysis (HPDSA, which involves a complex transformation of images from sessile drop experiments to Cartesian coordinates and opens up the possibility of a physically meaningful contact angle calculation. To fulfill the dire need for a reproducible contact angle determination/definition, we developed three easily adaptable statistical analyses procedures. In the following, the basic principles of HPDSA will be explained and applications of HPDSA will be illustrated. Thereby, the unique potential of this analysis approach will be illustrated by means of selected examples.

  6. Phases of the Isobaric Surface Shapes in the Geostrophic State of the Atmosphere and Connection to the Polar Vortices

    Directory of Open Access Journals (Sweden)

    Robert Zakinyan

    2016-10-01

    Full Text Available This paper presents a theoretical study of the disturbed isobaric surface shape in the geostrophic state of the atmosphere. It has been shown that, depending on the overheat sign at the equator, the isobaric surface has the shape of an oblate or prolate geoid. If the geostrophic wind velocity is nonzero at the poles, the local pressure extrema (minima for oblate geoid and maxima for prolate geoid appear at the poles in the geostrophic state. This result correlates with the well-known polar vortex phenomenon and possibly can refine our understanding and interpretation of the phenomenon. In other words, the existence of polar minima and maxima of the pressure field can be the peculiarity of the geostrophic state of the atmosphere. It has been found that air must be colder than the surrounding atmosphere for initiation of the zonal eastward transport. For warm air mass, only easterly winds will be observed.

  7. Experimental analysis of shape deformation of evaporating droplet using Legendre polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Apratim [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 (India); Basu, Saptarshi, E-mail: sbasu@mecheng.iisc.ernet.in [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2014-01-24

    Experiments involving heating of liquid droplets which are acoustically levitated, reveal specific modes of oscillations. For a given radiation flux, certain fluid droplets undergo distortion leading to catastrophic bag type breakup. The voltage of the acoustic levitator has been kept constant to operate at a nominal acoustic pressure intensity, throughout the experiments. Thus the droplet shape instabilities are primarily a consequence of droplet heating through vapor pressure, surface tension and viscosity. A novel approach is used by employing Legendre polynomials for the mode shape approximation to describe the thermally induced instabilities. The two dominant Legendre modes essentially reflect (a) the droplet size reduction due to evaporation, and (b) the deformation around the equilibrium shape. Dissipation and inter-coupling of modal energy lead to stable droplet shape while accumulation of the same ultimately results in droplet breakup.

  8. Axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD): a film balance technique for high collapse pressures.

    Science.gov (United States)

    Saad, Sameh M I; Policova, Zdenka; Acosta, Edgar J; Neumann, A Wilhelm

    2008-10-07

    Collapse pressure of insoluble monolayers is a property determined from surface pressure/area isotherms. Such isotherms are commonly measured by a Langmuir film balance or a drop shape technique using a pendant drop constellation (ADSA-PD). Here, a different embodiment of a drop shape analysis, called axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD) is used as a film balance. It is shown that ADSA-CSD has certain advantages over conventional methods. The ability to measure very low surface tension values (e.g., drop setup, and leak-proof design make the constrained sessile drop constellation a better choice than the pendant drop constellation in many situations. Results of compression isotherms are obtained on three different monolayers: octadecanol, dipalmitoyl-phosphatidyl-choline (DPPC), and dipalmitoyl-phosphatidyl-glycerol (DPPG). The collapse pressures are found to be reproducible and in agreement with previous methods. For example, the collapse pressure of DPPC is found to be 70.2 mJ/m2. Such values are not achievable with a pendant drop. The collapse pressure of octadecanol is found to be 61.3 mJ/m2, while that of DPPG is 59.0 mJ/m2. The physical reasons for these differences are discussed. The results also show a distinctive difference between the onset of collapse and the ultimate collapse pressure (ultimate strength) of these films. ADSA-CSD allows detailed study of this collapse region.

  9. Global analysis of quadrupole shape invariants based on covariant energy density functionals

    Science.gov (United States)

    Quan, S.; Chen, Q.; Li, Z. P.; Nikšić, T.; Vretenar, D.

    2017-05-01

    Background: The coexistence of different geometric shapes at low energies presents a universal structure phenomenon that occurs over the entire chart of nuclides. Studies of the shape coexistence are important for understanding the microscopic origin of collectivity and modifications of shell structure in exotic nuclei far from stability. Purpose: The aim of this work is to provide a systematic analysis of characteristic signatures of coexisting nuclear shapes in different mass regions, using a global self-consistent theoretical method based on universal energy density functionals and the quadrupole collective model. Method: The low-energy excitation spectrum and quadrupole shape invariants of the two lowest 0+ states of even-even nuclei are obtained as solutions of a five-dimensional collective Hamiltonian (5DCH) model, with parameters determined by constrained self-consistent mean-field calculations based on the relativistic energy density functional PC-PK1, and a finite-range pairing interaction. Results: The theoretical excitation energies of the states, 21+,41+,02+,22+,23+, as well as the B (E 2 ;01+→21+) values, are in very good agreement with the corresponding experimental values for 621 even-even nuclei. Quadrupole shape invariants have been implemented to investigate shape coexistence, and the distribution of possible shape-coexisting nuclei is consistent with results obtained in recent theoretical studies and available data. Conclusions: The present analysis has shown that, when based on a universal and consistent microscopic framework of nuclear density functionals, shape invariants provide distinct indicators and reliable predictions for the occurrence of low-energy coexisting shapes. This method is particularly useful for studies of shape coexistence in regions far from stability where few data are available.

  10. Web Based Image Retrieval System Using Color, Texture and Shape Analysis: Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Amol P Bhagat

    2013-09-01

    Full Text Available The internet is one of the best media to disseminate scientific and technological research results [1, 2, 6]. It deals with the implementation of a web-based extensible architecture that is easily integral with applications written in different languages and linkable with different data sources. This paper work deals with developing architecture which is expandable and modular; its client–server functionalities permit easily building web applications that can be run using any Internet browser without compatibility problems regarding platform, program and operating system installed. This paper presents the implementation of Content Based Image Retrieval using different methods of color, texture and shape analysis. The primary objective is to compare the different methods of image analysis.

  11. 3D geometry analysis of the medial meniscus--a statistical shape modeling approach.

    Science.gov (United States)

    Vrancken, A C T; Crijns, S P M; Ploegmakers, M J M; O'Kane, C; van Tienen, T G; Janssen, D; Buma, P; Verdonschot, N

    2014-10-01

    The geometry-dependent functioning of the meniscus indicates that detailed knowledge on 3D meniscus geometry and its inter-subject variation is essential to design well functioning anatomically shaped meniscus replacements. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size- or shape-driven. Also we performed a cluster analysis to identify distinct morphological groups of medial menisci and assessed whether meniscal geometry is gender-dependent. A statistical shape model was created, containing the meniscus geometries of 35 subjects (20 females, 15 males) that were obtained from MR images. A principal component analysis was performed to determine the most important modes of geometry variation and the characteristic changes per principal component were evaluated. Each meniscus from the original dataset was then reconstructed as a linear combination of principal components. This allowed the comparison of male and female menisci, and a cluster analysis to determine distinct morphological meniscus groups. Of the variation in medial meniscus geometry, 53.8% was found to be due to primarily size-related differences and 29.6% due to shape differences. Shape changes were most prominent in the cross-sectional plane, rather than in the transverse plane. Significant differences between male and female menisci were only found for principal component 1, which predominantly reflected size differences. The cluster analysis resulted in four clusters, yet these clusters represented two statistically different meniscal shapes, as differences between cluster 1, 2 and 4 were only present for principal component 1. This study illustrates that differences in meniscal geometry cannot be explained by scaling only, but that different meniscal shapes can be distinguished. Functional analysis, e.g. through finite element modeling, is required to assess whether these distinct shapes actually influence

  12. 3D geometry analysis of the medial meniscus – a statistical shape modeling approach

    Science.gov (United States)

    Vrancken, A C T; Crijns, S P M; Ploegmakers, M J M; O'Kane, C; van Tienen, T G; Janssen, D; Buma, P; Verdonschot, N

    2014-01-01

    The geometry-dependent functioning of the meniscus indicates that detailed knowledge on 3D meniscus geometry and its inter-subject variation is essential to design well functioning anatomically shaped meniscus replacements. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size- or shape-driven. Also we performed a cluster analysis to identify distinct morphological groups of medial menisci and assessed whether meniscal geometry is gender-dependent. A statistical shape model was created, containing the meniscus geometries of 35 subjects (20 females, 15 males) that were obtained from MR images. A principal component analysis was performed to determine the most important modes of geometry variation and the characteristic changes per principal component were evaluated. Each meniscus from the original dataset was then reconstructed as a linear combination of principal components. This allowed the comparison of male and female menisci, and a cluster analysis to determine distinct morphological meniscus groups. Of the variation in medial meniscus geometry, 53.8% was found to be due to primarily size-related differences and 29.6% due to shape differences. Shape changes were most prominent in the cross-sectional plane, rather than in the transverse plane. Significant differences between male and female menisci were only found for principal component 1, which predominantly reflected size differences. The cluster analysis resulted in four clusters, yet these clusters represented two statistically different meniscal shapes, as differences between cluster 1, 2 and 4 were only present for principal component 1. This study illustrates that differences in meniscal geometry cannot be explained by scaling only, but that different meniscal shapes can be distinguished. Functional analysis, e.g. through finite element modeling, is required to assess whether these distinct shapes actually influence

  13. Advanced pulse-shape analysis and implementation of gamma-ray tracking in a position-sensitive coaxial HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Austin Lee [Univ. of California, Berkeley, CA (United States)

    2002-11-12

    A new concept in g-radiation detection utilizing highly segmented positionsensitive germanium detectors is currently being developed. Through pulse-shape analysis these detectors will provide the three-dimensional position and energy of individual γ-ray interactions and allow the full-energy and direction vectors of the incident radiation to be reconstructed in a process termed tracking. Here, a prototype segmented detector has been utilized in the assessment of theoretically modeled pulse shapes to gain insight into the factors that effect their agreement with those experimentally measured. It was found that simple modeling of the charge-collection process would provide fair agreement between calculated and experimental pulse shapes. However, in some cases significant deviations between the two were present. This was a result of insufficient modeling of all the processes involved in pulse-shape formation. Factors contributing to this include the three-dimensional spatial distribution of the charge carriers, the path of the primary electron, and fluctuations in the electric fields near electrode surfaces and due to variations in impurity concentrations. Additionally, the sensitivity of pulse shapes to changes in the interaction location has been studied. The results indicate that single interactions with energy deposition of 662 keV can potentially be localized to better than the desired position resolution of 2 mm. However, when the study was extended to two interactions totaling 662 keV a different conclusion was reached. It was shown that the pulse shapes resulting from two interactions were ambiguous with that of pulse shapes from single interactions over dimensions greater than 2 mm in the larger detector segments. The size of these segments in future detectors must be reduced in order to increase their sensitivity. Ultimately, a signal decomposition algorithm was developed and implemented to extract the position and energy of γ-ray interactions, occurring

  14. Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants.

    Science.gov (United States)

    Elias, Carlos Nelson; Rocha, Felipe Assis; Nascimento, Ana Lucia; Coelho, Paulo Guilherme

    2012-12-01

    The primary stability of dental implants has been investigated before, but a study of the influence of implant shape, size and surface morphology (machined, acid etched or anodized), surgical technique (press-fit or undersized) and substrate (natural or simulated bone) on the primary stability of dental implants has not been reported. The present work intends to fill this gap. In this work, six different dental implants were inserted into and removed from synthetic and natural bone while measuring the torque. A total of 255 dental implants with three shapes, four sizes and three surface topographies were inserted into pig rib, PTFE and polyurethane. The implant sites were prepared using straight and tapered drills. The primary stability was estimated from the maximum insertion torque. Comparisons between samples were based on the maximum insertion torque (MIT), the maximum removal torque (MRT) and the torque ratio (TR=MRT/MIT). The insertion torque into pig ribs showed larger dispersion. All parameters (shape, size and surface morphology of the implant, surgical technique and substrate type) were found to have a significant influence on primary stability. The insertion of a tapered implant requires a higher torque than the insertion of a straight implant. Surface treatments improve the primary stability. The influence of the surgical technique is smaller than that of implant size and shape. The highest insertion torque was that of anodized tapered implants inserted into undersized sites. Finally, the primary stability of dental implants is highly dependent on implant design, surgical technique and substrate type. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. RETRACTION: Surface impedance determination of an object located over a planar PEC surface and its use in shape reconstruction Surface impedance determination of an object located over a planar PEC surface and its use in shape reconstruction

    Science.gov (United States)

    Seda Ünal, Gül; Yapar, Ali; Akduman, Ibrahim

    2009-06-01

    This paper has substantial overlap with the paper 'Reconstruction of surface impedance of an object located over a planar PEC surface' by Gül Seda Ünal, Mehmet Çayören and Evrim Tetik (2008 Journal of Physics: Conference Series 135 012099). Therefore this article has been retracted by IOP Publishing and by the authors, Gül Seda Ünal, Ali Yapar and Ibrahim Akduman.

  16. Surface corrosion enhancement of passive films on NiTi shape memory alloy in different solutions.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-06-01

    The corrosion behaviors of NiTi shape memory alloy in NaCl solution, H2SO4 solution and borate buffer solution were investigated. It was found that TiO2 in passive film improved the corrosion resistance of NiTi shape memory. However, low corrosion resistance of passive film was observed in low pH value acidic solution due to TiO2 dissolution. Moreover, the corrosion resistance of NiTi shape memory alloy decreased with the increasing of passivated potential in the three solutions. The donor density in passive film increased with the increasing of passivated potential. Different solutions affect the semiconductor characteristics of the passive film. The reducing in the corrosion resistance was attributed to the more donor concentrations in passive film and thinner thickness of the passive film.

  17. The effect of drop volume and micropillar shape on the apparent contact angle of ordered microstructured surfaces.

    Science.gov (United States)

    Afferrante, Luciano; Carbone, Giuseppe

    2014-06-14

    In the present paper, we propose a new theoretical approach to evaluate the shape and apparent contact angle (ACA) of a drop gently deposited on microstructured superhydrophobic surfaces. We exploit the very large separation of scales between the drop size and the features of the micromorphology of the interface to propose a numerical methodology to calculate the apparent contact area and apparent contact angle. In agreement with very recent experiments, calculations show that, in the case of surfaces made of conical micropillars, the ACA may take values very close to 180° not depending on the size of the liquid drop. At large drop volumes, the shape of the drop deviates from the spherical one as a result of the gravity effects, but it is noteworthy that the apparent contact angle does not change at all. Our calculations shows that this holds true also for different pillar shapes, showing that, for any given Young contact angle of the solid constituting the pillars, the ACA is an intrinsic property of the surface microgeometry.

  18. Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil

    Science.gov (United States)

    Jun, GaRam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching

    2014-01-01

    The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Centers Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.

  19. Optical Feather and Foil for Shape and Dynamic Load Sensing of Critical Flight Surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future flight vehicles may comprise complex flight surfaces requiring coordinated in-situ sensing and actuation. Inspired by the complexity of the flight surfaces on...

  20. Modeling and Analysis of Shape with Applications in Computer-aided Diagnosis of Breast Cancer

    CERN Document Server

    Guliato, Denise

    2011-01-01

    Malignant tumors due to breast cancer and masses due to benign disease appear in mammograms with different shape characteristics: the former usually have rough, spiculated, or microlobulated contours, whereas the latter commonly have smooth, round, oval, or macrolobulated contours. Features that characterize shape roughness and complexity can assist in distinguishing between malignant tumors and benign masses. In spite of the established importance of shape factors in the analysis of breast tumors and masses, difficulties exist in obtaining accurate and artifact-free boundaries of the related

  1. Bifurcation analysis of the transition of dune shapes under a unidirectional wind.

    Science.gov (United States)

    Niiya, Hirofumi; Awazu, Akinori; Nishimori, Hiraku

    2012-04-13

    A bifurcation analysis of dune shape transition is made. By use of a reduced model of dune morphodynamics, the Dune Skeleton model, we elucidate the transition mechanism between different shapes of dunes under unidirectional wind. It was found that the decrease in the total amount of sand in the system and/or the lateral sand flow shifts the stable state from a straight transverse dune to a wavy transverse dune through a pitchfork bifurcation. A further decrease causes wavy transverse dunes to shift into barchans through a Hopf bifurcation. These bifurcation structures reveal the transition mechanism of dune shapes under unidirectional wind.

  2. Study on image acquisition in 3-D sensor system of arc welding pool surface shape using grating projection

    Science.gov (United States)

    Ai, Xiaopu; Liu, Nansheng; Wei, Yiqing; Hu, Xian; Wei, Sheng; Liu, Xiaorui

    2009-11-01

    Detecting 3-D information on welding pool surface shape is difficult due to the arc light interference, high temperature radiation and pool surface specular reflection. The characteristics of mirror like reflection on pool of liquid surface are studied. Besides the way to obtain clear information-rich image of the pool area is discussed under the strong arc light. Because of the strong arc light above the pool will affect the imaging of the relatively weaker laser stripes seriously, we need to choose a suitable shooting angle and shooting distance to achieve well image. According to all these factors, the optimal combination of the sensing structure parameters in theory is deduced. Based on this work, a vision detecting of arc welding pool surface topography system was putted up in our laboratory, also actual measurement was carried out to obtain more clear images of deformation laser stripes in welding pool. This will provide the three-dimensional reconstruction a strong support.

  3. Particle shapes and surface structures of olivine NaFePO₄ in comparison to LiFePO₄.

    Science.gov (United States)

    Whiteside, Alexander; Fisher, Craig A J; Parker, Stephen C; Islam, M Saiful

    2014-10-21

    The expansion of batteries into electric vehicle and grid storage applications has driven the development of new battery materials and chemistries, such as olivine phosphate cathodes and sodium-ion batteries. Here we present atomistic simulations of the surfaces of olivine-structured NaFePO4 as a sodium-ion battery cathode, and discuss differences in its morphology compared to the lithium analogue LiFePO4. The calculated equilibrium morphology is mostly isometric in appearance, with (010), (201) and (011) faces dominant. Exposure of the (010) surface is vital because it is normal to the one-dimensional ion-conduction pathway. Platelet and cube-like shapes observed by previous microscopy studies are reproduced by adjusting surface energies. The results indicate that a variety of (nano)particle morphologies can be achieved by tuning surface stabilities, which depend on synthesis methods and solvent conditions, and will be important in optimising electrochemical performance.

  4. Standardization of surface contamination analysis systems

    Science.gov (United States)

    Boothe, Richard E.

    1995-01-01

    Corrosion products, oils and greases can potentially degrade material bonding properties. The Marshall Space Flight Center (MSFC) Surface Contamination Analysis Team (SCAT) utilizes a variety of analytical equipment to detect identify and quantify contamination on metallic and non-metallic substrates. Analysis techniques include FT-IR Microscopy (FT-IR), Near Infrared Optical Fiber Spectrometry (NIR), Optically Stimulated Electron Emission (OSEE), Ultraviolet Fluorescence (UVF) and Ellipsometry. To insure that consistent qualitative and quantitative information are obtained, standards are required to develop analysis techniques, to establish instrument sensitivity to potential contaminants, and to develop calibration curves. This paper describes techniques for preparing and preserving contamination standards. Calibration of surface contamination analysis systems is discussed, and methods are presented for evaluating the effects of potential contaminants on bonding properties.

  5. Time-Domain Analysis of a Wire Antenna Near Arbitrarily Shaped Conductor Bodies

    Institute of Scientific and Technical Information of China (English)

    Zheng; Li-Zhi; Xiao; Bo-xun; 等

    2003-01-01

    A time domain electrical field integral equation (TDEFIE) is formulated for the problem of a thin wire antenna in the presence of conductor bodies, and this equation is solved by the method in time marching algorithm. The analysis is valid for any arbitrarily shaped, oriented and positioned wire antennas relative to arbitrarily shaped conductor bodies. Current at the excited point, input admittance and radiation pattern are given and agree with the results computed by the method in frequency domain.

  6. Time-Domain Analysis of a Wire Antenna Near Arbitrarily Shaped Conductor Bodies

    Institute of Scientific and Technical Information of China (English)

    Zheng Li-zhi; Xiao Bo-xur; Zhu Guo-qiang; Yang Zi-jie

    2003-01-01

    A time domain electrical field integral equation (TDEFIE) is formulated for the problem of a thin wire antenna in the presence of conductor bodies, and this equation is solved by the method of time marching algorithm. The analysis is valid for any arbitrarily shaped, oriented and positioned wire antennas relative to arbitrarily shaped conductor bodies. Current at the excited point, input admittance and radiation pattern are given and agree with the results computed by the method in frequency domain.

  7. Context based Coding of Binary Shapes by Object Boundary Straightness Analysis

    DEFF Research Database (Denmark)

    Aghito, Shankar Manuel; Forchhammer, Søren

    2004-01-01

    A new lossless compression scheme for bilevel images targeted at binary shapes of image and video objects is presented. The scheme is based on a local analysis of the digital straightness of the causal part of the object boundary, which is used in the context definition for arithmetic encoding. T...... more efficient than the state-of-the-art and more complex free tree coder for most of the binary shape and map test images....

  8. First nucleation steps of vanadium oxide thin films studied by XPS inelastic peak shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gracia, F. [Instituto de Ciencia de Materiales de Sevilla (CSIC-U. Sevilla) and Dpt. Q. Inorganica, c/Americo Vespucio s/n, E-41092 Sevilla (Spain)]. E-mail: torres@icmse.isic.es; Yubero, F. [Instituto de Ciencia de Materiales de Sevilla (CSIC-U. Sevilla) and Dpt. Q. Inorganica, c/Americo Vespucio s/n, E-41092 Sevilla (Spain); Espinos, J.P. [Instituto de Ciencia de Materiales de Sevilla (CSIC-U. Sevilla) and Dpt. Q. Inorganica, c/Americo Vespucio s/n, E-41092 Sevilla (Spain); Gonzalez-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla (CSIC-U. Sevilla) and Dpt. Q. Inorganica, c/Americo Vespucio s/n, E-41092 Sevilla (Spain)

    2005-09-30

    The initial states of deposition of vanadium oxide thin films have been studied by analysis of the peak shape (both inelastic background and elastic contributions) of X-ray photoemission spectra (XPS) after successive deposition experiments. This study has permitted to assess the type of nucleation and growth mechanisms of the films. The experiments have been carried out in situ in the preparation chamber of a XPS spectrometer. Thin films of vanadium oxide have been prepared on Al{sub 2}O{sub 3} and TiO{sub 2} by means of thermal evaporation, ion beam assisted deposition and plasma enhanced chemical vapour deposition. The thin films prepared by the first two procedures consisted of V{sub 2}O{sub 4}, while those prepared by the latter had a V{sub 2}O{sub 5} stoichiometry. The analysis of the inelastic background of the photoemission spectra has shown that the films prepared by thermal evaporation on Al{sub 2}O{sub 3} are formed by big particles that only cover completely the surface of the substrate when their height reaches 16 nm. By contrast, the thin films prepared with assistance of ions on Al{sub 2}O{sub 3} or with plasma on TiO{sub 2} consist of smaller particles that succeed in covering the substrate surface already for a height of approximately 4 nm. Thin films prepared by plasma-assisted deposition on Al{sub 2}O{sub 3} depict an intermediate situation where the substrate is completely covered when the particles have a height of approximately 6 nm. The type of substrates, differences in the deposition procedure or the activation of the adatoms by ion bombardment are some of the factors that are accounted for by to explain the different observed behaviours.

  9. Combined Effect of Surface Tension, Gravity and van der Waals Force Induced by a Non-Contact Probe Tip on the Shape of Liquid Surface

    Institute of Scientific and Technical Information of China (English)

    LIU Nan; BAI Yi-Long; XIA Meng-Fen; KE Fu-Jiu

    2005-01-01

    @@ Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in experiments, we present an analytical representation of the shape of liquid surface under van der Waals interaction induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly gov erned by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to gravity. However, its horizontal extension is determined by the capillary length.

  10. Triggering cell adhesion, migration or shape change with a dynamic surface coating.

    Science.gov (United States)

    van Dongen, Stijn F M; Maiuri, Paolo; Marie, Emmanuelle; Tribet, Christophe; Piel, Matthieu

    2013-03-25

    There's an APP for that: cell-repellent APP (azido-[polylysine-g-PEG]) is used to create substrates for spatially controlled dynamic cell adhesion. The simple addition of a functional peptide to the culture medium rapidly triggers cell adhesion. This highly accessible yet powerful technique allows diverse applications, demonstrated through tissue motility assays, patterned coculturing and triggered cell shape change.

  11. Uncertainty analysis of a one-dimensional constitutive model for shape memory alloy thermomechanical description

    DEFF Research Database (Denmark)

    Oliveira, Sergio A.; Savi, Marcelo A.; Santos, Ilmar F.

    2014-01-01

    The use of shape memory alloys (SMAs) in engineering applications has increased the interest of the accuracy analysis of their thermomechanical description. This work presents an uncertainty analysis related to experimental tensile tests conducted with shape memory alloy wires. Experimental data...... are compared with numerical simulations obtained from a constitutive model with internal constraints employed to describe the thermomechanical behavior of SMAs. The idea is to evaluate if the numerical simulations are within the uncertainty range of the experimental data. Parametric analysis is also developed...

  12. Cytometric analysis of shape and DNA content in mammalian sperm

    Energy Technology Data Exchange (ETDEWEB)

    Gledhill, B.L.

    1983-10-10

    Male germ cells respond dramatically to a variety of insults and are important reproductive dosimeters. Semen analyses are very useful in studies on the effects of drugs, chemicals, and environmental hazards on testicular function, male fertility and heritable germinal mutations. Sperm were analyzed by flow cytometry and slit-scan flow analysis for injury following the exposure of testes to mutagens. The utility of flow cytometry in genotoxin screening and monitoring of occupational exposure was evaluated. The technique proved valuable in separation of X- and Y-chromosome bearing sperm and the potential applicability of this technique in artificial insemination and a solution, of accurately assessing the DNA content of sperm were evaluated-with reference to determination of X- and Y-chromosome bearing sperm.

  13. Shape optimization of the stokes flow problem based on isogeometric analysis

    DEFF Research Database (Denmark)

    Park, Byong-Ug; Seo, Yu-Deok; Sigmund, Ole;

    2013-01-01

    Design-dependent loads related to boundary shape, such as pressure and convection loads, have been a challenging issue in optimization. Isogeometric analysis, where the analysis model has smooth boundaries described by spline functions can handle design-dependent loads with ease. In the present s...

  14. Repository surface design site layout analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montalvo, H.R.

    1998-02-27

    The purpose of this analysis is to establish the arrangement of the Yucca Mountain Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD, including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond.

  15. Applied surface analysis in magnetic storage technology

    Science.gov (United States)

    Windeln, Johannes; Bram, Christian; Eckes, Heinz-Ludwig; Hammel, Dirk; Huth, Johanna; Marien, Jan; Röhl, Holger; Schug, Christoph; Wahl, Michael; Wienss, Andreas

    2001-07-01

    This paper gives a synopsis of today's challenges and requirements for a surface analysis and materials science laboratory with a special focus on magnetic recording technology. The critical magnetic recording components, i.e. the protective carbon overcoat (COC), the disk layer structure, the read/write head including the giant-magnetoresistive (GMR) sensor, are described and options for their characterization with specific surface and structure analysis techniques are given. For COC investigations, applications of Raman spectroscopy to the structural analysis and determination of thickness, hydrogen and nitrogen content are discussed. Hardness measurements by atomic force microscopy (AFM) scratching techniques are presented. Surface adsorption phenomena on disk substrates or finished disks are characterized by contact angle analysis or so-called piezo-electric mass adsorption systems (PEMAS), also known as quartz crystal microbalance (QCM). A quickly growing field of applications is listed for various X-ray analysis techniques, such as disk magnetic layer texture analysis for X-ray diffraction, compositional characterization via X-ray fluorescence, compositional analysis with high lateral resolution via electron microprobe analysis. X-ray reflectometry (XRR) has become a standard method for the absolute measurement of individual layer thicknesses contained in multi-layer stacks and thus, is the successor of ellipsometry for this application. Due to the ongoing reduction of critical feature sizes, the analytical challenges in terms of lateral resolution, sensitivity limits and dedicated nano-preparation have been consistently growing and can only be met by state-of-the-art Auger electron spectrometers (AES), transmission electron microscopy (TEM) analysis, time-of-flight-secondary ion mass spectroscopy (ToF-SIMS) characterization, focused ion beam (FIB) sectioning and TEM lamella preparation via FIB. The depth profiling of GMR sensor full stacks was significantly

  16. Numerical analysis of transient keyhole shape in pulsed current plasma arc welding

    Institute of Scientific and Technical Information of China (English)

    孙俊华; 武传松

    2014-01-01

    Based on the characteristics of“one keyhole in a pulse”in pulsed current plasma arc welding (PAW),the transient variation process ofweld pool in a pulse cycle is simulated through the establishment ofcorresponding heat source model.And considering the effects ofgravitational force,plasma arc pressure and surface tension on the weld pool surface,the dynamic change features of the keyhole shape in a pulse cycle are calculated by using surface deformation equation. Experiments are conducted and validate that the calculated weld fusion line is in good agreement with the experimental results.

  17. Three-dimensional shape measurement of a highly reflected, specular surface with structured light method.

    Science.gov (United States)

    Zhang, Hongwei; Ji, Lishuan; Liu, Shugui; Li, Shaohui; Han, Shujian; Zhang, Xiaojie

    2012-11-01

    This paper proposes a mathematical measurement model of a highly reflected, specular surface with structured light method. In the measurement, an auxiliary fringe pattern named amplitude perturbation is adopted to be projected onto the measured surface. The amplitude perturbation can ease the procedure of searching the corresponding points between the phase map of the measured surface and that of the reference plane by locking up the most reliable point as the starting unwrapping point whose true phase can be calculated accurately. The proposed method is also suitable for measuring the step surfaces such as gauge blocks with different heights. Furthermore, the image segmentation technology is introduced in the phase unwrapping procedure to increase the speed. Based on the unwrapped phase map, zonal wave-front reconstruction algorithm is implemented to realize three-dimensional, highly reflected, specular surface reconstruction. Experimental studies show that the developed methodology displays accuracy and high stability for highly reflected, specular surface measurement.

  18. SURFACE TEXTURE ANALYSIS FOR FUNCTIONALITY CONTROL

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Andreasen, Jan Lasson; Tosello, Guido

    This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This docume...... contains a short description of each case story, 3-D roughness parameters analysis and relation with the product’s functionality.......This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This document...

  19. Effect of micro-arc oxidation surface modification on the properties of the NiTi shape memory alloy.

    Science.gov (United States)

    Xu, J L; Zhong, Z C; Yu, D Z; Liu, F; Luo, J M

    2012-12-01

    In this paper, the effects of micro-arc oxidation (MAO) surface modification (alumina coatings) on the phase transformation behavior, shape memory characteristics, in vitro haemocopatibility and cytocompatibility of the biomedical NiTi alloy were investigated respectively by differential scanning calorimetry, bending test, hemolysis ratio test, dynamic blood clotting test, platelet adhesion test and cytotoxicity testing by human osteoblasts (Hobs). The results showed that there were no obvious changes of the phase transformation temperatures and shape memory characteristics of the NiTi alloy after the MAO surface modification and the coating could withstand the thermal shock and volume change caused by martensite-austenite phase transformation. Compared to the uncoated NiTi alloys, the MAO surface modification could effectively improve the haemocopatibility of the coated NiTi alloys by the reduced hemolysis ratio, the prolonged dynamic clotting time and the decreased number of platelet adhesion; and the rough and porous alumina coatings could obviously promote the adherence, spread and proliferation of the Hobs with the significant increase of proliferation number of Hobs adhered on the surface of the coated NiTi alloys (P < 0.05).

  20. Stationary ideal flow on a free surface of a given shape

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild; Bohr, Tomas

    2013-01-01

    a covariant formulation using Riemannian geometry and we show how to include surface tension and velocity-dependent forces such as the Coriolis force. We write down explicitly the equations for cases where the surface elevation can be written as function of either Cartesian or polar coordinates in the plane...... that the surface can be foliated by a family of non-intersecting geodesic curves....

  1. Structural damage localization by outlier analysis of signal-processed mode shapes - Analytical and experimental validation

    Science.gov (United States)

    Ulriksen, M. D.; Damkilde, L.

    2016-02-01

    Contrary to global modal parameters such as eigenfrequencies, mode shapes inherently provide structural information on a local level. Therefore, this particular modal parameter and its derivatives are utilized extensively for damage identification. Typically, more or less advanced mathematical methods are employed to identify damage-induced discontinuities in the spatial mode shape signals, hereby, potentially, facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement noise. In the present paper, a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement noise is proposed. The method is based on signal processing of a spatial mode shape by means of continuous wavelet transformation (CWT) and subsequent application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact damage-induced, outlier analysis is conducted by applying the Mahalanobis metric to major principal scores of the sensor-located bands of the signal-processed mode shape. The method is tested analytically and benchmarked with other mode shape-based damage localization approaches on the basis of a free-vibrating beam and validated experimentally in the context of a residential-sized wind turbine blade subjected to an impulse load.

  2. High-Level Systemic Expression of Conserved Influenza Epitope in Plants on the Surface of Rod-Shaped Chimeric Particles

    Directory of Open Access Journals (Sweden)

    Natalia V. Petukhova

    2014-04-01

    Full Text Available Recombinant viruses based on the cDNA copy of the tobacco mosaic virus (TMV genome carrying different versions of the conserved M2e epitope from influenza virus A cloned into the coat protein (CP gene were obtained and partially characterized by our group previously; cysteines in the human consensus M2e sequence were changed to serine residues. This work intends to show some biological properties of these viruses following plant infections. Agroinfiltration experiments on Nicotiana benthamiana confirmed the efficient systemic expression of M2e peptides, and two point amino acid substitutions in recombinant CPs significantly influenced the symptoms and development of viral infections. Joint expression of RNA interference suppressor protein p19 from tomato bushy stunt virus (TBSV did not affect the accumulation of CP-M2e-ser recombinant protein in non-inoculated leaves. RT-PCR analysis of RNA isolated from either infected leaves or purified TMV-M2e particles proved the genetic stability of TMV‑based viral vectors. Immunoelectron microscopy of crude plant extracts demonstrated that foreign epitopes are located on the surface of chimeric virions. The rod‑shaped geometry of plant-produced M2e epitopes is different from the icosahedral or helical filamentous arrangement of M2e antigens on the carrier virus-like particles (VLP described earlier. Thereby, we created a simple and efficient system that employs agrobacteria and plant viral vectors in order to produce a candidate broad-spectrum flu vaccine.

  3. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  4. Surface shape control of the workpiece in a double-spindle triple-workstation wafer grinder

    Science.gov (United States)

    Xianglong, Zhu; Renke, Kang; Zhigang, Dong; Guang, Feng

    2011-10-01

    Double-spindle triple-workstation (DSTW) ultra precision grinders are mainly used in production lines for manufacturing and back thinning large diameter (>= 300 mm) silicon wafers for integrated circuits. It is important, but insufficiently studied, to control the wafer shape ground on a DSTW grinder by adjusting the inclination angles of the spindles and work tables. In this paper, the requirements of the inclination angle adjustment of the grinding spindles and work tables in DSTW wafer grinders are analyzed. A reasonable configuration of the grinding spindles and work tables in DSTW wafer grinders are proposed. Based on the proposed configuration, an adjustment method of the inclination angle of grinding spindles and work tables for DSTW wafer grinders is put forward. The mathematical models of wafer shape with the adjustment amount of inclination angles for both fine and rough grinding spindles are derived. The proposed grinder configuration and adjustment method will provide helpful instruction for DSTW wafer grinder design.

  5. Surface analysis with STM and AFM

    CERN Document Server

    Magonov, Sergi N

    1996-01-01

    Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are powerful tools for surface examination. In the past, many STM and AFM studies led to erroneous conclusions due to lack of proper theoretical considerations and of an understanding of how image patterns are affected by measurement conditions. For this book, two world experts, one on theoretical analysis and the other on experimental characterization, have joined forces to bring together essential components of STM and AFM studies: The practical aspects of STM, the image simulation by surface electron density plot calculat

  6. A study of trapped mode resonances in asymmetric X-shape resonator for frequency selective surface

    Science.gov (United States)

    Chen, Kejian; Liu, Hong; Wang, Yiqi; Zhu, Yiming

    2013-08-01

    FSS is a two-dimensional periodic array of resonating metallic-dielectric structures, When FSS device steps into Terahertz range from microwave range, it is studied as THz functional components (such as Terahertz filter, Terahertz biochemical sensor, etc.) to promote the functionality of the THz spectroscopy/imaging system. When the device requires a narrow band transmission window for frequency selecting or a high electric field concentration in certain area to improve its sensitivity for sensing, normally, a high quality (Q) resonant structure can give helps. Recently, high-Q resonance induced by trapped mode resonance i studied widely in FSS research areas. To induce trapped mode resonance, one can simply break the symmetric of the unit structure of FSS. In this paper, several asymmetric X-shaped resonators for FSS working in terahertz range have been studied numerically. To compare the behaviour of X-shape resonator under different conditions (with additional part: Heart lines, Shoulder lines, Wrap or Shoes squares), a common platform (θ=60, θis angle of X shape) which is suitable for most of cases was used to make the study more meaningful. As the field enhancement behaviour is related to the trapped mode introduced by the asymmetric structure, we propose such kind of device to be used as a high quality filter or as a sensing element for biochemical samples.

  7. Surface analysis of nanostructured carbonaceous materials

    Science.gov (United States)

    Wepasnick, Kevin Andrew

    microscopy (STM), auger electron spectroscopy (AES), and XPS. Chemical and structural analysis of the clusters reveal that the oxidation state of the metal is tunable based on preparation conditions and that the oxidation state affects the mobility and structure of the clusters upon the graphite surfaces. Collectively, the results of these studies have shown the value of understanding the surface chemistry of a material in understanding their behavior even at the nanoscopic level.

  8. Statistical shape analysis of the human spleen geometry for probabilistic occupant models.

    Science.gov (United States)

    Yates, Keegan M; Lu, Yuan-Chiao; Untaroiu, Costin D

    2016-06-14

    Statistical shape models are an effective way to create computational models of human organs that can incorporate inter-subject geometrical variation. The main objective of this study was to create statistical mean and boundary models of the human spleen in an occupant posture. Principal component analysis was applied to fifteen human spleens in order to find the statistical modes of variation, mean shape, and boundary models. A landmark sliding approach was utilized to refine the landmarks to obtain a better shape correspondence and create a better representation of the underlying shape contour. The first mode of variation was found to be the overall volume, and it accounted for 69% of the total variation. The mean model and boundary models could be used to develop probabilistic finite element (FE) models which may identify the risk of spleen injury during vehicle collisions and consequently help to improve automobile safety systems.

  9. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape

    NARCIS (Netherlands)

    Beaumont, C.A.A. (Caroline A.A.); Knoops, P.G.M. (Paul G.M.); Borghi, A. (Alessandro); Jeelani, N.U.O. (N.U. Owase); M.J. Koudstaal (Maarten); S. Schievano (Silvia); D.J. Dunaway (David); Rodriguez-Florez, N. (Naiara)

    2017-01-01

    textabstractThree-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed

  10. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape

    NARCIS (Netherlands)

    Beaumont, C.A.A. (Caroline A.A.); Knoops, P.G.M. (Paul G.M.); Borghi, A. (Alessandro); Jeelani, N.U.O. (N.U. Owase); M.J. Koudstaal (Maarten); S. Schievano (Silvia); D.J. Dunaway (David); Rodriguez-Florez, N. (Naiara)

    2016-01-01

    textabstractThree-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed

  11. Shape-selective n-alkane hydroconversion at exterior zeolite surfaces

    NARCIS (Netherlands)

    Maesen, Th.L.M.; Krishna, R.; van Baten, J.M.; Smit, B.; Calero, S.; Castillo Sanchez, J.M.

    2008-01-01

    A critical review of the adsorption and catalysis of n- and methylalkanes demonstrates that the interior surface of TON- and MTT-type zeolites dominates both adsorption and catalysis, and that the contribution from the exterior surface is negligible. For both n- and methylalkane isomers, the experim

  12. Simple Verification of the Parabolic Shape of a Rotating Liquid and a Boat on Its Surface

    Science.gov (United States)

    Sabatka, Z.; Dvorak, L.

    2010-01-01

    This article describes a simple and inexpensive way to create and to verify the parabolic surface of a rotating liquid. The liquid is water. The second part of the article deals with the problem of a boat on the surface of a rotating liquid. (Contains 1 table, 10 figures and 5 footnotes.)

  13. Simple Verification of the Parabolic Shape of a Rotating Liquid and a Boat on Its Surface

    Science.gov (United States)

    Sabatka, Z.; Dvorak, L.

    2010-01-01

    This article describes a simple and inexpensive way to create and to verify the parabolic surface of a rotating liquid. The liquid is water. The second part of the article deals with the problem of a boat on the surface of a rotating liquid. (Contains 1 table, 10 figures and 5 footnotes.)

  14. Investigation of surface integrity in high-speed ball end milling of cantilever shaped thin plate of Inconel 718

    Directory of Open Access Journals (Sweden)

    N.N. Bhopale

    2012-12-01

    Full Text Available The paper addresses the effects of cutting speed and feed on the work piece deflection and surface integrity during milling of cantilever shaped Inconel 718 plate under different cutter orientations. The experiments were conducted on a CNC vertical milling machine using 10 mm diameter TiAlN coated solid carbide ball end milling cutter. Surface integrity is assessed in terms of micro hardness beneath the machined surface. The micro-hardness profile shows different patterns at various cutting parameters. It is observed that at large cutting speed as well as feeds, thicker work piece with larger work piece inclination shows higher micro hardness as compared to the other machining conditions.

  15. Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces

    DEFF Research Database (Denmark)

    Dolatshahi-Pirouz, A; Jensen, Thomas Hartvig Lindkjær; Kolind, Kristian;

    2011-01-01

    In order to identify the cellular mechanisms leading to the biocompatibility of hydroxyapatite implants, we studied the interaction of human bone marrow derived stromal (mesenchymal) stem cells (hMSCs) with fibronectin-coated gold (Au) and hydroxyapatite (HA) surfaces. The adsorption of fibronectin...... the number of polyclonal and monoclonal antibodies directed against the cell-binding domain (CB-domain) on the fibronectin (Fn) is significantly larger on the (HA) surfaces. Moreover, a higher number of antibodies bound to the fibronectin coatings formed from the highest bulk fibronection concentration....... In subsequent cell studies with hMSC's we studied the cell spreading, cytoskeletal organization and cell morphology on the respective surfaces. When the cells were adsorbed on the uncoated substrates, a diffuse cell actin cytoskeleton was revealed, and the cells had a highly elongated shape. On the fibronectin...

  16. Comparing the Hearts of German Shepherd and Mongrel Dogs Using Statistical Shape Analysis

    Directory of Open Access Journals (Sweden)

    Guven Ozkaya*, Gulsum Ozyigit1, Ilker Ercan and Ilker Arican1

    2013-04-01

    Full Text Available The aim of this study was to conduct a statistical shape analysis of the heart of dogs and to compare this data between German Shepherd and Mongrel dogs. An effective way to examine these shapes is to record the locations of certain points on the object. In this study, 10 hearts were collected from each breed. EDMA and TPS techniques were used to examine genus-based changes in the shape of the heart. The shape deformations were expressed using expansion and compression grids. There was no statistically significant difference with respect to the general shape of the heart between the genera. However, there were local shape differences between the genera in some of the inter-landmark distances: 6% of the inter-landmark distances were greater in German Shepherd dogs, and 11% were greater in Mongrels. There are no heart shape differences between genera, although significant differences were found between the upper part of the left ventricle and the lower part of the right ventricle. The upper part of the left ventricle in Mongrels showed more enlargement than in German Shepherds. The lower part of the right ventricle in Mongrels had more enlargement than in German Shepherds; however, the middle part of the right ventricle of German Shepherds had more enlargement than in Mongrels. Although there were some local significant shape differences between the upper part of the left ventricle and the lower part of the right ventricle, however, there were no general heart shape differences between German Shepherd and Mongrel dogs.

  17. Brownian shape motion on five-dimensional potential-energy surfaces:nuclear fission-fragment mass distributions.

    Science.gov (United States)

    Randrup, Jørgen; Möller, Peter

    2011-04-01

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there existed no model with demonstrated predictive power for the fission-fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely, the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.

  18. Brownian shape motion on five-dimensional potential-energy surfaces: Nuclear fission-fragment mass distributions

    CERN Document Server

    Randrup, Jorgen

    2011-01-01

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there exists no model with demonstrated predictive power for the fission fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.

  19. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  20. Space-time extreme wind waves: Analysis and prediction of shape and height

    Science.gov (United States)

    Alvise, Benetazzo; Francesco, Barbariol; Filippo, Bergamasco; Sandro, Carniel; Mauro, Sclavo

    2017-05-01

    In this study, we present the analysis of the temporal profile and height of space-time (ST) extreme wind waves. Wave data were gathered from an observational ST sample of sea surface elevations collected during an active sea state, and they were examined to detect the highest waves (exceeding the rogue wave threshold) of specific 3D wave groups close to the apex of their development. Two different investigations are conducted. Firstly, local maximum elevations of the groups are examined within the framework of statistical models for ST extreme waves, and compared with observations and predictions of maxima derived by one-point time series of sea surface elevations. Secondly, the temporal profile near the maximum wave crests is analyzed and compared with the expectations of the linear and second-order nonlinear extension of the Quasi-Determinism (QD) theory. Our goal is to verify, with real sea data, to what extent, one can estimate the shape and the crest-to-trough height of near-focusing large 3D wave groups using the QD and ST extreme model results. From this study, it emerges that the elevations close to the crest apex are narrowly distributed around a mean profile, whilst a larger dispersion is observed away from the maximum elevation. Yet the QD model furnishes, on average, a fair prediction of the maximum wave heights, especially when nonlinearities are taken into account. Moreover, we discuss how the combination of ST extreme and QD model predictions allows establishing, for a given sea condition, the portrait of waves with very large crest height. Our results show that these theories have the potential to be implemented in a numerical spectral model for wave extreme prediction.

  1. TU-CD-207-09: Analysis of the 3-D Shape of Patients’ Breast for Breast Imaging and Surgery Planning

    Energy Technology Data Exchange (ETDEWEB)

    Agasthya, G; Sechopoulos, I [Emory University, Atlanta, GA (United States)

    2015-06-15

    Purpose: Develop a method to accurately capture the 3-D shape of patients’ external breast surface before and during breast compression for mammography/tomosynthesis. Methods: During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3-D breast surface imaging during breast compression and imaging for the cranio-caudal (CC) view on a digital mammography/breast tomosynthesis system. Digital projectors and cameras mounted on tripods were used to acquire 3-D surface images of the breast, in three conditions: (a) positioned on the support paddle before compression, (b) during compression by the compression paddle and (c) the anterior-posterior view with the breast in its natural, unsupported position. The breast was compressed to standard full compression with the compression paddle and a tomosynthesis image was acquired simultaneously with the 3-D surface. The 3-D surface curvature and deformation with respect to the uncompressed surface was analyzed using contours. The 3-D surfaces were voxelized to capture breast shape in a format that can be manipulated for further analysis. Results: A protocol was developed to accurately capture the 3-D shape of patients’ breast before and during compression for mammography. Using a pair of 3-D scanners, the 50 patient breasts were scanned in three conditions, resulting in accurate representations of the breast surfaces. The surfaces were post processed, analyzed using contours and voxelized, with 1 mm{sup 3} voxels, converting the breast shape into a format that can be easily modified as required. Conclusion: Accurate characterization of the breast curvature and shape for the generation of 3-D models is possible. These models can be used for various applications such as improving breast dosimetry, accurate scatter estimation, conducting virtual clinical trials and validating compression algorithms. Ioannis Sechopoulos is consultant for Fuji Medical Systems USA.

  2. Diffraction line-shapes, Fermi surface nesting, and quantum criticality in antiferromagnetic chromium at high pressure.

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, R.; Feng, Y.; Rosenbaum, T. F.; Harvard Univ.; Univ. of Chicago

    2010-05-01

    We explore the behavior of the nested bandstructure of chromium as a function of temperature and pressure to the point where magnetism disappears. X-ray diffraction measurements of the charge order parameter suggest that the nesting condition is maintained at high pressure, where the spin density wave ground state is destabilized by a continuous quantum phase transition. By comparing diffraction line-shapes measured throughout the temperature-pressure phase diagram we are able to identify and describe three regimes: thermal near-critical, weak coupling ground state, and quantum critical.

  3. Surface properties of nitrogen-ion-implanted TiNi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    X-ray diffraction (XRD), auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface properties of the N+-ion-implanted TiNi alloy.There is a high nitrogen content region at the outermost surface of the N+-ion-implanted TiNi alloy.The detected nitrogen exists mainly in the form of TiN.Small amounts of Ti3O5 and TiO2 also exist on the surface of the N+-ion-implanted TiNi sample.The modified layer of the N+-ion-implanted sample can work as an obstacle layer of the nickel's dissolution, which obstructs Ni dissolving from the TiNi surface effectively.

  4. Modeling, analysis, and validation of an active T-shaped noise barrier.

    Science.gov (United States)

    Fan, Rongping; Su, Zhongqing; Cheng, Li

    2013-09-01

    With ever-increasing land traffic, abatement of traffic noise using noise barriers remains significant, yet it is a challenging task due to spatial competition with other infrastructure. In this study, a deep insight into the diffraction characteristics of acoustic fields near noise barriers of various geometries and surface conditions was achieved using numerical simulations. A T-shaped passive noise barrier with acoustically soft upper surfaces was demonstrated to outperform other candidates in a middle- or high-frequency range. Based on attributes of the acoustic field diffracted by T-shaped barriers, an active control strategy was developed to revamp the T-shaped barrier, in which a filtered minimax algorithm was established to drive the secondary sound sources. This algorithm resulted in more uniformly distributed residual sound fields than a filtered-X least mean square algorithm. Performance of the actively controlled barrier was evaluated at different positions and spacings of secondary sound sources and error sensors, leading to a series of optimal criteria for the design of active noise barriers. A prototype was fabricated and validated experimentally, manifesting particular effectiveness in insulating low-frequency noise, supplementing well the capacity of a passive T-shaped barrier which is effective in the middle- or high-frequency range.

  5. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    Science.gov (United States)

    Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine

    2005-01-01

    Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element

  6. Surface shape control of the workpiece in a double-spindle triple-workstation wafer grinder

    Institute of Scientific and Technical Information of China (English)

    Zhu Xianglong; Kang Renke; Dong Zhigang; Feng Guang

    2011-01-01

    Double-spindle triple-workstation (DSTW) ultra precision grinders are mainly used in production lines for manufacturing and back thinning large diameter (≥ 300 mm) silicon wafers for integrated circuits.It is important,but insufficiently studied,to control the wafer shape ground on a DSTW grinder by adjusting the inclination angles of the spindles and work tables.In this paper,the requirements of the inclination angle adjustment of the grinding spindles and work tables in DSTW wafer grinders are analyzed.A reasonable configuration of the grinding spindles and work tables in DSTW wafer grinders are proposed.Based on the proposed configuration,an adjustment method of the inclination angle of grinding spindles and work tables for DSTW wafer grinders is put forward.The mathematical models of wafer shape with the adjustment amount of inclination angles for both fine and rough grinding spindles are derived.The proposed grinder configuration and adjustment method will provide helpful instruction for DSTW wafer grinder design.

  7. Principal component analysis in construction of 3D human knee joint models using a statistical shape model method.

    Science.gov (United States)

    Tsai, Tsung-Yuan; Li, Jing-Sheng; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Li, Guoan

    2015-01-01

    The statistical shape model (SSM) method that uses 2D images of the knee joint to predict the three-dimensional (3D) joint surface model has been reported in the literature. In this study, we constructed a SSM database using 152 human computed tomography (CT) knee joint models, including the femur, tibia and patella and analysed the characteristics of each principal component of the SSM. The surface models of two in vivo knees were predicted using the SSM and their 2D bi-plane fluoroscopic images. The predicted models were compared to their CT joint models. The differences between the predicted 3D knee joint surfaces and the CT image-based surfaces were 0.30 ± 0.81 mm, 0.34 ± 0.79 mm and 0.36 ± 0.59 mm for the femur, tibia and patella, respectively (average ± standard deviation). The computational time for each bone of the knee joint was within 30 s using a personal computer. The analysis of this study indicated that the SSM method could be a useful tool to construct 3D surface models of the knee with sub-millimeter accuracy in real time. Thus, it may have a broad application in computer-assisted knee surgeries that require 3D surface models of the knee.

  8. Teager-Kaiser Energy and Higher-Order Operators in White-Light Interference Microscopy for Surface Shape Measurement

    Directory of Open Access Journals (Sweden)

    Abdel-Ouahab Boudraa

    2005-10-01

    Full Text Available In white-light interference microscopy, measurement of surface shape generally requires peak extraction of the fringe function envelope. In this paper the Teager-Kaiser energy and higher-order energy operators are proposed for efficient extraction of the fringe envelope. These energy operators are compared in terms of precision, robustness to noise, and subsampling. Flexible energy operators, depending on order and lag parameters, can be obtained. Results show that smoothing and interpolation of envelope approximation using spline model performs better than Gaussian-based approach.

  9. Shapes of randomly placed droplets

    Science.gov (United States)

    Panchagnula, Mahesh; Janardan, Nachiketa; Deevi, Sri Vallabha

    2016-11-01

    Surface characterization is essential for many industrial applications. Surface defects result in a range of contact angles, which lead to Contact Angle Hysteresis (CAH). We use shapes of randomly shaped drops on surfaces to study the family of shapes that may result from CAH. We image the triple line from these drops and extract additional information related to local contact angles as well as curvatures from these images. We perform a generalized extreme value analysis (GEV) on this microscopic contact angle data. From this analysis, we predict a range for extreme contact angles that are possible for a sessile drop. We have also measured the macroscopic advancing and receding contact angles using a Goniometer. From the extreme values of the contact line curvature, we estimate the pinning stress distribution responsible for the random shapes. It is seen that this range follows the same trend as the macroscopic CAH measured using a Goniometer, and can be used as a method of characterizing the surface.

  10. Surface analysis of stone and bone tools

    Science.gov (United States)

    Stemp, W. James; Watson, Adam S.; Evans, Adrian A.

    2016-03-01

    Microwear (use-wear) analysis is a powerful method for identifying tool use that archaeologists and anthropologists employ to determine the activities undertaken by both humans and their hominin ancestors. Knowledge of tool use allows for more accurate and detailed reconstructions of past behavior, particularly in relation to subsistence practices, economic activities, conflict and ritual. It can also be used to document changes in these activities over time, in different locations, and by different members of society, in terms of gender and status, for example. Both stone and bone tools have been analyzed using a variety of techniques that focus on the observation, documentation and interpretation of wear traces. Traditionally, microwear analysis relied on the qualitative assessment of wear features using microscopes and often included comparisons between replicated tools used experimentally and the recovered artifacts, as well as functional analogies dependent upon modern implements and those used by indigenous peoples from various places around the world. Determination of tool use has also relied on the recovery and analysis of both organic and inorganic residues of past worked materials that survived in and on artifact surfaces. To determine tool use and better understand the mechanics of wear formation, particularly on stone and bone, archaeologists and anthropologists have increasingly turned to surface metrology and tribology to assist them in their research. This paper provides a history of the development of traditional microwear analysis in archaeology and anthropology and also explores the introduction and adoption of more modern methods and technologies for documenting and identifying wear on stone and bone tools, specifically those developed for the engineering sciences to study surface structures on micro- and nanoscales. The current state of microwear analysis is discussed as are the future directions in the study of microwear on stone and bone tools.

  11. Scaling of mode shapes from operational modal analysis using harmonic forces

    Science.gov (United States)

    Brandt, A.; Berardengo, M.; Manzoni, S.; Cigada, A.

    2017-10-01

    This paper presents a new method for scaling mode shapes obtained by means of operational modal analysis. The method is capable of scaling mode shapes on any structure, also structures with closely coupled modes, and the method can be used in the presence of ambient vibration from traffic or wind loads, etc. Harmonic excitation can be relatively easily accomplished by using general-purpose actuators, also for force levels necessary for driving large structures such as bridges and highrise buildings. The signal processing necessary for mode shape scaling by the proposed method is simple and the method can easily be implemented in most measurement systems capable of generating a sine wave output. The tests necessary to scale the modes are short compared to typical operational modal analysis test time. The proposed method is thus easy to apply and inexpensive relative to some other methods for scaling mode shapes that are available in literature. Although it is not necessary per se, we propose to excite the structure at, or close to, the eigenfrequencies of the modes to be scaled, since this provides better signal-to-noise ratio in the response sensors, thus permitting the use of smaller actuators. An extensive experimental activity on a real structure was carried out and the results reported demonstrate the feasibility and accuracy of the proposed method. Since the method utilizes harmonic excitation for the mode shape scaling, we propose to call the method OMAH.

  12. Structural Damage Localization by Outlier Analysis of Signal-processed Mode Shapes

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Damkilde, Lars

    2016-01-01

    analysis is conducted by applying the Mahalanobis metric to major principal scores of the sensor-located bands of the signal-processed mode shape. The method is tested analytically on the basis of a free-vibrating beam and experimentally in the context of a residential-sized wind turbine blade subjected...

  13. Solution dynamics by line shape analysis, resonance light scattering and femtosecond four-wave mixing

    NARCIS (Netherlands)

    Nibbering, Erik T.J.; Duppen, Koos; Wiersma, Douwe A.

    1992-01-01

    The results of line shape analysis, resonance light scattering and femtosecond four-wave mixing measurements are reported on several organic molecules in solution. It is shown that a Brownian oscillator model for line broadening provides a full description for the optical dynamics in aprotic solutio

  14. Identifying blue whiting (Micromesistius poutassou) stock structure in the Northeast Atlantic by otolith shape analysis

    DEFF Research Database (Denmark)

    Mahe, Kélig; Oudard, Clémence; Mille, Tiphaine;

    2016-01-01

    Information on stock identification and spatial stock structure provide a basis for understanding fish population dynamics and improving fisheries management. In this study, otolith shape analysis was used to study the stock structure of blue whiting (Micromesistius poutassou) in the northeast At...

  15. Effect of Size, Shape, and Surface Modification on Cytotoxicity of Gold Nanoparticles to Human HEp-2 and Canine MDCK Cells

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2012-01-01

    Full Text Available There have been increasing interests in applying gold nanoparticles in biological research, drug delivery, and therapy. As the interaction of gold nanoparticles with cells relies on properties of nanoparticles, the cytotoxicity is complex and still under debating. In this work, we investigate the cytotoxicity of gold nanoparticles of different encapsulations, surface charge states, sizes and shapes to both human HEp-2 and canine MDCK cells. We found that cetyltrimethylammonium-bromide- (CTAB- encapsulated gold nanorods (GNRs were relatively higher cytotoxic than GNRs undergone further polymer coating and citrate stabilized gold nanospheres (GNSs. The toxicity of CTAB-encapsulated GNRs was mainly caused by CTAB on GNRs' surface but not free CTAB in the solution. No obvious difference was found among GNRs of different aspect ratios. Time-lapse study revealed that cell death caused by GNRs occurred predominately within one hour through apoptosis, whereas cell death by free CTAB was in a time- and dose-dependent manner. Both positively and negatively surface-charged polymer-coated GNRs (PSS-GNRs and PAH-PSS-GNRs showed similar levels of cytotoxic, suggesting the significance of surface functionality rather than surface charge in this case.

  16. Controlled Heterogeneous Stem Cell Differentiation on a Shape Memory Hydrogel Surface

    Science.gov (United States)

    Han, Yanjiao; Bai, Tao; Liu, Wenguang

    2014-01-01

    The success of stem cell therapies is highly dependent on the ability to control their programmed differentiation. So far, it is commonly believed that the differentiation behavior of stem cells is supposed to be identical when they are cultured on the same homogeneous platform. However, in this report, we show that this is not always true. By utilizing a double-ion-triggered shape memory effect, the pre-seeded hMSCs were controllably located in different growth positions. Here, we demonstrate for the first time that the differentiation behavior of hMSCs is highly sensitive to their growth position on a hydrogel scaffold. This work will not only enrich the mechanisms for controlling the differentiation of stem cells, but also offer a one-of-a-kind platform to achieve a heterogeneously differentiated stem cell-seeded hydrogel scaffold for complex biological applications. PMID:25068211

  17. Three-dimensional geometric morphometric analysis reveals ethnic dimorphism in the shape of the femur.

    Science.gov (United States)

    Cavaignac, Etienne; Li, Ke; Faruch, Marie; Savall, Frederic; Chiron, Philippe; Huang, W; Telmon, Norbert

    2017-12-01

    Ethnic dimorphism in the distal femur has never been studied in a three-dimensional analysis focused on shape instead of size. Yet, this dimorphism has direct implications in orthopedic surgery and in anthropology. The goal of this study was to show that differences in distal femur shape related to ethnic dimorphism could be identified, visualized, and quantified using 3D geometric morphometric analysis. CT scans of the distal femur were taken from 482 patients who were free of any bone-related pathology: 240 patients were European (E) and 242 were Asian (A). Ten osteometric landmarks based on standard bone landmarks used in anthropometry were placed on these scans. Geometric morphometric analysis, principal component analysis (PCA), canonical variates analysis (CVA), and other discriminant analyses (Goodall's F-test and Mahalanobis distance) were performed. A cross-validation analysis was carried out to determine the percentage of cases in which the ethnicity was correctly estimated. The shape of the E and A distal femur differed significantly (Goodall's F = 94.43, P geometric morphometric analysis made it possible to demonstrate these differences. The large number of subjects studied has helped modernize the references for certain bone measurements, with direct implication for orthopedic surgery and anthropology.

  18. Shape estimation of the buried body from the ground surface potential distributions generated by current injection; Tsuryu ni yoru chihyomen den`i bunpu wo riyoshita maizobutsu keijo no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Y.; Okamoto, Y. [Chiba Institute of Technology, Chiba (Japan); Noguchi, K. [Waseda University, Tokyo (Japan); Teramachi, Y. [University of Industrial Technology, Kanagawa (Japan); Akabane, H.; Agu, M. [Ibaraki University, Ibaraki (Japan)

    1996-10-01

    Ground surface potential distribution generated by current injection was studied to estimate the shape of buried bodies. Since the uniform ground system including a homogeneous buried body is perfectly determined with the surface shape of a buried body and resistivities in/around a buried body, inversion is easy if the surface shape is described with some parameters. N electrodes are arranged in 2-D grid manner on the ground, and two electrodes among them are used for current injection, while the others for measurement of potentials. M times of measurements are repeated while changing combination of electrodes for current injection. The potential distribution measured by the mth electrode pair is represented by N-2 dimensional vectors. The square error between this distribution and calculated one is the function of k parameters on the surface shape and resistivities on a buried body. Both shape and resistivities can be estimated by solving an optimum value problem using the square error as evaluation function. Analysis is easy for a spherical body with 6 unknown parameters, however, it is difficult for more complex bodies than elliptical one or more than two bodies. 5 refs., 9 figs.

  19. MODEL FOR THE SHAPES OF ISLANDS AND PITS ON (111)-SURFACES OF FCC METALS

    NARCIS (Netherlands)

    BARKEMA, GT; NEWMAN, MEJ; BREEMAN, M

    1994-01-01

    It is experimentally observed that adsorbate atoms and vacancies on (111) surfaces of fee metals cluster into islands which are approximately hexagonal, but which on closer inspection turn out to have equilibrium facets that alternate in length ABABAB around the six sides of the island. By contrast,

  20. Lipid vesicle shape analysis from populations using light video microscopy and computer vision.

    Directory of Open Access Journals (Sweden)

    Jernej Zupanc

    Full Text Available We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter. For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness. This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected.

  1. Axisymmetric Drop Shape Analysis: Computational Methods for the Measurement of Interfacial Properties from the Shape and Dimensions of Pendant and Sessile Drops.

    Science.gov (United States)

    Río; Neumann

    1997-12-15

    State-of-the-art axisymmetric drop shape analysis (ADSA) techniques for the computation of interfacial tensions and contact angles by fitting the Laplace equation of capillarity to the shape and dimensions of pendant and sessile drops are presented. More accurate, efficient, and reliable versions of the technique for the measurement of contact angles from the volume and diameter of sessile drops [axisymmetric drop shape analysis-diameter (ADSA-D)] and for interfacial tension measurements from a series of arbitrary profile coordinates of sessile and pendant drops [axisymmetric drop shape analysis-profile (ADSA-P)] have been developed. Advanced numerical methods have been used to improve the numerical stability and global convergence, for more accurate results and a wider range of applicability of the methods. A new technique called axisymmetric drop shape analysis-height and diameter (ADSA-HD) has been developed to estimate interfacial tensions from the height and diameter of sessile and pendant drops. Numerical simulations using numerically generated drop profiles were used to evaluate the accuracy and applicability of the methods. Copyright 1997 Academic Press.

  2. Study on extracting method of single slope surface shape based on DEM:taking Wanzhou district of three gorges reservoir area as example

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qi-gang; YUAN Li-feng

    2007-01-01

    This paper focused on the extracting method of single slope shape. Applying the software of ARCGIS 9.0, DEM (digital elevation model) was established. From the DEM, topographic characters, including valleys and ridges were extracted. Some valley lines were extended in order to intersect with the ridges nearby. All slope were divided into different slope surface, which enclosed by valleys and ridges. And the slope surface shapes were defined three types, Line Slope, Upper-concave and lower-convex slope, Upper-convex and lower-concave slope, according to their functions. And the judge formula of single slope surface shape was brought forward. Taking Wanzhou District as test area, it indicates that auto-extracting method of single slope surface shape has high precision relatively. This study can provide references to the studies of region geological disasters prevention and cure.

  3. Self-recovery of worn surface of TiNi shape memory alloy

    Science.gov (United States)

    Tang, Guanghai; Zhang, Dongya; Zhang, Junfeng; Lin, Ping; Dong, Guangneng

    2014-12-01

    In this study, the thermally induced deformation recovery of TiNi alloy worn surface under dry sliding condition was examined. Surface deformations were simulated under various normal loads and sliding frequencies by a ball-on-disk tribometer system at room temperature. Surface profiles of wear scars were obtained before and after heating in air at 80 °C for 10 min, and the experimental results showed that partial recovery of the worn surface was observed. The partial deformation recovery is relative to recovery of the martensitic transformation-induced slip-dislocations and thermally-induced martensite reorientation variants to austenite. The recovery ratio, which is defined as the deformation recovery in the depth direction, was influenced by normal loads and reciprocating frequencies. As the normal load increased from 2 N to 6 N, the deformation recovery ratio of TiNi alloy decreased from 21.4% to 6.4%. With further increasing to 8 N, the recovery ratio was declined to 4.8%. These observations were explained and discussed with respect to the corresponding wear mechanisms and contact stress distribution during sliding wear tests. For different frequencies, the deformation recovery ratio tended to decrease as the reciprocating frequency increased. In addition, the deformation recovery of worn surface was also simulated by indentation in conjunction with a mechanical polishing process. The results showed that spherical protrusion morphology was observed, and its height (18 μm) was around 50% of the depth of initial indent. It confirmed that the deformation recovery existed under wear conditions, and opened up potential engineering applications of textures.

  4. Natural sunlight shapes crude oil-degradingbacterial communities in northern Gulf of Mexico surface waters

    Directory of Open Access Journals (Sweden)

    Hernando P Bacosa

    2015-12-01

    Full Text Available Following the Deepwater Horizon (DWH spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 d under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  5. The Intrinsic Shapes of Low-Surface-Brightness Dwarf Irregular Galaxies and Comparison to Other Types of Dwarf Galaxies

    CERN Document Server

    Sung, E C; Ryden, S; Patterson, J; Chun, M S; Kim, H I; Lee, W B; Sung, Eon-Chang; Han, Cheongho; Chun, Moon-Suk; Kim, Ho-Il; Lee, Woo-Baik

    1998-01-01

    In this paper, we measure the ellipticities of 30 LSB dI galaxies and compare the ellipticity distribution with that of 80 dEs (Ryden & Terndrup 1994; Ryden et al. 1998) and 62 BCDs (Sung et al. 1998). We find that the ellipticity distribution of LSB dIs is very similar to that of BCDs, and marginally different from that of dEs. We then determine the distribution of intrinsic shapes of dI galaxies and compare to those of other type dwarf galaxies under various assumptions. First, we assume that LSB dIs are either all oblate or all prolate, and use non-parametric analysis to find the best-fitting distribution of intrinsic shapes. With this assumption, we find that the scarcity of nearly circular LSB dIs implies, at the 99% confidence level, that they cannot be a population of randomly oriented oblate or prolate objects. Next, we assume that dIs are triaxial, and use parametric analysis to find permissible distributions of intrinsic shapes. We find that if the intrinsic axis ratios, $\\beta$ and parameters f...

  6. Application of the Recursive Subtraction Pulse Shape Analysis algorithm to in-beam HPGe signals

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, F.C.L. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Camera, F. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)], E-mail: camera@mi.infn.it; Bracco, A.; Million, B.; Wieland, O.; Vandone, V. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Recchia, F.; Gadea, A.; Kroell, Th. [Laboratori Nazionali di Legnaro, INFN, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Mengoni, D.; Farnea, E.; Ur, C.A.; Bazzacco, D. [Dipartimento di Fisica, Universita di Padova and INFN Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2009-06-11

    The Pulse Shape Analysis algorithm 'Recursive Subtraction' has been applied to data acquired during the in-beam tests of two different highly segmented HPGe detectors. This algorithm processes the net charge signal, determining the number of interactions per segment and their radial coordinates. The RS algorithm performances are evaluated by comparing the results obtained following its application to experimental pulse shapes with those obtained with specific GEANT simulations. Excellent agreement is found between the experimental distribution of the number of interactions per segment and the simulated one. Deviations between experimental radial distribution and the calculated ones are discussed.

  7. PERFORMANCE STUDIES OF CDZNTE DETECTOR BY USING A PULSE SHAPE ANALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BOLOTNIKOV, A.

    2005-07-31

    Pulse shape analysis is proved to be a powerful tool to characterize the performance of CdZnTe devices and understand their operating principles. It allows one to investigate the device configurations, electron transport properties, effects governing charge collection, electric-field distributions, signal charge formation, etc. This work describes an application of different techniques based on the pulse shape measurements to characterize pixel, coplanar-grid, and virtual Frisch-grid devices and understand the electronic properties of CZT material provided by different vendors. We report new results that may explain the performance limits of these devices.

  8. SCAP - a Shaped Charge Analysis Program: user's manual for SCAP 1. 0

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, A.C.

    1985-04-01

    The basic modeling and format for a shaped charge analysis program, SCAP, is described. The code models the motion of liner elements due to explosive loading, jet formation, jet breakup and target penetration through application of a series of analytical approximations. The structure of the code is intended to provide flexibility in shaped charge device and target configurations and in modeling techniques. The code is designed for interactive use and produces both printed and plotted output. Examples of code output are given and compared with experimental data. 19 refs., 13 figs.

  9. In vitro release of cupric ion from intrauterine devices: influence of frame, shape, copper surface area and indomethacin.

    Science.gov (United States)

    Zhang, Shuangshuang; Li, Ying; Yu, Panpan; Chen, Tong; Zhou, Weisai; Zhang, Wenli; Liu, Jianping

    2015-02-01

    The release of cupric ion from copper intrauterine device (Cu-IUD) in human uterus is essential for contraception. However, excessive cupric ion will cause cytotoxic effect. In this paper, we investigated the influence of device characteristics (frame, copper surface area, shape, copper type and indomethacin) on copper release for the efficacy and adverse effects vary with IUD types which may correlate to their different release behaviors. Nine types of Cu-IUDs were selected and incubated in simulated uterine fluid. They were paired for comparison based on the device properties and the release of cupric ion was determined by flame atomic absorption spectrometer for about 160 days. The result showed that there was a burst release during the first month and the release rate tends to slow down and become steady afterwards. In addition, the copper release was mainly influenced by frame, indomethacin and copper type (copper wire and copper sleeve) while the shape variation had little effect on copper release throughout the experiment. Moreover, the influence of copper surface area was only noticeable during the first month. These findings were seldom reported before and may provide some useful information for the design of Cu-IUDs.

  10. Phylogenetic analysis of skull shape evolution in marmotine squirrels using landmarks and thin-plate splines

    Directory of Open Access Journals (Sweden)

    Donald Swiderski

    2000-06-01

    Full Text Available Abstract Several studies have shown that the recently developed techniques of geometric morphometrics are extremely powerful descriptive tools. And yet, one potential use of the resulting descriptions, phylogenetic analysis, has generally been neglected. This neglect is understandable because prominent systematists as well as prominent morphometricians have objected to the use of morphometric data in phylogenetic systematics. We agree that some methods of morphometric analysis produce results that cannot be used in phylogenetic systematics, and that some methods of incorporating morphometric results into statements about character transformation are not appropriate. However, we do not agree that these objections to specific techniques support a blanket rejection of the use of morphometric data in systematic studies. In this paper, we review the principles of phylogenetic systematics and show that they are equally applicable to qualitative descriptions of triangles and to quantitative descriptions (shape coordinates of the apex of those same shapes. Then we show how these principles would he applied to complex shapes like skulls of marmotine squirrels, and that the resulting analysis leads to legitimate hypotheses about marmotine phylogeny and the evolution of skull shape in these animals.

  11. Adhesion mechanisms on solar glass: Effects of relative humidity, surface roughness, and particle shape and size

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, Helio R.; Jiang, Cun -Sheng; To, Bobby; Perkins, Craig; Muller, Mattthew; Al-Jassim, Mowafak M.; Simpson, Lin J.

    2017-12-01

    To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed with zero relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. We were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlled particles (AFM tips and glass spheres) and real dust particles.

  12. On the shape optimization of flapping wings and their performance analysis

    KAUST Repository

    Ghommem, Mehdi

    2014-01-01

    The present work is concerned with the shape optimization of flapping wings in forward flight. The analysis is performed by combining a gradient-based optimizer with the unsteady vortex lattice method (UVLM). We describe the UVLM simulation procedure and provide the first methodology to select properly the mesh and time-step sizes to achieve invariant UVLM simulation results under mesh refinement. Our objective is to identify a set of optimized shapes that maximize the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. Several parameters affecting flight performance are investigated and their impact is described. These include the wingÊ1/4s aspect ratio, camber line, and curvature of the leading and trailing edges. This study provides guidance for shape design of engineered flying systems. © 2013 Elsevier Masson SAS.

  13. Theoretical analysis on shear-bending deflection of a ring-shape piezoelectric plate

    Directory of Open Access Journals (Sweden)

    Zejun Yu

    2016-02-01

    Full Text Available In this paper, the electromechanical coupling field in shear-bending mode for a ring-shape piezoelectric plate was theoretically established. According to the classical small bending elastic plate theory and piezoelectric constitutive equations, the analytical solution to the bending deformation of the piezo-actuator under electric field and a concentrated or uniformly distributed mechanical load was achieved. The mechanism for generating bending deformation is attributed to axisymmetric shear strain, which further induces the bending deformation of the single ring-shape piezoelectric plate. This mechanism is significant different from that of piezoelectric bimorph or unimorph actuators reported before. Our analysis offers guidance for the optimum design of a ring-shape shear-bending piezo-actuator.

  14. Molecular Shape Analysis-Guided Virtual Screening Platform for Adenosine Kinase Inhibitors.

    Science.gov (United States)

    Bhutoria, Savita; Das, Ballari; Ghoshal, Nanda

    2016-01-01

    We propose a new application of molecular shape descriptors in hierarchical selection during virtual screening (VS). Here, a structure-based pharmacophore and docking-guided VS protocol have been evolved to identify inhibitors against adenosine kinase (AK). The knowledge gained on the shape requirements has been extrapolated in classifying active and inactive molecules against this target. This classification enabled us to pick the appropriate ligand conformation in the binding site. We have suggested a set of hierarchical filters for VS, from a simple molecular shape analysis (MSA) descriptor-based recursive models to docking scores. This approach permits a systematic study to understand the importance of spatial requirements and limitations for inhibitors against AK. Finally, the guidelines on how to select compounds for AK to achieve success have been highlighted. The utility of this approach has been suggested by giving an example of database screening for plausible active compounds.

  15. Effects of irradiation of energetic heavy ions on digital pulse shape analysis with silicon detectors

    Science.gov (United States)

    Barlini, S.; Carboni, S.; Bardelli, L.; Le Neindre, N.; Bini, M.; Borderie, B.; Bougault, R.; Casini, G.; Edelbruck, P.; Olmi, A.; Pasquali, G.; Poggi, G.; Rivet, M. F.; Stefanini, A. A.; Baiocco, G.; Berjillos, R.; Bonnet, E.; Bruno, M.; Chbihi, A.; Cruceru, I.; Degerlier, M.; Dueñas, J. A.; Galichet, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lopez, O.; Marchi, T.; Martel, I.; Morelli, L.; Parlog, M.; Piantelli, S.; Petrascu, H.; Rosato, E.; Seredov, V.; Vient, E.; Vigilante, M.; Fazia Collaboration

    2013-04-01

    The next generation of 4π detector arrays for heavy ion studies will largely use Pulse Shape Analysis to push the performance of silicon detectors with respect to ion identification. Energy resolution and pulse shape identification capabilities of silicon detectors under prolonged irradiation by energetic heavy ions have thus become a major issue. In this framework, we have studied the effects of irradiation by energetic heavy ions on the response of neutron transmutation doped (nTD) silicon detectors. Sizeable effects on the amplitude and the risetime of the charge signal have been found for detectors irradiated with large fluences of stopped heavy ions, while much weaker effects were observed by punching-through ions. The robustness of ion identification based on digital pulse shape techniques has been evaluated.

  16. Shape analysis and damped oscillatory solutions for a class of nonlinear wave equation with quintic term

    Institute of Scientific and Technical Information of China (English)

    Xiang LI; Wei-guo ZHANG; Zheng-ming LI

    2014-01-01

    This paper aims at analyzing the shapes of the bounded traveling wave solu-tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of planar dynamical systems are used to make a qualitative analysis to the planar dynamical system which the bounded traveling wave solutions of this equation correspond to. The shapes, existent number, and condi-tions are presented for all bounded traveling wave solutions. The bounded traveling wave solutions are obtained by the undetermined coefficients method according to their shapes, including exact expressions of bell and kink profile solitary wave solutions and approxi-mate expressions of damped oscillatory solutions. For the approximate damped oscillatory solution, using the homogenization principle, its error estimate is given by establishing the integral equation, which reflects the relation between the exact and approximate so-lutions. It can be seen that the error is infinitesimal decreasing in the exponential form.

  17. Molecular Shape Analysis-Guided Virtual Screening Platform for Adenosine Kinase Inhibitors

    Science.gov (United States)

    Bhutoria, Savita; Das, Ballari; Ghoshal, Nanda

    2016-01-01

    We propose a new application of molecular shape descriptors in hierarchical selection during virtual screening (VS). Here, a structure-based pharmacophore and docking-guided VS protocol have been evolved to identify inhibitors against adenosine kinase (AK). The knowledge gained on the shape requirements has been extrapolated in classifying active and inactive molecules against this target. This classification enabled us to pick the appropriate ligand conformation in the binding site. We have suggested a set of hierarchical filters for VS, from a simple molecular shape analysis (MSA) descriptor-based recursive models to docking scores. This approach permits a systematic study to understand the importance of spatial requirements and limitations for inhibitors against AK. Finally, the guidelines on how to select compounds for AK to achieve success have been highlighted. The utility of this approach has been suggested by giving an example of database screening for plausible active compounds. PMID:27478367

  18. Contour Cluster Shape Analysis for Building Damage Detection from Post-earthquake Airborne LiDAR

    Directory of Open Access Journals (Sweden)

    HE Meizhang

    2015-04-01

    Full Text Available Detection of the damaged building is the obligatory step prior to evaluate earthquake casualty and economic losses. It's very difficult to detect damaged buildings accurately based on the assumption that intact roofs appear in laser data as large planar segments whereas collapsed roofs are characterized by many small segments. This paper presents a contour cluster shape similarity analysis algorithm for reliable building damage detection from the post-earthquake airborne LiDAR point cloud. First we evaluate the entropies of shape similarities between all the combinations of two contour lines within a building cluster, which quantitatively describe the shape diversity. Then the maximum entropy model is employed to divide all the clusters into intact and damaged classes. The tests on the LiDAR data at El Mayor-Cucapah earthquake rupture prove the accuracy and reliability of the proposed method.

  19. Characterization of Breast Implant Surfaces, Shapes, and Biomechanics: A Comparison of High Cohesive Anatomically Shaped Textured Silicone, Breast Implants from Three Different Manufacturers.

    Science.gov (United States)

    Atlan, Michael; Bigerelle, Maxence; Larreta-garde, Véronique; Hindié, Mathilde; Hedén, Per

    2016-02-01

    Several companies offer anatomically shaped breast implants but differences among manufacturers are often misunderstood. The shell texture is a crucial parameter for anatomically shaped implants to prevent rotation and to decrease the risk of capsular contracture, even though concerns have recently been raised concerning the complications associated with textured breast implants. The aim of this study was to characterize differences in terms of texture, cell adhesion, shape, and stiffness between some commonly used anatomically shaped implants from three different manufacturers. Five commercially available anatomically shaped breast implants from 3 different manufacturers (Allergan, Mentor, and Sebbin) were used. Scanning electron microscopy, X-ray microtomography, and scanning mechanical microscopy were used to characterize the shell texture. Human fibroblast adhesion onto the shells was evaluated. 3D models of the implants were obtained using CT-scan acquisitions to analyze their shape. Implant stiffness was evaluated using a tractiometer. Major differences were observed in the topography of the textures of the shells, but this was not conveyed by a statistically significant fibroblast adhesion difference. However, fibroblasts adhered better on anatomically shaped textured implants than on smooth implants (p Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  20. Evaluation of the surface strength of glass plates shaped by hot slumping process

    CERN Document Server

    Proserpio, L; Borsa, F; Citterio, O; Civitani, M; Ghigo, M; Pareschi, G; Salmaso, B; Sironi, G; Spiga, D; Tagliaferri, G; D'Este, A; Dall'Igna, R; Silvestri, M; Parodi, G; Martelli, F; Bavdaz, M; Wille, E

    2014-01-01

    The Hot Slumping Technology is under development by several research groups in the world for the realization of grazing-incidence segmented mirrors for X-ray astronomy, based on thin glass plates shaped over a mould at temperatures above the transformation point. The performed thermal cycle and related operations might have effects on the strength characteristics of the glass, with consequences on the structural design of the elemental optical modules and consecutively on the entire X-ray optic for large astronomical missions like IXO and ATHENA. The mechanical strength of glass plates after they underwent the slumping process was tested through destructive double-ring tests in the context of a study performed by the Astronomical Observatory of Brera with the collaboration of Stazione Sperimentale del Vetro and BCV Progetti. The entire study has been realized on more than 200 D263 Schott borosilicate glass specimens of dimension 100 mm x 100 mm and thickness 0.4 mm, either flat or bent at a Radius of Curvatur...