WorldWideScience

Sample records for surface science nanoscience

  1. Surface Science Foundations of Catalysis and Nanoscience

    CERN Document Server

    Kolasinski, Kurt K

    2012-01-01

    Surface science has evolved from being a sub-field of chemistry or physics, and has now established itself as an interdisciplinary topic. Knowledge has developed sufficiently that we can now understand catalysis from a surface science perspective. No-where is the underpinning nature of surface science better illustrated than with nanoscience. Now in its third edition, this successful textbook aims to provide students with an understanding of chemical transformations and the formation of structures at surfaces. The chapters build from simple to more advanced principles with each featuring exerc

  2. Surface Science Foundations of Catalysis and Nanoscience

    CERN Document Server

    Kolasinski, Kurt K

    2012-01-01

    Surface science has evolved beyond being a sub-field of chemistry or physics and has now become an underpinning science. The Third Edition of this book incorporates extensive worked solutions, as well as details on how problem solving relevant to surface science should be performed. It contextualizes the exercises and their solutions to further explicate the methods of problem solving, application of scientific principles and to deliver a deeper understanding of the field of surface science. Solutions will be accompanied by figures and/or graphs of data, as appropriate.

  3. The nano-science of C sub 6 0 molecule

    CERN Document Server

    Rafii-Tabar, H

    2002-01-01

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C sub 6 0 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C sub 6 0 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of thi...

  4. The nano-science of C60 molecule

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    2002-01-01

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C 6 0 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C 6 0 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of this molecule on a variety of substrates. We review the field of nano-scale nucleation and growth of C 6 0 molecules on some of the technologically important substrates. In addition to experimental results, the results of a set of highly accurate computational simulations are also reported

  5. Nanoscience The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine

    CERN Document Server

    Schaefer, Hans-Eckhardt

    2010-01-01

    Nanoscience stands out for its interdisciplinarity. Barriers between disciplines disappear and the fields tend to converge at the very smallest scale, where basic principles and tools are universal. Novel properties are inherent to nanosized systems due to quantum effects and a reduction in dimensionality: nanoscience is likely to continue to revolutionize many areas of human activity, such as materials science, nanoelectronics, information processing, biotechnology and medicine. This textbook spans all fields of nanoscience, covering its basics and broad applications. After an introduction to the physical and chemical principles of nanoscience, coverage moves on to the adjacent fields of microscopy, nanoanalysis, synthesis, nanocrystals, nanowires, nanolayers, carbon nanostructures, bulk nanomaterials, nanomechanics, nanophotonics, nanofluidics, nanomagnetism, nanotechnology for computers, nanochemistry, nanobiology, and nanomedicine. Consequently, this broad yet unified coverage addresses research in academ...

  6. Highly charged ion beams from the Tokyo EBIT for applications to nano-science and -technology

    International Nuclear Information System (INIS)

    Tona, Masahide; Takahashi, Satoshi

    2004-01-01

    We report present status of a beam line for transportation of highly charged ions (HCIs) extracted from the Tokyo EBIT. We have produced continuous beams of 2.5 x 10 5 cps for Xe 44+ through a 1 mm aperture. With slightly high energy operation (electron beam energy: 78 keV) of the Tokyo EBIT, we have also obtained 10 3 ions/pulse for Ta 70+ HCIs extracted by a pulse mode (trapping time: 3 sec). We are going to apply such HCI beams to nano-processes on solid surfaces by utilizing some useful characteristics of the HCI-interactions. Future perspective of HCI-based nano-science and -technology is presented

  7. Ultra Slow Muon Microscopy for Nano-science

    International Nuclear Information System (INIS)

    Miyake, Y; Shimomura, K; Ikedo, Y; Kawamura, N; Strasser, P; Makimura, S; Fujimori, H; Nakahara, K; Koda, A; Kobayashi, Y; Nishiyama, K; Kadono, R; Nishida, N; Yoshino, J; Higemoto, W; Ogitsu, T; Makida, Y; Sasaki, K; Torikai, E; Adachi, T

    2011-01-01

    The 'surface' muon beam which has been used for the studies of condensed matter physics or chemistry is conventionally obtained from the decay of positive pions (π + ) stopped near the surface of the pion production target in the proton beam line and has large energy broadening with an implantation depth of 0.1 to 1 mm. Despite the name of 'surface' muon, it is used as a probe of bulk phenomena rather than surface phenomena. In these two decades, the new method to generate ultra-slow muon beam with energy 0.2 eV has been developed and successfully obtained by KEK and RIKEN group. When the production of intense ultra-slow muon source will be realized, the use of its short-range penetration depth will allow muon science to be expanded towards a variety of new nano-scientific fields, which we call 'Ultra Slow Muon Microscope' such as, 1) Surface/boundary magnetism utilizing its spin polarization and unique time-window. 2) Surface chemistry, utilizing a feature of a light isotope of hydrogen; such as catalysis reactions. 3) Muon Microscopy, utilizing a feature of micron meter beam size, when ultra slow muon is accelerated. 4) Precise atomic physics testing QED, since Mu is the simplest lepton pair consisting μ + and e - . 5) Ion sources for- 'g-2' experiment, and towards μ + μ - collider experiments in high-energy physics. Int this paper, the latest status of the intense low-emittance ultra slow muon source and its scientific prospects will be reported.

  8. Considerations for Nanosciences in Food Science and Nutrition: "Enhanced Food Properties".

    Science.gov (United States)

    Tekiner, Ismail H; Mutlu, Hayrettin; Algıngil, Selcuk; Dincerler, Elif

    2015-01-01

    The agro-food industries are one of the biggest manufacturing sectors worldwide with a turnover of US$4 trillion per year. Within the last decades, nanoscience has opened-up fantastic ways to challenge new sub-universes for exploring the interactions between physical, chemical and biological systems as well as agro-food and nutrition sectors. Among these potentials, there is the enhancement of food properties and constituents such as nanoparticulate delivery systems, food safety and food biosecurity. In the recent years, many patents were launched for edible coating agents, essential oils and emulsifiers, including agrochemical active ingredients, nanomaterials for agriculture, horticulture, aquaculture, and smart packaging materials. The aim of this review was to search for the recent applications of nanoscience in the agro-food science and nutrition area, including the launched patents in this field.

  9. Big Thinking: The Power of Nanoscience (LBNL Science at the Theater)

    Energy Technology Data Exchange (ETDEWEB)

    Milliron, Delia; Sanili, Babak; Weber-Bargioni, Alex; Xu, Ting

    2011-06-06

    Science at the Theater, June 6th, 2011: Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Alex Weber-Bargioni: How can we see things at the nanoscale? Alex is pioneering new methods that provide unprecedented insight into nanoscale materials and molecular interactions. The goal is to create rules for building nanoscale materials. Babak Sanii: Nature is an expert at making nanoscale devices such as proteins. Babak is developing ways to see these biological widgets, which could help scientists develop synthetic devices that mimic the best that nature has to offer. Ting Xu: How are we going to make nanoscale devices? A future in which materials and devices are able to assemble themselves may not be that far down the road. Ting is finding ways to induce a wide range of nanoscopic building blocks to assemble into complex structures. Delia Milliron: The dividends of nanoscience could reshape the way we live, from smart windows and solar cells to artificial photosynthesis and improved medical diagnosis. Delia is at the forefront of converting fundamental research into nanotechnology. Moderated by Jim DeYoreo, interim director of the Molecular Foundry, a facility located at Berkeley Lab where scientists from around the world address the myriad challenges in nanoscience.

  10. The effect of activity-based nanoscience and nanotechnology education on pre-service science teachers' conceptual understanding

    Science.gov (United States)

    Şenel Zor, Tuba; Aslan, Oktay

    2018-03-01

    The purpose of the study was to examine the effect of activity-based nanoscience and nanotechnology education (ABNNE) on pre-service science teachers' (PST') conceptual understanding of nanoscience and nanotechnology. Within this context, the study was conducted according to mixed methods research with the use of both quantitative and qualitative methods. The participants were 32 PST who were determined by using criterion sampling that is one of the purposive sampling methods. ABNNE was carried out during 7 weeks as 2 h per week in special issues at physics course. Design and implementation of ABNNE were based on "Big Ideas" which was found in literature and provided guidance for teaching nanoscience and nanotechnology. All activities implemented during ABNNE were selected from literature. "Nanoscience and Nanotechnology Concept Test (NN-CT)" and "Activity-Based Nanoscience and Nanotechnology Education Assessment Form (ABNNE-AF)" were used as data collection tools in research. Findings obtained with data collection tools were discussed with coverage of literature. The findings revealed that PST conceptual understanding developed following ABNNE. Various suggestions for increasing PST conceptual understanding of nanoscience and nanotechnology were presented according to the results of the study.

  11. Textbook of Nanoscience and Nanotechnology

    CERN Document Server

    Murty, B S; Raj, Baldev; Rath, B B; Murday, James

    2013-01-01

    This book is meant to serve as a textbook for beginners in the field of nanoscience and nanotechnology. It can also be used as additional reading in this multifaceted area. It covers the entire spectrum of nanoscience and technology: introduction, terminology, historical perspectives of this domain of science, unique and widely differing properties, advances in the various synthesis, consolidation and characterization techniques, applications of nanoscience and technology and emerging materials and technologies.

  12. PREFACE: The 8th China International NanoScience and Technology Symposium

    Science.gov (United States)

    Cong, Hailin

    2009-09-01

    The 8th China International NanoScience and Technology Symposium, Xiangtan (2009) - Nano-products Exposition, sponsored by Chinese Society of Miro-nanoTechnology and IEEE Nanotechnology Council, etc will be held on 23-27 October 2009 in Xiangtan, China. This symposium is held in order to promote the technology for the development of micro- and nano-scale, cross-scale integration, to share new micro/nano technologies, to exchange information and knowledge over all fields and promote the industrialization and development of nanotechnology. This is a leading professional and traditional conference with at least 400 participants every year. Famous experts, professors and government officials at home and abroad will give lectures during the symposium, which provides a good platform for delegates to discover the latest developments and dynamics of nanotechnology. Researchers, teachers and students in colleges, and technical personnel in the industrial community are welcome to contribute and actively participate in the symposium. In our last symposium held in 2008, over 600 participants from all over the world attended, and we received over 570 abstract and paper submissions for the proceedings published in different languages in famous professional journals. And this year, we have already received over 400 submissions. After strict peer review, 60 of them are published in this volume of Journal of Physics: Conference Series. We are confident that the event will be even more successful this year. Consequently, the organizing committee and proceedings editorial committee would like to thank our colleagues at the IOP Publishing, the invited speakers, our sponsors and all the delegates for their great contributions in this conference. Hailin Cong Vice Chair of the proceedings editorial committee

  13. Food nanoscience and nanotechnology

    CERN Document Server

    Hernández-Sánchez, Humberto

    2015-01-01

    Nanoscience and nanotechnology have had a great impact on the food industry. They have increased the nutritional and functional properties of a number of food products and have aided in food preservation through the addition of antimicrobials or the reduction of water activity. These and many other applications have emerged in recent years to transform food science and technology. This book proposes to look at some of these applications and their effect on food production and innovation.

  14. Nanoscience and nanotechnology in the Siberian Branch of the Russian Academy of Sciences: bibliometric analysis and evaluation

    Science.gov (United States)

    Lavrik, Olga L.; Busygina, Tatyana V.; Shaburova, Natalya N.; Zibareva, Inna V.

    2015-02-01

    The multidimensional bibliometric analysis of publications on nanoscience and nanotechnology (NS&NT) produced by the researchers of the Siberian Branch of the Russian Academy of Sciences (SB RAS) in 2007-2012 has shown their growing publication activity and international visibility in the field and the main objects of research such as nanoparticles, nanostructures (nanostructured materials), nanotubes (especially carbon ones), nanocomposites, nanocrystals, nanotechnology, and nanoelectronics and identified the most productive authors and institutes, as well as the most cited publications. It was made using the data from multidisciplinary (Web of Science, Scopus, and Russian Index of Scientific Citation) and specialized (Chemical Abstracts Plus and Inspec) information resources, that is from international (WoS, Scopus, CAPlus, and Inspec) and national (RISC) data bases. The analysis has shown that most of the SB RAS research works on NS&NT are concentrated in Novosibirsk Scientific Centre.

  15. Nanoscience and nanotechnology in the Siberian Branch of the Russian Academy of Sciences: bibliometric analysis and evaluation

    International Nuclear Information System (INIS)

    Lavrik, Olga L.; Busygina, Tatyana V.; Shaburova, Natalya N.; Zibareva, Inna V.

    2015-01-01

    The multidimensional bibliometric analysis of publications on nanoscience and nanotechnology (NS&NT) produced by the researchers of the Siberian Branch of the Russian Academy of Sciences (SB RAS) in 2007–2012 has shown their growing publication activity and international visibility in the field and the main objects of research such as nanoparticles, nanostructures (nanostructured materials), nanotubes (especially carbon ones), nanocomposites, nanocrystals, nanotechnology, and nanoelectronics and identified the most productive authors and institutes, as well as the most cited publications. It was made using the data from multidisciplinary (Web of Science, Scopus, and Russian Index of Scientific Citation) and specialized (Chemical Abstracts Plus and Inspec) information resources, that is from international (WoS, Scopus, CAPlus, and Inspec) and national (RISC) data bases. The analysis has shown that most of the SB RAS research works on NS&NT are concentrated in Novosibirsk Scientific Centre

  16. Nanoscience and nanotechnology in the Siberian Branch of the Russian Academy of Sciences: bibliometric analysis and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Lavrik, Olga L., E-mail: lisa@spsl.nsc.ru; Busygina, Tatyana V. [Russian Academy of Sciences, State Public Scientific and Technological Library, Siberian Branch (Russian Federation); Shaburova, Natalya N. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Zibareva, Inna V., E-mail: zibareva@catalysis.ru [Russian Academy of Sciences, Boreskov Institute of Catalysis, Siberian Branch (Russian Federation)

    2015-02-15

    The multidimensional bibliometric analysis of publications on nanoscience and nanotechnology (NS&NT) produced by the researchers of the Siberian Branch of the Russian Academy of Sciences (SB RAS) in 2007–2012 has shown their growing publication activity and international visibility in the field and the main objects of research such as nanoparticles, nanostructures (nanostructured materials), nanotubes (especially carbon ones), nanocomposites, nanocrystals, nanotechnology, and nanoelectronics and identified the most productive authors and institutes, as well as the most cited publications. It was made using the data from multidisciplinary (Web of Science, Scopus, and Russian Index of Scientific Citation) and specialized (Chemical Abstracts Plus and Inspec) information resources, that is from international (WoS, Scopus, CAPlus, and Inspec) and national (RISC) data bases. The analysis has shown that most of the SB RAS research works on NS&NT are concentrated in Novosibirsk Scientific Centre.

  17. Nanoscience, nanotechnology and spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Freddy C. [Department of Chemistry, University of Antwerp, B-2610 Wilrijk (Belgium); Barbante, Carlo, E-mail: barbante@unive.it [Institute for the Dynamics of Environmental Processes — CNR, Venice (Italy); Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Venice (Italy)

    2013-08-01

    Nanoscience has outgrown its infancy, and nanotechnology has found important applications in our daily life — with many more to come. Although the central concepts of the nano world, namely the changes of particular physical properties on the length scale of individual atoms and molecules, have been known and developed for quite some time already, experimental advances since the 1980s and recognition of the potential of nanomaterials led to a genuine breakthrough of the inherently multidisciplinary nanoscience field. Analytical nanoscience and nanotechnology and especially the use of micro and nano electro mechanical systems, of the quantum dots and of mass spectrometry, currently provide one of the most promising avenues for developments in analytical science, derived from their two main fields of action, namely (a) the analysis of nano-structured materials and (b) their use as new tools for analysis. An overview is given of recent developments and trends in the field, highlighting the importance and point out future directions, while also touching drawbacks, such as emerging concerns about health and environmental issues. - Highlights: • We review the analysis of nano-structured materials. • Nano-structured materials can be used as new tools for analysis. • Use of nano electro mechanical systems, of quantum dots and of mass spectrometry • Nanotechnologies are among the most promising tools in analytical science.

  18. Nanoscience, nanotechnology and spectrometry

    International Nuclear Information System (INIS)

    Adams, Freddy C.; Barbante, Carlo

    2013-01-01

    Nanoscience has outgrown its infancy, and nanotechnology has found important applications in our daily life — with many more to come. Although the central concepts of the nano world, namely the changes of particular physical properties on the length scale of individual atoms and molecules, have been known and developed for quite some time already, experimental advances since the 1980s and recognition of the potential of nanomaterials led to a genuine breakthrough of the inherently multidisciplinary nanoscience field. Analytical nanoscience and nanotechnology and especially the use of micro and nano electro mechanical systems, of the quantum dots and of mass spectrometry, currently provide one of the most promising avenues for developments in analytical science, derived from their two main fields of action, namely (a) the analysis of nano-structured materials and (b) their use as new tools for analysis. An overview is given of recent developments and trends in the field, highlighting the importance and point out future directions, while also touching drawbacks, such as emerging concerns about health and environmental issues. - Highlights: • We review the analysis of nano-structured materials. • Nano-structured materials can be used as new tools for analysis. • Use of nano electro mechanical systems, of quantum dots and of mass spectrometry • Nanotechnologies are among the most promising tools in analytical science

  19. Big Science, Nano Science?: Mapping the Evolution and Socio-Cognitive Structure of Nanoscience/Nanotechnology Using Mixed Methods

    Science.gov (United States)

    Milojevic, Stasa

    2009-01-01

    This study examines the development of nanoscience/nanotechnology over a 35 year period (1970-2004) by mapping its social and cognitive structures using social network analysis, bibliometrics and document analysis, and following their changes in time. Mapping is performed based on 580,000 journal articles, 240,000 patents and 53,000 research…

  20. Modern techniques of surface science

    CERN Document Server

    Woodruff, D Phil

    2016-01-01

    This fully revised, updated and reorganised third edition provides a thorough introduction to the characterisation techniques used in surface science and nanoscience today. Each chapter brings together and compares the different techniques used to address a particular research question, including how to determine the surface composition, surface structure, surface electronic structure, surface microstructure at different length scales (down to sub-molecular), and the molecular character of adsorbates and their adsorption or reaction properties. Readers will easily understand the relative strengths and limitations of the techniques available to them and, ultimately, will be able to select the most suitable techniques for their own particular research purposes. This is an essential resource for researchers and practitioners performing materials analysis, and for senior undergraduate students looking to gain a clear understanding of the underlying principles and applications of the different characterisation tec...

  1. The use of Museum Based Science Centres to Expose Primary School Students in Developing Countries to Abstract and Complex Concepts of Nanoscience and Nanotechnology

    Science.gov (United States)

    Saidi, Trust; Sigauke, Esther

    2017-10-01

    Nanotechnology is an emerging technology, and it is regarded as the basis for the next industrial revolution. In developing countries, nanotechnology promises to solve everyday challenges, such as the provision of potable water, reliable energy sources and effective medication. However, there are several challenges in the exploitation of nanotechnology. One of the notable challenges is the lack of adequate knowledge about how materials behave at the nanoscale. As nanotechnology is relatively new, the current generation of scientists have not had the opportunity to learn the fundamentals of the technology at an early stage. Young students who are at the primary school level may follow the same trajectory if they are not exposed to the technology. There is a need to lay a strong foundation by introducing nanoscience and nanotechnology to students at the primary school level. It is during the early stages of child development that students master basic concepts for life long learning. Nevertheless, many primary school children, particularly those in developing countries are missing the chance of learning about nanoscience and nanotechnology because it is regarded as being abstract and complex. In this paper, we argue that despite the complexity of nanoscience and nanotechnology, science centres can be used as one of the platforms for exposing young students to the discipline. We use a case study of a museum-based science centre as an example to illustrate that young students can be exposed to nanoscience and nanotechnology using tactile and hands-on experience. The early engagement of primary school children with nanoscience and nanotechnology is important in raising the next generation of scientists who are firmly grounded in the discipline.

  2. CBIOS Science Sessions - 2016 - Part I and III National Symposium on Nanoscience and Biomedical Nanotechnology - Proceedings

    Directory of Open Access Journals (Sweden)

    L. Monteiro Rodrigues, et al.

    2016-05-01

    Full Text Available CBiOS Science Sessions - 2016 – Part 1 New methods to explore efficacy and safety of natural origin products; Stefânia Duz Delsin Effectiveness of Hypopressive Exercises in women with pelvic floor dysfunctions; Beatriz Navarro Brazález Indoor air quality in baby rooms: a study about VOC levels; Raquel Rodrigues dos Santos, Ana Sofia Fernandes e Liliana Mendes A medicinal chemistry approach for the development of novel anti-tumor agentes; Maria M. M. Santos Isolation, modelling and phytosome forms of antibacterial and anti-proliferative compounds from Plectranthus spp; Diogo Matias Intellectual Property – Patenting Propriedade Intelectual – Patenteamento Rui Gomes Biomarkers in wastewater; Álvaro Lopes A Contribution for a Better Comprehension of Donkey Dentistry: the Importance of Dental Care; João Brandão Rodrigues Characterization of Lusitano’s Pure Blood Pressure Centers using two pressure plates; Pequito M.; Gomes-Costa M.; Prazeres J.; Bragança M.; Roupa I.; Fonseca R.G.; Abrantes J. Application of photoplethysmography to monitor heart rate in dogs; Rui Assunção, Henrique Silva, João Requicha, Luis Lobo, Luis Monteiro Rodrigues Looking into the oscillatory properties of the laser Doppler flowmetry signal in human microcirculation; Henrique Silva, Hugo Ferreira, Marie-Ange Renault, Alain-Pierre Gadeau, Julia Buján, LM Rodrigues III Symposium of Nanoscience and Biomedical Nanotechnology – Proceedings April 15/04/2016 Lisboa - Universidade Lusófona Honor Commitee /Comissão de Honra Magnífico Reitor da Universidade Lusófona, Mário Moutinho Presidente do Conselho de Administração da Universidade Lusófona, Manuel de Almeida Damásio Sr. Bastonário da Ordem dos Engenheiros, Carlos Matias Ramos Sr. Bastonário da Ordem dos Médicos, José Silva Vice-presidente do Conselho de Enfermagem, Maria José Costa Dias Presidente da Associação Nacional de Farmácias, Paulo Cleto Duarte Presidente da Sociedade Portuguesa de Ci

  3. Introduction to nanoscience and nanomaterials

    CERN Document Server

    Agrawal, Dinesh C

    2013-01-01

    This textbook is aimed primarily at the senior undergraduate and first year graduate students from the various engineering and sciences departments including physics, chemistry, materials engineering, chemical engineering, electrical engineering, mechanical engineering, bioengineering, and biology. Researchers in the areas of nanomaterials and nanoscience will also find the book useful for building the background necessary to understand the current literature and as a reference book. The text assumes only a basic level of competency in physics, chemistry and mathematics. Some of the background material and introductory matter are included in the first few chapters and as appendices. Although this material may be familiar to some of the students, it is the author's experience after teaching such a course for many years that this can not be taken for granted and moreover, serves as a ready reference to understand the text. As the area of nanoscience, nanotechnology and nanomaterials is a fast developing one, a...

  4. Welcome to Nanoscience: Interdisciplinary Environmental Explorations, Grades 9-12

    Science.gov (United States)

    Madden, Andrew S.; Hochella, Michael F., Jr.; Glasson, George E.; Grady, Julie R.; Bank, Tracy L.; Green, Andre M.; Norris, Mary A.; Hurst, Andrew N.; Eriksson, Susan C.

    2011-01-01

    In a society where technology plays an ever-increasing role, students' ability to understand the underlying science and make smart social and environmental decisions based on that knowledge is crucial. "Welcome to Nanoscience" helps biology, chemistry, and Earth science teachers introduce the revolutionary fields of nanoscience and nanotechnology…

  5. Multidisciplinary cognitive content of nanoscience and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Milojevic, Stasa, E-mail: smilojev@indiana.edu [Indiana University, School of Library and Information Science (United States)

    2012-01-15

    This article examines the cognitive evolution and disciplinary diversity of nanoscience/nanotechnology (nano research) as expressed through the terminology used in titles of nano journal articles. The analysis is based on the NanoBank bibliographic database of 287,106 nano articles published between 1981 and 2004. We perform multifaceted analyses of title words, focusing on 100 most frequent words or phrases (terms). Hierarchical clustering of title terms reveals three distinct time periods of cognitive development of nano research: formative (1981-1990), early (from 1991 to 1998), and current (after 1998). Early period is characterized by the introduction of thin film deposition techniques, while the current period is characterized by the increased focus on carbon nanotube and nanoparticle research. We introduce a method to identify disciplinary components of nanotechnology. It shows that the nano research is being carried out in a number of diverse parent disciplines. Currently, only 5% of articles are published in dedicated nano-only journals. We find that some 85% of nano research today is multidisciplinary. The case study of the diffusion of several nano-specific terms (e.g., 'carbon nanotube') shows that concepts spread from the initially few disciplinary components to the majority of them in a time span of around a decade. Hierarchical clustering of disciplinary components reveals that the cognitive content of current nanoscience can be divided into nine clusters. Some clusters account for a large fraction of nano research and are identified with such parent disciplines as the condensed matter and applied physics, materials science, and analytical chemistry. Other clusters represent much smaller parts of nano research, but are as cognitively distinct. In the decreasing order of size, these fields are: polymer science, biotechnology, general chemistry, surface science, and pharmacology. Cognitive content of research published in nano-only journals

  6. Multidisciplinary cognitive content of nanoscience and nanotechnology

    Science.gov (United States)

    Milojević, Staša

    2012-01-01

    This article examines the cognitive evolution and disciplinary diversity of nanoscience/nanotechnology (nano research) as expressed through the terminology used in titles of nano journal articles. The analysis is based on the NanoBank bibliographic database of 287,106 nano articles published between 1981 and 2004. We perform multifaceted analyses of title words, focusing on 100 most frequent words or phrases (terms). Hierarchical clustering of title terms reveals three distinct time periods of cognitive development of nano research: formative (1981-1990), early (from 1991 to 1998), and current (after 1998). Early period is characterized by the introduction of thin film deposition techniques, while the current period is characterized by the increased focus on carbon nanotube and nanoparticle research. We introduce a method to identify disciplinary components of nanotechnology. It shows that the nano research is being carried out in a number of diverse parent disciplines. Currently, only 5% of articles are published in dedicated nano-only journals. We find that some 85% of nano research today is multidisciplinary. The case study of the diffusion of several nano-specific terms (e.g., "carbon nanotube") shows that concepts spread from the initially few disciplinary components to the majority of them in a time span of around a decade. Hierarchical clustering of disciplinary components reveals that the cognitive content of current nanoscience can be divided into nine clusters. Some clusters account for a large fraction of nano research and are identified with such parent disciplines as the condensed matter and applied physics, materials science, and analytical chemistry. Other clusters represent much smaller parts of nano research, but are as cognitively distinct. In the decreasing order of size, these fields are: polymer science, biotechnology, general chemistry, surface science, and pharmacology. Cognitive content of research published in nano-only journals is the

  7. Joint Institute for Nanoscience Annual Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Donald R.; Campbell, Charles

    2004-02-01

    The Joint Institute for Nanoscience (JIN) is a cooperative venture of the University of Washington and Pacific Northwest National Laboratory to encourage and enhance high-impact and high-quality nanoscience and nanotechnology of all types. This first annual report for the JIN summarizes activities beginning in 2001 and ending at the close of fiscal year 2003 and therefore represents somewhat less than two years of activities. Major portions of the JIN resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by Pacific Northwest National Laboratory (PNNL) staff scientists and University of Washington (UW) professors. These fellowships were awarded on the basis of applications that included research proposals. JIN co-sponsors an annual Nanoscale Science and Technology Workshop held in Seattle. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of Alaska. The initial JIN agreement recognized that expansion of cooperation beyond UW and PNNL would be highly valuable. Starting in early 2003, efforts were initiated to form a regional communication link called the Northwest Nanoscience and Nanotechnology Network (N₄). In concept, N₄ is a tool to encourage communication and help identify regional resources and nanoscience and technology activities.

  8. Negotiating the Inclusion of Nanoscience Content and Technology in Science Curriculum: An Examination of Secondary Teachers' Thinking in a Professional Development Project

    Science.gov (United States)

    Wells, Jennifer Gayle

    The Next Generation Science Standards represent a significant challenge for K--12 school reform in the United States in the science, technology, engineering and mathematics (STEM) disciplines (NSTA, 2012). One important difference between the National Science Education Standards (NRC, 1996) and the Next Generation Science Standards (Achieve, 2013) is the more extensive inclusion of nanoscale science and technology. Teacher PD is a key vehicle for implementing this STEM education reform effort (NRC, 2012; Smith, 2001). The context of this dissertation study is Project Nanoscience and Nanotechnology Outreach (NANO), a secondary level professional development program for teachers that provides a summer workshop, academic year coaching and the opportunity for teacher participants to borrow a table-top Phenom scanning electron microscope and a research grade optical microscope for use in their classrooms. This designed-based descriptive case study examined the thinking of secondary teachers in the 2012 Project NANO cohort as they negotiated the inclusion of novel science concepts and technology into secondary science curriculum. Teachers in the Project NANO 2012 summer workshop developed a two-week, inquiry-based unit of instruction drawing upon one or more of nine big ideas in nanoscale science and technology as defined by Stevens, Sutherland, and Krajcik (2011). This research examined teacher participants' metastrategic thinking (Zohar, 2006) which they used to inform their pedagogical content knowledge (Shulman, 1987) by focusing on the content knowledge teachers chose to frame their lessons, their rationales for such choices as well as the teaching strategies that they chose to employ in their Project NANO unit of instruction. The study documents teachers various entry points on a learning progression as teachers negotiated the inclusion of nanoscale science and technology into the curriculum for the first time. Implications and recommendations for teacher

  9. NANOSCIENCE IN DIAGNOSTICS: A SHORT REVIEW

    Directory of Open Access Journals (Sweden)

    Godfred A Menezes

    2011-01-01

    Full Text Available Nanoscience is at the leading edge of the rapidly developing field of nanotechnology. Nanosciences and nanotechnology are transforming a wide array of products and services that have the potential to enhance the practice of medicine and improve public health. Several areas of medical care are already benefiting from the advantages that nanotechnology can offer. Applications of nanoscience are in biotechnology, medicine, pharmaceuticals, physics, material science and also electronics. Nanotechnology extends the limits of molecular diagnostics to the nanoscale. Nanotechnology on a chip is one more dimension of microfluidic/lab on a chip technology. We still suffer serious and complex illnesses like cancer, cardiovascular diseases, multiple sclerosis, Alzheimer’s and Parkinson’s disease, and diabetes as well as different kinds of serious inflammatory or infectious diseases (e.g. HIV. It is of extreme importance to face these diseases with appropriate means. The interplay between nanoscience and biomedicine is the hallmark of current scientific research worldwide. The use of nanoscience may open new vistas of improving the effectiveness and efficiency of medical diagnosis and therapeutics, so called nanomedicine. An appealing example is the use of quantum dots as fluorescent labels. Despite recent progress in the treatment of cancer, the majority of cases are still diagnosed only after tumors metastasize, leaving the patient with a grim prognosis. Nanotechnology is in a unique position to transform cancer diagnostics and to produce a new generation of biosensors and medical imaging techniques with higher sensitivity and precision of recognition. Novel nanotechnologies can complement and augment existing genomic and proteomic techniques employed to analyze variations across different tumor types, thus offering the potential to distinguish between normal and malignant cells. This brief review tries to reiterate the most contemporary developments

  10. Reflections on philosophy of nanoscience from nanoscience practitioners

    Directory of Open Access Journals (Sweden)

    Fern Wickson

    2008-11-01

    Full Text Available In this paper we present findings from an experiment involving both scientists working at the nanoscale and philosophers interested in this emerging field of research. Early career scientists working at the nanoscale were asked to read, discuss and debate two examples of philosophy of science that had been written with a specific focus on nanoscale science and technology. The papers that our participating scientists were asked to read were one by Jan Schmidt (2004 and one by George Khushf (2004. These papers are interesting for comparative discussion because although both draw on similar cases to make their arguments, Schmidt argues that nanotechnology represents a new form of reductionism, while Khushf argues that the field represents a shift towards more systems-based approaches of understanding and acting. The initial aim of this experimental exercise was both to create a space for discussion and reflection, and to investigate the scientific literacy of emerging works in the philosophy of nanoscience. Interestingly, interdisciplinary interaction during the exercise saw unexpected topics of interest and discussion emerge. In discussing the two articles, the scientists participating in our exercise highlighted a range of questions that not only related to the scientific content of the philosophers' arguments, but also to the way in which they conducted and presented their research. This exercise demonstrates the added value and richness that can come from interdisciplinary interactions across the social and natural sciences and from iterative discussions across theory and practice, especially when focused on emerging fields of research such as that of nanoscience and technology.http://dx.doi.org/10.5324/eip.v2i2.1696

  11. Joint Institute for Nanoscience Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Donald R.; Campbell, Charles

    2005-02-01

    Due to the inherently interdisciplinary nature of nanoscience and nanotechnology, research in this arena is often significantly enhanced through creative cooperative activities. The Joint Institute for Nanoscience (JIN) is a venture of the University of Washington (UW) and Pacific Northwest National Laboratory (PNNL) to encourage and enhance high impact and high quality nanoscience and nanotechnology research that leverages the strengths and capabilities of both institutions, and to facilitate education in these areas. This report summarizes JIN award activities that took place during fiscal year 2004 and provides a historical list of JIN awardees, their resulting publications, and JIN-related meetings. Major portions of the JIN efforts and resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by PNNL staff scientists and UW professors. JIN fellowships are awarded on the basis of applications that include research proposals. They have been very successful in expanding collaborations between PNNL and UW, which have led to many excellent joint publications and presentations and enhanced the competitiveness of both institutions for external grant funding. JIN-based interactions are playing a significant role in creating new research directions and reshaping existing research programs at both the UW and PNNL. The JIN also co-sponsors workshops on Nanoscale Science and Technology, four of which have been held in Seattle and one in Richland. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant, Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology, has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of

  12. Proceedings of the international conference on nanoscience and nanotechnology: abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    In recent years nanoscience has started to enter every field of science and technology. Recent research has shown that the development towards the nanotechnology domains are tremendous and without doubt, the major themes of the conference like nanomaterials - synthesis and characterization, nanotubes, nanowires and nanorods, bio-nanotechnology, nanotechnology for energy, quantum computing etc. will trigger the researchers and scientists and make them to do innovative work in the area of nanoscience and nanotechnology. Papers relevant to INIS are indexed separately

  13. EDITORIAL: Gems in nanoscience Gems in nanoscience

    Science.gov (United States)

    Demming, Anna

    2011-04-01

    almost 30 by tuning the localised surface plasmon resonance of silver particle arrays to the emission wavelength of a locally situated fluorophore [6]. In the US and Belarus researchers have collaborated to investigate the potential of plasmonic nanobubbles, generated by laser activated nanoparticles, for combined diagnostics, therapy, and therapy guidance. Such nanobubbles can be optically tracked in the body, and their rapid expansion and collapse provides a localised mechanical impact on cells that can disrupt the cell membrane [7]. Surface plasmon polaritons at nanostructures allow highly local control of light, which has a range of uses in electronic devices. Photovoltaics researchers in the US and the Netherlands have demonstrated enhanced short circuit current densities compared to cells having flat or randomly textured back contacts using nanostructured plasmonic back contacts, which maximise the interaction with the light [8]. Progress in optoelectronics is another area where surface plasmon polaritons are playing an increasingly important role [9]. In this issue, researchers at the Institut des Sciences Molé culaire d'Orsay demonstrate that it is possible to excite propagating surface plasmon polaritons with a scanning tunnelling microscope, and detect them [2]. Their work also investigates the nature of the excited plasmons and how the intensities of the propagating surface plasmon polaritons and the localized plasmon emission can be enhanced by factors of 2 and 20 respectively by using a silver tip instead of a tungsten one. Wisdom may be worth more than silver and gold, but a little silver and gold can contribute a lot to unearthing new wisdom at the nanoscale. References [1] Wood R M 1902 Nanotechnology 18 296 [2] Wang T, Boer-Duchemin E, Zhang Y, Comtet G and Dujardin G 2011 Nanotechnology 22 175201 [3] Oates T W H and Mücklich A 2005 Nanotechnology 16 2606 [4] Bosman M, Keast V J, Watanabe M, Maaroof A I and Cortie M B 2007 Nanotechnology 18 165505 [5

  14. Nanoscience Nanotechnologies and Nanophysics

    CERN Document Server

    Dupas, Claire; Lahmani, Marcel

    2007-01-01

    Nanotechnologies and nanosciences are a fast-developing field of research, which sit at the point of convergence of several disciplines (physics, chemistry, biology, mechanics, etc.). This practically-oriented overview is designed to provide students and researchers with essential information on both the tools of manufacture and specific features of the nanometric scale, as well as applications within the most active fields (electronics, magnetism, information storage, biology). Specific applications and techniques covered include nanolithography, STM and AFM, nanowires and supramolecules, molecular electronics, optronics, and simulation. Each section of the book devotes considerable space to industrial applications and prospective developments. The carefully edited contributions are written by reserach workers and unirveisty instructors who are experts in their own fields and full up-to-date with the latest developments. Their uniform and self-contained nature permit users to access the most relevant chapter...

  15. Progress of nanoscience in China

    Science.gov (United States)

    Zhao, Yu-Liang; Song, Yan-Lin; Song, Wei-Guo; Liang, Wei; Jiang, Xing-Yu; Tang, Zhi-Yong; Xu, Hong-Xing; Wei, Zhi-Xiang; Liu, Yun-Qi; Liu, Ming-Hua; Jiang, Lei; Bao, Xin-He; Wan, Li-Jun; Bai, Chun-Li

    2014-06-01

    Fast evolving nanosciences and nanotechnology in China has made it one o f the front countries of nanotechnology development. In this review, we summarize some most recent progresses in nanoscience research and nanotechnology development in China. The topics we selected in this article include nano-fabrication, nanocatalysis, bioinspired nanotechnology, green printing nanotechnology, nanoplasmonics, nanomedicine, nanomaterials and their applications, energy and environmental nanotechnology, nano EHS (nanosafety), etc. Most of them have great potentials in applications or application-related key issues in future.

  16. BOOK REVIEW: Introductory Nanoscience: Physical and Chemical Concepts Introductory Nanoscience: Physical and Chemical Concepts

    Science.gov (United States)

    Bich Ha, Nguyen

    2011-12-01

    Having grown rapidly during the last two decades, and successfully synthesized the achievements of physics, chemistry, life science as well as information and computational science and technology, nanoscience and nanotechnology have emerged as interdisciplinary fields of modern science and technology with various prospective applications towards environmental protection and the sustainable development of industry, agriculture, public health etc. At the present time, there exist many textbooks, monographs and encyclopedias on nanoscience and nanotechnology. They present to readers the whole process of development from the emergence of new scientific ideas to comprehensive studies of concrete subjects. They are useful for experienced scientists in nanoscience and nanotechnology as well as related scientific disciplines. However, there are very few textbooks on nanoscience and nanotechnology for beginners—senior undergraduate and junior graduate students. Published by Garland Science in August 2011, Introductory Nanoscience: Physical and Chemical Concepts by Masaru Kuno is one of these rare textbooks. The purpose of this book is twofold. In a pedagogical manner the author presents the basic physical and chemical concepts of nanoscience and nanotechnology. Students with a background knowledge in general chemistry and semiclassical quantum physics can easily understand these concepts. On the other hand, by carefully studying the content of this textbook, readers can learn how to derive a large number of formulae and expressions which they will often use in their study as well as in their future research work. A distinguishing feature of the book is the inclusion of a large number of thought problems at the end of each chapter for demonstrating how to calculate the numerical values of almost all physical quantities involved in the theoretical and experimental studies of all subjects of nanoscience and nanotechnology. The author has successfully achieved both of the

  17. Biomaterials surface science

    CERN Document Server

    Taubert, Andreas; Rodriguez-Cabello, José Carlos

    2013-01-01

    The book provides an overview of the highly interdisciplinary field of surface science in the context of biological and biomedical applications. The covered topics range from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices.

  18. Current nanoscience and nanoengineering at the Center for ...

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/pram/067/01/0093-0100. Keywords. Nanotechnology; nanoscience; nanoengineering; nanomedicine; Center for Nanoscale Science and Engineering; Kentucky. Abstract. The Center for Nanoscale Science and Engineering (CeNSE) at the University of Kentucky is a multidisciplinary group ...

  19. Surface science and catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1985-02-01

    Modern surface science studies have explored a large number of metal catalyst systems. Three classes of catalytic reactions can be identified: (1) those that occur over the metal surface; (2) reactions that take place on top of a strongly adsorbed overlayer and (3) reactions that occur on co-adsorbate modified surfaces. Case histories for each class are presented. 44 refs., 13 figs., 3 tabs

  20. Surface science an introduction

    CERN Document Server

    Hudson, John

    1991-01-01

    The whole field of surface science is covered in this work. Starting with a description of the structure and thermodynamics of clean surfaces, the book goes on to discuss kinetic theory of gases and molecular beam formation. This is followed by a largesection on gas-surface interactions, and another major section on energetic particle-surface interactions. The final chapter provides the background to crystal nucleation and growth. The approach adopted is interdisciplinary and slanted towards theexperimental side, with practical analytical techniques being used to illustrate general princi

  1. EDITORIAL: Very little is new in nanoscience Very little is new in nanoscience

    Science.gov (United States)

    Andrews, David L.

    2009-07-01

    science can only be applauded. Nanoscience affords a particularly fertile ground for cultivating student engagement with the broader societal implications of their studies. It embraces topics that invite reflection and debate—and where such debate moves into the public arena, it very much needs participation by properly informed individuals. Here is an opportunity not only to impress upon the next generation of scientists the need to be involved in public awareness, but also to equip them with a sound understanding of the scientific principles involved in nanotechnology. It is a great pleasure to have found, amongst the rapidly escalating number who work in this area, highly esteemed authors willing to produce papers especially for this special section of European Journal of Physics. My thanks are due to them for delivering almost on time, which is as much as one can reasonably ask. I trust they and many other readers will find the result of their endeavours thoroughly worthwhile. References [1] Piner R D, Zhu J, Xu F, Hong S and Mirkin C A 1999 Science 283 661-3 [2] Noy A (ed) 2008 Handbook of Molecular Spectroscopy (New York: Springer) [3] Dienerowitz M, Mazilu M and Dholakia K 2008 J. Nanophoton. 2 021875 [4] Kroto H 1988 Science 242 1139-45 [5] Freestone I, Meeks N, Sax M and Higgett C 2007 Gold Bull. 40 270-7 [6] Ball P 2009 Chem. World 6 58-62 [7] Andrews D L and Gaburro Z (ed) 2007 Frontiers in Surface Nanophotonics (New York: Springer) [8] Munshi D, Kurian P, Bartlett R V and Lakhtakia A 2007 Futures 39 432-52

  2. Surface science techniques

    CERN Document Server

    Walls, JM

    2013-01-01

    This volume provides a comprehensive and up to the minute review of the techniques used to determine the nature and composition of surfaces. Originally published as a special issue of the Pergamon journal Vacuum, it comprises a carefully edited collection of chapters written by specialists in each of the techniques and includes coverage of the electron and ion spectroscopies, as well as the atom-imaging methods such as the atom probe field ion microscope and the scanning tunnelling microscope. Surface science is an important area of study since the outermost surface layers play a crucial role

  3. A panorama of nanoscience developments in Mexico based on the comparison and crossing of nanoscience monitoring methods.

    Science.gov (United States)

    Robles-Belmont, E; Vinck, D

    2011-06-01

    This paper characterises nanoscience developments in Mexico. A panorama of the development trends of these emerging sciences in Mexico is presented on the basis of bibliometric data gathered using different strategies. The results reveal the nanoscience output trend, which knowledge areas are developing, and which journals are publishing the articles and also enable us to identify the main institutional actors involved, and their international collaborations. We have discovered that the most important collaboration networks are maintained with industrialised countries; however, collaborative project work outside Mexico is becoming rarer. Lastly we present our findings on the growth of nanoscience development in Mexico and so-called emerging countries where we demonstrate that Mexico is at a disadvantage to its main economic rivals.

  4. Surface science techniques

    CERN Document Server

    Bracco, Gianangelo

    2013-01-01

    The book describes the experimental techniques employed to study surfaces and interfaces. The emphasis is on the experimental method. Therefore all chapters start with an introduction of the scientific problem, the theory necessary to understand how the technique works and how to understand the results. Descriptions of real experimental setups, experimental results at different systems are given to show both the strength and the limits of the technique. In a final part the new developments and possible extensions of the techniques are presented. The included techniques provide microscopic as well as macroscopic information. They cover most of the techniques used in surface science.

  5. Plasma Nanoscience:. from Astronucleosynthesis to Origin of Life and Industrial Nanomanufacturing

    Science.gov (United States)

    Ostrikov, Kostya; Xu, Shuyan

    2008-12-01

    Plasma nanoscience is an emerging research area at the cutting edge of the physics of plasmas and gas discharges, nanoscience and nanotechnology, materials science and engineering, structural chemistry, and life sciences. The existing approaches to fabricating exotic nanostructures and functional nanofilms are mostly process-specific and suffer from cost-inefficient "trial and error" practices. One of the reasons is that the ability to control the generation, transport, deposition, and structural incorporation of the building units of such films and structures, still remains elusive. On the other hand, the pioneering concept of deterministic plasma nanoscience is treated with extreme caution due to inherent chaotic nature of the plasma at the microscopic level. This contribution shows how to challenge one of the previously intractable problems of bridging nine orders of magnitude between the sizes of plasma nanofabrication facilities (~0.5 m) and self-organization of building units on solid surfaces (~0.2 nm). One of the possibilities is to manipulate a variety of building blocks in the plasma sheath that separates the plasma and solid surfaces and control self-organization of nanostructure building blocks on plasma-exposed surfaces and their insertion into the nanoassemblies. The desired nanoassemblies can be engineered by using hybrid multi-scale numerical simulations and sophisticated experimentations. Recent experimental and computational results obtained within the International Research Network for Deterministic Plasma-Aided Nanofabrication suggest the possibility of deterministic synthesis of a large variety of nanostructures and their functional arrays, and are overviewed in this talk. An issue of creation of self-assembled nanodevices on plasma-exposed surfaces is discussed as well. Finally, this talk reveals how the Nature's mastery works in the assembly of nanometre-sized particles in the Universe via the astronucleosynthesis and ion-induced nucleation

  6. Plasma nanoscience: setting directions, tackling grand challenges

    International Nuclear Information System (INIS)

    Ostrikov, Kostya; Cvelbar, Uros; Murphy, Anthony B

    2011-01-01

    This review paper presents historical perspectives, recent advances and future directions in the multidisciplinary research field of plasma nanoscience. The current status and future challenges are presented using a three-dimensional framework. The first and the largest dimension covers the most important classes of nanoscale objects (nanostructures, nanofeatures and nanoassemblies/nanoarchitectures) and materials systems, namely carbon nanotubes, nanofibres, graphene, graphene nanoribbons, graphene nanoflakes, nanodiamond and related carbon-based nanostructures; metal, silicon and other inorganic nanoparticles and nanostructures; soft organic nanomaterials; nano-biomaterials; biological objects and nanoscale plasma etching. In the second dimension, we discuss the most common types of plasmas and plasma reactors used in nanoscale plasma synthesis and processing. These include low-temperature non-equilibrium plasmas at low and high pressures, thermal plasmas, high-pressure microplasmas, plasmas in liquids and plasma-liquid interactions, high-energy-density plasmas, and ionized physical vapour deposition as well as some other plasma-enhanced nanofabrication techniques. In the third dimension, we outline some of the 'Grand Science Challenges' and 'Grand Socio-economic Challenges' to which significant contributions from plasma nanoscience-related research can be expected in the near future. The urgent need for a stronger focus on practical, outcome-oriented research to tackle the grand challenges is emphasized and concisely formulated as from controlled complexity to practical simplicity in solving grand challenges.

  7. Oregon Nanoscience and Microtechnologies Institute

    Energy Technology Data Exchange (ETDEWEB)

    Rung, Robert; Stewart, Diane, Dahl, Cindy

    2008-03-19

    To achieve its goals in meeting future clean energy requirements, the United States must develop well trained people, and the steady stream of scientific and technical innovations they produce. Education in the emerging fields of nanoscience is expected to be critical in this endeavor. Access to the basic tools used in understanding nanoscience is lacking in the education environment. The goal of this program was to develop affordable electron microscopes for nanotechnology undergraduate education, student research experiences, and workforce training. The outcome was to complete the development and delivery of tools to education institutions for evaluation. The evaluation of the tools was accomplished under a second DOE funded effort, DE-FG02-06ER64248 “Tools for Nanotechnology Education Development”, and administered by the Biological and Environmental Research (BER) division. The final report from that program is attached to this report as an appendix as a courtesy.

  8. Applied Nanotechnology and Nanoscience International Conference 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Introduction:The Applied Nanotechnology and Nanoscience International Conference is an annual event that hosts high-profile plenary speakers, world class researchers, oral and poster presentations, workshops, sponsor exhibits and extra activities to network.This conference is held in a different European country each year and the number of participants is growing very quickly. ANNIC 2016 was held in Barcelona and hosted delegates from 47 different countries, it was a great opportunity for the attendees to share their research findings with wide audience, promote knowledge exchange and network.Main Sponsor: NFFA (nffa.eu) Chairs Committee:• Prof. Joan Ramon Morante (Catalonia Institute for Energy Research (IREC), Spain)• Prof. Jordi Arbiol (ICREA and Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Catalonia, Spain)• Prof. Arben Merkoçi (ICREA and Catalan Institute of Nanoscience and Nanotechnology (ICN2), Catalonia, Spain)• Prof. Alberto Vomiero (Luleå University of Technology, Sweden)Guest Editor Committee• Dr. Yian Tai, National Taiwan University of Science and Technology, Taiwan• Dr. Sabherwal Priyanka, Institute of Nano Science and Technology, IndiaReviewers Committee:• Laura M Lechuga, Spain• Fernando Torres Andón, Italy• Pablo Alonso-González, Spain• Fabrice P. Laussy, Spain• Toby Hallam, Ireland• Robert S Maxwell, United States• Olivier Soppera, France• Bouraoui Ilahi, Saudi Arabia• Thierry Baron, France• Brent Wagner, United States• Sergey A. Maksimenko, Belarus• Luigi Sirleto, Italy• Alexander Obraztsov, Russian Federation• Maria Tchernycheva, France• Daniel Granados, Spain• Juan P. Martínez-Pastor, Spain• Blas Garrido, Spain• Felix Casanova, Spain• Rongping Wang, Australia• Daniele Sanvitto, Italy• David Cox, United Kingdom• Kadic Muamer, Germany• Amitav Sanyal, Turkey• Jan Honolka, Czech Republic• Andrea Liscio

  9. Physics in Argentina: The Case of Nanoscience and Nanotecnology

    Science.gov (United States)

    Balseiro, Carlos A.

    2013-03-01

    Since the creation of the Ministry of Science and Technology in 2008 the science budget has increased and new programs have been launch. After a brief introduction describing general aspects, including the structure of the Ministry and the role of the National Research Council, I will focus on the case of nanoscience and nanotechnology in our country: The main actors and their activities, new programs and facilities, international cooperation and technology oriented projects.

  10. Nanoscience

    Science.gov (United States)

    2011-07-22

    adapted to result in few health related side effects. [3] Carbon Nanotubes From: Emerging Enviromental Issues Topic 20 June 2006 http...critical issues for Air Force platforms ranging from manned fighter planes to autonomous drones." [2] Electron Beam Lithography Research Risoe National...www.p2sustainabilitylibrary.mil/ issues /emergejun2006/index.html Image courtesy of the National Aeronautics and Space Administration "Carbon nanotubes are

  11. Solvay Conference on Surface Science

    CERN Document Server

    1988-01-01

    The articles collected in this volume give a broad overview of the current state of surface science. Pioneers in the field and researchers met together at this Solvay Conference to discuss important new developments in surface science, with an emphasis on the common area between solid state physics and physical chemistry. The contributions deal with the following subjects: structure of surfaces, surface science and catalysis, two-dimensional physics and phase transitions, scanning tunneling microscopy, surface scattering and surface dynamics, chemical reactions at surfaces, solid-solid interfaces and superlattices, and surface studies with synchrotron radiation. On each of these subjects an introductory review talk and a number of short research contributions are followed by extensive discussions, which appear in full in the text. This nineteenth Solvay Conference commemorates the 75th anniversary of the Solvay Institutes.

  12. Technical structure of the global nanoscience and nanotechnology literature

    International Nuclear Information System (INIS)

    Kostoff, Ronald N.; Koytcheff, Raymond G.; Lau, Clifford G. Y.

    2007-01-01

    Text mining was used to extract technical intelligence from the open source global nanotechnology and nanoscience research literature. An extensive nanotechnology/nanoscience-focused query was applied to the Science Citation Index/Social Science Citation Index (SCI/SSCI) databases. The nanotechnology/nanoscience research literature technical structure (taxonomy) was obtained using computational linguistics/document clustering and factor analysis. The infrastructure (prolific authors, key journals/institutions/countries, most cited authors/journals/documents) for each of the clusters generated by the document clustering algorithm was obtained using bibliometrics. Another novel addition was the use of phrase auto-correlation maps to show technical thrust areas based on phrase co-occurrence in Abstracts, and the use of phrase-phrase cross-correlation maps to show technical thrust areas based on phrase relations due to the sharing of common co-occurring phrases. The ∼400 most cited nanotechnology papers since 1991 were grouped, and their characteristics generated. Whereas the main analysis provided technical thrusts of all nanotechnology papers retrieved, analysis of the most cited papers allowed their characteristics to be displayed. Finally, most cited papers from selected time periods were extracted, along with all publications from those time periods, and the institutions and countries were compared based on their representation in the most cited documents list relative to their representation in the most publications list

  13. Technical structure of the global nanoscience and nanotechnology literature

    Energy Technology Data Exchange (ETDEWEB)

    Kostoff, Ronald N., E-mail: kostofr@onr.navy.mil; Koytcheff, Raymond G. [Office of Naval Research (United States); Lau, Clifford G. Y. [Institute for Defense Analyses (United States)

    2007-10-15

    Text mining was used to extract technical intelligence from the open source global nanotechnology and nanoscience research literature. An extensive nanotechnology/nanoscience-focused query was applied to the Science Citation Index/Social Science Citation Index (SCI/SSCI) databases. The nanotechnology/nanoscience research literature technical structure (taxonomy) was obtained using computational linguistics/document clustering and factor analysis. The infrastructure (prolific authors, key journals/institutions/countries, most cited authors/journals/documents) for each of the clusters generated by the document clustering algorithm was obtained using bibliometrics. Another novel addition was the use of phrase auto-correlation maps to show technical thrust areas based on phrase co-occurrence in Abstracts, and the use of phrase-phrase cross-correlation maps to show technical thrust areas based on phrase relations due to the sharing of common co-occurring phrases. The {approx}400 most cited nanotechnology papers since 1991 were grouped, and their characteristics generated. Whereas the main analysis provided technical thrusts of all nanotechnology papers retrieved, analysis of the most cited papers allowed their characteristics to be displayed. Finally, most cited papers from selected time periods were extracted, along with all publications from those time periods, and the institutions and countries were compared based on their representation in the most cited documents list relative to their representation in the most publications list.

  14. NANOTR9: 9th Nanoscience and Nanotechnology Conference

    Science.gov (United States)

    2014-11-01

    The conference series NanoTR is the major conference on nanoscience and nanotechnology in Turkey. It brings together leading scientists and engineers in nanotechnology to exchange information on their latest research progress. An exhibition of the companies working in the related field is also organized as a part of the event. With intensive international participation, NanoTR conference series has spread outside the national border and has become an international event in this field. Among international contributions, a wide interest from the countries around Turkey should be emphasized. 9th in the series was organized by Atatürk University in Erzurum-Turkey on June 24-28, 2013 with more than 900 scientists, researchers, private sector representatives from around the world. Conference program included 6 plenary speakers, 35 invited speakers (18 of them were from outside the country), 116 oral presentations, and 340 poster presentations. In addition to 6 plenary sessions, 17 oral and 4 poster sessions created very lively discussion forums covering a vast range of current and emerging sciences from nano-materials, nanoscience, nanofabrication, nano-engineering, nano-electronics, nano-biotechnology, to ethical and social issues of nanoscience and nanotechnology. Also, panel discussions about industrial applications, tutorial sessions have been organized for students, new-comers and company employees.

  15. Theory and modeling in nanoscience: Report of the May 10-11, 2002Workshop

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, C. William; Stechel, Ellen; Cummings, Peter; Hendrickson, Bruce; Keyes, David

    2002-06-28

    On May 10 and 11, 2002, a workshop entitled ''Theory and Modeling in Nanoscience'' was held in San Francisco, California, sponsored by the offices of Basic Energy Science and Advanced Scientific Computing Research of the Department of Energy. The Basic Energy Sciences Advisory Committee and the Advanced Scientific Computing Advisory Committee convened the workshop to identify challenges and opportunities for theory, modeling, and simulation in nanoscience and nanotechnology, and additionally to investigate the growing and promising role of applied mathematics and computer science in meeting those challenges. This report is the result of those contributions and the discussions at the workshop.

  16. There's plenty of room at the bottom: nanoscience in geochemistry

    Science.gov (United States)

    Hochella, Michael F.

    2002-03-01

    Nanoscience is a relatively new field of research that primarily involves the discovery and exploration of the properties of matter in the size range of roughly one to 100 nanometers, the so-called nanoscale. Mechanical, electrical, thermodynamic, and other types of properties are strongly modified as the physical dimensions of a material enters the nanoscale, and researchers in the field are just beginning to catalog and understand these property modifications in this fuzzy area between the classical (bulk) and quantum domains. It is also becoming more and more apparent that many earth materials exist in the nanodomain as minute particles or thin films, especially in low-temperature environments, but also in mid- to high temperature environments. As examples, this article describes how nanoscience has started to be applied to mineral weathering, mineral-bacteria interaction, and metal transport in acid mine drainage systems, but this is only the beginning. The future directions of nanoscience in geochemistry will include a determination of the identity, distribution, and properties of nanosized particles in aqueous and soil systems, thin films in both low and high temperature systems, and nanosized features on mineral surfaces.

  17. Entering the era of nanoscience: time to be so small.

    Science.gov (United States)

    Uskoković, Vuk

    2013-09-01

    The field of nanoscience has produced more hype than probably any other branch of materials science and engineering in its history. Still, the potentials of this new field largely lay undiscovered ahead of us; what we have learnt so far with respect to the peculiarity of physical processes on the nanoscale is only the tip of an iceberg. Elaborated in this critical review is the idea that the surge of interest in physical chemistry of phenomena at the nanoscale presents a natural consequence of the spatial refinement of the human ability to controllably manipulate the substratum of our physical reality. Examples are given to illustrate the sensitivity of material properties to grain size on the nanoscale, a phenomenon that directly contributed to the rise of nanoscience as a special field of scientific inquiry. Main systemic challenges faced by the present and future scientists in this field are also mentioned. In part, this perspective article resembles standing on the constantly expanding seashore of the coast of nanoscience and nanoengineering and envisioning the parts of the island where the most significant advances may be expected to occur and where, therefore, most of the attention of scientist in this field is to be directed: (a) crossing the gap between life science and materials science; (b) increasing experimentation sensitivity; (c) crisscrossing theory and experiments; and (d) conjoining top-down and bottom-up synthetic approaches. As for materials and the application areas discussed, a special emphasis is placed on calcium phosphate nanoparticles and their usage in controlled drug delivery devices and other applications of biomedical relevance. It is argued that the properties of nanoparticles as drug carriers often comprise the critical determinant for- the efficacy of the drug therapy. Therefore, the basic properties of nanoparticles to be optimized for the purpose of maximizing this efficacy are discussed: size, size distribution, morphology

  18. Undergraduate Laboratory for Surface Science

    Science.gov (United States)

    Okumura, Mitchio; Beauchamp, Jesse L.; Dickert, Jeffrey M.; Essy, Blair R.; Claypool, Christopher L.

    1996-02-01

    Surface science has developed into a multidisciplinary field of research with applications ranging from heterogeneous catalysis to semiconductor etching (1). Aspects of surface chemistry are now included in physical chemistry textbooks (2) and undergraduate curricula (3), but the perceived cost and complexity of equipment has deterred the introduction of surface science methods in undergraduate laboratories (4). Efforts to expose chemistry undergraduates to state-of-the-art surface instrumentation have just begun (5). To provide our undergraduates with hands-on experience in using standard techniques for characterizing surface morphology, adsorbates, kinetics, and reaction mechanisms, we have developed a set of surface science experiments for our physical chemistry laboratory sequence. The centerpiece of the laboratory is an ultrahigh vacuum (UHV) chamber for studies of single crystal surfaces. This instrument, shown in the figure, has surface analysis capabilities including low energy electron diffraction (LEED), Auger spectroscopy, and temperature-programmed desorption (TPD). The laboratory exercises involve experiments on the well-studied Pt(111) surface. Students prepare a previously mounted single crystal sample by sputtering it with an argon ion gun and heating it under O2. Electron diffraction patterns from the cleaned surface are then obtained with a reverse view LEED apparatus (Princeton Instruments). Images are captured by a charge-coupled device (CCD) camera interfaced to a personal computer for easy downloading and subsequent analysis. Although the LEED images from a Pt(111) surface can be readily interpreted using simple diffraction arguments, this lab provides an excellent context for introducing Miller indices and reciprocal lattices (6). The surface chemical composition can be investigated by Auger spectroscopy, using the LEED apparatus as a simple energy analyzer. The temperature programmed desorption experiment, which is nearly complete, will be

  19. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  20. How old is surface science?

    International Nuclear Information System (INIS)

    Paparazzo, E.

    2004-01-01

    Philosophical and literary testimonies from the Classical World (5th century B.C. to 3rd century A.D.) involving solid surfaces are reviewed. Plato thought the surface to be a real entity, whereas Aristotle considered it to possess an unqualified existence, i.e. not to be a substance, but just an accidental entity. The Old Stoics asserted that surfaces do not possess any physical existence, although the Stoic philosopher Posidonius--apparently the only exception in his school--held them to exist both in thought and reality. While both the Atomists and the Epicureans were very little interested in them, the Sceptic philosopher Sextus Empiricus considered surfaces to be the limits of a body, although he maintained that both the view that they are corporeal or the view that they are incorporeal present unsurmountable difficulties. Among Roman authors, the testimony from Pliny the Elder is mostly concerned with metallic surfaces, chemical change occurring there, and surface treatments used in antiquity. Besides the philosophical motivations, the implications of the testimonies are discussed in the light of surface science. The purely geometrical surface of Plato is found to compare favorably to single-crystal surface, Posidonius' 'corporeal' surface is best likened to an air-oxidized, or otherwise ambient-modified surface, and ancient accounts on mixture are compared to XPS results obtained in adhesion studies of enameled steels. I argue that the long-standing dominance of Aristotle's view from antiquity onwards may have had a part in delaying theoretical speculation into solid surfaces

  1. How old is surface science?

    Energy Technology Data Exchange (ETDEWEB)

    Paparazzo, E. E-mail: paparazzo@ism.cnr.it

    2004-01-01

    Philosophical and literary testimonies from the Classical World (5th century B.C. to 3rd century A.D.) involving solid surfaces are reviewed. Plato thought the surface to be a real entity, whereas Aristotle considered it to possess an unqualified existence, i.e. not to be a substance, but just an accidental entity. The Old Stoics asserted that surfaces do not possess any physical existence, although the Stoic philosopher Posidonius--apparently the only exception in his school--held them to exist both in thought and reality. While both the Atomists and the Epicureans were very little interested in them, the Sceptic philosopher Sextus Empiricus considered surfaces to be the limits of a body, although he maintained that both the view that they are corporeal or the view that they are incorporeal present unsurmountable difficulties. Among Roman authors, the testimony from Pliny the Elder is mostly concerned with metallic surfaces, chemical change occurring there, and surface treatments used in antiquity. Besides the philosophical motivations, the implications of the testimonies are discussed in the light of surface science. The purely geometrical surface of Plato is found to compare favorably to single-crystal surface, Posidonius' 'corporeal' surface is best likened to an air-oxidized, or otherwise ambient-modified surface, and ancient accounts on mixture are compared to XPS results obtained in adhesion studies of enameled steels. I argue that the long-standing dominance of Aristotle's view from antiquity onwards may have had a part in delaying theoretical speculation into solid surfaces.

  2. Environmental Nanoscience: Turning Outreach Activities into a College Freshman Seminar

    Science.gov (United States)

    Nguyen, M. L.; Lau, B.

    2017-12-01

    Teaching nano concepts can be a daunting task due to the varying science backgrounds of the audience. Nonetheless, nanoscience education is important as nanotechnology expands. Our perspective is that nano education must be available at earlier stages than what is currently available. Through outreach activities, we examined how high school students and STEM middle/high school teachers approached answering questions about nanomaterials and the environment to design an effective freshman-level college seminar with achievable course goals. Specifically, participants were asked: 1) what color would you expect gold nanoparticles to be; 2) what are ways we can remove nanomaterials from the environment; and 3) what do you expect will happen to nanomaterials when salt is introduced into the system? Initial analysis showed STEM middle and high school teachers and high school students responded similarly. In response to question 1, the majority of the responses suggested color was a function of size. For question 2, both groups suggested the use of filters, magnets or a chemical reaction to remove the nanomaterials. For question 3, both groups expected a chemical reaction to occur. Understanding how foundational high school STEM concepts influenced responses could assist in the curriculum development for an introductory undergraduate nanoscience course. For example, familiar principles of physics and chemistry appeared to direct student responses. From these results, we developed three course goals to test in our college freshman seminar: 1) differentiate between properties of nanomaterials and conventional materials; 2) describe the role of nanomaterials in household items; and 3) form an opinion on the potential impacts of nanoscience and technology on the human health and the environment. Surveys from our first semester showed that the seminar was effective in achieving all course goals for the majority of students.

  3. Editorial: Nanoscience makes catalysis greener

    KAUST Repository

    Polshettiwar, Vivek

    2012-01-09

    Green chemistry by nanocatalysis: Catalysis is a strategic field of science because it involves new ways of meeting energy and sustainability challenges. The concept of green chemistry, which makes the science of catalysis even more creative, has become an integral part of sustainability. This special issue is at the interface of green chemistry and nanocatalysis, and features excellent background articles as well as the latest research results. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly.

    Science.gov (United States)

    Bisoyi, Hari Krishna; Kumar, Sandeep

    2011-01-01

    Liquid crystals are finding increasing applications in a wide variety of fields including liquid-crystal display technology, materials science, bioscience, etc., apart from acting as prototype self-organizable supramolecular soft materials and tunable solvents. Recently, keeping in pace with topical science, liquid crystals have entered into the fascinating domains of nanoscience and nanotechnology. This tutorial review describes the recent and significant developments in liquid-crystal nanoscience embracing contemporary nanomaterials such as nanoparticles, nanorods, nanotubes, nanoplatelets, etc. The dispersion of zero-, one- and two-dimensional nanomaterials in liquid crystals for the enhancement of properties, liquid-crystalline phase behavior of nanomaterials themselves, self-assembly and alignment of nanomaterials in liquid-crystalline media, and the synthesis of nanomaterials by using liquid crystals as 'templates' or 'precursors' have been highlighted and discussed. It is almost certain that the 'fourth state of matter' will play more prevalent roles in nanoscience and nanotechnology in the near future. Moreover, liquid-crystal nanoscience reflects itself as a beautiful demonstration of the contemporary theme "crossing the borders: science without boundaries".

  5. An international nanoscience advisory board to improve and harmonize nanotechnology oversight

    International Nuclear Information System (INIS)

    Marchant, Gary E.; White, Andrew

    2011-01-01

    As governments around the world begin to implement regulations aimed at controlling nanotechnology, those regulations should be based upon the best available science, applied as consistently as possible within jurisdictions and, to the extent feasible, across jurisdictions. These goals would be easier to achieve with the creation of an international nanoscience advisory board. Such a body could be modeled on similar international scientific advisory bodies for other issues, such as the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Such a body should also take into account lessons learned from these similar organizations. An international nanoscience advisory board could assist regulatory bodies by providing a central source of accurate scientific information about the risks and benefits of nanotechnology, including relevant uncertainties, rather than having each regulatory body make these determinations independently. An international nanoscience advisory board could facilitate harmonization within and between jurisdictions by involving the top experts in the field to produce a centralized knowledge base for regulatory decisions. While an international nanoscience advisory board presents many potential benefits, it also faces significant difficulties, which are best illustrated by examining the history and challenges of existing international science advisory bodies.

  6. Proceedings of the international conference on nanoscience and nanotechnology: souvenir and abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    Nanoscience and nanotechnology has made great strides in the development of core technology in the 21st century. It is the branch of science and technology that deals with the things on nanometric scale. It is well established that the properties of materials at this scale are entirely different from those at the bulk level; fullerenes are known to be superconducting, carbon nanotubes have optical, electrical and mechanical behaviour entirely different from those in bulk materials. The physics of Quantum Dots open some new aspects of physics. The subject is so exciting and versatile that it has made inroads in all branches of science. One talks of nanoelectronics, nanophotonics, nanobiotechnology, nanomedicine, nanorobotics etc. Nanomaterials play important role in the modern development of science due to its small size and large surface area. Nanotechnology is expected to revolutionize certain areas, such as semiconductors, pharmaceuticals and materials. The total societal impact of nanotechnology is expected to be much greater than that of the silicon integrated circuits because it has applications in many more fields than electronics. The conference focussed on the topics like synthesis of nanomaterials, characterization of nanomaterials, applications of nanomaterials, fullerenes and carbon nanotubes, nanobiotechnology, nanophotonics, nano-devices and sensors, nano-bio, nanotoxicology and green technology, and theoretical/computational aspects. Papers relevant to INIS are indexed separately

  7. Partnerships between New Mexico Institutions for Nanoscience Education

    Science.gov (United States)

    Kiefer, Boris; Serrano, Elba; Lombrana, Vincent

    2010-03-01

    Societies in the 21^st century will most likely face severe scientific and technological challenges, such as the increasing energy and fresh water demands that will require interdisciplinary solutions. This raises the question how we as educators can provide our graduates with the skills they need to compete successfully in an increasingly global work force. The New Mexico Nanoscience Education Network (NMNEN) seeks to increase the number of students in New Mexico who have the knowledge and skills to participate in cutting-edge STEM research. NMNEN organizes professional development workshops and the network participants collaborate across departments, institutions, and organizations to identify nano(bio)science teaching themes that promote and emphasizes interdisciplinary education. The results of these efforts will show if it is possible to develop universal teaching modules that promote student learning in diverse college settings.

  8. Augmentation Award for Surface Science Research Training

    National Research Council Canada - National Science Library

    Sibener, Steven

    1996-01-01

    This AASERT grant provided augmentation funds that helped support US citizen graduate student research in the area of surface science as it pertains to gas-surface reactions, collisional energy transfer...

  9. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1973-01-01

    Progress in Surface and Membrane Science, Volume 6 covers the developments in the study of surface and membrane science. The book discusses the progress in surface and membrane science; the solid state chemistry of the silver halide surface; and the experimental and theoretical aspects of the double layer at the mercury-solution interface. The text also describes contact-angle hysteresis; ion binding and ion transport produced by neutral lipid-soluble molecules; and the biophysical interactions of blood proteins with polymeric and artificial surfaces. Physical chemists, biophysicists, and phys

  10. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1977-01-01

    Progress in Surface and Membrane Science, Volume 11 covers the advances in the study of surface and membrane science. The book discusses the quantum theory of surface phenomena; some fundamental aspects of electrocrystallization; and exoelectric emission. The text also describes the surface of titanium dioxide; and the prospects for atomic resolution electron microscopy in membranology. Chemists, physicists, and people involved in the electrochemical power laboratory will find the book useful.

  11. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1972-01-01

    Progress in Surface and Membrane Science, Volume 5 covers the developments in the study of surface and membrane science. The book discusses the Mössbauer effect in surface science; the surface functional groups on carbon and silica; and the wetting phenomena pertaining to adhesion. The text also describes the physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes; the characteristics of heterocoagulation; and the effects of calcium on excitable membranes and neurotransmitter action. Chemists, physiologists, biophysicists, and civil engineers will find the book i

  12. What Students and Researchers in Nanoscience and Nanotechnology Should Know about PUS and STS: A Look at Fages and Albe's Viewpoint on Social Issues in Nanoscience and Nanotechnology Master's Degrees

    Science.gov (United States)

    Pouliot, Chantal

    2015-01-01

    In this paper, in order to pursue the conversation begun by Fages and Albe ("Cult Stud Sci Educ" 2014), I highlight three conceptual contributions that could be made by familiarizing nanoscience and nanotechnology researchers and engineers with the work being carried out in science and technology studies and public understanding of…

  13. II Colombian Congress of Electrochemistry (CCEQ) and 2nd Symposium on Nanoscience and Nanotechnology (SNN)

    International Nuclear Information System (INIS)

    2017-01-01

    In the present volume of Journal of Physics: Conference Series we publish the proceedings of the “II Colombian Congress of Electrochemistry (CCEQ) and 2nd Symposium on Nanoscience and Nanotechnology (SNN)”, that was held from, October 4-7, 2016, at the Bucarica headquarters of the Universidad Industrial de Santander (UIS), Bucaramanga, Colombia. The proceedings consist of 45 contributions that were presented as plenary talks at the event. The abstracts of all participants’ contributions were published in the Abstract Book with ISBN 978-958-8819-39-6. The website of the symposium is available at http://cceq.uis.edu.co/. The scientific program of the II CCEQ and 2nd SNN consisted of 5 Plenary Lecture, 3 Magisterial Conferences, 2 Keynote, 54 Oral and 78 Poster Presentations and 3 Courses with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Spain, Mexico, Brazil and Venezuela. Moreover, the II CCEQ and 2nd SNN provided a forum of exchange in the research and innovation that enrich the area of electrochemistry, Nanoscience and Nanotechnology of the materials and the industrial applications. All papers in these Proceedings refer to one from the following topics: New Materials, Thin Film, Surface Physics, Simulation and Diagnosis, Laser and Hybrid Processes, Biomedical Coatings, Preparation/Characterization/Application Nanomaterials, Surface Modification (Ionic Implantation, Ion Nitriding, PVD, CVD), Electrochemistry of Materials (Electrodeposits, Electropolymerization, Nanoelectrochemistry, Semiconductors), Corrosion, Analytical Electrochemistry, Electrochemistry in Mineral Processing and Metals (Extractive Metallurgy), Storage and Conversion Electrochemical Energy and Environmental Electrochemistry and Water Treatment involving Electrochemical Nature Phenomena. The editor hopes that those interested in the area of the science of materials can to enjoy this reading that reflects a wide variety of

  14. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1979-01-01

    Progress in Surface and Membrane Science, Volume 12 covers the advances in the study of surface and membrane science. The book discusses the topographical differentiation of the cell surface; the NMR studies of model biological membrane system; and an irreversible thermodynamic approach to energy coupling in mitochondria and chloroplasts. The text also describes water at surfaces; the nature of microemulsions; and the energy principle in the stability of interfaces. Biochemists, physicists, chemical engineers, and people involved in surface and coatings research will find the book invaluable.

  15. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1971-01-01

    Progress in Surface and Membrane Science, Volume 4 covers the developments in the study of surface and membrane science. The book discusses waves at interfaces; recent investigations on the thickness of surface layers; and surface analysis by low-energy electron diffraction and Auger electron spectroscopy. The text also describes the anode electrolyte interface; the interactions of adsorbed proteins and polypeptides at interfaces; and peptide-induced ion transport in synthetic and biological membranes. The monolayer adsorption on crystalline surfaces is also considered. Chemists and metallurgi

  16. Topics in theoretical surface science

    Energy Technology Data Exchange (ETDEWEB)

    Todd, R.

    1991-10-25

    The energetics and structures of clean and adsorbate covered surfaces are investigated in this dissertation. First, the formalism, within the Corrected Effective Medium (CEM) method, for calculating the surface energy of a clean surface is derived. The surface energies for many different metals and their low index surfaces are presented. The minimization of the surface energy is then used to predict the multilayer relaxation of the Al(111), (100), Ni(100), (110) and Fe(100) surfaces. Extensions of the surface CEM formalism to calculate the binding energies of ordered adsorbates on metals surfaces are also derived. The minimization of the binding energy allowed determination of the binding heights, sites and the extent of induced multilayer relaxation for H and N atoms on the Fe(110), (100) and W(110) surfaces. The last topic deals with the dynamics of the epitaxial growth of metals on metal surfaces. The CEM method was first modified by making approximations to enable faster evaluations of the potential and its corresponding forces for molecular dynamics simulations. The goal of these simulations was to identify the important steps in the formation of equilibrium epitaxial structures. 180 refs., 31 figs., 18 tabs.

  17. NFFA-Europe: enhancing European competitiveness in nanoscience research and innovation (Conference Presentation)

    Science.gov (United States)

    Carsughi, Flavio; Fonseca, Luis

    2017-06-01

    NFFA-EUROPE is an European open access resource for experimental and theoretical nanoscience and sets out a platform to carry out comprehensive projects for multidisciplinary research at the nanoscale extending from synthesis to nanocharacterization to theory and numerical simulation. Advanced infrastructures specialized on growth, nano-lithography, nano-characterization, theory and simulation and fine-analysis with Synchrotron, FEL and Neutron radiation sources are integrated in a multi-site combination to develop frontier research on methods for reproducible nanoscience research and to enable European and international researchers from diverse disciplines to carry out advanced proposals impacting science and innovation. NFFA-EUROPE will enable coordinated access to infrastructures on different aspects of nanoscience research that is not currently available at single specialized ones and without duplicating their specific scopes. Approved user projects will have access to the best suited instruments and support competences for performing the research, including access to analytical large scale facilities, theory and simulation and high-performance computing facilities. Access is offered free of charge to European users and users will receive a financial contribution for their travel, accommodation and subsistence costs. The users access will include several "installations" and will be coordinated through a single entry point portal that will activate an advanced user-infrastructure dialogue to build up a personalized access programme with an increasing return on science and innovation production. The own research activity of NFFA-EUROPE will address key bottlenecks of nanoscience research: nanostructure traceability, protocol reproducibility, in-operando nano-manipulation and analysis, open data.

  18. Recent progress in surface science v.2

    CERN Document Server

    Danielli, J F; Riddiford, A C

    1964-01-01

    Recent Progress in Surface Science, Volume 2 is a 10-chapter text that covers the significant advances in some aspects of surface science, including in catalysis, genetic control of cell surface, and cell membrane. The opening chapter deals with the major factors affecting adsorption at the gas-solid interface. The subsequent chapters explore the advances in understanding of heterogeneous catalysis in terms of fundamental surface processes, as well as the concept of dynamic contact angles. These topics are followed by discussions on emulsions, flotation, and the extraordinary complexity of cel

  19. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A; Rosenberg, M D

    1974-01-01

    Progress in Surface and Membrane Science, Volume 8 covers the developments in the study of surface and membrane science. The book discusses the applications of statistical mechanics to physical adsorption; the impact of electron spectroscopy and cognate techniques on the study of solid surfaces; and the ellipsometric studies of thin films. The text also describes the interfacial photochemistry of bilayer lipid membranes; cell junctions and their development; and the composition and function of the inner mitochondrial membrane. The role of the cell surface in contact inhibition of cell division

  20. Current trends of surface science and catalysis

    CERN Document Server

    Park, Jeong Young

    2014-01-01

    Including detail on applying surface science in renewable energy conversion, this book covers the latest results on model catalysts including single crystals, bridging "materials and pressure gaps", and hot electron flows in heterogeneous catalysis.

  1. Report of the surface science workshop

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Yates, J.T. Jr.; Clinton, W.

    1977-03-01

    A three-day workshop was held to review the various areas of energy development and technology in which surface science plays major roles and makes major contributions, and to identify the major surface-science-related problem areas in the fields with ERDA's mission in the fossil, nuclear, fusion, geothermal, and solar energy technologies and in the field of environmental control. The workshop activities are summarized. (GHT)

  2. Report of the surface science workshop

    International Nuclear Information System (INIS)

    Somorjai, G.A.; Yates, J.T. Jr.; Clinton, W.

    1977-03-01

    A three-day workshop was held to review the various areas of energy development and technology in which surface science plays major roles and makes major contributions, and to identify the major surface-science-related problem areas in the fields with ERDA's mission in the fossil, nuclear, fusion, geothermal, and solar energy technologies and in the field of environmental control. The workshop activities are summarized

  3. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A; Rosenberg, M D

    1975-01-01

    Progress in Surface and Membrane Science, Volume 9 covers the developments in surface and membrane science. The book discusses the physical adsorption of gases and vapors in micropores; the chemisorption theory; and the role of radioisotopes in the studies of chemisorption and catalysis. The text also describes the interaction of ions with monolayers; and the isolation and characterization of mycoplasma membranes. Chemists, physical chemists, and microbiologists will find the book useful.

  4. Surface science tools for nanomaterials characterization

    CERN Document Server

    2015-01-01

    Fourth volume of a 40volume series on nano science and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Surface Science Tools for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  5. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1976-01-01

    Progress in Surface and Membrane Science, Volume 10 covers the advances in surface and membrane science. The book discusses the selective changes of cellular particles influencing sedimentation properties; and the rotating disk and ring-disk electrodes in investigations of surface phenomena at the metal-electrolyte interface. The text also describes the membrane potential of phospholipid bilayer and biological membranes; the adsorption of surfactant monolayers at gas/liquid and liquid/liquid interfaces; and the enzymes immobilized on glass. Chemists and people involved in electrochemistry will

  6. Technical activities, 1990: Surface Science Division

    International Nuclear Information System (INIS)

    Powell, C.J.

    1991-05-01

    The report summarizes technical activities and accomplishments of the NIST Surface Science Division during Fiscal Year 1990. Overviews are presented of the Division and of its three constituent groups: Surface Dynamical Processes, Thin Films and Interfaces, and Surface Spectroscopies and Standards. These overviews are followed by reports of selected technical accomplishments during the year. A summary is given of Division outputs and interactions that includes lists of publications, talks, committee assignments, seminars (including both Division seminars and Interface Science seminars arranged through the Division), conferences organized, and a standard reference material certified. Finally, lists are given of Division staff and of guest scientists who have worked in the Division during the past year

  7. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1973-01-01

    Progress in Surface and Membrane Science, Volume 7 covers the developments in the study of surface and membrane science. The book discusses the theoretical and experimental aspects of the van der Waals forces; the electric double layer on the semiconductor-electrolyte interface; and the long-range and short-range order in adsorbed films. The text also describes the hydrodynamical theory of surface shear viscosity; the structure and properties of monolayers of synthetic polypeptides at the air-water interface; and the structure and molecular dynamics of water. The role of glycoproteins in cell

  8. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1981-01-01

    Progress in Surface and Membrane Science, Volume 14 covers the advances in the study of surface and membrane science. The book discusses statistical thermodynamics of monolayer adsorption from gas and liquid mixtures on homogeneous and heterogeneous solid surfaces; and the structure of the boundary layers of liquids and its influence on the mass transfer in fine pores. The text then describes the coupling of ionic and non-electrolyte fluxes in ion selective membranes; the electrocatalytic properties of matalloporphins at the interface; and the adsorption from binary gas and liquid phases. Phas

  9. EDITORIAL: From reciprocal space to real space in surface science From reciprocal space to real space in surface science

    Science.gov (United States)

    Bartels, Ludwig; Ernst, Karl-Heinz

    2012-09-01

    This issue is dedicated to Karl-Heinz Rieder on the occasion of his 70th birthday. It contains contributions written by his former students and colleagues from all over the world. Experimental techniques based on free electrons, such as photoelectron spectroscopy, electron microscopy and low energy electron diffraction (LEED), were foundational to surface science. While the first revealed the band structures of materials, the second provided nanometer scale imagery and the latter elucidated the atomic scale periodicity of surfaces. All required an (ultra-)high vacuum, and LEED illustrated impressively that adsorbates, such as carbon monoxide, hydrogen or oxygen, can markedly and periodically restructure surfaces from their bulk termination, even at pressures ten orders of magnitude or more below atmospheric. Yet these techniques were not generally able to reveal atomic scale surface defects, nor could they faithfully show adsorption of light atoms such as hydrogen. Although a complete atom, helium can also be regarded as a wave with a de Broglie wavelength that allows the study of surface atomic periodicities at a delicateness and sensitivity exceeding that of electrons-based techniques. In combination, these and other techniques generated insight into the periodicity of surfaces and their vibrational properties, yet were limited to simple and periodic surface setups. All that changed with the advent of scanning tunneling microscopy (STM) roughly 30 years ago, allowing real space access to surface defects and individual adsorbates. Applied at low temperatures, not only can STM establish a height profile of surfaces, but can also perform spectroscopy and serve as an actuator capable of rearranging individual species at atomic scale resolution. The direct and intuitive manner in which STM provided access as a spectator and as an actor to the atomic scale was foundational to today's surface science and to the development of the concepts of nanoscience in general. The

  10. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  11. Nanoscience and Nanotechnology for the Middle Years

    Science.gov (United States)

    Ng, Wan

    2009-01-01

    Capturing students' interest in science at the junior levels is crucial to not only improving the uptake of science at senior levels but to promoting science literacy in all students in order to prepare them for a society that is very science and technologically driven. This paper presents nanotechnology as an emerging science that is both factual…

  12. Practical guide to surface science and spectroscopy

    CERN Document Server

    Chung, Yip-Wah

    2001-01-01

    Practical Guide to Surface Science and Spectroscopy provides a practical introduction to surface science as well as describes the basic analytical techniques that researchers use to understand what occurs at the surfaces of materials and at their interfaces. These techniques include auger electron spectroscopy, photoelectron spectroscopy, inelastic scattering of electrons and ions, low energy electron diffraction, scanning probe microscopy, and interfacial segregation. Understanding the behavior of materials at their surfaces is essential for materials scientists and engineers as they design and fabricate microelectronics and semiconductor devices. The book gives over 100 examples, discussion questions and problems with varying levels of difficulty. Included with this book is a CD-ROM, which not only contains the same information, but also provides many elements of animation and interaction that are not easily emulated on paper. In diverse subject matters ranging from the operation of ion pumps, computer-...

  13. Surface science principles and current applications

    CERN Document Server

    Taglauer, E; Wandelt, K

    1996-01-01

    Modern technologies increasingly rely on low-dimensional physics at interfaces and in thin-films and nano-structures. Surface science holds a key position in providing the experimental methods and theoretical models for a basic understanding of these effects. This book includes case studies and status reports about research topics such as: surface structure determination by tensor-LEED and surface X-ray diffraction; the preparation and detection of low-dimensional electronic surface states; quantitative surface compositional analysis; the dynamics of adsorption and reaction of adsorbates, e.g. kinetic oscillations; the characterization and control of thin-film and multilayer growth including the influence of surfactants; a critical assessment of the surface physics approach to heterogeneous catalysis.

  14. PREFACE: International Symposium "Nanoscience and Quantum Physics 2011" (nanoPHYS'11)

    Science.gov (United States)

    Saito, Susumu; Tanaka, Hidekazu; Nakamura, Takashi; Nakamura, Masaaki

    2011-07-01

    Quantum physics has developed modern views of nature for more than a century. In addition to this traditional role, quantum physics has acquired new significance in the 21st century as the field responsible for driving and supporting nanoscience research, which will have even greater importance in the future because nanoscience will be the academic foundation for new technologies. The Department of Physics, Tokyo Institute of Technology, are now conducting a "Nanoscience and Quantum Physics" project (Physics G-COE project) supported by the Global Center of Excellence Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) in order to promote research and education in these important academic fields. The International Symposium on Nanoscience and Quantum Physics, held in Tokyo, Japan, 26-28 January 2011 (nanoPHYS'11) was organized by the Physics G-COE project of the Tokyo Institute of Technology to provide an international forum for the open exchange of topical information and for stimulating discussion on novel concepts and future prospects of nanoscience and quantum physics. There were a total of 118 papers including 34 invited papers. This nanoPHYS'11 is the fourth symposium of this kind organized by the Tokyo Institute of Technology. Topics focused on in the symposium included: Category 1: Novel nanostructure (Nanowires, Nanotubes, Spin-related structure, etc) Category 2: Novel transport and electronic properties (Graphene, Topological insulators, Coherent control, etc) Category 3: Electronic and optical properties of nanostructure Category 4: Fundamental physics and new concept in quantum physics Category 5: Quantum Physics - Quantum information Category 6: Quantum Physics - Nuclear and Hadron Physics Category 7: Quantum Physics - Astrophysics, etc All the papers submitted to this issue have been reviewed under a stringent refereeing process, according to the normal rules of this Journal. The editors are grateful to all the

  15. Teaching nanoscience across scientific and geographical borders - A European Master programme in nanoscience and nanotechnology

    International Nuclear Information System (INIS)

    Chesneau, A; Schwille, P; Groeseneken, G; Heremans, P; Rep, D; Rudquist, P; Wendin, G; Sluijter, B

    2008-01-01

    Within the Erasmus Mundus Master (EMM) Programme, five European Universities (KU Leuven, Belgium, Chalmers University of Technology, Sweden, Delft University of Technology and Leiden University, the Netherlands, and the University of Dresden, Germany) have joined forces to offer a unique master programme in Nanoscience and Nanotechnology, 'EMM-nano', at the cutting edge of state-of-the-art research. The students design and build their individual area of specialisation within nanophysics, nanotechnology, biophysics, biotechnology through their choice of trajectory between the partners. We discuss some of the challenges related to the crossdisciplinary nature of the field, educational activities in cleanrooms, and issues related to the integration of teaching programmes across the borders within Europe

  16. The social responsibility of Nanoscience and Nanotechnology: an integral approach

    Science.gov (United States)

    Caballero-Díaz, Encarnación; Simonet, Bartolomé M.; Valcárcel, Miguel

    2013-04-01

    The concept of social responsibility provides the ideal framework for raising awareness and arousing reflection on the social and environmental impact of nanoparticles in the range of 1-100 nm generated from research activities in nanoscience and production-related activities in nanotechnology. The model proposed here relates the essential aspects of these concepts by connecting the classical sequence Research-Development-Innovation (R&D&I) to nanoscience and nanotechnology (N&N) and social responsibility (SR). This paper identifies the stakeholders of the process and provides an extensive definition of Social Responsibility and related concepts. In addition, it describes the internal and external connotations of the implementation of SR at research centers and nanotechnological industries, and discusses the social implications of nanoscience and nanotechnology with provision for subjects such as nanoethics, nanotoxicity, and nanomedicine, which have emerged from the widespread use of nanomaterials by today's society.

  17. The social responsibility of Nanoscience and Nanotechnology: an integral approach

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Diaz, Encarnacion; Simonet, Bartolome M.; Valcarcel, Miguel, E-mail: qa1vacam@uco.es [University of Cordoba, Department of Analytical Chemistry (Spain)

    2013-04-15

    The concept of social responsibility provides the ideal framework for raising awareness and arousing reflection on the social and environmental impact of nanoparticles in the range of 1-100 nm generated from research activities in nanoscience and production-related activities in nanotechnology. The model proposed here relates the essential aspects of these concepts by connecting the classical sequence Research-Development-Innovation (R and D and I) to nanoscience and nanotechnology (N and N) and social responsibility (SR). This paper identifies the stakeholders of the process and provides an extensive definition of Social Responsibility and related concepts. In addition, it describes the internal and external connotations of the implementation of SR at research centers and nanotechnological industries, and discusses the social implications of nanoscience and nanotechnology with provision for subjects such as nanoethics, nanotoxicity, and nanomedicine, which have emerged from the widespread use of nanomaterials by today's society.

  18. The social responsibility of Nanoscience and Nanotechnology: an integral approach

    International Nuclear Information System (INIS)

    Caballero-Díaz, Encarnación; Simonet, Bartolomé M.; Valcárcel, Miguel

    2013-01-01

    The concept of social responsibility provides the ideal framework for raising awareness and arousing reflection on the social and environmental impact of nanoparticles in the range of 1–100 nm generated from research activities in nanoscience and production-related activities in nanotechnology. The model proposed here relates the essential aspects of these concepts by connecting the classical sequence Research–Development–Innovation (R and D and I) to nanoscience and nanotechnology (N and N) and social responsibility (SR). This paper identifies the stakeholders of the process and provides an extensive definition of Social Responsibility and related concepts. In addition, it describes the internal and external connotations of the implementation of SR at research centers and nanotechnological industries, and discusses the social implications of nanoscience and nanotechnology with provision for subjects such as nanoethics, nanotoxicity, and nanomedicine, which have emerged from the widespread use of nanomaterials by today’s society.

  19. Nanoscience in diagnostics: A short review | Menezes | Internet ...

    African Journals Online (AJOL)

    nanotechnology. Nanosciences and nanotechnology are transforming a wide array of products and services that have the potential to enhance the practice of medicine and improve public health. Several areas of medical care are already benefiting from the advantages that nanotechnology can offer. Applications of ...

  20. The surface science of titanium dioxide

    Science.gov (United States)

    Diebold, Ulrike

    2003-01-01

    Titanium dioxide is the most investigated single-crystalline system in the surface science of metal oxides, and the literature on rutile (1 1 0), (1 0 0), (0 0 1), and anatase surfaces is reviewed. This paper starts with a summary of the wide variety of technical fields where TiO 2 is of importance. The bulk structure and bulk defects (as far as relevant to the surface properties) are briefly reviewed. Rules to predict stable oxide surfaces are exemplified on rutile (1 1 0). The surface structure of rutile (1 1 0) is discussed in some detail. Theoretically predicted and experimentally determined relaxations of surface geometries are compared, and defects (step edge orientations, point and line defects, impurities, surface manifestations of crystallographic shear planes—CSPs) are discussed, as well as the image contrast in scanning tunneling microscopy (STM). The controversy about the correct model for the (1×2) reconstruction appears to be settled. Different surface preparation methods, such as reoxidation of reduced crystals, can cause a drastic effect on surface geometries and morphology, and recommendations for preparing different TiO 2(1 1 0) surfaces are given. The structure of the TiO 2(1 0 0)-(1×1) surface is discussed and the proposed models for the (1×3) reconstruction are critically reviewed. Very recent results on anatase (1 0 0) and (1 0 1) surfaces are included. The electronic structure of stoichiometric TiO 2 surfaces is now well understood. Surface defects can be detected with a variety of surface spectroscopies. The vibrational structure is dominated by strong Fuchs-Kliewer phonons, and high-resolution electron energy loss spectra often need to be deconvoluted in order to render useful information about adsorbed molecules. The growth of metals (Li, Na, K, Cs, Ca, Al, Ti, V, Nb, Cr, Mo, Mn, Fe, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) as well as some metal oxides on TiO 2 is reviewed. The tendency to 'wet' the overlayer, the growth morphology, the

  1. Recent progress in surface science 3

    CERN Document Server

    Danielli, J F; Rosenberg, M D

    2013-01-01

    Recent Progress in Surface Science, Volume 3 covers topics on the structure and mechanisms of the cell membranes. The book discusses the incorporation of chemisorbed species; the recent developments in the study of epitaxy; and the ""diffusion"" or ""hydride"" component of overpotential at cathodes of the ""platinum metals"". The text also describes the mechanism of hydrogen exchange in proteins; the nuclear magnetic resonance studies of lipids, lipoproteins, and cell membranes; and the monolayers of synthetic phospholipids. The formation, electrical properties, transport, and excitability cha

  2. Themes of nanoscience for the introductory physics course

    International Nuclear Information System (INIS)

    Planinsic, Gorazd; Lindell, Anssi; Remskar, Maja

    2009-01-01

    We present three experimental themes and one discussion theme that proved to be suitable for introducing nanoscience through topics that can be integrated into the existing introductory physics or teacher training courses. The experimental themes include two teaching models of an atomic force microscope (AFM) and an experiment with an elastic optical grating. They are all based on simple experiments that give also quantitative results and can be explained using basic physics theory.

  3. Proceedings from the Workshop on Nanoscience for the Soldier

    Science.gov (United States)

    2001-02-09

    Health Support Predictive - Genetics , allergies, specific medications Preventive - Acting proactively with preventive medicine Point of care...Make soldier invisible across the EM spectrum (passive)❍ Adaptive camouflage ( chameleon )❍ ● Interactive textile/clothing Power/data...and imaging of the surrounding and mimicking it ( chameleon effect) 12. ANTENNA Appendix A http://www.aro.army.mil/phys/Nanoscience/sec4nano.htm (1

  4. In Quest of a Systematic Framework for Unifying and Defining Nanoscience

    Science.gov (United States)

    Tomalia, Donald A.; Khanna, Shiv N.

    2014-01-01

    This is an invited overview of a lecture presented at the American Physical Society (APS) Meeting, Boston, USA (March 1, 2012). The primary focus of this APS lecture was to trace the historical emergence of Hard and Soft nanoscale superatoms (i.e. nano-element categories) as well as a recent merging of these concepts/entities by chemists/physicists into a unified system and framework for defining nanoscience. The convergence of these quantized, organic/inorganic superatom entities involved the application of traditional "first principles" and their nanoscale "atom mimicry" features as a criteria for evolving a roadmap of quantized nano-elemental categories, nano-compound/assemblies and nano-periodic patterns, etc., much as was observed in traditional chemistry. This simple perspective was used to define a nanoscale taxonomy of hard/soft superatom/nano-element categories, as well as to explain the dependency of a broad range of nano-periodic properties/features on one or more of six Critical Nanoscale Design Parameters (CNDPs) associated with these nano-building blocks, namely: (1) size, (2) shape, (3) surface chemistry, (4) rigidity/flexibility, (5) architecture and (6) elemental composition. Validation and support of this systematic nano-periodic perspective has appeared in many recent publications describing CNDP dependent nano-periodic property patterns/trends, rules and Mendeleev-like nano-periodic tables which may unify and provide first steps toward a "central paradigm" for nanoscience.

  5. Nanotechnology and nanoscience for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Wei, B.

    2011-07-01

    Currently, wind power is one of the best forms of green energy for humans to pursue a sustainable energy supply, and plays an increasingly essential role in energy systems. However, the efficiency and cost of wind energy is relatively higher than other types of energy resources, which make it less competitive. In this paper, I will analyze the usage of materials in wind energy equipment to understand the scope of improvement for wind energy materials, and utilize Nanotechnology and Nano science to propose performance improvement of wind energy devices. (Author)

  6. 3rd International Meeting for Researchers in Materials and Plasma Technology (IMRMPT) and 1st Symposium on Nanoscience and Nanotechnology

    International Nuclear Information System (INIS)

    2016-01-01

    These proceedings present the written contributions of the participants of the 3rd International Meeting for Researchers in Materials and Plasma Technology (3rd IMRMPT) and the 1st Symposium on Nanoscience and Nanotechnology which was held from 4 to May 9, 2015 at the Dann Carlton Hotel Bucaramanga, Colombia, organized by the faculty of science of the Universidad Industrial de Santander (UIS) and the basic science department of the Universidad Pontificia Bolivariana. This was the third version of biennial meetings that began in 2011. The five-day scientific program of the 3rd IMRMPT consisted of 24 Magisterial Conferences, 70 Oral Presentations, 185 Poster Presentations, 3 Courses and 1 Discussion Panel with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Russia, Germany, France, Spain, England, United States, Mexico, Argentina, Uruguay, Brazil, Venezuela, among others. Moreover, the objective of IMRMPT was to bring together national and international researchers in order to establish a network of scientific cooperation with a global impact in the area of the science and the technology of materials; to promote the exchange of creative ideas and the effective transfer of scientific knowledge, from fundamental research to innovation applied to industrial solutions and to advances in the development of new research allowing to increase the lifetime of the materials used in the industry by means of efficient transference of the knowledge between sectors academia and industry. The topics covered in the 3rd IMRMPT include New Materials, Surface Physics, Structural Integrity, Renewable Energy, Online Process Control, Non Destructive Evaluation, Characterization of Materials, Laser and Hybrid Processes, Thin Films and Nanomaterials, Surface Hardening Processes, Wear and Corrosion/Oxidation, Plasma Applications and Technologies, Modelling, Simulation and Diagnostics, Biomedical Coatings, Surface Treatments

  7. Proceedings of the international conference on material science: abstract volume

    International Nuclear Information System (INIS)

    2013-01-01

    Materials Science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. In the recent years, materials science has been propelled to the forefront at many universities and research institutions due to the significant advancement on nanoscience and nanotechnology. ICMS-2013 will cover a wide range of interdisciplinary and current research topics related to material science. Research on advanced materials includes nanomaterials, bio-nanomaterials, zero bandgap materials, composites, surface engineering, tissue engineering and biomaterials etc. These materials have numerous applications in electronics, biotechnology, medicine and energy harvesting. The importance of nano-science and nanotechnology has been well documented by both industrial and academic communities worldwide. It is believed that breakthroughs in nano-science and technology will change all aspects of human life in such diverse areas as, electronic devices, energy, biomedicine, sensing, environment, and security etc. Papers relevant to INIS are indexed separately

  8. Nanoscience and nanotechnology of f elements

    International Nuclear Information System (INIS)

    Felinto, Maria Claudia F.C.; Brito, Hermi F.

    2005-01-01

    Medicaments that are carried via blood flow to sick organs; an electronic equipment capable of evaluating quality of beverages twice more sensitive than the human palate; magnets inside plastic micro-spheres that could help remove oil stains from the sea. Products that seem to have been taken from science fiction films, things that could never be part of our grandfather's imagination, they are actually the marvels of one more technological revolution: the nanotechnology. In this context, lanthanides and actinides elements play a fundamental role due to their singular chemical and physical properties. They appear as fundamental materials in a large range of areas such as, new materials applied to fuel element, sensors, electronics, drugs and markers (radio isotope), probes etc. The aim of this work is to review the chemistry and physics properties of these elements approaching this new technology point of view, emphasizing their nuclear applications. (author)

  9. Physics of Surfaces and Interfaces

    CERN Document Server

    Ibach, Harald

    2006-01-01

    This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. The Physics of Surfaces and Interfaces is designed as a handbook for the researcher as well as a study-text for graduate students in physics or chemistry with special interest in the surface sciences, material science, or the nanosciences. The experienced researcher, professional or academic teacher will appreciate the opportunity to share many insights and ideas that have grown out of the author's long experience. Readers will likewise appreciate the wide range of topics treated, each supported by extensive references. Graduate students will benefit f...

  10. Research output in nanoscience and nanotechnology: Pakistan scenario

    Energy Technology Data Exchange (ETDEWEB)

    Bajwa, R. S., E-mail: rizwan.bajwa@hotmail.com; Yaldram, K., E-mail: Kyaldram@gmail.com [Preston Institute of Nanoscience and Technology (PINSAT) (Pakistan)

    2012-02-15

    In this article, we present an overview of the research activity undertaken in Pakistan in the field of nanoscience and technology for the period 2001-2010. Starting with almost insignificant publications in this field in 2001, the number has risen steadily to 430 in 2010. A break up of organizations actively involved in research in this field suggests that most of these publications have emanated from universities. The contribution of R and D organizations that far outnumber the universities is about 10 percent of the total. Reasons for the increasing trend in publications, especially in the universities are discussed.

  11. Thermochemical Surface Engineering: A Playground for Science and Innovation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Jellesen, Morten Stendahl

    2017-01-01

    at the surface. Current research and innovation activities are used to exemplify thermochemical surface engineering and the interplay of science and innovation. The examples given encompass aspects of the synthesis of extremely porous materials, low temperature surface hardening of stainless steel, surface...

  12. Nanosciences and Nanotechnologies Learning and Teaching in Secondary Education: A Review of Literature

    Science.gov (United States)

    Hingant, Benedicte; Albe, Virginie

    2010-01-01

    This literature review provides an overview of recent studies on the introduction of nanosciences and nanotechnologies in secondary education. Four salient research topics have emerged: questions and reflections preceding curriculum development on nanosciences and nanotechnologies lessons; research on students' conceptualisations of nano-related…

  13. In quest of a systematic framework for unifying and defining nanoscience

    International Nuclear Information System (INIS)

    Tomalia, Donald A.

    2009-01-01

    This article proposes a systematic framework for unifying and defining nanoscience based on historic first principles and step logic that led to a 'central paradigm' (i.e., unifying framework) for traditional elemental/small-molecule chemistry. As such, a Nanomaterials classification roadmap is proposed, which divides all nanomatter into Category I: discrete, well-defined and Category II: statistical, undefined nanoparticles. We consider only Category I, well-defined nanoparticles which are >90% monodisperse as a function of Critical Nanoscale Design Parameters (CNDPs) defined according to: (a) size, (b) shape, (c) surface chemistry, (d) flexibility, and (e) elemental composition. Classified as either hard (H) (i.e., inorganic-based) or soft (S) (i.e., organic-based) categories, these nanoparticles were found to manifest pervasive atom mimicry features that included: (1) a dominance of zero-dimensional (0D) core-shell nanoarchitectures, (2) the ability to self-assemble or chemically bond as discrete, quantized nanounits, and (3) exhibited well-defined nanoscale valencies and stoichiometries reminiscent of atom-based elements. These discrete nanoparticle categories are referred to as hard or soft particle nanoelements. Many examples describing chemical bonding/assembly of these nanoelements have been reported in the literature. We refer to these hard:hard (H-n:H-n), soft:soft (S-n:S-n), or hard:soft (H-n:S-n) nanoelement combinations as nanocompounds. Due to their quantized features, many nanoelement and nanocompound categories are reported to exhibit well-defined nanoperiodic property patterns. These periodic property patterns are dependent on their quantized nanofeatures (CNDPs) and dramatically influence intrinsic physicochemical properties (i.e., melting points, reactivity/self-assembly, sterics, and nanoencapsulation), as well as important functional/performance properties (i.e., magnetic, photonic, electronic, and toxicologic properties). We propose this

  14. Fermented cereal beverages: from probiotic, prebiotic and synbiotic towards Nanoscience designed healthy drinks.

    Science.gov (United States)

    Salmerón, I

    2017-08-01

    The consumption of fermented foods by human kind goes a long way back in history and there are as many types of fermented food as civilizations. Food Science and Technology has progressed from designing nutritional foods towards food with health improvement characteristics such as functional foods. In this sense, the area of food with properties to improve gastrointestinal health such as probiotics, prebiotics and synbiotics has been the most important segment within functional foods. Most of these products are dairy-based so the development of nondairy gut improvement products has been of great interest for the food industry, resulting in the rise of cereal-based probiotic and synbiotic products. Finally, through Nanoscience and the application of Nanotechnology techniques in the food sector, it has been possible to design fermented beverages with synbiotic properties, and the incorporation of nanoparticles with unique and specific bioactivity, which has opened a new horizon in this segment of food created to improve human health and well-being. There is currently a great interest in producing healthy food in particular that which has an impact in improving the gastrointestinal health such as probiotics, prebiotics and synbiotics. Most of these functional foods are dairy based and have been greatly accepted worldwide. Nevertheless, there has been a need for the development of nondairy probiotic, prebiotic and synbiotic products. This has encouraged food scientists to study the feasibility of applying other fermenting substrates such as cereals for the development of innovative nondairy fermented functional foods. Therefore, in this review we have addressed the significance of applying cereals and their fractions for the development of probiotic, prebiotic and synbiotic beverages. Furthermore, we have presented the importance of including nanoscience and nanotechnology techniques for the creation of fermented cereal beverages that contain specific bioactive

  15. Crystallography and surface structure an introduction for surface scientists and nanoscientists

    CERN Document Server

    Hermann, Klaus

    2017-01-01

    A valuable learning tool as well as a reference, this book provides students and researchers in surface science and nanoscience with the theoretical crystallographic foundations, which are necessary to understand local structure and symmetry of bulk crystals, including ideal and real single crystal surfaces. The author deals with the subject at an introductory level, providing numerous graphic examples to illustrate the mathematical formalism. The book brings together and logically connects many seemingly disparate structural issues and notations used frequently by surface scientists and nanoscientists. Numerous exercises of varying difficulty, ranging from simple questions to small research projects, are included to stimulate discussions about the different subjects.

  16. Workshop on surface and interface science at the ESRF

    Energy Technology Data Exchange (ETDEWEB)

    Norris, C.; Stierle, A.; Kasper, N.; Dosch, H.; Schmidt, S.; Hufner, S.; Moritz, W.; Fedley, Ch.S.; Rossi, G.; Durr Hermann, A.; Rohlsberger, R.; Dalmas, J.; Oughaddou, H.; Leandri, Ch.; Gay, J.M.; Treglia, G.; Le Lay, G.; Aufray, B.; Bunk, O.; Johnson, R.L.; Frenken, J.W.M.; Lucas, C.A.; Bauer, G.; Zhong, Z.; Springholz, G.; Lechner, R.; Stang, J.; Schulli, T.; Metzger, T.H.; Holy, V.; Woodruff, D.P.; Dellera, C.; Zegenhagen, J.; Robinson, I.; Malachias, A.; Schulli, T.U.; Magalhaes-Paniago, R.; Stoffel, M.; Schmidt, O.G.; Boragno, C.; Buatier de Mongeot, F.; Valbusa, U.; Felici, R.; Yacoby, Y.; Bedzyk, M.J.; Van der Veen, J.F

    2004-07-01

    The main aim of the workshop is to reflect the future of surface and interface research at the high brilliance synchrotron radiation source ESRF taking into account experimental facilities which are becoming available at new synchrotron radiation facilities in Europe. 6 sessions have been organized: 1) surface and interface research and synchrotron radiation - today and tomorrow -, 2) aspects of surface and interface research, 3) real surfaces and interfaces, 4) synchrotron techniques in surface and interface research, 5) new directions in surface and interface research, and 6) surface and interface science at ESRF. This document gathers the abstracts of the presentations.

  17. Workshop on surface and interface science at the ESRF

    International Nuclear Information System (INIS)

    Norris, C.; Stierle, A.; Kasper, N.; Dosch, H.; Schmidt, S.; Hufner, S.; Moritz, W.; Fedley, Ch.S.; Rossi, G.; Durr Hermann, A.; Rohlsberger, R.; Dalmas, J.; Oughaddou, H.; Leandri, Ch.; Gay, J.M.; Treglia, G.; Le Lay, G.; Aufray, B.; Bunk, O.; Johnson, R.L.; Frenken, J.W.M.; Lucas, C.A.; Bauer, G.; Zhong, Z.; Springholz, G.; Lechner, R.; Stang, J.; Schulli, T.; Metzger, T.H.; Holy, V.; Woodruff, D.P.; Dellera, C.; Zegenhagen, J.; Robinson, I.; Malachias, A.; Schulli, T.U.; Magalhaes-Paniago, R.; Stoffel, M.; Schmidt, O.G.; Boragno, C.; Buatier de Mongeot, F.; Valbusa, U.; Felici, R.; Yacoby, Y.; Bedzyk, M.J.; Van der Veen, J.F.

    2004-01-01

    The main aim of the workshop is to reflect the future of surface and interface research at the high brilliance synchrotron radiation source ESRF taking into account experimental facilities which are becoming available at new synchrotron radiation facilities in Europe. 6 sessions have been organized: 1) surface and interface research and synchrotron radiation - today and tomorrow -, 2) aspects of surface and interface research, 3) real surfaces and interfaces, 4) synchrotron techniques in surface and interface research, 5) new directions in surface and interface research, and 6) surface and interface science at ESRF. This document gathers the abstracts of the presentations

  18. SCIENTISTS’ PERCEPTIONS ON THE NATURE OF NANOSCIENCE AND ITS PUBLIC COMMUNICATION

    Directory of Open Access Journals (Sweden)

    Antti Laherto

    2018-02-01

    Full Text Available Some level of understanding of and about nanoscience and nanotechnology (NST has been suggested as being relevant in up-to-date scientific literacy for all. Research scientists working in these fields are central in current efforts to inform and engage the public in NST. Earlier research has shown that scientists can contribute to authentic science learning, but communication always entails roles that affect the choice of content. This study investigated NST researchers’ views on the nature of their research and their preferences in NST communication. Eight experienced professors working in various fields of NST were interviewed. Semi-structured, in-depth interviews focused on the scientists’ views on 1 the nature of their research, and 2 aspects of NST that should be communicated to the public. Qualitative content analysis of the interviews revealed that the themes the interviewees highlighted when describing their research (interdisciplinarity, size scale, methods, objects, nature of NST in general were somewhat different from the ones they considered as important for communication to the public (applications and products, risks and benefits, visualizations. The results problematize the simplistic notion that exposure to real scientists would unquestionably enhance the authenticity of science learning. This study gives insight for research and development of science communication, especially scientists’ role and training in it.

  19. Learning in Science: A Comparison of Deep and Surface Approaches.

    Science.gov (United States)

    Chin, Christine; Brown, David E.

    2000-01-01

    Explores the differences between deep and surface approaches to learning science. Findings indicate that the deep-surface learning differences fall into five categories: (1) generative thinking; (2) nature of explanations; (3) asking questions; (4) metacognitive activity; and (5) approach to tasks. Suggests that teachers can encourage a deep…

  20. EDITORIAL: A fertile domain for nanoscience A fertile domain for nanoscience

    Science.gov (United States)

    Demming, Anna

    2010-11-01

    optical transmission of a solution containing rotating linear chains of magnetic nanobeads is used to detect biomolecules with picomolar sensitivity and a dynamic range of more than four orders of magnitude. In 1944 Isidor Isaac Rabi won the Nobel Prize for physics in recognition of his work in developing a resonance method for recording the magnetic properties of atomic nuclei. He recognized the possible application of his work in time keeping but it was not until the work of later researchers that the potential in medical imaging became apparent. Decades later, in 1988 Rabi was reported to have said: 'It was eerie. I saw myself in that machine. I never thought my work would come to this' [12]. The comment was provoked by the sight of a distorted image of his face, reflected on the inside cylindrical surface of a magnetic resonance imaging machine. Rabi died a few weeks later, but his work and that of fellow scientists have brought advances in medical imaging that have enabled the detection of malignant disease at early treatable stages. That his contribution has allowed timely diagnosis and treatments that have saved countless lives brings an added poignancy to his words. And there are, no doubt, many more breakthroughs in medicine and technology to come. References [1] Powers P N, Beyer H G and Dunning J R 1937 Phys. Rev. 51 371 [2] Elmore W C 1938 Phys. Rev. 54 1092 [3] Roca A G, Morales M P, O'Grady K and Serna C J 2006 Nanotechnology 17 2783 [4] Yu W W, Chang E, Sayes C M, Drezek R and Colin V L 2006 Nanotechnology 17 4483 [5] Arbab A S, Yocum G T, Kalish H, Jordan E K, Anderson S A, Khakoo A Y, Read E J and Frank J A 2004 Blood 104 1217 [6] Cho S-J, Jarrett B R, Louie A Y and Kauzlarich S M 2006 Nanotechnology 17 640 [7] Larson T A, Bankson J, Aaron J and Sokolov K 2007 Nanotechnology 18 325101 [8] Villanueva A, Cãete M, Roca A G, Calero M, Veintemillas-Verdauger S, Serna C J, Del Puerto Morales M and Miranda R 2009 Nanotechnology 20 115103 [9] Purushotham S

  1. Surface enhanced raman spectroscopy analytical, biophysical and life science applications

    CERN Document Server

    Schlücker, Sebastian

    2013-01-01

    Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

  2. Analytical Nanoscience and Nanotechnology: Where we are and where we are heading.

    Science.gov (United States)

    Laura Soriano, María; Zougagh, Mohammed; Valcárcel, Miguel; Ríos, Ángel

    2018-01-15

    The main aim of this paper is to offer an objective and critical overview of the situation and trends in Analytical Nanoscience and Nanotechnology (AN&N), which is an important break point in the evolution of Analytical Chemistry in the XXI century as they were computers and instruments in the second half of XX century. The first part of this overview is devoted to provide a general approach to AN&N by describing the state of the art of this recent topic, being the importance of it also emphasized. Secondly, particular but very relevant trends in this topic are outlined: the analysis of the nanoworld, the so "third way" in AN&N, the growing importance of bioanalysis, the evaluation of both nanosensors and nanosorbents, the impact of AN&N in bioimaging and in nanotoxicological studies, as well as the crucial importance of reliability of the nanotechnological processes and results for solving real analytical problems in the frame of Social Responsibility (SR) of science and technology. Several reflections are included at the end of this overview written as a bird's eye view, which is not an easy task for experts in AN&N. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Atomic force microscopy as a nanoscience tool in rational food design.

    Science.gov (United States)

    Morris, Victor J; Woodward, Nicola C; Gunning, Allan P

    2011-09-01

    Atomic force microscopy (AFM) is a nanoscience tool that has been used to provide new information on the molecular structure of food materials. As an imaging tool it has led to solutions to previously intractable problems in food science. This type of information can provide a basis for tailoring food structures to optimise functional behaviour. Such an approach will be illustrated by indicating how a basic understanding of the role of interfacial stability in complex foods systems can be extended to understand how such interfacial structures behave on digestion, and how this in turn suggests routes for the rational design of processed food structures to modify lipolysis and control fat intake. As a force transducer AFM can be used to probe interactions between food structures such as emulsion droplets at the colloidal level. This use of force spectroscopy will be illustrated through showing how it allows the effect of the structural modification of interfacial structures on colloidal interactions to be probed in model emulsion systems. Direct studies on interactions between colliding soft, deformable droplets reveal new types of interactions unique to deformable particles that can be exploited to manipulate the behaviour of processed or natural emulsion structures involved in digestion processes. Force spectroscopy can be adapted to probe specific intermolecular interactions, and this application of the technique will be illustrated through its use to test molecular hypotheses for the bioactivity of modified pectin molecules. Copyright © 2011 Society of Chemical Industry.

  4. Smart cleaning of cultural heritage: a new challenge for soft nanoscience

    Science.gov (United States)

    Baglioni, Michele; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero

    2011-12-01

    The search for innovative, smart and performing cleaning agents is one of the main issues of modern conservation science. Nanosciences do not only provide solutions to this scientific field in terms of new materials but also change radically the approach to problems and challenges. In this feature article we review the most innovative nanostructured systems developed in the last decade for the cleaning of artworks together with some noteworthy case studies. Micelles, microemulsions, thickened complex fluids, and responsive gels that constitute the new ``cleaning palette'' for modern conservators are here presented and critically analyzed. The development of these smart nanostructured systems requires the comprehension of their behavior and interactions with other materials down to the nanoscale. In the last section of this manuscript we report on the most recent results from a study about the mechanism of polymer removal from porous artifacts using nanofluids, such as micelles or microemulsions. The rules of classical detergency do not fully address the polymer removal mechanism and a schematic model of the process is proposed.

  5. 7th International Summer Institute in Surface Science

    CERN Document Server

    Howe, Russell

    1986-01-01

    This volume contains review articles which were written by the invited speak­ ers of the seventh International Summer Institute in Surface Science (ISISS), held at the University of Wisconsin - Milwaukee in July 1985. The form of ISISS is a set of tutorial review lectures presented over a one-week period by internationally recognized experts on various aspects of surface science. Each speaker is asked, in addition, to write a review article on his lecture topic. No single volume in the series Chemistry and Physics of Solid Surfaces can possibly cover the entire field of modern surface science. However, the series as a whole is intended to provide experts and students alike with a comprehensive set of reviews and literature references, particularly empha­ sizing the gas-solid interface. The collected articles from previous Summer Institutes have been published under the following titles: Surface Science: Recent Progress and Perspectives, Crit. Rev. Solid State Sci. 4, 125-559 (1974) Chemistry and Physics of ...

  6. The development of surface science in China: Retrospect and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Xie Xide (Fudan University, Shanghai (China))

    1994-01-01

    It is generally agreed that the year of 1977 marked the birth of surface science in China, therefore the length of its history of development is only half of that shown in the title of this volume. Since 1977 laboratories with modern facilities for surface studies have been established in various universities and research institutes. Three open laboratories better equipped than others have been set up in Beijing, Xiamen and Shanghai for surface physics, surface chemistry and applied surface physics, respectively. Five National Conferences on Physics of Surfaces and Interfaces were held in 1982, 1984, 1985, 1988 and 1991. In 1993 China is going to host the Fourth International Conference on the Structure of Surfaces in Shanghai August 16-19 which will serve as a milestone in the history of development of surface science in China. With the access to many overseas laboratories, quite a number of Chinese scientists and students have had opportunities to work and study abroad and have brought back with them experiences acquired. During the Conferences just mentioned, one could witness a number of steady progresses made over the years. In the present review, a brief description about the establishment of some major research facilities and progresses of some of the research is given with emphasis on work related to semiconductor surfaces, interfaces, superlattices, heterojunctions and quantum wells. Although the review nominally covers the development of research in surface science in China, due to the limitation of the capabilities of the author, mostly work done at Fudan University is included. For this the author would like to express her deep apology to many Chinese colleagues whose works have not been properly mentioned

  7. Molecular surface science of heterogeneous catalysis. History and perspective

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1983-08-01

    A personal account is given of how the author became involved with modern surface science and how it was employed for studies of the chemistry of surfaces and heterogeneous catalysis. New techniques were developed for studying the properties of the surface monolayers: Auger electron spectroscopy, LEED, XPS, molecular beam surface scattering, etc. An apparatus was developed and used to study hydrocarbon conversion reactions on Pt, CO hydrogenation on Rh and Fe, and NH 3 synthesis on Fe. A model has been developed for the working Pt reforming catalyst. The three molecular ingredients that control catalytic properties are atomic surface structure, an active carbonaceous deposit, and the proper oxidation state of surface atoms. 40 references, 21 figures

  8. Molecular surface science of heterogeneous catalysis. History and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    1983-08-01

    A personal account is given of how the author became involved with modern surface science and how it was employed for studies of the chemistry of surfaces and heterogeneous catalysis. New techniques were developed for studying the properties of the surface monolayers: Auger electron spectroscopy, LEED, XPS, molecular beam surface scattering, etc. An apparatus was developed and used to study hydrocarbon conversion reactions on Pt, CO hydrogenation on Rh and Fe, and NH/sub 3/ synthesis on Fe. A model has been developed for the working Pt reforming catalyst. The three molecular ingredients that control catalytic properties are atomic surface structure, an active carbonaceous deposit, and the proper oxidation state of surface atoms. 40 references, 21 figures. (DLC)

  9. A molecular surface science study of the structure of adsorbates on surfaces: Importance to lubrication

    International Nuclear Information System (INIS)

    Mate, C.M.

    1986-09-01

    The interaction and bonding of atoms and molecules on metal surfaces is explored under ultra-high vacuum conditions using a variety of surface science techniques: high resolution electron energy loss spectroscopy (HREELS), low energy electron diffraction (LEED), thermal desorption spectroscopy (TDS), Auger electron spectroscopy (AES), work function measurements, and second harmonic generation (SHG). 164 refs., 51 figs., 3 tabs

  10. Chemical beam epitaxy — a child of surface science

    Science.gov (United States)

    Lüth, Hans

    1994-01-01

    Chemical Beam Epitaxy (CBE) or MOMBE is currently one of the major deposition techniques in semiconductor technology. The growth process is performed in a UHV chamber under low pressure conditions and the source material is supplied by molecular beams, such that only surface kinetics are determining the chemical reactions leading to growth of the epilayer. This paper intends to give a review on the development of this deposition technique. After considering the early period, where this epitaxy method started to develop, partially from ideas being born in surface science, some milestones in the further development and basic understanding are presented. The mutual interaction between CBE/MOMBE as a deposition technique and other fields of surface science is described as well as the impact on the deposition technology of other semiconductors (e.g. for Si-based material systems). Future prospects of CBE are finally discussed, particularly in comparison with the competing techniques MBE and MOCVD (metal-organic chemical vapor deposition).

  11. 8th International Summer Institute in Surface Science

    CERN Document Server

    Howe, Russell

    1988-01-01

    This volume contains review articles written by the invited speakers at the eighth International Summer Institute in Surface Science (ISISS 1987), held at the University of Wisconsin-Milwaukee in August of 1987. During the course of ISISS, invited speakers, all internationally recognized experts in the various fields of surface science, present tutorial review lectures. In addition, these experts are asked to write review articles on their lecture topic. Former ISISS speakers serve as advisors concerning the selection of speakers and lecture topics. Em­ phasis is given to those areas which have not been covered in depth by recent Summer Institutes, as well as to areas which have recently gained in significance and in which important progress has been made. Because of space limitations, no individual volume of Chemistry and Physics of Solid Surfaces can possibly cover the whole area of modem surface science, or even give a complete survey of recent pro­ gress in the field. However, an attempt is made to pres...

  12. EDITORIAL: Carbon-based nanoscience and nanotechnology: where are we, where are we heading? Carbon-based nanoscience and nanotechnology: where are we, where are we heading?

    Science.gov (United States)

    Soukiassian, Patrick G.; Ramachandra Rao, M. S.

    2010-09-01

    'Without carbon, life cannot exist', the saying goes, and not only life. For technological development, carbon was the ultimate material of the 19th century. It allowed the beginnings of the industrial revolution, enabling the rise of the steel and chemical industries, it made the railways run, and it played a major role in the development of naval transportation. Silicon, another very interesting material which makes up a quarter of the earth's crust, became the material of the 20th century in its turn. It gave us the development of high performance electronics and photovoltaics with large fields of applications and played a pivotal role in the evolution of computer technology. The increased device performance of information and data processing systems is changing our lives on a daily basis, producing scientific innovations for a new industrial era. However, success breeds its own problems, and there is ever more data to be handled—which requires a nanoscience approach. This cluster aims to address various aspects, prospects and challenges in this area of great interest for all our futures. Carbon exists in various allotropic forms that are intensively investigated for their unusual and fascinating properties, from both fundamental and applied points of view. Among them, the sp2 (fullerenes, nanotubes and graphene) and sp3 (diamond) bonding configurations are of special interest since they have outstanding and, in some cases, unsurpassed properties compared to other materials. These properties include very high mechanical resistance, very high hardness, high resistance to radiation damage, high thermal conductivity, biocompatibility and superconductivity. Graphene, for example, possesses very uncommon electronic structure and a high carrier mobility, with charge carriers of zero mass moving at constant velocity, just like photons. All these characteristics have put carbon and carbon-related nanomaterials in the spotlight of science and technology research. The

  13. Bibliometric analysis of the development of nanoscience research in South Africa

    Directory of Open Access Journals (Sweden)

    Xolani Makhoba

    2017-11-01

    Full Text Available Nanotechnology is a fast-growing scientific research area internationally and is classified as an important emerging research area. In response to this importance, South African researchers and institutions have also increased their efforts in this area. A bibliometric study of articles as indexed in the Web of Science considered the development in this field with respect to the growth in literature, collaboration profile and the research areas that are more within the country’s context. We also looked at public institutions that are more active in this arena, including government policy considerations as guided by the National Nanotechnology Strategy launched in 2005. We found that the number of nanotechnology publications have shown a remarkable growth ever since the launch of the strategy. Articles on nanotechnology have been published in numerous journals, with Electrochimica Acta publishing the most, followed by Journal of Nanoscience and Nanotechnology. These publications fall within the traditional domains of chemistry and physics. In terms of the institutional profile and based on publication outputs over the period reviewed, the Council for Scientific and Industrial Research is a leading producer of publications in nanotechnology, followed by the University of the Witwatersrand – institutions that are both based in the Gauteng Province. There is a high level of international collaboration with different countries within this field – the most productive collaboration is with India, followed by the USA and China, as measured through co-authorship. Significance: Nanotechnology as a field of research is experiencing rapid growth and there is a need to understand progress from a South African perspective.

  14. PREFACE: INERA Conference 2015: Light in Nanoscience and Nanotechnology (LNN 2015)

    Science.gov (United States)

    Nesheva, D.; Chamati, H.; Genova, J.; Gesheva, K.; Ivanova, T.; Szekeres, A.

    2016-02-01

    We are pleased to introduce the Proceedings of the Conference ''Light in Nanoscience and Nanotechnology 2015'' (LNN 2015) organized by the Institute of Solid State Physics, Bulgarian Academy of Sciences in the frames of the INERA Project ''Research and Innovation Capacity Strengthening of ISSP-BAS in Multifunctional Nanostructures'' REGPOT-2012-2013-1 NMP. The LNN 2015 Conference was dedicated to the ''International year of light - 2015''. The Conference took place from 20th to 22nd of October in the beautiful spa resort Hissar, situated 140 km away from Sofia, close to the famous Valley of Roses, amidst a real abundance of curative mineral waters. The resort has an old history - even the ancient Romans knew well the curative properties of the water. Today the town has more than 4 km of Roman as well as architectural remains. During the age of the Roman Empire, the town, called Augusta, was a wealthy healing center with Emperors' palaces, wide stone streets, marble baths, statues of Roman Gods and exuberant vegetation. Participants from 13 different countries delivered 22 invited lectures, 17 oral and 46 poster presentations, contributing in 8 different topics. Papers submitted to the Proceedings were refereed according to the standards of the Journal of Physics: Conference Series and the accepted ones illustrate the diversity and the high level of the contributions. The Conference gave a good opportunity for interesting discussions and exchange of ideas between the participants. Not least, a significant factor for the success of the LNN 2015 was the social program, the relaxing spa facilities and the guided tour through the Roman remains of the town. The proceedings of conferences and workshops organized in the frames of INERA Project are regularly published by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for providing us this opportunity.

  15. EDITORIAL: Focus on Advances in Surface and Interface Science 2008 FOCUS ON ADVANCES IN SURFACE AND INTERFACE SCIENCE 2008

    Science.gov (United States)

    Scheffler, Matthias; Schneider, Wolf-Dieter

    2008-12-01

    Basic research in surface and interface science is highly interdisciplinary, covering the fields of physics, chemistry, biophysics, geo-, atmospheric and environmental sciences, material science, chemical engineering, and more. The various phenomena are interesting by themselves, and they are most important in nearly all modern technologies, as for example electronic, magnetic, and optical devices, sensors, catalysts, lubricants, hard and thermal-barrier coatings, protection against corrosion and crack formation under harsh environments. In fact, detailed understanding of the elementary processes at surfaces is necessary to support and to advance the high technology that very much founds the prosperity and lifestyle of our society. Current state-of-the-art experimental studies of elementary processes at surfaces, of surface properties and functions employ a variety of sophisticated tools. Some are capable of revealing the location and motion of individual atoms. Others measure excitations (electronic, magnetic and vibronic), employing, for example, special light sources such as synchrotrons, high magnetic fields, or free electron lasers. The surprising variety of intriguing physical phenomena at surfaces, interfaces, and nanostructures also pose a persistent challenge for the development of theoretical descriptions, methods, and even basic physical concepts. This second focus issue on the topic of 'Advances in Surface and Interface Science' in New Journal of Physics, following on from last year's successful collection, provides an exciting synoptic view on the latest pertinent developments in the field. Focus on Advances in Surface and Interface Science 2008 Contents Organic layers at metal/electrolyte interfaces: molecular structure and reactivity of viologen monolayers Stephan Breuer, Duc T Pham, Sascha Huemann, Knud Gentz, Caroline Zoerlein, Ralf Hunger, Klaus Wandelt and Peter Broekmann Spin polarized d surface resonance state of fcc Co/Cu(001) K Miyamoto, K

  16. [Bio-nanoscience and bio-nanotechnology: social and ethical aspects].

    Science.gov (United States)

    Martín-Lomas, Manuel

    2006-01-01

    This article is an abstract of a conference with the same title presented at the XIII Jornadas sobre Derecho y Genoma Humano and is basically centred in a report for the Royal Society and the Royal Academy of Engineering entitled Nanoscience and Nanotechnology made publicly available July 2004.

  17. Surface science in hernioplasty: The role of plasma treatments

    Science.gov (United States)

    Nisticò, Roberto; Magnacca, Giuliana; Martorana, Selanna

    2017-10-01

    The aim of this review is to clarify the importance of surface modifications induced in biomaterials for hernia-repair application. Starting from the pioneering experiences involving proto-materials as ancient prosthesis, a historical excursus between the biomaterials used in hernioplasty was realized. Subsequently, after the revolutionary discovery of stereoregular polymerization followed by the PP application in the biomedical field performed by the surgeon F. Usher, a comparative study on different hernia-repair meshes available was realized in order to better understand all the outstanding problems and possible future developments. Furthermore, since many unsolved problems on prosthetic devices implantation are linked to phenomena occurring at the interface between the biomaterials surface and the body fluids, the importance of surface science in hernioplasty was highlighted and case studies of new surface-modified generations of prosthesis presented. The results discussed in the following evidence how the surface study are becoming increasingly important for a proper knowledge of issues related to the interaction between the living matter and the artificial prostheses.

  18. Reducing Motional Decoherence in Ion Traps with Surface Science Methods

    Science.gov (United States)

    Haeffner, Hartmut

    2014-03-01

    Many trapped ions experiments ask for low motional heating rates while trapping the ions close to trapping electrodes. However, in practice small ion-electrode distances lead to unexpected high heating rates. While the mechanisms for the heating is still unclear, it is now evident that surface contamination of the metallic electrodes is at least partially responsible for the elevated heating rates. I will discuss heating rate measurements in a microfabricated surface trap complemented with basic surface science studies. We monitor the elemental surface composition of the Cu-Al alloy trap with an Auger spectrometer. After bake-out, we find a strong Carbon and Oxygen contamination and heating rates of 200 quanta/s at 1 MHz trap frequency. After removing most of the Carbon and Oxygen with Ar-Ion sputtering, the heating rates drop to 4 quanta/s. Interestingly, we still measure the decreased heating rate even after the surface oxidized from the background gas throughout a 40-day waiting time in UHV.

  19. Identification and visualization of the intellectual structure and the main research lines in nanoscience and nanotechnology at the worldwide level

    International Nuclear Information System (INIS)

    Muñoz-Écija, Teresa; Vargas-Quesada, Benjamín; Chinchilla-Rodríguez, Zaida

    2017-01-01

    The aim of this paper is to make manifest the intellectual and cognitive structure of nanoscience and nanotechnology (NST) by means of visualization techniques. To this end, we used data from the Web of Science (WoS), delimiting the data to the category NST during the period of 2000–2013, retrieving a total of 198,275 documents. Through direct author citation of these works, we identified their origins and the seminal papers, and through word co-occurrence extracted from the titles and abstracts, the main lines of research were identified. In view of both structures, we may affirm that NST is a young scientific discipline in constant expansion, needing time to establish its foundations but showing a strongly interdisciplinary character; its development is furthermore dependent upon knowledge from other disciplines, such as physics, chemistry, or material sciences. We believe that this information may be very useful for the NST scientific community, as it reflects a large-scale analysis of the research lines of NST and how research has changed over time in the diverse areas of NST. This study is moreover intended to offer a useful tool for the NST scientific community, revealing at a glance the main research lines and landmark papers. Finally, the methodology used in this study can be replicated in any other field of science to explore its intellectual and cognitive structure.

  20. Identification and visualization of the intellectual structure and the main research lines in nanoscience and nanotechnology at the worldwide level

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Écija, Teresa, E-mail: teresamunyozecija@gmail.com; Vargas-Quesada, Benjamín, E-mail: benjamin@ugr.es [University of Granada, Department of Information and Communication, Faculty of Communication and Documentation, SCImago Research Group (Spain); Chinchilla-Rodríguez, Zaida, E-mail: zaida.chinchilla@csic.es [CSIC, Institute of Public Goods and Policies (IPP), SCImago Research Group (Spain)

    2017-02-15

    The aim of this paper is to make manifest the intellectual and cognitive structure of nanoscience and nanotechnology (NST) by means of visualization techniques. To this end, we used data from the Web of Science (WoS), delimiting the data to the category NST during the period of 2000–2013, retrieving a total of 198,275 documents. Through direct author citation of these works, we identified their origins and the seminal papers, and through word co-occurrence extracted from the titles and abstracts, the main lines of research were identified. In view of both structures, we may affirm that NST is a young scientific discipline in constant expansion, needing time to establish its foundations but showing a strongly interdisciplinary character; its development is furthermore dependent upon knowledge from other disciplines, such as physics, chemistry, or material sciences. We believe that this information may be very useful for the NST scientific community, as it reflects a large-scale analysis of the research lines of NST and how research has changed over time in the diverse areas of NST. This study is moreover intended to offer a useful tool for the NST scientific community, revealing at a glance the main research lines and landmark papers. Finally, the methodology used in this study can be replicated in any other field of science to explore its intellectual and cognitive structure.

  1. Immersive virtual learning environments for nanoscience education: a paradigm shift

    Science.gov (United States)

    LightFeather, Judith

    2006-08-01

    Advances in microscopy and optical lenses have opened a 'window to nature' that allows us to see how the building blocks of our world interact at the atomic level. This scale of science encompasses all the sciences and demands collaboration between physics, chemistry, biology, engineering and information technology, as wells as the talents of simulation and modeling software technicians. Career paths are expanding exponentially with each passing year of new discoveries but guidance counselors at the high school level are still uninformed about the nano scale of science. They need to be included in the teacher training sessions in order to advise students on the subjects required to enter a university and excel in the integrated fields of science and math. All future STEM careers will require an expanded knowledge base in the various applications of nanotechnology for manufacturing. Foreign students are much better prepared for entry into the university level of learning as they are required to master three mathematic and three science courses per year throughout the high school curriculum while United States National Standards only require one math and one science course per year throughout high school.

  2. Surface and catalysis science in the Materials and Molecular Research Division

    International Nuclear Information System (INIS)

    1980-01-01

    Surface science studies at Lawrence Berkeley Laboratory are detailed. Subject areas include: structure of surfaces and adsorbed monolayers; reduction and oxidation of surfaces; catalytic chemistry; and structure of interfaces and thin films

  3. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  4. Designing high-temperature steels via surface science and thermodynamics

    Science.gov (United States)

    Gross, Cameron T.; Jiang, Zilin; Mathai, Allan; Chung, Yip-Wah

    2016-06-01

    Electricity in many countries such as the US and China is produced by burning fossil fuels in steam-turbine-driven power plants. The efficiency of these power plants can be improved by increasing the operating temperature of the steam generator. In this work, we adopted a combined surface science and computational thermodynamics approach to the design of high-temperature, corrosion-resistant steels for this application. The result is a low-carbon ferritic steel with nanosized transition metal monocarbide precipitates that are thermally stable, as verified by atom probe tomography. High-temperature Vickers hardness measurements demonstrated that these steels maintain their strength for extended periods at 700 °C. We hypothesize that the improved strength of these steels is derived from the semi-coherent interfaces of these thermally stable, nanosized precipitates exerting drag forces on impinging dislocations, thus maintaining strength at elevated temperatures.

  5. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    Science.gov (United States)

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    -support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.

  6. Structure of the Global Nanoscience and Nanotechnology Research Literature

    Science.gov (United States)

    2006-01-01

    t 5 kaganer, vm 5 jenichen, b 5 braun, w 5 williams, rs 4 neave , jh 4 liu, r 4 zhou, jm 3 zhang, j 3 yao, t 3 wu, tb 3 wu, sd 3 wang, h 3...2 univ helsinki 2 univ calif san diego 2 texas a&m univ 2 simon fraser univ 2 DataBase science citation index 129

  7. Nanoscience with liquid crystals from self-organized nanostructures to applications

    CERN Document Server

    Li, Quan

    2014-01-01

    This book focuses on the exciting topic of nanoscience with liquid crystals: from self-organized nanostructures to applications. The elegant self-organized liquid crystalline nanostructures, the synergetic characteristics of liquid crystals and nanoparticles, liquid crystalline nanomaterials, synthesis of nanomaterials using liquid crystals as templates, nanoconfinement and nanoparticles of liquid crystals are covered and discussed, and the prospect of fabricating functional materials is highlighted. Contributions, collecting the scattered literature of the field from leading and active player

  8. Surface physics of materials materials science and technology

    CERN Document Server

    Blakely, J M

    2013-01-01

    Surface Physics of Materials presents accounts of the physical properties of solid surfaces. The book contains selected articles that deal with research emphasizing surface properties rather than experimental techniques in the field of surface physics. Topics discussed include transport of matter at surfaces; interaction of atoms and molecules with surfaces; chemical analysis of surfaces; and adhesion and friction. Research workers, teachers and graduate students in surface physics, and materials scientist will find the book highly useful.

  9. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  10. Nanophysics and nanotechnology an introduction to modern concepts in nanoscience

    CERN Document Server

    Wolf, Edward L

    2015-01-01

    The long-awaited new edition of the highly successful textbook, which was the first to coherently present in a tutorial fashion the thread of physical concepts that lie at the heart of nanotechnology. Expanded by around 10-15 %, a completely new section has been added on graphene, covering physical and electrical properties, synthesis and applications, as well as discussions of computer logic devices and silicon technology. There are updates and corrections to every chapter, including the references, while the modern-day examples are chosen to represent important concepts and research tools. Finally, a free solutions manual is available for lecturers. Well illustrated, including explanatory diagrams to assist in the understanding of scientific principles, this is a self-contained text for upper-level undergraduate engineering or science students looking for a concise, easy-to-read introduction to this fascinating field of research.

  11. Sea Surface Height, Absolute, Aviso, 0.25 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviso Absolute Sea Surface Height is the Sea Surface Height Deviation plus the long term mean dynamic height. This is Science Quality data.

  12. On-line interactive virtual experiments on nanoscience

    Science.gov (United States)

    Kadar, Manuella; Ileana, Ioan; Hutanu, Constantin

    2009-01-01

    This paper is an overview on the next generation web which allows students to experience virtual experiments on nano science, physics devices, processes and processing equipment. Virtual reality is used to support a real university lab in which a student can experiment real lab sessions. The web material is presented in an intuitive and highly visual 3D form that is accessible to a diverse group of students. Such type of laboratory provides opportunities for professional and practical education for a wide range of users. The expensive equipment and apparatuses that build the experimental stage in a particular standard laboratory is used to create virtual educational research laboratories. Students learn how to prepare the apparatuses and facilities for the experiment. The online experiments metadata schema is the format for describing online experiments, much like the schema behind a library catalogue used to describe the books in a library. As an online experiment is a special kind of learning object, one specifies its schema as an extension to an established metadata schema for learning objects. The content of the courses, metainformation as well as readings and user data are saved on the server in a database as XML objects.

  13. Nanoscience and nanotechnologies in food industries: opportunities and research trends

    Science.gov (United States)

    Ranjan, Shivendu; Dasgupta, Nandita; Chakraborty, Arkadyuti Roy; Melvin Samuel, S.; Ramalingam, Chidambaram; Shanker, Rishi; Kumar, Ashutosh

    2014-06-01

    Nanomaterials have gained importance in various fields of science, technology, medicine, colloid technologies, diagnostics, drug delivery, personal care applications and others due to their small size and unique physico-chemical characteristic. Apart from above mentioned area, it is also extensively being used in food sector specifically in preservation and packaging. The future applications in food can also be extended to improve the shelf life, food quality, safety, fortification and biosensors for contaminated or spoiled food or food packaging. Different types and shapes of nanomaterials are being employed depending upon the need and nature of the food. Characterisation of these nanomaterials is essential to understand the interaction with the food matrix and also with biological compartment. This review is focused on application of nanotechnology in food industries. It also gives insight on commercial products in market with usage of nanomaterials, current research and future aspects in these areas. Currently, they are being incorporated into commercial products at a faster rate than the development of knowledge and regulations to mitigate potential health and environmental impacts associated with their manufacturing, application and disposal. As nanomaterials are finding new application every day, care should be taken about their potential toxic effects.

  14. 3S'83 Symposium on surface science. Contributions

    International Nuclear Information System (INIS)

    Braun, P.; Betz, G.; Husinsky, W.; Soellner, E.; Stoeri, H.; Varga, P.

    1983-01-01

    This symposium included the topics: electronic structure; ion-surface-interaction; surface structure; adsorption and reactivity; surface analysis; 60 papers were presented, only part of which pertain to INIS. (G.Q.)

  15. PREFACE: Proceedings of the International School and Workshop 'Nanoscience and Nanotechnology 2006' (University of Rome Tor Vergata and the Catholic University of Rome, 6 9 November 2006)

    Science.gov (United States)

    Bellucci, Stefano

    2007-10-01

    , especially at high temperatures, with remarkably inferior material density values. A useful application in aerospace is the improvement of electrical properties of composites made of carbon nanotubes and epoxy resin; the use of such nanocomposites for electromagnetic interference shielding was the object of the talk by F Micciulla (University of Rome 'La Sapienza', Italy). The synergies of fourteen main companies and four research centres working together in a Finmeccanica Focus Group on Nanomaterials and Nanotechnologies was described by C. Falessi (SELEX-SI, Italy); this group is coordinating a Multiscale NanoScience-Engineering Integration initiative to study, design, develop and test nanotechnology based metamaterials, devices, sensors and systems. N Pugno (Polito, Torino, Italy) tackled the issue of nanotribology of biological systems involving miniaturized contacts with a very high surface to volume ratio, which suggests the feasibility of strong and reversible adhesive materials as well as of fully invisible macroscopic cables. Supersonic cluster beam deposition techniques to produce nanostructured thin films of transition metal oxides for applications where a high specific surface is needed, such as gas sensing and devices for detecting properties for volatile organic compounds and gases related to environmental pollution, was the subject of the presentation by L Seminara (SELEX-Comms, Italy). Investigations in complex structures with advanced nanomechanical tests were discussed by M Berg (Hysitron, USA). Two sessions were devoted to biology, medicine and pharmaceuticals. A tutorial lecture by Vincenzo Balzani (University of Bologna, Italy) introduced the audience to the topic of molecular devices and machines, as a journey into the nano world. Molecular recognition in nanosystems was the subject of a lecture by P Baglioni (University of Firenze, Italy) while Santina Carnazza lectured on surface bio-functionalization (by controlled ion implantation and fibronectin

  16. 52nd colloid and surface science symposium. Proceedings volume

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, E.L. Jr.; Corbett, H.G.

    1978-05-01

    Abstracts are presented under the headings: cell/surface interactions, surface properties and reactions of catalysts, solution chemistry of surfactants, dynamic systems, microorganism/surface interactions, gas-solid interactions, biological surfaces, solid sorbents, lung surfactant and intestinal absorption, pigments, and liquid systems. (DLC)

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 3. Issue front cover thumbnail. Volume 31, Issue 3. June 2008, pages 199-584. Proceedings of the 'National Review and Coordination Meeting on Nanoscience and Nanotechnology', Hyderabad, 2007. pp 199-199. Foreword · S B Krupanidhi G Sundararajan ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    DST Unit on Nanoscience, Department of Physics, University of Pune, Pune 411 007, India; CTSR, Department of Materials Science and Engineering, SUNY Stony Brook, Stony Brook, NY 11794, USA; UGC-DAE Consortium for Scientific Research, Bhabha Atomic Research Centre, Mumbai 400 085, India; Laser and ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Special Issues. Bulletin of Materials Science. pp 199-584 Volume 31 Issue 3 June 2008. Proceedings of the 'National Review and Coordination Meeting on Nanoscience and Nanotechnology', Hyderabad, 2007. Editor: S. B. Krupanidhi Guest Editors: G. Sundararajan and Tata Narasinga Rao. pp 547-651 Volume 29 Issue ...

  20. Acousto-Optic Imaging Spectrometers for Mars Surface Science

    Science.gov (United States)

    Glenar, D. A.; Blaney, D. L.

    2000-01-01

    NASA's long term plan for Mars sample collection and return requires a highly streamlined approach for spectrally characterizing a landing site, documenting the mineralogical make-up of the site and guiding the collections of samples which represent the diversity of the site. Ideally, image data should be acquired at hundreds of VIS and IR wavelengths, in order to separately distinguish numerous anticipated species, using principal component analysis and linear unmixing. Cameras with bore-sighted point spectrometers can acquire spectra of isolated scene elements, but it requires 10(exp 2) to 10(exp 2) successive motions and precise relative pointing knowledge in order to create a single data cube which qualifies as a spectral map. These and other competing science objectives have to be accomplished within very short lander/rover operational lifetime (a few sols). True, 2-D imaging spectroscopy greatly speeds up the data acquisition process, since the spectra of all pixels in the scene are collected at once. This task can be accomplished with cameras that use electronically tunable acousto-optic tunable filters (AOTFs) as the optical tuning element. AOTFs made from TeO2 are now a mature technology, and operate at wavelengths from near-UV to about 5 microns. Because of incremental improvements in the last few years, present generation devices are rugged, radiation-hard and operate at temperatures down to at least 150K so they can be safely integrated into the ambient temperature optics of in-situ instruments such as planetary or small-body landers. They have been used for ground-based astronomy, and were also baselined for the ST-4 Champollion IR comet lander experiment (CIRCLE), prior to cancellation of the ST-4 mission last year. AIMS (for Acousto-optic Imaging spectrometer), is a prototype lander instrument which is being built at GSFC with support by the NASA OSS Advanced Technologies and Mission Studies, Mars Instrument Definition and Development Program (MIDP

  1. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Date of birth: 24 July 1953. Specialization: Nanoscience & Nanotechnology, Metal Oxide Thin Films and Heterostructures, Dye Sensitised Solar Cells, Solar Water Splitting Address: Professor of Physics, Indian Institute of Science Education & Research, Dr Homi Bhabha Road, Pune411 008, Maharashtra Contact:

  2. Science synergism study for EOS on evolution of desert surfaces

    Science.gov (United States)

    Farr, Tom G.

    1987-01-01

    The effectiveness of EOS data as a basis for the study of desert surfaces' evolution is presently evaluated for both long and short term geomorphic evolution. Attention is given to the usefulness of such sensor systems planned for EOS as MODIS for regional vegetation distribution/variability monitoring, HIRIS for visible-near IR observations, TIMS for lithological identification, HMMR and SSMI for soil characteristics, LASA for atmospheric profiles, SAR for surface roughness, ALT for two-dimensional topography, ACR for the calibration of imaging sensors, and ERBE for climate modeling and regional surface albedo variation determinations.

  3. Surface science studies on titania for solar fuel applications

    Science.gov (United States)

    Hadsell, Courtney Sara Mathews

    Titanium dioxide (titania) is a well-studied material for various applications including but not limited to, paint, sunscreen, pharmaceuticals and solar cell applications (photocatalysis.) It can be found in three main crystal forms; rutile, anatase, and brookite and this work will focus on the anatase form which has been heavily studied for its potential in dye sensitized solar cells (DSSCs.) I propose that aqueous and photo dye stability can be improved by taking special care to the exposed surface of anatase. Additionally, the theoretical maximum open circuit voltage of a DSSC is dependent upon which surface is exposed to the electrolyte. Previous works in this area have not been rigorous with respect to the surface and morphology of titania being used. Standard synthesis techniques of anatase lead to a crystal that generally has 94% of the titania (101) surface exposed, and the other 6% is the higher energy (001) surface. The (101) surface has 5 & 6-fold coordinated titania whereas the (001) surface only has 5-fold (under) coordinated titania. This under-coordination leads to enhanced reactivity of the (001) surface which has been demonstrated by dissassociative adsorption of water, and catalysis applications. Much theoretical work has focused on the minority (001) surface because up until recently synthesizing anatase with enhanced exposure of the (001) surface has been difficult. The initial materials for this study will be multilayer titania nanotubes (TiNTs) and nanosheets (TiNS) which have been previously characterized by my predecessor. The TiNTs and TiNS have 100% exposed (001)-like surface. Both of these materials show enhanced stability of phosphonated dye binding as compared to the current standard of anatase nanoparticles (NPs) however, due to their limited thermal stability the potential of incorporating the TiNTs and TiNSs into devices has been eliminated in this study. To overcome the device limitations I will synthesis a novel titania nanotile

  4. Nano-science and nano-technology is the basis of a new era industry

    International Nuclear Information System (INIS)

    Akanaev, B. A.; Baitembetova, B.A.; Beisembaev, M.A.; Mansurov, Z.A.

    2001-01-01

    Full text: After discovering fullerenes in 1985 and nanotubes later in 1991 one could speculate about the new allotrope state of carbon-frame structure consisted allometry from carbon atoms. Before just two allotrope structures were known - diamond and graphite; but the third form is a huge (sometimes enormous) molecules that has a unique physical and chemical properties. For instance, it is one hundred times crash-proved than steel, but weights just one sixth of the one. Though nanotubes properties are similar to the conductor's, but if nano-tube has a structure defect (one carbon six angle would be replaced by pentagons) we can produce a semiconductor belt. If to locate inside nanotubes the whole chain from fullerenes with already inserted in them by atoms of gadolinium, we receive a semiconductor. We offer a new and cheap method of obtaining of nano-tubes at an etching of catalytic agents. The essence of carbides in the mechanism of derivation of carbonaceous deposition on dispersible particles of metals is described by common scheme. According to this mechanism at interaction of hydrocarbons with oxides there is restoring metals, which again interacting with hydrocarbons, will generate acetylide(carbides). The decay last again is carried on to derivation by ferrous and free carbonium, on the basis of which the carbonaceous deposition of various frame can be shaped, including the nanotubes

  5. Engaging Students in Early Exploration of Nanoscience Topics Using Hands-On Activities and Scanning Tunneling Microscopy

    Science.gov (United States)

    Furlan, Ping Y.

    2009-01-01

    This manuscript reports on efforts to introduce beginning college students to the modern nanoscience field. These include: implementing selected experiments into sequencing core first-year and second-year chemistry laboratory courses; providing students with a first research experience; and engaging them in service learning and outreach programs…

  6. Density functional theory in surface science and heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.

    2006-01-01

    Solid surfaces are used extensively as catalysts throughout the chemical industry, in the energy sector, and in environmental protection. Recently, density functional theory has started providing new insight into the atomic-scale mechanisms of heterogeneous catalysis, helping to interpret the large...... amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity...

  7. Exploring the intellectual structure of nanoscience and nanotechnology: journal citation network analysis

    International Nuclear Information System (INIS)

    Jo, Haejin; Park, Yongtae; Kim, Sarah Eunkyung; Lee, Hakyeon

    2016-01-01

    Understanding the research trends and intellectual structure of nanoscience and nanotechnology (nano) is important for governments as well as researchers. This paper investigates the intellectual structure of nano field and explores its interdisciplinary characteristics through journal citation networks. The nano journal network, where 41 journals are nodes and citation among the journals are links, is constructed and analyzed using centrality measures and brokerage analysis. The journals that have high centrality scores are identified as important journals in terms of knowledge flow. Moreover, an intermediary role of each journal in exchanging knowledge between nano subareas is identified by brokerage analysis. Further, the nano subarea network is constructed and investigated from the macro view of nano field. This paper can provide the micro and macro views of intellectual structure of nano field and therefore help researchers who seek appropriate journals to acquire knowledge and governments who develop R&D strategies for nano.

  8. Exploring the intellectual structure of nanoscience and nanotechnology: journal citation network analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Haejin, E-mail: insomnia0@snu.ac.kr; Park, Yongtae, E-mail: parkyt1@snu.ac.kr [Seoul National University, Department of Industrial Engineering, College of Engineering (Korea, Republic of); Kim, Sarah Eunkyung, E-mail: eunkyung@seoultech.ac.kr [Seoul National University of Science and Technology, Graduate School of Nano-IT-Design (Korea, Republic of); Lee, Hakyeon, E-mail: hylee@seoultech.ac.kr [Seoul National University of Science and Technology, Department of Industrial and Systems Engineering (Korea, Republic of)

    2016-06-15

    Understanding the research trends and intellectual structure of nanoscience and nanotechnology (nano) is important for governments as well as researchers. This paper investigates the intellectual structure of nano field and explores its interdisciplinary characteristics through journal citation networks. The nano journal network, where 41 journals are nodes and citation among the journals are links, is constructed and analyzed using centrality measures and brokerage analysis. The journals that have high centrality scores are identified as important journals in terms of knowledge flow. Moreover, an intermediary role of each journal in exchanging knowledge between nano subareas is identified by brokerage analysis. Further, the nano subarea network is constructed and investigated from the macro view of nano field. This paper can provide the micro and macro views of intellectual structure of nano field and therefore help researchers who seek appropriate journals to acquire knowledge and governments who develop R&D strategies for nano.

  9. Mineral Surface Reactivity in teaching of Science Materials

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    In the last fifty years, science materials issues has required the study of air pollution, water and soil to prevent and remedy the adverse effects of waste originating from anthropogenic activity and the development of new energies and new materials. The teaching of this discipline has been marked by lectures on general lines, materials, disciplines, who explained biased objects of reality, but often forgot the task of reconstruction and integration of such visions. Moving from that model, otherwise quite static, to a dynamic relational model, would in our view, a real revolution in education. This means taking a systematic approach to complex both in interpreting reality and in favor when learning. Children relationships are as important or more than single objects, and it is to discover fundamental organizational principles of phenomena we seek to interpret or in other words, find the pattern that connects. Thus, we must work on relationships and also take into account the relation between the observer and the observed. Educate about relationships means that studies should always be considered within a framework of probabilities, not absolute certainties. This model of systemic thinking, dealing with complexity, is a possibility to bring coherence to our educational work, because the complexity is not taught, complexity is live, so that complex thinking is extended (and fed) in a form educate complex. It is the task of teaching to help people move from level to level of decision reviews. This means that systems thinking should be extended in a local action, action that engages the individual and the environment. Science Materials has emerged as a discipline of free choice for pupils attending chemical engineering which has been assigned 6.0 credits. The chemical engineer's professional profile within the current framework is defined as a professional knowledge as a specialization technical / functional, working in a learning organization and the formation of

  10. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  11. Thermochemical Surface Engineering: A Playground for Science and Innovation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Jellesen, Morten Stendahl

    2017-01-01

    Surface engineering by thermochemical processing is the intentional change of the composition of a material at elevated temperature with the purpose to improve materials performance. In thermochemical processing components from the starting material are essential in the development of the phases ...... hardening of titanium alloys, as well as thermo-reactive diffusion for extreme wear resistance...

  12. Surface science studies of model fuel cell electrocatalysts

    Science.gov (United States)

    Marković, N. M.; Ross, P. N.

    2002-04-01

    The purpose of this review is to discuss progress in the understanding of electrocatalytic reactions through the study of model systems with surface spectroscopies. Pure metal single crystals and well-characterized bulk alloys have been used quite successfully as models for real (commercial) electrocatalysts. Given the sheer volume of all work in electrocatalysis that is on fuel cell reactions, we will focus on electrocatalysts for fuel cells. Since Pt is the model fuel cell electrocatalyst, we will focus entirely on studies of pure Pt and Pt bimetallic alloys. The electrode reactions discussed include hydrogen oxidation/evolution, oxygen reduction, and the electrooxidation of carbon monoxide, formic acid, and methanol. Surface spectroscopies emphasized are FTIR, STM/AFM and surface X-ray scattering (SXS). The discussion focuses on the relation between the energetics of adsorption of intermediates and the reaction pathway and kinetics, and how the energetics and kinetics relate to the extrinsic properties of the model system, e.g. surface structure and/or composition. Finally, we conclude by discussing the limitations that are reached by using pure metal single crystals and well-characterized bulk alloys as models for real catalysts, and suggest some directions for developing more realistic systems.

  13. Surface Chemistry of CWAs for Decon Enabling Sciences

    Science.gov (United States)

    2014-11-04

    Ultraviolet and Visible Photochemistry of Methanol at 3D Mesoporous Networks: TiO, The Journal of Physical Chemistry C, (07 2013): 15035. doi...A for none) Presentations since most recent interim report for this project: " Photochemistry of Methanol at 3-D Networked Aerogels of TiO2 and...evaporation • Studied the uptake, thermal, and photochemistry of agent simulants on TiO2 surfaces • Initiated experiments on the uptake and

  14. Surface science. Adhesion and friction in mesoscopic graphite contacts.

    Science.gov (United States)

    Koren, Elad; Lörtscher, Emanuel; Rawlings, Colin; Knoll, Armin W; Duerig, Urs

    2015-05-08

    The weak interlayer binding in two-dimensional layered materials such as graphite gives rise to poorly understood low-friction characteristics. Accurate measurements of the adhesion forces governing the overall mechanical stability have also remained elusive. We report on the direct mechanical measurement of line tension and friction forces acting in sheared mesoscale graphite structures. We show that the friction is fundamentally stochastic in nature and is attributable to the interaction between the incommensurate interface lattices. We also measured an adhesion energy of 0.227 ± 0.005 joules per square meter, in excellent agreement with theoretical models. In addition, bistable all-mechanical memory cell structures and rotational bearings have been realized by exploiting position locking, which is provided solely by the adhesion energy. Copyright © 2015, American Association for the Advancement of Science.

  15. Building Surface Science Capacity to Serve the Automobile Industry in Southeastern Michigan, final report

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Weidian

    2013-09-27

    This project, “Building Surface Science Capacity to Serve the Automobile Industry in Southeastern Michigan” was carried out in two phases: (1) the 2009 – 2012 renovation of space in the new EMU Science Complex, which included the Surface Science Laboratory (SSL), a very vigorous research lab at EMU that carries on a variety of research projects to serve the auto and other industries in Michigan; and (2) the 2013 purchase of several pieces of equipment to further enhance the research capability of the SSL. The funding granted by the DoE was proposed to “renovate the space in the Science Complex to include SSL and purchase equipment for tribological and electrochemical impedance measurements in the lab, thus SSL will serve the auto and other industries in Michigan better.” We believe we have fully accomplished the mission.

  16. Intense positron beam and its application to surface science

    International Nuclear Information System (INIS)

    Ito, Y.; Hirose, M.; Kanazawa, I.; Sueoka, O.; Takamura, S.; Okada, S.

    1992-01-01

    Intense pulsed slow positron beam has been produced using the 100 MeV electron LINAC of JAERI · Tokai. In order to use the beam for surface studies such as positron diffraction and positron microscopy, it was transferred from the solenoid magnetic field to field free region and then was brightness-enhanced. The beam size was reduced from 10 mmφ (in the magnetic field) to 0.5 mmφ after two stages of re-moderation. Using the intense brightness-enhanced positron beam we have observed for the first time RHEPD (Reflection High-Energy Positron Diffraction) patterns. A design of re-emission positron microscopy is also described. (author)

  17. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/pram/067/01/0093-0100. Keywords. Nanotechnology; nanoscience; nanoengineering; nanomedicine; Center for Nanoscale Science and Engineering; Kentucky. Abstract. The Center for Nanoscale Science and Engineering (CeNSE) at the University of Kentucky is a multidisciplinary group ...

  18. Surface science study of selective ethylene epoxidation catalyzed by the Ag(110) surface: Structural sensitivity

    International Nuclear Information System (INIS)

    Campbell, C.T.

    1984-01-01

    The selective oxidation of ethylene to ethylene epoxide (C 2 H 4 +1/2O 2 →C 2 H 4 O) over Ag is the simplest example of kinetically controlled, selective heterogeneous catalysis. We have studied the steady-state kinetics and selectivity of this reaction for the first time on a clean, well-characterized Ag(110) surface by using a special apparatus which allows rapid (approx.20 s) transfer between a high-pressure catalytic microreactor and an ultrahigh vacuum surface analysis (AES, XPS, LEED, TDS) chamber. The effects of temperature and reactant pressures upon the rate and selectivity are virtually identical on Ag(110) and supported, high surface area Ag catalysts. The absolute specific rate (per Ag surface atom) is, however, some 100-fold higher for Ag(110) than for high surface area catalysts. This is related to the well-known structural sensitivity of this reaction. It is postulated that a small percentage of (110) planes (or [110]-like sites) are responsible for most of the catalytic activity of high surface area catalysts. The high activity of the (110) plane is attributed to its high sticking probability for dissociative oxygen adsorption, since the rate of ethylene epoxidation is shown in a related work [Ref. 1: C. T. Campbell and M. T. Paffett, Surf. Sci. (in press)] to be proportional to the coverage of atomically adsorbed oxygen at constant temperature and ethylene pressure

  19. Recent advances in vacuum sciences and applications

    Science.gov (United States)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  20. EDITORIAL: Three decades of scanning tunnelling microscopy that changed the course of surface science Three decades of scanning tunnelling microscopy that changed the course of surface science

    Science.gov (United States)

    Ramachandra Rao, M. S.; Margaritondo, Giorgio

    2011-11-01

    Three decades ago, with a tiny tip of platinum, the scientific world saw the real space imaging of single atoms with unprecedented spatial resolution. This signalled the birth of one of the most versatile surface probes, based on the physics of quantum mechanical tunnelling: the scanning tunnelling microscope (STM). Invented in 1981 by Gerd Binnig and Heinrich Rohrer of IBM, Zurich, it led to their award of the 1986 Nobel Prize. Atoms, once speculated to be abstract entities used by theoreticians for mere calculations, can be seen to exist for real with the nano-eye of an STM tip that also gives real-space images of molecules and adsorbed complexes on surfaces. From a very fundamental perspective, the STM changed the course of surface science and engineering. STM also emerged as a powerful tool to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as tribology, medical implants, catalysis, sensors and biology—besides elucidating the importance of local bonding geometries and defects, non-periodic structures and the co-existence of nano-scale phases. Atom-level probing, once considered a dream, has seen the light with the evolution of STM. An important off-shoot of STM was the atomic force microscope (AFM) for surface mapping of insulating samples. Then followed the development of a flurry of techniques under the general name of scanning probe microscopy (SPM). These techniques (STM, AFM, MFM, PFM etc) designed for atomic-scale-resolution imaging and spectroscopy, have led to brand new developments in surface analysis. All of these novel methods enabled researchers in recent years to image and analyse complex surfaces on microscopic and nanoscopic scales. All of them utilize a small probe for sensing the surface. The invention of AFM by Gerd Binnig, Calvin Quate and Christopher Gerber opened up new opportunities for characterization of a variety of materials, and various industrial applications could be

  1. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  2. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  3. Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover

    NARCIS (Netherlands)

    Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Köhler, J.; Martin, C.; Reitz, G.; Cucinotta, F.A.; Kim, M.-H.; Grinspoon, D.; Bullock, M.A.; Posner, A.; Gómez-Elvira, J.; Vasavada, A.; Grotzinger, J.P.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose

  4. Earth System Science at NASA: Teleconnections Between Sea Surface Temperature and Epidemics in Africa

    Science.gov (United States)

    Meeson, Blanche W.

    2000-01-01

    The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.

  5. Near-Surface Geophysics: Advancing Earth Science Through Advances in Imaging

    Science.gov (United States)

    Knight, R.

    2006-05-01

    The near-surface of Earth (the top ~100 m) is the region that supports human infrastructure, provides water and mineral resources, and is the interface between solid Earth and atmosphere for many of the biogeochemical cycles that sustain life. Developing an understanding of the processes and properties that occur here is essential for advancing our understanding of many parts of the Earth system. Yet our ability to study, sample, or probe this zone is remarkably primitive. Many investigations rely on drilling, trenching, and direct sampling. But given the pervasive spatial heterogeneity of the region, such methods yield information that is inadequate in terms of the spatial extent and density of sampling. As a result, the Earth science community is turning to geophysical imaging. The area of research that is focused on developing and applying geophysical methods to study this region of Earth is referred to as near-surface geophysics. Near-surface geophysics, as an area of research, includes many types of research, and many types of researchers. Some researchers are drawn to near-surface geophysics due to an interest in specific properties, processes, or applications, which can range from applied to basic science. As examples, near-surface geophysical methods are used for resource exploration and extraction, for the characterization of contaminated sites, for the assessment and design of built infrastructure; and to address scientific questions in neotectonics, volcanology, glaciology, hydrology, sedimentology, archaeology, geochemistry and biogeochemistry. Other researchers are drawn to near-surface geophysics due to an interest in the science of imaging as the driving scientific question. Advances in imaging require investigating the ways in which physical sensors can (or cannot) capture the complexity of a natural system, determining how best to quantify and enhance the spatial and temporal resolution of a measurement, developing new methods for the inversion of

  6. Bio-Inspired Self-Cleaning Surfaces

    Science.gov (United States)

    Liu, Kesong; Jiang, Lei

    2012-08-01

    Self-cleaning surfaces have drawn a lot of interest for both fundamental research and practical applications. This review focuses on the recent progress in mechanism, preparation, and application of self-cleaning surfaces. To date, self-cleaning has been demonstrated by the following four conceptual approaches: (a) TiO2-based superhydrophilic self-cleaning, (b) lotus effect self-cleaning (superhydrophobicity with a small sliding angle), (c) gecko setae-inspired self-cleaning, and (d) underwater organisms-inspired antifouling self-cleaning. Although a number of self-cleaning products have been commercialized, the remaining challenges and future outlook of self-cleaning surfaces are also briefly addressed. Through evolution, nature, which has long been a source of inspiration for scientists and engineers, has arrived at what is optimal. We hope this review will stimulate interdisciplinary collaboration among material science, chemistry, biology, physics, nanoscience, engineering, etc., which is essential for the rational design and reproducible construction of bio-inspired multifunctional self-cleaning surfaces in practical applications.

  7. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    Science.gov (United States)

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  8. Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover

    Science.gov (United States)

    Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L.; Brinza, David E.; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A.; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A.; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P.; MSL Science Team; Kemppinen, Osku; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; Berger, Thomas; Matthia, Daniel; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Hamilton, Victoria; Peterson, Joseph; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; García, César Martín; Mueller-Mellin, Reinhold; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  9. The ISIS Mission Concept: An Impactor for Surface and Interior Science

    Science.gov (United States)

    Chesley, Steven R.; Elliot, John O.; Abell, Paul A.; Asphaug, Erik; Bhaskaran, Shyam; Lam, Try; Lauretta, Dante S.

    2013-01-01

    The Impactor for Surface and Interior Science (ISIS) mission concept is a kinetic asteroid impactor mission to the target of NASA's OSIRIS-REx (Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer) asteroid sample return mission. The ISIS mission concept calls for the ISIS spacecraft, an independent and autonomous smart impactor, to guide itself to a hyper-velocity impact with 1999 RQ36 while the OSIRIS-REx spacecraft observes the collision. Later the OSIRIS-REx spacecraft descends to reconnoiter the impact site and measure the momentum imparted to the asteroid through the impact before departing on its journey back to Earth. In this paper we discuss the planetary science, human exploration and impact mitigation drivers for mission, and we describe the current mission concept and flight system design.

  10. PREFACE: 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6)

    Science.gov (United States)

    Ahsan Bhatti, Javaid; Hussain, Talib; Khan, Wakil

    2013-06-01

    The Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA) conference series has been organized to create a new forum in Asia and Australia to discuss vacuum, surface and related sciences, techniques and applications. The conference series is officially endorsed by the International Union for Vacuum Science, Technique and Application (IUVSTA). The International Steering Committee of VASSCAA is comprised of Vacuum Societies in seven countries: Australia, China, India, Iran, Japan, South Korea and Pakistan. VASSCAA-1 was organized by the Vacuum Society of Japan in 1999 in Tokyo, Japan. VASSCAA-2 was held in 2002 in Hong Kong, VASSCAA-3 in Singapore in 2005. VASSCAA-4 was held in Matsue, Japan in 2008 and VASSCAA-5 in 2010 in Beijing, China. The 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6) was held from 9-13 October 2012 in the beautiful city of Islamabad, Pakistan. The venue of the conference was the Pak-China Friendship Centre, Islamabad. More than six hundred local delgates and around seventy delegates from different countries participated in this mega event. These delegates included scientists, researchers, engineers, professors, plant operators, designers, vendors, industrialists, businessmen and students from various research organizations, technical institutions, universities, industries and companies from Pakistan and abroad. The focal point of the event was to enhance cooperation between Pakistan and the international community in the fields of vacuum, surface science and other applied technologies. At VASSCAA-6 85 oral presentations were delivered by local and foreign speakers. These were divided into different sessions according to their fields. A poster session was organized at which over 70 researchers and students displayed their posters. The best three posters won prizes. In parallel to the main conference sessions four technical short courses were held. The participants showed keen interest in all these

  11. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of

  12. Towards an atomic level understanding of niobia based catalysts and catalysis by combining the science of catalysis with surface science

    Directory of Open Access Journals (Sweden)

    Martin Schmal

    2009-06-01

    Full Text Available The science of catalysis and surface science have developed, independently, key information for understanding catalytic processes. One might argue: is there anything fundamental to be discovered through the interplay between catalysis and surface science? Real catalysts of monometallic and bimetallic Co/Nb2O5 and Pd-Co/Nb2O5 catalysts showed interesting selectivity results on the Fischer-Tropsch synthesis (Noronha et al. 1996, Rosenir et al. 1993. The presence of a noble metal increased the C+5 selectivity and decreased the methane formation depending of the reduction temperature. Model catalyst of Co-Pd supported on niobia and alumina were prepared and characterized at the atomic level, thus forming the basis for a comparison with "real" support materials. Growth, morphology and structure of both pure metal and alloy particles were studied. It is possible to support the strong metal support interaction suggested by studies on real catalysts via the investigation of model systems for niobia in comparison to alumina support in which this effect does not occur. Formation of Co2+ penetration into the niobia lattice was suggested on the basis of powder studies and can be fully supported on the basis of model studies. It is shown for both real catalysts and model systems that oxidation state of Co plays a key role in controlling the reactivity in Fischer-Tropsch reactions systems and that the addition of Pd is a determining factor for the stability of the catalyst. It is demonstrated that the interaction with unsaturated hydrocarbons depends strongly on the state of oxidation.As ciências da catálise e da superfície têm desenvolvido independentemente temas básicos para o entendimento de processos catalíticos. Pode-se até questionar se há ainda algo fundamental para ser descoberto através da interface entre catálise eciência da superfície? Catalisadores mono e bimetálicos de Co/Nb2O5 e Pd-Co/ Nb2O5 apresentaram resultados interessantes de

  13. Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications.

    Science.gov (United States)

    Liu, Juewen

    2012-08-14

    The interaction between DNA and inorganic surfaces has attracted intense research interest, as a detailed understanding of adsorption and desorption is required for DNA microarray optimization, biosensor development, and nanoparticle functionalization. One of the most commonly studied surfaces is gold due to its unique optical and electric properties. Through various surface science tools, it was found that thiolated DNA can interact with gold not only via the thiol group but also through the DNA bases. Most of the previous work has been performed with planar gold surfaces. However, knowledge gained from planar gold may not be directly applicable to gold nanoparticles (AuNPs) for several reasons. First, DNA adsorption affinity is a function of AuNP size. Second, DNA may interact with AuNPs differently due to the high curvature. Finally, the colloidal stability of AuNPs confines salt concentration, whereas there is no such limit for planar gold. In addition to gold, graphene oxide (GO) has emerged as a new material for interfacing with DNA. GO and AuNPs share many similar properties for DNA adsorption; both have negatively charged surfaces but can still strongly adsorb DNA, and both are excellent fluorescence quenchers. Similar analytical and biomedical applications have been demonstrated with these two surfaces. The nature of the attractive force however, is different for each of these. DNA adsorption on AuNPs occurs via specific chemical interactions but adsorption on GO occurs via aromatic stacking and hydrophobic interactions. Herein, we summarize the recent developments in studying non-thiolated DNA adsorption and desorption as a function of salt, pH, temperature and DNA secondary structures. Potential future directions and applications are also discussed.

  14. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    Science.gov (United States)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; hide

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  15. Mars in Motion: An online Citizen Science platform looking for changes on the surface of Mars

    Science.gov (United States)

    Sprinks, James Christopher; Wardlaw, Jessica; Houghton, Robert; Bamford, Steven; Marsh, Stuart

    2016-10-01

    The European FP7 iMars project has developed tools and 3D models of the Martian surface through the co-registration of NASA and ESA mission data dating from the Viking missions of the 1970s to the present day, for a much more comprehensive interpretation of the geomorphological and climatic processes that have taken and do take place. We present the Citizen Science component of the project, 'Mars in Motion', created through the Zooniverse's Panoptes framework to allow volunteers to look for and identify changes on the surface of Mars over time. 'Mars in Motion', as with many other current citizen science platforms of a planetary or other disciplinary focus, has been developed to compliment the results of automated data mining analysis software, both by validation through the creation of training data and by adding context - gathering more in-depth data on the type and metrics of change initially detected.Through the analysis of initial volunteer results collected in the second half of 2016, the accuracy and ability of untrained participants to identify geomorphological changes is considered, as well as the impact of their position in the system. Volunteer contribution, either as a filter for poor quality imagery pre-algorithm, validation of algorithmic analysis, or adding context to pre-detected change, and their awareness and interpretation of its importance, can directly influence engagement with the platform and therefore ultimately its success. Understanding the effect of the volunteer and software's role in the system on both the results of and engagement with planetary science citizen science platforms will be an important lesson for the future, especially as the next generation of planetary missions will likely collect data orders of magnitude greater in volume. To deal with the data overload, it is likely that human or software solutions alone will not be sufficient, and that a combination of the two working together in a complimentary system that combines

  16. Frontiers in particle science and technology

    International Nuclear Information System (INIS)

    Goddard, D.T.; Lawson, S.; Williams, R.A.

    2002-07-01

    The study of particulate materials and interfaces is a dominant discipline within chemical, pharmaceutical, biological, mineral, energy, consumer and healthcare products sectors. The role is set to expand with advances in engineered particulates, nanoscience and innovations in materials science and processing. This book addresses some key issues in these new frontiers for the research and industrial community. Such issues will continue to impact the quality of our everyday lives

  17. Discovering the future of molecular sciences

    CERN Document Server

    Pignataro, Bruno

    2014-01-01

    Bruno Pignataro is Professor of Physical Chemistry at the University of Palermo. He received his degree in chemistry in 1995 from the University of Catania and his PhD in materials science five years later. He has chaired the European Young Chemist Award in 2006, 2008, 2010 and 2012. He has authored more than 100 scientific publications and leads a group working in the fields of nanoscience, nanotechnology, electronics and biotechnology .

  18. Surface science and electrochemical studies of metal-modified carbides for fuel cells and hydrogen production

    Science.gov (United States)

    Kelly, Thomas Glenn

    Carbides of the early transition metals have emerged as low-cost catalysts that are active for a wide range of reactions. The surface chemistry of carbides can be altered by modifying the surface with small amounts of admetals. These metal-modified carbides can be effective replacements for Pt-based bimetallic systems, which suffer from the drawbacks of high cost and low thermal stability. In this dissertation, metal-modified carbides were studied for reactions with applications to renewable energy technologies. It is demonstrated that metal-modified carbides possess high activity for alcohol reforming and electrochemical hydrogen production. First, the surface chemistry of carbides towards alcohol decomposition is studied using density functional theory (DFT) and surface science experiments. The Vienna Ab initio Simulation Package (VASP) was used to calculate the binding energies of alcohols and decomposition intermediates on metal-modified carbides. The calculated binding energies were then correlated to reforming activity determined experimentally using temperature programmed desorption (TPD). In the case of methanol decomposition, it was found that tungsten monocarbide (WC) selectively cleaved the C-O bond to produce methane. Upon modifying the surface with a single layer of metal such as Ni, Pt, or Rh, the selectivity shifted towards scission of the C-H bonds while leaving the C-O bond intact, producing carbon monoxide (CO) and H2. High resolution energy loss spectroscopy (HREELS) was used to examine the bond breaking sequence as a function of temperature. From HREELS, it was shown that the surfaces followed an activity trend of Rh > Ni > Pt. The Au-modified WC surface possessed too low of a methanol binding energy, and molecular desorption of methanol was the most favorable pathway on this surface. Next, the ability of Rh-modified WC to break the C-C bond of C2 and C3 alcohols was demonstrated. HREELS showed that ethanol decomposed through an acetaldehyde

  19. NANO-2013: Knowledge Society: mutual influence and interference of science and society. Program and Abstract Book

    International Nuclear Information System (INIS)

    2013-01-01

    The NANO-2013 Symposium is the 5th edition of the series of the Humboldt-Kollegs with logo 'NANO'. It brought together world known experts in the Nano-science area from 15 countries. The book includes abstracts of the papers presented at Symposium.

  20. Surface and interface sciences of Li-ion batteries. -Research progress in electrode-electrolyte interface-

    Science.gov (United States)

    Minato, Taketoshi; Abe, Takeshi

    2017-12-01

    The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.

  1. Innovations from the “ivory tower”: Wilhelm Barthlott and the paradigm shift in surface science

    Directory of Open Access Journals (Sweden)

    Christoph Neinhuis

    2017-02-01

    Full Text Available This article is mainly about borders that have tremendous influence on our daily life, although many of them exist and act mostly unrecognized. In this article the first objective will be to address more generally the relation between university and society or industry, borders within universities, borders in thinking and the huge amount of misunderstandings and losses resulting from these obvious or hidden borders. In the second part and in more detail, the article will highlight the impact of the research conducted by Wilhelm Barthlott throughout his scientific career during which not only one border was removed, shifted or became more penetrable. Among the various fields of interest not mentioned here (e.g., systematics of Cactaceae, diversity and evolution of epiphytes, the unique natural history of isolated rocky outcrops called inselbergs, or the global distribution of biodiversity, plant surfaces and especially the tremendous diversity of minute structures on leaves, fruits, seeds and other parts of plants represent a common thread through 40 years of scientific career of Wilhelm Barthlott. Based on research that was regarded already old-fashioned in the 1970s and 1980s, systematic botany, results and knowledge were accumulated that, some 20 years later, initiated a fundamental turnover in how surfaces were recognized not only in biology, but even more evident in materials science.

  2. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    Science.gov (United States)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  3. Quantum mechanics with applications to nanotechnology and information science

    CERN Document Server

    Band, Yehuda B

    2013-01-01

    Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information th...

  4. Modeling and computational simulation and the potential of virtual and augmented reality associated to the teaching of nanoscience and nanotechnology

    Science.gov (United States)

    Ribeiro, Allan; Santos, Helen

    With the advent of new information and communication technologies (ICTs), the communicative interaction changes the way of being and acting of people, at the same time that changes the way of work activities related to education. In this range of possibilities provided by the advancement of computational resources include virtual reality (VR) and augmented reality (AR), are highlighted as new forms of information visualization in computer applications. While the RV allows user interaction with a virtual environment totally computer generated; in RA the virtual images are inserted in real environment, but both create new opportunities to support teaching and learning in formal and informal contexts. Such technologies are able to express representations of reality or of the imagination, as systems in nanoscale and low dimensionality, being imperative to explore, in the most diverse areas of knowledge, the potential offered by ICT and emerging technologies. In this sense, this work presents computer applications of virtual and augmented reality developed with the use of modeling and simulation in computational approaches to topics related to nanoscience and nanotechnology, and articulated with innovative pedagogical practices.

  5. Nano-ethics as NEST-ethics: Patterns of Moral Argumentation About New and Emerging Science and Technology

    NARCIS (Netherlands)

    Swierstra, Tsjalling; Rip, Arie

    2007-01-01

    There might not be a specific nano-ethics, but there definitely is an ethics of new & emerging science and technology (NEST), with characteristic tropes and patterns of moral argumentation. Ethical discussion in and around nanoscience and technology reflects such NEST-ethics. We offer an inventory

  6. Research councils facing new science and technology : the case of nanotechnology in Finland, the Netherlands, Norway and Switzerland

    NARCIS (Netherlands)

    van der Most, F.V.

    2009-01-01

    This thesis investigates how research funding organizations (RFOs) respond to a new emerging field of science and technology. It takes nanoscience and nanotechnology (nanotechnology for short) as its case and compares the responses of RFOs in Finland, the Netherlands, Norway and Finland.

  7. A surface science compatible epifluorescence microscope for inspection of samples under ultra high vacuum and cryogenic conditions.

    Science.gov (United States)

    Marquardt, Christian; Paulheim, Alexander; Rohbohm, Nils; Merkel, Rudolf; Sokolowski, Moritz

    2017-08-01

    We modified an epi-illumination light microscope and mounted it on an ultra high vacuum chamber for investigating samples used in a surface science experiment. For easy access and bake out, all optical components are placed outside the vacuum and the sample is imaged through a glass window. The microscope can be operated in reflection brightfield or epifluorescence mode to image the sample surface or fluorescent dye molecules adsorbed on it. The homemade sample mounting was made compatible for the use under the microscope; sample temperatures as low as 6 K can be achieved. The performance of the microscope is demonstrated on two model samples: Brightfield-images of a well-prepared Ag(100) surface show a macroscopic corrugation of the surface, although low energy electron diffraction data indicate a highly ordered crystalline surface. The surface shows macroscopic protrusions with flat regions, about 20-200 μm in diameter, in between. Fluorescence images of diluted 3,4,9,10-perylene tetracarboxylicacid dianhydride (PTCDA) molecules adsorbed on an ultrathin epitaxial KCl film on the Ag(100) surface show a shading effect at surface protrusions due to an inclined angle of incidence of the PTCDA beam during deposition. For some preparations, the distribution of the fluorescence intensity is inhomogeneous and shows a dense network of bright patches about 5 μm in diameter related to the macroscopic corrugation of the surface. We propose that such a light microscope can aid many surface science experiments, especially those dealing with epitaxial growth or fluorescent materials.

  8. A surface science compatible epifluorescence microscope for inspection of samples under ultra high vacuum and cryogenic conditions

    Science.gov (United States)

    Marquardt, Christian; Paulheim, Alexander; Rohbohm, Nils; Merkel, Rudolf; Sokolowski, Moritz

    2017-08-01

    We modified an epi-illumination light microscope and mounted it on an ultra high vacuum chamber for investigating samples used in a surface science experiment. For easy access and bake out, all optical components are placed outside the vacuum and the sample is imaged through a glass window. The microscope can be operated in reflection brightfield or epifluorescence mode to image the sample surface or fluorescent dye molecules adsorbed on it. The homemade sample mounting was made compatible for the use under the microscope; sample temperatures as low as 6 K can be achieved. The performance of the microscope is demonstrated on two model samples: Brightfield-images of a well-prepared Ag(100) surface show a macroscopic corrugation of the surface, although low energy electron diffraction data indicate a highly ordered crystalline surface. The surface shows macroscopic protrusions with flat regions, about 20-200 μm in diameter, in between. Fluorescence images of diluted 3,4,9,10-perylene tetracarboxylicacid dianhydride (PTCDA) molecules adsorbed on an ultrathin epitaxial KCl film on the Ag(100) surface show a shading effect at surface protrusions due to an inclined angle of incidence of the PTCDA beam during deposition. For some preparations, the distribution of the fluorescence intensity is inhomogeneous and shows a dense network of bright patches about 5 μm in diameter related to the macroscopic corrugation of the surface. We propose that such a light microscope can aid many surface science experiments, especially those dealing with epitaxial growth or fluorescent materials.

  9. Season Spotter: Using Citizen Science to Validate and Scale Plant Phenology from Near-Surface Remote Sensing

    Directory of Open Access Journals (Sweden)

    Margaret Kosmala

    2016-09-01

    Full Text Available The impact of a rapidly changing climate on the biosphere is an urgent area of research for mitigation policy and management. Plant phenology is a sensitive indicator of climate change and regulates the seasonality of carbon, water, and energy fluxes between the land surface and the climate system, making it an important tool for studying biosphere–atmosphere interactions. To monitor plant phenology at regional and continental scales, automated near-surface cameras are being increasingly used to supplement phenology data derived from satellite imagery and data from ground-based human observers. We used imagery from a network of phenology cameras in a citizen science project called Season Spotter to investigate whether information could be derived from these images beyond standard, color-based vegetation indices. We found that engaging citizen science volunteers resulted in useful science knowledge in three ways: first, volunteers were able to detect some, but not all, reproductive phenology events, connecting landscape-level measures with field-based measures. Second, volunteers successfully demarcated individual trees in landscape imagery, facilitating scaling of vegetation indices from organism to ecosystem. And third, volunteers’ data were used to validate phenology transition dates calculated from vegetation indices and to identify potential improvements to existing algorithms to enable better biological interpretation. As a result, the use of citizen science in combination with near-surface remote sensing of phenology can be used to link ground-based phenology observations to satellite sensor data for scaling and validation. Well-designed citizen science projects targeting improved data processing and validation of remote sensing imagery hold promise for providing the data needed to address grand challenges in environmental science and Earth observation.

  10. Built to last: designing facilities that support the rapidly changing technology of optics and nanoscience

    Science.gov (United States)

    Percifield, Jerry

    2005-08-01

    A major issue facing researchers today is the extremely fast rate of change in scientific instrumentation. Along with this, is the need to design research buildings that are flexible enough to support the changing needs of the science inside. The answer to this problem lies in the development of a proper design process. This paper will outline the major tenants of a successful design process and will then use The Biodesign Institute at Arizona State University as a working-example of a real-world solution to design challenges such as the creation of specialized spaces for nanotechnology and other highly sensitive technologies. Resolution of design requirements and the resulting EMI/RFI, Vibration and Noise levels of the Biodesign Institute will be presented.

  11. Clinical chemistry: challenges for analytical chemistry and the nanosciences from medicine.

    Science.gov (United States)

    Durner, Jürgen

    2010-02-01

    Clinical chemistry and laboratory medicine can look back over more than 150 years of eventful history. The subject encompasses all the medicinal disciplines as well as the remaining natural sciences. Clinical chemistry demonstrates how new insights from basic research in biochemical, biological, analytical chemical, engineering, and information technology can be transferred into the daily routine of medicine to improve diagnosis, therapeutic monitoring, and prevention. This Review begins with a presentation of the development of clinical chemistry. Individual steps between the drawing of blood and interpretation of laboratory data are then illustrated; here not only are pitfalls described, but so are quality control systems. The introduction of new methods and trends into medicinal analysis is explored, along with opportunities and problems associated with personalized medicine.

  12. The Nanoscience of Polyvalent Binding by Proteins in the Immune Response

    DEFF Research Database (Denmark)

    Vorup-Jensen, Thomas

    2016-01-01

    clear or in other way incapacitate the function of these drugs. To rationalize, why and how, the innate immune system especially interacts with nanomedicines, this chapter points to the prominent role of polyvalent interactions by large, immunoactive proteins with the surfaces of nanoparticles. From......Recent research has demonstrated that the successful use of nanometer-scaled material, such as nanoparticles, as medicines is often challenged by the host immune system. Mechanisms of the innate immunity seem to provide a swift response to administration of particulate nanomedicines, which may...... important ways of regulating the interactions, wanted or unwanted, with the innate immune system....

  13. Nanoscience Supporting the Research on the Negative Electrodes of Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Alain Mauger

    2015-12-01

    Full Text Available Many efforts are currently made to increase the limited capacity of Li-ion batteries using carbonaceous anodes. The way to reach this goal is to move to nano-structured material because the larger surface to volume ratio of particles and the reduction of the electron and Li path length implies a larger specific capacity. Additionally, nano-particles can accommodate such a dilatation/contraction during cycling, resulting in a calendar life compatible with a commercial use. In this review attention is focused on carbon, silicon, and Li4Ti5O12 materials, because they are the most promising for applications.

  14. Surface-water quality-assurance plan for the U.S. Geological Survey Washington Water Science Center

    Science.gov (United States)

    Mastin, Mark C.

    2016-02-19

    This Surface-Water Quality-Assurance Plan documents the standards, policies, and procedures used by the U.S. Geological Survey Washington Water Science Center (WAWSC) for activities related to the collection, processing, storage, analysis, and publication of surface-water data. This plan serves as a guide to all WAWSC personnel involved in surface-water data activities, and changes as the needs and requirements of the WAWSC change. Regular updates to this plan represent an integral part of the quality-assurance process. In the WAWSC, direct oversight and responsibility by the hydrographer(s) assigned to a surface-water station, combined with team approaches in all work efforts, assure highquality data, analyses, reviews, and reports for cooperating agencies and the public.

  15. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  16. science

    International Development Research Centre (IDRC) Digital Library (Canada)

    David Spurgeon

    green revolution". — seemed to confirm the value of science and technology to international development. Yet studies showed that, at that time, only about two percent of ... gap in science and technology between the Third World and the industrial- ..... Finance; Treasury Board; Industry, Trade and Commerce; Agriculture;.

  17. Bridging the fields of nanoscience and toxicology: nanoparticle impact on biological models

    Science.gov (United States)

    Ambrosone, A.; Marchesano, V.; Mattera, L.; Tino, A.; Tortiglione, C.

    2011-03-01

    In the emerging area of nanotechnology a key issue is related to the potential impacts of the novel nanomaterials on the environment and human health so that this technology can be used with minimal risk. Specifically designed to combine on a single structure multipurpose tags and properties, nanomaterials need a comprehensive characterization of both chemicophysical properties and toxicological evaluation, which is a challenging endeavor: the in vitro toxicity assays that are employed for nanotoxicity assessments do not accurately predict in vivo response. To overcome these limitations and gain a deeper understanding of nanoparticle-cell interactions, we have employed cnidarian models, in particular the freshwater polyp Hydra vulgaris, not opposed to more complex and evoluted systems, but to add valuable information, at an intermediate level between prokaryotes and vertebrates, on both cytoxicity and on pollution affecting the environment. By testing CdSe/CdS core shell nanocrystals in vivo, at whole animal level, we investigated the impact of their properties on uptake, accumulation, biodistribution, elicitation of behavioural responses. Spanning from animal to cell biology, we provide an analysis on metal based and semiconductor NC, discussing the crucial role played by the synthesis route and chemical surface on the toxicity for living organisms.

  18. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  19. Seventh BES [Basic Energy Sciences] catalysis and surface chemistry research conference

    International Nuclear Information System (INIS)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases

  20. Constraining the JULES land-surface model for different land-use types using citizen-science generated hydrological data

    Science.gov (United States)

    Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.

    2017-12-01

    Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.

  1. COMETARY SCIENCE. CHO-bearing organic compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy.

    Science.gov (United States)

    Wright, I P; Sheridan, S; Barber, S J; Morgan, G H; Andrews, D J; Morse, A D

    2015-07-31

    The surface and subsurface of comets preserve material from the formation of the solar system. The properties of cometary material thus provide insight into the physical and chemical conditions during their formation. We present mass spectra taken by the Ptolemy instrument 20 minutes after the initial touchdown of the Philae lander on the surface of comet 67P/Churyumov-Gerasimenko. Regular mass distributions indicate the presence of a sequence of compounds with additional -CH2- and -O- groups (mass/charge ratios 14 and 16, respectively). Similarities with the detected coma species of comet Halley suggest the presence of a radiation-induced polymer at the surface. Ptolemy measurements also indicate an apparent absence of aromatic compounds such as benzene, a lack of sulfur-bearing species, and very low concentrations of nitrogenous material. Copyright © 2015, American Association for the Advancement of Science.

  2. Surface science approach to heterogeneous catalysis: CO hydrogenation on transition metals

    Science.gov (United States)

    Bonzel, H. P.; Krebs, H. J.

    1982-05-01

    Modern surface sensitive electron spectroscopies and other surface analytical techniques have in recent years been extensively applied to the study of H 2 and CO adorption on transition metals. This work has now been extended to include the heterogeneous reaction between adsorbed H 2 and CO on these metals. The combination of surface analysis (carried out under ultra-high vacuum conditions) and reaction rate measurements in the range of 100 mbar to 1 bar total pressure is being practiced. This approach yields information on changes of the surface composition of the catalyst as well as data on reaction kinetics and the possible time dependence of the reaction rate. Low surface area samples — either single or polycrystalline - are used for these studies. In the present paper the results obtained by this approach will be reviewed and discussed in the light of the adsorption data. Recent advances in the direction of studying either poisoned or promoted catalytic surfaces will also be mentioned.

  3. Multifunctional magnetite and silica-magnetite nanoparticles: Synthesis, surface activation and applications in life sciences

    International Nuclear Information System (INIS)

    Campo, Aranzazu del; Sen, Tapas; Lellouche, Jean-Paul; Bruce, Ian J.

    2005-01-01

    A method for the introduction of amine groups onto the surface of magnetite and silica-coated magnetite nanoparticles has been established based on the condensation of aminopropyltriethoxysilane. Amine-modified particles were grafted with an oligonucleotide and used in the capture of a complimentary sequence. The particles' efficiency at capture was observed to correlate directly with amine group surface density

  4. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science

    Science.gov (United States)

    Fikiet, Marisia A.; Khandasammy, Shelby R.; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K.

    2018-05-01

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics.

  5. On the implications of the Surface Water and Ocean Topography (SWOT) mission for hydrologic science and applications (Invited)

    Science.gov (United States)

    Lettenmaier, D. P.

    2010-12-01

    The SWOT mission will provide surface water elevation and extent information with unprecedented accuracy and spatial resolution globally. All of the implications of thedata that SWOT will produce for the hydrologic science and applications communities are not yet apparent. The SWOT data will, however, certainly offer groundbreaking opportunities for estimation of two key terms in the land surface water budget: surface water storage (in almost all water bodies with surface area exceeding about 1 km2) and derived discharge for many of the world’s large rivers (widths greater than roughly 100-250 m). Among just a few of the science questions that the observations should allow us to address are a) what are the dynamics of floods and overbank flows in large rivers? b) what is the contribution of long-term, seasonal, and interannual storage in reservoirs, lakes, and wetlands to sea level? c) what is the magnitude of surface water storage changes at seasonal to decadal time scales and continental spatial scales relative to soil moisture and groundwater? d) what will be the implications of SWOT-based estimates of reservoir storage and storage change to the management of transboundary rivers? These quite likely are among just a few of the questions that SWOT will help elucidate. Others no doubt will arise from creative analyses of SWOT data in combination with data from other missions I conclude with a discussion of mechanisms that will help foster a community to investigate these and other questions, and the implications of a SWOT data policy.

  6. Nanoethics, Science Communication, and a Fourth Model for Public Engagement.

    Science.gov (United States)

    Miah, Andy

    2017-01-01

    This paper develops a fourth model of public engagement with science, grounded in the principle of nurturing scientific agency through participatory bioethics. It argues that social media is an effective device through which to enable such engagement, as it has the capacity to empower users and transforms audiences into co-producers of knowledge, rather than consumers of content. Social media also fosters greater engagement with the political and legal implications of science, thus promoting the value of scientific citizenship. This argument is explored by considering the case of nanoscience and nanotechnology, as an exemplar for how emerging technologies may be handled by the scientific community and science policymakers.

  7. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course

    Science.gov (United States)

    Urban, Michael J.

    2013-01-01

    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  8. Nanoscience in veterinary medicine.

    Science.gov (United States)

    Scott, N R

    2007-08-01

    Nanotechnology, as an enabling technology, has the potential to revolutionize veterinary medicine. Examples of potential applications in animal agriculture and veterinary medicine include disease diagnosis and treatment delivery systems, new tools for molecular and cellular breeding, identity preservation of animal history from birth to a consumer's table, the security of animal food products, major impact on animal nutrition scenarios ranging from the diet to nutrient uptake and utilization, modification of animal waste as expelled from the animal, pathogen detection, and many more. Existing research has demonstrated the feasibility of introducing nanoshells and nanotubes into animals to seek and destroy targeted cells. Thus, building blocks do exist and are expected to be integrated into systems over the next couple of decades on a commercial basis. While it is reasonable to presume that nanobiotechnology industries and unique developments will revolutionize veterinary medicine in the future, there is a huge concern, among some persons and organizations, about food safety and health as well as social and ethical issues which can delay or derail technological advancements.

  9. Introduction to nanoscience

    National Research Council Canada - National Science Library

    Hornyak, Gábor Louis

    2008-01-01

    ... and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not b...

  10. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science.

    Science.gov (United States)

    Fikiet, Marisia A; Khandasammy, Shelby R; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K

    2018-05-15

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. 4th-International Symposium on Ultrafast Surface Science - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hrvoje Petek

    2005-01-26

    The 4-th International Symposium on Ultrafast Surface Dynamics (UDS4) was held at the Telluride Summer Research Center on June 22-27, 2003. The International Organizing Committee consisting of Hrvoje Petek (USA), Xiaoyang Zhu (USA), Pedro Echenique (Spain) and Maki Kawai (Japan) brought together a total of 51 participants 16 of whom were from Europe, 10 from Japan, and 25 from the USA. The focus of the conference was on ultrafast electron or light induced processes at well-defined surfaces. Ultrafast surface dynamics concerns the transfer of charge and energy at solid surfaces on the femtosecond time scale. These processes govern rates of fundamental steps in surface reactions, interfacial electron transfer in molecular electronics, and relaxation in spin transport. Recent developments in femtosecond laser technology make it possible to measure by a variety of nonlinear optical techniques directly in the time domain the microscopic rates underlying these interfacial processes. Parallel progress in scanning probe microscopy makes it possible at a single molecular level to perform the vibrational and electronic spectroscopy measurements, to induce reactions with tunneling electrons, and to observe their outcome. There is no doubt that successful development in the field of ultrafast surface dynamics will contribute to many important disciplines.

  12. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    Directory of Open Access Journals (Sweden)

    V. Shutthanandan

    2012-06-01

    Full Text Available Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power free electron lasers (FEL. Photocathode quantum efficiency degradation is due to residual gases in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include helium ion microscopy, Rutherford backscattering spectrometry (RBS, atomic force microscopy, and secondary ion mass spectrometry (SIMS. In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the continuous electron beam accelerator facility (CEBAF photoinjector and one unused, were also analyzed using transmission electron microscopy (TEM and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but show evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements, the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  13. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  14. Lunar and planetary surface conditions advances in space science and technology

    CERN Document Server

    Weil, Nicholas A

    1965-01-01

    Lunar and Planetary Surface Conditions considers the inferential knowledge concerning the surfaces of the Moon and the planetary companions in the Solar System. The information presented in this four-chapter book is based on remote observations and measurements from the vantage point of Earth and on the results obtained from accelerated space program of the United States and U.S.S.R. Chapter 1 presents the prevalent hypotheses on the origin and age of the Solar System, followed by a brief description of the methods and feasibility of information acquisition concerning lunar and planetary data,

  15. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  16. Interaction of oxygen and carbon monoxide with Pt(111) at intermediate pressure and temperature : revisiting the fruit fly of surface science

    NARCIS (Netherlands)

    Bashlakov, Dmytro

    2014-01-01

    This thesis uses the surface science approach to address questions regarding the interaction of oxygen with platinum and its subsequent reaction with carbon monoxide. A Pt(111) single crystal surface is used as a model for the catalyst. Chapter 1 provides an overview of the literature on the

  17. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    DEFF Research Database (Denmark)

    Clarkson, R B; Odintsov, B M; Ceroke, P J

    1998-01-01

    ; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the nuclear spin population...

  18. Evolving research directions in Surface Ocean-Lower Atmosphere (SOLAS) science

    NARCIS (Netherlands)

    Law, Cliff S.; Breviere, Emilie; de Leeuw, Gerrit; Garcon, Veronique; Guieu, Cecile; Kieber, David J.; Kontradowitz, Stefan; Paulmier, Aurelien; Quinn, Patricia K.; Saltzman, Eric S.; Stefels, Jacqueline; von Glasow, Roland

    2013-01-01

    This review focuses on critical issues in ocean-atmosphere exchange that will be addressed by new research strategies developed by the international Surface Ocean-Lower Atmosphere Study (SOLAS) research community. Eastern boundary upwelling systems are important sites for CO2 and trace gas emission

  19. The application of surface science in the solution of aircraft materials problems

    International Nuclear Information System (INIS)

    Arnott, D.R.

    1999-01-01

    Full text: There is now a tendency for both commercial and military aircraft to be maintained and operated for several decades. Indeed some of our front-line defence aircraft have programme withdrawal lives approaching half a century. This places significant demands on the materials used in engines and airframes. The properties and performance of the materials can degrade with time leading to an increase in the importance of repair and maintenance technologies. As most materials problems start at a surface or an interface, it is not surprising that surface sensitive tools are used to resolve many degradation problems. In some cases, the resolution of problems can lead to life-enhancing improvements for the aircraft. This paper will examine some of the practical issues in the use of surface analytical tools for the examination and resolution of practical aircraft problems. Illustrations will be drawn from the application of surface analysis in the areas of corrosion, fracture and adhesive bonding. Copyright (1999) Australian X-ray Analytical Association Inc

  20. Teeth and bones: applications of surface science to dental materials and related biomaterials

    Science.gov (United States)

    Jones, F. H.

    2001-05-01

    Recent years have seen a considerable upsurge in publications concerning the surface structure and chemistry of materials with biological or biomedical applications. Within the body, gas-solid interactions become relatively less significant and solid-liquid or solid-solid interfaces dominate, providing new challenges for the surface scientist. The current paper aims to provide a timely review of the use of surface analysis and modification techniques within the biomaterials field. A broad overview of applications in a number of related areas is given with particular attention focusing on those materials commonly encountered in dentistry and oral or maxillofacial implantology. Several specific issues of current interest are discussed. The interaction between synthetic and natural solids, both in the oral environment and elsewhere in the body is important in terms of adhesion, related stresses and strains and ultimately the longevity of a dental restoration, biomedical implant, or indeed the surrounding tissue. Exposure to body fluids, of course, can also affect stability, leading to the degradation or corrosion of materials within the body. Whilst this could potentially be harmful, e.g., if cytotoxic elements are released, it may alternatively provide a route to the preferential release of beneficial substances. Furthermore, in some cases, the controlled disintegration of a biomaterial is desirable, allowing the removal of an implant, e.g., without the need for further surgery. The presence of cells in the immediate bioenvironment additionally complicates the situation. A considerable amount of current research activity is targeted at the development of coatings or surface treatments to encourage tissue growth. If this is to be achieved by stimulating enhanced cell productivity, determination of the relationship between cell function and surface composition is essential.

  1. Monitoring surface water quality using social media in the context of citizen science

    Science.gov (United States)

    Zheng, Hang; Hong, Yang; Long, Di; Jing, Hua

    2017-02-01

    Surface water quality monitoring (SWQM) provides essential information for water environmental protection. However, SWQM is costly and limited in terms of equipment and sites. The global popularity of social media and intelligent mobile devices with GPS and photography functions allows citizens to monitor surface water quality. This study aims to propose a method for SWQM using social media platforms. Specifically, a WeChat-based application platform is built to collect water quality reports from volunteers, which have been proven valuable for water quality monitoring. The methods for data screening and volunteer recruitment are discussed based on the collected reports. The proposed methods provide a framework for collecting water quality data from citizens and offer a primary foundation for big data analysis in future research.

  2. Evolving research directions in Surface Ocean-Lower Atmosphere (SOLAS) science

    OpenAIRE

    Law, CS; Brévière, E; De Leeuw, G; Garçon, V; Guieu, C; Kieber, DJ; Kontradowitz, S; Paulmier, A; Quinn, PK; Saltzman, ES; Stefels, J; Von Glasow, R

    2013-01-01

    This review focuses on critical issues in ocean-atmosphere exchange that will be addressed by new research strategies developed by the international Surface Ocean-Lower Atmosphere Study (SOLAS) research community. Eastern boundary upwelling systems are important sites for CO 2 and trace gas emission to the atmosphere, and the proposed research will examine how heterotrophic processes in the underlying oxygen-deficient waters interact with the climate system. The second regional research focu...

  3. Microplastic distribution in global marine surface waters: results of an extensive citizen science study

    Science.gov (United States)

    Barrows, A.; Petersen, C.

    2017-12-01

    Plastic is a major pollutant throughout the world. The majority of the 322 million tons produced annually is used for single-use packaging. What makes plastic an attractive packaging material: cheap, light-weight and durable are also the features that help make it a common and persistent pollutant. There is a growing body of research on microplastic, particles less than 5 mm in size. Microfibers are the most common microplastic in the marine environment. Global estimates of marine microplastic surface concentrations are based on relatively small sample sizes when compared to the vast geographic scale of the ocean. Microplastic residence time and movement along the coast and sea surface outside of the gyres is still not well researched. This five-year project utilized global citizen scientists to collect 1,628 1-liter surface grab samples in every major ocean. The Artic and Southern oceans contained highest average of particles per liter of surface water. Open ocean samples (further than 12 nm from land, n = 686) contained a higher particle average (17 pieces L-1) than coastal samples (n = 723) 6 pieces L-1. Particles were predominantly 100 µm- 1.5 mm in length (77%), smaller than what has been captured in the majority of surface studies. Utilization of citizen scientists to collect data both in fairly accessible regions of the world as well as from areas hard to reach and therefore under sampled, provides us with a wider perspective of global microplastics occurrence. Our findings confirm global microplastic accumulation zone model predictions. The open ocean and poles have sequestered and trapped plastic for over half a century, and show that not only plastics, but anthropogenic fibers are polluting the environment. Continuing to fill knowledge gaps on microplastic shape, size and color in remote ocean areas will drive more accurate oceanographic models of plastic accumulation zones. Incorporation of smaller-sized particles in these models, which has previously

  4. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    Science.gov (United States)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  5. Surface Science in an MOCVD Environment: Arsenic on Vicinal Ge(100)

    International Nuclear Information System (INIS)

    Olson, J.M.; McMahon, W.E.

    1998-01-01

    Scanning tunneling microscope (STM) images of arsine-exposed vicinal Ge(100) surfaces show that most As/Ge steps are reconstructed, and that a variety of different step structures exist. The entire family of reconstructed As/Ge steps can be divided into two types, which we have chosen to call ''single-row'' steps and ''double-row'' steps. In this paper we propose a model for a double-row step created by annealing a vicinal Ge(100) substrate under an arsine flux in a metal-organic chemical vapor deposition (MOCVD) chamber

  6. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology

    Science.gov (United States)

    Bartschat, Klaus; Kushner, Mark J.

    2016-06-01

    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology-based society.

  7. Program and Abstracts of the ninth Joint Uzbek-Korea Symposium Nanoscience: Problems and Prospects on Quantum Functional Materials and Devices

    International Nuclear Information System (INIS)

    Zakhidov, E.A.; Kang, T.W.; Mamatkulov, Sh.; Kokhkharov, A.M.; Cho Hak Dong

    2010-11-01

    The Ninth Joint Uzbek-Korea Symposium on Quantum Functional Materials and Devices was held on November 2-5, 2010 in Tashkent, Uzbekistan. The purpose of the Symposium is to provide a forum for Uzbekistan and Korean scientists to get together and discuss recent progress and future trends in the rapidly advancing nanoscience and nanotechnology. The symposium will promote an exchange of scientific information and a mutual collaboration. Symposium activities include in-depth coverage on materials grows, physics, characterization, device fabrication and application. The main scientific topics of the symposium: Synthesis of nanomaterials, nanocomposites and nanostructures; Structural, electrical and optical properties; New concepts of devices and related phenomena; Theoretical aspects of nanosciense. (eds.)

  8. Raman Under Water - Nonlinear and Nearfield Approaches for Electrochemical Surface Science.

    Science.gov (United States)

    Martín Sabanés, Natalia; Domke, Katrin F

    2017-08-01

    Electrochemistry is re-gaining attention among scientists because the complex interplay between electronic and chemical interfacial processes lies at the bottom of a broad range of important research disciplines like alternative energy conversion or green catalysis and synthesis. While rapid progress has been made in recent years regarding novel technological applications, the community increasingly recognizes that the understanding of the molecular processes that govern macroscopic device properties is still rather limited - which hinders a systematic and more complete exploration of novel material and functionality space. Here, we discuss advanced Raman spectroscopies as valuable analysis tools for electrochemists. The chemical nature of a material and its interaction with the environment is contained in the label-free vibrational fingerprint over a broad energy range so that organic species, solid-state materials, and hybrids thereof can be investigated alike. For surface studies, the inherently small Raman scattering cross sections can be overcome with advanced nonlinear or nearfield-based approaches that provide signal enhancements between three and seven orders of magnitude, sufficient to detect few scatterers in nano-confined spaces or adsorbate (sub)monolayers. Our article highlights how advanced Raman techniques with extreme chemical, spatial and temporal resolution constitute valuable alternative surface analysis tools and provide otherwise inaccessible information about complex interfacial (electro)chemical processes.

  9. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  10. Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, J.; Wimmer-Schweingruber, R.F.; Appel, J. [Kiel Univ. (Germany). Inst. of Experimental and Applied Physics; and others

    2016-04-01

    The Radiation Assessment Detector (RAD), on board the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. Although charged and neutral particle spectra have been investigated in detail, the electron and positron spectra have not been investigated yet. The reason for that is that they are difficult to separate from each other and because of the technical challenges involved in extracting energy spectra from the raw data. We use GEANT4 to model the behavior of the RAD instrument for electron/positron measurements.We compare Planetocosmics predictions for different atmospheric pressures and different modulation parameters Φ with the obtained RAD electron/positron measurements.We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics. Both RAD measurements and Planetocosmics simulation show a dependence of the electron/positron fluxes on both atmospheric pressure and solar modulation potential.

  11. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    International Nuclear Information System (INIS)

    Clarkson, R.B.; Odintsov, B.M.; Ceroke, P.J.; Ardenkjaer-Larsen, J.H.; Fruianu, M.; Belford, R.L.

    1998-01-01

    Carbon chars have been synthesized in our laboratory from a variety of starting materials, by means of a highly controlled pyrolysis technique. These chars exhibit electron paramagnetic resonance (EPR) line shapes which change with the local oxygen concentration in a reproducible and stable fashion; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the 1 H nuclear spin population in conjunction with electron Zeeman pumping. Low-frequency EPR, DNP and DNP-enhanced MRI all show promise as oximetry methods when used with carbon chars. (author)

  12. Biomimetics Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    This book presents an overview of the general field of biomimetics - lessons from nature. It presents various examples of biomimetics, including roughness-induced superomniphobic surfaces which provide functionality of commercial interest. The major focus in the book is on lotus effect, rose petal effect, shark skin effect, and gecko adhesion.  For each example, the book first presents characterization of an object to understand how a natural object provides functionality, followed by modeling and then fabrication of structures in the lab using nature’s route to verify one’s understanding of nature and provide guidance for development of optimum structures. Once it is understood how nature does it, examples of fabrication of optimum structures using smart materials and fabrication techniques, are presented. Examples of nature inspired objects are also presented throughout.

  13. Nanoscience Research for Energy Needs. Report of the National Nanotechnology Initiative Grand Challenge Workshop, March 16-18, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Alivisatos, P.; Cummings, P.; De Yoreo, J.; Fichthorn, K.; Gates, B.; Hwang, R.; Lowndes, D.; Majumdar, A.; Makowski, L.; Michalske, T.; Misewich, J.; Murray, C.; Sibener, S.; Teague, C.; Williams, E.

    2004-03-18

    This document is the report of a workshop held under NSET auspices in March 2004 aimed at identifying and articulating the relationship of nanoscale science and technology to the Nation's energy future.

  14. NASA's MODIS/VIIRS Land Surface Temperature and Emissivity Products: Asssessment of Accuracy, Continuity and Science Uses

    Science.gov (United States)

    Hulley, G. C.; Malakar, N.; Islam, T.

    2017-12-01

    Land Surface Temperature and Emissivity (LST&E) are an important Earth System Data Record (ESDR) and Environmental Climate Variable (ECV) defined by NASA and GCOS respectively. LST&E data are key variables used in land cover/land use change studies, in surface energy balance and atmospheric water vapor retrieval models and retrievals, and in climate research. LST&E products are currently produced on a routine basis using data from the MODIS instruments on the NASA EOS platforms and by the VIIRS instrument on the Suomi-NPP platform that serves as a bridge between NASA EOS and the next-generation JPSS platforms. Two new NASA LST&E products for MODIS (MxD21) and VIIRS (VNP21) are being produced during 2017 using a new approach that addresses discrepancies in accuracy and consistency between the current suite of split-window based LST products. The new approach uses a Temperature Emissivity Separation (TES) algorithm, originally developed for the ASTER instrument, to physically retrieve both LST and spectral emissivity consistently for both sensors with high accuracy and well defined uncertainties. This study provides a rigorous assessment of accuracy of the MxD21/VNP21 products using temperature- and radiance-based validation strategies and demonstrates continuity between the products using collocated matchups over CONUS. We will further demonstrate potential science use of the new products with studies related to heat waves, monitoring snow melt dynamics, and land cover/land use change.

  15. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

    DEFF Research Database (Denmark)

    Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas

    2012-01-01

    A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...... the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error...... estimation functional with van der Waals correlation (BEEF-vdW), a semilocal approximation with an additional nonlocal correlation term. Furthermore, an ensemble of functionals around BEEF-vdW comes out naturally, offering an estimate of the computational error. An extensive assessment on a range of data...

  16. Application and outlook of the pulsed neutron beam at J-PARC (3). Introduction of high-pressure science and surface/interface analysis at J-PARC

    International Nuclear Information System (INIS)

    Hattori, Takanori; Akutsu, Kazuhiro; Suzuki, Junichi

    2015-01-01

    At the MLF (Materials and Life Science Experimental Facility) of J-PARC (Japan Proton Accelerator Research Complex), eighteen neutron beam lines equipped with experimental apparatus are in operation and deliver the world highest intensity pulsed neutron beam for fundamental sciences such as solid state physics, materials science, life science, elementary particle physics, nuclear science, and for industrial applications. We introduce studies using an ultra-high pressure neutron diffractometer 'PLANET' for the structure analysis under high-pressure surroundings and a polarized neutron reflectometer 'SHARAKU' for the analysis of surface/interface structure with scales ranging from nano- to submicron-meter. We also introduce briefly all the apparatus for neuron experiments at the MLF. (J.P.N.)

  17. High surface stability of magnetite on bi-layer Fe3O4/Fe/MgO(0 0 1) films under 1 MeV Kr+ ion irradiation

    Czech Academy of Sciences Publication Activity Database

    Kim-Ngan, N.-T.H.; Krupska, M.; Balogh, A.G.; Malinský, Petr; Macková, Anna

    2017-01-01

    Roč. 8, č. 4 (2017), č. článku 045005. E-ISSN 2043-6262 R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : nanoscience * thin film * surface and interface Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics

  18. Synthesis and surface modification of magnetic nanoparticles for potential applications in sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi, S., E-mail: s.shahbazi@student.unsw.edu.au [The University of New South Wales, School of Materials Science and Engineering (Australia); Wang, X.; Yang, J.-L. [The University of New South Wales, Sarcoma and Nanooncology Group, Adult Cancer Program, Faculty of Medicine, Prince of Wales Clinical School and Lowy Cancer Research Centre (Australia); Jiang, X. C. [The University of New South Wales, School of Materials Science and Engineering (Australia); Ryan, R. [The University of New South Wales, Sarcoma and Nanooncology Group, Adult Cancer Program, Faculty of Medicine, Prince of Wales Clinical School and Lowy Cancer Research Centre (Australia); Yu, A. B. [The University of New South Wales, School of Materials Science and Engineering (Australia)

    2015-06-15

    The application of nano-science in cancer therapy has become one of the most attractive tools in scientific research because of its versatility in diagnosis and treatment. Among the different types of nanoparticles, iron oxide nanoparticles (IONPs) are renowned for their low toxicity and suitability for therapeutic and diagnostic, or ‘theragnostic,’ approach against different types of cancers. Research investigating the effect of IONPs with different physiochemical characteristics in sarcoma is limited. In this study, we initially prepared IONPs of different sizes (200, 100, 20, and 10 nm) and modified their surface with different types of coatings (polyethylene glycol, d-glucose, and silica) under mild conditions. Various methods were used to illustrate and quantify cellular uptake of magnetic nanoparticles in sarcoma cell lines. Finally, the safety of the uptaken nanoparticles on diverse human sarcoma cell lines was investigated and found that the readily available IONPs can be taken up by synovial sarcoma and liposarcoma cell lines in the selective histological tumor types; however, they seem highly toxic for fibrous histiocytoma and fibrosarcoma.

  19. Frontiers of surface-enhanced Raman scattering single nanoparticles and single cells

    CERN Document Server

    Ozaki, Yukihiro; Aroca, Ricardo

    2014-01-01

    A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.

  20. Response Surface Methodology Using a Fullest Balanced Model: A Re-Analysis of a Dataset in theKorean Journal for Food Science of Animal Resources.

    Science.gov (United States)

    Rheem, Sungsue; Rheem, Insoo; Oh, Sejong

    2017-01-01

    Response surface methodology (RSM) is a useful set of statistical techniques for modeling and optimizing responses in research studies of food science. In the analysis of response surface data, a second-order polynomial regression model is usually used. However, sometimes we encounter situations where the fit of the second-order model is poor. If the model fitted to the data has a poor fit including a lack of fit, the modeling and optimization results might not be accurate. In such a case, using a fullest balanced model, which has no lack of fit, can fix such problem, enhancing the accuracy of the response surface modeling and optimization. This article presents how to develop and use such a model for the better modeling and optimizing of the response through an illustrative re-analysis of a dataset in Park et al. (2014) published in the Korean Journal for Food Science of Animal Resources .

  1. Surface Ozone Measured at GLOBE Schools in the Czech Republic: A Demonstration of the Importance of Student Contribution to the Larger Science Picture

    Science.gov (United States)

    Pippin, Margaret R.; Creilson, John K.; Henderson, Bryana L.; Ladd, Irene H.; Fishman, Jack; Votapkova, Dana; Krpcova, Ilona

    2008-01-01

    GLOBE (Global Learning and Observations to Benefit the Environment) is a worldwide hands-on, primary and secondary school-based education and science program, developed to give students a chance to perform real science by making measurements, analyzing data, and participating in research in collaboration with scientists. As part of the GLOBE Surface Ozone Protocol and with the assistance of the TEREZA Association in the Czech Republic, schools in the Czech Republic have been making and reporting daily measurements of surface ozone and surface meteorological data since 2001. Using a hand-held ozone monitor developed for GLOBE, students at several Czech schools have generated multiyear data records of surface ozone from 2001 to 2005. Analysis of the data shows surface ozone levels were anomalously high during the summer of 2003 relative to other summers. These findings are consistent with measurements by the European Environment Agency that highlights the summer of 2003 as having exceptionally long-lasting and spatially extensive episodes of high surface ozone, especially during the first half of August. Further analysis of the summer s prevailing meteorology shows not only that it was one of the hottest on record, a finding also seen in the student data, but the conditions for production of ozone were ideal. Findings such as these increase student, teacher, and scientist confidence in the utility of the GLOBE data for engaging budding scientists in the collection, analysis, and eventual interpretation of the data for inquiry-based education.

  2. The Use of Museum Based Science Centres to Expose Primary School Students in Developing Countries to Abstract and Complex Concepts of Nanoscience and Nanotechnology

    Science.gov (United States)

    Saidi, Trust; Sigauke, Esther

    2017-01-01

    Nanotechnology is an emerging technology, and it is regarded as the basis for the next industrial revolution. In developing countries, nanotechnology promises to solve everyday challenges, such as the provision of potable water, reliable energy sources and effective medication. However, there are several challenges in the exploitation of…

  3. Combining low-energy electron microscopy and scanning probe microscopy techniques for surface science: development of a novel sample-holder.

    Science.gov (United States)

    Cheynis, F; Leroy, F; Ranguis, A; Detailleur, B; Bindzi, P; Veit, C; Bon, W; Müller, P

    2014-04-01

    We introduce an experimental facility dedicated to surface science that combines Low-Energy Electron Microscopy/Photo-Electron Emission Microscopy (LEEM/PEEM) and variable-temperature Scanning Probe Microscopy techniques. A technical challenge has been to design a sample-holder that allows to exploit the complementary specifications of both microscopes and to preserve their optimal functionality. Experimental demonstration is reported by characterizing under ultrahigh vacuum with both techniques: Au(111) surface reconstruction and a two-layer thick graphene on 6H-SiC(0001). A set of macros to analyze LEEM/PEEM data extends the capabilities of the setup.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Mechatronics Engineering, Kongu Engineering College, Perundurai, Erode 638052, India; Centre for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tiruchengode 637 215, India; UNESCO-UNISA Africa Chair in Nanosciences - Nanotechnology, College of Graduate Studies, University of South ...

  5. Proceedings of the Edgewood Chemical Biological Center In-House Laboratory Independent Research and Surface Science Initiative Programs FY12

    Science.gov (United States)

    2012-01-01

    APPROVED FOR PUBLIC RELEASE "Designing Strongly Repellant Surfaces via Molecular Dynamics Simulations" (PI: Cabalo ). This study used atomistic simulations...from Metallic Nanoparticles and Nanostructured Surfaces Jason Guicheteau, Ashish Tripathi, Erik Emmons, Jerry Cabalo , Craig Knox, Brandon Scott...Surfaces via Molecular Dynamics Simulations Craig Knox, Jerry Cabalo , Stephanie Ihejirika, Gary Kilper 116 Vll APPROVED FOR PUBLIC RELEASE Vlll

  6. A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons

    Directory of Open Access Journals (Sweden)

    Ping Du

    2015-03-01

    Full Text Available Two-dimensional (2D, supramolecular self-assembly at surfaces is now well-mastered with several existing examples. However, one remaining challenge to enable future applications in nanoscience is to provide potential functionalities to the physisorbed adlayer. This work reviews a recently developed strategy that addresses this key issue by taking advantage of a new concept, Janus tecton materials. This is a versatile, molecular platform based on the design of three-dimensional (3D building blocks consisting of two faces linked by a cyclophane-type pillar. One face is designed to steer 2D self-assembly onto C(sp2-carbon-based flat surfaces, the other allowing for the desired functionality above the substrate with a well-controlled lateral order. In this way, it is possible to simultaneously obtain a regular, non-covalent paving as well as supramolecular functionalization of graphene, thus opening interesting perspectives for nanoscience applications.

  7. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Specialization: AIMD Simulation, X-ray Science, Ultrafast Science, Surface Science, Molecular Beam Experiments Address: IPC Department, Indian Institute of Science, .... Specialization: Game Theory & Optimisation, Stochastic Control, Information Theory Address: Systems & Control Engineering, Indian Institute of ...

  8. About role of 'Nuclear sciences' and other trends of scientific and technological works in innovation development of phenomena and globalization processes in XX and XXI centuries

    International Nuclear Information System (INIS)

    Arifov, P.V.; Azimova, D.S.; Trostyanskij, D.V.; Umarov, A.G.

    2005-01-01

    It is concluded, that just successful development of scientific and technological works in the field 'Nuclear Sciences' results economy advantages for USA and some West countries compared with USSR and the rest countries of East Europe. In the following decades this advantage allows to a leader-countries develop with success principally new trends of scientific, technological workings in the a wide-scale sphere of natural, technical, biomedical, and other related sciences. Here soon the USA gap from other world countries was achieved. In the field of fundamental sciences there are such fields: Computer Sciences (1940 and then), Space Sciences (1950 and then), Life Sciences (1960 and then), Computer tomography Sciences (1970 and then). Material Researches Sciences (1980 and then), Internet Sciences (1994 and then), Nanosciences and Nanotechnologies (1999 and then). In the end of XX century these advantages allow to USA to realize two known global innovation initiatives having National character: Ballistic Missile Defense - from 1983, Internet - from 1994, and to declare the third one - targeting to the XXI century - Nanosciences and Nanotechnologies - from 1999. It is noted, that due to unexampled high temps of development of phenomena and globalization in the XXI century the specialists and professionals of Uzbekistan in the shortest time have to learn the newest world experience in order to ensure worthy status for the young independent state in the world developed countries commonwealth in new age

  9. Tritium Plasma Experiment Upgrade and Improvement of Surface Diagnostic Capabilities at STAR Facility for Enhancing Tritium and Nuclear PMI Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M.; Taylor, C. N.; Pawelko, R. J.; Cadwallader, L. C.; Merrill, B. J.

    2016-04-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  10. Nanoscience Research Internships in Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Kronshage, Alisa [Executive Board

    2013-08-31

    NanoBusiness Talent Project Summary Report The NanoBusiness Alliance created the NanoBusiness Talent Program to ensure the future vitality of domestic scientists and entrepreneurs by engaging advanced high school students in cutting-edge nanotechnology development. This program commenced on September 1, 2008 and ran through August 31, 2010 with a very successful group of students. Several of these students went on to Stanford, Harvard and Yale, as well as many other prestigious Universities. We were able to procure the cooperation of several companies over the entire run of the program to voluntarily intern students at their companies and show them the possibilities that exist for their future. Companies ranged from NanoInk and Nanosphere to QuesTek and NanoIntegris all located in northern Illinois. During the 9-week internships, students worked at nanotechnology companies studying different ways in which nanotechnology is used for both commercial and consumer use. The students were both excited and invigorated at the prospect of being able to work with professional scientists in fields that previously may have just been a dream or an unreachable goal. All the students worked closely with mentors from each company to learn different aspects of procedures and scientific projects that they then used to present to faculty, parents, mentors and directors of the program at the end of each year’s program. The presentations were extremely well received and professionally created. We were able to see how much the students learned and absorbed through the course of their internships. During the last year of the program, we reached out to both North Carolina and Colorado high school students and received an extraordinary amount of applications. There were also numerous companies that were not only willing but excited at the prospect to engage highly intelligent high school students and to encourage them into the nanotechnology scientific field. Again, this program increase was highly received and the students were thoroughly engaged. Our program ended August 31, 2010 with our last class of students and their final presentations. From the pilot year to the end presentations, we received hundreds of applications from students excited for the opportunity to work in a scientific field. With our goal of inspiring the newest generation of potential scientists and mathematician, we not only found ourselves overwhelmingly impressed but encouraged that the greatest minds of the future will come from this next generation and many more generations.

  11. Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the Solid Oxide Fuel Cell Cathode Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2017-04-06

    This final report for project FE0009656 covers the period from 10/01/2012 to 09/30/2015 and covers research accomplishments on the effects of carbon dioxide on the surface composition and structure of cathode materials for solid oxide fuel cells (SOFCs), specifically La1-xSrxFeyCo1- yO3-δ (LSCF). Epitaxially deposited thin films of LSCF on various single-crystal substrates have revealed the selective segregation of strontium to the surface thereby resulting in a surface enrichment of strontium. The near surface compositional profile in the films have been measured using total x-ray fluorescence (TXRF), and show that the kinetics of strontium segregation are higher at higher partial pressures of carbon dioxide. Once the strontium segregates to the surface, it leads to the formation of precipitates of SrO which convert to SrCO3 in the presence of even modest concentrations of carbon dioxide in the atmosphere. This has important implications for the performance of SOFCs which is discussed in this report. These experimental observations have also been verified by Density Functional Theory calculations (DFT) which predict the conditions under which SrO and SrCO3 can occur in LSCF. Furthermore, a few cathode compositions which have received attention in the literature as alternatives to LSCF cathodes have been studied in this work and shown to be thermodynamically unstable under the operating conditions of the SOFCs.

  12. Strategy for Ranking the Science Value of the Surface of Asteroid 101955 Bennu for Sample Site Selection for Osiris-REx

    Science.gov (United States)

    Nakamura-Messenger, K.; Connolly, H. C., Jr.; Lauretta, D. S.

    2014-01-01

    OSRIS-REx is NASA's New Frontiers 3 sample return mission that will return at least 60 g of pristine surface material from near-Earth asteroid 101955 Bennu in September 2023. The scientific value of the sample increases enormously with the amount of knowledge captured about the geological context from which the sample is collected. The OSIRIS-REx spacecraft is highly maneuverable and capable of investigating the surface of Bennu at scales down to the sub-cm. The OSIRIS-REx instruments will characterize the overall surface geology including spectral properties, microtexture, and geochemistry of the regolith at the sampling site in exquisite detail for up to 505 days after encountering Bennu in August 2018. The mission requires at the very minimum one acceptable location on the asteroid where a touch-and-go (TAG) sample collection maneuver can be successfully per-formed. Sample site selection requires that the follow-ing maps be produced: Safety, Deliverability, Sampleability, and finally Science Value. If areas on the surface are designated as safe, navigation can fly to them, and they have ingestible regolith, then the scientific value of one site over another will guide site selection.

  13. Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and Quality Control Procedures: the AIRS Science Team Version-6 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2014-01-01

    The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5.

  14. Factors affecting the long-term response of surface waters to acidic deposition: state-of-the-science

    Energy Technology Data Exchange (ETDEWEB)

    Turner, R.S.; Johnson, D.W.; Elwood, J.N.; Van Winkle, W.; Clapp, R.B.; Jones, M.L.; Marmarek, D.R.; Thornton, K.W.; Gherinig, S.A.; Schnoor, J.L.

    1986-01-01

    Recent intensive study of the causes of surface water acidification has led to numerous hypothesized controlling mechanisms. Among these are the salt-effect reduction of alkalinity, the base cation buffering and sulfate adsorption capacities of soils, availability of weatherable minerals (weathering rates), depth of till, micropore flow, and type of forest cover. Correlative and predictive models have been developed to show the relationships (if any) between hypothesized controlling mechanisms and surface water acidity, and to suggest under what conditions additional surface water might become acid. This document (Part A) is a review of our current knowledge of factors and processes controlling soil and surface water acidification, as well as an assessment of the adequacy of that knowledge for making predictions of future acidification. Section 2 is a data extensive, conceptual overview of how watersheds function. Section 3 is a closer look at the theory and evidence for the key hypotheses. Section 4 is a review of existing methods of assessing system response to acidic deposition.

  15. UO2 Fuel pellet impurities, pellet surface roughness and n(18O)/n(16O) ratios, applied to nuclear forensic science

    International Nuclear Information System (INIS)

    Pajo, L.

    2001-01-01

    In the last decade, law enforcement has faced the problem of illicit trafficking of nuclear materials. Nuclear forensic science is a new branch of science that enables the identification of seized nuclear material. The identification is not based on a fixed scheme, but further identification parameters are decided based on previous identification results. The analysis is carried out by using traditional analysis methods and applying modern measurement technology. The parameters are generally not unambiguous and not self-explanatory. In order to have a full picture about the origin of seized samples, several identification parameters should be used together and the measured data should be compared to corresponding data from known sources. A nuclear material database containing data from several fabrication plants is installed for the purpose. In this thesis the use of UO 2 fabrication plant specific parameters, fuel impurities, fuel pellet surface roughness and oxygen isotopic ratio in UO 2 were investigated for identification purposes in nuclear forensic science. The potential use of these parameters as 'fingerprints' is discussed for identification purposes of seized nuclear materials. Impurities of the fuel material vary slightly according to the fabrication method employed and a plant environment. Here the impurities of the seized UO 2 were used in order to have some clues about the origin of the fuel material by comparing a measured data to nuclear database information. More certainty in the identification was gained by surface roughness of the UO 2 fuel pellets, measured by mechanical surface profilometry. Categories in surface roughness between a different fuel element type and a producer were observed. For the time oxygen isotopic ratios were determined by Thermal Ionisation Mass Speckometry (TIMS). Thus a TIMS measurement method, using U 16 O + and U 18 0 + ions, was developed and optimised to achieve precise oxygen isotope ratio measurements for the

  16. Stress response of Escherichia coli induced by surface streamer discharge in humid air

    Czech Academy of Sciences Publication Activity Database

    Doležalová, Eva; Prukner, Václav; Lukeš, Petr; Šimek, Milan

    2016-01-01

    Roč. 49, č. 7 (2016), č. článku 075401. ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LD13010; GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST MP1101 Program:Materials, Physical and Nanosciences COST Action MP1101 Institutional support: RVO:61389021 Keywords : bacterial activity * culturability * dielectric barrier discharges (DBD) * lipid peroxidation * stress Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/7/075401/meta

  17. Stress response of Escherichia coli induced by surface streamer discharge in humid air

    Czech Academy of Sciences Publication Activity Database

    Doležalová, Eva; Prukner, Václav; Lukeš, Petr; Šimek, Milan

    2016-01-01

    Roč. 49, č. 7 (2016), s. 075401 ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LD13010; GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST MP1101 Program:Materials, Physical and Nanosciences COST Action MP1101 Institutional support: RVO:61389021 Keywords : bacterial activity * culturability * dielectric barrier discharges (DBD) * lipid peroxidation * stress Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/7/075401/meta

  18. Stress response of Escherichia coli induced by surface streamer discharge in humid air

    Czech Academy of Sciences Publication Activity Database

    Doležalová, Eva; Prukner, Václav; Lukeš, Petr; Šimek, Milan

    2016-01-01

    Roč. 49, č. 7 (2016), s. 075401 ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LD13010; GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST MP1101 Program:Materials, Physical and Nanosciences COST Action MP1101 Institutional support: RVO:61389021 Keywords : bacterial activity * culturability * dielectric barrier disc harges (DBD) * lipid peroxidation * stress Subject RIV: BL - Plasma and Gas Disc harge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/7/075401/meta

  19. The shortcomings of semi-local and hybrid functionals: what we can learn from surface science studies

    International Nuclear Information System (INIS)

    Stroppa, A; Kresse, G

    2008-01-01

    A study of the adsorption of CO on late 4d and 5d transition metal (111) surfaces (Ru, Rh, Pd, Ag, Os, Ir and Pt) considering atop and hollow site adsorption is presented. The applied functionals include the gradient-corrected Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) functionals, and the corresponding hybrid Hartree-Fock density functionals HSE and B3LYP. We find that PBE-based hybrid functionals (specifically HSE) yield, with the exception of Pt, the correct site order on all considered metals, but they also considerably overestimate the adsorption energies compared to experiment. On the other hand, the semi-local BLYP functional and the corresponding hybrid functional B3LYP yield very satisfactory adsorption energies and the correct adsorption site for all surfaces. We are thus faced with a Procrustean problem: the B3LYP and BLYP functionals seem to be the overall best choice for describing adsorption on metal surfaces, but they simultaneously fail to account well for the properties of the metal, vastly overestimating the equilibrium volume and underestimating the atomization energies. Setting out from these observations, general conclusions are drawn on the relative merits and drawbacks of various semi-local and hybrid functionals. The discussion includes a revised version of the PBE functional specifically optimized for bulk properties and surface energies (PBEsol), a revised version of the PBE functional specifically optimized to predict accurate adsorption energies (rPBE), as well as the aforementioned BLYP functional. We conclude that no semi-local functional is capable of describing all aspects properly, and including non-local exchange also only improves some but worsens other properties

  20. Experimental Investigation of Space Radiation Processing in Lunar Soil Ilmenite: Combining Perspectives from Surface Science and Transmission Electron Microscopy

    Science.gov (United States)

    Christoffersen, R.; Keller, L. P.; Rahman, Z.; Baragiola, R.

    2010-01-01

    Energetic ions mostly from the solar wind play a major role in lunar space weathering because they contribute structural and chemical changes to the space-exposed surfaces of lunar regolith grains. In mature mare soils, ilmenite (FeTiO3) grains in the finest size fraction have been shown in transmission electron microscope (TEM) studies to exhibit key differences in their response to space radiation processing relative to silicates [1,2,3]. In ilmenite, solar ion radiation alters host grain outer margins to produce 10-100 nm thick layers that are microstructurally complex, but dominantly crystalline compared to the amorphous radiation-processed rims on silicates [1,2,3]. Spatially well-resolved analytical TEM measurements also show nm-scale compositional and chemical state changes in these layers [1,3]. These include shifts in Fe/Ti ratio from strong surface Fe-enrichment (Fe/Ti >> 1), to Fe depletion (Fe/Ti < 1) at 40-50 nm below the grain surface [1,3]. These compositional changes are not observed in the radiation-processed rims on silicates [4]. Several mechanism(s) to explain the overall relations in the ilmenite grain rims by radiation processing and/or additional space weathering processes were proposed by [1], and remain under current consideration [3]. A key issue has concerned the ability of ion radiation processing alone to produce some of the deeper- penetrating compositional changes. In order to provide some experimental constraints on these questions, we have performed a combined X-ray photoelectron spectroscopy (XPS) and field-emission scanning transmission electron (FE-STEM) study of experimentally ion-irradiated ilmenite. A key feature of this work is the combination of analytical techniques sensitive to changes in the irradiated samples at depth scales going from the immediate surface (approx.5 nm; XPS), to deeper in the grain interior (5-100 nm; FE-STEM).

  1. Micrometer-sized Water Ice Particles for Planetary Science Experiments: Influence of Surface Structure on Collisional Properties

    Energy Technology Data Exchange (ETDEWEB)

    Gärtner, S.; Fraser, H. J. [School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Gundlach, B.; Ratte, J.; Blum, J. [Institut für Geophysik und extraterrestrische Physik, TU Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig (Germany); Headen, T. F.; Youngs, T. G. A.; Bowron, D. T. [ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Oesert, J.; Gorb, S. N., E-mail: sabrina.gaertner@stfc.ac.uk, E-mail: helen.fraser@open.ac.uk [Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, D-24118 Kiel (Germany)

    2017-10-20

    Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet formation, which therefore is subject to many laboratory studies. However, the pressure–temperature gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in protoplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above ≈210 K. By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) proves increased molecular mobility at temperatures above ≈210 K. Because none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressure–temperature environment, may have a larger influence on collision outcomes than previously thought.

  2. The shear-force/ultrasonic near-field microscope: a nanometrology tool for surface science and technology

    Science.gov (United States)

    La Rosa, A.; Li, N.; Asante, K.

    2005-11-01

    This paper describes recent results obtained with the Ultrasonic/Shear-Force Microscope (SUNM), an analytical tool suitable for investigating the quite different dynamic displayed by fluid-like films when subjected to mesoscopic confinement and while in intimate contact with two sliding solid boundaries. The SUNM uses two sensory modules to concurrently but independently monitor the effects that fluid-mediated interactions exert on two sliding bodies: the microscope's sharp probe (attached to a piezoelectric sensor) and the analyzed sample (attached to an ultrasonic transducer). This dual capability allows correlating the fluid-like film's viscoelastic properties with changes in the probe's resonance frequency and the generation of sound. A detailed monitoring of sliding friction by ultrasonic means and with nanometer resolution is unprecedented, which opens potential uses of the versatile microscope as a surface and subsurface material characterization tool. As a surface metrology tool, the SUNM presents a potential impact in diverse areas ranging from fundamental studies of nanotribology, confinement-driven solid to liquid phase transformation of polymer films, characterization of industrial lubricants, and the study of elastic properties of bio-membranes. As a sub-surface metrology tool, the SUNM can be used in the investigation of the elastic properties of low- and high-k dielectric materials, piezoelectric and ferroelectric films, as well as quality control in the construction of micro- and nano-fluidics devices.

  3. Nanostructures: Current uses and future applications in food science.

    Science.gov (United States)

    Pathakoti, Kavitha; Manubolu, Manjunath; Hwang, Huey-Min

    2017-04-01

    Recent developments in nanoscience and nanotechnology intend novel and innovative applications in the food sector, which is rather recent compared with their use in biomedical and pharmaceutical applications. Nanostructured materials are having applications in various sectors of the food science comprising nanosensors, new packaging materials, and encapsulated food components. Nanostructured systems in food include polymeric nanoparticles, liposomes, nanoemulsions, and microemulsions. These materials enhance solubility, improve bioavailability, facilitate controlled release, and protect bioactive components during manufacture and storage. This review highlights the applications of nanostructured materials for their antimicrobial activity and possible mechanism of action against bacteria, including reactive oxygen species, membrane damage, and release of metal ions. In addition, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented. Copyright © 2017. Published by Elsevier B.V.

  4. Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Siddhartha Shrivastava

    2009-01-01

    Full Text Available Recent research on biosystems at the nanoscale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, neuromorphic engineering, and developing a sustainable environment. Nanobiosystems research is a priority in many countries and its relevance within nanotechnology is expected to increase in the future. The realisation that the nanoscale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nanomedical research. The present review explores the significance of nanoscience and latest nanotechnologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas.

  5. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    Science.gov (United States)

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  6. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  7. Sugars Can Actually Be Good For Your Health (LBNL Science at the Theater)

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, Carolyn

    2009-02-09

    Like peanut M&Ms, all cells are coated with sugars but the functions of these sugar coatings were a mystery until very recently. This presentation will highlight recent fascinating discoveries regarding why cells are coated with sugars, as well as new tools for cancer detection that take advantage of the cells sugar coating. Professor Bertozzis lab focuses on profiling changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and exploiting this information for development of diagnostic and therapeutic approaches. In addition, her group develops nanoscience-based technologies for probing cell function and for medical diagnostics.

  8. NST and NST integration: nuclear science and technique and nano science and technique

    International Nuclear Information System (INIS)

    Zhao Yuliang; Chai Zhifang; Liu Yuanfang

    2008-01-01

    Nuclear science is considered as a big science and also the frontier in the 20 th century, it developed many big scientific facilities and many technique platforms (e.g., nuclear reactor, synchrotron radiation, accelerator, etc.) Nuclear Science and Technology (NST) provide us with many unique tools such as neutron beams, electron beams, gamma rays, alpha rays, beta rays, energetic particles, etc. These are efficient and essential probes for studying many technique and scientific issues in the fields of new materials, biological sciences, environmental sciences, life sciences, medical science, etc. Nano Science and Technology (NST) is a newly emerging multidisciplinary science and the frontier in the 21 st century, it is expected to dominate the technological revolution in diverse aspects of our life. It involves diverse fields such as nanomaterials, nanobiological sciences, environmental nanotechnology, nanomedicine, etc. nanotechnology was once considered as a futuristic science with applications several decades in the future and beyond. But, the rapid development of nanotechnology has broken this prediction. For example, diverse types of manufactured nanomaterials or nanostructures have been currently utilized in industrial products, semiconductors, electronics, stain-resistant clothing, ski wax, catalysts, other commodity products such as food, sunscreens, cosmetics, automobile parts, etc., to improve their performance of previous functions, or completely create novel functions. They will also be increasingly utilized in medicines for purposes of clinic therapy, diagnosis, and drug delivery. In the talk, we will discuss the possibility of NST-NST integration: how to apply the unique probes of advanced radiochemical and nuclear techniques in nanoscience and nanotechnology. (authors)

  9. APS Science 2007

    International Nuclear Information System (INIS)

    2008-01-01

    This report provides research highlights from the Advanced Photon Source (APS). Although these highlights represent less than 10% of the published work from the APS in 2007, they give a flavor of the diversity and impact of user research at the facility. In the strategic planning the aim is to foster the growth of existing user communities and foresee new areas of research. This coming year finds the APS engaged in putting together, along with the users, a blueprint for the next five years, and making the case for a set of prioritized investments in beamlines, the accelerator, and infrastructure, each of which will be transformational in terms of scientific impact. As this is written plans are being formulated for an important user workshop on October 20-21, 2008, to prioritize strategic plans. The fruit from past investments can be seen in this report. Examples include the creation of a dedicated beamline for x-ray photon correlation spectroscopy at Sector 8, the evolution of dedicated high-energy x-ray scattering beamlines at sectors 1 and 11, a dedicated imaging beamline at Sector 32, and new beamlines for inelastic scattering and powder diffraction. A single-pulse facility has been built in collaboration with Sector 14 (BioCARS) and Phil Anfinrud at the National Institutes of Health, which will offer exceptionally high flux for single-pulse diffraction. The nanoprobe at Sector 26, built and operated jointly by the Argonne Center for Nanoscale Materials and the X-ray Operations and Research (XOR) section of the APS X-ray Science Division, has come on line to define the state of the art in nanoscience

  10. APS Science 2007.

    Energy Technology Data Exchange (ETDEWEB)

    2008-05-30

    This report provides research highlights from the Advanced Photon Source (APS). Although these highlights represent less than 10% of the published work from the APS in 2007, they give a flavor of the diversity and impact of user research at the facility. In the strategic planning the aim is to foster the growth of existing user communities and foresee new areas of research. This coming year finds the APS engaged in putting together, along with the users, a blueprint for the next five years, and making the case for a set of prioritized investments in beamlines, the accelerator, and infrastructure, each of which will be transformational in terms of scientific impact. As this is written plans are being formulated for an important user workshop on October 20-21, 2008, to prioritize strategic plans. The fruit from past investments can be seen in this report. Examples include the creation of a dedicated beamline for x-ray photon correlation spectroscopy at Sector 8, the evolution of dedicated high-energy x-ray scattering beamlines at sectors 1 and 11, a dedicated imaging beamline at Sector 32, and new beamlines for inelastic scattering and powder diffraction. A single-pulse facility has been built in collaboration with Sector 14 (BioCARS) and Phil Anfinrud at the National Institutes of Health, which will offer exceptionally high flux for single-pulse diffraction. The nanoprobe at Sector 26, built and operated jointly by the Argonne Center for Nanoscale Materials and the X-ray Operations and Research (XOR) section of the APS X-ray Science Division, has come on line to define the state of the art in nanoscience.

  11. Microwave-assisted green synthesis of superparamagnetic nanoparticles using fruit peel extracts: surface engineering, T2 relaxometry, and photodynamic treatment potential

    Directory of Open Access Journals (Sweden)

    Bano S

    2016-08-01

    Full Text Available Shazia Bano,1–3 Samina Nazir,2 Alia Nazir,1 Saeeda Munir,3 Tariq Mahmood,2 Muhammad Afzal,1 Farzana Latif Ansari,4 Kehkashan Mazhar3 1Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 2Nanosciences and Technology Department, National Centre for Physics, 3Institute of Biomedical and Genetic Engineering (IBGE, 4Pakistan Council for Science and Technology, Islamabad, Pakistan Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs have the potential to be used as multimodal imaging and cancer therapy agents due to their excellent magnetism and ability to generate reactive oxygen species when exposed to light. We report the synthesis of highly biocompatible SPIONs through a facile green approach using fruit peel extracts as the biogenic reductant. This green synthesis protocol involves the stabilization of SPIONs through coordination of different phytochemicals. The SPIONs were functionalized with polyethylene glycol (PEG-6000 and succinic acid and were extensively characterized by X-ray diffraction analysis, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, Rutherford backscattering spectrometry, diffused reflectance spectroscopy, fluorescence emission, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and magnetization analysis. The developed SPIONs were found to be stable, almost spherical with a size range of 17–25 nm. They exhibited excellent water dispersibility, colloidal stability, and relatively high R2 relaxivity (225 mM-1 s-1. Cell viability assay data revealed that PEGylation or carboxylation appears to significantly shield the surface of the particles but does not lead to improved cytocompatibility. A highly significant increase of reactive oxygen species in light-exposed samples was found to play an important role in the photokilling of human cervical epithelial malignant carcinoma (HeLa cells. The bio-SPIONs developed

  12. Science Notes.

    Science.gov (United States)

    School Science Review, 1990

    1990-01-01

    Presented are 25 science activities on colorations of prey, evolution, blood, physiology, nutrition, enzyme kinetics, leaf pigments, analytical chemistry, milk, proteins, fermentation, surface effects of liquids, magnetism, drug synthesis, solvents, wintergreen synthesis, chemical reactions, multicore cables, diffraction, air resistance,…

  13. The concepts of nanotechnology as a part of physics education in high school and in interactive science museum

    Science.gov (United States)

    Kolářová, Lucie; Rálišová, Ema

    2017-01-01

    The advancements in nanotechnology especially in medicine and in developing new materials offer interesting possibilities for our society. It is not only scientists and engineers who need a better understanding of these new technologies but it is also important to prepare the young people and the general public on impact of nanotechnology on their life. Knowledge from this field likewise provides the opportunities to engage and motivate high school students for the study of science. Although, the concepts of nanoscience and nanotechnology are not a part of Czech high school physics curriculum they can be successfully integrated into regular curriculum in appropriate places. Because it is an interdisciplinary field, it also provides an opportunity for the interdisciplinary connections of physics, chemistry and biology. Many concepts for understanding the nanoworld can be shown by the simple activities and experiments and it is not a problem to demonstrate these experiments in each classroom. This paper presents the proposal for integration of the concepts of nanoscience and nanotechnologies into the high school physics curriculum, and the involvement of some of these concepts into the instructional program for middle and high school students which was realized in interactive science museum Fort Science in Olomouc. As a part of the program there was a quantitative questionnaire and its goal was to determine the effectiveness of the program and how students are satisfied with it.

  14. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for the Surface of Mars: An Instrument for the Planetary Science Community

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.; hide

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.

  15. Covalent Percolation and Gold Templating of Carbon NanoTubes Network in Polymer Nanocomposites for Novel Mechanical, Electrical, and Optical Properties. Taiwain - US AFOSR Nanoscience Initiative

    National Research Council Canada - National Science Library

    Yang, Arnold C

    2008-01-01

    ...) in nanocomposites were investigated by using two model polymer systems, polystyrene and poly(phenylene oxide) representing respectively the ductile and brittle polymers, with surface-grafted multiwalled CNTs.

  16. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  17. Deposition of Poly(Ethylene Oxide)-Like Plasma Polymers on Inner Surfaces of Cavities by Means of Atmospheric-Pressure SDBD-Based Jet

    Czech Academy of Sciences Publication Activity Database

    Gordeev, Ivan; Šimek, Milan; Prukner, Václav; Artemenko, Anna; Kousal, J.; Nikitin, D.; Choukourov, A.; Biederman, H.

    2016-01-01

    Roč. 13, č. 8 (2016), s. 823-833 ISSN 1612-8850 R&D Projects: GA MŠk(CZ) LD13010 Grant - others:European Cooperation in Science and Technology(XE) COST MP1101 Program:Materials, Physical and Nanosciences COST Action MP1101 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Atmospheric Pressure Plasma jet * plasma polymerization * non-fouling properties * PEO-like coatings Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 2.846, year: 2016

  18. Science and data science.

    Science.gov (United States)

    Blei, David M; Smyth, Padhraic

    2017-08-07

    Data science has attracted a lot of attention, promising to turn vast amounts of data into useful predictions and insights. In this article, we ask why scientists should care about data science. To answer, we discuss data science from three perspectives: statistical, computational, and human. Although each of the three is a critical component of data science, we argue that the effective combination of all three components is the essence of what data science is about.

  19. Modern restoration products based on nanoparticles: The case of the Nano-Lime, interaction and compatibility with limestone and dolostones surfaces, advantages and limitations

    Science.gov (United States)

    Gomez-Villalba, L. S.; López-Arce, P.; Zornoza-Indart, A.; Alvarez de Buergo, M.; Fort, R.

    2012-04-01

    Calcium hydroxide (also known as lime) is one of the oldest products used in construction, mainly as a binder in mortars (joint mortars, renderings, wall fillings, etc), in mural paintings, as a consolidant product, together with other materials such as rammed-earth. . In Conservation Science it can be used to restore the cohesion loss by filling the porosity of the limestone. When calcium hydroxide is exposed to atmospheric CO2 in wet conditions, the layered network of its hexagonal packing crystal structure favors the incorporation of such CO2 to the structure producing the carbonation process, which consists of reacting and transforming into calcium carbonate. However, this approach has resulted in many cases unsatisfactory by the poor penetration of the dissolution inside the stone material and its inability to achieve complete consolidation of the damaged area of the material. The development in recent years of nanoscience and nanotechnology has opened the possibility for different scientific areas. This new science enables new applications of materials that were previously unfeasible, since the behavior of materials at the nanoscale is modified as a result of particle size reduction. Nanotechnology contributes to the science of cultural heritage conservation with new products that can modify its properties and that among other applications, are used in protection and consolidation of geomaterials. However, it is important to assess whether their characteristics are compatible or not with petrological aspects, diagenetic and geochemical conditions and/or mineralogical, or local environmental conditions they are exposed and amend the process and therefore its effectiveness. Like all products used in treatments of consolidation, consolidating products based on nanoparticles, different agents are susceptible to extrinsic and intrinsic factors that influence its stability and can, at a given time, alter their specific properties. That is why the same factors that

  20. Science in Science Fiction.

    Science.gov (United States)

    Allday, Jonathan

    2003-01-01

    Offers some suggestions as to how science fiction, especially television science fiction programs such as "Star Trek" and "Star Wars", can be drawn into physics lessons to illuminate some interesting issues. (Author/KHR)

  1. Applied spectroscopy and the science of nanomaterials

    CERN Document Server

    2015-01-01

    This book focuses on several areas of intense topical interest related to applied spectroscopy and the science of nanomaterials. The eleven chapters in the book cover the following areas of interest relating to applied spectroscopy and nanoscience: ·         Raman spectroscopic characterization, modeling and simulation studies of carbon nanotubes, ·         Characterization of plasma discharges using laser optogalvanic spectroscopy, ·         Fluorescence anisotropy in understanding protein conformational disorder and aggregation, ·         Nuclear magnetic resonance spectroscopy in nanomedicine, ·         Calculation of Van der Waals interactions at the nanoscale, ·         Theory and simulation associated with adsorption of gases in nanomaterials, ·         Atom-precise metal nanoclusters, ·         Plasmonic properties of metallic nanostructures, two-dimensional materials, and their composites, ·         Applications of graphe...

  2. Science in Computational Sciences

    Directory of Open Access Journals (Sweden)

    Jameson Cerrosen

    2012-12-01

    Full Text Available The existing theory in relation to science presents the physics as an ideal, although many sciences not approach the same, so that the current philosophy of science-Theory of Science- is not much help when it comes to analyze the computer science, an emerging field of knowledge that aims investigation of computers, which are included in the materialization of the ideas that try to structure the knowledge and information about the world. Computer Science is based on logic and mathematics, but both theoretical research methods and experimental follow patterns of classical scientific fields. Modeling and computer simulation, as a method, are specific to the discipline and will be further developed in the near future, not only applied to computers but also to other scientific fields. In this article it is analyze the aspects of science in computer science, is presenting an approach to the definition of science and the scientific method in general and describes the relationships between science, research, development and technology.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. N Sabari Arul1 2 D Mangalaraj2 Jeong In Han1. Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, 100715 Seoul, South Korea; Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, India ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Strontium-incorporated calcium phosphates show potential in biomedical application, particularly the doped strontium may help in new bone formation. ... Department of Chemistry, Periyar University, Salem 636 011, India; Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, India; Department of ...

  5. Multifunctional Interface Facility for Receiving and Processing Planetary Surface Materials for Science Investigation and Resource Evaluation at the Deep Space Gateway

    Science.gov (United States)

    Sibille, L.; Mantovani, J. G.; Townsend, I. I.; Mueller, R. P.

    2018-02-01

    The concepts describe hardware and instrumentation for the study of planetary surface materials at the Deep Space Gateway as a progressive evolution of capabilities for eliminating the need for special handling and Planetary Protection (PP) protocols inside the habitats.

  6. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... M N O P Q R S T U V W X Y Z. Elected: 1992 Section: Physics. Ogale, Prof. Satishchandra Balkrishna Ph.D. (Pune), FNASc. Date of birth: 24 July 1953. Specialization: Nanoscience & Nanotechnology, Metal Oxide Thin Films and Heterostructures, Dye Sensitised Solar Cells, Solar Water Splitting for Hydrogen Generation

  7. Acidic deposition: State of science and technology. Report 9. Current status of surface-water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Baker, L.A.; Kaufmann, P.R.; Brakke, D.F.; Herlihy, A.T.; Eilers, J.M.

    1990-09-01

    The report is based largely upon the National Surface Water Survey (NSWS), augmented by numerous smaller state and university surveys and many detailed watershed studies. In describing the current status of surface waters, the authors go far beyond the description of population statistics, although some of this is necessary, and direct their attention to the interpretation of these data. They address the question of the sources of acidity to surface waters in order to determine the relative importance of acidic deposition compared with other sources, such as naturally produced organic acids and acid mine drainage. They also examine in some detail what they call 'high interest' populations-the specific groups of lakes and streams most likely to be impacted by acidic deposition. The authors then turn to the general question of uncertainty, and finally examine low alkalinity surface waters in several other parts of the world to develop further inferences about the acid-base status of surface waters in the United States

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R Sarathi. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 587-593 Surface Studies. Investigation of surface modifications in ethylene propylene diene monomer (EPDM) rubber due to tracking under a.c. and d.c. voltages · R Sarathi Uma ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S C Arunchandra. Articles written in Journal of Earth System Science. Volume 117 Issue 6 December 2008 pp 911-923. On the measurement of the surface energy budget over a land surface during the summer monsoon · G S Bhat S C Arunchandra · More Details Abstract ...

  10. Acidic deposition: State of science and technology. Report 14. Methods for projecting future changes in surface water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Thornton, K.W.; Marmorek, D.; Ryan, P.F.; Heltcher, K.; Robinson, D.

    1990-09-01

    The objectives of the report are to: critically evaluate methods for projecting future effects of acidic deposition on surface water acid-base chemistry; review and evaluate techniques and procedures for analyzing projection uncertainty; review procedures for estimating regional lake and stream population attributes; review the U.S. Environmental Protection Agency (EPA) Direct/Delayed Response Project (DDRP) methodology for projecting the effects of acidic deposition on future changes in surface water acid-base chemistry; and present the models, uncertainty estimators, population estimators, and proposed approach selected to project the effects of acidic deposition on future changes in surface water acid-base chemistry in the NAPAP 1990 Integrated Assessment and discuss the selection rationale

  11. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Responsible innovation: a pilot study with the U.K. Engineering and Physical Sciences Research Council.

    Science.gov (United States)

    Owen, Richard; Goldberg, Nicola

    2010-11-01

    Significant time lags between the development of novel innovations (e.g., nanotechnologies), understanding of their wider impacts, and subsequent governance (e.g., regulation) have led to repeated calls for more anticipatory and adaptive approaches that promote the responsible emergence of new technologies in democratic societies. A key challenge is implementation in a pragmatic way. Results are presented of a study with the Engineering and Physical Sciences Research Council, the largest public funder of basic innovation research in the United Kingdom who, for the first time, asked applicants to submit a risk register identifying the wider potential impacts and associated risks (environment, health, societal, and ethical) of their proposed research. This focused on nanoscience for carbon capture and utilization. Risk registers were completed conservatively, with most identified impacts concerning researchers' health associated with nanoparticle synthesis, handling, and prototype device fabrication, i.e., risks that could be identified and managed with a reasonable level of certainty. Few wider environmental impacts and no future impacts on society were identified, reflecting the often uncertain and unpredictable nature of innovation. However, some applicants addressed this by including investigators with expertise beyond engineering and nanosciences supporting integrated activities that included life cycle and real-time technology assessment, which in some cases were also framed by stakeholder and/or public engagement. Proposals underpinned by a strong commitment to responsible science and innovation promoted continuous reflexivity, embedding a suite of multidisciplinary approaches around the innovation research core to support decisions modulating the trajectory of their innovation research in real-time.

  13. 21 March 2011 - South African Ministry of Science and Technology, Department of Science and Technology (DST) Director General P. Mjwara signing the guest with Head of International Relations F. Pauss and Adviser J. Ellis and ALICE Collaboration Spokesperson P. Giubellino and J. Cleymans; in the CERN control centre with R. Steerenberg; visiting ALICE surface exhibition with P. Giubellino and LHC superconducting magnet test hall with L. Bottura.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    21 March 2011 - South African Ministry of Science and Technology, Department of Science and Technology (DST) Director General P. Mjwara signing the guest with Head of International Relations F. Pauss and Adviser J. Ellis and ALICE Collaboration Spokesperson P. Giubellino and J. Cleymans; in the CERN control centre with R. Steerenberg; visiting ALICE surface exhibition with P. Giubellino and LHC superconducting magnet test hall with L. Bottura.

  14. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Fellowship; Associateship. Associate Profile. Period: 2016–2019. Bhattacharya, Dr Atanu Ph.D. (Colorado State). Date of birth: 2 March 1983. Specialization: Ultrafast Science, Surface Science, Molecular Beam Experiments Address: IPC Department, Indian Institute of Science, Bengaluru 560 012, Karnataka Contact:

  15. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Design of fair surfaces over irregular domains is a fundamental problem in computer-aided geometric design (CAGD), and has applications in engineering sciences (in aircraft, automobile, ship science etc.). In the design of fair surfaces over irregular domains defined over scattered data, it was widely accepted till recently ...

  16. Science Smiles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Science Smiles. Articles in Resonance – Journal of Science Education. Volume 1 Issue 4 April 1996 pp 4-4 Science Smiles. Chief Editor's column / Science Smiles · R K Laxman · More Details Fulltext PDF. Volume 1 Issue 5 May 1996 pp 3-3 Science Smiles.

  17. Educational Experiences in Oceanography through Hands-On Involvement with Surface Drifters: an Introduction to Ocean Currents, Engineering, Data Collection, and Computer Science

    Science.gov (United States)

    Anderson, T.

    2015-12-01

    The Northeast Fisheries Science Center's (NEFSC) Student Drifters Program is providing education opportunities for students of all ages. Using GPS-tracked ocean drifters, various educational institutions can provide students with hands-on experience in physical oceanography, engineering, and computer science. In building drifters many high school and undergraduate students may focus on drifter construction, sometimes designing their own drifter or attempting to improve current NEFSC models. While learning basic oceanography younger students can build drifters with the help of an educator and directions available on the studentdrifters.org website. Once drifters are deployed, often by a local mariner or oceanographic partner, drifter tracks can be visualised on maps provided at http://nefsc.noaa.gov/drifter. With the lesson plans available for those interested in computer science, students may download, process, and plot the drifter position data with basic Python code provided. Drifter tracks help students to visualize ocean currents, and also allow them to understand real particle tracking applications such as in search and rescue, oil spill dispersion, larval transport, and the movement of injured sea animals. Additionally, ocean circulation modelers can use student drifter paths to validate their models. The Student Drifters Program has worked with over 100 schools, several of them having deployed drifters on the West Coast. Funding for the program often comes from individual schools and small grants but in the future will preferably come from larger government grants. NSF, Sea-Grant, NOAA, and EPA are all possible sources of funding, especially with the support of multiple schools and large marine education associations. The Student Drifters Program is a unique resource for educators, students, and scientists alike.

  18. Nanosciences and nanotechnology evolution or revolution?

    CERN Document Server

    Lahmani, Marcel; Dupas-Haeberlin, Claire; Hesto, Patrice

    2016-01-01

    This book provides information to the state of art of research in nanotechnology and nano medicine and risks of nano technology. It covers an interdisciplinary and very wide scope of the latest fundamental research status and industrial applications of nano technologies ranging from nano physics, nano chemistry to biotechnology and toxicology. It provides information to last legislation of nano usage and potential social impact too. The book contains also a reference list of major European research centers and associated universities offering licences and master of nano matter. For clarity and attractivity, the book has many illustrations and specific inserts to complete the understanding of the scientific texts.

  19. AFRL Nanoscience Technologies: Applications, Transitions and Innovations

    Science.gov (United States)

    2010-01-01

    capacity. Pulsed laser deposition was used to create a multilayered superconductor with a carefully controlled nano-particle dispersion, essential...were achieved at SuperPower, Inc. and American Superconductor Corp. through a Defense Production Act Title III program and dual use funding from...Pumped Semiconductor Room-Temperature Terahertz Radiation Accomplishment: The first room-temperature electrically pumped semiconductor source of

  20. Applications of the microelectromechanical systems in nanoscience

    NARCIS (Netherlands)

    Deladi, S.; Sarajlic, Edin; Kuijpers, A.A.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2005-01-01

    The miniaturization and development of complex Micro Electro Mechanical Systems (MEMS) led to a need for an increase in performance of such systems in terms of displacement range, accuracy, velocity etc. There is a huge potential of using them as tools in nanonoscience such as high-density probe

  1. Small, but Determined: Technological Determinism in Nanoscience

    OpenAIRE

    Cyrus C.M. Mody

    2004-01-01

    Analysis of technological determinism by historians, sociologists, and philosophers has declined in recent years. Yet understanding this topic is necessary, particularly in examining the dynamics of emerging technologies and their associated research areas. This is especially true of nanotechnology, which, because of its roots in futurist traditions, employs unusual variants on classical determinist arguments. In particular, nanotechnology orients much more strongly to the past and future tha...

  2. Science or Science Fiction?

    DEFF Research Database (Denmark)

    Lefsrud, Lianne M.; Meyer, Renate

    2012-01-01

    This paper examines the framings and identity work associated with professionals’ discursive construction of climate change science, their legitimation of themselves as experts on ‘the truth’, and their attitudes towards regulatory measures. Drawing from survey responses of 1077 professional......, legitimation strategies, and use of emotionality and metaphor. By linking notions of the science or science fiction of climate change to the assessment of the adequacy of global and local policies and of potential organizational responses, we contribute to the understanding of ‘defensive institutional work...

  3. The effect of additives on the reactivity of palladium surfaces for the chemisorption and hydrogenation of carbon monoxide: A surface science and catalytic study. [LaMO/sub 3/(M = Cr, Mn, Fe, Co, Rh)

    Energy Technology Data Exchange (ETDEWEB)

    Rucker, T.G.

    1987-06-01

    This research studied the role of surface additives on the catalytic activity and chemisorptive properties of Pd single crystals and foils. Effects of Na, K, Si, P, S, and Cl on the bonding of CO and H and on the cyclotrimerization of acetylene on the (111), (100) and (110) faces of Pd were investigated in addition to role of TiO/sub 2/ and SiO/sub 2/ overlayers deposited on Pd foils in the CO hydrogenation reaction. On Pd, only in the presence of oxide overlayers, are methane or methanol formed from CO and H/sub 2/. The maximum rate of methane formation is attained on Pd foil where 30% of the surface is covered with titania. Methanol formation can be achieved only if the TiO/sub x//Pd surface is pretreated in 50 psi of oxygen at 550/sup 0/C prior to the reaction. The additives (Na, K, Si, P, S, Cl) affect the bonding of CO and hydrogen and the cyclotrimerization of acetylene to benzene by structural and electronic interactions. In general, the electron donating additives increase the desorption temperature of CO and increase the rate of acetylene cyclotrimerization and the electron withdrawing additives decrease the desorption temperature of CO and decrease the rate of benzene formation from acetylene.

  4. Behavioral dental science: the relationship between tooth-brushing angle and plaque removal at the lingual surfaces of the posterior teeth in the mandible.

    Science.gov (United States)

    Sasahara, H; Kawamura, M

    2000-06-01

    The aim of this study was to investigate the relationship between tooth-brushing angle and efficacy of plaque removal. The subjects in this study were 72 students (18-21 yrs.) from paramedical schools. They answered the questionnaire of the Hiroshima University-Dental Behavioral Inventory (HU-DBI) to assess dental health behavior, and then received examinations of tooth-brushing angle, efficacy of plaque removal and gingival condition. The examination sites of tooth-brushing angle and the efficacy of plaque removal were the lingual surfaces of the posterior teeth in the mandible. The tooth-brushing angle, efficacy of plaque removal, gingival condition and dental health behavior were significantly associated with each other. The subjects who directed the bristles of the toothbrush vertically toward the tooth surfaces had a high efficacy of plaque removal, good gingival condition and good dental health behavior. Thus, it is important to direct the bristles vertically toward the tooth surfaces for effective plaque removal. In addition, knowledge related to good dental health might be necessary to carry out effective tooth brushing.

  5. Fundamental research on surface science of coal in support of physical beneficiation of coal: Quarterly technical progress report, January 1--March 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Good, R. J.; Keller, Jr., D. V.

    1989-01-01

    Research on coal surfaces continued. Our contact angle study of the decane-water-coal system has been extended using various ranks of coal. The study of the effect of surface oxidation on contact angles has also been extended to Upper Freeport, Illinois No. 6 and Kentucky No. 9 coals. Measurements of contact angles of liquid-air interfaces, on polished surfaces of coal of two different ranks, have been made using the captive drop technique. The data have been analyses using the acid/base theory. Some preliminary contact angle measurements have been made on rock pyrite, using the microscopic technique. The measurements were carried out for decane-water interfaces. A study of laboratory-scale agglomeration has been undertaken, using an Osterizer blender. The coals used were Illinois No. 6 and Kentucky No. 9. The effect of CO/sub 2/ on the agglomeration process has been looked into. Finally, the adsorption alcohols (cyclohexanol and n-octanol) from both aqueous and non-aqueous solutions, onto coal, has been measured. Two ranks of coal were used: Upper Freeport (mvb) and Illinois No. 6 (hvcb). 9 refs., 6 figs., 17 tabs.

  6. Mars Science Laboratory Sample Acquisition, Sample Processing and Handling Subsystem: A Description of the Sampling Functionality of the System after being on the Surface for Two Years.

    Science.gov (United States)

    Beegle, L. W.; Anderson, R. C.; Abbey, W. J.

    2014-12-01

    The Sample Acquisition/Sample Processing and Handling (SA/SPaH) subsystem for the Mars Science Library (MSL) is a rover-based sampling system. SA/SPaH consists of a powdering drill and a scooping, sieving, and portioning device mounted on a turret at the end of a robotic arm. Curiosity rover preformed several sample acquisitions and processing of solid samples during its first year of operation. Material were processed and delivered to the two analytical instruments, Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM), both of which required specific particle size for the material delivered to them to perform their analysis to determine its mineralogy and geochemistry content. In this presentation, the functionality of the system will be explained along with the in-situ targets the system has acquire and the samples that were delivered.

  7. The public understanding of nanotechnology in the food domain: the hidden role of views on science, technology, and nature.

    Science.gov (United States)

    Vandermoere, Frederic; Blanchemanche, Sandrine; Bieberstein, Andrea; Marette, Stephan; Roosen, Jutta

    2011-03-01

    In spite of great expectations about the potential of nanotechnology, this study shows that people are rather ambiguous and pessimistic about nanotechnology applications in the food domain. Our findings are drawn from a survey of public perceptions about nanotechnology food and nanotechnology food packaging (N = 752). Multinomial logistic regression analyses further reveal that knowledge about food risks and nanotechnology significantly influences people's views about nanotechnology food packaging. However, knowledge variables were unrelated to support for nanofood, suggesting that an increase in people's knowledge might not be sufficient to bridge the gap between the excitement some business leaders in the food sector have and the restraint of the public. Additionally, opposition to nanofood was not related to the use of heuristics but to trust in governmental agencies. Furthermore, the results indicate that public perceptions of nanoscience in the food domain significantly relate to views on science, technology, and nature.

  8. Primary Science Interview: Science Sparks

    Science.gov (United States)

    Bianchi, Lynne

    2016-01-01

    In this "Primary Science" interview, Lynne Bianchi talks with Emma Vanstone about "Science Sparks," which is a website full of creative, fun, and exciting science activity ideas for children of primary-school age. "Science Sparks" started with the aim of inspiring more parents to do science at home with their…

  9. The surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Ruban, Andrei; Skriver, Hans Lomholt

    1998-01-01

    We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the database is established in a comparison...

  10. Communicating Science

    Science.gov (United States)

    Russell, Nicholas

    2009-10-01

    Introduction: what this book is about and why you might want to read it; Prologue: three orphans share a common paternity: professional science communication, popular journalism, and literary fiction are not as separate as they seem; Part I. Professional Science Communication: 1. Spreading the word: the endless struggle to publish professional science; 2. Walk like an Egyptian: the alien feeling of professional science writing; 3. The future's bright? Professional science communication in the age of the internet; 4. Counting the horse's teeth: professional standards in science's barter economy; 5. Separating the wheat from the chaff: peer review on trial; Part II. Science for the Public: What Science Do People Need and How Might They Get It?: 6. The Public Understanding of Science (PUS) movement and its problems; 7. Public engagement with science and technology (PEST): fine principle, difficult practice; 8. Citizen scientists? Democratic input into science policy; 9. Teaching and learning science in schools: implications for popular science communication; Part III. Popular Science Communication: The Press and Broadcasting: 10. What every scientist should know about mass media; 11. What every scientist should know about journalists; 12. The influence of new media; 13. How the media represents science; 14. How should science journalists behave?; Part IV. The Origins of Science in Cultural Context: Five Historic Dramas: 15. A terrible storm in Wittenberg: natural knowledge through sorcery and evil; 16. A terrible storm in the Mediterranean: controlling nature with white magic and religion; 17. Thieving magpies: the subtle art of false projecting; 18. Foolish virtuosi: natural philosophy emerges as a distinct discipline but many cannot take it seriously; 19. Is scientific knowledge 'true' or should it just be 'truthfully' deployed?; Part V. Science in Literature: 20. Science and the Gothic: the three big nineteenth-century monster stories; 21. Science fiction: serious

  11. Dragonfly Mercury Project—A citizen science driven approach to linking surface-water chemistry and landscape characteristics to biosentinels on a national scale

    Science.gov (United States)

    Eagles-Smith, Collin A.; Nelson, Sarah J.; Willacker,, James J.; Flanagan Pritz, Colleen M.; Krabbenhoft, David P.

    2016-02-29

    Mercury is a globally distributed pollutant that threatens human and ecosystem health. Even protected areas, such as national parks, are subjected to mercury contamination because it is delivered through atmospheric deposition, often after long-range transport. In aquatic ecosystems, certain environmental conditions can promote microbial processes that convert inorganic mercury to an organic form (methylmercury). Methylmercury biomagnifies through food webs and is a potent neurotoxicant and endocrine disruptor. The U.S. Geological Survey (USGS), the University of Maine, and the National Park Service (NPS) Air Resources Division are working in partnership at more than 50 national parks across the United States, and with citizen scientists as key participants in data collection, to develop dragonfly nymphs as biosentinels for mercury in aquatic food webs. To validate the use of these biosentinels, and gain a better understanding of the connection between biotic and abiotic pools of mercury, this project also includes collection of landscape data and surface-water chemistry including mercury, methylmercury, pH, sulfate, and dissolved organic carbon and sediment mercury concentration. Because of the wide geographic scope of the research, the project also provides a nationwide “snapshot” of mercury in primarily undeveloped watersheds.

  12. Acidic deposition: State of science and technology. Report 10. Watershed and lake processes affecting surface-water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Turner, R.S.; Cook, R.B.; Miegroet, H.V.; Johnson, D.W.; Elwood, J.W.

    1990-09-01

    The acid-base chemistry of surface waters is governed by the amount and chemistry of deposition and by the biogeochemical reactions that generate acidity or acid neutralizing capacity (ANC) along the hydrologic pathways that water follows through watersheds to streams and lakes. The amount of precipitation and it chemical loading depend on the area's climate and physiography, on it proximity to natural or industrial gaseous or particulate sources, and on local or regional air movements. Vegetation interacts with the atmosphere to enhance both wet and dry deposition of chemicals to a greater or lesser extent, depending on vegetation type. Vegetation naturally acidifies the environment in humid regions through processes of excess base cation uptake and generation of organic acids associated with many biological processes. Natural acid production and atmospheric deposition of acidic materials drive the acidification process. The lake or stream NAC represents a balance between the acidity-and ANC-generating processes that occur along different flow paths in the watershed and the relative importance of each flow path

  13. Food Science.

    Science.gov (United States)

    Barkman, Susan J.

    1996-01-01

    Presents food science experiments designed for high school science classes that aim at getting students excited about science and providing them with real-life applications. Enables students to see the application of chemistry, microbiology, engineering, and other basic and applied sciences to the production, processing, preservation, evaluation,…

  14. Science/s.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Tricoire

    2005-03-01

    Full Text Available Un forum a été organisé en mars par la Commission européenne. Il s’appelait « Science in Society ». Depuis 2000 la Commission a mis en place un Plan d’Action élaboré pour que soit promue « la science » au sein du public, afin que les citoyens prennent de bonnes décisions, des décisions informées. Il s’agit donc de développer la réflexivité au sein de la société, pour que cette dernière agisse avec discernement dans un monde qu’elle travaille à rendre durable. ...

  15. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  16. Wondrous nanotechnology

    International Nuclear Information System (INIS)

    Awan, I.Z.; Hussain, S.B.

    2016-01-01

    In the last two decades, a lot of progress has been made in Nanotechnology and Nanoscience, an exploitation of matter on atomic, molecular and supermolecular scale. Nanotechnology because of its size is widely used in such varied fields as surface science, molecular biology, organic chemistry, semi-conductor physics, micro fabrication, medical sciences, electronics, biomaterials, energy production, etc. Using nanotechnology, Researchers have been able to develop new materials with nanoscale dimensions to directly control matter on the atomic or molecular scale. Due to the range of many potential applications, both industrial and military, many governments boast invested billions of dollars in nanotechnology and nanoscience research. This brief review deals with the fundamentals of nanotechnology and nanoscience and its application in various fields. It also discusses the future of nanotechnology and the risks involved in it. (author)

  17. Adsorption of Hazardous Compounds to Mineral Surfaces

    National Research Council Canada - National Science Library

    Carron, Keith

    1997-01-01

    The project entitled 'Adsorption of Hazardous Compounds to Mineral Surfaces' involved five faculty members from the University of Wyoming's Departments of Chemistry, Geology, Soil Science, and Mathematics...

  18. PREFACE: Nanoscale science and technology

    Science.gov (United States)

    Bellucci, Stefano

    2008-11-01

    modulated by tuning the strength of the spin-orbit interaction as well as by changing a constructive parameter of the junctions. Nanomechanical properties of conch shell by M Petraroli, showed how to use nanoindentation methods to explore, at the nanoscale, the mechanical properties of the Conus Mediterraneus conch, in order to compare nanohardness and elastic modulus with respect to the microstructural architecture and sample orientation. For the experimental tests a Nano Indenter XP (MTS Nano Instruments, Oak Ridge TN) has been used. The mechanical tests have been carried out on the inner surface of the shell and on three layers of its cross section (inner, middle and outer). On each of these surfaces the indentation has been performed at different maximum depth: from 250 nm to 4 μm, with a step of 250 nm. Data obtained suggest the following considerations: the inner surface of the conch shell, from the mechanical point of view, results homogeneous, while the shell structure is not homogeneous along its cross section; nanohardness and elastic modulus grow from the inner side to the outer side. No sensible difference has been observed with regards to the nanoindentation depth. The analysis supports the idea that artificial bio-inspired super-composites could be realized in the near future. CsPbCl3 nanocrystals dispersed in the Rb0,8Cs0,2Cl matrix: vibrational studies by P Savchyn reported the results of the infrared spectroscopy measurements and analysis intended to clarify the influence of CsPbCl3 nano-complexes, dispersed in the Rb0,8Cs0,2Cl matrix on the vibrational spectra of the host. Selected papers, based on conference original presentations and follow-up discussions, appear in the present dedicated issue of Journal of Physics: Condensed Matter. Tutorial lectures delivered at the school will be published by Springer Verlag Heidelberg, Germany, in their Lecture Notes in Nanoscale Science and Technology Series. The next edition of the meeting, n&n2008, planned in 20

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Barnes. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P V Rajesh. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 691-708. Sensitivity of tropical cyclone characteristics to the radial distribution of sea surface temperature · Deepika Rai S Pattnaik P V Rajesh · More Details Abstract Fulltext ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P N Preenu. Articles written in Journal of Earth System Science. Volume 126 Issue 5 July 2017 pp 76. Variability of the date of monsoon onset over Kerala (India) of the period 1870–2014 and its relation to sea surface temperature · P N Preenu P V Joseph P K Dineshkumar.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P K Pal. Articles written in Journal of Earth System Science. Volume 113 Issue 1 March 2004 pp 89-101. Artificial neural network approach for estimation of surface specific humidity and air temperature using Multifrequency Scanning Microwave Radiometer · Randhir Singh ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. YUTING HUANG. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1137-1149. Facile synthesis and characterization of rough surface V 2 O 5 nanomaterials for pseudo-supercapacitor electrode material with high capacitance · YIFU ZHANG ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. T N Krishnamurti. Articles written in Journal of Earth System Science. Volume 115 Issue 2 April 2006 pp 185-201. Transitions in the surface energy balance during the life cycle of a monsoon season · T N Krishnamurti Mrinal K Biswas · More Details Abstract Fulltext PDF.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rajesh Sikhakolli. Articles written in Journal of Earth System Science. Volume 122 Issue 1 February 2013 pp 187-199. Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in situ data · Rajesh Sikhakolli Rashmi Sharma Sujit Basu B S ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V B Sumithranand. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 507-517. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Senthil Kumar. Articles written in Journal of Earth System Science. Volume 119 Issue 5 October 2010 pp 745-751. Soil-gas helium and surface-waves detection of fault zones in granitic bedrock · G K Reddy T Seshunarayana Rajeev Menon P Senthil Kumar · More Details ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G Rajagopalan. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 153-156. Glacial-interglacial changes in the surface water characteristics of the Andaman Sea: Evidence from stable ratios of planktonic foraminifera · S M Ahmad D J ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sunil Peshin. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 373-383. Surface ozone scenario at Pune and Delhi during the decade of 1990s · Kaushar Ali S R Inamdar G Beig S Ghude Sunil Peshin · More Details Abstract Fulltext PDF.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Bhawanisingh G Desai. Articles written in Journal of Earth System Science. Volume 120 Issue 4 August 2011 pp 723-734. Discontinuity surfaces and event stratigraphy of Okha Shell Limestone Member: Implications for Holocene sea level changes, western India.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Petrič. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 113-119. Performance of waterborne acrylic surface coatings on wood impregnated with Cu-ethanolamine preservatives · M Humar M Pavlič D Žlindra M Tomažič M Petrič.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Shalini. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  13. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 127; Issue 1. Projections of Veronese surface and morphisms from projective plane to Grassmannian ... M2, Universite Lille 1, F-59655 Villeneuve d'Ascq Cedex, France; Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113, India ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Mikki V Vinodu. Articles written in Journal of Chemical Sciences. Volume 113 Issue 1 February 2001 pp 1-9 Inorganic and Analytical. Peroxidase-like catalytic activities of ionic metalloporphyrins supported on functionalised polystyrene surface · Mikki V Vinodu M ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R Venkatesan. Articles written in Journal of Earth System Science. Volume 127 Issue 1 February 2018 pp 14. Comparison of AMSR-2 wind speed and sea surface temperature with moored buoy observations over the Northern Indian Ocean · B Nanda Kishore Reddy R ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Simi Mathew. Articles written in Journal of Earth System Science. Volume 127 Issue 1 February 2018 pp 14. Comparison of AMSR-2 wind speed and sea surface temperature with moored buoy observations over the Northern Indian Ocean · B Nanda Kishore Reddy R ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. I Hubert Joe. Articles written in Journal of Chemical Sciences. Volume 120 Issue 4 July 2008 pp 405-410. Surface enhanced Raman spectra of the organic nonlinear optic material: Methyl 3-(4-methoxy phenyl)prop-2-enoate · D Sajan I Hubert Joe V S Jayakumar Jacek Zaleski.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Anup Saha. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 885-895. Effect of irregularity on torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half- ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Santimoy Kundu. Articles written in Journal of Earth System Science. Volume 124 Issue 1 February 2015 pp 161-170. Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer · Shishir Gupta Rehena Sultana Santimoy Kundu.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rehena Sultana. Articles written in Journal of Earth System Science. Volume 124 Issue 1 February 2015 pp 161-170. Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer · Shishir Gupta Rehena Sultana Santimoy Kundu.

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. KALARICAL JANARDHANAN SREERAM. Articles written in Journal of Chemical Sciences. Volume 126 Issue 1 January 2014 pp 65-73. Effective synthesis route for red-brown pigments based on Ce - Pr - Fe - O and their potential application for near infrared reflective surface ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Yuanming Zhang. Articles written in Journal of Chemical Sciences. Volume 118 Issue 3 May 2006 pp 281-285. Temperature effects on surface activity and application in oxidation of toluene derivatives of CTAB-SDS with KMnO4 · Yu Tang Biying Du Jun Yang Yuanming ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. H Nozoye. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 583-586 Thin Films. Preparation of Sm–Ru bimetallic alloy films on Ru(0001) surface by vapour-deposition and annealing · G Ranga Rao H Nozoye · More Details Abstract Fulltext ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. L P Silva. Articles written in Bulletin of Materials Science. Volume 37 Issue 1 February 2014 pp 157-166 Electronic Supplementary Material. Characterization of neutrophil adhesion to different titanium surfaces · V Campos R C N Melo L P Silva E N Aquino M S Castro W Fontes.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sarva Jit Singh. Articles written in Journal of Earth System Science. Volume 111 Issue 4 December 2002 pp 401-412. Reflection of and SV waves at the free surface of a monoclinic elastic half-space · Sarva Jit Singh Sandhya Khurana · More Details Abstract Fulltext PDF.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Sundaram Balasubramanian. Articles written in Journal of Chemical Sciences. Volume 127 Issue 10 October 2015 pp 1687-1699. Modelling Gas Adsorption in Porous Solids: Roles of Surface Chemistry and Pore Architecture · Satyanarayana Bonakala Sundaram ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A P Dimri. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 329-344. Wintertime land surface characteristics in climatic simulations over the western Himalayas · A P Dimri · More Details Abstract Fulltext PDF. Wintertime regional climate ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R Bajpai. Articles written in Bulletin of Materials Science. Volume 25 Issue 1 February 2002 pp 21-23 Mechanical Properties. Surface modification on PMMA : PVDF polyblend: hardening under chemical environment · R Bajpai V Mishra Pragyesh Agrawal S C Datt · More Details ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D Žlindra. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 113-119. Performance of waterborne acrylic surface coatings on wood impregnated with Cu-ethanolamine preservatives · M Humar M Pavlič D Žlindra M Tomažič M Petrič.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P K Kunhikrishnan. Articles written in Journal of Earth System Science. Volume 113 Issue 3 September 2004 pp 353-363. Observations of the atmospheric surface layer parameters over a semi arid region during the solar eclipse of August 11th, 1999 · Praveena Krishnan ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. RIDHA ZOUARI. Articles written in Bulletin of Materials Science. Volume 40 Issue 2 April 2017 pp 289-299. Synthesis, structure and Hirshfeld surface analysis, vibrational and DFT investigation of (4-pyridine carboxylic acid) tetrachlorocuprate (II) monohydrate · KHAOULA ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B N Nath. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 153-156. Glacial-interglacial changes in the surface water characteristics of the Andaman Sea: Evidence from stable ratios of planktonic foraminifera · S M Ahmad D J Patil P S ...

  13. Kulkarni, Prof. Sulabha Kashinath

    Indian Academy of Sciences (India)

    Fellow Profile. Elected: 2004 Section: Physics. Kulkarni, Prof. Sulabha Kashinath Ph.D. (Pune), FNASc, FNA. Date of birth: 1 June 1949. Specialization: Surface Physics, Materials Science and Nanoscience Address: Centre for Materials for Electronics Technology, Off Dr Homi Bhabha Road, Panchwati, Pune 411 008, ...

  14. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Period: 1987–1990. Sarma, Dr D D . Date of birth: 15 September 1955. Specialization: Surface Chemistry of Intermetallics Address during Associateship: Solid State and Structural, Chemistry Unit, Indian Institute of Science, Bangalore 560 012.

  15. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Specialization: Solid State Chemistry, Surface Science, Spectroscopy and Molecular Structure Address: Linus Pauling Research Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, Karnataka Contact: Office: (080) 2365 3075, (080) 2208 2761. Residence: (080) 2360 1410

  16. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  17. Mirador - Earth Surface and Interior

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. The goal of the Earth Surface and Interior focus area is to assess, mitigate and forecast the natural hazards that affect...

  18. Nanomaterials science

    Directory of Open Access Journals (Sweden)

    Heinrich Rohrer

    2010-01-01

    Full Text Available The nanometer regime covers the transition from condensed matter behavior to atomic and molecular properties and thus is a very rich but also very demanding area in materials science. Close to the condensed matter side, properties and functions might still very well be scalable, whereas close to the atomic and molecular side, the scalability is mostly lost. Properties and functions change qualitatively or quantitatively by orders of magnitude when the dimensions become smaller than a critical size in the nanometer range. Examples are the ballistic regime for electron or spin transport at dimensions below the mean free path, near-field effects in scanning near-field optical microscopy and quantum wells when the dimensions are below an appropriate wavelength, novel electronic, mechanical, and chemical properties when the number of bulk atoms becomes smaller than that of surface atoms, quantum conduction, and Coulomb blockade. Thus, by going below a certain size, an abundance of novel properties and functions are at one's disposal, or, in other words, we can functionalize materials simply by reducing their size to the nanoscale.The key to the future lies in the functions that we give to materials, not just in finding 'novel functional materials'. This catch expression in many materials science programs and initiatives of the past two decades sounds great, but it is not what really counts. All materials are functional in one way or another and, therefore, all new materials are 'novel functional materials'. Certainly, finding new materials is always an important part of progress, but we should also focus on the much larger domain of novel functions that we can give to existing or modified materials. A good example is semiconductors: they are fifty or more years old and their properties are very well known, but they were not of widespread interest and use until the transistor changed their destiny into being the central material in the information

  19. Australian synchrotron radiation science

    International Nuclear Information System (INIS)

    White, J.W.

    1996-01-01

    Full text: The Australian Synchrotron Radiation Program, ASRP, has been set up as a major national research facility to provide facilities for scientists and technologists in physics, chemistry, biology and materials science who need access to synchrotron radiation. Australia has a strong tradition in crystallography and structure determination covering small molecule crystallography, biological and protein crystallography, diffraction science and materials science and several strong groups are working in x-ray optics, soft x-ray and vacuum ultra-violet physics. A number of groups whose primary interest is in the structure and dynamics of surfaces, catalysts, polymer and surfactant science and colloid science are hoping to use scattering methods and, if experience in Europe, Japan and USA can be taken as a guide, many of these groups will need third generation synchrotron access. To provide for this growing community, the Australian National Beamline at the Photon Factory, Tsukuba, Japan, has been established since 1990 through a generous collaboration with Japanese colleagues, the beamline equipment being largely produced in Australia. This will be supplemented in 1997 with access to the world's most powerful synchrotron x-ray source at the Advanced Photon Source, Argonne National Laboratory, USA. Some recent experiments in surface science using neutrons as well as x-rays from the Australian National Beamline will be used to illustrate one of the challenges that synchrotron x-rays may meet

  20. FOREWORD Nanomaterials science Nanomaterials science

    Science.gov (United States)

    Rohrer, Heinrich

    2010-10-01

    The nanometer regime covers the transition from condensed matter behavior to atomic and molecular properties and thus is a very rich but also very demanding area in materials science. Close to the condensed matter side, properties and functions might still very well be scalable, whereas close to the atomic and molecular side, the scalability is mostly lost. Properties and functions change qualitatively or quantitatively by orders of magnitude when the dimensions become smaller than a critical size in the nanometer range. Examples are the ballistic regime for electron or spin transport at dimensions below the mean free path, near-field effects in scanning near-field optical microscopy and quantum wells when the dimensions are below an appropriate wavelength, novel electronic, mechanical, and chemical properties when the number of bulk atoms becomes smaller than that of surface atoms, quantum conduction, and Coulomb blockade. Thus, by going below a certain size, an abundance of novel properties and functions are at one's disposal, or, in other words, we can functionalize materials simply by reducing their size to the nanoscale. The key to the future lies in the functions that we give to materials, not just in finding 'novel functional materials'. This catch expression in many materials science programs and initiatives of the past two decades sounds great, but it is not what really counts. All materials are functional in one way or another and, therefore, all new materials are 'novel functional materials'. Certainly, finding new materials is always an important part of progress, but we should also focus on the much larger domain of novel functions that we can give to existing or modified materials. A good example is semiconductors: they are fifty or more years old and their properties are very well known, but they were not of widespread interest and use until the transistor changed their destiny into being the central material in the information technology revolution

  1. Helium atom scattering from surfaces

    CERN Document Server

    1992-01-01

    High resolution helium atom scattering can be applied to study a number of interesting properties of solid surfaces with great sensitivity and accuracy. This book treats in detail experimental and theoretical aspects ofthis method as well as all current applications in surface science. The individual chapters - all written by experts in the field - are devoted to the investigation of surface structure, defect shapes and concentrations, the interaction potential, collective and localized surface vibrations at low energies, phase transitions and surface diffusion. Over the past decade helium atom scattering has gained widespread recognitionwithin the surface science community. Points in its favour are comprehensiveunderstanding of the scattering theory and the availability of well-tested approximation to the rigorous theory. This book will be invaluable to surface scientists wishing to make an informed judgement on the actual and potential capabilities of this technique and its results.

  2. Sound Science

    Science.gov (United States)

    Sickel, Aaron J.; Lee, Michele H.; Pareja, Enrique M.

    2010-01-01

    How can a teacher simultaneously teach science concepts through inquiry while helping students learn about the nature of science? After pondering this question in their own teaching, the authors developed a 5E learning cycle lesson (Bybee et al. 2006) that concurrently embeds opportunities for fourth-grade students to (a) learn a science concept,…

  3. The International Congress of Mechanical Engineering and Agricultural Sciences – CIIMCA 2013

    International Nuclear Information System (INIS)

    Remolina-Millán, Aduljay; Hernández-Arroyo, Emil

    2014-01-01

    The organizing committee of The International Congress of Mechanical Engineering and Agricultural Sciences – CIIMCA 2013 – are pleased to present CIIMCA-2013: the first international conference focused on subjects of materials science, mechanical engineering and renewable energy organized by Mechanical Engineering Faculty of the ''Universidad Pontificia Bolivariana'' in Bucaramanga, Colombia. This conference aims to be a place to produce discussions on whole topics of the congress, between the scientists of Colombia and the world. We strongly believe that knowledge is fundamental to the development of our countries. For that reason this multidisciplinary conference is looking forward to integrate engineering, agricultural science and nanoscience and nanotechnology to produce a synergy of this area of knowledge and to achieve scientific and technological developments. Agriculture is a very important topic for our conference; in Colombia, agricultural science needs more attention from the scientific community and the government. In the Faculty of Mechanical Engineering we are beginning to work on these issues to produce knowledge and improve the conditions in our country. The CIIMCA conference is a great opportunity to create interpersonal relationships and networks between scientists around the world. The interaction between scientists is very important in the process of the construction of knowledge. The general chairman encourages and invites you to make friends, relationships and participate strongly in the symposia and all program activities. PhD Aduljay Remolina-Millán Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress – CIIMCA Msc Emil Hernández-Arroyo Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress – CIIMCA Conferencephotograph Conferencephotograph 'Universidad Pontificia Bolivariana seccional Bucaramanga' host of the first

  4. EDITORIAL: Big science at the nanoscale Big science at the nanoscale

    Science.gov (United States)

    Reed, Mark

    2009-10-01

    In 1990, the journal Nanotechnology was the first academic publication dedicated to disseminating the results of research in what was then a new field of scientific endeavour. To celebrate the 20th volume of Nanotechnology, we are publishing a special issue of top research papers covering all aspects of this multidisciplinary science, including biology, electronics and photonics, quantum phenomena, sensing and actuating, patterning and fabrication, material synthesis and the properties of nanomaterials. In the early 1980s, scanning probe microscopes brought the concepts of matter and interactions at the nanoscale into visual reality, and hastened a flurry of activity in the burgeoning new field of nanoscience. Twenty years on and nanotechnology has truly come of age. The ramifications are pervasive throughout daily life in communication, health care and entertainment technology. For example, DVDs have now consigned videotapes to the ark and mobile phones are as prevalent as house keys, and these technologies already look set to be superseded by internet phones and Blu-Ray discs. Nanotechnology has been in the unique position of following the explosive growth of this discipline from its outset. The surge of activity in the field is notable in the number of papers published by the journal each year, which has skyrocketed. The journal is now published weekly, publishing over 1400 articles a year. What is more, the quality of these articles is also constantly improving; the average number of citations to articles within two years of publication, quantified by the ISI impact factor, continues to increase every year. The rate of activity in the field shows no signs of slowing down, as is evident from the wealth of great research published each week. The aim of the 20th volume special issue is to present some of the very best and most recent research in many of the wide-ranging fields covered by the journal, a celebration of the present state of play in nanotechnology and

  5. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  6. Surface Science at the Solid Liquid Interface

    Science.gov (United States)

    1993-10-06

    18 1002 T. iR Dillingham X-Ray Photoelectron Spectroscopy Analysis of Borate Substituted Polyaniline Thin Films 19 1050 Karl Robinson In-Situ X-Ray...Monreal, and P. Apell , Phys. Rev. B 42. 9210 (1990) processes. It is known the probability becomes higher as 20D. L. Mills, M. Weber, and B. Laks, in...in UHV and solu- 22B. Reihl, K. H. Frank, and A. Otto , Z. Phys. B 62. 473 (1986). tion, when the Ag electrode is held at the PZC. We are 23S. D

  7. Versatile Density Functionals for Computational Surface Science

    DEFF Research Database (Denmark)

    Wellendorff, Jess

    resampling techniques, thereby systematically avoiding problems with overfitting. The first ever density functional presenting both reliable accuracy and convincing error estimation is generated. The methodology is general enough to be applied to more complex functional forms with higher-dimensional fitting...... and resampling. This is illustrated by searching for meta-GGA type functionals that outperform current meta-GGAs while allowing for error estimation....

  8. Legalising science.

    Science.gov (United States)

    Tallacchini, Mariachiara

    2002-01-01

    The legal view of science has changed through time, moving from a positivist and noncritical position of law towards science to a critical view of science--providing the potential for more objective knowledge, but value-laden as well--and of the role of society. This paper explores some judicial cases that illustrate these attitudes, suggesting that reference to science (particularly to EBM) can be rigorously and equitably made when it serves the cause of transparency and democratisation both in science and in law.

  9. Complexity in Surfaces of Densest Packings for Families of Polyhedra

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Chen

    2014-02-01

    Full Text Available Packings of hard polyhedra have been studied for centuries due to their mathematical aesthetic and more recently for their applications in fields such as nanoscience, granular and colloidal matter, and biology. In all these fields, particle shape is important for structure and properties, especially upon crowding. Here, we explore packing as a function of shape. By combining simulations and analytic calculations, we study three two-parameter families of hard polyhedra and report an extensive and systematic analysis of the densest known packings of more than 55 000 convex shapes. The three families have the symmetries of triangle groups (icosahedral, octahedral, tetrahedral and interpolate between various symmetric solids (Platonic, Archimedean, Catalan. We find optimal (maximum packing-density surfaces that reveal unexpected richness and complexity, containing as many as 132 different structures within a single family. Our results demonstrate the importance of thinking about shape not as a static property of an object, in the context of packings, but rather as but one point in a higher-dimensional shape space whose neighbors in that space may have identical or markedly different packings. Finally, we present and interpret our packing results in a consistent and generally applicable way by proposing a method to distinguish regions of packings and classify types of transitions between them.

  10. Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response

    Directory of Open Access Journals (Sweden)

    Xuan Le

    2013-01-01

    Full Text Available Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales.

  11. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  12. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  13. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  14. Materials Sciences Division 1990 annual report

    International Nuclear Information System (INIS)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals

  15. Plasma Science Committee (PLSC)

    International Nuclear Information System (INIS)

    1990-01-01

    The Plasma Science Committee (PLSC) is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences--National Research Council. Plasma sciences represent a broad and diverse field. The PLSC has accepted the responsibility of monitoring the continuing development and assessing the general health of the field as whole. Although select advisory bodies have been created to address specific issues that affect plasma science, such as the Fusion Policy Advisory Committee (FPAC), the PLSC provides a focus for the plasma science community that is unique and essential. The membership of the PLSC is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include accelerators and beams, space physics, astrophysics, computational physics and applied mathematics, fusion plasmas, fundamental experiments and theory, radiation sources, low temperature plasmas, and plasma-surface interactions. The PLSC is well prepared to respond to requests for studies on specific issues. This report discusses ion of the PLSC work

  16. Science Shops

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    1999-01-01

    The paper prsents the overall concept of science shops as practised in most of the European science shops and present the concept practised and some experience obtained at the Technical University of Denmark. An outline for the planning of new sceince shops is presented.......The paper prsents the overall concept of science shops as practised in most of the European science shops and present the concept practised and some experience obtained at the Technical University of Denmark. An outline for the planning of new sceince shops is presented....

  17. Teaching K-12 teachers and students about nanoscale science through microscopy

    Science.gov (United States)

    Healy, Nancy

    2014-09-01

    The National Nanotechnology Infrastructure Network (NNIN) is an integrated partnership of 14 universities across the US funded by NSF to support nanoscale researchers. NNIN's education and outreach programs are large and varied and includes outreach to the K-12 community in the form of professional development workshops and school programs. Two important components of nanoscale science education are understanding size and scale and the tools used in nanoscale science and engineering (NSE). As part of our K-12 endeavors, we educate K-12 students and teachers about the tools of nanoscience by providing experiences with the Hitachi TM 3000 tabletop Scanning Electron Microscope (SEM). There are three of these across the network that are used in education and outreach. This paper will discuss approaches we use to engage the K-12 community at NNIN's site at Georgia Institute of Technology to understand size and scale and the applications of a variety of microscopes to demonstrate the imaging capabilities of these to see both the micro and nano scales. We not only use the tabletop SEM but also include USB digital microscopes, a Keyence VHX- 600 Digital Microscope, and even a small lens used with smart phones. The goal of this outreach is to educate students as well as teachers about the capabilities of the various instruments and their importance at different size scales.

  18. Science Fairs for Science Literacy

    Science.gov (United States)

    Mackey, K. R.

    2014-12-01

    Science literacy is imperative for well informed civic and personal decision making, yet only a quarter of American adults are proficient enough in science to understand science stories reported in the popular press. Hands-on research increases confidence in and understanding of science. When guiding students in designing and conducting science fair projects, mentors can foster science literacy by helping students focus on three goals: (1) articulating hypotheses or questions, (2) designing feasible projects, and (3) learning to make and interpret graphs. These objectives introduce students to the methodological nature of scientific research and give them the tools to interpret scientific facts and data in order to make informed decisions for themselves and society.

  19. The science in social science.

    Science.gov (United States)

    Bernard, H Russell

    2012-12-18

    A recent poll showed that most people think of science as technology and engineering--life-saving drugs, computers, space exploration, and so on. This was, in fact, the promise of the founders of modern science in the 17th century. It is less commonly understood that social and behavioral sciences have also produced technologies and engineering that dominate our everyday lives. These include polling, marketing, management, insurance, and public health programs.

  20. The sciences of science communication.

    Science.gov (United States)

    Fischhoff, Baruch

    2013-08-20

    The May 2012 Sackler Colloquium on "The Science of Science Communication" brought together scientists with research to communicate and scientists whose research could facilitate that communication. The latter include decision scientists who can identify the scientific results that an audience needs to know, from among all of the scientific results that it would be nice to know; behavioral scientists who can design ways to convey those results and then evaluate the success of those attempts; and social scientists who can create the channels needed for trustworthy communications. This overview offers an introduction to these communication sciences and their roles in science-based communication programs.

  1. Integrated Science.

    Science.gov (United States)

    Rainey, Larry; Miller, Roxanne Greitz

    1997-01-01

    Describes the Integrated Science program that integrates biology, earth/space science, chemistry, and physics over a three-year, spiraling sequence arranged around broad themes such as cycles, changes, patterns, and waves. Includes weekly telecasts via public television and satellite, teacher manuals, student handbooks, e-mail connections, staff…

  2. Using Science

    Science.gov (United States)

    Kelly, Deryk

    1971-01-01

    Article discusses educational benefits of science hobbies, citing specific accomplishments of British students. New courses in Engineering Science and recent development of scientific investigation and technological classroom projects are noted. Author relates how students have solved specific practical problems, such as devising games to develop…

  3. Life sciences

    International Nuclear Information System (INIS)

    Day, L.

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs

  4. Life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Day, L. (ed.)

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  5. Science Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 2. Science Matters A Book for Curious Minds. Rohini Godbole. Book Review Volume 2 Issue 2 February 1997 pp 94-95. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/002/02/0094-0095 ...

  6. Minimal surfaces

    CERN Document Server

    Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht

    2010-01-01

    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently

  7. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  8. Rumble surfaces

    CSIR Research Space (South Africa)

    National Institute for Transport and Road

    1977-01-01

    Full Text Available Rumble surfaces are intermittent short lengths of coarse-textured road surfacings on which vehicle tyres produce a rumbling sound. used in conjunction with appropriate roadsigns and markings, they can reduce accidents on rural roads by alerting...

  9. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  10. Revolutionary Science

    Directory of Open Access Journals (Sweden)

    Arturo Casadevall

    2016-05-01

    Full Text Available On rare occasions in the history of science, remarkable discoveries transform human society and forever alter mankind’s view of the world. Examples of such discoveries include the heliocentric theory, Newtonian physics, the germ theory of disease, quantum theory, plate tectonics and the discovery that DNA carries genetic information. The science philosopher Thomas Kuhn famously described science as long periods of normality punctuated by times of crisis, when anomalous observations culminate in revolutionary changes that replace one paradigm with another. This essay examines several transformative discoveries in the light of Kuhn’s formulation. We find that each scientific revolution is unique, with disparate origins that may include puzzle solving, serendipity, inspiration, or a convergence of disparate observations. The causes of revolutionary science are varied and lack an obvious common structure. Moreover, it can be difficult to draw a clear distinction between so-called normal and revolutionary science. Revolutionary discoveries often emerge from basic science and are critically dependent on nonrevolutionary research. Revolutionary discoveries may be conceptual or technological in nature, lead to the creation of new fields, and have a lasting impact on many fields in addition to the field from which they emerge. In contrast to political revolutions, scientific revolutions do not necessarily require the destruction of the previous order. For humanity to continue to benefit from revolutionary discoveries, a broad palette of scientific inquiry with a particular emphasis on basic science should be supported.

  11. Revolutionary Science.

    Science.gov (United States)

    Casadevall, Arturo; Fang, Ferric C

    2016-03-01

    On rare occasions in the history of science, remarkable discoveries transform human society and forever alter mankind's view of the world. Examples of such discoveries include the heliocentric theory, Newtonian physics, the germ theory of disease, quantum theory, plate tectonics and the discovery that DNA carries genetic information. The science philosopher Thomas Kuhn famously described science as long periods of normality punctuated by times of crisis, when anomalous observations culminate in revolutionary changes that replace one paradigm with another. This essay examines several transformative discoveries in the light of Kuhn's formulation. We find that each scientific revolution is unique, with disparate origins that may include puzzle solving, serendipity, inspiration, or a convergence of disparate observations. The causes of revolutionary science are varied and lack an obvious common structure. Moreover, it can be difficult to draw a clear distinction between so-called normal and revolutionary science. Revolutionary discoveries often emerge from basic science and are critically dependent on nonrevolutionary research. Revolutionary discoveries may be conceptual or technological in nature, lead to the creation of new fields, and have a lasting impact on many fields in addition to the field from which they emerge. In contrast to political revolutions, scientific revolutions do not necessarily require the destruction of the previous order. For humanity to continue to benefit from revolutionary discoveries, a broad palette of scientific inquiry with a particular emphasis on basic science should be supported. Copyright © 2016 Casadevall and Fang.

  12. Dynamics at Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia Ceyer, Nancy Ryan Gray

    2010-05-04

    The 2009 Gordon Conference on Dynamics at Surfaces is the 30th anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state dynamics, non-adiabatic interactions in molecule-metal systems, photon induced desorption from semiconductor and metal surfaces, ultrafast x-ray and electron diffraction as probes of the dynamics of ablation, ultrafast vibrational spectroscopy of water surface dynamics, dynamics of a single adsorbate, growth at nano-scale mineral surfaces, dynamics of atom recombination on interstellar dust grains and the dynamics of the interaction of water with lipid bilayers. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology and biophysics.

  13. Science Instructors' Views of Science and Nature of Science

    Science.gov (United States)

    Karakas, Mehmet

    2011-01-01

    This qualitative study examined how college science faculty who teach introductory level undergraduate science courses including the fields of chemistry, biology, physics, and earth science, understand and define science and nature of science (NOS). Participants were seventeen science instructors from five different institutions in the…

  14. 2011 X-Ray Science Gordon Research Conference (August 7-12, 2011, Colby, College. Waterville, ME)

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Stephenson

    2011-08-12

    The 2011 Gordon Research Conference on X-ray Science will feature forefront x-ray-based science enabled by the rapid improvements in synchrotron and x-ray laser sources. Across the world, x-ray sources are playing an increasingly important role in physics, materials, chemistry, and biology, expanding into ever broadening areas of science and engineering. With the first hard x-ray free electron laser source beginning operation and with other advanced x-ray sources operational and planned, it is a very exciting and pivotal time for exchange ideas about the future of x-ray science and applications. The Conference will provide the forum for this interaction. An international cast of speakers will illuminate sessions on ultrafast science, coherence, imaging, in situ studies, extreme conditions, new developments in optics, sources, and detectors, inelastic scattering, nanoscience, life science, and energy sciences. The Conference will bring together investigators at the forefront of these areas, and will provide a venue for young scientists entering a career in x-ray research to present their research in poster format, hold discussions in a friendly setting, and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with ample time for discussion as well as opportunities for informal gatherings in the afternoons and evenings, will provide an avenue for scientists from different disciplines to exchange ideas about forefront x-ray techniques and will promote cross-fertilization between the various research areas represented.

  15. Computational study on the interactions and orientation of monoclonal human immunoglobulin G on a polystyrene surface

    Directory of Open Access Journals (Sweden)

    Javkhlantugs N

    2013-07-01

    Full Text Available Namsrai Javkhlantugs,1,2 Hexig Bayar,3 Chimed Ganzorig,1 Kazuyoshi Ueda2 1Center for Nanoscience and Nanotechnology and Department of Chemical Technology, School of Chemistry and Chemical Engineering, National University of Mongolia, Ulaanbaatar, Mongolia; 2Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, Yokohama, Japan; 3The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China Abstract: Having a theoretical understanding of the orientation of immunoglobulin on an immobilized solid surface is important in biomedical pathogen-detecting systems and cellular analysis. Despite the stable adsorption of immunoglobulin on a polystyrene (PS surface that has been applied in many kinds of immunoassays, there are many uncertainties in antibody-based clinical and biological experimental methods. To understand the binding mechanism and physicochemical interactions between immunoglobulin and the PS surface at the atomic level, we investigated the binding behavior and interactions of the monoclonal immunoglobulin G (IgG on the PS surface using the computational method. In our docking simulation with the different arrangement of translational and rotational orientation of IgG onto the PS surface, three typical orientation patterns of the immunoglobulin G on the PS surface were found. We precisely analyzed these orientation patterns and clarified how the immunoglobulin G interacts with the PS surface at atomic scale in the beginning of the adsorption process. Major driving forces for the adsorption of IgG onto the PS surface come from serine (Ser, aspartic acid (Asp, and glutamic acid (Glu residues. Keywords: bionano interface, immunoassay, polystyrene, IgG, physical adsorption, simulation

  16. Environmental sciences

    NARCIS (Netherlands)

    Kwa, C.; Wright, J.D.

    2015-01-01

    The environmental sciences are engaged in a remarkable effort of interdisciplinary cooperation and integration. Some long-running international scientific programs, notably the World Climate Research Programme and the International Geosphere-Biosphere Programme, play an important role therein. The

  17. Big science

    CERN Multimedia

    Nadis, S

    2003-01-01

    " "Big science" is moving into astronomy, bringing large experimental teams, multi-year research projects, and big budgets. If this is the wave of the future, why are some astronomers bucking the trend?" (2 pages).

  18. Forensic Science.

    Science.gov (United States)

    Brettell, T. A.; Saferstein, R.

    1989-01-01

    Presents a review of articles appealing to forensic practitioners. Topics include: drugs and poisons, forensic biochemistry, and trace evidence. Lists noteworthy books published on forensic science topics since 1986. (MVL)

  19. Science Smiles

    Indian Academy of Sciences (India)

    IAS Admin

    Page 1. 582. RESONANCE | July 2016. Science Smiles. Ayan Guha. “Ribbed breathing flesh, thrice often crucified,. Veined vase of life, the wheeling universe.” – Sir Charles Sherrington. Email for Correspondence: ionguha@gmail.com.

  20. Science Smiles

    Indian Academy of Sciences (India)

    Page 1. 408. RESONANCE │ May 2011. GENERAL │ ARTICLE. Email for Correspondence: ionguha@gmail.com. Science Smiles. Ayan Guha. It feels like I am posing with the Bourbaki group, where every member is a Zeldovich.

  1. Science Smiles

    Indian Academy of Sciences (India)

    IAS Admin

    Page 1. 1084. RESONANCE | December 2015. Science Smiles. Ayan Guha. Charles H Townes, James P Gordon and H J. Zeiger had the first Maser working about three months later.. Email for Correspondence: ionguha@gmail.com.

  2. Citizen Science

    Science.gov (United States)

    Citizen Science is a fast-growing field in which scientific investigations are conducted by volunteers, which have been successful in expanding scientific knowledge, raising environmental awareness, and leveraging change.

  3. Dismal science.

    Science.gov (United States)

    Evans, Robert G

    2009-05-01

    "No prediction, no science." By this standard, the past year has not been kind to the pretensions of "economic science," Nobel prizes notwithstanding. The issue is more than semantic. As Neil Postman (1992) pointed out, sciences study natural processes that repeat themselves under constant conditions. The social disciplines study practices of human communities that are embedded in history. There are no constant conditions; it is impossible to step into the same river twice (Heraclitus). "Physics envy" has led mainstream economic theorists to attempt to understand their discipline through methods and models borrowed from the natural sciences. (By unfortunate coincidence, these have reinforced a certain class of ideological preconceptions and associated economic interests.) Today the results of this methodological mismatch speak for themselves.

  4. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when bubb...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy.......Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...

  5. Science Topics

    Science.gov (United States)

    EPA is one of the world’s leading environmental and human health research organizations. Science provides the foundation for Agency policies, actions, and decisions made on behalf of the American people.

  6. Molecular sciences

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The research in molecular sciences summarized includes photochemistry, radiation chemistry, geophysics, electromechanics, heavy-element oxidizers , heavy element chemistry collisions, atoms, organic solids. A list of publications is included

  7. Earth Sciences

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The following papers were presented at the earth science session: earth science developments in support of water isolation; development of models and parameters for ground-water flow in fractured rock masses; isotope geochemistry as a tool for determining regional ground-water flow; natural analogs of radionuclide migration; nuclide retardation data: its use in the NWTS program; and ground-water geochemistry and interaction with basalt at Hanford

  8. World science

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The aim of the Third World Network of Scientific Organizations (TWNSO), established last year with its headquarters in Trieste, Italy, is to promote the role of science and technology in developing countries. TWNSO, under the presidency of Abdus Salam, is an offshoot of the Third World Academy of Sciences, which has pushed the cause of international scientific collaboration since its establishment in 1983. (orig./HSI).

  9. Chemistry and Materials Science progress report, FY 1994. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  10. Vacuum science, technology, and applications

    CERN Document Server

    Naik, Pramod K

    2018-01-01

    Vacuum plays an important role in science and technology. The study of interaction of charged particles, neutrals and radiation with each other and with solid surfaces requires a vacuum environment for reliable investigations. Vacuum has contributed immensely to advancements made in nuclear science, space, metallurgy, electrical/electronic technology, chemical engineering, transportation, robotics and many other fields. This book is intended to assist students, scientists, technicians and engineers to understand the basics of vacuum science and technology for application in their projects. The fundamental theories, concepts, devices, applications, and key inventions are discussed.

  11. The science of tiny things: physics at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Copp, Stacy Marla [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-07

    Nanoscience is the study of tiny objects that are only a billionth of a meter in size, or about 1,000 to 10,000 times smaller than a human hair. From the electronics in your smartphone to the molecular motors that are in your body’s cells, nanoscientists study and design materials that span a huge range of subjects, from physics to chemistry to biology. I will talk about some of what we do at LANL’s Center for Integrated Technologies, as well as how I first got interested in nanoscience and how I became a nanoscientist at LANL.

  12. JPRS Report Science & Technology USSR: Life Sciences

    National Research Council Canada - National Science Library

    1988-01-01

    ...: Life sciences, aerospace medicine, agriculture science, biochemistry, biophysics, genetics, immunology, industrial medicine, laser bioeffects, medicine, molecular biology, nonionizing radiation...

  13. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  14. Universal phase and force diagrams for a microbubble or pendant drop in static fluid on a surface

    Science.gov (United States)

    Wei, P. S.; Hsiao, C. C.; Chen, K. Y.

    2008-01-01

    Dimensionless three-dimensional universal phase and lift force diagrams of a microbubble (or pendant drop) in static liquid on a solid surface (or orifice) are presented in this work. Microbubble dynamics has been found to play a vital role in mass, momentum, energy, and concentration transfer rates in contemporary micro- and nanosciences and technologies. In this study, dimensionless phase and force diagrams are introduced by utilizing the analytical solutions of the microbubble shape reported in the literature. It shows that phase and force diagrams can be universally specified by two dimensionless independent parameters, Bond number, and contact angle (or base radius). Based on the presence of an inflection point or neck on the microbubble surface, each diagram exhibits three regions. Growth, detachment, and entrapment of a microbubble can be described by path lines in three regions. The corresponding universal total lift forces include hydrostatic buoyancy, difference in gas, and hydrostatic pressures at the base, capillary pressure, as well as surface tension induced by the variation of circumference, which has not been treated in the literature so far. In the absence of viscous stress and Marangoni force, the total lift force equals surface tension induced by the variation of circumference. The latter can be an attaching or lifting force, depending on whether the state in the distinct regions and contact angle is less than or greater than a critical angle. The critical angle, which is slightly less than the inclination angle at the inflection point, is decreased with increasing Bond number.

  15. Science Fairs for Science Literacy

    Science.gov (United States)

    Mackey, Katherine; Culbertson, Timothy

    2014-03-01

    Scientific discovery, technological revolutions, and complex global challenges are commonplace in the modern era. People are bombarded with news about climate change, pandemics, and genetically modified organisms, and scientific literacy has never been more important than in the present day. Yet only 29% of American adults have sufficient understanding to be able to read science stories reported in the popular press [Miller, 2010], and American students consistently rank below other nations in math and science [National Center for Education Statistics, 2012].

  16. Exploring science through science fiction

    CERN Document Server

    Luokkala, Barry B

    2014-01-01

    How does Einstein’s description of space and time compare with Dr. Who? Can James Bond really escape from an armor-plated railroad car by cutting through the floor with a laser concealed in a wristwatch? What would it take to create a fully-intelligent android, such as Star Trek’s Commander Data? How might we discover intelligent civilizations on other planets in the galaxy? Is human teleportation possible? Will our technological society ever reach the point at which it becomes lawful to discriminate on the basis of genetic information, as in the movie GATTACA? Exploring Science Through Science Fiction addresses these and other interesting questions, using science fiction as a springboard for discussing fundamental science concepts and cutting-edge science research. The book is designed as a primary text for a college-level course which should appeal to students in the fine arts and humanities as well as to science and engineering students. It includes references to original research papers, landmark scie...

  17. Science Serving the Nation: The Impact of Basic Research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-01-01

    Impacts: The BES program supports basic research that underpins a broad range of energy technologies. Research in materials sciences and engineering leads to the development of materials that improve the efficiency, economy, environmental acceptability, and safety of energy generation, conversion, transmission, storage, and use. For example, advances in superconductivity have been introduced commercially in a number of demonstration projects around the country. Improvements in alloy design for high temperature applications are used in commercial furnaces and in green technologies such as lead-free solder. Research in chemistry has led to advances such as efficient combustion systems with reduced emissions of pollutants; new solar photoconversion processes; improved catalysts for the production of fuels and chemicals; and better separations and analytical methods for applications in energy processes, environmental remediation, and waste management. Research in geosciences results in advanced monitoring and measurement techniques for reservoir definition and an understanding of the fluid dynamics of complex fluids through porous and fractured subsurface rock. Research in the molecular and biochemical nature of photosynthesis aids the development of solar photo-energy conversion. The BES program also plays a major role in enabling the nanoscale revolution. The importance of nanoscience to future energy technologies is clearly reflected by the fact that all of the elementary steps of energy conversion (e.g., charge transfer, molecular rearrangement, and chemical reactions) take place on the nanoscale. The development of new nanoscale materials, as well as the methods to characterize, manipulate, and assemble them, create an entirely new paradigm for developing new and revolutionary energy technologies.

  18. Nucleation and growth of microdroplets of ionic liquids deposited by physical vapor method onto different surfaces

    Science.gov (United States)

    Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2018-01-01

    Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.

  19. Science Fiction on Film.

    Science.gov (United States)

    Burmester, David

    1985-01-01

    Reviews science fiction films used in a science fiction class. Discusses feature films, short science fiction films, short story adaptations, original science fiction pieces and factual science films that enrich literature. (EL)

  20. Surface mobilities on solid materials

    International Nuclear Information System (INIS)

    Binh, V.T.

    1983-01-01

    This book constitutes the proceedings of the NATO Advanced Study Institute on Surface Mobilities on Solid Materials held in France in 1981. The goal of the two-week meeting was to review up-to-date knowledge on surface diffusion, both theoretical and experimental, and to highlight those areas in which much more knowledge needs to be accumulated. Topics include theoretical aspects of surface diffusion (e.g., microscopic theories of D at zero coverage; statistical mechanical models and surface diffusion); surface diffusion at the atomic level (e.g., FIM studies of surface migration of single adatoms and diatomic clusters; field emission studies of surface diffusion of adsorbates); foreign adsorbate mass transport; self-diffusion mass transport (e.g., different driving forces for the matter transport along surfaces; measurements of the morphological evolution of tips); the role of surface diffusion in some fundamental and applied sciences (e.g. adatomadatom pair interactions and adlayer superstructure formation; surface mobility in chemical reactions and catalysis); and recent works on surface diffusion (e.g., preliminary results on surface self-diffusion measurements on nickel and chromium tips)

  1. Network science

    CERN Document Server

    Barabasi, Albert-Laszlo

    2016-01-01

    Networks are everywhere, from the Internet, to social networks, and the genetic networks that determine our biological existence. Illustrated throughout in full colour, this pioneering textbook, spanning a wide range of topics from physics to computer science, engineering, economics and the social sciences, introduces network science to an interdisciplinary audience. From the origins of the six degrees of separation to explaining why networks are robust to random failures, the author explores how viruses like Ebola and H1N1 spread, and why it is that our friends have more friends than we do. Using numerous real-world examples, this innovatively designed text includes clear delineation between undergraduate and graduate level material. The mathematical formulas and derivations are included within Advanced Topics sections, enabling use at a range of levels. Extensive online resources, including films and software for network analysis, make this a multifaceted companion for anyone with an interest in network sci...

  2. Projects submitted to international science and technology center by Institute of Combustion Problems. Production of powder magnet materials on the basis of natural oxide minerals for purification of the water surface from oil and petrol pollution

    International Nuclear Information System (INIS)

    Mofa, N.; Ksandopoulo, G.

    1996-01-01

    Goal: To obtain a cheap magnet sorbent with high sorbing activity to move off oil and petrol pollution from the surface of water and to purify pools and sewage waters. Task: By mechanical and chemical treatment of natural oxide compounds with a member of selected components there is synthesized a fine-dispersed powder material with micro composition structure of the particles (dielectric nucleus, conductive and magnet surface layers). Formation of surface layers is determined by the regime of mechanical and chemical treatment and alloying additives of the mixture, Properties of the treated powder depend finally on the structure and properties of synthesized surface layers organically connected between themselves and a nuclear carrier of a particle. Due to the characteristics of magnet permeability obtained oxide material is not worse than metallic powders of iron and its alloys. Besides, it has a high corrosion stability and stability of magnet properties in the humid environment and at heating up to 600 C. High sorbing activity provides absolute purification of water surface from oils at small residence times with polluted surface. Peculiarities of state of the particles surface of synthesized material provide structural stability of sorbed mass which enables moving it off from the water surface by mechanic or magnet techniques. By the method being used and feedstock synthesized magnet powder is very cheap and can be used after regeneration directly or as a construction material

  3. Cartographic science: a compendium of map projections, with derivations

    National Research Council Canada - National Science Library

    Fenna, Donald

    2007-01-01

    "From basic projecting to advanced transformations, Cartographic Science: A Compendium of Map Projections, with Derivations comprehensively explores the depiction of a curved world on a flat surface...

  4. Superhydrophobic surfaces

    Science.gov (United States)

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  5. Spherical Surfaces

    DEFF Research Database (Denmark)

    Brander, David

    2016-01-01

    We study surfaces of constant positive Gauss curvature in Euclidean 3-space via the harmonicity of the Gauss map. Using the loop group representation, we solve the regular and the singular geometric Cauchy problems for these surfaces, and use these solutions to compute several new examples. We give...

  6. Lunar Science Conference, 8th, Houston, Tex., March 14-18, 1977, Proceedings. Volume 1 - The moon and the inner solar system. Volume 2 - Petrogenetic studies of mare and highland rocks. Volume 3 - Planetary and lunar surfaces

    Science.gov (United States)

    Merril, R. B.

    1977-01-01

    Solar system processes are considered along with the origin and evolution of the moon, planetary geophysics, lunar basins and crustal layering, lunar magnetism, the lunar surface as a planetary probe, remote observations of lunar and planetary surfaces, earth-based measurements, integrated studies, physical properties of lunar materials, and asteroids, meteorites, and the early solar system. Attention is also given to studies of mare basalts, the kinetics of basalt crystallization, topical studies of mare basalts, highland rocks, experimental studies of highland rocks, geochemical studies of highland rocks, studies of materials of KREEP composition, a consortium study of lunar breccia 73215, topical studies on highland rocks, Venus, and regional studies of the moon. Studies of surface processes, are reported, taking into account cratering mechanics and fresh crater morphology, crater statistics and surface dating, effects of exposure and gardening, and the chemistry of surfaces.

  7. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 1. Identification of a surface layer structure and analysis of humidity data in two weather situations at Jodhpur (26° 18′N, 73° 04′E), India, during MONTBLEX 1990. N Das M Bose U K De. Volume 113 Issue 1 March 2004 pp 73-87 ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    E N Aquino. Articles written in Bulletin of Materials Science. Volume 37 Issue 1 February 2014 pp 157-166 Electronic Supplementary Material. Characterization of neutrophil adhesion to different titanium surfaces · V Campos R C N Melo L P Silva E N Aquino M S Castro W Fontes · More Details Abstract Fulltext PDF.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 6. Issue front cover thumbnail. Volume 125, Issue 6. August 2016, pages 1089-1311. pp 1089-1102. Modelling surface run-off and trends analysis over India · P K Gupta S Chauhan M P Oza · More Details Abstract Fulltext PDF. The present study is mainly ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Chandrayaan-1 mission to the Moon scheduled for launch in late 2007 will include a high energy X-ray spectrometer (HEX) for detection of naturally occurring emissions from the lunar surface due to radioactive decay of the 238U and 232Th series nuclides in the energy region 20 –250 keV.The primary science ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 10. Issue front cover thumbnail. Volume 127, Issue 10. October 2015, pages 1687-1869. pp 1687-1699. Modelling Gas Adsorption in Porous Solids: Roles of Surface Chemistry and Pore Architecture · Satyanarayana Bonakala Sundaram Balasubramanian.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 3. Issue front cover thumbnail. Volume 36, Issue 3. June 2013, pages 345-504. pp 345-351. Exploring a novel approach to fabricate vanadium carbide encapsulated into carbon nanotube (VC@C) with large specific surface area · Yifu Zhang Juecheng Zhang ...

  14. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 123; Issue 1. One-Parameter Family of Solitons from Minimal Surfaces. Rukmini Dey Pradip Kumar. Volume 123 Issue 1 ... Author Affiliations. Rukmini Dey1 Pradip Kumar1. School of Mathematics, Harish Chandra Research Institute, Allahabad 211 019, India ...

  15. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 113; Issue 2. The Weierstrass–Enneper Representation using Hodographic Coordinates on a Minimal Surface. Rukmini Dey. Volume ... Author Affiliations. Rukmini Dey1. School of Mathematics, Harish-Chandra Research Institute, Allahabad 211 019, India ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 3. Volume 115, Issue 3. June 2006 ... Modeling of groundwater flow for Mujib aquifer, Jordan · Fayez Abdulla Tamer Al-Assa'd .... pp 349-362. Global surface temperature in relation to northeast monsoon rainfall over Tamil Nadu · S Balachandran R ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 4. Photoprocess of molecules encapsulated in porous solids X: Photosensitization of zeolite-Y encapsulated tris(2,2'-bipyridine-nickel-(II)ion by phenosafranine adsorbed onto the external surface of the nanoporous host. Karuppannan Senthil Kumar Sudha ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 2. Efficiency of surface modified Ti coated with copper nanoparticles to control marine bacterial adhesion under laboratory simulated conditions. CHOKKALINGAM PRIYA GANESSIN ARAVIND WILSON RICHARD THILAGARAJ. Volume 39 Issue 2 April 2016 ...

  19. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 115; Issue 3. Volume 115, Issue 3. August 2005, pages 241-369. pp 241-249. Some Properties of ... with some properties which are mathematically and statistically interesting. pp 251-257. Homeomorphisms and the Homology of Non-Orientable Surfaces.

  20. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 114; Issue 2. A Variational Proof for the Existence of a Conformal Metric with Preassigned Negative Gaussian Curvature for Compact Riemann Surfaces of Genus >1. Rukmini Dey. Erratum Volume 114 Issue 2 May 2004 pp 215-215 ...

  1. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 126; Issue 2. Volume 126, Issue 2. May 2016, pages 143-287. pp 143-151 Research Article. Existence of ..... pp 253-260 Research Article. Rigidity theorem forWillmore surfaces in a sphere · Hongwei Xu Dengyun Yang · More Details Abstract Fulltext PDF.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in situ data. Rajesh Sikhakolli Rashmi Sharma Sujit Basu B S Gohil Abhijit Sarkar K V S R Prasad. Volume 122 Issue 1 February 2013 pp 187-199 ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 5. Volume 116, Issue 5. October 2007, pages 369-463. pp 369-384 ... pp 385-406. Link between convection and meridional gradient of sea surface temperature in the Bay of Bengal · D Shankar S R Shetye P V Joseph · More Details Abstract Fulltext PDF.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Selective extraction and detection of noble metal based on ionic liquid immobilized silica gel surface using ICP-OES. HADI M MARWANI AMJAD E ALSAFRANI HAMAD A AL-TURAIF ABDULLAH M ASIRI SHER BAHADAR KHAN. Volume 39 Issue 4 August ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 6. Facile synthesis and characterization of rough surface V 2 O 5 nanomaterials for pseudo-supercapacitor electrode material with high capacitance. YIFU ZHANG YUTING HUANG. Volume 40 Issue 6 October 2017 pp 1137-1149 ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 4. Monsoon control on trace metal fluxes in the deep Arabian Sea. T M Balakrishnan Nair. Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks Volume 115 Issue 4 August 2006 pp 461-472 ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3. Volume 111, Issue 3. September 2002, pages 187-378. Pan Ocean Remote Sensing Conference (PORSEC). pp 187-187. Preface · E Desa R Brown S Shenoi George Joseph · More Details Fulltext PDF. pp 189-195. Retrieval of sea surface velocities ...

  8. Activity Sourcebook for Earth Science. Science Education Information Report.

    Science.gov (United States)

    Mayer, Victor J., Ed.

    Designed to provide teachers of earth science with activities and information that will assist them in keeping their curricula up to date, this publication contains activities grouped into six chapters. Chapter titles are: (1) Weather and Climate, (2) Oceans, (3) The Earth and Its Surface, (4) Plate Tectonics, (5) Uses of Space Photography, and…

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 4 ... Microwave materials; ceramic dielectric resonators; polytitanates; co-precipitation. ... hypotheses viz. diffusion, high surface and nucleation energy, potential barrier, non-stoichiometry etc as critical factors limiting formation of 2 : 9 as single-phase material.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    T M Balakrishnan Nair. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 461-472 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Monsoon control on trace metal fluxes in the deep Arabian Sea · T M Balakrishnan ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    School of Chemical and Materials Engineering, National University of Science and Technology, H/12 Islamabad, Pakistan; Austrian Institute of Technology GmbH, Advanced Materials & Aerospace Technologies, A-2444 Seibersdorf, Austria; Centre of Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 3. Volume 120, Issue 3. June 2011, pages 337-556. pp 337-345. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite · Naveen R Shahi Neeraj Agarwal Aloke K Mathur ...

  13. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Using Ramanujan's identities and the Weierstrass--Enneper representation of minimal surfaces, and the analogue for Born--Infeld solitons, we derive further nontrivial identities. Author Affiliations. RUKMINI DEY1. International Centre for Theoretical Sciences (ICTS)-TIFR, Survey No. 151, Shivakote, Hesaraghatta ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 5. Assessment of large aperture scintillometry for large-area surface energy fluxes over an irrigated cropland in north India. Abhishek Danodia V K Sehgal N R Patel R Dhakar J Mukherjee S K Saha A Senthil Kumar. Volume 126 Issue 5 July 2017 Article ...

  15. Thermostatted kinetic equations as models for complex systems in physics and life sciences.

    Science.gov (United States)

    Bianca, Carlo

    2012-12-01

    Statistical mechanics is a powerful method for understanding equilibrium thermodynamics. An equivalent theoretical framework for nonequilibrium systems has remained elusive. The thermodynamic forces driving the system away from equilibrium introduce energy that must be dissipated if nonequilibrium steady states are to be obtained. Historically, further terms were introduced, collectively called a thermostat, whose original application was to generate constant-temperature equilibrium ensembles. This review surveys kinetic models coupled with time-reversible deterministic thermostats for the modeling of large systems composed both by inert matter particles and living entities. The introduction of deterministic thermostats allows to model the onset of nonequilibrium stationary states that are typical of most real-world complex systems. The first part of the paper is focused on a general presentation of the main physical and mathematical definitions and tools: nonequilibrium phenomena, Gauss least constraint principle and Gaussian thermostats. The second part provides a review of a variety of thermostatted mathematical models in physics and life sciences, including Kac, Boltzmann, Jager-Segel and the thermostatted (continuous and discrete) kinetic for active particles models. Applications refer to semiconductor devices, nanosciences, biological phenomena, vehicular traffic, social and economics systems, crowds and swarms dynamics. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. PREFACE: 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015)

    Science.gov (United States)

    Vlachos, Dimitrios; Vagenas, Elias C.

    2015-09-01

    The 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place in Mykonos, Greece, from Friday 5th June to Monday 8th June 2015. The Conference was attended by more than 150 participants and hosted about 200 oral, poster, and virtual presentations. There were more than 600 pre-registered authors. The 4th IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather intense as after the Keynote and Invited Talks in the morning, three parallel oral and one poster session were running every day. However, according to all attendees, the program was excellent with a high quality of talks creating an innovative and productive scientific environment for all attendees. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  17. PREFACE: 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)

    Science.gov (United States)

    2015-01-01

    The third International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Madrid, Spain, from Thursday 28 to Sunday 31 August 2014. The Conference was attended by more than 200 participants and hosted about 350 oral, poster, and virtual presentations. More than 600 pre-registered authors were also counted. The third IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral sessions and one poster session were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  18. PREFACE: 2nd International Conference on Mathematical Modeling in Physical Sciences 2013 (IC-MSQUARE 2013)

    Science.gov (United States)

    2014-03-01

    The second International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Prague, Czech Republic, from Sunday 1 September to Thursday 5 September 2013. The Conference was attended by more than 280 participants and hosted about 400 oral, poster, and virtual presentations while counted more than 600 pre-registered authors. The second IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel sessions were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee. Further information on the editors, speakers and committees is available in the attached pdf.

  19. From surface to intracellular non-invasive nanoscale study of living cells impairments

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, Dr. Maxime [University of Bourgogne, 21078 Dijon, France.; Tetard, Laurene [ORNL; Elie-Caille, Dr. Cecile [Institut FEMTO-ST UMR CNRS 6174, University Franche-Comté, 25044 Besancon, France; Nicod, Laurence [University of Franche-Comte, Laboratoire de Biologie Cellulaire; Passian, Ali [ORNL; Bourillot, Dr. Eric [University of Bourgogne, 21078 Dijon, France.; Lesniewska, Prof. Eric [University of Bourgogne, 21078 Dijon, France.

    2014-01-01

    Among the enduring challenges in nanoscience, subsurface characterization of live cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale (1,2,3). However, measurements in liquid environments remain complex (4,5,6,7), in particular in the subsurface domain. Here we introduce liquid-Mode Synthesizing Atomic Force Microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach for living cell nanoscale imaging, l-MSAFM, in their physiological environment or in presence of a chemical stress agent confirmed the loss of inner structures induced by glyphosate. The ability to monitor the cell's inner response to external stimuli, non-destructively and in real time, has the potential to unveil critical nanoscale mechanisms of life science.

  20. From surface to intracellular non-invasive nanoscale study of living cells impairments

    Science.gov (United States)

    Ewald, M.; Tetard, L.; Elie-Caille, C.; Nicod, L.; Passian, A.; Bourillot, E.; Lesniewska, E.

    2014-07-01

    Among the enduring challenges in nanoscience, subsurface characterization of living cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale. However, measurements in liquid environments remain complex, in particular in the subsurface domain. Here we introduce liquid-mode synthesizing atomic force microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach, l-MSAFM, for nanoscale imaging of living cell in their physiological environment or in presence of a chemical stress agent could resolve the loss of inner structures induced by glyphosate, the main component of a well-known pesticide (RoundUp™). This firsthand ability to monitor the cell’s inner response to external stimuli non-destructively and in liquid, has the potential to unveil critical nanoscale mechanisms of life science.

  1. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 77; Issue 6. Adhesion energy, surface ... 2 G A Adebayo1. Department of Physics, University of Agriculture, Abeokuta, Nigeria; Department of Pure and Applied Physics, College of Pure and Applied Science, Caleb University, Imota, Lagos, Nigeria ...

  2. Emulsion Science Basic Principles

    CERN Document Server

    Leal-Calderon, Fernando; Schmitt, Véronique

    2007-01-01

    Emulsions are generally made out of two immiscible fluids like oil and water, one being dispersed in the second in the presence of surface-active compounds.They are used as intermediate or end products in a huge range of areas including the food, chemical, cosmetic, pharmaceutical, paint, and coating industries. Besides the broad domain of technological interest, emulsions are raising a variety of fundamental questions at the frontier between physics and chemistry. This book aims to give an overview of the most recent advances in emulsion science. The basic principles, covering aspects of emulsions from their preparation to their destruction, are presented in close relation to both the fundamental physics and the applications of these materials. The book is intended to help scientists and engineers in formulating new materials by giving them the basics of emulsion science.

  3. Cognitive Science.

    Science.gov (United States)

    Cocking, Rodney R.; Mestre, Jose P.

    The focus of this paper is on cognitive science as a model for understanding the application of human skills toward effective problem-solving. Sections include: (1) "Introduction" (discussing information processing framework, expert-novice distinctions, schema theory, and learning process); (2) "Application: The Expert-Novice…

  4. Talking Science

    Science.gov (United States)

    Eley, Alison

    2011-01-01

    The Talking Science project initially involved three secondary schools and eight of their feeder primary schools in the London Borough of Richmond Upon Thames. The project created, trialled and evaluated a set of key stage 2/3 transition materials for children moving from primary to secondary school, using argument as a teaching and learning…

  5. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- .... Kaullysing et al. also present a field note on coral-eating gastropods observed around Mauritius. ... and decision making in the field of coral reef studies and management in Mauritius, while contributing.

  6. Marine Science

    African Journals Online (AJOL)

    Micro-phytoplankton density, C-biomass and diversity. Tides and zones had significant effects on the over- all total C-biomass of total micro-phytoplankton and bacillariophytes, and concentrations of ...... to environmental parameters in cage culture area of Sepanggar Bay, Malaysia. Estuarine Coastal and. Shelf Science 80: ...

  7. Marine Science

    African Journals Online (AJOL)

    The journal publishes original research articles dealing with all aspects of marine science and coastal manage- ment. Topics include, but are not limited to: theoretical studies, oceanography, marine biology and ecology, fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/ ...

  8. Systems Science

    Science.gov (United States)

    Christakis, Alexander; Hammond, Debora; Jackson, Michael; Laszlo, Alexander; Mitroff, Ian; Snowden, Dave; Troncale, Len; Carr-Chellman, Alison; Spector, J. Michael; Wilson, Brent

    2013-01-01

    Scholars representing the field of systems science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Alexander Christakis, Debora Hammond, Michael Jackson, Alexander Laszlo, Ian Mitroff, Dave…

  9. Marine Science

    African Journals Online (AJOL)

    fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships between ... ISSN 0856-860X. Western Indian Ocean. J O U R N A L O F. Marine Science. Editorial Board. Serge ANDREFOUËT. France. Ranjeet BHAGOOLI. Mauritius ...... ence Technology, Rhodes, Greece.

  10. Science Smiles

    Indian Academy of Sciences (India)

    IAS Admin

    Page 1. 666. RESONANCE | August 2015. Science Smiles. Ayan Guha. Email for Correspondence: ionguha@gmail.com. Oduvai Gorge gives us one of the most remarkable stories of the past – the last chapter of the Earth's history, starting at the present day, right away back 2 million years.

  11. Science Smiles

    Indian Academy of Sciences (India)

    Page 1. 75. RESONANCE │ January 2011. BOOK │ REVIEW. Science Smiles. Ayan Guha. Email for Correspondence: ionguha@gmail.com. What if I say that all the people living in our United Netherlands are not as many as the animalcules living in this single drop of water.

  12. Science Smiles

    Indian Academy of Sciences (India)

    Page 1. Science Smiles. RKLaxman. I bought the plot to build my office. But the activists would not let me touch anything lest it should upset the ecological balance here. R -E-SO-N-A-N-C-E -, -Fe-b-ru-ary-19-9-S -----~-------------

  13. Skeptical Science.

    Science.gov (United States)

    Scott, Alan J.; Barnhart, Carolyn M.; Parejko, Ken S.; Schultz, Forrest S.; Schultz, Steven E.

    2001-01-01

    Discusses the legitimacy of teaching about astrology, extrasensory perception, UFOs, touch therapy, cloning dinosaurs, or any other unusual claims in the classroom. Suggests that bringing unusual claims to the science classroom is an opportunity to motivate students in the principles of scientific thought. (SAH)

  14. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research ... PAHs are among the persistent organic pollutants that are a worldwide environmental ... combusted and petroleum products are used during boat/dhow making and servicing ...

  15. Actuarial Science.

    Science.gov (United States)

    Warren, Bette

    1982-01-01

    Details are provided of a program on actuarial training developed at the State University of New York (SUNY) at Binghamton through the Department of Mathematical Sciences. An outline of its operation, including a few statistics on students in the program, is included. (MP)

  16. Marine Science

    African Journals Online (AJOL)

    org/wio-journal-of-marine- science/ and AJOL ... The mangroves around Maputo city in Maputo Bay were studied to assess changes in forest cover area and the effect of cutting ..... factors on forest health condition has not yet been assessed.

  17. Organizational Science

    Science.gov (United States)

    Beriwal, Madhu; Clegg, Stewart; Collopy, Fred; McDaniel, Reuben, Jr.; Morgan, Gareth; Sutcliffe, Kathleen; Kaufman, Roger; Marker, Anthony; Selwyn, Neil

    2013-01-01

    Scholars representing the field of organizational science, broadly defined as including many fields--organizational behavior and development, management, workplace performance, and so on--were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might…

  18. Redirecting science

    International Nuclear Information System (INIS)

    Aaserud, F.

    1990-01-01

    This book contains the following chapters. Science policy and fund-raising up to 1934; The Copenhagen spirit at work, late 1920's to mid-1930s; The refugee problem, 1933 to 1935; Experimental biology, late 1920s to 1935; and Consolidation of the transition, 1935 to 1940

  19. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) region, in particular on the sustainable use of coastal and marine resources. This is central to the goal of supporting and promoting.

  20. Science Notes.

    Science.gov (United States)

    Talbot, Chris; And Others

    1991-01-01

    Twenty science experiments are presented. Topics include recombinant DNA, physiology, nucleophiles, reactivity series, molar volume of gases, spreadsheets in chemistry, hydrogen bonding, composite materials, radioactive decay, magnetism, speed, charged particles, compression waves, heat transfer, Ursa Major, balloons, current, and expansion of…