WorldWideScience

Sample records for surface scanning electron

  1. Surface properties and microporosity of polyhydroxybutyrate under scanning electron microscopy

    International Nuclear Information System (INIS)

    Raouf, A.A.; Samsudin, A.R.; Samian, R.; Akool, K.; Abdullah, N.

    2004-01-01

    This study was designed to investigate the surface properties especially surface porosity of polyhydroxybutyrate (PHB) using scanning electron microscopy. PHB granules were sprinkled on the double-sided sticky tape attached on a SEM aluminium stub and sputtered with gold (10nm thickness) in a Polaron SC515 Coater, following which the samples were placed into the SEM specimen chamber for viewing and recording. Scanning electron micrographs with different magnification of PHB surface revealed multiple pores with different sizes. (Author)

  2. Scanning electron microscopic evaluation of root canal surfaces ...

    African Journals Online (AJOL)

    Scanning electron microscopic evaluation of root canal surfaces prepared with three rotary endodontic systems: Lightspeed, ProTaper and EndoWave. ... fracture with LightSpeed (LS), ProTaper (PT) and EndoWave (Ew) rotary instruments.

  3. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    Science.gov (United States)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  4. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke; Li, Zhean; Chen, Xiangjun, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-15

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  5. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-01-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  6. Stereoscopic and photometric surface reconstruction in scanning electron microscopy

    International Nuclear Information System (INIS)

    Scherer, S.

    2000-01-01

    The scanning electron microscope (SEM) is one of the most important devices to examine microscopic structures as it offers images of a high contrast range with a large depth of focus. Nevertheless, three-dimensional measurements, as desired in fracture mechanics, have previously not been accomplished. This work presents a system for automatic, robust and dense surface reconstruction in scanning electron microscopy combining new approaches in shape from stereo and shape from photometric stereo. The basic theoretical assumption for a known adaptive window algorithm is shown not to hold in scanning electron microscopy. A constraint derived from this observation yields a new, simplified, hence faster calculation of the adaptive window. The correlation measure itself is obtained by a new ordinal measure coefficient. Shape from photometric stereo in the SEM is formulated by relating the image formation process with conventional photography. An iterative photometric ratio reconstruction is invented based on photometric ratios of backscatter electron images. The performance of the proposed system is evaluated using ground truth data obtained by three alternative shape recovery devices. Most experiments showed relative height accuracy within the tolerances of the alternative devices. (author)

  7. Scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1970-05-15

    The JSM-11 scanning electron microscope at CRNL has been used extensively for topographical studies of oxidized metals, fracture surfaces, entomological and biological specimens. A non-dispersive X-ray attachment permits the microanalysis of the surface features. Techniques for the production of electron channeling patterns have been developed. (author)

  8. Assessment of root surfaces of apicected teeth: A scanning electron ...

    African Journals Online (AJOL)

    Objectives: The aim of this study was to determine the apical surface characteristics and presence of dental cracks in single‑rooted premolars, resected 3.0 mm from the root apex, using the Er: YAG laser, tungsten carbide bur, and diamond‑coated tip, by scanning electron microscopy (SEM). Experimental design: Thirty ...

  9. Calibration-free quantitative surface topography reconstruction in scanning electron microscopy

    NARCIS (Netherlands)

    Faber, E.T.; Martinez-Martinez, D.; Mansilla, C.; Ocelik, V.; De Hosson, J. Th. M.

    This work presents a new approach to obtain reliable surface topography reconstructions from 2D Scanning Electron Microscopy (SEM) images. In this method a set of images taken at different tilt angles are compared by means of digital image correlation (DlC). It is argued that the strength of the

  10. High resolution surface scanning of Thick-GEM for single photo-electron detection

    International Nuclear Information System (INIS)

    Hamar, G.; Varga, D.

    2012-01-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10–100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: ► First demonstration of Thick GEM surface scanning with single photo-electrons. ► Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. ► Gain and detection efficiency and separately measurable. ► Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  11. Scanning tunnel microscopic image of tungsten (100) and (110) real surfaces and nature of conduction electron reflection

    International Nuclear Information System (INIS)

    Pryadkin, S.L.; Tsoj, V.S.

    1988-01-01

    The electrically polished (100) and (110) surfaces of tungsten are studied with the aid of a scanning tunnel microscope at atmospheric pressure. The (110) surface consists of a large number of atomically plane terraces whereas the (100) surface is faceted. The scanning tunnel microscope data can explain such results of experiments on transverse electron focussing as the strong dependence of the probability for specular reflection of conduction electrons scattered by the (100) surface on the electron de Broglie wavelength and the absence of a dependence of the probability for specular reflection on the wavelength for the (110) surface

  12. High resolution surface scanning of Thick-GEM for single photo-electron detection

    Energy Technology Data Exchange (ETDEWEB)

    Hamar, G., E-mail: hamar.gergo@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary); Varga, D., E-mail: vdezso@mail.cern.ch [Eoetvoes Lorand University, Budapest (Hungary)

    2012-12-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10-100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: Black-Right-Pointing-Pointer First demonstration of Thick GEM surface scanning with single photo-electrons. Black-Right-Pointing-Pointer Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. Black-Right-Pointing-Pointer Gain and detection efficiency and separately measurable. Black-Right-Pointing-Pointer Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  13. Micro-four-point probes in a UHV scanning electron microscope for in-situ surface-conductivity measurements

    DEFF Research Database (Denmark)

    Shiraki, I.; Nagao, T.; Hasegawa, S.

    2000-01-01

    For in-situ measurements of surface conductivity in ultrahigh vacuum (UHV), we have installed micro-four-point probes (probe spacings down to 4 mum) in a UHV scanning electron microscope (SEM) combined with scanning reflection-high-energy electron diffraction (RHEED). With the aid of piezoactuators...

  14. A scanning Auger electron spectrometer for internal surface analysis of Large Electron Positron 2 superconducting radio-frequency cavities

    Science.gov (United States)

    Benvenuti, C.; Cosso, R.; Genest, J.; Hauer, M.; Lacarrère, D.; Rijllart, A.; Saban, R.

    1996-08-01

    A computer-controlled surface analysis instrument, incorporating static Auger electron spectroscopy, scanning Auger mapping, and secondary electron imaging, has been designed and built at CERN to study and characterize the inner surface of superconducting radio-frequency cavities to be installed in the Large Electron Positron collider. A detailed description of the instrument, including the analytical head, the control system, and the vacuum system is presented. Some recent results obtained from the cavities provide examples of the instrument's capabilities.

  15. Scanning tunnelling microscope imaging of nanoscale electron density gradients on the surface of GaAs

    International Nuclear Information System (INIS)

    Hamilton, B; Jacobs, J; Missous, M

    2003-01-01

    This paper is concerned with the scanning tunnelling microscope tunnelling conditions needed to produce constant current images dominated either by surface topology or by electronic effects. A model experimental structure was produced by cleaving a GaAs multiδ-doped layer in UHV and so projecting a spatially varying electron gas density onto the (110) surface. This cross sectional electron density varies on a nanometre scale in the [100] growth direction. The electronic structure and tunnelling properties of this system were modelled, and the tunnelling conditions favouring sensitivity to the surface electron gas density determined

  16. RGB color coded images in scanning electron microscopy of biological surfaces

    Czech Academy of Sciences Publication Activity Database

    Kofroňová, Olga; Benada, Oldřich

    2017-01-01

    Roč. 61, č. 3 (2017), s. 349-352 ISSN 0001-723X R&D Projects: GA MŠk(CZ) LO1509; GA ČR(CZ) GA16-20229S Institutional support: RVO:61388971 Keywords : Biological surfaces * Color image s * Scanning electron microscopy Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 0.673, year: 2016

  17. Surface morphology of the endolymphatic duct in the rat. A scanning electron microscopy study

    DEFF Research Database (Denmark)

    Qvortrup, K; Rostgaard, Jørgen; Bretlau, P

    1995-01-01

    microscopy was attained by coating of the specimens with osmium tetroxide and thiocarbohydrazide followed by a continuous dehydration procedure. This technique permitted, for the first time, an investigation of the surface morphology of the epithelial cells in the endolymphatic duct. Three types of cells......Following intracardiac vascular perfusion fixation of 8 rats with glutaraldehyde in a buffered and oxygenated blood substitute, the vestibular aqueduct and endolymphatic duct were opened by microsurgery of the resulting 16 temporal bones. Optimum preservation of the epithelium for scanning electron...... were identified with the scanning electron microscope. A polygonal and oblong epithelial cell was observed in the largest number throughout the duct, and in the juxtasaccular half of the duct, two additional types of epithelial cells were observed. The scanning electron microscopic observations...

  18. Specific surface area evaluation method by using scanning electron microscopy

    International Nuclear Information System (INIS)

    Petrescu, Camelia; Petrescu, Cristian; Axinte, Adrian

    2000-01-01

    Ceramics are among the most interesting materials for a large category of applications, including both industry and health. Among the characteristic of the ceramic materials, the specific surface area is often difficult to evaluate.The paper presents a method of evaluation for the specific surface area of two ceramic powders by means of scanning electron microscopy measurements and an original method of computing the specific surface area.Cumulative curves are used to calculate the specific surface area under assumption that the values of particles diameters follow a normal logarithmic distribution. For two powder types, X7R and NPO the results are the following: - for the density ρ (g/cm 2 ), 5.5 and 6.0, respectively; - for the average diameter D bar (μm), 0.51 and 0.53, respectively; - for σ, 1.465 and 1.385, respectively; - for specific surface area (m 2 /g), 1.248 and 1.330, respectively. The obtained results are in good agreement with the values measured by conventional methods. (authors)

  19. Electron beam effects in auger electron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Fontaine, J.M.; Duraud, J.P.; Le Gressus, C.

    1979-01-01

    Electron beam effects on Si(100) and 5% Fe/Cr alloy samples have been studied by measurements of the secondary electron yield delta, determination of the surface composition by Auger electron spectroscopy and imaging with scanning electron microscopy. Variations of delta as a function of the accelerating voltage Esub(p) (0.5 -9 Torr has no effect on technological samples covered with their reaction layers; the sensitivities to the beam depend rather on the earlier mechanical, thermal and chemical treatment of the surfaces. (author)

  20. Miniature scanning electron microscope for investigation of the interior surface of a superconducting Nb radiofrequency accelerating cavity

    International Nuclear Information System (INIS)

    Mathewson, A.G.; Grillot, A.

    1982-01-01

    A miniature scanning electron microscope with an electron beam diameter approx.1 μm has been constructed for high resolution examination at room temperature of the interior surface of a superconducting Nb radiofrequency accelerating cavity. Various objects and surface structures were observed, some of which could be correlated with lossy regions or ''hot spots'' detected previously on the outside surface during cavity operation at < or =4.2 K by a chain of carbon resistors. No internal surface features were observed which could conclusively be correlated with field emitting electron sources

  1. 3D scanning electron microscopy applied to surface characterization of fluorosed dental enamel.

    Science.gov (United States)

    Limandri, Silvina; Galván Josa, Víctor; Valentinuzzi, María Cecilia; Chena, María Emilia; Castellano, Gustavo

    2016-05-01

    The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Selective scanning tunnelling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface.

    Science.gov (United States)

    Riedel, Damien; Bocquet, Marie-Laure; Lesnard, Hervé; Lastapis, Mathieu; Lorente, Nicolas; Sonnet, Philippe; Dujardin, Gérald

    2009-06-03

    Selective electron-induced reactions of individual biphenyl molecules adsorbed in their weakly chemisorbed configuration on a Si(100) surface are investigated by using the tip of a low-temperature (5 K) scanning tunnelling microscope (STM) as an atomic size source of electrons. Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. At negative surface voltages, the biphenyl molecule diffuses across the surface in its weakly chemisorbed configuration. At positive surface voltages, different types of molecular reactions are activated, which involve the change of adsorption configuration from the weakly chemisorbed to the strongly chemisorbed bistable and quadristable configurations. Calculated reaction pathways of the molecular reactions on the silicon surface, using the nudge elastic band method, provide evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies. These results, together with the measured threshold surface voltages and the calculated molecular electronic structures via density functional theory, suggest that the electron-induced molecular reactions are driven by selective electron detachment (oxidation) or attachment (reduction) processes.

  3. Electron-beam induced current characterization of back-surface field solar cells using a chopped scanning electron microscope beam

    Science.gov (United States)

    Luke, K. L.; Cheng, L.-J.

    1984-01-01

    A chopped electron beam induced current (EBIC) technique for the chacterization of back-surface field (BSF) solar cells is presented. It is shown that the effective recombination velocity of the low-high junction forming the back-surface field of BSF cells, in addition to the diffusion length and the surface recombination velocity of the surface perpendicular to both the p-n and low-high junctions, can be determined from the data provided by a single EBIC scan. The method for doing so is described and illustrated. Certain experimental considerations taken to enhance the quality of the EBIC data are also discussed.

  4. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy

    OpenAIRE

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2015-01-01

    Introduction: Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). Methods and Materials: In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autocla...

  5. Calibration-free quantitative surface topography reconstruction in scanning electron microscopy.

    Science.gov (United States)

    Faber, E T; Martinez-Martinez, D; Mansilla, C; Ocelík, V; Hosson, J Th M De

    2015-01-01

    This work presents a new approach to obtain reliable surface topography reconstructions from 2D Scanning Electron Microscopy (SEM) images. In this method a set of images taken at different tilt angles are compared by means of digital image correlation (DIC). It is argued that the strength of the method lies in the fact that precise knowledge about the nature of the rotation (vector and/or magnitude) is not needed. Therefore, the great advantage is that complex calibrations of the measuring equipment are avoided. The paper presents the necessary equations involved in the methods, including derivations and solutions. The method is illustrated with examples of 3D reconstructions followed by a discussion on the relevant experimental parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    Science.gov (United States)

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  7. SCANNING ELECTRON MICROSCOPY STUDY OF THE DORSAL SURFACE OF THE TONGUE IN Chaetophractus vellerosus (MAMMALIA, DASYPODIDAE)

    OpenAIRE

    Estecondo, Silvia; Codón, Stella Maris; Casanave, Emma Beatriz

    2001-01-01

    The characteristics of the dorsal surface of Chaetophractus vellerosus tongue were studied by scanning electron microscopy. Simple or branched filiform, fungiform and vallate papillae are described. Simple conical filiform papillae appear in the apex, lateral edges and posterior third, caudally to the circumvallated ones. The branched papillae are densely distributed all over the dorsal surface of the lingual body. Fungiform ones are scattered among the branched filiform papillae. In the post...

  8. Calibration-free quantitative surface topography reconstruction in scanning electron microscopy

    International Nuclear Information System (INIS)

    Faber, E.T.; Martinez-Martinez, D.; Mansilla, C.; Ocelík, V.; Hosson, J.Th.M. De

    2015-01-01

    This work presents a new approach to obtain reliable surface topography reconstructions from 2D Scanning Electron Microscopy (SEM) images. In this method a set of images taken at different tilt angles are compared by means of digital image correlation (DIC). It is argued that the strength of the method lies in the fact that precise knowledge about the nature of the rotation (vector and/or magnitude) is not needed. Therefore, the great advantage is that complex calibrations of the measuring equipment are avoided. The paper presents the necessary equations involved in the methods, including derivations and solutions. The method is illustrated with examples of 3D reconstructions followed by a discussion on the relevant experimental parameters. - Highlights: • A novel method for quantitative 3D surface reconstruction in SEM is described. • This method uses at least 3 SEM images acquired at different sample tilts. • This method does not need calibration from the movement of the sample holder. • Mathematical background and examples of application are presented

  9. The ultrastructure of pollen grain surface in allotetraploid petunia (Petunia hybrida hort. superbissima as revealed by scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    S. Muszyński

    2015-01-01

    Full Text Available The ultrastructure of pollen grain surface in allotetraploid petunias was analyzed by scanning electron microscopy. The pollen grain wall is developed into characteristic pattern of convulations.

  10. Direct observation of atoms on surfaces by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Baldeschwieler, J.D.

    1989-01-01

    The scanning tunnelling microscope is a non-destructive means of achieving atomic level resolution of crystal surfaces in real space to elucidate surface structures, electronic properties and chemical composition. Scanning tunnelling microscope is a powerful, real space surface structure probe complementary to other techniques such as x-ray diffraction. 21 refs., 8 figs

  11. Three-dimensional nanofabrication by electron-beam-induced deposition using 200-keV electrons in scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Liu, Z.Q.; Mitsuishi, K.; Furuya, K.

    2005-01-01

    Attempts were made to fabricate three-dimensional nanostructures on and out of a substrate by electron-beam-induced deposition in a 200-kV scanning transmission electron microscope. Structures with parallel wires over the substrate surface were difficult to fabricate due to the direct deposition of wires on both top and bottom surfaces of the substrate. Within the penetration depth of the incident electron beam, nanotweezers were fabricated by moving the electron beam beyond different substrate layers. Combining the deposition of self-supporting wires and self-standing tips, complicated three-dimensional doll-like, flag-like, and gate-like nanostructures that extend out of the substrate were successfully fabricated with one-step or multi-step scans of the electron beam. Effects of coarsening, nucleation, and distortion during electron-beam-induced deposition are discussed. (orig.)

  12. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  13. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya; Melnikov, Vasily; Khan, Jafar Iqbal; Mohammed, Omar F.

    2015-01-01

    , we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions

  14. A new clustering algorithm for scanning electron microscope images

    Science.gov (United States)

    Yousef, Amr; Duraisamy, Prakash; Karim, Mohammad

    2016-04-01

    A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning it with a focused beam of electrons. The electrons interact with the sample atoms, producing various signals that are collected by detectors. The gathered signals contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. The most common configuration for an SEM produces a single value per pixel, with the results usually rendered as grayscale images. The captured images may be produced with insufficient brightness, anomalous contrast, jagged edges, and poor quality due to low signal-to-noise ratio, grained topography and poor surface details. The segmentation of the SEM images is a tackling problems in the presence of the previously mentioned distortions. In this paper, we are stressing on the clustering of these type of images. In that sense, we evaluate the performance of the well-known unsupervised clustering and classification techniques such as connectivity based clustering (hierarchical clustering), centroid-based clustering, distribution-based clustering and density-based clustering. Furthermore, we propose a new spatial fuzzy clustering technique that works efficiently on this type of images and compare its results against these regular techniques in terms of clustering validation metrics.

  15. Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.

    Science.gov (United States)

    Ponz, Ezequiel; Ladaga, Juan Luis; Bonetto, Rita Dominga

    2006-04-01

    Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties.

  16. Imaging of surface spin textures on bulk crystals by scanning electron microscopy

    Science.gov (United States)

    Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru

    2016-11-01

    Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.

  17. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya; Adhikari, Aniruddha; Shaheen, Basamat; Yang, Haoze; Mohammed, Omar F.

    2016-01-01

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  18. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2016-02-25

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  19. Scanning tunnel microscope with large vision field compatible with a scanning electron microscope

    International Nuclear Information System (INIS)

    Volodin, A.P.; Stepanyan, G.A.; Khajkin, M.S.; Ehdel'man, V.S.

    1989-01-01

    A scanning tunnel microscope (STM) with the 20μm vision field and 1nm resolution, designed to be compatible with a scanning electron microscope (SEM), is described. The sample scanning area is chosen within the 3x10mm limits with a 0.1-1μm step. The STM needle is moved automatically toward the sample surface from the maximum distance of 10mm until the tunneling current appears. Bimorphous elements of the KP-1 piezocorrector are used in the STM design. The device is installed on a table of SEM object holders

  20. Fermi surface contours obtained from scanning tunneling microscope images around surface point defects

    International Nuclear Information System (INIS)

    Khotkevych-Sanina, N V; Kolesnichenko, Yu A; Van Ruitenbeek, J M

    2013-01-01

    We present a theoretical analysis of the standing wave patterns in scanning tunneling microscope (STM) images, which occur around surface point defects. We consider arbitrary dispersion relations for the surface states and calculate the conductance for a system containing a small-size tunnel contact and a surface impurity. We find rigorous theoretical relations between the interference patterns in the real-space STM images, their Fourier transforms and the Fermi contours of two-dimensional electrons. We propose a new method for reconstructing Fermi contours of surface electron states, directly from the real-space STM images around isolated surface defects. (paper)

  1. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2015-09-14

    In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.

  2. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy.

    Science.gov (United States)

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2016-01-01

    Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autoclave, 1 autoclave cycle, 5 autoclave cycles and 10 autoclave cycles) by SEM under 200× and 1000× magnifications. Data were analyzed using the SPSS software and the paired sample t-test, independent sample t-test and multifactorial repeated measures ANOVA. The level of significance was set at 0.05. New files had debris and pitting on their surfaces. When the autoclave cycles were increased, the mean of surface roughness also increased at both magnifications (Pautoclave increased the surface roughness of the files and this had was directly related to the number of autoclave cycles.

  3. Analysis of hydrogen distribution on Mg-Ni alloy surface by scanning electron-stimulated desorption ion microscope (SESDIM)

    International Nuclear Information System (INIS)

    Yamaga, Atsushi; Hibino, Kiyohide; Suzuki, Masanori; Yamada, Masaaki; Tanaka, Kazuhide; Ueda, Kazuyuki

    2008-01-01

    Hydrogen distribution and behavior on a Mg-Ni alloy surface are studied by using a time-of-flight electron-stimulated desorption (TOF-ESD) microscopy and a scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX). The desorbed hydrogen ions are energy-discriminated and distinguished into two characters in the adsorbed states, which belong to Mg 2 Ni grains and the other to oxygen-contaminated Mg phase at the grain boundaries. Adsorbed hydrogen is found to be stable up to 150 deg. C, but becomes thermally unstable around at 200 deg. C

  4. Simulations and measurements in scanning electron microscopes at low electron energy

    Czech Academy of Sciences Publication Activity Database

    Walker, C.; Frank, Luděk; Müllerová, Ilona

    2016-01-01

    Roč. 38, č. 6 (2016), s. 802-818 ISSN 0161-0457 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 EU Projects: European Commission(XE) 606988 - SIMDALEE2 Institutional support: RVO:68081731 Keywords : Monte Carlo modeling * scanned probe * computer simulation * electron-solid interactions * surface analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.345, year: 2016

  5. The surface morphology of retinal breaks and lattice retinal degeneration. A scanning electron microscopic study.

    Science.gov (United States)

    Robinson, M R; Streeten, B W

    1986-02-01

    In 14 of 110 eye bank eyes, lesions characteristic of peripheral retinal surface pathology were examined by scanning electron microscopy (SEM). These included operculated and flap tears, trophic round holes, lattice degeneration with holes, and paravascular retinal "pitting" degeneration. By SEM, the edges of the retinal breaks were covered by smooth cellular membranes, merging peripherally with a meshwork of vitreous fibrils. The membrane cells had poorly defined borders, a pitted surface, and variable numbers of microvilli consistent with glia. Lattice surfaces and foci of paravascular retinal degeneration were covered by similar membrane, but showed characteristic differences. It appears that breaks in the internal limiting membrane always stimulate proliferation of preretinal glial membranes. Similar cellular morphology of the membranes associated with breaks is consistent with a common cell of origin. Limited proliferation of these membranes suggests that surface gliosis is normally inhibited when the cells contact either intact basement membrane or vitreous.

  6. Secondary electron spectroscopy and Auger microscopy at high spatial resolution. Application to scanning electron microscopy

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene

    1979-01-01

    Secondary electron spectroscopy (SES), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS) are combined with ultra high vacuum scanning microscopy (SEM) for surface analysis at high spatial resolution. Reliability tests for the optical column for the vacuum and for the spectrometer are discussed. Furthermore the sensitivity threshold in AES which is compatible with a non destructive surface analysis at high spatial resolution is evaluated. This combination of all spectroscopies is used in the study of the beam damage correlated with the well known secondary electron image (SEI) darkening still observed in ultra high vacuum. The darkening is explained as a bulk decontamination of the sample rather than as a surface contamination from the residual vacuum gas [fr

  7. The mechanism of PTFE and PE friction deposition: a combined scanning electron and scanning force microscopy study on highly oriented polymeric sliders

    NARCIS (Netherlands)

    Schönherr, Holger; Schaeben, H.; Vancso, Gyula J.

    1998-01-01

    The mechanism of friction deposition of polytetrafluoroethylene (PTFE) and polyethylene (PE) was studied by scanning electron (SEM) and scanning force microscopy (SFM) on the worn surfaces of PTFE and PE sliders that were used in friction deposition on glass substrates. These surfaces exhibited a

  8. The surface topography of the choroid plexus. Environmental, low and high vacuum scanning electron microscopy.

    Science.gov (United States)

    Mestres, Pedro; Pütz, Norbert; Garcia Gómez de Las Heras, Soledad; García Poblete, Eduardo; Morguet, Andrea; Laue, Michael

    2011-05-01

    Environmental scanning electron microscopy (ESEM) allows the examination of hydrated and dried specimens without a conductive metal coating which could be advantageous in the imaging of biological and medical objects. The aim of this study was to assess the performance and benefits of wet-mode and low vacuum ESEM in comparison to high vacuum scanning electron microscopy (SEM) using the choroid plexus of chicken embryos as a model, an organ of the brain involved in the formation of cerebrospinal fluid in vertebrates. Specimens were fixed with or without heavy metals and examined directly or after critical point drying with or without metal coating. For wet mode ESEM freshly excised specimens without any pre-treatment were also examined. Conventional high vacuum SEM revealed the characteristic morphology of the choroid plexus cells at a high resolution and served as reference. With low vacuum ESEM of dried but uncoated samples the structure appeared well preserved but charging was a problem. It could be reduced by a short beam dwell time and averaging of images or by using the backscattered electron detector instead of the gaseous secondary electron detector. However, resolution was lower than with conventional SEM. Wet mode imaging was only possible with tissue that had been stabilized by fixation. Not all surface details (e.g. microvilli) could be visualized and other structures, like the cilia, were deformed. In summary, ESEM is an additional option for the imaging of bio-medical samples but it is problematic with regard to resolution and sample stability during imaging. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    International Nuclear Information System (INIS)

    Lawton, J J; Pulisciano, A; Palmer, R E

    2009-01-01

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  10. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, J J; Pulisciano, A; Palmer, R E, E-mail: R.E.Palmer@bham.ac.u [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2009-11-25

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  11. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  12. [Scanning electron microscope study of chemically disinfected endodontic files].

    Science.gov (United States)

    Navarro, G; Mateos, M; Navarro, J L; Canalda, C

    1991-01-01

    Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made.

  13. Study of non stoichiometric pure and Zr-Doped yttria surfaces by X-Ray photoelectron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Gautier, M.; Duraud, J.P.; Jollet, F.; Thromat, N.; Maire, P.; Le Gressus, C.

    1988-01-01

    Surfaces of oxygen-deficient yttrium oxide, pure or Zr-doped, have been studied by means of X-ray photoelectron spectroscopy and scanning electron microscopy. The bulk local geometric structure of these non-stoichiometric compounds was previously determined around the Y atom by an EXAFS (Extended X-ray absorption fine structure) study. The local electronic structure around both Y and O, at the surface, was investigated by X-ray photoelectron spectroscopy. The partial transfer of the electronic distribution between the anion and the cation was probed using the Auger parameter. Coupling of these experiments with microscopic observations show that: - In the pure oxygen-deficient sample, the concentration of oxygen vacancies appears to be increased at the grain boundaries. - The Auger parameter shows upon reduction an evolution of the Y-O bond towards a more covalent one, this evolution being modulated with the presence of Zr0 2

  14. New Scanning Electron Microscope Used for Cryogenic Tensile Testing

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    At CERN engineering department's installation for cryogenic tensile testing, the new scanning electron microscope (SEM) allows for detailed optical observations to be carried out. Using the SEM, surface coatings and tensile properties of materials can investigated in order to better understand how they behave under different conditions.

  15. Simulation study of secondary electron images in scanning ion microscopy

    CERN Document Server

    Ohya, K

    2003-01-01

    The target atomic number, Z sub 2 , dependence of secondary electron yield is simulated by applying a Monte Carlo code for 17 species of metals bombarded by Ga ions and electrons in order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM). In addition to the remarkable reversal of the Z sub 2 dependence between the Ga ion and electron bombardment, a fine structure, which is correlated to the density of the conduction band electrons in the metal, is calculated for both. The brightness changes of the secondary electron images in SIM and SEM are simulated using Au and Al surfaces adjacent to each other. The results indicate that the image contrast in SIM is much more sensitive to the material species and is clearer than that for SEM. The origin of the difference between SIM and SEM comes from the difference in the lateral distribution of secondary electrons excited within the escape depth.

  16. Scanning electron microscopy of superficial white onychomycosis*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  17. Investigation on the traceability of three dimensional scanning electron microscope measurements based on the stereo-pair technique

    DEFF Research Database (Denmark)

    Bariani, Paolo; De Chiffre, Leonardo; Hansen, Hans Nørgaard

    2005-01-01

    An investigation was carried out concerning the traceability of dimensional measurements performed with the scanning electron microscope (SEM) using reconstruction of surface topography through stereo-photogrammetry. A theoretical description of the effects that the main instrumental variables...... with the scanning electron microscope (SEM) using reconstruction of surface topography through stereo-photogrammetry. A theoretical description of the effects that the main instrumental variables and measurement parameters have on the reconstruction accuracy of any point on the surface of the object being imaged......-dimensional topography of the type C roughness standards showed good agreement with the nominal profile wavelength values. An investigation was carried out concerning the traceability of dimensional measurements performed with the scanning electron microscope (SEM) using reconstruction of surface topography through...

  18. A scanning electron microscopy study of diseased root surfaces conditioned with EDTA gel plus Cetavlon after scaling and root planing.

    Science.gov (United States)

    Martins Júnior, Walter; De Rossi, Andiara; Samih Georges Abi Rached, Ricardo; Rossi, Marcos Antonio

    2011-01-01

    In the present investigation, a scanning electron microscopy analysis was performed to evaluate the effects of the topical application of ethylenediaminetetraacetic acid (EDTA) gel associated with Cetavlon (EDTAC) in removing the smear layer and exposing collagen fibers following root surface instrumentation. Twenty-eight teeth from adult humans, single rooted and scheduled for extraction due to periodontal reasons, were selected. Each tooth was submitted to manual (scaling and root planing) instrumentation alone or combined with ultrasonic instruments, with or without etching using a 24% EDTAC gel. Following extraction, specimens were processed and examined under a scanning electron microscope. A comparative morphological semi-quantitative analysis was performed; the intensity of the smear layer and the decalcification of cementum and dentinal surfaces were graded in 12 sets using an arbitrary scale ranging from 1 (area covered by a smear layer) to 4 (no smear layer). Root debridement with hand instruments alone or combined with ultrasonic instruments resulted in a similar smear layer covering the root surfaces. The smear layer was successfully removed from the surfaces treated with EDTAC, which exhibited numerous exposed dentinal tubules and collagen fibers. This study supports the hypothesis that manual instrumentation alone or instrumentation combined with ultrasonic instrumentation is unable to remove the smear layer, whereas the subsequent topical application of EDTAC gel effectively removes the smear layer, uncovers dentinal openings and exposes collagen fibers.

  19. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for the Surface of Mars: An Instrument for the Planetary Science Community

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.; hide

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.

  20. Immobilization, hybridization, and oxidation of synthetic DNA on gold surface: Electron transfer investigated by electrochemistry and scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, Gerald D.; Chen Fan [Biological Engineering Program, Department of Biological and Irrigation Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 (United States); Zhou Anhong, E-mail: Anhong.Zhou@usu.edu [Biological Engineering Program, Department of Biological and Irrigation Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 (United States)

    2009-06-08

    Fundamental understanding of interfacial electron transfer (ET) among electrolyte/DNA/solid-surface will facilitate the design for electrical detection of DNA molecules. In this report, the electron transfer characteristics of synthetic DNA (sequence from pathogenic Cryptosporidium parvum) self-assembled on a gold surface was electrochemically studied. The effects of immobilization order on the interface ET related parameters such as diffusion coefficient (D{sub 0}), surface coverage ({theta}{sub R}), and monolayer thickness (d{sub i}) were determined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). DNA surface density ({Gamma}{sub DNA}) was determined by the integration of the charge of the electro-oxidation current peaks during the initial cyclic voltammetry scans. It was found that the DNA surface densities at different modifications followed the order: {Gamma}{sub DNA} (dsS-DNA/Au) > {Gamma}{sub DNA} (MCH/dsS-DNA/Au) > {Gamma}{sub DNA} (dsS-DNA/MCH/Au). It was also revealed that the electro-oxidation of the DNA modified gold surface would involve the oxidation of nucleotides (guanine and adenine) with a 5.51 electron transfer mechanism and the oxidative desorption of DNA and MCH molecules by a 3 electron transfer mechanism. STM topography and current image analysis indicated that the surface conductivity after each surface modification followed the order: dsS-DNA/Au < MCH/dsS-DNA/Au < oxidized MCH/dsS-DNA/Au < Hoechst/oxidized MCH/dsS-DNA/Au. The results from this study suggested a combination of variations in immobilization order may provide an alternative approach for the optimization of DNA hybridization and the further development for electrical detection of DNA.

  1. Resistivity of thin gold films on mica induced by electron-surface scattering: Application of quantitative scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Robles, Marcelo E.; Gonzalez-Fuentes, Claudio A.; Henriquez, Ricardo; Kremer, German; Moraga, Luis; Oyarzun, Simón; Suarez, Marco Antonio; Flores, Marcos; Munoz, Raul C.

    2012-01-01

    We report a comparison between the resistivity measured on thin gold films deposited on mica, with predictions based upon classical theories of size effects (Drude's, Sondheimer's and Calecki's), as well as predictions based upon quantum theories of electron-surface scattering (the modified theory of Sheng, Xing and Wang, the theory of Tesanovic, Jaric and Maekawa, and that of Trivedi and Aschroft). From topographic images of the surface recorded with a Scanning Tunneling Microscope, we determined the rms roughness amplitude, δ and the lateral correlation length, ξ corresponding to a Gaussian representation of the average height-height autocorrelation function, describing the roughness of each sample in the scale of length set by the Fermi wave length. Using (δ, ξ) as input data, we present a rigorous comparison between resistivity data and predictions based upon the theory of Calecki as well as quantum theoretical predictions without adjustable parameters. The resistivity was measured on gold films of different thickness evaporated onto mica substrates, between 4 K and 300 K. The resistivity data covers the range 0.1 < x(T) < 6.8, for 4 K < T < 300 K, where x(T) is the ratio between film thickness and electron mean free path in the bulk at temperature T. We experimentally identify electron-surface and electron-phonon scattering as the microscopic electron scattering mechanisms giving rise to the macroscopic resistivity. The different theories are all capable of estimating the thin film resistivity to an accuracy better than 10%; however the mean free path and the resistivity characterizing the bulk turn out to depend on film thickness. Surprisingly, only the Sondheimer theory and its quantum version, the modified theory of Sheng, Xing and Wang, predict and increase in resistivity induced by size effects that seems consistent with published galvanomagnetic phenomena also arising from electron-surface scattering measured at low temperatures.

  2. [Scanning electron microscopy of heat-damaged bone tissue].

    Science.gov (United States)

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  3. Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies

    Science.gov (United States)

    Wilkins, R.; Powell, Kirk St. A.

    1997-01-01

    Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.

  4. In situ laser processing in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Nicholas A.; Magel, Gregory A.; Hartfield, Cheryl D.; Moore, Thomas M.; Fowlkes, Jason D.; Rack, Philip D. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2012-07-15

    Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {mu}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

  5. Full surface examination of small spheres with a computer controlled scanning electron microscope

    International Nuclear Information System (INIS)

    Ward, C.M.; Willenborg, D.L.; Montgomery, K.L.

    1979-01-01

    This report discusses a computer automated stage and Scanning Electron Microscopy (SEM) system for detecting defects in glass spheres for inertial confinement laser fusion experiments. This system detects submicron defects and permits inclusion of acceptable spheres in targets after examination. The stage used to examine and manipulate the spheres through 4π steradians is described. Primary image recording is made on a roster scanning video disc. The need for SEM stability and methods of achieving it are discussed

  6. The role of (sub)-surface oxygen on the surface electronic structure of hydrogen terminated (100) CVD diamond

    NARCIS (Netherlands)

    Deferme, W.; Tanasa, G.; Amir, J.; Haenen, K.; Nesladek, M.; Flipse, C.F.J.

    2006-01-01

    In this work, scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS) were applied to investigate the surface morphol. and the surface electronic structure of plasma-treated (100)-oriented CVD diamond films. These films were hydrogenated using a conventional MWPE-CVD

  7. A scanning electron microscopic study of 34 cases of acute granulocytic, myelomonocytic, monoblastic and histiocytic leukemia.

    Science.gov (United States)

    Polliack, A; McKenzie, S; Gee, T; Lampen, N; de Harven, E; Clarkson, B D

    1975-09-01

    This report describes the surface architecture of leukemic cells, as seen by scanning electron microscopy in 34 patients with acute nonlymphoblastic leukemia. Six patients with myeloblastic, 4 with promyelocytic, 10 with myelomonocytic, 8 with monocytic, 4 with histiocytic and 2 with undifferentiated leukemia were studied. Under the scanning electron microscope most leukemia histiocytes and monocytes appeared similar and were characterized by the presence of large, well developed broad-based ruffled membranes or prominent raised ridge-like profiles, resembling ithis respect normal monocytes. Most cells from patients with acute promyelocytic or myeloblastic leukemia exhibited narrower ridge-like profiles whereas some showed ruffles or microvilli. Patients with myelomonocytic leukemia showed mixed populations of cells with ridge-like profiles and ruffled membranes whereas cells from two patients with undifferentiated leukemia had smooth surfaces, similar to those encountered in cells from patients with acute lymphoblastic leukemia. It appears that nonlymphoblastic and lymphoblastic leukemia cells (particularly histiocytes and monocytes) can frequently be distinquished on the basis of their surface architecture. The surface features of leukemic histiocytes and monocytes are similar, suggesting that they may belong to the same cell series. The monocytes seem to have characteristic surface features recognizable with the scanning electron microscope and differ from most cells from patients with acute granulocytic leukemia. Although overlap of surface features and misidentification can occur, scanning electron microscopy is a useful adjunct to other modes of microscopy in the study and diagnosis of acute leukemia.

  8. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  9. Scanning electron microscopy of bone.

    Science.gov (United States)

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  10. Surface topography of hairy cell leukemia cells compared to other leukemias as seen by scanning electron microscopy.

    Science.gov (United States)

    Polliack, Aaron; Tadmor, Tamar

    2011-06-01

    This short review deals with the ultrastructural surface architecture of hairy cell leukemia (HCL) compared to other leukemic cells, as seen by scanning electron microscopy (SEM). The development of improved techniques for preparing blood cells for SEM in the 1970s readily enabled these features to be visualized more accurately. This review returns us to the earlier history of SEM, when the surface topography of normal and neoplastic cells was visualized and reported for the first time, in an era before the emergence and use of monoclonal antibodies and flow cytometry, now used routinely to define cells by their immunophenotype. Surface microvilli are characteristic for normal and leukemic lymphoid cells, myelo-monocytic cells lack microvilli and show surface ruffles, while leukemic plasma and myeloma cells and megakaryocytes display large surface blebs. HCL cell surfaces are complex and typically 'hybrid' in nature, displaying both lymphoid and monocytic features with florid ruffles of varying sizes interspersed with clumps of short microvilli cytoplasm. The surface features of other leukemic cells and photomicrographs of immuno-SEM labeling of cells employing antibodies and colloidal gold, reported more than 20 years ago, are shown.

  11. Scanning electron microscope

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The principle underlying the design of the scanning electron microscope (SEM), the design and functioning of SEM are described. Its applications in the areas of microcircuitry and materials science are outlined. The development of SEM in India is reviewed. (M.G.B.)

  12. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Electronically-Scanned Pressure Sensors

    Science.gov (United States)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  14. System and method for compressive scanning electron microscopy

    Science.gov (United States)

    Reed, Bryan W

    2015-01-13

    A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.

  15. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  16. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for In-Situ Mars Surface Sample Analysis

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Jerman, G. A.; Harvey, R. P.; Doloboff, I. J.; Neidholdt, E. L.

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Sciences (ROSES), will build upon previous miniaturized SEM designs and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. This project is a collaboration between NASA Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), electron gun and optics manufacturer Applied Physics Technologies, and small vacuum system manufacturer Creare. Dr. Ralph Harvery and environmental SEM (ESEM) inventor Dr. Gerry Danilatos serve as advisors to the team. Variable pressure SEMs allow for fine (nm-scale) resolution imaging and micron-scale chemical study of materials without sample preparation (e.g., carbon or gold coating). Charging of a sample is reduced or eliminated by the gas surrounding the sample. It is this property of ESEMs that make them ideal for locations where sample preparation is not yet feasible, such as the surface of Mars. In addition, the lack of sample preparation needed here will simplify the sample acquisition process and allow caching of the samples for future complementary payload use.

  17. Imaging by Electrochemical Scanning Tunneling Microscopy and Deconvolution Resolving More Details of Surfaces Nanomorphology

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    observed in high-resolution images of metallic nanocrystallites may be effectively deconvoluted, as to resolve more details of the crystalline morphology (see figure). Images of surface-crystalline metals indicate that more than a single atomic layer is involved in mediating the tunneling current......Upon imaging, electrochemical scanning tunneling microscopy (ESTM), scanning electrochemical micro-scopy (SECM) and in situ STM resolve information on electronic structures and on surface topography. At very high resolution, imaging processing is required, as to obtain information that relates...... to crystallographic-surface structures. Within the wide range of new technologies, those images surface features, the electrochemical scanning tunneling microscope (ESTM) provides means of atomic resolution where the tip participates actively in the process of imaging. Two metallic surfaces influence ions trapped...

  18. Fracture characteristics of uranium alloys by scanning electron microscopy

    International Nuclear Information System (INIS)

    Koger, J.W.; Bennett, R.K. Jr.

    1976-10-01

    The fracture characteristics of uranium alloys were determined by scanning electron microscopy. The fracture mode of stress-corrosion cracking (SCC) of uranium-7.5 weight percent niobium-2.5 weight percent zirconium (Mulberry) alloy, uranium--niobium alloys, and uranium--molybdenum alloys in aqueous chloride solutions is intergranular. The SCC fracture surface of the Mulberry alloy is characterized by very clean and smooth grain facets. The tensile-overload fracture surfaces of these alloys are characteristically ductile dimple. Hydrogen-embrittlement failures of the uranium alloys are brittle and the fracture mode is transgranular. Fracture surfaces of the uranium-0.75 weight percent titanium alloys are quasi cleavage

  19. Efficiency of a concentric matrix track detector surface scanning

    International Nuclear Information System (INIS)

    Bek-Uzarov, Dj.; Nikezic, D.; Kostic, D.; Krstic, D.; Cuknic, O.

    1995-01-01

    Heavy particle ionizing radiation track counting on the surface of a solid state round surface detector is made using the microscope and scanning step by step by a round field of vision. The whole solid state detector surface could not be fully or completely covered by round fields of visions. Therefore detector surface could be divided on the two parts, the larger surface, being under fields of vision, really scanned and no scanned missed or omitted surface. The ratio between omitted and scanned surfaces is so called track scanning efficiency. The knowledge of really counted, or scanned surface is a important value for evaluating the real surface track density an exposed solid state track detector. In the paper a matrix of a concentric field of vision made around the first microscope field of vision placed in center of the round disc of the scanned track detector is proposed. In a such scanning matrix the real scanned surface could be easy calculated and by the microscope scanning made as well. By this way scanned surface is very precisely obtained as well. Precise knowledge of scanned and omitted surface allows to obtain more precise scanning efficiency factor as well as real surface track density, the main parameter in solid state track detection measurements. (author)

  20. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  1. Top-down topography of deeply etched silicon in the scanning electron microscope

    International Nuclear Information System (INIS)

    Wells, Oliver C.; Murray, Conal E.; Rullan, Jonathan L.; Gignac, Lynne M.

    2004-01-01

    It is proposed to measure the cross sections of steep-sided etched lines and similar deep surface topography on partially completed silicon integrated circuit wafers using either the backscattered electron (BSE) or the low-loss electron (LLE) image in the scanning electron microscope (SEM). These images contain regions where the collected signal is zero because there is no direct line of sight between the landing point of the electron beam on the specimen and the BSE or LLE detector. It is proposed to use the boundary of such a region in the SEM image as a geometrical line to measure the surface topography. Or alternatively, a shadow can be seen in the distribution of either BSE or LLE with an image-forming detector system. The use of this shadow position on the detector to measure deep surface topography will be demonstrated

  2. Electronic structure classifications using scanning tunneling microscopy conductance imaging

    International Nuclear Information System (INIS)

    Horn, K.M.; Swartzentruber, B.S.; Osbourn, G.C.; Bouchard, A.; Bartholomew, J.W.

    1998-01-01

    The electronic structure of atomic surfaces is imaged by applying multivariate image classification techniques to multibias conductance data measured using scanning tunneling microscopy. Image pixels are grouped into classes according to shared conductance characteristics. The image pixels, when color coded by class, produce an image that chemically distinguishes surface electronic features over the entire area of a multibias conductance image. Such open-quotes classedclose quotes images reveal surface features not always evident in a topograph. This article describes the experimental technique used to record multibias conductance images, how image pixels are grouped in a mathematical, classification space, how a computed grouping algorithm can be employed to group pixels with similar conductance characteristics in any number of dimensions, and finally how the quality of the resulting classed images can be evaluated using a computed, combinatorial analysis of the full dimensional space in which the classification is performed. copyright 1998 American Institute of Physics

  3. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires

    International Nuclear Information System (INIS)

    Zubkov, Evgeniy

    2013-01-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  4. Simulation of multicomponent losses in electron beam melting and refining at varying scan frequencies

    International Nuclear Information System (INIS)

    Powell, A.; Szekely, J.; Van Den Avyle, J.; Damkroger, B.

    1995-01-01

    A two-stage model is presented to describe alloy element evaporation rates from molten metal due to transient local heating by an electron beam. The first stage is a simulation of transient phenomena near the melt surface due to periodic heating by a scanning beam, the output of which is the relationship between operating parameters, surface temperature, and evaporation rate. At high scan rates, this can be done using a simple one-dimensional heat transfer model of the surface layer; at lower scan rates, a more complex three-dimensional model with fluid flow and periodic boundary conditions is necessary. The second stage couples this evaporation-surface temperature relationship with a larger steady state heat transfer and fluid flow model of an entire melting hearth or mold, in order to calculate local and total evaporation rates. Predictions are compared with experimental results from Sandia's 310-kW electron beam melting furnace, in which evaporation rates and vapor compositions were studied in pure titanium and Ti-6%Al-4%V alloy. Evaporation rates were estimated from rate of condensation on a substrate held over the hearth, and were characterized as a function of beam power (150 and 225 kW), scan frequency (30, 115 and 450 Hz) and background pressure (10 -3 , 10 -4 and 10 -5 torr)

  5. Electron optical characteristics of a concave electrostatic electron mirror for a scanning electron microscope

    International Nuclear Information System (INIS)

    Hamarat, R.T.; Witzani, J.; Hoerl, E.M.

    1984-08-01

    Numerical computer calculations are used to explore the design characteristics of a concave electrostatic electron mirror for a mirror attachment for a conventional scanning electron microscope or an instrument designed totally as a scanning electron mirror microscope. The electron paths of a number of set-ups are calculated and drawn graphically in order to find the optimum shape and dimensions of the mirror geometry. This optimum configuration turns out to be the transition configuration between two cases of electron path deflection, towards the optical axis of the system and away from it. (Author)

  6. The effect of root surface conditioning on smear layer removal in periodontal regeneration (a scanning electron microscopic study)

    Science.gov (United States)

    Fidyawati, D.; Soeroso, Y.; Masulili, S. L. C.

    2017-08-01

    The role of root surface conditioning treatment on smear layer removal of human teeth is affected by periodontitis in periodontal regeneration. The objective of this study is to analyze the smear layer on root surface conditioned with 2.1% minocycline HCl ointment (Periocline), and 24% EDTA gel (Prefgel). A total of 10 human teeth indicated for extraction due to chronic periodontitis were collected and root planed. The teeth were sectioned in thirds of the cervical area, providing 30 samples that were divided into three groups - minocycline ointment treatment, 24% EDTA gel treatment, and saline as a control. The samples were examined by scanning electron microscope. No significant differences in levels of smear layer were observed between the minocycline group and the EDTA group (p=0.759). However, there were significant differences in the level of smear layer after root surface treatment in the minocycline and EDTA groups, compared with the control group (p=0.00). There was a relationship between root surface conditioning treatment and smear layer levels following root planing.

  7. Scanning electron microscopy of coal macerals

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.R.; White, A.; Deegan, M.D.

    1986-02-01

    Individual macerals separated from some United Kingdom coals of Carboniferous age and bituminous rank were examined by scanning electron microscopy. In each case a specific morphology characteristic of the macerals studied could be recognized. Collinite (a member of the vitrinite maceral group) was recognizable in all samples by its angular shape and characteristic fracture patterns, the particles (30-200 ..mu..m) frequently showing striated or laminated surface. Sporinite particles had no well defined shape and were associated with more detrital material than were the other macerals studied. This detritus was shown by conventional light microscopy to be the maceral micrinite. Fusinite was remarkable in having a chunky needle form, with lengths of up to 200 ..mu..m. 8 references.

  8. MR imaging of brain surface structures: Surface anatomy scanning

    International Nuclear Information System (INIS)

    Katada, K.; Koga, S.; Asahina, M.; Kanno, T.; Asahina, K.

    1987-01-01

    Preoperative evaluation of brain surface anatomy, including cortical sulci and veins, relative to cerebral and cerebellar lesions is an important subject for surgeons. Until now, no imaging modality existed that allowed direct visualization of brain surface anatomy. A new MR imaging technique (surface anatomy scanning) was developed to visualize brain surface structures. The technique uses a spin-echo pulse sequence with long repetition and echo times, thick sections and a surface coil. Cortical sulci, fissures, veins, and intracranial lesions were clearly identified with this technique. Initial clinical results indicate that surface anatomy scanning is useful for lesion localization and for detailed evaluation of cortical and subcortical lesions

  9. Scanning electron microscope autoradiography of critical point dried biological samples

    International Nuclear Information System (INIS)

    Weiss, R.L.

    1980-01-01

    A technique has been developed for the localization of isotopes in the scanning electron microscope. Autoradiographic studies have been performed using a model system and a unicellular biflagellate alga. One requirement of this technique is that all manipulations be carried out on samples that are maintained in a liquid state. Observations of a source of radiation ( 125 I-ferritin) show that the nuclear emulsion used to detect radiation is active under these conditions. Efficiency measurement performed using 125 I-ferritin indicate that 125 I-SEM autoradiography is an efficient process that exhibits a 'dose dependent' response. Two types of labeling methods were used with cells, surface labeling with 125 I and internal labeling with 3 H. Silver grains appeared on labeled cells after autoradiography, removal of residual gelatin and critical point drying. The location of grains was examined on a flagellated green alga (Chlamydomonas reinhardi) capable of undergoing cell fusion. Fusion experiments using labeled and unlabeled cells indicate that 1. Labeling is specific for incorporated radioactivity; 2. Cell surface structure is preserved in SEM autoradiographs and 3. The technique appears to produce reliable autoradiographs. Thus scanning electron microscope autoradiography should provide a new and useful experimental approach

  10. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    CERN Document Server

    Scheuerlein, C; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis results are compared with electron dose dependent secondary electron and electron stimulated desorption yield measurements. Initially the electron irradiation causes a surface cleaning through electron stimulated desorption, in particular of hydrogen. During this period both the electron stimulated desorption and secondary electron yield decrease as a function of electron dose. When the electron dose exceeds 10-4 C mm-2 electron stimulated desorption yields are reduced by several orders of magnitude and the electron beam indu...

  11. Surface characterization by energy distribution measurements of secondary electrons and of ion-induced electrons

    International Nuclear Information System (INIS)

    Bauer, H.E.; Seiler, H.

    1988-01-01

    Instruments for surface microanalysis (e.g. scanning electron or ion microprobes, emission electron or ion microscopes) use the current of emitted secondary electrons or of emitted ion-induced electrons for imaging of the analysed surface. These currents, integrating over all energies of the emitted low energy electrons, are however, not well suited to surface analytical purposes. On the contrary, the energy distribution of these electrons is extremely surface-sensitive with respect to shape, size, width, most probable energy, and cut-off energy. The energy distribution measurements were performed with a cylindrical mirror analyser and converted into N(E), if necessary. Presented are energy spectra of electrons released by electrons and argon ions of some contaminated and sputter cleaned metals, the change of the secondary electron energy distribution from oxidized aluminium to clean aluminium, and the change of the cut-off energy due to work function change of oxidized aluminium, and of a silver layer on a platinum sample. The energy distribution of the secondary electrons often shows detailed structures, probably due to low-energy Auger electrons, and is broader than the energy distribution of ion-induced electrons of the same object point. (author)

  12. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    Science.gov (United States)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  13. Hydrophobicity of electron beam modified surface of hydroxyapatite films

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, M., E-mail: gregor@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Plecenik, T. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Tofail, S.A.M. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Zahoran, M.; Truchly, M. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Vargova, M. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Laffir, F. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Plesch, G. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Kus, P.; Plecenik, A. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia)

    2015-05-15

    Highlights: • Surface potential of hydroxyapatite films were modified by focused electron beam. • Micron-sized domains of modified surface potential were created. • Wettability and surface free energy of the irradiated areas was studied. • Possible mechanisms of increased surface hydrophobicity are discussed. - Abstract: Arrays of micron-sized domains of modified surface potential were created on hydroxyapatite films by mid-energy (20 keV) electron beam irradiation available in a laboratory scanning electron microscope. The dosage of electron beam was varied between 10{sup −3} and 10{sup 3} μC/cm{sup 2} to inject charge into the film surface. Contrary to the conventional electrowetting theory, the dosage of injected charge used in creating such microdomains caused a gradual increase of the water contact angle from 57° to 93° due to the elimination of the polar component of the surface free energy. Surface contamination by carbonaceous species can be held only partially responsible for such behavior at lower dosage of electron beam. A transfer of free surface charge to water and an electron beam induced disruption of polar orientation of OH ions have been attributed to be influencial factors in the overall dewetting behavior.

  14. The impact of irradiation induced specimen charging on microanalysis in a scanning electron microscope

    International Nuclear Information System (INIS)

    Stevens-Kalceff, M.A.

    2003-01-01

    Full text: It is necessary to assess and characterize the perturbing influences of experimental probes on the specimens under investigation. The significant influence of electron beam irradiation on poorly conducting materials has been assessed by a combination of specialized analytical scanning electron and scanning probe microscopy techniques including Cathodoluminescence Microanalysis and Kelvin Probe Microscopy. These techniques enable the defect structure and the residual charging of materials to be characterized at high spatial resolution. Cathodoluminescence is the non-incandescent emission of light resulting from the electron irradiation. CL microscopy and spectroscopy in a Scanning Electron Microscope (SEM) enables high spatial resolution and high sensitivity detection of defects in poorly conducting materials. Local variations in the distribution of defects can be non-destructively characterized with high spatial (lateral and depth) resolution by adjusting electron beam parameters to select the specimen micro-volume of interest. Kelvin Probe Microscopy (KPM) is a Scanning Probe Microscopy technique in which long-range Coulomb forces between a conductive atomic force probe and the specimen enable the surface potential to be characterized with high spatial resolution. A combination of Kelvin Probe Microscopy (KPM) and Cathodoluminescence (CL) microanalysis has been used to characterize ultra pure silicon dioxide exposed to electron irradiation in a Scanning Electron Microscope. Silicon dioxide is an excellent model specimen with which to investigate charging induced effects. It is a very poor electrical conductor, homogeneous and electron irradiation produces easily identifiable surface modification which enables irradiated regions to be easily and unambiguously located. A conductive grounded coating is typically applied to poorly conducting specimens prior to investigation in an SEM to prevent deflection of the electron beam and surface charging, however

  15. Electron Beam Scanning in Industrial Applications

    Science.gov (United States)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  16. Scanning electron microscopy and micro-analyses

    International Nuclear Information System (INIS)

    Brisset, F.; Repoux, L.; Ruste, J.; Grillon, F.; Robaut, F.

    2008-01-01

    materials; 18b - metallation; 19 - biological samples - overview of preparation techniques; 20 - 3-D reconstruction of rough surfaces; 20a - 3-D imaging; 21 - SEM images: from numerical processing to quantitative analysis; 22 - STEM (scanning transmission electron microscopy); 23 - in-situ mechanical tests; 24 - SEM and X-ray microanalysis maintenance and control; 25 - quality assurance and standardization; 26 - SEM share in experimental techniques; 27 - introduction to FIB; 28 - introduction to TEM (transmission electron microscopy); 29 - X-ray microanalysis on thin samples; 30 - introduction to cathodoluminescence; 31 - introduction to Raman spectroscopy. (J.S.)

  17. Expansion of Shockley stacking fault observed by scanning electron microscope and partial dislocation motion in 4H-SiC

    Science.gov (United States)

    Yamashita, Yoshifumi; Nakata, Ryu; Nishikawa, Takeshi; Hada, Masaki; Hayashi, Yasuhiko

    2018-04-01

    We studied the dynamics of the expansion of a Shockley-type stacking fault (SSF) with 30° Si(g) partial dislocations (PDs) using a scanning electron microscope. We observed SSFs as dark lines (DLs), which formed the contrast at the intersection between the surface and the SSF on the (0001) face inclined by 8° from the surface. We performed experiments at different electron-beam scanning speeds, observing magnifications, and irradiation areas. The results indicated that the elongation of a DL during one-frame scanning depended on the time for which the electron beam irradiated the PD segment in the frame of view. From these results, we derived a formula to express the velocity of the PD using the elongation rate of the corresponding DL during one-frame scanning. We also obtained the result that the elongation velocity of the DL was not influenced by changing the direction in which the electron beam irradiates the PD. From this result, we deduced that the geometrical kink motion of the PD was enhanced by diffusing carriers that were generated by the electron-beam irradiation.

  18. Note: Microelectrode-shielding tip for scanning probe electron energy spectroscopy

    Science.gov (United States)

    Huang, Wei; Li, Zhean; Xu, Chunkai; Liu, Jian; Xu, Chunye; Chen, Xiangjun

    2018-04-01

    We report a novel microelectrode-shielding tip (ME tip) for scanning probe electron energy spectroscopy (SPEES). The shielding effect of this tip is studied through comparing the detection efficiency with the normal tip by both experiment and simulation. The results show that the backscattering count rate detected by the SPEES instrument using the normal tip begins to decrease as the tip approaches to the sample surface within 21 μm, while that using the ME tip only starts to drop off within 1 μm. This indicates that the electron energy spectra can be measured with the ME tip at a much closer tip-sample distance. Furthermore, it is also demonstrated that the ME tip can be used to obtain topography of the sample surface in situ simultaneously.

  19. Submolecular Electronic Mapping of Single Cysteine Molecules by in Situ Scanning Tunneling Imaging

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Nazmutdinov, R. R.

    2009-01-01

    We have used L-Cysteine (Cys) as a model system to study the surface electronic structures of single molecules at the submolecular level in aqueous buffer solution by a combination of electrochemical scanning tunneling microscopy (in situ STM), electrochemistry including voltammetry and chronocou...

  20. Simulation and Characterization of a Miniaturized Scanning Electron Microscope

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory A.; Medley, Stephanie; Gregory, Don; Abbott, Terry O.; Sampson, Allen R.

    2011-01-01

    A miniaturized Scanning Electron Microscope (mSEM) for in-situ lunar investigations is being developed at NASA Marshall Space Flight Center with colleagues from the University of Alabama in Huntsville (UAH), Advanced Research Systems (ARS), the University of Tennessee in Knoxville (UTK) and Case Western Reserve University (CWRU). This effort focuses on the characterization of individual components of the mSEM and simulation of the complete system. SEMs can provide information on the size, shape, morphology and chemical composition of lunar regolith. Understanding these basic properties will allow us to better estimate the challenges associated with In-Situ Resource Utilization and to improve our basic science knowledge of the lunar surface (either precluding the need for sample return or allowing differentiation of unique samples to be returned to Earth.) The main components of the mSEM prototype includes: a cold field emission electron gun (CFEG), focusing lens, deflection/scanning system and backscatter electron detector. Of these, the electron gun development is of particular importance as it dictates much of the design of the remaining components. A CFEG was chosen for use with the lunar mSEM as its emission does not depend on heating of the tungsten emitter (lower power), it offers a long operation lifetime, is orders of magnitude brighter than tungsten hairpin guns, has a small source size and exhibits low beam energy spread.

  1. Theory of life time measurements with the scanning electron microscope: steady state

    NARCIS (Netherlands)

    Berz, F.; Kuiken, H.K.

    1976-01-01

    A theoretical steady state analysis is given of the scanning electron microscope method of measuring bulk life time in diodes, where the plane of the junction is perpendicular to the surface. The current in the junction is obtained as a function of the beam power, the beam penetration into the

  2. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    OpenAIRE

    Scheuerlein, C; Hilleret, Noël; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis resu...

  3. IN-SITU EXPERIMENTS OF VACUUM DISCHARGE USING SCANNING ELECTRON MICROSCOPES

    CERN Document Server

    Muranaka, T; Leifer, K; Ziemann, V

    2011-01-01

    The fundamental understanding of vacuum discharge mechanisms and induced surface damage is indispensable for the CLIC feasibility study. We have been conducting dc sparc experiments inside a Scanning Electron Microscope (SEM) at Uppsala university in order to investigate localized breakdown phenomena. By using a SEM, we achieve the resolution of the electron probe in the few-nm range, which is of great advantage as the surface roughness of the polished accelerating structures is in the same scale. The high accelerating field of 1 GV/m is realized by biasing an electrode with 1 kV set above the sample with a gap of sub μm. Furthermore, a second SEM equipped with a Focused Ion Beam (FIB) is used to modify the topography of sample surfaces thus the geometrical dependence of field emissions and vacuum discharges can be studied. The FIB can be used for the surface damage analysis as well. We have demonstrated subsurface damage observations by using FIB to sputter a rectangular recess into the sample in the breakd...

  4. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    International Nuclear Information System (INIS)

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-01-01

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  5. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    Science.gov (United States)

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-06-01

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  6. Development of Scanning Ultrafast Electron Microscope Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  7. Atomic species recognition on oxide surfaces using low temperature scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zong Min, E-mail: mzmncit@163.com [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Shi, Yun Bo; Mu, Ji Liang; Qu, Zhang; Zhang, Xiao Ming; Qin, Li [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Liu, Jun, E-mail: liuj@nuc.edu.cn [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China)

    2017-02-01

    Highlights: • The coexisted phase of p(2 × 1)and c(6 × 2) on Cu(110)-O surface using AFM under UHV at low temperature. • Two different c(6 × 2) phase depending on the status of the tip apex. • Electronic state of tip seriously effect the resolution and stability of the sample surface. - Abstract: In scanning probe microscopy (SPM), the chemical properties and sharpness of the tips of the cantilever greatly influence the scanning of a sample surface. Variation in the chemical properties of the sharp tip apex can induce transformation of the SPM images. In this research, we explore the relationship between the tip and the structure of a sample surface using dynamic atomic force microscopy (AFM) on a Cu(110)-O surface under ultra-high vacuum (UHV) at low temperature (78 K). We observed two different c(6 × 2) phase types in which super-Cu atoms show as a bright spot when the tip apex is of O atoms and O atoms show as a bright spot when the tip apex is of Cu atoms. We also found that the electronic state of the tip has a serious effect on the resolution and stability of the sample surface, and provide an explanation for these phenomena. This technique can be used to identify atom species on sample surfaces, and represents an important development in the SPM technique.

  8. Measuring surface topography by scanning electron microscopy. II. Analysis of three estimators of surface roughness in second dimension and third dimension.

    Science.gov (United States)

    Bonetto, Rita Dominga; Ladaga, Juan Luis; Ponz, Ezequiel

    2006-04-01

    Scanning electron microscopy (SEM) is widely used in surface studies and continuous efforts are carried out in the search of estimators of different surface characteristics. By using the variogram, we developed two of these estimators that were used to characterize the surface roughness from the SEM image texture. One of the estimators is related to the crossover between fractal region at low scale and the periodic region at high scale, whereas the other estimator characterizes the periodic region. In this work, a full study of these estimators and the fractal dimension in two dimensions (2D) and three dimensions (3D) was carried out for emery papers. We show that the obtained fractal dimension with only one image is good enough to characterize the roughness surface because its behavior is similar to those obtained with 3D height data. We show also that the estimator that indicates the crossover is related to the minimum cell size in 2D and to the average particle size in 3D. The other estimator has different values for the three studied emery papers in 2D but it does not have a clear meaning, and these values are similar for those studied samples in 3D. Nevertheless, it indicates the formation tendency of compound cells. The fractal dimension values from the variogram and from an area versus step log-log graph were studied with 3D data. Both methods yield different values corresponding to different information from the samples.

  9. Subsurface Examination of a Foliar Biofilm Using Scanning Electron- and Focused-Ion-Beam Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Patricia K.; Arey, Bruce W.; Mahaffee, Walt F.

    2011-08-01

    The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB can remove a predetermined amount of material from a selected site to allow for subsurface exploration and when coupled with SEM or scanning ion- beam microscopy (SIM) could be suitable to examine the subsurface structure of bacterial biofilms on the leaf surface. The suitability of chemical and cryofixation was examined for use with the FIB SEM to examine bacterial biofilms on leaf surfaces. The biological control agent, Burkholderia pyroccinia FP62, that rapidly colonizes the leaf surface and forms biofilms, was inoculated onto geranium leaves and incubated in a greenhouse for 7 or 14 days. Cryofixation was not suitable for examination of leaf biofilms because it created a frozen layer over the leaf surface that cracked when exposed to the electron beam and the protective cap required for FIB milling could not be accurately deposited. With chemically fixed samples, it was possible to precisely FIB mill a single cross section (5 µm) or sequential cross sections from a single site without any damage to the surrounding surface. Biofilms, 7 days post-inoculation (DPI), were composed of 2 to 5 bacterial cell layers while biofilms 14 DPI ranged from 5 to greater than 30 cell layers. Empty spaces between bacteria cells in the subsurface structure were observed in biofilms 7- and 14-DPI. Sequential cross sections inferred that the empty spaces were often continuous between FP62 cells and could possibly make up a network of channels throughout the biofilm. FIB SEM was a useful tool to observe the subsurface composition of a foliar biofilm.

  10. Detection of fatigue fracture in pearlitic flake graphite cast iron with the help of scanning and transmission electron microscopy

    International Nuclear Information System (INIS)

    Dunger, B.; Hunger, J.

    1976-01-01

    To prove the existence of the characteristic features of fatigue fracture in a pearlitic flake graphite cast iron, its fracture surface topography revealed by scanning electron microscopy has been compared with that of a pearlitic steel, the fractures having been caused by static tensile and by cyclic bending tests. The characteristic features of fatigue fracture were visible in the pearlitic matrix of the steel and of the flake graphite cast iron as well. These features differ characteristically from the lamellar structure of the pearlite, particularly after etching the surface area of the fractures. The graphite structures as viewed on the electron scanning and the electron transmission microscope are described. (orig.) [de

  11. Scanning electron microscopic studies on bone tumors

    International Nuclear Information System (INIS)

    Itoh, Motoya

    1978-01-01

    Surface morphological observations of benign and malinant bone tumors were made by the use of scanning electron microscopy. Tumor materials were obtained directly from patients of osteogenic sarcomas, chondrosarcomas, enchondromas, giant cell tumors and Paget's sarcoma. To compare with these human tumors, the following experimental materials were also observed: P 32 -induced rat osteogenic sarcomas with their pulmonary metastatic lesions, Sr 89 -induced transplantable mouse osteogenic sarcomas and osteoid tissues arising after artificial fractures in mice. One of the most outstanding findings was a lot of granular substances seen on cell surfaces and their intercellular spaces in osteoid or chondroid forming tissues. These substances were considered to do some parts in collaborating extracellular matrix formation. Protrusions on cell surface, such as mucrovilli were more or less fashioned by these granular substances. Additional experiments revealed these substances to be soluble in sodium cloride solution. Benign osteoid forming cells, such as osteoblasts and osteoblastic osteosarcoma cells had granular substances on their surfaces and their intercellular spaces. On the other hand, undifferentiated transplantable osteosarcoma which formed on osteoid or chondroid matrix had none of these granular substances. Consequently, the difference of surface morphology between osteosarcoma cells and osteoblasts was yet to be especially concluded. (author)

  12. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea; Torre, Bruno; Toma, Andrea; Francardi, Marco; Malerba, Mario; Alabastri, Alessandro; Proietti Zaccaria, Remo; Stockman, Mark Mark; Di Fabrizio, Enzo M.

    2013-01-01

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  13. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea

    2013-10-20

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  14. Role of scanning electron microscope )SEM) in metal failure analysis

    International Nuclear Information System (INIS)

    Shaiful Rizam Shamsudin; Hafizal Yazid; Mohd Harun; Siti Selina Abd Hamid; Nadira Kamarudin; Zaiton Selamat; Mohd Shariff Sattar; Muhamad Jalil

    2005-01-01

    Scanning electron microscope (SEM) is a scientific instrument that uses a beam of highly energetic electrons to examine the surface and phase distribution of specimens on a micro scale through the live imaging of secondary electrons (SE) and back-scattered electrons (BSE) images. One of the main activities of SEM Laboratory at MINT is for failure analysis on metal part and components. The capability of SEM is excellent for determining the root cause of metal failures such as ductility or brittleness, stress corrosion, fatigue and other types of failures. Most of our customers that request for failure analysis are from local petrochemical plants, manufacturers of automotive components, pipeline maintenance personnel and engineers who involved in the development of metal parts and component. This paper intends to discuss some of the technical concepts in failure analysis associated with SEM. (Author)

  15. Dynamic Flaps Electronic Scan Antenna

    National Research Council Canada - National Science Library

    Gonzalez, Daniel

    2000-01-01

    A dynamic FLAPS(TM) electronic scan antenna was the focus of this research. The novelty S of this SBIR resides in the use of plasma as the main component of this dynamic X-Band phased S array antenna...

  16. Charge dynamics in aluminum oxide thin film studied by ultrafast scanning electron microscopy.

    Science.gov (United States)

    Zani, Maurizio; Sala, Vittorio; Irde, Gabriele; Pietralunga, Silvia Maria; Manzoni, Cristian; Cerullo, Giulio; Lanzani, Guglielmo; Tagliaferri, Alberto

    2018-04-01

    The excitation dynamics of defects in insulators plays a central role in a variety of fields from Electronics and Photonics to Quantum computing. We report here a time-resolved measurement of electron dynamics in 100 nm film of aluminum oxide on silicon by Ultrafast Scanning Electron Microscopy (USEM). In our pump-probe setup, an UV femtosecond laser excitation pulse and a delayed picosecond electron probe pulse are spatially overlapped on the sample, triggering Secondary Electrons (SE) emission to the detector. The zero of the pump-probe delay and the time resolution were determined by measuring the dynamics of laser-induced SE contrast on silicon. We observed fast dynamics with components ranging from tens of picoseconds to few nanoseconds, that fits within the timescales typical of the UV color center evolution. The surface sensitivity of SE detection gives to the USEM the potential of applying pump-probe investigations to charge dynamics at surfaces and interfaces of current nano-devices. The present work demonstrates this approach on large gap insulator surfaces. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    Science.gov (United States)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  18. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Apedo, K.L., E-mail: apedo@unistra.fr [ICube, Université de Strasbourg, CNRS, 2 rue Boussingault, 67000 Strasbourg (France); Munzer, C.; He, H. [ICube, INSA de Strasbourg, CNRS, 24 Bld de la Victoire, 67084 Strasbourg (France); Montgomery, P. [ICube, Université de Strasbourg, CNRS, 23 rue du Loess, 67037 Strasbourg (France); Serres, N. [ICube, INSA de Strasbourg, CNRS, 24 Bld de la Victoire, 67084 Strasbourg (France); Fond, C. [ICube, Université de Strasbourg, CNRS, 2 rue Boussingault, 67000 Strasbourg (France); Feugeas, F. [ICube, INSA de Strasbourg, CNRS, 24 Bld de la Victoire, 67084 Strasbourg (France)

    2015-02-15

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are compared with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.

  19. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    International Nuclear Information System (INIS)

    Apedo, K.L.; Munzer, C.; He, H.; Montgomery, P.; Serres, N.; Fond, C.; Feugeas, F.

    2015-01-01

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are compared with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied

  20. Treatment of surfaces with low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Mikmeková, E. [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); FEI Company, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Lejeune, M. [LPMC – Faculte des Sciences d’Amiens, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France)

    2017-06-15

    Highlights: • Using proper irradiation parameters, adsorbed hydrocarbons are released from surfaces. • Slow electrons remove hydrocarbons instead of depositing carbon. • Prolonged irradiation with very slow electrons does not create defects in graphene. - Abstract: Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  1. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.

    Science.gov (United States)

    Nazin, G V; Wu, S W; Ho, W

    2005-06-21

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.

  2. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study

    International Nuclear Information System (INIS)

    Moros, Eduardo G.; Straube, William L.; Klein, Eric E.; Yousaf, Muhammed; Myerson, Robert J.

    1995-01-01

    Purpose: The feasibility of simultaneously delivering external electron beam radiation and superficial hyperthermia using a scanning ultrasound reflector-array system (SURAS) was experimentally investigated and demonstrated. Methods and Materials: A new system uses a scanning reflector to distribute the acoustic energy from a planar ultrasound array over the surface of the target volume. External photon/electron beams can be concurrently delivered with hyperthermia by irradiating through the scanning reflectors. That is, this system enables the acoustic waves and the radiation beams to enter the target volume from the same direction. Reflectors were constructed of air-equivalent materials for maximum acoustic reflection and minimum radiation attenuation. Acoustically, the air reflectors were compared to brass reflectors (assumed ideal) for reflectivity and specular quality using several single transducers ranging in frequency from 0.68 to 4.8 MHz. The relative reflectivity was determined from acoustic power measurements using a force-balance technique. The specular quality was assessed by comparing the acoustic pressure fields reflected by air reflectors with those reflected by brass reflectors. Also, acoustic pressure fields generated by a SURAS prototype for two different arrays (2.24 and 4.5 MHz) were measured to investigate field distribution variations as a function of the distance separating the array and the scanning reflector. All pressure fields were measured with a hydrophone in a degassed water tank. Finally, to determine the effect of the air reflectors on electron dose distributions, these were measured using film in a water-equivalent solid phantom after passage of a 20 MeV electron beam through the SURAS. These measurements were performed with the reflector scanning continuously across the electron beam and at rest within the electron beam. Results: The measurements performed using single ultrasound transducers showed that the air reflectors had

  3. Trichomes of Cannabis sativa as viewed with scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, M C; Krikorian, A D

    1975-06-01

    Direct examination of fresh, unfixed and uncoated specimens from vegetative and floral parts of Cannabis sativa with the scanning electron microscope enables one to obtain a faithful representation of their surface morphology. The presence of two major types of trichomes has been confirmed: a glandular type comprising or terminating in a globoid structure, and a conically-shaped nonglandular type. Moreover, three or possibly four distinct glandular types can be distinguished: sessile globoid, small-stalked and large-stalked globoid, and a peltate type. The nonglandular trichomes can be distinguished by the nature of their surfaces: those with a warty surface, and those which are relatively smooth. The range of size and distribution, and the special features of all these types of trichomes are also provided.

  4. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  5. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    Science.gov (United States)

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.

    Science.gov (United States)

    Zhang, Tao; Gao, Feng; Jiang, Xiangqian

    2017-10-02

    This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

  7. Path-separated electron interferometry in a scanning transmission electron microscope

    Science.gov (United States)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  8. A scanning electron microscopic investigation of ceramic orthodontic brackets

    International Nuclear Information System (INIS)

    McDonald, F.; Toms, A.P.

    1990-01-01

    Ceramic brackets were introduced to overcome the esthetic disadvantages of stainless steel brackets. The clinical impression of these brackets is very favorable. However, the sliding mechanics used in the Straightwire (A Company, San Diego, CA, USA) system appear to produce slower tooth movements with ceramic compared to stainless steel brackets. To determine whether this was due to any obvious mechanical problem in the bracket slot, Transcend (Unitek Corporation/3M, Monrovia, CA, USA) ceramic brackets were examined by a scanning electron microscope and compared to stainless steel brackets.Consistently, large surface defects were found in the ceramic bracket slots that were not present in the metal bracket slots. These irregularities could obviously hinder the sliding mechanics of the bracket slot-archwire system and create a greater demand on anchorage. Conversely, the fitting surface of the Transcend ceramic bracket showed extremely smooth surface characteristics, and it would seem advisable for the manufacturers to incorporate this surface within the bracket slot. (author)

  9. Treatment of surfaces with low-energy electrons

    Science.gov (United States)

    Frank, L.; Mikmeková, E.; Lejeune, M.

    2017-06-01

    Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  10. Morphologic differences observed by scanning electron microscopy according to the reason for pseudophakic IOL explantation

    DEFF Research Database (Denmark)

    Fernandez-Buenaga, Roberto; Alio, Jorge L.; Ramirez, Jose M.

    2015-01-01

    Purpose To compare variations in surface morphology, as studied by scanning electron microscopy (SEM), of explanted intraocular lenses (IOLs) concerning the cause leading to the explantation surgery. Methods In this prospective multicenter study, explanted IOLs were analyzed by SEM and energy...... explanted due to dislocation demonstrated calcifications in 8 lenses (50%), salt precipitates in 6 cases (37.5%), and erythrocytes and fibrosis/fibroblasts in 2 cases (12.5%). In the refractive error cases, the SEM showed proteins in 5 cases (45.5%) and salt precipitates in 4 lenses (36.4%). In IOL...... opacification, the findings were calcifications in 2 of the 3 lenses (66.6%) and proteins in 2 lenses (66.6%). Conclusions A marked variation in surface changes was observed by SEM. Findings did not correlate with cause for explantation. Scanning electron microscopy is a useful tool that provides exclusive...

  11. In-situ investigation of laser surface modifications of WC-Co hard metals inside a scanning electron microscope

    Science.gov (United States)

    Mueller, H.; Wetzig, K.; Schultrich, B.; Pompe, Wolfgang; Chapliev, N. I.; Konov, Vitaly I.; Pimenov, S. M.; Prokhorov, Alexander M.

    1989-05-01

    The investigation of laser interaction with solid surfaces and of the resulting mechanism of surface modification are of technical interest to optimize technological processes, and they are also of fundamental scientific importance. Most instructive indormation is available with the ail of the in-situ techniques. For instance, measuring of the photon emission of the irradiated surface ane the plasma torch (if it is produced) simultaneously to laser action, makes it possible to gain a global characterization of the laser-solid interaction. In order to obtain additional information about surface and structure modifications in microscopic detail , a laser and scanning electron microscope were combined in to a tandem equipment (LASEM). Inside this eqiipment the microscopic observation is carried out directly at the laser irradiated area without any displacement of the sample. In this way, the stepwise development of surface modification during multipulse irradiation is visible in microscopic details and much more reliable information about the surface modification process is obtainable in comparison to an external laser irradiation. Such kind of equipments were realized simultaneously and independently in the Institut of General Physics (Moscow) and the Central Institute of Solid State Physics and Material Research (Dresden) using a CO2 and a LTd-glass-laser, respectively. In the following the advantages and possibilities of a LASEM shall be demonstrated by some selected investigations of WC-CO hardmeta. The results were obtained in collaboration by both groups with the aid of the pulsed CO2-laser. The TEA CO2 laser was transmitted through a ZnSe-window into the sample chamber of the SEM and focused ofAo tfte sample surface. It was operated in TEM - oo mode with a repetition rate of about 1 pulse per second. A peak power density of about 160 MW/cm2 was achieved in front of the sample surface.

  12. A Small Crack Length Evaluation Technique by Electronic Scanning

    International Nuclear Information System (INIS)

    Cho, Yong Sang; Kim, Jae Hoon

    2009-01-01

    The results of crack evaluation by conventional UT(Ultrasonic Test)is highly depend on the inspector's experience or knowledge of ultrasound. Phased array UT system and its application methods for small crack length evaluation will be a good alternative method which overcome present UT weakness. This study was aimed at checking the accuracy of crack length evaluation method by electronic scanning and discuss about characteristics of electronic scanning for crack length evaluation. Especially ultrasonic phased array with electronic scan technique was used in carrying out both sizing and detect ability of crack as its length changes. The response of ultrasonic phased array was analyzed to obtain the special method of determining crack length without moving the transducer and detectability of crack minimal length and depth from the material. A method of crack length determining by electronic scanning for the small crack is very real method which has it's accuracy and verify the effectiveness of method compared to a conventional crack length determination

  13. Topographic assessment of human enamel surface treated with different topical sodium fluoride agents: Scanning electron microscope consideration

    Directory of Open Access Journals (Sweden)

    Gurlal Singh Brar

    2017-01-01

    Full Text Available Introduction: Continuous balanced demineralization and remineralization are natural dynamic processes in enamel. If the balance is interrupted and demineralization process dominates, it may eventually lead to the development of carious lesions in enamel and dentine. Fluoride helps control decay by enhancing remineralization and altering the structure of the tooth, making the surface less soluble. Methodology: One hundred and twenty sound human permanent incisors randomly and equally distributed into six groups as follows: Group I - Control, II - Sodium fluoride solution, III - Sodium fluoride gel, IV - Sodium fluoride varnish, V - Clinpro Tooth Crème (3M ESPE, and VI-GC Tooth Mousse Plus or MI Paste Plus. The samples were kept in artificial saliva for 12 months, and the topical fluoride agents were applied to the respective sample groups as per the manufacturer instructions. Scanning electron microscope (SEM evaluation of all the samples after 6 and 12 months was made. Results: Morphological changes on the enamel surface after application of fluoride in SEM revealed the presence of globular precipitate in all treated samples. Amorphous, globular, and crystalline structures were seen on the enamel surface of the treated samples. Clear differences were observed between the treated and untreated samples. Conclusion: Globular structures consisting of amorphous CaF2precipitates, which acted as a fluoride reservoir, were observed on the enamel surface after action of different sodium fluoride agents. CPP-ACPF (Tooth Mousse and Tricalcium phosphate with fluoride (Clinpro tooth crème are excellent delivery vehicles available in a slow release amorphous form to localize fluoride at the tooth surface.

  14. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    Science.gov (United States)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  15. Surface morphology and electronic structure of Ni/Ag(100)

    International Nuclear Information System (INIS)

    Hite, D. A.; Kizilkaya, O.; Sprunger, P. T.; Howard, M. M.; Ventrice, C. A. Jr.; Geisler, H.; Zehner, D. M.

    2000-01-01

    The growth morphology and electronic structure of Ni on Ag(100) has been studied with scanning tunneling microscopy (STM) and synchrotron based angle resolved photoemission spectroscopy. At deposition temperatures at or below 300 K, STM reveals Ni cluster growth on the surface along with some subsurface growth. Upon annealing to 420 K, virtually all Ni segregates into the subsurface region forming embedded nanoclusters. The electronic structure of Ni d bands in the unannealed surface shows dispersion only perpendicular to the surface whereas the annealed surface has Ni d bands that exhibit a three-dimensional-like structure. This is a result of the increased Ni d-Ag sp hybridization bonding and increased coordination of the embedded Ni nanoclusters. (c) 2000 American Vacuum Society

  16. Scanning or treating device for smooth curved surface

    International Nuclear Information System (INIS)

    Gemma, A.

    1988-01-01

    This robot for scanning or treating a smooth curved surface is made by a vehicle moving predeterminately on the surface, this vehicle having mobil grips. A support arm is attached to the vehicle by a swivel and fixed at the center of the curvature. It is orientable parralel to the axes of legs of the vehicle near the center. Scanning or treatment systems for the surface are fixed on the vehicle. Drives and control systems for the vehicle and treatment or scanning system are provided [fr

  17. Spin-polarized scanning electron microscopy

    International Nuclear Information System (INIS)

    Kohashi, Teruo

    2014-01-01

    Spin-Polarized Scanning Electron Microscopy (Spin SEM) is one way for observing magnetic domain structures taking advantage of the spin polarization of the secondary electrons emitted from a ferromagnetic sample. This principle brings us several excellent capabilities such as high-spatial resolution better than 10 nm, and analysis of magnetization direction in three dimensions. In this paper, the principle and the structure of the spin SEM is briefly introduced, and some examples of the spin SEM measurements are shown. (author)

  18. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study.

    Directory of Open Access Journals (Sweden)

    Wonmo Sung

    Full Text Available This study investigated the potential of a newly proposed scattering foil free (SFF electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1° vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.

  19. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study.

    Science.gov (United States)

    Sung, Wonmo; Park, Jong In; Kim, Jung-In; Carlson, Joel; Ye, Sung-Joon; Park, Jong Min

    2017-01-01

    This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.

  20. Scanning electron microscopy of rat throat and trachea following the effects of radon decay products

    International Nuclear Information System (INIS)

    Rode, J.; Vaupotic, J.; Kobal, I.; Draslar, K.

    1996-01-01

    In two preliminary experiments, five laboratory rats were exposed in a small chamber to radon-rich air. In both experiments the exposure was about 0.9 WLM. The surface of throat and trachea was examined by scanning electron microscope. (author)

  1. Scanning tunneling microscopy and spectroscopy on GaN and InGaN surfaces

    International Nuclear Information System (INIS)

    Krueger, David

    2009-01-01

    Optelectronic devices based on gallium nitride (GaN) and indium gallium nitride (InGaN) are in the focus of research since more than 20 years and still have great potential for optical applications. In the first part of this work non-polar surfaces of GaN are investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and scanning tunneling microscopy (STM). In SEM and AFM, the (1 anti 100)- and especially the (anti 2110)-plane are quite corrugated. For the first time, the (anti 2110)-plane of GaN is atomically resolved in STM. In the second part InGaN quantum dot layers are investigated by X-ray photoelectron spectroscopy (XPS), scanning tunneling spectroscopy (STS) and STM. The STMmeasurements show the dependency of surface morphology on growth conditions in the metalorganic vapour phase epitaxy (MOVPE). Nucleation, a new MOVPE-strategy, is based on phase separations on surfaces. It is shown that locally varying density of states and bandgaps can be detected by STS, that means bandgap histograms and 2D-bandgap-mapping. (orig.)

  2. Visualizing Surface Plasmons with Photons, Photoelectrons, and Electrons

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z.; Abellan Baeza, Patricia; Gong, Yu; Hage, F. S.; Cottom, J.; Joly, Alan G.; Brydson, R.; Ramasse, Q. M.; Hess, Wayne P.

    2016-06-21

    Both photons and electrons may be used to excite surface plasmon polaritons, the collective charge density fluctuations at the surface of metal nanostructures. By virtue of their nanoscopic and dissipative nature, a detailed characterization of surface plasmon (SP) eigenmodes in real space-time ultimately requires joint sub-nanometer spatial and sub-femtosecond temporal resolution. The latter realization has driven significant developments in the past few years, aimed at interrogating both localized and propagating SP modes over the relevant length and time scales. In this mini-review, we briefly highlight different techniques we employ to visualize the enhanced electric fields associated with SPs. Specifically, we discuss recent hyperspectral optical microscopy, tip-enhanced Raman nano-spectroscopy, nonlinear photoemission electron microscopy, as well as correlated scanning transmission electron microscopy-electron energy loss spectroscopy measurements targeting prototypical plasmonic nanostructures and constructs. Through selected practical examples, we examine the information content in multidimensional images recorded by taking advantage of each of the aforementioned techniques. In effect, we illustrate how SPs can be visualized at the ultimate limits of space and time.

  3. Facial recognition and laser surface scan: a pilot study

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Clausen, Maja-Lisa; Kristoffersen, Agnethe May

    2009-01-01

    Surface scanning of the face of a suspect is presented as a way to better match the facial features with those of a perpetrator from CCTV footage. We performed a simple pilot study where we obtained facial surface scans of volunteers and then in blind trials tried to match these scans with 2D...... photographs of the faces of the volunteers. Fifteen male volunteers were surface scanned using a Polhemus FastSCAN Cobra Handheld Laser Scanner. Three photographs were taken of each volunteer's face in full frontal, profile and from above at an angle of 45 degrees and also 45 degrees laterally. Via special...

  4. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  5. Sensitivity Analysis of X-ray Spectra from Scanning Electron Microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bekar, Kursat B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    The primary goal of this project is to evaluate x-ray spectra generated within a scanning electron microscope (SEM) to determine elemental composition of small samples. This will be accomplished by performing Monte Carlo simulations of the electron and photon interactions in the sample and in the x-ray detector. The elemental inventories will be determined by an inverse process that progressively reduces the difference between the measured and simulated x-ray spectra by iteratively adjusting composition and geometric variables in the computational model. The intended benefit of this work will be to develop a method to perform quantitative analysis on substandard samples (heterogeneous phases, rough surfaces, small sizes, etc.) without involving standard elemental samples or empirical matrix corrections (i.e., true standardless quantitative analysis).

  6. Resizing metal-coated nanopores using a scanning electron microscope.

    Science.gov (United States)

    Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B

    2011-10-04

    Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Atmospheric scanning electron microscope for correlative microscopy.

    Science.gov (United States)

    Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J

    2012-01-01

    The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Cathodoluminescence of semiconductors in the scanning electron microscope

    International Nuclear Information System (INIS)

    Noriegas, Javier Piqueras de

    2008-01-01

    Full text: Cathodoluminescence (CL) in the scanning electron microscope (SEM) is a nondestructive technique, useful for characterization of optical and electronic properties of semiconductors, with spatial resolution. The contrast in the images of CL is related to the presence of crystalline defects, precipitates or impurities and provides information on their spatial distribution. CL spectra allows to study local energy position of localized electronic states. The application of the CL is extended to semiconductor very different characteristics, such as bulk material, heterostructures, nanocrystalline film, porous semiconductor, nanocrystals, nanowires and other nano-and microstructures. In the case of wafers, provides information on the homogeneity of their electronic characteristics, density of dislocations, grain sub frontiers, distribution of impurities and so on. while on the study of heterostructures CL images can determine, for example, the presence of misfit dislocations at the interface between different sheets, below the outer surface of the sample. In the study of other low dimensional structures, such as nanocrystalline films, nanoparticles and nano-and microstructures are observed elongated in some cases quantum confinement effects from the CL spectra. Moreover, larger structures, the order of hundreds of nanometers, with forms of wires, tubes or strips, is that in many semiconductor materials, mainly oxides, the behavior of luminescence is different from bulk material. The microstructures have a different structure of defects and a greater influence of the surface, which in some cases leads to a higher emission efficiency and a different spectral distribution. The presentation describes the principle of the CL technique and examples of its application in the characterization of a wide range of both semiconductor materials of different composition, and of different sizes ranging from nanostructures to bulk samples

  9. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope

    OpenAIRE

    Nazin, G. V.; Wu, S. W.; Ho, W.

    2005-01-01

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks correspondi...

  10. Scanning electron microscopy of cells from periapical lesions.

    Science.gov (United States)

    Farber, P A

    1975-09-01

    Examination of lymphocytes from peripheral blood with the scanning electron microscope (SEM) has shown differences between B cells and T cells on the basis of their surface architecture. This study was initiated to determine whether the cellular components of periapical lesions could be identified with the use of similar criteria. Cells were dispersed from lesions by aspiration of fragments of tissue through syringe needles of decreasing diameters. The liberated cells were filtered on silver-coated Flotronic membranes and examined under the SEM. Lymphocytes, macrophages, epithelial cells, and mast cells were observed in granulomas and cysts. Most of the lymphocytes had smooth surfaces similar to that of T cells; others had villous projections similar to that of B cells. Epithelial nests were seen in the cyst linings while the cyst fluid was rich in lymphocytes. These findings suggest that SEM examination of periapical lesions can be a useful adjunct in studying cellular composition and possible immunological reactions in these tissues.

  11. Surface-electronic-state effects in electron emission from the Be(0001) surface

    International Nuclear Information System (INIS)

    Archubi, C. D.; Gravielle, M. S.; Silkin, V. M.

    2011-01-01

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  12. Surface-electronic-state effects in electron emission from the Be(0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C. D. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Gravielle, M. S. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Silkin, V. M. [Donostia International Physics Center, E-20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Quimicas, Universidad del Pais Vasco, Apartado 1072, E-20080 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao (Spain)

    2011-07-15

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  13. Scanning electron microscopy of the collodion membrane from a self-healing collodion baby*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Isaacsson, Henrique; Guarenti, Isabelle Maffei; Silva, Ricardo Marques e; de Castro, Luis Antônio Suita

    2015-01-01

    Abstract Self-healing collodion baby is a well-established subtype of this condition. We examined a male newborn, who was covered by a collodion membrane. The shed membrane was examined with scanning electron microscopy. The outer surface showed a very compact keratin without the normal elimination of corneocytes. The lateral view of the specimen revealed a very thick, horny layer. The inner surface showed the structure of lower corneocytes with polygonal contour. With higher magnifications villous projections were seen in the cell membrane. PMID:26375232

  14. Surface modification of ceramic and metallic alloy substrates by laser raster-scanning

    Science.gov (United States)

    Ramos Grez, Jorge Andres

    This work describes the feasibility of continuous wave laser-raster scan-processing under controlled atmospheric conditions as employed in three distinct surface modification processes: (a) surface roughness reduction of indirect-Selective Laser Sintered 420 martensitic stainless steel-40 wt. % bronze infiltrated surfaces; (b) Si-Cr-Hf-C coating consolidation over 3D carbon-carbon composites cylinders; (c) dendritic solidification structures of Mar-M 247 confined powder precursor grown from polycrystalline Alloy 718 substrates. A heat transfer model was developed to illustrate that the aspect ratio of the laser scanned pattern and the density of scanning lines play a significant role in determining peak surface temperature, heating and cooling rates and melt resident times. Comprehensive characterization of the surface of the processed specimens was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), optical metallography, X-ray diffraction (XRD), and, in certain cases, tactile profilometry. In Process (a), it was observed that a 24% to 37% roughness Ra reduction could be accomplished from the as-received value of 2.50+/-0.10 microns for laser energy densities ranging from 350 to 500 J/cm2. In Process (b), complete reactive wetting of carbon-carbon composite cylinders surface was achieved by laser melting a Si-Cr-Hf-C slurry. Coatings showed good thermal stability at 1000°C in argon, and, when tested in air, a percent weight reduction rate of -6.5 wt.%/hr was achieved. A soda-glass overcoat applied over the coated specimens by conventional means revealed a percent weight reduction rate between -1.4 to -2.2 wt.%/hr. Finally, in Process (c), microstructure of the Mar-M 247 single layer deposits, 1 mm in height, grown on Alloy 718 polycrystalline sheets, resulted in a sound metallurgical bond, low porosity, and uniform thickness. Polycrystalline dendrites grew preferentially along the [001] direction from the substrate up to 400

  15. Visualizing Morphological Changes of Abscission Zone Cells in Arabidopsis by Scanning Electron Microscope.

    Science.gov (United States)

    Shi, Chun-Lin; Butenko, Melinka A

    2018-01-01

    Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.

  16. Electron microscopy study of the microstructure of Ni–W substrate surface

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharov, A. V.; Karateev, I. A.; Mikhutkin, A. A. [National Research Centre “Kurchatov Institute,” (Russian Federation); Orekhov, A. S. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Presniakov, M. Yu.; Chernykh, I. A.; Zanaveskin, M. L.; Kovalchuk, M. V.; Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com [National Research Centre “Kurchatov Institute,” (Russian Federation)

    2016-11-15

    The surface microstructure of Ni–W alloy tapes, which are used as substrates to form films of high-temperature superconductors and photovoltaic devices, has been studied. Several samples of a Ni{sub 95}W{sub 5} tape (Evico) annealed under different conditions were analyzed using scanning electron microscopy, energy-dispersive X-ray microanalysis, electron diffraction, and electron energy-loss spectroscopy. NiWO{sub 4} precipitates are found on the surface of annealed samples. The growth of precipitates at a temperature of 950°C is accompanied by the formation of pores on the surface or under an oxide film. Depressions with a wedge-shaped profile are found at the grain boundaries. Annealing in a reducing atmosphere using a specially prepared chamber allows one to form a surface free of nickel tungstate precipitates.

  17. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  18. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    Science.gov (United States)

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  19. Fractal structure formation on the surfaces of solids subjected to high intensity electron and ion treatment

    International Nuclear Information System (INIS)

    Altajskij, M.V.; Ivanov, V.V.; Korenev, S.A.; Orelovich, O.L.; Puzynin, I.V.; Chernik, V.V.

    1997-01-01

    We discuss the results of scanning electron microscopy of surfaces of the solids subjected to high intensity electron and ion beam treatment. The appearance of fractal structures on the modified surfaces is shown. The fractal dimensions of these structures were estimated by box-counting algorithm

  20. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Manaka, Sachie [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Nakane, Daisuke [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Nishiyama, Hidetoshi; Suga, Mitsuo [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan); Nishizaka, Takayuki [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Miyata, Makoto [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Maruyama, Yuusuke [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

  1. Indigenous development of scanning electron microscope

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Pal, Suvadip; Tikaria, Amit; Pious, Lizy; Dubey, B.P.; Chadda, V.K.

    2009-01-01

    Scanning electron microscope (SEM) is a precision instrument and plays very important role in scientific studies. Bhabha Atomic Research Centre has taken up the job of development of SEM indigenously. Standard and commercially available components like computer, high voltage power supply, detectors etc. shall be procured from market. Focusing and scanning coils, vacuum chamber, specimen stage, control hardware and software etc. shall be developed at BARC with the help of Indian industry. Procurement, design and fabrication of various parts of SEM are in progress. (author)

  2. In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles

    International Nuclear Information System (INIS)

    Asoro, M.A.; Ferreira, P.J.; Kovar, D.

    2014-01-01

    Transmission electron microscopy and scanning transmission electron microscopy studies were conducted in situ on 2–5 nm Pt and 10–40 nm Ag nanoparticles to study mechanisms for sintering and to measure relevant sintering kinetics in nanoscale particles. Sintering between two separated particles was observed to initiate by either (1) diffusion of the particles on the sample support or (2) diffusion of atoms or small clusters of atoms to the neck region between the two particles. After particle contact, the rate of sintering was controlled by atomic surface diffusivity. The surface diffusivity was determined as a function of particle size and temperature from experimental measurements of the rate of neck growth of the particles. The surface diffusivities did not show a strong size effect for the range of particle sizes that were studied. The surface diffusivity for Pt nanoparticles exhibited the expected Arrhenius temperature dependence and did not appear to be sensitive to the presence of surface contaminants. In contrast, the surface diffusivity for Ag nanoparticles was affected by the presence of impurities such as carbon. The diffusivities for Ag nanoparticles were consistent with previous measurements of bulk surface diffusivities for Ag in the presence of C, but were significantly slower than those obtained from pristine Ag

  3. Scanning tunneling microscopy of monoatomic gold chains on vicinal Si(335) surface: experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, M.; Kwapinski, T.; Jalochowski, M. [Institute of Physics and Nanotechnology Center, M. Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin (Poland)

    2005-02-01

    We study electronic and topographic properties of the Si(335) surface, containing Au wires parallel to the steps. We use scanning tunneling microscopy (STM) supplemented by reflection of high energy electron diffraction (RHEED) technique. The STM data show the space and voltage dependent oscillations of the distance between STM tip and the surface which can be explained within one band tight binding Hubbard model. We calculate the STM current using nonequilibrium Keldysh Green function formalism. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Scanning Electron Microscope (SEM Evaluation of the Interface between a Nanostructured Calcium-Incorporated Dental Implant Surface and the Human Bone

    Directory of Open Access Journals (Sweden)

    Francesco Mangano

    2017-12-01

    Full Text Available Purpose. The aim of this scanning electron microscope (SEM study was to investigate the interface between the bone and a novel nanostructured calcium-incorporated dental implant surface in humans. Methods. A dental implant (Anyridge®, Megagen Implant Co., Gyeongbuk, South Korea with a nanostructured calcium-incorporated surface (Xpeed®, Megagen Implant Co., Gyeongbuk, South Korea, which had been placed a month earlier in a fully healed site of the posterior maxilla (#14 of a 48-year-old female patient, and which had been subjected to immediate functional loading, was removed after a traumatic injury. Despite the violent trauma that caused mobilization of the fixture, its surface appeared to be covered by a firmly attached, intact tissue; therefore, it was subjected to SEM examination. The implant surface of an unused nanostructured calcium-incorporated implant was also observed under SEM, as control. Results. The surface of the unused implant showed a highly-structured texture, carved by irregular, multi-scale hollows reminiscent of a fractal structure. It appeared perfectly clean and devoid of any contamination. The human specimen showed trabecular bone firmly anchored to the implant surface, bridging the screw threads and filling the spaces among them. Conclusions. Within the limits of this human histological report, the sample analyzed showed that the nanostructured calcium-incorporated surface was covered by new bone, one month after placement in the posterior maxilla, under an immediate functional loading protocol.

  5. Examination of Scanning Electron Microscope and Computed Tomography Images of PICA

    Science.gov (United States)

    Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery

    2010-01-01

    Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).

  6. Fine structure of the endolymphatic duct in the rat. A scanning and transmission electron microscopy study

    DEFF Research Database (Denmark)

    Qvortrup, K; Rostgaard, Jørgen; Bretlau, P

    1995-01-01

    To investigate the surface morphology of the endolymphatic duct epithelium, 8 rats were vascularly perfused with glutaraldehyde in a buffered and oxygenated blood substitute. Optimal preservation of the epithelium for scanning electron microscopy was attained by coating of the specimens with OsO4...

  7. Morphology, surface roughness, electron inelastic and quasi-elastic scattering in elastic peak electron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Lesiak, B.; Kosinski, A.; Nowakowski, R.; Koever, L.; Toth, J.; Varga, D.; Cserny, I.; Sulyok, A.; Gergely, G.

    2006-01-01

    Complete text of publication follows. Elastic peak electron spectroscopy (EPES) deals with the interaction of electrons with atoms of a solid surface, studying the distribution of electrons backscattered elastically. The nearest vicinity of the elastic peak, (low kinetic energy region) reflects both, electron inelastic and quasi-elastic processes. The incident electrons produce surface excitations, inducing surface plasmons with the corresponding loss peaks separated by 1 - 20 eV energy from the elastic peak. Quasi-elastic losses result from the recoil of scattering atoms of different atomic number, Z. The respective energy shift and Doppler broadening of the elastic peak depend on Z, the primary electron energy, E, and the measurement geometry. Quantitative surface analytical application of EPES, such as determination of parameters describing electron transport, requires a comparison of experimental data with corresponding data derived from Monte Carlo (MC) simulation. Several problems occur in EPES studies of polymers. The intensity of elastic peak, considered in quantitative surface analysis, is influenced by both, the inelastic and quasi-elastic scattering processes (especially for hydrogen scattering atoms and primary electron energy above 1000 eV). An additional factor affecting the elastic peak intensity is the surface morphology and roughness. The present work compares the effect of these factors on the elastic peak intensity for selected polymers (polyethylene, polyaniline and polythiophenes). X-ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for deriving the surface atomic composition and the bulk density, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) for determining surface morphology and roughness. According to presented results, the influence of surface morphology and roughness is larger than those of surface excitations or recoil of hydrogen atoms. The component due to recoil of hydrogen atoms can be

  8. Advances in imaging and electron physics the scanning transmission electron microscope

    CERN Document Server

    Hawkes, Peter W

    2009-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.  This particular volume presents several timely articles on the scanning transmission electron microscope. Updated with contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Provides an invaluable reference and guide for physicists, engineers and mathematicians.

  9. Correlation between resistance-change effect in transition-metal oxides and secondary-electron contrast of scanning electron microscope images

    International Nuclear Information System (INIS)

    Kinoshita, K.; Kishida, S.; Yoda, T.

    2011-01-01

    Conductive atomic-force microscopy (C-AFM) writing is attracting attention as a technique for clarifying the switching mechanism of resistive random-access memory by providing a wide area filled with filaments, which can be regarded as one filament with large radius. The writing area on a nickel-oxide (NiO) film formed by conductive atomic-force microscopy was observed by scanning electron microscope, and a correlation between the contrast in a secondary-electron image (SEI) and the resistance written by C-AFM was revealed. In addition, the dependence of the SEI contrast on the beam accelerating voltage (V accel ) suggests that the resistance-change effect occurs near the surface of the NiO film. As for the effects of electron irradiation and vacuum annealing on the C-AFM writing area, it was shown that the resistance-change effect is caused by exchange of oxygen with the atmosphere at the surface of the NiO film. This result suggests that the low-resistance and high-resistance areas are, respectively, p-type Ni 1+δ O (δ 1+δ O (δ≥ 0).

  10. Instrumental Developments for In-situ Breakdown Experiments inside a Scanning Electron Microscope

    CERN Document Server

    Muranaka, T; Leifer, K; Ziemann, V

    2011-01-01

    Electrical discharges in accelerating structures are one of the key issues limiting the performance of future high energy accelerators such as the Compact Linear Collider (CLIC). Fundamental understanding of breakdown phenomena is an indispensable part of the CLIC feasibility study. The present work concerns the experimental study of breakdown using Scanning Electron Microscopes (SEMs). A SEM gives us the opportunity to achieve high electrical gradients of 1\\,kV/$\\mu$m which corresponds to 1\\,GV/m by exciting a probe needle with a high voltage power supply and controlling the positioning of the needle with a linear piezo motor. The gap between the needle tip and the surface is controlled with sub-micron precision. A second electron microscope equipped with a Focused Ion Beam (FIB) is used to create surface corrugations and to sharpen the probe needle to a tip radius of about 50\\,nm. Moreover it is used to prepare cross sections of a voltage breakdown area in order to study the geometrical surface damages as w...

  11. Low-energy electron scattering from molecules, biomolecules and surfaces

    CERN Document Server

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  12. Electron-electron coincidence spectroscopies at surfaces

    International Nuclear Information System (INIS)

    Stefani, G.; Iacobucci, S.; Ruocco, A.; Gotter, R.

    2002-01-01

    In the past 20 years, a steadily increasing number of electron-electron coincidence experiments on atoms and molecules have contributed to a deeper understanding of electron-electron correlation effects. In more recent years this technique has been extended to the study of solid surfaces. This class of one photon IN two electrons OUT experiments will be discussed with an emphasis on grazing incidence geometry, that is expected to be particularly suited for studying surfaces. The crucial question of which is the dominant mechanism that leads to ejection of pairs of electron from the surface will be addressed. It will be shown that, depending on the kinematics chosen, the correlated behaviour of the pairs of electrons detected might be singled out from independent particle one

  13. Studies of the small bowel surface by scanning electron microscopy in infants with persistent diarrhea

    Directory of Open Access Journals (Sweden)

    U. Fagundes-Neto

    2000-12-01

    Full Text Available We describe the ultrastructural abnormalities of the small bowel surface in 16 infants with persistent diarrhea. The age range of the patients was 2 to 10 months, mean 4.8 months. All patients had diarrhea lasting 14 or more days. Bacterial overgrowth of the colonic microflora in the jejunal secretion, at concentrations above 10(4 colonies/ml, was present in 11 (68.7% patients. The stool culture was positive for an enteropathogenic agent in 8 (50.0% patients: for EPEC O111 in 2, EPEC O119 in 1, EAEC in 1, and Shigella flexneri in 1; mixed infections due to EPEC O111 and EAEC in 1 patient, EPEC O119 and EAEC in 1 and EPEC O55, EPEC O111, EAEC and Shigella sonnei in 1. Morphological abnormalities in the small bowel mucosa were observed in all 16 patients, varying in intensity from moderate 9 (56.3% to severe 7 (43.7%. The scanning electron microscopic study of small bowel biopsies from these subjects showed several surface abnormalities. At low magnification (100X most of the villi showed mild to moderate stunting, but on several occasions there was subtotal villus atrophy. At higher magnification (7,500X photomicrographs showed derangement of the enterocytes; on several occasions the cell borders were not clearly defined and very often microvilli were decreased in number and height; in some areas there was a total disappearance of the microvilli. In half of the patients a mucus-fibrinoid pseudomembrane was seen partially coating the enterocytes, a finding that provides additional information on the pathophysiology of persistent diarrhea.

  14. Scanning tunneling microscopic images and scanning tunneling spectra for coupled rectangular quantum corrals

    International Nuclear Information System (INIS)

    Mitsuoka, Shigenori; Tamura, Akira

    2011-01-01

    Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.

  15. Analysis of Surface Characteristics of ProTaper Universal and ProTaper Next Instruments by Scanning Electron Microscopy.

    Science.gov (United States)

    Bennett, Jeffery; Chung, Kwok-Hung; Fong, Hanson; Johnson, James; Paranjpe, Avina

    2017-07-01

    Many new rotary files systems have been introduced, however, limited research has been conducted related to the surface irregularities of these files and if these have any effects on the files themselves. Hence, the aim of the present study was to analyze surface irregularities of the ProTaper® Universal rotary files (PTU) and the ProTaper Next™ rotary files (PTN) before and after instrumentation in curved canals. The main objective was to investigate the nature of these irregularities and how they might influence the use and fracture of rotary files during root-canal treatments. The files were examined pre-operatively using a stereomicroscope and scanning electron microscopy(SEM) to analyze surface imperfections and the presence of particles. Mesial roots of forty extracted mandibular molars were selected. Each instrument was used to prepare one of the mesial canals. The files were then rinsed with alcohol, and autoclaved and analyzed again. Of the 80 files used in this study, five files fractured, five files unwound and seven files were curved or bent and they all belonged to the PTU group. Irregularities and debris could be visualized with the SEM on both unused PTU and PTN files. Most of the debris was found associated with deeper milling grooves and defects on the surface of the metal. Surface analysis of the files that were used and sterilized were performed and the SEM images demonstrated organic debris, metal flash, and crack formation and initiation of fractures for both file types. All files showed machining grooves, metal flash, debris, and defects on cutting edges. These irregularities appear to be critical in the accumulation of debris and initiation of fatigue and crack propagation within the NiTi alloy. The accumulation of debris could be a concern due to the potential exchange of organic debris between patients. Key words: ProTaper® Universal, ProTaper Next™, surface characteristics, SEM.

  16. Reduction of secondary electron yield for E-cloud mitigation by laser ablation surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh, R., E-mail: reza.valizadeh@stfc.ac.uk [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Malyshev, O.B. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Wang, S. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sian, T. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); The Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Cropper, M.D. [Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sykes, N. [Micronanics Ltd., Didcot, Oxon OX11 0QX (United Kingdom)

    2017-05-15

    Highlights: • SEY below 1 can be achieved with Laser ablation surface engineering. • SEY <1 surface can be produced with different types of nanosecond lasers. • Both microstructure (groves) and nano-structures are playing a role in reducing SEY. - Abstract: Developing a surface with low Secondary Electron Yield (SEY) is one of the main ways of mitigating electron cloud and beam-induced electron multipacting in high-energy charged particle accelerators. In our previous publications, a low SEY < 0.9 for as-received metal surfaces modified by a nanosecond pulsed laser was reported. In this paper, the SEY of laser-treated blackened copper has been investigated as a function of different laser irradiation parameters. We explore and study the influence of micro- and nano-structures induced by laser surface treatment in air of copper samples as a function of various laser irradiation parameters such as peak power, laser wavelength (λ = 355 nm and 1064 nm), number of pulses per point (scan speed and repetition rate) and fluence, on the SEY. The surface chemical composition was determined by x-ray photoelectron spectroscopy (XPS) which revealed that heating resulted in diffusion of oxygen into the bulk and induced the transformation of CuO to sub-stoichiometric oxide. The surface topography was examined with high resolution scanning electron microscopy (HRSEM) which showed that the laser-treated surfaces are dominated by microstructure grooves and nanostructure features.

  17. Scanning electron microscope investigations of nuclear pore filters in polyester foils

    International Nuclear Information System (INIS)

    Hopfe, J.

    1980-01-01

    In order to understand and characterize the action of nuclear pore filters it is necessary to know their surface, as well as their bulk, structure. In the present work, investigations of the surface structure (pore size, pore density, pore distribution) and of the pore geometry, especially in the bulk of the filters, are carried out by scanning electron microscopic (SEM) studies. The preparation technique needed is liquid-nitrogen freeze-fracturing followed by a conductive-coating step. Nuclear pore filters studied in this paper were produced by a track etching technique. Laboratory specimens were obtained by bombarding 10 μm thick polyester foils with Xe-ions and a subsequent etching with 20% NaOH. The SEM results are shown and discussed. (author)

  18. Observation of Magnetic Induction Distribution by Scanning Interference Electron Microscopy

    Science.gov (United States)

    Takahashi, Yoshio; Yajima, Yusuke; Ichikawa, Masakazu; Kuroda, Katsuhiro

    1994-09-01

    A scanning interference electron microscope (SIEM) capable of observing magnetic induction distribution with high sensitivity and spatial resolution has been developed. The SIEM uses a pair of fine coherent scanning probes and detects their relative phase change by magnetic induction, giving raster images of microscopic magnetic distributions. Its performance has been demonstrated by observing magnetic induction distributed near the edge of a recorded magnetic storage medium. Obtained images are compared with corresponding images taken in the scanning Lorentz electron microscope mode using the same microscope, and the differences between them are discussed.

  19. Surface modification of the metal plates using continuous electron beam process (CEBP)

    International Nuclear Information System (INIS)

    Kim, Jisoo; Kim, Jin-Seok; Kang, Eun-Goo; Park, Hyung Wook

    2014-01-01

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined

  20. Surface modification of the metal plates using continuous electron beam process (CEBP)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jisoo, E-mail: kimjisu16@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of); Kim, Jin-Seok, E-mail: totoro22@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Kang, Eun-Goo, E-mail: egkang@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Park, Hyung Wook, E-mail: hwpark@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of)

    2014-08-30

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined.

  1. Nitrogen implantation with a scanning electron microscope.

    Science.gov (United States)

    Becker, S; Raatz, N; Jankuhn, St; John, R; Meijer, J

    2018-01-08

    Established techniques for ion implantation rely on technically advanced and costly machines like particle accelerators that only few research groups possess. We report here about a new and surprisingly simple ion implantation method that is based upon a widespread laboratory instrument: The scanning electron microscope. We show that it can be utilized to ionize atoms and molecules from the restgas by collisions with electrons of the beam and subsequently accelerate and implant them into an insulating sample by the effect of a potential building up at the sample surface. Our method is demonstrated by the implantation of nitrogen ions into diamond and their subsequent conversion to nitrogen vacancy centres which can be easily measured by fluorescence confocal microscopy. To provide evidence that the observed centres are truly generated in the way we describe, we supplied a 98% isotopically enriched 15 N gas to the chamber, whose natural abundance is very low. By employing the method of optically detected magnetic resonance, we were thus able to verify that the investigated centres are actually created from the 15 N isotopes. We also show that this method is compatible with lithography techniques using e-beam resist, as demonstrated by the implantation of lines using PMMA.

  2. Observations of localised dielectric excitations, secondary events and ionisation damage by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Howie, A.

    1988-01-01

    In the scanning transmission electron microscope (STEM) a high intensity /approximately/0.5nm diameter, probe of 100 keV electrons is formed. This can be positioned to collect energy loss spectra from surfaces, interfaces, small spheres or other particles at controlled values of impact parameter or can be scanned across the object (usually a thin film) to produce high resolution images formed from a variety of signals - small angle or large angle (Z contrast) elastic scattering, inelastic scattering (both valence and core losses), secondary electron emission and x-ray or optical photon emission. The high spatial resolution achievable in a variety of simple structures raises many unsolved theoretical problems concerning the generation, propagation and decay of excitations in inhomogeneous media. These range from quite well posed problems in the mathematical physics of dielectric excitation to problems of plasmon propagation and rather more exotic and less well understood problems of radiation damage. 15 refs., 4 figs

  3. Scanning electron microscopy of semiconductor materials

    International Nuclear Information System (INIS)

    Bresse, J.F.; Dupuy, M.

    1978-01-01

    The use of scanning electron microscopy in semiconductors opens up a large field of use. The operating modes lending themselves to the study of semiconductors are the induced current, cathodoluminescence and the use of the potential contrast which can also be applied very effectively to the study of the devices (planar in particular). However, a thorough knowledge of the mechanisms of the penetration of electrons, generation and recombination of generated carriers in a semiconductor is necessary in order to attain a better understanding of the operating modes peculiar to semiconductors [fr

  4. Electron spin resonance scanning tunneling microscope

    International Nuclear Information System (INIS)

    Guo Yang; Li Jianmei; Lu Xinghua

    2015-01-01

    It is highly expected that the future informatics will be based on the spins of individual electrons. The development of elementary information unit will eventually leads to novel single-molecule or single-atom devices based on electron spins; the quantum computer in the future can be constructed with single electron spins as the basic quantum bits. However, it is still a great challenge in detection and manipulation of a single electron spin, as well as its coherence and entanglement. As an ideal experimental tool for such tasks, the development of electron spin resonance scanning tunneling microscope (ESR-STM) has attracted great attention for decades. This paper briefly introduces the basic concept of ESR-STM. The development history of this instrument and recent progresses are reviewed. The underlying mechanism is explored and summarized. The challenges and possible solutions are discussed. Finally, the prospect of future direction and applications are presented. (authors)

  5. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Thomas König

    2011-01-01

    Full Text Available Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001 and line defects in aluminum oxide on NiAl(110, respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM and the electronic structure by scanning tunneling spectroscopy (STS. On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  6. A Two-stage Improvement Method for Robot Based 3D Surface Scanning

    Science.gov (United States)

    He, F. B.; Liang, Y. D.; Wang, R. F.; Lin, Y. S.

    2018-03-01

    As known that the surface of unknown object was difficult to measure or recognize precisely, hence the 3D laser scanning technology was introduced and used properly in surface reconstruction. Usually, the surface scanning speed was slower and the scanning quality would be better, while the speed was faster and the quality would be worse. In this case, the paper presented a new two-stage scanning method in order to pursuit the quality of surface scanning in a faster speed. The first stage was rough scanning to get general point cloud data of object’s surface, and then the second stage was specific scanning to repair missing regions which were determined by chord length discrete method. Meanwhile, a system containing a robotic manipulator and a handy scanner was also developed to implement the two-stage scanning method, and relevant paths were planned according to minimum enclosing ball and regional coverage theories.

  7. Mechanisms of biliary stent clogging: confocal laser scanning and scanning electron microscopy.

    Science.gov (United States)

    van Berkel, A M; van Marle, J; Groen, A K; Bruno, M J

    2005-08-01

    Endoscopic insertion of plastic biliary endoprostheses is a well-established treatment for obstructive jaundice. The major limitation of this technique is late stent occlusion. In order to compare events involved in biliary stent clogging and identify the distribution of bacteria in unblocked stents, confocal laser scanning (CLS) and scanning electron microscopy (SEM) were carried out on two different stent materials - polyethylene (PE) and hydrophilic polymer-coated polyurethane (HCPC). Ten consecutive patients with postoperative benign biliary strictures were included in the study. Two 10-Fr stents 9 cm in length, one made of PE and the other of HCPC, were inserted. The stents were electively exchanged after 3 months and examined using CLS and SEM. No differences were seen between the two types of stent. The inner stent surface was covered with a uniform amorphous layer. On top of this layer, a biofilm of living and dead bacteria was found, which in most cases was unstructured. The lumen was filled with free-floating colonies of bacteria and crystals, surrounded by mobile laminar structures of mucus. An open network of large dietary fibers was seen in all of the stents. The same clogging events occurred in both PE and HCPC stents. The most remarkable observation was the identification of networks of large dietary fibers, resulting from duodenal reflux, acting as a filter. The build-up of this intraluminal framework of dietary fibers appears to be a major factor contributing to the multifactorial process of stent clogging.

  8. Digital acquisition and processing of electron micrographs using a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Engel, A.; Christen, F.; Michel, B.

    1981-01-01

    A digital acquisition system that collects multichannel information from a scanning transmission electron microscope (STEM) and its application are described. The hardware comprises (i) single electron counting detectors, (ii) a digital scan generator, (iii) a digital multi-channel on-line processor, (iv) an interface to a minicomputer, and (v) a display system. Experimental results characterizing these components are presented, and their performance is discussed. The software includes assembler coded programs for dynamic file maintenance and fast acquisition of image data, a display driver, and FORTRAN coded application programs. The usefulness of digitized STEM is illustrated by a variety of biological applications. (orig.)

  9. In-situ environmental (scanning) transmission electron microscopy of catalysts at the atomic level

    International Nuclear Information System (INIS)

    Gai, P L; Boyes, E D

    2014-01-01

    Observing reacting single atoms on the solid catalyst surfaces under controlled reaction conditions is a key goal in understanding and controlling heterogeneous catalytic reactions. In-situ real time aberration corrected environmental (scanning) transmission electron microscopy (E(S)TEM permit the direct imaging of dynamic surface and sub-surface structures of reacting catalysts. In this paper in-situ AC ETEM and AC ESTEM studies under controlled reaction environments of oxide catalysts and supported metal nanocatalysts important in chemical industry are presented. They provide the direct evidence of dynamic processes at the oxide catalyst surface at the atomic scale and single atom dynamics in catalytic reactions. The ESTEM studies of single atom dynamics in controlled reaction environments show that nanoparticles act as reservoirs of ad-atoms. The results have important implications in catalysis and nanoparticle studies

  10. Direct observation for atomically flat and ordered vertical {111} side-surfaces on three-dimensionally figured Si(110) substrate using scanning tunneling microscopy

    Science.gov (United States)

    Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu

    2017-11-01

    A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.

  11. Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues.

    Science.gov (United States)

    Nakajima, Masato; Mizutani, Yusuke; Iwata, Futoshi; Ushiki, Tatsuo

    2018-01-01

    Scanning ion conductance microscopy (SICM), which belongs to the family of scanning probe microscopy, regulates the tip-sample distance by monitoring the ion current through the use of an electrolyte-filled nanopipette as the probing tip. Thus, SICM enables "contact-free" imaging of cell surface topography in liquid conditions. In this paper, we applied hopping mode SICM for obtaining topographical images of convoluted tissue samples such as trachea and kidney in phosphate buffered saline. Some of the SICM images were compared with the images obtained by scanning electron microscopy (SEM) after drying the same samples. We showed that the imaging quality of hopping mode SICM was excellent enough for investigating the three-dimensional surface structure of the soft tissue samples. Thus, SICM is expected to be used for imaging a wide variety of cells and tissues - either fixed or alive- at high resolution under physiologically relevant liquid conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Electronic and structural characterizations of unreconstructed {0001} surfaces and the growth of graphene overlayers

    International Nuclear Information System (INIS)

    Emtsev, Konstantin

    2009-01-01

    The present work is focused on the characterization of the clean unreconstructed SiC{0001} surfaces and the growth of graphene overlayers thereon. Electronic properties of SiC surfaces and their interfaces with graphene and few layer graphene films were investigated by means of angle resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Structural characterizations of the epitaxial graphene films grown on SiC were carried out by atomic force microscopy and low energy electron microscopy. Supplementary data was obtained by scanning tunneling microscopy. (orig.)

  13. Scanning-electron-microscope study of normal-impingement erosion of ductile metals

    Science.gov (United States)

    Brainard, W. A.; Salik, J.

    1980-01-01

    Scanning electron microscopy was used to characterize the erosion of annealed copper and aluminum surfaces produced by both single- and multiple-particle impacts. Macroscopic 3.2 mm diameter steel balls and microscopic, brittle erodant particles were projected by a gas gun system so as to impact at normal incidence at speeds up to 140 m/sec. During the impacts by the brittle erodant particles, at lower speeds the erosion behavior was similar to that observed for the larger steel balls. At higher velocities, particle fragmentation and the subsequent cutting by the radial wash of debris created a marked change in the erosion mechanism.

  14. Low temperature scanning electron microscopic studies on the interaction of globodera rostochiensis woll. and trichoderma harzianum rifai

    International Nuclear Information System (INIS)

    Saifullah, A.; Khan, N.U.

    2014-01-01

    Low temperature scanning electron microscopic (LTSEM) studies revealed that Trichoderma harzianum infected mature potato cysts nematode eggs by penetrating directly the cyst wall or via natural opening of mouth. Mycelial penetration on cyst wall or egg surface has been seen. The penetration of cyst wall or egg surface was either chemical or mechanical (directly or with appresorium) or both. Freeze fractionation showed the presence of mycelia inside the eggs. (author)

  15. Optimization of permanganic etching of polyethylenes for scanning electron microscopy

    International Nuclear Information System (INIS)

    Naylor, K.L.; Phillips, P.J.

    1983-01-01

    The permanganic etching technique has been studied as a function of time, temperature, and concentration for a series of polyethylenes. Kinetic studies show that a film of reaction products builds up on the surface, impeding further etching, an effect which is greatest for the lowest-crystallinity polymers. SEM studies combined with EDS show that the film contains sulfur, potassium and some manganese. An artifact is produced by the etching process which is impossible to remove by washing procedures if certain limits of time, temperature, and concentration are exceeded. For lower-crystallinity polyethylenes multiple etching and washing steps were required for optimal resolution. Plastic deformation during specimen preparation, whether from scratches or freeze fracturing, enhances artifact formation. When appropriate procedures are used, virtually artifact-free surfaces can be produced allowing a combination of permanganic etching and scanning electron microscopy to give a rapid method for detailed morphological characterization of bulk specimens

  16. The effect of proteinases (keratinases) in the pathogenesis of Dermatophyte infection using scanning electron microscope

    International Nuclear Information System (INIS)

    Samdani, A.J.; Al-Bitar, Y.

    2003-01-01

    Objective: To study the inter-relationship between the stratum corneum of host and the fungal micro-organisms using scanning electron microscopy for a complete understanding of the host parasite relationship. Material and Methods: Skin surface biopsies were obtained two patients suffering from tinea cruris infection. One patient was infected with trichophyton rubrum and the other with epidermophytom floccosum strains. Results: The scanning electron microphotographs obtained from two patients showed a large number of villi in the infected area. The fungal hyphae were seen to placed intercellularly as well seem to be traversing through the corneocytes in many places. Conclusion: From the results observed in this study it could be suggested that the secretion of proteinases from the fungal hyphae together with the mechanical force of the invading organisms in vivo might be playing part in the invasion of the organisms. (author)

  17. Field Emission Scanning Electron Microscope (FESEM) Facility in BTI

    International Nuclear Information System (INIS)

    Cik Rohaida Che Hak; Foo, C.T.; Nor Azillah Fatimah Othman

    2015-01-01

    Field Emission Scanning Electron Microscope (FE-SEM) provides ultra-high resolution imaging at low accelerating voltages and small working distances. The GeminisSEM 500, a new FESEM imaging facility will be installed soon in MTEC, BTI. It provides resolution of the images is as low as 0.6 nm at 15 kV and 1.2 nm at 1 kV, allowing examination of the top surface of nano powders, nano film and nano fiber in the wide range of applications such as mineralogy, ceramics, polymer, metallurgy, electronic devices, chemistry, physics and life sciences. This system is equipped with several detectors to detect various signals such as secondary electrons (SE) detector for topographic information and back-scattered electrons (BSE) detector for materials composition contrast. Energy dispersive x-ray spectroscopy (EDS) with detector energy resolution of < 129 eV and detection limit in the range of 1000-3000 ppm coupled with FE-SEM is used to determine the chemical composition of micro-features including boron (B) to uranium (U). Wavelength dispersive x-ray spectroscopy (WDS) which has detector resolution of 2-20 eV and detection limit of 30-300 ppm coupled with FE-SEM is used to detect elements that cannot be resolved with EDS. The ultra-high resolution imaging combined with the high sensitivity WDS helps to resolve the thorium and rare earth elemental analysis. (author)

  18. Surface chemical reactions probed with scanning force microscopy

    NARCIS (Netherlands)

    Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this letter we report the study of surface chemical reactions with scanning force microscopy (SFM) with chemical specificity. Using chemically modified SFM probes, we can determine the local surface reaction conversion during a chemical surface modification. The adhesion forces between a

  19. Excitation of propagating surface plasmons with a scanning tunnelling microscope.

    Science.gov (United States)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10  µm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  20. Excitation of propagating surface plasmons with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-01-01

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 μm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  1. Excitation of propagating surface plasmons with a scanning tunnelling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G, E-mail: Elizabeth.Boer-Duchemin@u-psud.fr [Institut des Sciences Moleculaire d' Orsay (ISMO), CNRS Universite Paris-Sud, 91405 Orsay (France)

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 {mu}m. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  2. New directions in scanning-tunneling microscopy

    International Nuclear Information System (INIS)

    Ferrell, T.L.; Warmack, R.J.; Reddick, R.C.

    1989-01-01

    The tunneling of electrons in scanning-tunneling microscopy (STM) has permitted imaging of the electronic distribution about individual atoms on surfaces. The need for use of conducting surfaces in STM limits its applicability, and new forms of scanning microscopy have emerged as a result of interest in poorly conducting samples. Atomic force microscopy has demonstrated that the force between a surface and a probe tip can be used to image selected materials. Now being developed are magnetic probe STM's and photon tunneling microscopes in which the probe is a sharpened optical fiber. Also of great interest presently is the measurement of differential conductance of surfaces using electron STM's. This method supplies spectral information and contrast enhancement in images. At present there remains much theoretical work to be carried out in order to better characterize related data on inelastic electron tunneling, and valuable insight may be gained from data being gathered on the local work function of materials. As matters stand today, the key problems lie in determining tip and contamination effects, preparation of samples, and understanding conductivity mechanisms in very thin materials on conducting substrates. Resolution of these problems and introduction of new forms of scanning microscopy may permit novel and important applications in biology as well as surface science

  3. Dopant profiling based on scanning electron and helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Augustus K.W., E-mail: kwac2@cam.ac.uk [Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Boden, Stuart A. [University of Southampton, Electronics and Computer Science, Highfield, Southampton SO17 1BJ (United Kingdom)

    2016-02-15

    In this paper, we evaluate and compare doping contrast generated inside the scanning electron microscope (SEM) and scanning helium ion microscope (SHIM). Specialised energy-filtering techniques are often required to produce strong doping contrast to map donor distributions using the secondary electron (SE) signal in the SEM. However, strong doping contrast can be obtained from n-type regions in the SHIM, even without energy-filtering. This SHIM technique is more sensitive than the SEM to donor density changes above its sensitivity threshold, i.e. of the order of 10{sup 16} or 10{sup 17} donors cm{sup −3} respectively on specimens with or without a p–n junction; its sensitivity limit is well above 2×10{sup 17} acceptors cm{sup −3} on specimens with or without a p–n junction. Good correlation is found between the widths and slopes of experimentally measured doping contrast profiles of thin p-layers and the calculated widths and slopes of the potential energy distributions across these layers, at a depth of 1 to 3 nm and 5 to 10 nm below the surface in the SHIM and the SEM respectively. This is consistent with the mean escape depth of SEs in silicon being about 1.8 nm and 7 nm in the SHIM and SEM respectively, and we conclude that short escape depth, low energy SE signals are most suitable for donor profiling. - Highlights: • Strong doping contrast from n-type regions in the SHIM without energy-filtering. • Sensitivity limits are established of the SHIM and SEM techniques. • We discuss the impact of SHIM imaging conditions on quantitative dopant profiling. • Doping contrast stems from different surface layer thicknesses in the SHIM and SEM.

  4. Chemical formation of palladium-free surface-nickelized polyimide film for flexible electronics

    International Nuclear Information System (INIS)

    Hsiao, Y.-S.; Whang, W.-T.; Wu, S.-C.; Chuang, Kuen-Ru

    2008-01-01

    Flexible polyimide (PI) films for flexible electronics were surface-nickelized using a fully solution-based process and excellent adhesion between the nickel and polyimide phases was observed. Polyimide substrates were modified by alkaline hydrolysis, ion exchange, reduction and nickel electroless deposition without palladium. Atomic force microscopy and field emission scanning electron microscopy were used to follow the growth of nickel nanoparticles (Ni-NPs) and nickel layers on the polyimide surface. The surface resistances of the Ni-NPs/PI films and Ni/PI films, measured using a four-point probe, were 1.6 x 10 7 and 0.83 Ω/cm 2 , respectively. The thicknesses of Ni-NPs and the Ni layer on the polyimide surface were 82 nm and 382 nm, respectively, as determined by transmission electron microscopy, and the Ni layer adhered well to PI, as determined by the adhesive tape testing method

  5. An electronic probe micro-analyser. A linear scan device; Microanalyseur a sonde electronique. Dispositif de balayage lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Kirianenko, A; Maurice, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The Castaing electronic probe micro-analyser makes possible static analysis at successive points. For two years this apparatus has been equipped by its constructor with an automatic device for surface scanning. In order to increase the micro-analyser's efficiency a 'linear' scan device has been incorporated making it possible to obtain semi-quantitative analyses very rapidly. (authors) [French] Le microanalyseur a sonde electronique de Castaing permet l'analyse statique en des points successifs. Depuis deux ans, cet appareil a ete equipe par son constructeur d'un dispositif de balayage automatique 'surface'. Afin d'augmenter l'efficacite du microanalyaeur, on a adapte un dispositif de balayage 'lineaire' qui permet d'obtenir tres rapidement des analyses semi-quantitative. (auteurs)

  6. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    Science.gov (United States)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  7. Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series.

    Science.gov (United States)

    Mangano, Carlo; Piattelli, Adriano; Raspanti, Mario; Mangano, Francesco; Cassoni, Alessandra; Iezzi, Giovanna; Shibli, Jamil Awad

    2011-01-01

    Recent studies have shown that direct laser metal sintering (DLMS) produces structures with complex geometry and consequently that allow better osteoconductive properties. The aim of this patient report was to evaluate the early bone response to DLMS implant surface retrieved from human jaws. Four experimental DLMS implants were inserted in the posterior mandible of four patients during conventional dental implant surgery. After 8 weeks, the micro-implants and the surrounding tissue were removed and prepared for scanning electron microscopy (SEM) and histomorphometric analysis to evaluate the bone-implant interface. The SEM and EDX evaluations showed a newly formed tissue composed of calcium and phosphorus. The bone-to-implant contact presented a mean of 60.5 ± 11.6%. Within the limits of this patient report, data suggest that the DLMS surfaces presented a close contact with the human bone after a healing period of 8 weeks.

  8. Very low energy scanning electron microscopy in nanotechnology

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Hovorka, Miloš; Mika, Filip; Mikmeková, Eliška; Mikmeková, Šárka; Pokorná, Zuzana; Frank, Luděk

    2012-01-01

    Roč. 9, 8/9 (2012), s. 695-716 ISSN 1475-7435 R&D Projects: GA MŠk OE08012; GA MŠk ED0017/01/01; GA AV ČR IAA100650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : scanning electron microscopy * very low energy electrons * cathode lens * grain contrast * strain contrast * imaging of participates * dopant contrast * very low energy STEM * graphene Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.087, year: 2012

  9. Experimental Route to Scanning Probe Hot Electron Nanoscopy (HENs) Applied to 2D Material

    KAUST Repository

    Giugni, Andrea

    2017-06-09

    This paper presents details on a new experimental apparatus implementing the hot electron nanoscopy (HENs) technique introduced for advanced spectroscopies on structure and chemistry in few molecules and interface problems. A detailed description of the architecture used for the laser excitation of surface plasmons at an atomic force microscope (AFM) tip is provided. The photogenerated current from the tip to the sample is detected during the AFM scan. The technique is applied to innovative semiconductors for applications in electronics: 2D MoS2 single crystal and a p-type SnO layer. Results are supported by complementary scanning Kelvin probe microscopy, traditional conductive AFM, and Raman measurements. New features highlighted by HEN technique reveal details of local complexity in MoS2 and polycrystalline structure of SnO at nanometric scale otherwise undetected. The technique set in this paper is promising for future studies in nanojunctions and innovative multilayered materials, with new insight on interfaces.

  10. Dynamic investigation of electron trapping and charge decay in electron-irradiated Al sub 2 O sub 3 in a scanning electron microscope: Methodology and mechanisms

    CERN Document Server

    Fakhfakh, S; Belhaj, M; Fakhfakh, Z; Kallel, A; Rau, E I

    2002-01-01

    The charging and discharging of polycrystalline Al sub 2 O sub 3 submitted to electron-irradiation in a scanning electron microscope (SEM) are investigated by means of the displacement current method. To circumvent experimental shortcomings inherent to the use of the basic sample holder, a redesign of the latter is proposed and tests are carried out to verify its operation. The effects of the primary beam accelerating voltage on charging, flashover and discharging phenomena during and after electron-irradiation are studied. The experimental results are then analyzed. In particular, the divergence between the experimental data and those predicted by the total electron emission yield approach (TEEYA) is discussed. A partial discharge was observed immediately after the end of the electron-irradiation exposure. The experimental data suggests, that the discharge is due to the evacuation to the ground, along the insulator surface, of released electrons from shallow traps at (or in the close vicinity of) the insulat...

  11. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Merson, E.; Kudrya, A.V.; Trachenko, V.A.; Merson, D.; Danilov, V.; Vinogradov, A.

    2016-01-01

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  12. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merson, E. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Kudrya, A.V.; Trachenko, V.A. [Department of Physical Metallurgy and the Physics of Strength, NUST MISiS, Moscow 119490 (Russian Federation); Merson, D. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Laboratory for Advanced Materials, Kazan Federal University, Naberezhnye Chelny 423812, Republic of Tatarstan (Russian Federation); Danilov, V. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Vinogradov, A. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Department of Engineering Design and Materials, Norwegian University of Science and Technology – NTNU, N-7491 Trondheim (Norway)

    2016-05-17

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  13. Labeling surface epitopes to identify Cryptosporidium life stages using a scanning electron microscopy-based immunogold approach.

    Science.gov (United States)

    Edwards, Hanna; Thompson, R C Andrew; Koh, Wan H; Clode, Peta L

    2012-02-01

    The Apicomplexan parasite Cryptosporidium parvum is responsible for the widespread disease cryptosporidiosis, in both humans and livestock. The nature of C. parvum infection is far from understood and many questions remain in regard to host-parasite interactions, limiting successful treatment of the disease. To definitively identify a range of C. parvum stages in cell culture and to begin to investigate host cell interactions in some of the lesser known life stages, we have utilized a combined scanning electron microscopy and immunolabeling approach, correlating high resolution microstructural information with definitive immunogold labeling of Cryptosporidium stages. Several life cycle stages, including oocysts, merozoites I, trophozoites, gamonts and microgametocytes, were successfully immunolabeled in an in vitro model system. Developing oocysts were clearly immunolabeled, but this did not persist once excystation had occurred. Immunolabeling visualized on the host cell surface adjacent to invasive merozoites is likely to be indicative of receptor shedding, with merozoites also initiating host responses that manifested as abnormal microvilli on the host cell surface. Small sub-micron stages such as microgametocytes, which were impossible to identify as single entities without immunolabeling, were readily visualized and observed to attach to host cells via novel membranous projections. Epicellular parasites also expressed Cryptosporidium-derived epitopes within their encapsulating membrane. These data have allowed us to confidently identify a variety of C. parvum stages in cell culture at high resolution. With this, we provide new insight into C. parvum - host cell interactions and highlight future opportunities for investigating and targeting receptor-mediated interactions between Cryptosporidium life cycle stages and host cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Cathodoluminescence in the scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kociak, M., E-mail: mathieu.kociak@u-psud.fr [Laboratoire de Physique des Solides, Université Paris-SudParis-Sud, CNRS-UMR 8502, Orsay 91405 (France); Zagonel, L.F. [“Gleb Wataghin” Institute of Physics University of Campinas - UNICAMP, 13083-859 Campinas, São Paulo (Brazil)

    2017-05-15

    Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. - Highlights: • Reviews the field of STEM-CL. • Introduces the technical requirements and challenges for STEM-CL. • Introduces the different types of excitations probed by STEM-CL. • Gives comprehensive overview of the last fifteenth years in the field.

  15. Spin-polarized scanning tunneling microscopy and spectroscopy study of chromium on a Cr(001) surface.

    Science.gov (United States)

    Lagoute, J; Kawahara, S L; Chacon, C; Repain, V; Girard, Y; Rousset, S

    2011-02-02

    Several tens of chromium layers were deposited at 250 °C on a Cr(001) surface and investigated by spin-polarized scanning tunneling microscopy (SP-STM), Auger electron spectroscopy (AES) and scanning tunneling spectroscopy (STS). Chromium is found to grow with a mound-like morphology resulting from the stacking of several monolayers which do not uniformly cover the whole surface of the substrate. The terminal plane consists of an irregular array of Cr islands with lateral sizes smaller than 20 × 20 nm(2). Combined AES and STS measurements reveal the presence of a significant amount of segregants prior to and after deposition. A detailed investigation of the surface shows that it consists of two types of patches. Thanks to STS measurements, the two types of area have been identified as being either chromium pure or segregant rich. SP-STM experiments have evidenced that the antiferromagnetic layer coupling remains in the chromium mounds after deposition and is not significantly affected by the presence of the segregants.

  16. Hyaline articular cartilage dissected by papain: light and scanning electron microscopy and micromechanical studies.

    OpenAIRE

    O'Connor, P; Brereton, J D; Gardner, D L

    1984-01-01

    Papain was used to digest the hyaline femoral condylar cartilages of 30 adult Wistar rats. Matrix proteoglycan degradation was assessed by the light microscopy of paraffin sections stained with toluidine blue. The extent of surface structural change was estimated by scanning electron microscopy, and the structural integrity of the hyaline cartilage tested by the controlled impact of a sharp pin. The results demonstrated an early loss of cartilage metachromasia, increasing with time of papain ...

  17. Surface morphology and electronic structure of halogen etched InAs (1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Eassa, N., E-mail: nashwa.eassa@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Murape, D.M. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Betz, R. [Department of Chemistry, Nelson Mandela Metropolitan University (South Africa); Neethling, J.H.; Venter, A.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    The reaction of halogen-based etchants with n-InAs (1 1 1)A and the resulting surface morphology and surface electronic structure are investigated using field emission scanning electron microscopy and Raman spectroscopy. Using the intensity ratio of the unscreened longitudinal optical (LO) phonon to the transverse optical (TO) phonon in the Raman spectrum, a significant reduction in band bending is deduced after exposure of the InAs surface to HCl:H{sub 2}O, Br-methanol and I-ethanol for moderate times and concentrations. These procedures also lead to smooth and defect-free InAs surfaces. The improvements in surface properties are reversed, however, if the concentrations of the etchants are increased or the etch time is too long. In the worst cases, pit formation and inverted pyramids with {l_brace}1 1 1{r_brace} side facets are observed. The influence of the etchant concentration and etch time on the morphological and electronic properties of the etched surfaces is reported.

  18. Surface morphology and electronic structure of halogen etched InAs (1 1 1)

    International Nuclear Information System (INIS)

    Eassa, N.; Murape, D.M.; Betz, R.; Neethling, J.H.; Venter, A.; Botha, J.R.

    2012-01-01

    The reaction of halogen-based etchants with n-InAs (1 1 1)A and the resulting surface morphology and surface electronic structure are investigated using field emission scanning electron microscopy and Raman spectroscopy. Using the intensity ratio of the unscreened longitudinal optical (LO) phonon to the transverse optical (TO) phonon in the Raman spectrum, a significant reduction in band bending is deduced after exposure of the InAs surface to HCl:H 2 O, Br–methanol and I–ethanol for moderate times and concentrations. These procedures also lead to smooth and defect-free InAs surfaces. The improvements in surface properties are reversed, however, if the concentrations of the etchants are increased or the etch time is too long. In the worst cases, pit formation and inverted pyramids with {1 1 1} side facets are observed. The influence of the etchant concentration and etch time on the morphological and electronic properties of the etched surfaces is reported.

  19. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  20. Atomic-scale luminescence measurement and theoretical analysis unveiling electron energy dissipation at a p-type GaAs(110) surface

    International Nuclear Information System (INIS)

    Imada, Hiroshi; Miwa, Kuniyuki; Jung, Jaehoon; Shimizu, Tomoko K; Kim, Yousoo; Yamamoto, Naoki

    2015-01-01

    Luminescence of p-type GaAs was induced by electron injection from the tip of a scanning tunnelling microscope into a GaAs(110) surface. Atomically-resolved photon maps revealed a significant reduction in luminescence intensity at surface electronic states localized near Ga atoms. Theoretical analysis based on first principles calculations and a rate equation approach was performed to describe the perspective of electron energy dissipation at the surface. Our study reveals that non-radiative recombination through the surface states (SS) is a dominant process for the electron energy dissipation at the surface, which is suggestive of the fast scattering of injected electrons into the SS. (paper)

  1. Spin inelastic electron tunneling spectroscopy on local spin adsorbed on surface.

    Science.gov (United States)

    Fransson, J

    2009-06-01

    The recent experimental conductance measurements taken on magnetic impurities on metallic surfaces, using scanning tunneling microscopy technique and suggesting occurrence of inelastic scattering processes, are theoretically addressed. We argue that the observed conductance signatures are caused by transitions between the spin states that have opened due to, for example, exchange coupling between the local spins and the tunneling electrons, and are directly interpretable in terms of inelastic transitions energies. Feasible measurements using spin-polarized scanning tunneling microscopy that would enable new information about the excitation spectrum of the local spins are discussed.

  2. New Insights on Subsurface Imaging of Carbon Nanotubes in Polymer Composites via Scanning Electron Microscopy

    Science.gov (United States)

    Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.; hide

    2015-01-01

    Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.

  3. Optical depth sectioning in the aberration-corrected scanning transmission and scanning confocal electron microscope

    International Nuclear Information System (INIS)

    Behan, G; Nellist, P D

    2008-01-01

    The use of spherical aberration correctors in the scanning transmission electron microscope (STEM) has the effect of reducing the depth of field of the microscope, making three-dimensional imaging of a specimen possible by optical sectioning. Depth resolution can be improved further by placing aberration correctors and lenses pre and post specimen to achieve an imaging mode known as scanning confocal electron microscopy (SCEM). We present the calculated incoherent point spread functions (PSF) and optical transfer functions (OTF) of a STEM and SCEM. The OTF for a STEM is shown to have a missing cone region which results in severe blurring along the optic axis, which can be especially severe for extended objects. We also present strategies for reconstruction of experimental data, such as three-dimensional deconvolution of the point spread function.

  4. Scanning Electron Microscopy with Samples in an Electric Field

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Hovorka, Miloš; Mikmeková, Šárka; Mikmeková, Eliška; Müllerová, Ilona; Pokorná, Zuzana

    2012-01-01

    Roč. 5, č. 12 (2012), s. 2731-2756 ISSN 1996-1944 R&D Projects: GA ČR GAP108/11/2270; GA TA ČR TE01020118; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning electron microscopy * slow electrons * low energy SEM * low energy STEM * cathode lens Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.247, year: 2012

  5. Dynamic Low-Vacuum Scanning Electron Microscope Freeze Drying Observation for Fresh Water Algae

    International Nuclear Information System (INIS)

    Mohsen, H.T.; Ghaly, W.A.; Zahran, N.F.; Helal, A.I.

    2010-01-01

    A new perpetration method for serving in dynamic examinations of the fresh water algae is developed in connection with the Low-Vacuum Scanning Electron Microscope (LV-SEM) freeze drying technique. Specimens are collected from fresh water of Ismailia channel then transferred directly to freeze by liquid nitrogen and dried in the chamber of the scanning electron microscope in the low vacuum mode. Scanning electron micrographs revealed that the drying method presented the microstructure of algae. Dehydration in a graded ethanol series is not necessary in the new method. Dried algae specimen is observed in SEM high vacuum mode after conductive coating at higher resolution. Low-vacuum SEM freeze drying technique is a simple, time-saving and reproducible method for scanning electron microscopy that is applicable to various aquatic microorganisms covered with soft tissues.

  6. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    International Nuclear Information System (INIS)

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-01-01

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1–50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  7. A Comparative Scanning Electron Microscopy Evaluation of Smear ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... scanning electron microscopy evaluation of smear layer removal with chitosan and .... this compound has considerably increased its concentration in rivers and .... of the images was done by three investigators who calibrated ...

  8. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    Directory of Open Access Journals (Sweden)

    Julien Burlaud-Gaillard

    Full Text Available The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy. CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  9. Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets.

    Science.gov (United States)

    Vitali, Lucia; Fabris, Stefano; Conte, Adriano Mosca; Brink, Susan; Ruben, Mario; Baroni, Stefano; Kern, Klaus

    2008-10-01

    The electronic structure of isolated bis(phthalocyaninato) terbium(III) molecules, a novel single-molecular-magnet (SMM), supported on the Cu(111) surface has been characterized by density functional theory and scanning tunneling spectroscopy. These studies reveal that the interaction with the metal surface preserves both the molecular structure and the large spin magnetic moment of the metal center. The 4f electron states are not perturbed by the adsorption while a strong molecular/metal interaction can induce the suppression of the minor spin contribution delocalized over the molecular ligands. The calculations show that the inherent spin magnetic moment of the molecule is only weakly affected by the interaction with the surface and suggest that the SMM character might be preserved.

  10. Chemistry of SOFC Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Bilge; Heski, Clemens

    2013-08-31

    1) Electron tunneling characteristics on La0.7Sr0.3MnO3 (LSM) thin-film surfaces were studied up to 580oC in 10-3mbar oxygen pressure, using scanning tunneling microscopy/ spectroscopy (STM/STS). A threshold-like drop in the tunneling current was observed at positive bias in STS, which is interpreted as a unique indicator for the activation polarization in cation oxygen bonding on LSM cathodes. Sr-enrichment was found on the surface at high temperature using Auger electron spectroscopy, and was accompanied by a decrease in tunneling conductance in STS. This suggests that Sr-terminated surfaces are less active for electron transfer in oxygen reduction compared to Mn-terminated surfaces on LSM. 2) Effects of strain on the surface cation chemistry and the electronic structure are important to understand and control for attaining fast oxygen reduction kinetics on transition metal oxides. Here, we demonstrate and mechanistically interpret the strain coupling to Sr segregation, oxygen vacancy formation, and electronic structure on the surface of La0.7Sr0.3MnO3 (LSM) thin films as a model system. Our experimental results from x-ray photoelectron spectroscopy and scanning tunneling spectroscopy are discussed in light of our first principles-based calculations. A stronger Sr enrichment tendency and a more facile oxygen vacancy formation prevail for the tensile strained LSM surface. The electronic structure of the tensile strained LSM surface exhibits a larger band gap at room temperature, however, a higher tunneling conductance near the Fermi level than the compressively strained LSM at elevated temperatures in oxygen. Our findings suggest lattice strain as a key parameter to tune the reactivity of perovskite transition metal oxides with oxygen in solid oxide fuel cell cathodes. 3) Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical

  11. Ionic liquids influence on the surface properties of electron beam irradiated wood

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Product Design and Environment Department, 29 Eroilor Str., 500036, Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design and Environment Department, 29 Eroilor Str., 500036, Brasov (Romania); Doroftei, Florica; Parparita, Elena; Vasile, Cornelia [“Petru Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department, 41A Gr. Ghica Voda Alley, Iasi (Romania)

    2014-09-30

    Highlights: • Wood veneers impregnated with three imidazolium-based ionic liquids and irradiated with electron beam were studied by FTIR-ATR, SEM/EDX, AFM, contact angle and image analysis. • ILs preserve the surface properties of the wood (surface energy, roughness, color) upon irradiation, in comparison with the reference wood, but the surface composition is changed by treatment with IL-s, mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. • Under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface. - Abstract: In this paper, the influence of three imidazolium-based ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-hexyl-3-methylimidazolium chloride) on the structure and surface properties of sycamore maple (Acer pseudoplatanus) veneers submitted to electron beam irradiation with a dose of 50 kGy has been studied by using Fourier transform infrared spectroscopy, as well as image, scanning electron microscopy/SEM/EDX, atomic force microscopy and contact angle analysis. The experimental results have proven that the studied ionic liquids determine a better preservation of the structural features of wood (cellulose crystallinity index and lignin concentration on the surface) as well as some of surface properties such as surface energy, roughness, color upon irradiation with electron beam, in comparison with the reference wood, but surface composition is changed by treatment with imidazolium-based ionic liquids mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. Also, under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface.

  12. Study of Hydrated Lime in Environmental Scanning Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Tihlaříková, Eva; Neděla, Vilém; Rovnaníková, P.

    2013-01-01

    Roč. 19, S2 (2013), s. 1644-1645 ISSN 1431-9276 R&D Projects: GA ČR GAP102/10/1410; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Hydrated Lime * Environmental Scanning Electron Microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.757, year: 2013

  13. Characterization of Polycaprolactone Films Biodeterioration by Scanning Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Hrubanová, Kamila; Voberková, S.; Hermanová, S.; Krzyžánek, Vladislav

    2014-01-01

    Roč. 20, S3 (2014), s. 1950-1951 ISSN 1431-9276 R&D Projects: GA MŠk EE.2.3.20.0103; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : polycaprolactone films * biodeterioration * scanning electron microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.877, year: 2014

  14. Scanning electron microscopy analysis of the growth of dental plaque on the surfaces of removable orthodontic aligners after the use of different cleaning methods

    Directory of Open Access Journals (Sweden)

    Levrini L

    2015-12-01

    Full Text Available Luca Levrini, Francesca Novara, Silvia Margherini, Camilla Tenconi, Mario Raspanti Department of Surgical and Morphological Sciences, Dental Hygiene School, Research Centre Cranio Facial Disease and Medicine, University of Insubria, Varese, Italy Background: Advances in orthodontics are leading to the use of minimally invasive technologies, such as transparent removable aligners, and are able to meet high demands in terms of performance and esthetics. However, the most correct method of cleaning these appliances, in order to minimize the effects of microbial colonization, remains to be determined. Purpose: The aim of the present study was to identify the most effective method of cleaning removable orthodontic aligners, analyzing the growth of dental plaque as observed under scanning electron microscopy. Methods: Twelve subjects were selected for the study. All were free from caries and periodontal disease and were candidates for orthodontic therapy with invisible orthodontic aligners. The trial had a duration of 6 weeks, divided into three 2-week stages, during which three sets of aligners were used. In each stage, the subjects were asked to use a different method of cleaning their aligners: 1 running water (control condition; 2 effervescent tablets containing sodium carbonate and sulfate crystals followed by brushing with a toothbrush; and 3 brushing alone (with a toothbrush and toothpaste. At the end of each 2-week stage, the surfaces of the aligners were analyzed under scanning electron microscopy. Results: The best results were obtained with brushing combined with the use of sodium carbonate and sulfate crystals; brushing alone gave slightly inferior results. Conclusion: On the basis of previous literature results relating to devices in resin, studies evaluating the reliability of domestic ultrasonic baths for domestic use should be encouraged. At present, pending the availability of experimental evidence, it can be suggested that dental

  15. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    Science.gov (United States)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  16. Low Energy Scanned Electron-Beam Dose Distribution in Thin Layers

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Hjortenberg, P. E.; Pedersen, Walther Batsberg

    1975-01-01

    Thin radiochromic dye film dosimeters, calibrated by means of calorimetry, make possible the determination of absorbed-dose distributions due to low-energy scanned electron beam penetrations in moderately thin coatings and laminar media. For electrons of a few hundred keV, calibrated dosimeters...... of about 30–60 μm thickness may be used in stacks or interleaved between layers of materials of interest and supply a sufficient number of experimental data points throughout the depth of penetration of electrons to provide a depth-dose curve. Depth doses may be resolved in various polymer layers...... on different backings (wood, aluminum, and iron) for scanned electron beams (Emax = 400 keV) having a broad energy spectrum and diffuse incidence, such as those used in radiation curing of coatings, textiles, plastics, etc. Theoretical calculations of such distributions of energy depositions are relatively...

  17. Permanent magnet finger-size scanning electron microscope columns

    Energy Technology Data Exchange (ETDEWEB)

    Nelliyan, K., E-mail: elenk@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-07-21

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  18. Permanent magnet finger-size scanning electron microscope columns

    International Nuclear Information System (INIS)

    Nelliyan, K.; Khursheed, A.

    2011-01-01

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  19. Commendable surface physics by means of scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Besenbacher, F.; Laegsgaard, E.; Stensgard, I.

    1995-01-01

    The scanning tunneling microscope, developed at the Aarhus University (Denmark) allows taking several STM images per second, as opposite to other similar microscopes, where the typical scanning time is 0,5-1 min. This new system enables collecting of important information concerning dynamic processes on the surfaces. The Aarhus microscope is very stable, hence atomic resolution is achievable even on close-packed metallic surfaces, while it is difficult to achieve by means of the conventional STM. (EG)

  20. In situ observation of the impact of surface oxidation on the crystallization mechanism of GeTe phase-change thin films by scanning transmission electron microscopy

    Science.gov (United States)

    Berthier, R.; Bernier, N.; Cooper, D.; Sabbione, C.; Hippert, F.; Noé, P.

    2017-09-01

    The crystallization mechanisms of prototypical GeTe phase-change material thin films have been investigated by in situ scanning transmission electron microscopy annealing experiments. A novel sample preparation method has been developed to improve sample quality and stability during in situ annealing, enabling quantitative analysis and live recording of phase change events. Results show that for an uncapped 100 nm thick GeTe layer, exposure to air after fabrication leads to composition changes which promote heterogeneous nucleation at the oxidized surface. We also demonstrate that protecting the GeTe layer with a 10 nm SiN capping layer prevents nucleation at the surface and allows volume nucleation at a temperature 50 °C higher than the onset of crystallization in the oxidized sample. Our results have important implications regarding the integration of these materials in confined memory cells.

  1. Stenostomum cf. leucops (Platyhelminthes in Thailand: a surface observation using scanning electron microscopy and phylogenetic analysis based on 18S ribosomal DNA sequences

    Directory of Open Access Journals (Sweden)

    Arin Ngamniyom

    2016-02-01

    Full Text Available The genus Stenostomum contains small turbellaria that are widely distributed in freshwater environments worldwide. However, there are only rare reports or studies of this genus from Thailand. Therefore, the objective of this study was to report S. cf. leucops in Thailand collected from Pathum Thani Province. The worm morphology and surface topography using scanning electron microscopy were determined. Moreover, the phylogenetic tree of S. cf. leucops was analysed with 17 flatworms based on the 18S ribosomal DNA sequences. The phylogenetic relationship shared a common ancestry of Catenulida species, and S. cf. leucops displayed a monophyletic pattern within Stenostomum spp. The results of the morphological and molecular data are discussed. These results may increase the knowledge of freshwater microturbellarians in Thailand.

  2. Topographic and electronic contrast of the graphene moir´e on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy

    NARCIS (Netherlands)

    Sun, Z.; Hämäläinen, K.; Sainio, K.; Lahtinen, J.; Vanmaekelbergh, D.A.M.; Liljeroth, P.

    2011-01-01

    Epitaxial graphene grown on transition-metal surfaces typically exhibits a moir´e pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to probe the electronic and topographic contrast

  3. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires; Aufbau einer Vierspitzen-Rastertunnelmikroskop/Rasterelektronenmikroskop-Kombination und Leitfaehigkeitsmessungen an Silizid Nanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, Evgeniy

    2013-09-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  4. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy

    Science.gov (United States)

    Tan, Yih Horng; Davis, Jason A.; Fujikawa, Kohki; Ganesh, N. Vijaya; Demchenko, Alexei V.

    2012-01-01

    Nitrogen adsorption/desorption isotherms are used to investigate the Brunauer, Emmett, and Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution of physically modified, thermally annealed, and octadecanethiol functionalized np-Au monoliths. We present the full adsorption-desorption isotherms for N2 gas on np-Au, and observe type IV isotherms and type H1 hysteresis loops. The evolution of the np-Au under various thermal annealing treatments was examined using scanning electron microscopy (SEM). The images of both the exterior and interior of the thermally annealed np-Au show that the porosity of all free standing np-Au structures decreases as the heat treatment temperature increases. The modification of the np-Au surface with a self-assembled monolayer (SAM) of C18-SH (coverage of 2.94 × 1014 molecules cm−2 based from the decomposition of the C18-SH using thermogravimetric analysis (TGA)), was found to reduce the strength of the interaction of nitrogen gas with the np-Au surface, as reflected by a decrease in the ‘C’ parameter of the BET equation. From cyclic voltammetry studies, we found that the surface area of the np-Au monoliths annealed at elevated temperatures followed the same trend with annealing temperature as found in the BET surface area study and SEM morphology characterization. The study highlights the ability to control free-standing nanoporous gold monoliths with high surface area, and well-defined, tunable pore morphology. PMID:22822294

  5. Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast

    International Nuclear Information System (INIS)

    Cummings, M.L.; Chien, T.Y.; Preissner, C.; Madhavan, V.; Diesing, D.; Bode, M.; Freeland, J.W.; Rose, V.

    2012-01-01

    The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. -- Highlights: ► Synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system designed. ► Unique STM mount design allows angular DOF for tip alignment with x-ray beam. ► System demonstrates ability to resolve atomic corrugations on HOPG. ► Studies show chemical sensitivity with STM tip from photocurrent and tunneling. ► Results show system's ability to study local magnetic (XMCD) properties on Fe films.

  6. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    Science.gov (United States)

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  7. Hydrogen and oxygen behaviors on Porous-Si surfaces observed using a scanning ESD ion microscope

    International Nuclear Information System (INIS)

    Itoh, Yuki; Ueda, Kazuyuki

    2004-01-01

    A scanning electron-stimulated desorption (ESD) ion microscope (SESDIM) measured the 2-D images of hydrogen and oxygen distribution on solid surfaces. A primary electron beam at 600 eV, with a pulse width of 220 ns, resulted in ion yields of H + and O + . This SESDIM is applied to the surface analysis of Porous-Si (Po-Si) partially covered with SiN films. During the heating of a specimen of the Po-Si at 800 deg. C under ultra-high-vacuum (UHV) conditions, the components of the surface materials were moved or diffused by thermal decomposition accompanied by a redistribution of hydrogen and oxygen. After cyclic heating of above 800 deg. C, the dynamic behaviors of H + and O + accompanied by the movements of the SiN layers were observed as images of H + and O + . This was because the H + and O + ions have been identified as composite materials by their kinetic energies

  8. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Wu, S. W.; Ho, W.

    2010-01-01

    The junction of a scanning tunneling microscope (STM) operating in the tunneling regime was irradiated with femtosecond laser pulses. A photoexcited hot electron in the STM tip resonantly tunnels into an excited state of a single molecule on the surface, converting it from the neutral to the anion. The electron-transfer rate depends quadratically on the incident laser power, suggesting a two-photon excitation process. This nonlinear optical process is further confirmed by the polarization measurement. Spatial dependence of the electron-transfer rate exhibits atomic-scale variations. A two-pulse correlation experiment reveals the ultrafast dynamic nature of photoinduced charging process in the STM junction. Results from these experiments are important for understanding photoinduced interfacial charge transfer in many nanoscale inorganic-organic structures.

  9. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  10. Structural, electronic and magnetic properties of Mn{sub 3}N{sub 2}(0 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@ifuap.buap.mx [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570 (Mexico); Mandru, Andrada-Oana; Wang, Kangkang [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Takeuchi, Noboru [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California, Codigo Postal 22800 (Mexico); Cocoletzi, Gregorio H. [Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570 (Mexico); Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States)

    2015-11-15

    Graphical abstract: - Abstract: Spin-polarized first-principles total energy calculations have been performed to study the structural, electronic and magnetic properties of Mn{sub 3}N{sub 2}(0 0 1) surfaces. It is found that three surface terminations are energetically stable, in agreement with previous scanning tunneling microscopy experiments that have found three different electronic contrasts in their images. It is also found that in all three cases, the topmost layer has a MnN stoichiometry. Density of states calculations show a metallic behavior for all the stable structures with the most important contribution close to the Fermi level coming from the Mn-d orbitals. Our Tersoff–Hamann scanning tunneling microscopy simulations are in good agreement with previous experimental results.

  11. Multimodal sensing and imaging technology by integrated scanning electron, force, and nearfield microwave microscopy and its application to submicrometer studies

    OpenAIRE

    Hänßler, Olaf C.

    2018-01-01

    The work covers a multimodal microscope technology for the analysis, manipulation and transfer of materials and objects in the submicrometer range. An atomic force microscope (AFM) allows imaging of the surface topography and a Scanning Microwave Microscope (SMM) detects electromagnetic properties, both operating in a Scanning Electron Microscope (SEM). The described technology demonstrator allows to observe the region-of-interest live with the SEM, while at the same time a characterization w...

  12. Scanning Electron Microscope Mapping System Developed for Detecting Surface Defects in Fatigue Specimens

    Science.gov (United States)

    Bonacuse, Peter J.; Kantzos, Peter T.

    2002-01-01

    An automated two-degree-of-freedom specimen positioning stage has been developed at the NASA Glenn Research Center to map and monitor defects in fatigue specimens. This system expedites the examination of the entire gauge section of fatigue specimens so that defects can be found using scanning electron microscopy (SEM). Translation and rotation stages are driven by microprocessor-based controllers that are, in turn, interfaced to a computer running custom-designed software. This system is currently being used to find and record the location of ceramic inclusions in powder metallurgy materials. The mapped inclusions are periodically examined during interrupted fatigue experiments. The number of cycles to initiate cracks from these inclusions and the rate of growth of initiated cracks can then be quantified. This information is necessary to quantify the effect of this type of defect on the durability of powder metallurgy materials. This system was developed with support of the Ultra Safe program.

  13. Scanning Tunneling Microscope For Use In Vacuum

    Science.gov (United States)

    Abel, Phillip B.

    1993-01-01

    Scanning tunneling microscope with subangstrom resolution developed to study surface structures. Although instrument used in air, designed especially for use in vacuum. Scanning head is assembly of small, mostly rigid components made of low-outgassing materials. Includes coarse-positioning mechanical-translation stage, on which specimen mounted by use of standard mounting stub. Tunneling tip mounted on piezoelectric fine-positioning tube. Application of suitable voltages to electrodes on piezoelectric tube controls scan of tunneling tip across surface of specimen. Electronic subsystem generates scanning voltages and collects data.

  14. Defect and structural imperfection effects on the electronic properties of BiTeI surfaces

    International Nuclear Information System (INIS)

    Fiedler, Sebastian; Seibel, Christoph; Lutz, Peter; Bentmann, Hendrik; Reinert, Friedrich; El-Kareh, Lydia; Bode, Matthias; Eremeev, Sergey V; Tereshchenko, Oleg E; Kokh, Konstantin A; Chulkov, Evgueni V; Kuznetsova, Tatyana V; Grebennikov, Vladimir I

    2014-01-01

    The surface electronic structure of the narrow-gap seminconductor BiTeI exhibits a large Rashba-splitting which strongly depends on the surface termination. Here we report on a detailed investigation of the surface morphology and electronic properties of cleaved BiTeI single crystals by scanning tunneling microscopy, photoelectron spectroscopy (ARPES, XPS), electron diffraction (SPA-LEED) and density functional theory calculations. Our measurements confirm a previously reported coexistence of Te- and I-terminated surface areas originating from bulk stacking faults and find a characteristic length scale of ∼100 nm for these areas. We show that the two terminations exhibit distinct types of atomic defects in the surface and subsurface layers. For electronic states resided on the I terminations we observe an energy shift depending on the time after cleavage. This aging effect is successfully mimicked by depositon of Cs adatoms found to accumulate on top of the I terminations. As shown theoretically on a microscopic scale, this preferential adsorbing behaviour results from considerably different energetics and surface diffusion lengths at the two terminations. Our investigations provide insight into the importance of structural imperfections as well as intrinsic and extrinsic defects on the electronic properties of BiTeI surfaces and their temporal stability. (paper)

  15. Electronic transport at semiconductor surfaces - from point-contact transistor to micro-four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Grey, Francois

    2002-01-01

    show that this type of conduction is measurable using new types of experimental probes, such as the multi-tip scanning tunnelling microscope and the micro-four-point probe. The resulting electronic transport properties are intriguing, and suggest that semiconductor surfaces should be considered...

  16. Scanning Electron Microscopic Studies of Microwave Sintered Al-SiC Nanocomposites and Their Properties

    Directory of Open Access Journals (Sweden)

    M. A. Himyan

    2018-01-01

    Full Text Available Al-metal matrix composites (AMMCs reinforced with diverse volume fraction of SiC nanoparticles were synthesized using microwave sintering process. The effects of the reinforcing SiC particles on physical, microstructure, mechanical, and electrical properties were studied. The phase, microstructural, and surface analyses of the composites were systematically conducted using X-ray diffraction (XRD, scanning electron microscope (SEM, and surface profilometer techniques, respectively. The microstructural examination revealed the homogeneous distribution of SiC particles in the Al matrix. Microhardness and compressive strength of nanocomposites were found to be increasing with the increasing volume fraction of SiC particles. Electrical conductivity of the nanocomposites decreases with increasing the SiC content.

  17. Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation

    Science.gov (United States)

    Segura-Ruiz, J.; Garro, N.; Cantarero, A.; Denker, C.; Malindretos, J.; Rizzi, A.

    2009-03-01

    Vertically self-aligned InN nanocolumns have been investigated by means of scanning electron microscopy, Raman scattering, and photoluminescence spectroscopy. Different nanocolumn morphologies corresponding to different molecular beam epitaxy growth conditions have been studied. Raman spectra revealed strain-free nanocolumns with high crystalline quality for the full set of samples studied. Longitudinal optical modes both uncoupled and coupled to an electron plasma coexist in the Raman spectra pointing to the existence of two distinctive regions in the nanocolumn: a surface layer of degenerated electrons and a nondegenerated inner core. The characteristics of the low-temperature photoluminescence and its dependence on temperature and excitation power can be explained by a model considering localized holes recombining with degenerated electrons close to the nonpolar surface. The differences observed in the optical response of different samples showing similar crystalline quality have been attributed to the variation in the electron accumulation layer with the growth conditions.

  18. Extremely thin layer plastification for focused-ion beam scanning electron microscopy: an improved method to study cell surfaces and organelles of cultured cells.

    Science.gov (United States)

    VAN Donselaar, E G; Dorresteijn, B; Popov-Čeleketić, D; VAN DE Wetering, W J; Verrips, T C; Boekhout, T; Schneijdenberg, C T W M; Xenaki, A T; VAN DER Krift, T P; Müller, W H

    2018-03-25

    Since the recent boost in the usage of electron microscopy in life-science research, there is a great need for new methods. Recently minimal resin embedding methods have been successfully introduced in the sample preparation for focused-ion beam scanning electron microscopy (FIB-SEM). In these methods several possibilities are given to remove as much resin as possible from the surface of cultured cells or multicellular organisms. Here we introduce an alternative way in the minimal resin embedding method to remove excess of resin from two widely different cell types by the use of Mascotte filter paper. Our goal in correlative light and electron microscopic studies of immunogold-labelled breast cancer SKBR3 cells was to visualise gold-labelled HER2 plasma membrane proteins as well as the intracellular structures of flat and round cells. We found a significant difference (p flat cell contained 2.46 ± 1.98 gold particles, and a round cell 5.66 ± 2.92 gold particles. Moreover, there was a clear difference in the subcellular organisation of these two cells. The round SKBR3 cell contained many organelles, such as mitochondria, Golgi and endoplasmic reticulum, when compared with flat SKBR3 cells. Our next goal was to visualise crosswall associated organelles, septal pore caps, of Rhizoctonia solani fungal cells by the combined use of a heavy metal staining and our extremely thin layer plastification (ETLP) method. At low magnifications this resulted into easily finding septa which appeared as bright crosswalls in the back-scattered electron mode in the scanning electron microscope. Then, a septum was selected for FIB-SEM. Cross-sectioned views clearly revealed the perforate septal pore cap of R. solani next to other structures, such as mitochondria, endoplasmic reticulum, lipid bodies, dolipore septum, and the pore channel. As the ETLP method was applied on two widely different cell types, the use of the ETLP method will be beneficial to correlative studies of other cell

  19. Multi-channel electronically scanned cryogenic pressure sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Kruse, Nancy M. H. (Inventor)

    1995-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multielement array. These dies are bonded at specific sites on a glass, prepatterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  20. Study of Scanning Tunneling Microscope control electronics

    International Nuclear Information System (INIS)

    Oliva, A.J.; Pancarobo, M.; Denisenko, N.; Aguilar, M.; Rejon, V.; Pena, J.L.

    1994-01-01

    A theoretical study of Scanning Tunneling Microscope control electronics is made. The knowledge of its behaviour allows us to determine accurately the region where the unstable operation could effect the measurements, and also to set the optimal working parameters. Each feedback circuitry compound is discussed as well as their mutual interaction. Different working conditions analysis and results are presented. (Author) 12 refs

  1. The propagation of high power CW scanning electron beam in air

    International Nuclear Information System (INIS)

    Korenev, Sergey; Korenev, Ivan

    2002-01-01

    The question of propagation of high power electron beam in air presents the scientific and applied interests. The high power (80 kW) CW electron accelerator 'Rhodotron' with kinetic energy of electrons 5 and 10 MeV was used in the experiments. The experimental results for propagation of scanning electron beams in air are presented and discussed

  2. Impulse excitation scanning acoustic microscopy for local quantification of Rayleigh surface wave velocity using B-scan analysis

    Science.gov (United States)

    Cherry, M.; Dierken, J.; Boehnlein, T.; Pilchak, A.; Sathish, S.; Grandhi, R.

    2018-01-01

    A new technique for performing quantitative scanning acoustic microscopy imaging of Rayleigh surface wave (RSW) velocity was developed based on b-scan processing. In this technique, the focused acoustic beam is moved through many defocus distances over the sample and excited with an impulse excitation, and advanced algorithms based on frequency filtering and the Hilbert transform are used to post-process the b-scans to estimate the Rayleigh surface wave velocity. The new method was used to estimate the RSW velocity on an optically flat E6 glass sample, and the velocity was measured at ±2 m/s and the scanning time per point was on the order of 1.0 s, which are both improvement from the previous two-point defocus method. The new method was also applied to the analysis of two titanium samples, and the velocity was estimated with very low standard deviation in certain large grains on the sample. A new behavior was observed with the b-scan analysis technique where the amplitude of the surface wave decayed dramatically on certain crystallographic orientations. The new technique was also compared with previous results, and the new technique has been found to be much more reliable and to have higher contrast than previously possible with impulse excitation.

  3. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  4. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ida [University of Tennessee, Knoxville (UTK); Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  5. Scanning Tunneling Spectroscopy on Electron-Boson Interactions in Superconductors

    OpenAIRE

    Schackert, Michael Peter

    2014-01-01

    This thesis describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  6. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schackert, Michael Peter

    2014-07-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  7. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    CERN Document Server

    Schackert, Michael Peter

    2015-01-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  8. Thermally processed titanium oxides film on Si(0 0 1) surface studied with scanning tunneling microscopy/spectroscopy

    International Nuclear Information System (INIS)

    Aoki, T.; Shudo, K.; Sato, K.; Ohno, S.; Tanaka, M.

    2010-01-01

    Thermal structural changes of TiO x films built on a Si(0 0 1) surface were investigated at the nanometer scale with scanning tunneling microscopy. Electronic properties of individual clusters were classified by means of scanning tunneling spectroscopy. The differential conductance (dI/dV) near the Fermi energy showed that nano-clusters were transformed from semiconducting Ti-silicates into metallic Ti-silicides after heating to 970 K. Peaks of normalized differential conductance (dI/dV/(I/V)) of the clusters shifted after heating to about 1070 K, indicating exclusion of oxygen from the clusters.

  9. Vacuum Analysis of Scanning Horn of Electron Beam Machine

    International Nuclear Information System (INIS)

    Suprapto; Sukidi; Sukaryono; Setyo Atmojo; Djasiman

    2003-01-01

    Vacuum analysis of scanning horn of electron beam machine (EBM) has been carried out. In EBM, electron beam produced by the electron gun is accelerated by the accelerating tube toward the target via scanning horn and window. To avoid the disturbance of electron beam trajectory in side the EBM, it is necessary to evacuate the EBM. In designing and constructing the scanning horn, vacuum analysis must be carried out to find the ultimate vacuum grade based on the analysis as well as on the test resulted by the vacuum pump. The ultimate vacuum grade is important and affecting the electron trajectory from electron gun to the target. The yield of the vacuum analysis show that the load gas to be evacuated were the outgassing, permeation and leakages where each value were 5.96487x10 -6 Torr liter/sec, 6.32083x10 -7 Torr liter/sec, and 1.3116234x10 -4 Torr liter/sec respectively, so that the total gas load was 1.377587x10 -4 Torr liter/sec. The total conductivity according to test result was 15.769 liter/sec, while the effective pumping rate and maximum vacuum obtained by RD 150 pump were 14.269 Torr liter/sec and 9.65x10 -6 Torr respectively, The vacuum steady state indicated by the test result was 3.5x10 -5 Torr. The pressure of 3.5x10 -5 Torr showed by the test is close to the capability of vacuum pump that is 2x10 -5 Torr. The vacuum test indicated a good result and that there was no leakage along the welding joint. In the latter of installation it considered to be has a pressure of 5x10 -6 Torr, because the aluminum gasket will be used to seal the window flanges and will be evacuated by turbomolecular pump with pumping rate of 500 liter/sec and ultimate vacuum of -10 Torr. (author)

  10. Scanning electron microscopy and roughness study of dental composite degradation.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Cortez, Louise Ribeiro; Zarur, Raquel de Oliveira; Martin, Airton Abrahão

    2012-04-01

    Our aim was to test the hypothesis that the use of mouthwashes, consumption of soft drinks, as well as the type of light curing unit (LCU), would change the surface roughness (Ra) and morphology of a nanofilled composite resin (Z350® 3M ESPE). Samples (80) were divided into eight groups: Halogen LCU, group 1, saliva (control); group 2, Pepsi Twist®; group 3, Listerine®; group 4, Colgate Plax®; LED LCU, group 5, saliva; group 6, Pepsi Twist®; group 7, Listerine®; group 8, Colgate Plax®. Ra values were measured at baseline, and after 7 and 14 days. One specimen of each group was prepared for scanning electron microscopy analysis after 14 days. The data were subjected to multifactor analysis of variance at a 95% confidence followed by Tukey's honestly significant difference post-hoc test. All the treatments resulted in morphological changes in composite resin surface, and the most significant change was in Pepsi Twist® groups. The samples of G6 had the greatest increase in Ra. The immersion of nanofilled resin in mouthwashes with alcohol and soft drink increases the surface roughness. Polymerization by halogen LCU (reduced light intensity) associated with alcohol contained mouthwash resulted in significant roughness on the composite.

  11. Closed-Loop Autofocus Scheme for Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Cui Le

    2015-01-01

    Full Text Available In this paper, we present a full scale autofocus approach for scanning electron microscope (SEM. The optimal focus (in-focus position of the microscope is achieved by maximizing the image sharpness using a vision-based closed-loop control scheme. An iterative optimization algorithm has been designed using the sharpness score derived from image gradient information. The proposed method has been implemented and validated using a tungsten gun SEM at various experimental conditions like varying raster scan speed, magnification at real-time. We demonstrate that the proposed autofocus technique is accurate, robust and fast.

  12. Electron spectroscopy of nanodiamond surface states

    Energy Technology Data Exchange (ETDEWEB)

    Belobrov, P.I.; Bursill, L.A.; Maslakov, K.I.; Dementjev, A.P

    2003-06-15

    Electronic states of nanodiamond (ND) were investigated by PEELS, XPS and CKVV Auger spectra. Parallel electron energy loss spectra (PEELS) show that the electrons inside of ND particles are sp{sup 3} hybridized but there is a surface layer containing distinct hybridized states. The CKVV Auger spectra imply that the HOMO of the ND surface has a shift of 2.5 eV from natural diamond levels of {sigma}{sub p} up to the Fermi level. Hydrogen (H) treatment of natural diamond surface produces a chemical state indistinguishable from that of ND surfaces using CKVV. The ND electronic structure forms {sigma}{sub s}{sup 1}{sigma}{sub p}{sup 2}{pi}{sup 1} surface states without overlapping of {pi}-levels. Surface electronic states, including surface plasmons, as well as phonon-related electronic states of the ND surface are also interesting and may also be important for field emission mechanisms from the nanostructured diamond surface.

  13. Sample mounting and transfer for coupling an ultrahigh vacuum variable temperature beetle scanning tunneling microscope with conventional surface probes

    International Nuclear Information System (INIS)

    Nafisi, Kourosh; Ranau, Werner; Hemminger, John C.

    2001-01-01

    We present a new ultrahigh vacuum (UHV) chamber for surface analysis and microscopy at controlled, variable temperatures. The new instrument allows surface analysis with Auger electron spectroscopy, low energy electron diffraction, quadrupole mass spectrometer, argon ion sputtering gun, and a variable temperature scanning tunneling microscope (VT-STM). In this system, we introduce a novel procedure for transferring a sample off a conventional UHV manipulator and onto a scanning tunneling microscope in the conventional ''beetle'' geometry, without disconnecting the heating or thermocouple wires. The microscope, a modified version of the Besocke beetle microscope, is mounted on a 2.75 in. outer diameter UHV flange and is directly attached to the base of the chamber. The sample is attached to a tripod sample holder that is held by the main manipulator. Under UHV conditions the tripod sample holder can be removed from the main manipulator and placed onto the STM. The VT-STM has the capability of acquiring images between the temperature range of 180--500 K. The performance of the chamber is demonstrated here by producing an ordered array of island vacancy defects on a Pt(111) surface and obtaining STM images of these defects

  14. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM

  15. Composition quantification of electron-transparent samples by backscattered electron imaging in scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Müller, E., E-mail: erich.mueller@kit.edu; Gerthsen, D.

    2017-02-15

    The contrast of backscattered electron (BSE) images in scanning electron microscopy (SEM) depends on material parameters which can be exploited for composition quantification if some information on the material system is available. As an example, the In-concentration in thin In{sub x}Ga{sub 1−x}As layers embedded in a GaAs matrix is analyzed in this work. The spatial resolution of the technique is improved by using thin electron-transparent specimens instead of bulk samples. Although the BSEs are detected in a comparably small angular range by an annular semiconductor detector, the image intensity can be evaluated to determine the composition and local thickness of the specimen. The measured intensities are calibrated within one single image to eliminate the influence of the detection and amplification system. Quantification is performed by comparison of experimental and calculated data. Instead of using time-consuming Monte-Carlo simulations, an analytical model is applied for BSE-intensity calculations which considers single electron scattering and electron diffusion. - Highlights: • Sample thickness and composition are quantified by backscattered electron imaging. • A thin sample is used to achieve spatial resolution of few nanometers. • Calculations are carried out with a time-saving electron diffusion model. • Small differences in atomic number and density detected at low electron energies.

  16. Contact detection for nanomanipulation in a scanning electron microscope.

    Science.gov (United States)

    Ru, Changhai; To, Steve

    2012-07-01

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000× magnification while inducing little end-effector damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rhodes, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schemer-Kohrn, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guzman, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-01

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  18. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rhodes, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schemer-Kohrn, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guzman, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-30

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  19. Controlling electron transfer processes on insulating surfaces with the non-contact atomic force microscope.

    Science.gov (United States)

    Trevethan, Thomas; Shluger, Alexander

    2009-07-01

    We present the results of theoretical modelling that predicts how a process of transfer of single electrons between two defects on an insulating surface can be induced using a scanning force microscope tip. A model but realistic system is employed which consists of a neutral oxygen vacancy and a noble metal (Pt or Pd) adatom on the MgO(001) surface. We show that the ionization potential of the vacancy and the electron affinity of the metal adatom can be significantly modified by the electric field produced by an ionic tip apex at close approach to the surface. The relative energies of the two states are also a function of the separation of the two defects. Therefore the transfer of an electron from the vacancy to the metal adatom can be induced either by the field effect of the tip or by manipulating the position of the metal adatom on the surface.

  20. Electron microscopy of surfaces

    International Nuclear Information System (INIS)

    Venables, J.A.

    1981-01-01

    Electron beam techniques used to study clean surfaces and surface processes on a microscopic scale are reviewed. Recent experimental examples and possible future developments are discussed. Special emphasis is given to (i) transmission diffraction and microscopy techniques, including atomic imaging; (ii) Auger microscopy on bulk and thin film samples; (iii) secondary electron microscopy, especially low energy secondaries for work-function imaging and photoelectron imaging; and (iv) reflection electron microscopy and diffraction. (orig.)

  1. Monochromated scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Rechberger, W.; Kothleitner, G.; Hofer, F.

    2006-01-01

    Full text: Electron energy-loss spectroscopy (EELS) has developed into an established technique for chemical and structural analysis of thin specimens in the (scanning) transmission electron microscope (S)TEM. The energy resolution in EELS is largely limited by the stability of the high voltage supply, by the resolution of the spectrometer and by the energy spread of the source. To overcome this limitation a Wien filter monochromator was recently introduced with commercially available STEMs, offering the advantage to better resolve EELS fine structures, which contain valuable bonding information. The method of atomic resolution Z-contrast imaging within an STEM, utilizing a high-angle annular dark-field (HAADF) detector can perfectly complement the excellent energy resolution, since EELS spectra can be collected simultaneously. In combination with a monochromator microscope not only high spatial resolution images can be recorded but also high energy resolution EELS spectra are attainable. In this work we investigated the STEM performance of a 200 kV monochromated Tecnai F20 with a high resolution Gatan Imaging Filter (HR-GIF). (author)

  2. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    Science.gov (United States)

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  3. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    Science.gov (United States)

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-03-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.

  4. The trajectories of secondary electrons in the scanning electron microscope.

    Science.gov (United States)

    Konvalina, Ivo; Müllerová, Ilona

    2006-01-01

    Three-dimensional simulations of the trajectories of secondary electrons (SE) in the scanning electron microscope have been performed for plenty of real configurations of the specimen chamber, including all its basic components. The primary purpose was to evaluate the collection efficiency of the Everhart-Thornley detector of SE and to reveal fundamental rules for tailoring the set-ups in which efficient signal acquisition can be expected. Intuitive realizations about the easiness of attracting the SEs towards the biased front grid of the detector have shown themselves likely as false, and all grounded objects in the chamber have been proven to influence the spatial distribution of the signal-extracting field. The role of the magnetic field penetrating from inside the objective lens is shown to play an ambiguous role regarding possible support for the signal collection.

  5. Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers

    Science.gov (United States)

    Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong

    2018-04-01

    The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.

  6. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy.

    Science.gov (United States)

    Hu, H; Johani, K; Gosbell, I B; Jacombs, A S W; Almatroudi, A; Whiteley, G S; Deva, A K; Jensen, S; Vickery, K

    2015-09-01

    Hospital-associated infections cause considerable morbidity and mortality, and are expensive to treat. Organisms causing these infections can be sourced from the inanimate environment around a patient. Could the difficulty in eradicating these organisms from the environment be because they reside in dry surface biofilms? The intensive care unit (ICU) of a tertiary referral hospital was decommissioned and the opportunity to destructively sample clinical surfaces was taken in order to investigate whether multidrug-resistant organisms (MDROs) had survived the decommissioning process and whether they were present in biofilms. The ICU had two 'terminal cleans' with 500 ppm free chlorine solution; items from bedding, surrounds, and furnishings were then sampled with cutting implements. Sections were sonicated in tryptone soya broth and inoculated on to chromogenic plates to demonstrate MDROs, which were confirmed with the Vitek2 system. Genomic DNA was extracted directly from ICU samples, and subjected to polymerase chain reaction (PCR) for femA to detect Staphylococcus aureus and the microbiome by bacterial tag-encoded FLX amplicon pyrosequencing. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were performed on environmental samples. Multidrug-resistant bacteria were cultured from 52% (23/44) of samples cultured. S. aureus PCR was positive in 50%. Biofilm was demonstrated in 93% (41/44) of samples by CLSM and/or SEM. Pyrosequencing demonstrated that the biofilms were polymicrobial and contained species that had multidrug-resistant strains. Dry surface biofilms containing MDROs are found on ICU surfaces despite terminal cleaning with chlorine solution. How these arise and how they might be removed requires further study. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Diffusion length of minority carriers in scanning electron beam annealed silicon

    International Nuclear Information System (INIS)

    Smith, H.J.; Cilliers, R.; Bontemps, A.

    1982-01-01

    Ion implantation has advantages for solar cell production, but necessitates an annealing step. Various new transitory annealing methods have appeared recently. A particularly attractive method is multi-scan electron beam annealing of thermally isolated wafers. Energy is applied homogeneously over the whole target surface and the temperature rises throughout the thickness. Backscattering analysis shows good recrystallization in seconds. However the effect of this total heating on the diffusion length (Lsub(D)) must be investigated particularly in view of the degradation of Lsub(D) due to high temperature oven annealing. The semiconductor-electrolyte diode method was set up to measure the current generated in the cell due to the creation and diffusion of carriers in the silicon under photon irradiation. Comparison with a theoretical model yields Lsub(D). It appears that 3mA.cm - 2 of 15keV electrons recrystallizes damage in 2.5 seconds and does not decrease Lsub(D) in the bulk. In 4 seconds the Lsub(D) decreases and dopant diffusion occurs. On technical grounds this method can thus be applied for solar cell production. (Auth.)

  8. Electron transfer kinetics of cytochrome c immobilized on a phenolic terminated thiol self assembled monolayer determined by scanning electrochemical microscopy

    International Nuclear Information System (INIS)

    Alizadeh, Vali; Mousavi, Mir Fazlollah; Mehrgardi, Masoud Ayatollahi; Kazemi, Sayed Habib; Sharghi, Hashem

    2011-01-01

    Highlights: → Preparing a thiolated phenolic self-assembled monolayer surface (SAM). → Application of this SAM to immobilize cytochrome C. → Scanning electrochemical microscopy used for these studies. → Determination of both tunneling electron transfer and bimolecular rate constants between the immobilized protein-substrate and probe. - Abstract: In the present manuscript, the electrochemical behavior of cytochrome c (cyt-c) immobilized onto a phenolic terminated self assembled monolayer (SAM) on a gold electrode is investigated using cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM). The tunneling electron transfer (ET) rate constant between the immobilized protein and the underlying electrode surface, and also the bimolecular ET rate constant between the immobilized protein and a probe has been obtained using approach curves that were obtained by SECM. The approach curves were recorded at different substrate overpotentials in the presence of various concentrations of ferrocyanide as a probe and various surface concentrations of cyt-c; then the standard tunneling ET and bimolecular rate constants are obtained as 3.4 ± 0.3 s -1 and (2.0 ± 0.5) x 10 7 cm 3 mol -1 s -1 , respectively.

  9. Electron transfer kinetics of cytochrome c immobilized on a phenolic terminated thiol self assembled monolayer determined by scanning electrochemical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Vali [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Mousavi, Mir Fazlollah, E-mail: mousavim@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Mehrgardi, Masoud Ayatollahi [Department of Chemistry, University of Isfahan, Isfahan (Iran, Islamic Republic of); Kazemi, Sayed Habib [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan (Iran, Islamic Republic of); Sharghi, Hashem [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2011-07-01

    Highlights: > Preparing a thiolated phenolic self-assembled monolayer surface (SAM). > Application of this SAM to immobilize cytochrome C. > Scanning electrochemical microscopy used for these studies. > Determination of both tunneling electron transfer and bimolecular rate constants between the immobilized protein-substrate and probe. - Abstract: In the present manuscript, the electrochemical behavior of cytochrome c (cyt-c) immobilized onto a phenolic terminated self assembled monolayer (SAM) on a gold electrode is investigated using cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM). The tunneling electron transfer (ET) rate constant between the immobilized protein and the underlying electrode surface, and also the bimolecular ET rate constant between the immobilized protein and a probe has been obtained using approach curves that were obtained by SECM. The approach curves were recorded at different substrate overpotentials in the presence of various concentrations of ferrocyanide as a probe and various surface concentrations of cyt-c; then the standard tunneling ET and bimolecular rate constants are obtained as 3.4 {+-} 0.3 s{sup -1} and (2.0 {+-} 0.5) x 10{sup 7} cm{sup 3} mol{sup -1} s{sup -1}, respectively.

  10. A Comparative Scanning Electron Microscopy Evaluation of Smear ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... The aim of the present study was to compare the efficacy of chitosan and MTAD for the smear layer removal from the root canal through a scanning electron microscope (SEM). Thirty teeth were randomly divided into three groups according to the final irrigants: 0.2% chitosan, MTAD, saline (control group).

  11. A Comparative Scanning Electron Microscopy Evaluation of Smear ...

    African Journals Online (AJOL)

    The aim of the present study was to compare the efficacy of chitosan and MTAD for the smear layer removal from the root canal through a scanning electron microscope (SEM). Thirty teeth were randomly divided into three groups according to the final irrigants: 0.2% chitosan, MTAD, saline (control group). After the ...

  12. Examination of living fungal spores by scanning electron microscopy

    International Nuclear Information System (INIS)

    Read, N.D.; Lord, K.M.

    1991-01-01

    Ascospores of Sordaria macrospora germinated and produced hyphae exhibiting normal growth and differentiation after examination by scanning electron microscopy and following numerous, different preparative protocols. Seventy-nine to ninety-nine percent of the ascospores retained normal viability after being observed in the fully frozen-hydrated, partially freeze-dried, and vacuum-dried states at accelerating voltages of 5 and 40 keV. Hyphae did not survive these treatments. From these observations it is concluded that ascospores of S. macrospora can remain in a state of suspended animation while being observed in the scanning electron microscope. The ascospores also survived, but with reduced viability: 6 h in glutaraldehyde and formaldehyde, 6 h in OsO4, or 2 h in glutaraldehyde and formaldehyde followed by 2 h in OsO 4 . However, the ascospores did not germinate after dehydration in ethanol. (author)

  13. Implantation annealing by scanning electron beam

    International Nuclear Information System (INIS)

    Jaussaud, C.; Biasse, B.; Cartier, A.M.; Bontemps, A.

    1983-11-01

    Samples of ion implanted silicon (BF 2 , 30keV, 10 15 ions x cm -2 ) have been annealed with a multiple scan electron beam, at temperatures ranging from 1000 to 1200 0 C. The curves of sheet resistance versus time show a minimum. Nuclear reaction measurements of the amount of boron remaining after annealing show that the increase in sheet resistance is due to a loss of boron. The increase in junction depths, measured by spreading resistance on bevels is between a few hundred A and 1000 A [fr

  14. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Hachtel, J A; Haglund, R F; Pantelides, S T; Marvinney, C; Mayo, D; Mouti, A; Lupini, A R; Chisholm, M F; Mu, R; Pennycook, S J

    2016-01-01

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications. (paper)

  15. Electron-phonon coupling at metal surfaces

    International Nuclear Information System (INIS)

    Hellsing, B.; Eiguren, A.; Chulkov, E.V.

    2002-01-01

    Chemical reactions at metal surfaces are influenced by inherent dissipative processes which involve energy transfer between the conduction electrons and the nuclear motion. We shall discuss how it is possible to model this electron-phonon coupling in order to estimate its importance. A relevant quantity for this investigation is the lifetime of surface-localized electron states. A surface state, quantum well state or surface image state is located in a surface-projected bandgap and becomes relatively sharp in energy. This makes a comparison between calculations and experimental data most attractive, with a possibility of resolving the origin of the lifetime broadening of electron states. To achieve more than an order of magnitude estimate we point out the importance of taking into account the phonon spectrum, electron surface state wavefunctions and screening of the electron-ion potential. (author)

  16. Study of surface segregation of Si on palladium silicide using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Abhaya, S; Amarendra, G; Gopalan, Padma; Reddy, G L N; Saroja, S

    2004-01-01

    The transformation of Pd/Si to Pd 2 Si/Si is studied using Auger electron spectroscopy over a wide temperature range of 370-1020 K. The Pd film gets totally converted to Pd 2 Si upon annealing at 520 K, and beyond 570 K, Si starts segregating on the surface of silicide. It is found that the presence of surface oxygen influences the segregation of Si. The time evolution study of Si segregation reveals that segregation kinetics is very fast and the segregated Si concentration increases as the temperature is increased. Scanning electron microscopy measurements show that Pd 2 Si is formed in the form of islands, which grow as the annealing temperature is increased

  17. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  18. Scanning tunneling microscopy and spectroscopy studies of the heavy-electron superconductor TlNi2Se2

    Science.gov (United States)

    Wilfert, Stefan; Schmitt, Martin; Schmidt, Henrik; Mauerer, Tobias; Sessi, Paolo; Wang, Hangdong; Mao, Qianhui; Fang, Minghu; Bode, Matthias

    2018-01-01

    We report on the structural and superconducting electronic properties of the heavy-electron superconductor TlNi2Se2 . By using a variable-temperature scanning tunneling microscopy (VT-STM) the coexistence of (√{2 }×√{2 }) R 45∘ and (2 ×1 ) surface reconstructions is observed. Similar to earlier observations on the "122" family of Fe-based superconductors, we find that their respective surface fraction strongly depends on the temperature during cleavage, the measurement temperature, and the sample's history. Cleaving at low temperature predominantly results in the (√{2 }×√{2 }) R 45∘ -reconstructed surface. A detailed analysis of the (√{2 }×√{2 }) R 45∘ -reconstructed domains identifies (2 ×1 ) -ordered dimers, tertramers, and higher order even multimers as domain walls. Higher cleaving temperatures and the warming of low-temperature-cleaved samples increases the relative weight of the (2 ×1 ) surface reconstruction. By slowly increasing the sample temperature Ts inside the VT-STM we find that the (√{2 }×√{2 }) R 45∘ surface reconstructions transforms into the (2 ×1 ) structure at Ts=123 K. We identify the polar nature of the TlNi2Se2 (001) surface as the most probable driving mechanism of the two reconstructions, as both lead to a charge density ρ =0.5 e- , thereby avoiding divergent electrostatic potentials and the resulting "polar catastrophe." Low-temperature scanning tunneling spectroscopy (STS) performed with normal metal and superconducting probe tips shows a superconducting gap which is best fit with an isotropic s wave. We could not detect any correlation between the local surface reconstruction, suggesting that the superconductivity is predominantly governed by TlNi2Se2 bulk properties. Correspondingly, temperature- and field-dependent data reveal that both the critical temperature and critical magnetic field are in good agreement with bulk values obtained earlier from transport measurements. In the superconducting state

  19. Optical illusions in scanning electron micrographs: the case of the eggshell of Acrosternum (Chinavia) marginatum (Hemiptera: Pentatomidae).

    Science.gov (United States)

    Wolf, Klaus W; Reid, Walton; Schrauf, Michael

    2003-01-01

    Scanning electron microscopy revealed that-as is common in this family of the Hemiptera-the eggs of the green stink bug Acrosternum (Chinavia) marginatum are roughly barrel-shaped and possess at their apical pole a row of slender extensions, the aero-micropylar processes. The outer surface of the eggshell carries hexagonally arranged pits. The analysis of cross-fractured eggshells showed that the pits have slender basal extensions with transverse diaphragms. When scanning electron micrographs of the egg surface of A. marginatum are viewed upside down, the perception flips and the pits appear as elevations to all observers addressed. Thus, we are dealing with an optical illusion, which is known as the 'shape-from-shading effect'. The perceived dents remain robust to changes in the angle of recording (zero to ca. 60 degrees tilt), the magnification (ca. x100 to x1400), and the number of pits included in the micrograph (one to several hundred). When through appropriate positioning of the specimen under the electron beam, contrast is significantly reduced and the distinct shadows at the slope of the pits are eliminated, the optical illusion does not appear. It is inferred that shades provide the decisive clue that determines whether bumps or dents will be perceived. Owing to the low resolution of their compound eyes, the shape-from-shading effect on the eggshell of the bug is in all likelihood not perceived by insects.

  20. Electronic and structural characterizations of unreconstructed {l_brace}0001{r_brace} surfaces and the growth of graphene overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Emtsev, Konstantin

    2009-06-03

    The present work is focused on the characterization of the clean unreconstructed SiC{l_brace}0001{r_brace} surfaces and the growth of graphene overlayers thereon. Electronic properties of SiC surfaces and their interfaces with graphene and few layer graphene films were investigated by means of angle resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Structural characterizations of the epitaxial graphene films grown on SiC were carried out by atomic force microscopy and low energy electron microscopy. Supplementary data was obtained by scanning tunneling microscopy. (orig.)

  1. Scanning probe methods applied to molecular electronics

    Energy Technology Data Exchange (ETDEWEB)

    Pavlicek, Niko

    2013-08-01

    Scanning probe methods on insulating films offer a rich toolbox to study electronic, structural and spin properties of individual molecules. This work discusses three issues in the field of molecular and organic electronics. An STM head to be operated in high magnetic fields has been designed and built up. The STM head is very compact and rigid relying on a robust coarse approach mechanism. This will facilitate investigations of the spin properties of individual molecules in the future. Combined STM/AFM studies revealed a reversible molecular switch based on two stable configurations of DBTH molecules on ultrathin NaCl films. AFM experiments visualize the molecular structure in both states. Our experiments allowed to unambiguously determine the pathway of the switch. Finally, tunneling into and out of the frontier molecular orbitals of pentacene molecules has been investigated on different insulating films. These experiments show that the local symmetry of initial and final electron wave function are decisive for the ratio between elastic and vibration-assisted tunneling. The results can be generalized to electron transport in organic materials.

  2. Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing

    Energy Technology Data Exchange (ETDEWEB)

    Rajabifar, Bahram; Maschmann, Matthew R., E-mail: MaschmannM@missouri.edu [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Kim, Sanha; Hart, A. John [Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Slinker, Keith [Materials and Manufacturing Directorate, AFRL/RX, Air Force Research Lab, Ohio 45433 (United States); Universal Technology Corporation, Beavercreek, Ohio 45424 (United States); Ehlert, Gregory J. [Materials and Manufacturing Directorate, AFRL/RX, Air Force Research Lab, Ohio 45433 (United States)

    2015-10-05

    We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, and CNT orientation. Milled cuts with depths between 0–100 microns are generated, corresponding to a material removal rate of up to 20.1 μm{sup 3}/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries.

  3. Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing

    Science.gov (United States)

    Rajabifar, Bahram; Kim, Sanha; Slinker, Keith; Ehlert, Gregory J.; Hart, A. John; Maschmann, Matthew R.

    2015-10-01

    We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, and CNT orientation. Milled cuts with depths between 0-100 microns are generated, corresponding to a material removal rate of up to 20.1 μm3/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries.

  4. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    International Nuclear Information System (INIS)

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-01-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. (paper)

  5. Colorimeter and scanning electron microscopy analysis of teeth submitted to internal bleaching.

    Science.gov (United States)

    Martin-Biedma, Benjamin; Gonzalez-Gonzalez, Teresa; Lopes, Manuela; Lopes, Luis; Vilar, Rui; Bahillo, José; Varela-Patiño, Purificación

    2010-02-01

    This in vitro study compared the tooth color and the ultrastructure of internal dental tissues before and after internal bleaching. Sodium perborate was placed in the pulp chamber of endodontically treated molars and sealed with intermediate restorative material. The test samples were stored in a physiologic solution, and the bleaching agent was replaced every 7 days. A control group was used. After 1 month, the colors of the test and control samples were measured with a colorimeter, and the internal surfaces were observed under field emission scanning electron microscopy (FESEM). Statistically significant differences were found between the test and control sample colors. The FESEM ultrastructure analysis of the internal enamel and dentin surfaces did not show any changes after the internal bleaching. The results of the present study show that sodium perborate is effective in bleaching nonvital teeth and does not produce ultrastructural changes in the dental tissues. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Investigations on the electronic surface properties of the stoichiometric superconductor LiFeAs using scanning tunneling microscopy and spectroscopy

    International Nuclear Information System (INIS)

    Schlegel, Ronny

    2014-01-01

    This work presents scanning tunneling microscopy and spectroscopy investigations on the stoichiometric superconductor lithium iron arsenide (LiFeAs). To reveal the electronic properties, measurements on defect-free surfaces as well as near defects have been performed. The former shows a shift of atomic position with respect to the applied bias voltage. Furthermore, temperature dependent spectroscopic measurements indicate the coupling of quasiparticles in the vicinity of the superconducting coherence peaks. LiFeAs surfaces influenced by atomic defects show a spacial variation of the superconducting gap. The defects can be characterized by their symmetry and thus can be assigned to a position in the atomic lattice. Detailed spectroscopic investigations of defects reveal their influence on the quasiparticle density of states. In particular, Fe-defects show a small effect on the superconductivity while As-defects strongly disturb the superconducting gap. Measurements in magnetic field have been performed for the determination of the Ginzburg-Landau coherence length ξ GL . For this purpose, a suitable fit-function has been developed in this work. This function allows to fit the differential conductance of a magnetic vortex at E F . The fit results in a coherence length of ξ GL = 3,9 nm which corresponds to an upper critical field of 21 Tesla. Besides measurements on a single vortex, investigation on the vortex lattice have been performed. The vortex lattice constant follows thereby the predicted behavior of a trigonal vortex lattice. However, for magnetic fields larger than 6 Tesla an increasing lattice disorder sets in, presumably due to vortex-vortex-interactions.

  7. Effect of sildenafil citrate (Viagra) and ethanol on the Albino rat testis: a scanning electron microscopic approach.

    Science.gov (United States)

    Sivasankaran, T G; Udayakumar, R; Elanchezhiyan, C; Sabhanayakam, Selvi

    2008-02-01

    The effects of sildenafil citrate with ethanol on the rat testis was studied using scanning electron microscopy. Male Albino rats were divided into 8 groups, each being treated for a maximum of 45 days as follows. In the 4 short-term treatment groups, control rats were administered normal saline orally, whereas experimental animals were fed sildenafil citrate (Viagra) 1 microg/g with 18% ethanol (5 g/kg body weight), which was given orally as a single dose. After 1, 2.5, 4 and 24h the rats were killed. In the 4 long-term treatment groups, daily continuous doses of drug and ethanol with a single dosage were given for 15, 30 and 45 days and the animals killed 4h after the last dosage. Changes in the testis were compared with the normal healthy rat testis. The use of a scanning electron microscope for evaluation of the changes in the testis is more suitable for observation of the surface and morphological shapes of the tissue structures.

  8. Scanning electron microscopy of primary bone tumors

    International Nuclear Information System (INIS)

    Pool, R.R.; Kerner, B.

    1975-01-01

    Critical-point-drying of tumor tissue fixed in a glutaraldehyde-paraformaldehyde solution and viewed by scanning electron microscopy (SEM) provides a 3-dimensional view of tumor cells and their matrices. This report describes the SEM appearance of three primary bone tumors: a canine osteosarcoma of the distal radius, a feline chondrosarcoma of the proximal tibia and a canine fibrosarcoma of the proximal humerus. The ultrastructural morphology is compared with the histologic appearance of each tumor

  9. Scanning probe recognition microscopy investigation of tissue scaffold properties

    Science.gov (United States)

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  10. Aberration-corrected scanning transmission electron microscopy of semiconductors

    International Nuclear Information System (INIS)

    Krivanek, O L; Dellby, N; Murfitt, M F

    2011-01-01

    The scanning transmission electron microscope (STEM) has been able to image individual heavy atoms in a light matrix for some time. It is now able to do much more: it can resolve individual atoms as light as boron in monolayer materials; image atomic columns as light as hydrogen, identify the chemical type of individual isolated atoms from the intensity of their annular dark field (ADF) image and by electron energy loss spectroscopy (EELS); and map elemental composition at atomic resolution by EELS and energy-dispersive X-ray spectroscopy (EDXS). It can even map electronic states, also by EELS, at atomic resolution. The instrumentation developments that have made this level of performance possible are reviewed, and examples of applications to semiconductors and oxides are shown.

  11. Scanning electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1985-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions, imaging modes, the interpretation of micrographs and the use of quantitative modes "in scanning electron microscopy (SEM). lt forms a counterpart to Transmission Electron Microscopy (Vol. 36 of this Springer Series in Optical Sciences) . The book evolved from lectures delivered at the University of Münster and from a German text entitled Raster-Elektronenmikroskopie (Springer-Verlag), published in collaboration with my colleague Gerhard Pfefferkorn. In the introductory chapter, the principles of the SEM and of electron­ specimen interactions are described, the most important imaging modes and their associated contrast are summarized, and general aspects of eiemental analysis by x-ray and Auger electron emission are discussed. The electron gun and electron optics are discussed in Chap. 2 in order to show how an electron probe of small diameter can be formed, how the elec­ tron beam can be blanked at high fre...

  12. Nonadiabatic effects on surfaces: Kohn anomaly, electronic damping of adsorbate vibrations, and local heating of single molecules

    International Nuclear Information System (INIS)

    Kroeger, J

    2008-01-01

    Three aspects of electron-phonon coupling at metal surfaces are reviewed. One aspect is the Kohn effect, which describes an anomalous dispersion relation of surface phonons due to quasi-one-dimensional nesting of Fermi surface contours. The combination of electron energy loss spectroscopy and angle-resolved photoelectron spectroscopy allows us to unambiguously characterize Kohn anomaly systems. A second aspect is the nonadiabatic damping of adsorbate vibrations. Characteristic spectroscopic line shapes of vibrational modes allow us to estimate the amount of energy transfer between the vibrational mode and electron-hole pairs. Case studies of a Kohn anomaly and nonadiabatic damping are provided by the hydrogen- and deuterium-covered Mo(110) surface. As a third aspect of interaction between electrons and phonons, local heating of a C 60 molecule adsorbed on Cu(100) and in contact with the tip of a scanning tunnelling microscope is covered

  13. Studies of YBa{sub 2}Cu{sub 3}O{sub 6+x} degradation and surface conductivity properties by Scanning Spreading Resistance Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Truchly, Martin, E-mail: martin.truchly@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Plecenik, Tomas; Krsko, Ondrej; Gregor, Maros; Satrapinskyy, Leonid; Roch, Tomas; Grancic, Branislav; Mikula, Marian [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Dujavova, Agata; Chromik, Stefan [Institute of Electrical Engineering, Slovak Academy of Sciences, 84104 Bratislava (Slovakia); Kus, Peter; Plecenik, Andrej [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia)

    2012-12-14

    Local surface conductivity properties and surface degradation of c-axis oriented YBa{sub 2}Cu{sub 3}O{sub 6+x} (YBCO) thin films were studied by Scanning Spreading Resistance Microscopy (SSRM). For the surface degradation studies, the YBCO surface was cleaned by ion beam etching and the SSRM surface conductivity map has been subsequently repeatedly measured over several hours in air and pure nitrogen. Average surface conductivity of the scanned area was gradually decreasing over time in both cases, faster in air. This was explained by oxygen out-diffusion in both cases and chemical reactions with water vapor in air. The obtained surface conductivity images also revealed its high inhomogenity on micrometer and nanometer scale with numerous regions of highly enhanced conductivity compared to the surroundings. Furthermore, it has been shown that the size of these conductive regions considerably depends on the applied voltage. We propose that such inhomogeneous surface conductivity is most likely caused by varying thickness of degraded YBCO surface layer as well as varying oxygen concentration (x parameter) within this layer, what was confirmed by scanning Auger electron microscopy (SAM). In our opinion the presented findings might be important for analysis of current-voltage and differential characteristics measured on classical planar junctions on YBCO as well as other perovskites.

  14. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lorut, F.; Imbert, G. [ST Microelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Roggero, A. [Centre National d' Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse (France)

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  15. Scanning-probe-microscopy of polyethylene terephthalate surface treatment by argon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Beltran, Francisco [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Sanchez, Isaac C. [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); España-Sánchez, Beatriz L.; Mota-Morales, Josué D.; Carrillo, Salvador; Enríquez-Flores, C.I. [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Poncin-Epaillard, Fabienne, E-mail: epaill@univ-lemans.fr [Institute for Molecules and Materials, UMR CNRS 6283, Av. O. Messiaen, Universitè du Maine, Le Mans 72085 (France); Luna-Barcenas, Gabriel, E-mail: gluna@qro.cinvestav.mx [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico)

    2015-11-01

    Highlights: • Kelvin-probe-force microscopy helps study of PET surface treated by Ar ion beam. • Ar ion beam surface treatment promotes chain scission and N insertion. • Surface roughness and work function increases as intensity of ion energy increases. • Adhesive force of PET decrease due to the surface changes by ion bombardment. - Abstract: The effect of argon (Ar{sup +}) ion beam treatment on the surface of polyethylene terephthalate (PET) samples was studied by scanning probe microscopy (SPM) and the changes in surface topography were assessed by atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) sheds light of adhesion force between treated polymer films and a Pt/Cr probe under dry conditions, obtaining the contact potential difference of material. As a result of Ar{sup +} ion bombardment, important surface chemical changes were detected by X-ray photoelectron spectroscopy (XPS) measurements such as chains scission and incorporation of nitrogen species. Ion beam treatment increases the surface roughness from 0.49 ± 0.1 nm to 7.2 ± 0.1 nm and modify the surface potential of PET samples, decreasing the adhesive forces from 12.041 ± 2.1 nN to 5.782 ± 0.06 nN, and producing a slight increase in the electronic work function (Φ{sub e}) from 5.1 V (untreated) to 5.2 V (treated). Ar{sup +} ion beam treatment allows to potentially changing the surface properties of PET, modifying surface adhesion, improving surface chemical changes, wetting properties and surface potential of polymers.

  16. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    Science.gov (United States)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  17. Surface chemistry and electronic structure of nonpolar and polar GaN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, T.C. Shibin; Aggarwal, Neha; Gupta, Govind, E-mail: govind@nplindia.org

    2015-08-01

    Highlights: • Surface chemistry and electronic structure of polar and nonpolar GaN is reported. • Influence of polarization on electron affinity of p & np GaN films is investigated. • Correlation between surface morphology and polarity has been deduced. - Abstract: Photoemission and microscopic analysis of nonpolar (a-GaN/r-Sapphire) and polar (c-GaN/c-Sapphire) epitaxial gallium nitride (GaN) films grown via RF-Molecular Beam Epitaxy is reported. The effect of polarization on surface properties like surface states, electronic structure, chemical bonding and morphology has been investigated and correlated. It was observed that polarization lead to shifts in core level (CL) as well as valence band (VB) spectra. Angle dependent X-ray Photoelectron Spectroscopic analysis revealed higher surface oxide in polar GaN film compared to nonpolar GaN film. On varying the take off angle (TOA) from 0° to 60°, the Ga−O/Ga−N ratio varied from 0.11–0.23 for nonpolar and 0.17–0.36 for polar GaN film. The nonpolar film exhibited N-face polarity while Ga-face polarity was perceived in polar GaN film due to the inherent polarization effect. Polarization charge compensated surface states were observed on the polar GaN film and resulted in downward band bending. Ultraviolet photoelectron spectroscopic measurements revealed electron affinity and ionization energy of 3.4 ± 0.1 eV and 6.8 ± 0.1 eV for nonpolar GaN film and 3.8 ± 0.1 eV and 7.2 ± 0.1 eV for polar GaN film respectively. Field Emission Scanning Electron Microscopy measurements divulged smooth morphology with pits on polar GaN film. The nonpolar film on the other hand showed pyramidal structures having facets all over the surface.

  18. Surface and bulk 3D analysis of natural and processed ruby using electron probe micro analyzer and X-ray micro CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Rakesh K., E-mail: rakesh.materialscience@gmail.com; Singh, Saroj K.; Mishra, B.K.

    2016-08-15

    Highlights: • Firm linking between two advance techniques: Micro-CT and EPMA for mineral analysis. • Attempt to identify and differentiate the treated gem stone from natural counterpart. • 3D structural and surface elemental analysis of the natural gem stone. - Abstract: The change in surface compositional and bulk structural characteristics of the natural ruby stone, before and after heat treatment with lead oxide has been analyzed using two advance characterization techniques like: X-ray micro CT scan (μ-CT) and electron probe micro analyzer (EPMA). The analytical correlation between these two techniques in identification as well as in depth study of the ores and minerals before and after processing has been presented. Also, we describe the aesthetic enhancement of a low quality defective ruby stone by lead oxide filling and the sequential analysis of this ruby stone before and after treatment using these two advanced techniques to identify and to confirm the change in its aesthetic value. The cracks healing and pores filling by the metal oxide on the surface of the ruby have been analyzed using μ-CT and EPMA. Moreover, in this work we describe the advance characterization of the repaired gem stones especially ruby stones. This work will light up the path for in-depth understanding of diffusion mechanism and abstract information of impurity particles inside the minerals. Based on these observations, EPMA and micro CT are shown to be powerful tools for the identification as well as research in gem stones.

  19. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  20. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases.

    Science.gov (United States)

    Stoll, Joshua D; Kolmakov, Andrei

    2012-12-21

    Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.

  1. Surface topography effects on energy-resolved polar angular distributions of electrons induced in heavy ion-Al collisions: experiments and models

    International Nuclear Information System (INIS)

    Mischler, J.; Banouni, M.; Banazeth, C.; Negre, M.; Benazeth, N.

    1986-01-01

    The influence of the surface topography on the polar angular distributions of secondary electrons emitted in Ar + (and Xe - )-Al collisions was studied. After each set of experiments, the surface target was viewed by scanning electron microscope. Under normal incidence, continuum background and Al L 23 VV Auger electron polar angular distributions were not modified by the topography and closely followed a cosine law. For Al L 23 MM Auger electrons, experimental angular distributions as a function of the emission polar angle theta, either were near a constant law or followed a decreasing law depending on the irradiation conditions. The N(theta) curves calculated from the models showed that the isotropic angular distributions obtained for electrons generated outside the crystal from a flat surface could be strongly modified by the surface topography. (author)

  2. Emission sources in scanning electron microscopy

    International Nuclear Information System (INIS)

    Malkusch, W.

    1990-01-01

    Since the beginning of the commercial scanning electron microscopy, there are two kinds of emission sources generally used for generation of the electron beam. The first group covers the cathodes heated directly and indirectly (tungsten hair-needle cathodes and lanthanum hexaboride single crystals, LaB 6 cathode). The other group is the field emission cathodes. The advantages of the thermal sources are their low vacuum requirement and their high beam current which is necessary for the application of microanalysis units. Disadvantages are the short life and the low resolution. Advantages of the field emission cathode unambiguously are the possibilities of the very high resolution, especially in the case of low acceleration voltages. Disadvantages are the necessary ultra-high vacuum and the low beam current. An alternative source is the thermally induced ZrO/W field emission cathode which works stably as compared to the cold field emission and does not need periodic flashing for emitter tip cleaning. (orig.) [de

  3. Scanning electron microscope facility for examination of radioactive materials

    International Nuclear Information System (INIS)

    Gibson, J.R.; Braski, D.N.

    1985-02-01

    An AMRAY model 1200B scanning electron microscope was modified to permit remote examination of radioactive specimens. Features of the modification include pneumatic vibration isolation of the column, motorized stage controls, improvements for monitoring vacuum, and a system for changing filaments without entering the hot cell

  4. Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111.

    Science.gov (United States)

    Pechenezhskiy, Ivan V; Hong, Xiaoping; Nguyen, Giang D; Dahl, Jeremy E P; Carlson, Robert M K; Wang, Feng; Crommie, Michael F

    2013-09-20

    We have developed a new scanning-tunneling-microscopy-based spectroscopy technique to characterize infrared (IR) absorption of submonolayers of molecules on conducting crystals. The technique employs a scanning tunneling microscope as a precise detector to measure the expansion of a molecule-decorated crystal that is irradiated by IR light from a tunable laser source. Using this technique, we obtain the IR absorption spectra of [121]tetramantane and [123]tetramantane on Au(111). Significant differences between the IR spectra for these two isomers show the power of this new technique to differentiate chemical structures even when single-molecule-resolved scanning tunneling microscopy (STM) images look quite similar. Furthermore, the new technique was found to yield significantly better spectral resolution than STM-based inelastic electron tunneling spectroscopy, and to allow determination of optical absorption cross sections. Compared to IR spectroscopy of bulk tetramantane powders, infrared scanning tunneling microscopy (IRSTM) spectra reveal narrower and blueshifted vibrational peaks for an ordered tetramantane adlayer. Differences between bulk and surface tetramantane vibrational spectra are explained via molecule-molecule interactions.

  5. A study of internal oxidation in carburized steels by glow discharge optical emission spectroscopy and scanning electron microscopy

    CERN Document Server

    An, X; Rainforth, W M; Chen, L

    2003-01-01

    The internal oxidation of Cr-Mn carburizing steel was studied. Internal oxidation was induced using a commercial carburizing process. Sputter erosion coupled with glow discharge optical emission spectroscopy (GDOES) was used to determine the depth profile elemental distribution within the internal oxidation layer (<10 mu m). In addition, scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) studies were carried out on selected sputter eroded surfaces. Oxide type was identified primarily by transmission electron microscopy (TEM). The carburized surface was found to consist of a continuous oxide layer, followed by a complex internal oxidation layer, where Cr and Mn oxides were found to populate grain boundaries in a globular form in the near surface region. At greater depths (5-10 mu m), Si oxides formed as a grain boundary network. The internal oxides (mainly complex oxides) grew quickly during the initial stages of the carburizing process (2 h, 800 deg. C+3 h, 930 deg. C). G...

  6. Secondary electron emission from textured surfaces

    Science.gov (United States)

    Huerta, C. E.; Patino, M. I.; Wirz, R. E.

    2018-04-01

    In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.

  7. Contact detection for nanomanipulation in a scanning electron microscope

    International Nuclear Information System (INIS)

    Ru, Changhai; To, Steve

    2012-01-01

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000× magnification while inducing little end-effector damage. -- Highlights: ► We presents a simple method for obtaining the depth information in SEM-based nanomanipulation. ► Detecting contact between an end-effector and a target surface using SEM as a vision sensor. ► Additional touch/force sensors or specialized hardware need not be added. ► Achieved high repeatability and accuracy. ► Complete automatic contact detection within typically 60 s.

  8. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Semi-empirical model for the generation of dose distributions produced by a scanning electron beam

    International Nuclear Information System (INIS)

    Nath, R.; Gignac, C.E.; Agostinelli, A.G.; Rothberg, S.; Schulz, R.J.

    1980-01-01

    There are linear accelerators (Sagittaire and Saturne accelerators produced by Compagnie Generale de Radiologie (CGR/MeV) Corporation) which produce broad, flat electron fields by magnetically scanning the relatively narrow electron beam as it emerges from the accelerator vacuum system. A semi-empirical model, which mimics the scanning action of this type of accelerator, was developed for the generation of dose distributions in homogeneous media. The model employs the dose distributions of the scanning electron beams. These were measured with photographic film in a polystyrene phantom by turning off the magnetic scanning system. The mean deviation calculated from measured dose distributions is about 0.2%; a few points have deviations as large as 2 to 4% inside of the 50% isodose curve, but less than 8% outside of the 50% isodose curve. The model has been used to generate the electron beam library required by a modified version of a commercially-available computerized treatment-planning system. (The RAD-8 treatment planning system was purchased from the Digital Equipment Corporation. It is currently available from Electronic Music Industries

  10. Scanning electron microscopy of vascular corrosion casts and histologic examination of pulmonary microvasculature in dogs with dirofilariosis.

    Science.gov (United States)

    Ninomiya, Hiroyoshi; Wakao, Yoshito

    2002-11-01

    To characterize structural changes in pulmonary vessels of dogs with dirofilariosis. 8 dogs with dirofilariosis and 2 unaffected control dogs. Pulmonary artery pressure was measured in affected dogs, and dogs then were euthanatized. Scanning electron microscopy was used to examine vascular corrosion casts of pulmonary vasculature. Tissue sections of pulmonary vasculature were evaluated by use of histologic examination. Pulmonary artery pressure was higher in dogs with severely affected pulmonary vessels. In tissue sections, dilatation, as well as lesions in the tunica intima and proliferative lesions resulting in constriction or obstruction, were frequently observed in branches of the pulmonary artery. Numerous dilated bronchial arteries were observed around affected pulmonary arteries. Hyperplastic venous sphincters were observed in small pulmonary veins and venules. In corrosion casts, affected pulmonary lobar arteries had dilatation, pruning, abnormal tapering, constriction, and obstruction. In small arteries and arterioles, surface structures representing aneurisms and edema were seen. Bronchial arteries were well developed and extremely dilated, and they formed numerous anastomoses with pulmonary arteries at all levels, from the pulmonary trunk to peripheral vessels. Capillaries in the lungs were dilated with little structural change. Small pulmonary veins and venules had irregular annular constrictions that were caused by hyperplastic smooth muscle cells of venous sphincters. Scanning electron microscopy of microvascular casts delineated links between the bronchial and pulmonary circulations in dogs with dirofilariosis. Results of scanning electron microscopy provided a structural explanation for the development of pulmonary circulatory disturbances and pulmonary hypertension in dogs affected by dirofilariosis.

  11. Electron scattering at surfaces and grain boundaries in thin Au films

    International Nuclear Information System (INIS)

    Henriquez, Ricardo; Flores, Marcos; Moraga, Luis; Kremer, German; González-Fuentes, Claudio; Munoz, Raul C.

    2013-01-01

    The electron scattering at surfaces and grain boundaries is investigated using polycrystalline Au films deposited onto mica substrates. We vary the three length scales associated with: (i) electron scattering in the bulk, that at temperature T is characterized by the electronic mean free path in the bulk ℓ 0 (T); (ii) electron-surface scattering, that is characterized by the film thickness t; (iii) electron-grain boundary scattering, that is characterized by the mean grain diameter D. We varied independently the film thickness from approximately 50 nm to about 100 nm, and the typical grain size making up the samples from 12 nm to 160 nm. We also varied the scale of length associated with electron scattering in the bulk by measuring the resistivity of each specimen at temperatures T, 4 K 0 (T) by approximately 2 orders of magnitude. Detailed measurements of the grain size distribution as well as surface roughness of each sample were performed with a Scanning Tunnelling Microscope (STM). We compare, for the first time, theoretical predictions with resistivity data employing the two theories available that incorporate the effect of both electron-surface as well as electron-grain boundary scattering acting simultaneously: the theory of A.F. Mayadas and M. Shatzkes, Phys. Rev. 1 1382 (1970) (MS), and that of G. Palasantzas, Phys. Rev. B 58 9685 (1998). We eliminate adjustable parameters from the resistivity data analysis, by using as input the grain size distribution as well as the surface roughness measured with the STM on each sample. The outcome is that both theories provide a fair representation of both the temperature as well as the thickness dependence of the resistivity data, but yet there are marked differences between the resistivity predicted by these theories. In the case of the MS theory, when the average grain diameter D is significantly smaller than ℓ 0 (300) = 37 nm, the electron mean free path in the bulk at 300 K, the effect of electron

  12. Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Verch, Andreas; Pfaff, Marina; de Jonge, Niels

    2015-06-30

    Gold nanoparticles were observed to move at a liquid/solid interface 3 orders of magnitude slower than expected for the movement in a bulk liquid by Brownian motion. The nanoscale movement was studied with scanning transmission electron microscopy (STEM) using a liquid enclosure consisting of microchips with silicon nitride windows. The experiments involved a variation of the electron dose, the coating of the nanoparticles, the surface charge of the enclosing membrane, the viscosity, and the liquid thickness. The observed slow movement was not a result of hydrodynamic hindrance near a wall but instead explained by the presence of a layer of ordered liquid exhibiting a viscosity 5 orders of magnitude larger than a bulk liquid. The increased viscosity presumably led to a dramatic slowdown of the movement. The layer was formed as a result of the surface charge of the silicon nitride windows. The exceptionally slow motion is a crucial aspect of electron microscopy of specimens in liquid, enabling a direct observation of the movement and agglomeration of nanoscale objects in liquid.

  13. Elemental mapping in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Allen, L J; D'Alfonso, A J; Lugg, N R; Findlay, S D; LeBeau, J M; Stemmer, S

    2010-01-01

    We discuss atomic resolution chemical mapping in scanning transmission electron microscopy (STEM) based on core-loss electron energy loss spectroscopy (EELS) and also on energy dispersive X-ray (EDX) imaging. Chemical mapping using EELS can yield counterintuitive results which, however, can be understood using first principles calculations. Experimental chemical maps based on EDX bear out the thesis that such maps are always likely to be directly interpretable. This can be explained in terms of the local nature of the effective optical potential for ionization under those imaging conditions. This is followed by an excursion into the complementary technique of elemental mapping using energy-filtered transmission electron microscopy (EFTEM) in a conventional transmission electron microscope. We will then consider the widely used technique of Z-contrast or high-angle annular dark field (HAADF) imaging, which is based on phonon excitation, where it has recently been shown that intensity variations can be placed on an absolute scale by normalizing the measured intensities to the incident beam. Results, showing excellent agreement between theory and experiment to within a few percent, are shown for Z-contrast imaging from a sample of PbWO 4 .

  14. [Inelastic electron scattering from surfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned

  15. Diamond surface: atomic and electronic structure

    International Nuclear Information System (INIS)

    Pate, B.B.

    1984-01-01

    Experimental studies of the diamond surface (with primary emphasis on the (111) surface) are presented. Aspects of the diamond surface which are addressed include (1) the electronic structure, (2) the atomic structure, and (3) the effect of termination of the lattice by foreign atoms. Limited studies of graphite are discussed for comparison with the diamond results. Experimental results from valence band and core level photoemission spectroscopy (PES), Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and carbon 1s near edge x-ray absorption fine structure (NEXAFS) spectroscopy (both the total electron yield (TEY) and Auger electron yield (AEY) techniques) are used to study and characterize both the clean and hydrogenated surface. In addition, the interaction of hydrogen with the diamond surface is examined using results from vibrational high resolution low energy electron loss spectroscopy (in collaboration with Waclawski, Pierce, Swanson, and Celotta at the National Bureau of Standards) and photon stimulated ion desorption (PSID) yield at photon energies near the carbon k-edge (hv greater than or equal to 280 eV). Both EELS and PSID verify that the mechanically polished 1 x 1 surface is hydrogen terminated and also that the reconstructed surface is hydrogen free. The (111) 2 x 2/2 x 1 reconstructed surface is obtained from the hydrogenated (111) 1 x 1:H surface by annealing to approx. = 1000 0 C. We observe occupied intrinsic surface states and a surface chemical shift (0.95 +- 0.1 eV) to lower binding energy of the carbon 1s level on the hydrogen-free reconstructed surface. Atomic hydrogen is found to be reactive with the reconstructed surface, while molecular hydrogen is relatively inert. Exposure of the reconstructed surface to atomic hydrogen results in chemisorption of hydrogen and removal of the intrinsic surface state emission in and near the band gap region

  16. Investigating the use of in situ liquid cell scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nguy, Amanda [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Engineering nanoparticles with desired shape-dependent properties is the key to many applications in nanotechnology. Although many synthetic procedures exist to produce anisotropic gold nanoparticles, the dynamics of growth are typically unknown or hypothetical. In the case of seed-mediated growth in the presence of DNA into anisotropic nanoparticles, it is not known exactly how DNA directs growth into specific morphologies. A series of preliminary experiments were carried out to contribute to the investigation of the possible mechanism of DNA-mediated growth of gold nanoprisms into gold nanostars using liquid cell scanning transmission electron microscopy (STEM). Imaging in the liquid phase was achieved through the use of a liquid cell platform and liquid cell holder that allow the sample to be contained within a “chip sandwich” between two electron transparent windows. Ex situ growth experiments were performed using Au-T30 NPrisms (30-base thymine oligonucleotide-coated gold nanoprisms) that are expected to grow into gold nanostars. Growth to form these nanostars were imaged using TEM (transmission electron microscopy) and liquid cell STEM (scanning transmission electron microscopy). An attempt to perform in situ growth experiments with the same Au-T30 nanoprisms revealed challenges in obtaining desired morphology results due to the environmental differences within the liquid cell compared to the ex situ environment. Different parameters in the experimental method were explored including fluid line set up, simultaneous and alternating reagent addition, and the effect of different liquid cell volumes to ensure adequate flow of reagents into the liquid cell. Lastly, the binding affinities were compared for T30 and A30 DNA incubated with gold nanoparticles using zeta potential measurements, absorption spectroscopy, and isothermal titration calorimetry (ITC). It was previously reported thymine bases have a lower binding affinity to gold surfaces than adenine

  17. Scanning tunnelling spectroscopy of low pentacene coverage on the Ag/Si(111)-(√3 x √3) surface

    International Nuclear Information System (INIS)

    Guaino, Ph; Cafolla, A A; McDonald, O; Carty, D; Sheerin, G; Hughes, G

    2003-01-01

    The low coverage S1 phase of pentacene deposited on Ag/Si(111)-(√3 x √3) has been investigated at room temperature by scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS). Current-voltage data were acquired simultaneously with STM images for this phase. The normalized conductivity reveals two pronounced peaks at -1.10 and +2.25 V relative to the Fermi level. These peaks are attributed to resonant tunnelling through the highest occupied molecular orbital and lowest unoccupied molecular orbital molecular levels of the pentacene layer. The electronic properties of this interface are discussed in relation to results obtained for pentacene adsorbed on other metallic surfaces

  18. Contribution of scanning Auger microscopy to electron beam damage study

    International Nuclear Information System (INIS)

    Fontaine, J.M.

    1983-04-01

    Electron bombardment can produce surface modifications of the analysed sample. The electron beam effects on solid surfaces which have been discussed in the published literature can be classified into the following four categories: (1) heating and its consequent effects, (2) charge accumulation in insulators and its consequent effects, (3) electron stimulated adsorption (ESA), and (4) electron stimulated desorption and/or decomposition (ESD). In order to understand the physico-chemical processes which take place under electron irradiation in an Al-O system, we have carried out experiments in which, effects, such as heating, charging and gas contamination, were absent. Our results point out the role of an enhanced surface diffusion of oxygen during electron bombardment of an Al (111) sample. The importance of this phenomenon and the contribution of near-elastic scattering of the primary electrons (5 keV) to the increase of the oxidation degree observed on Al (111) are discussed, compared to the generally studied effects

  19. X-ray and scanning electron microscopic investigation of porous silicon and silicon epitaxial layers grown on porous silicon

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Pawlowska, M.; Nossarzewska-Orlowska, E.; Brzozowski, A.; Wieteska, K.; Graeff, W.

    1998-01-01

    The 1 to 5 μm thick layers of porous silicon and epitaxial layers grown on porous silicon were studied by means of X-ray diffraction methods, realised with a wide use of synchrotron source and scanning microscopy. The results of x-ray investigation pointed the difference of lateral periodicity between the porous layer and the substrate. It was also found that the deposition of epitaxial layer considerably reduced the coherence of porous fragments. A number of interface phenomena was also observed in section and plane wave topographs. The scanning electron microscopic investigation of cleavage faces enabled direct evaluation of porous layer thickness and revealed some details of their morphology. The scanning observation of etched surfaces of epitaxial layers deposited on porous silicon revealed dislocations and other defects not reasonable in the X-ray topographs. (author)

  20. Development of the tunneling junction simulation environment for scanning tunneling microscope evaluation

    International Nuclear Information System (INIS)

    Gajewski, Krzysztof; Piasecki, Tomasz; Kopiec, Daniel; Gotszalk, Teodor

    2017-01-01

    Proper configuration of scanning tunneling microscope electronics plays an important role in the atomic scale resolution surface imaging. Device evaluation in the tunneling contact between scanning tip and sample may be prone to the surface quality or mechanical disturbances. Thus the use of tunneling junction simulator makes electronics testing more reliable and increases its repeatability. Here, we present the theoretical background enabling the proper selection of electronic components circuitry used as a tunneling junction simulator. We also show how to simulate mechanics related to the piezoelectric scanner, which is applied in real experiments. Practical use of the proposed simulator and its application in metrological characterization of the developed scanning tunneling microscope is also shown. (paper)

  1. Environmental scanning electron microscopy analysis of Proteus mirabilis biofilms grown on chitin and stainless steel.

    Science.gov (United States)

    Fernández-Delgado, Milagro; Duque, Zoilabet; Rojas, Héctor; Suárez, Paula; Contreras, Monica; García-Amado, María A; Alciaturi, Carlos

    Proteus mirabilis is a human pathogen able to form biofilms on the surface of urinary catheters. Little is known about P. mirabilis biofilms on natural or industrial surfaces and the potential consequences for these settings. The main aim of this work was to assess and compare the adhesion and biofilm formation of P. mirabilis strains from different origins on chitin and stainless steel surfaces within 4 to 96 h. Using environmental scanning electron microscopy, the biofilms of a clinical strain grown on chitin at 4 h showed greater adhesion, aggregation, thickness, and extracellular matrix production than those grown on stainless steel, whereas biofilms of an environmental strain had less aggregation on both surfaces. Biofilms of both P. mirabilis strains developed different structures on chitin, such as pillars, mushrooms, channels, and crystalline-like precipitates between 24 and 96 h, in contrast with flat-layer biofilms produced on stainless steel. Significant differences ( p  biofilm formation. This represents the first study of P. mirabilis showing adhesion, biofilm formation, and development of different structures on surfaces found outside the human host.

  2. Advanced radiographic scanning, enhancement and electronic data storage

    International Nuclear Information System (INIS)

    Savoie, C.; Rivest, D.

    2003-01-01

    It is a well-known fact that radiographs deteriorate with time. Substantial cost is attributed to cataloguing and storage. To eliminate deterioration issues and save time retrieving radiographs, laser scanning techniques were developed in conjunction with viewing and enhancement software. This will allow radiographs to be successfully scanned and stored electronically for future reference. Todays radiographic laser scanners are capable Qf capturing images with an optical density of up to 4.1 at 256 grey levels and resolutions up to 4096 pixels per line. An industrial software interface was developed for the nondestructive testing industry so that, certain parameters such as scan resolution, number of scans, file format and location to be saved could be adjusted as needed. Once the radiographs have been scanned, the tiff images are stored, or retrieved into Radiance software (developed by Rivest Technologies Inc.), which will help to properly interpret the radiographs. Radiance was developed to allow the user to quickly view the radiographs correctness or enhance its defects for comparison and future evaluation. Radiance also allows the user to zoom, measure and annotate areas of interest. Physical cost associated with cataloguing, storing and retrieving radiographs can be eliminated. You can now successfully retrieve and view your radiographs from CD media or dedicated hard drive at will. For continuous searches and/or field access, dedicated hard drives controlled by a server would be the media of choice. All scanned radiographs will be archived to CD media (CD-R). Laser scanning with a proper acquisition interface and easy to use viewing software will permit a qualified user to identify areas of interest and share this information with his/her colleagues via e-mail or web data access. (author)

  3. Surface physics studied by means of scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Besenbacher, F.; Laegsgaard, E.; Stensgaard, I.

    1993-01-01

    Scanning tunneling microscopy has been applied to study silicon crystal structures, oxygen on Cu (110), and real industrial catalyst surfaces. For the latter purpose an Atomic Force Microscope is being developed. (EG)

  4. Electrons on the surface of liquid helium

    International Nuclear Information System (INIS)

    Lambert, D.K.

    1979-05-01

    Spectroscopic techniques were used to study transitions of electrons between bound states in the potential well near a helium surface. The charge density distribution of electrons on the surface was independently obtained from electrical measurements. From the measurements, information was obtained both about the interaction of the bound state electrons with the surface of liquid helium and about local disorder in the positions of electrons on the surface

  5. Determination of pigments in colour layers on walls of some selected historical buildings using optical and scanning electron microscopy

    International Nuclear Information System (INIS)

    Skapin, A. Sever; Ropret, P.; Bukovec, P.

    2007-01-01

    For successful restoration of painted walls and painted coloured finishing coats it is necessary to determine the composition of the original colour layers. Identification of the pigments used in The Cistercian Abbey of Sticna and The Manor of Novo Celje was carried out using optical and scanning electron microscopy. Selected samples of wall paintings were inspected by the combined application of an optical microscope and a low-vacuum Scanning Electron Microscope to determine their colour and structural features and to identify the position of individual pigment grains. Energy dispersive spectroscopy was used to determine the elemental distribution on selected surfaces and elemental composition of individual pigments. It was found that the most abundantly used pigments were iron oxide red, cinnabar, green earth, umber, calcium carbonate white, ultramarine, yellow ochre and carbon black. These identifications have allowed us to compare the use of various pigments in buildings from different historical periods

  6. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.

    Science.gov (United States)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-26

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  7. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    Science.gov (United States)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  8. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    International Nuclear Information System (INIS)

    Bolker, Asaf; Kalish, Rafi; Saguy, Cecile

    2014-01-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques. (paper)

  9. Polaron-Driven Surface Reconstructions

    Directory of Open Access Journals (Sweden)

    Michele Reticcioli

    2017-09-01

    Full Text Available Geometric and electronic surface reconstructions determine the physical and chemical properties of surfaces and, consequently, their functionality in applications. The reconstruction of a surface minimizes its surface free energy in otherwise thermodynamically unstable situations, typically caused by dangling bonds, lattice stress, or a divergent surface potential, and it is achieved by a cooperative modification of the atomic and electronic structure. Here, we combined first-principles calculations and surface techniques (scanning tunneling microscopy, non-contact atomic force microscopy, scanning tunneling spectroscopy to report that the repulsion between negatively charged polaronic quasiparticles, formed by the interaction between excess electrons and the lattice phonon field, plays a key role in surface reconstructions. As a paradigmatic example, we explain the (1×1 to (1×2 transition in rutile TiO_{2}(110.

  10. Helium leak testing of scanning electron microscope

    International Nuclear Information System (INIS)

    Ahmad, Anis; Tripathi, S.K.; Mukherjee, D.

    2015-01-01

    Scanning Electron Microscope (SEM) is a specialized electron-optical device which is used for imaging of miniscule features on topography of material specimens. Conventional SEMs used finely focused high energy (about 30 KeV) electron beam probes of diameter of about 10nm for imaging of solid conducting specimens. Vacuum of the order of 10"-"5 Torr is prerequisite for conventional Tungsten filament type SEMs. One such SEM was received from one of our laboratory in BARC with a major leak owing to persisting poor vacuum condition despite continuous pumping for several hours. He-Leak Detection of the SEM was carried out at AFD using vacuum spray Technique and various potential leak joints numbering more than fifty were helium leak tested. The major leak was detected in the TMP damper bellow. The part was later replaced and the repeat helium leak testing of the system was carried out using vacuum spray technique. The vacuum in SEM is achieved is better than 10"-"5 torr and system is now working satisfactorily. (author)

  11. In situ manipulation and characterizations using nanomanipulators inside a field emission-scanning electron microscope

    International Nuclear Information System (INIS)

    Kim, Keun Soo; Lim, Seong Chu; Lee, Im Bok; An, Key Heyok; Bae, Dong Jae; Choi, Shinje; Yoo, Jae-Eun; Lee, Young Hee

    2003-01-01

    We have used two piezoelectric nanomanipulators to manage the multiwalled carbon nanotubes (MWCNTs) within the field emission-scanning electron microscope (FE-SEM). For an easy access of a tungsten tip to MWCNTs, we prepared the tungsten tip in sharp and long tip geometry using different electrochemical etching parameters. In addition, the sample stage was tilted by 45 deg. from the normal direction of the surface to allow a better incident angle to the approaching tungsten tip. For manipulations, a nanotube or the bundles were attached at the tungsten tip using an electron beam-induced deposition (EBID). Using two manipulators, we have then fabricated a CNT-based transistor, a cross-junction of MWCNTs, and a CNT-attached atomic force microscopy tip. After these fabrications, the field emission properties of the MWCNT and junction properties of the MWCNT and the tungsten tip have been investigated. We found that the EBID approach was very useful to weld the nanostructured materials on the tungsten tip by simply irradiating the electron beam, although this sometimes increased the contact resistance by depositing hydrocarbon materials

  12. Interstitial cells of Cajal and Auerbach's plexus. A scanning electron microscopical study of guinea-pig small intestine

    DEFF Research Database (Denmark)

    Jessen, Harry; Thuneberg, Lars

    1991-01-01

    Anatomy, interstitial cells of Cajal, myenteric plexus, small intestine, guinea-pig, scanning electron microscopy......Anatomy, interstitial cells of Cajal, myenteric plexus, small intestine, guinea-pig, scanning electron microscopy...

  13. Wave Optical Calculation of Probe Size in Low Energy Scanning Electron Microscope

    Czech Academy of Sciences Publication Activity Database

    Radlička, Tomáš

    2015-01-01

    Roč. 21, S4 (2015), s. 212-217 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : scanning electron microscope * optical calculation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  14. Parallel and pipelined front-end for multi-element silicon detectors in scanning electron microscopy

    International Nuclear Information System (INIS)

    Boulin, C.; Epstein, A.

    1992-01-01

    This paper discusses a silicon quadrant detector (128 elements) implemented as an electron detector in a Scanning Transmission Electron Microscope. As the electron beam scans over the sample, electrons are counted during each pixel. The authors developed an ASIC for the multichannel counting system. The digital front-end carries out the readout of all elements, in four groups, and uses these data to compute linear combinations to generate up to eight simultaneous images. For the preprocessing the authors implemented a parallel and pipelined system. Dedicated software tools were developed to generate the programs for all the processors. These tools are transparently accessed by the user via a user friendly interface

  15. Head-facial hemangiomas studied with scanning electron microscopy.

    Science.gov (United States)

    Cavallotti, Carlo; Cavallotti, Chiara; Giovannetti, Filippo; Iannetti, Giorgio

    2009-11-01

    Hemangiomas of the head or face are a frequent vascular pathology, consisting in an embryonic dysplasia that involves the cranial-facial vascular network. Hemangiomas show clinical, morphological, developmental, and structural changes during their course. Morphological, structural, ultrastructural, and clinical characteristics of head-facial hemangiomas were studied in 28 patients admitted in our hospital. Nineteen of these patients underwent surgery for the removal of the hemangiomas, whereas 9 patients were not operated on. All the removed tissues were transferred in our laboratories for the morphological staining. Light microscopy, transmission electron microscopy, and scanning electron microscopy techniques were used for the observation of all microanatomical details. All patients were studied for a clinical diagnosis, and many were subjected to surgical therapy. The morphological results revealed numerous microanatomical characteristics of the hemangiomatous vessels. The observation by light microscopy shows the afferent and the efferent vessels for every microhemangioma. All the layers of the arterial wall are uneven. The lumen of the arteriole is entirely used by a blood clot. The observation by transmission electron microscopy shows that it was impossible to see the limits of the different layers (endothelium, medial layer, and adventitia) in the whole wall of the vessels. Moreover, both the muscular and elastic components are disarranged and replaced with connective tissue. The observation by scanning electron microscopy shows that the corrosion cast of the hemangioma offers 3 periods of filling: initially with partial filling of the arteriolar and of the whole cast, intermediate with the entire filling of the whole cast (including arteriole and venule), and a last period with a partial emptying of the arteriolar and whole cast while the venule remains totally injected with resin. Our morphological results can be useful to clinicians for a precise

  16. Three-Dimensional (3D) Nanometrology Based on Scanning Electron Microscope (SEM) Stereophotogrammetry.

    Science.gov (United States)

    Tondare, Vipin N; Villarrubia, John S; Vlada R, András E

    2017-10-01

    Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.

  17. Molecular tips for scanning tunneling microscopy: intermolecular electron tunneling for single-molecule recognition and electronics.

    Science.gov (United States)

    Nishino, Tomoaki

    2014-01-01

    This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics.

  18. Surfaces electrons at dielectric plasma walls

    International Nuclear Information System (INIS)

    Heinisch, Rafael Leslie

    2013-01-01

    The concept of the electron surface layer introduced in this thesis provides a framework for the description of the microphysics of the surplus electrons immediately at the wall and thereby complements the modelling of the plasma sheath. In this work we have considered from a surface physics perspective the distribution and build-up of an electron adsorbate on the wall as well as the effect of the negative charge on the scattering of light by a spherical particle immersed in a plasma. In our electron surface layer model we treat the wall-bound electrons as a wall-thermalised electron distribution minimising the grand canonical potential and satisfying Poisson's equation. The boundary between the electron surface layer and the plasma sheath is determined by a force balance between the attractive image potential and the repulsive sheath potential and lies in front of the crystallographic interface. Depending on the electron affinity χ, that is the offset of the conduction band minimum to the potential in front of the surface, two scenarios for the wall-bound electrons are realised. For χ 0 electrons penetrate into the conduction band where they form an extended space charge. These different scenarios are also reflected in the electron kinetics at the wall which control the sticking coefficient and the desorption time. If χ -3 . For χ>0 electron physisorption takes place in the conduction band. For this case sticking coefficients and desorption times have not been calculated yet but in view of the more efficient scattering with bulk phonons, responsible for electron energy relaxation in this case, we expect them to be larger than for the case of χ 0 the electrons in the bulk of the particle modify the refractive index through their bulk electrical conductivity. In both cases the conductivity is limited by scattering with surface or bulk phonons. Surplus electrons lead to an increase of absorption at low frequencies and, most notably, to a blue-shift of an

  19. Electron scattering at surfaces and grain boundaries in thin Au films

    Energy Technology Data Exchange (ETDEWEB)

    Henriquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Flores, Marcos; Moraga, Luis [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Kremer, German [Bachillerato, Universidad de Chile, Las Palmeras 3425, Santiago 7800024 (Chile); González-Fuentes, Claudio [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Munoz, Raul C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)

    2013-05-15

    The electron scattering at surfaces and grain boundaries is investigated using polycrystalline Au films deposited onto mica substrates. We vary the three length scales associated with: (i) electron scattering in the bulk, that at temperature T is characterized by the electronic mean free path in the bulk ℓ{sub 0}(T); (ii) electron-surface scattering, that is characterized by the film thickness t; (iii) electron-grain boundary scattering, that is characterized by the mean grain diameter D. We varied independently the film thickness from approximately 50 nm to about 100 nm, and the typical grain size making up the samples from 12 nm to 160 nm. We also varied the scale of length associated with electron scattering in the bulk by measuring the resistivity of each specimen at temperatures T, 4 K < T < 300 K. Cooling the samples to 4 K increases ℓ{sub 0}(T) by approximately 2 orders of magnitude. Detailed measurements of the grain size distribution as well as surface roughness of each sample were performed with a Scanning Tunnelling Microscope (STM). We compare, for the first time, theoretical predictions with resistivity data employing the two theories available that incorporate the effect of both electron-surface as well as electron-grain boundary scattering acting simultaneously: the theory of A.F. Mayadas and M. Shatzkes, Phys. Rev. 1 1382 (1970) (MS), and that of G. Palasantzas, Phys. Rev. B 58 9685 (1998). We eliminate adjustable parameters from the resistivity data analysis, by using as input the grain size distribution as well as the surface roughness measured with the STM on each sample. The outcome is that both theories provide a fair representation of both the temperature as well as the thickness dependence of the resistivity data, but yet there are marked differences between the resistivity predicted by these theories. In the case of the MS theory, when the average grain diameter D is significantly smaller than ℓ{sub 0}(300) = 37 nm, the electron mean

  20. Theoretical approach to the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Noguera, C.

    1990-01-01

    Within a one-electron approach, based on a Green's-function formalism, a nonperturbative expression for the tunneling current is obtained and used to discuss which spectroscopic information may be deduced from a scanning-tunneling-microscope experiment. It is shown up to which limits the voltage dependence of the tunneling current reproduces the local density of states at the surface, and how the reflection coefficients of the electronic waves at the surface may modify it

  1. Scanning tunneling microscopy of hexagonal BN grown on graphite

    International Nuclear Information System (INIS)

    Fukumoto, H.; Hamada, T.; Endo, T.; Osaka, Y.

    1991-01-01

    The microscopic surface topography of thin BN x films grown on graphite by electron cyclotron resonance plasma chemical vapor deposition have been imaged with scanning tunneling microscopy in air. The scanning tunneling microscope has generated images of hexagonal BN with atomic resolution

  2. Atomic physics with the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kleber, M.; Bracher, C.; Riza, M.

    1999-01-01

    Backscattering of atomic beams above a given surface yields information similar to the one obtained from scanning the same surface with a scanning tunneling microscope (STM): In both cases the experimentally accessible quantity is the local density of states (LDOS) n(r,E) of the surface. For the case of backscattering, the LDOS at the turning point of the atom is an important ingredient of the potential between atom and surface. In experiments performed with an STM, the LDOS at the apex of an atomically sharp tip can be determined directly. Probing surfaces locally by an STM allows for the study of basic phenomena in atomic physics, with tunneling of electrons in three dimensions being a central issue

  3. Scanning tunneling microscopy: A powerful tool for surface analysis

    International Nuclear Information System (INIS)

    Walle, G.F.A. van de; Nelissen, B.J.; Soethout, L.L.; Kempen, H. van

    1987-01-01

    The invention of the Scanning Tunneling Microscope (STM) has opened a new area of surface analysis. A description of the principle of operation is given in this paper. Also the technical problems encountered and their solution are described. Two examples demonstrating the possibilities of the STM are presented: topographic and spectroscopic measurements on a stepped Ni (111) surface and photoconductive measurements on GaAs. (orig.)

  4. Scanning electron microscopy characterisation of carbon deposited layers in Tore Supra

    International Nuclear Information System (INIS)

    Delchambre, E.; Brosset, C.; Reichle, R.; Devynck, P.; Guirlet, R.; Tsitrone, E.; Saikali, W.; Dominici, C.; Charai, A.

    2003-01-01

    For long discharges in Tore-Supra, an infra-red safety system has been installed to survey surface temperature of the target plates located below the toroidal pump limiter. A shift in temperature is attributed to the growth of a carbon layer at the surface of the neutralizer and has been estimated to a temperature increase of 400 Celsius degrees between virgin and layered surfaces. For temperature safety analysis, target plates have been cleaned and carbon layers were sampled for scanning electronic microscopy (SEM) study. SEM micrographs have allowed to measure the deposited layer thickness and to study the specific fractal and stratified structure. Energy dispersive X-ray spectroscopy analysis has permitted to distinguish carbon layers corresponding to boronization and then to deduce an average growth rate of about 20 nm/s. The growth rate is not constant and is likely to depend on plasma operation parameters. These analyses completed by time of flight secondary ions mass spectrometry (ToF-SIMS) have shown a beneficial effect of the boronization on metallic contamination of the plasma, confirming the in situ optical spectroscopic measurements. These analyses have also shown an increase of hydrogen storage in carbon layer due to boronization. Although the measurements performed on deposited layer are very local, the results reflect the history of the 2002 campaign. (A.C.)

  5. Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    Science.gov (United States)

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-11-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Scanning electron microscopy analysis of the growth of dental plaque on the surfaces of removable orthodontic aligners after the use of different cleaning methods.

    Science.gov (United States)

    Levrini, Luca; Novara, Francesca; Margherini, Silvia; Tenconi, Camilla; Raspanti, Mario

    2015-01-01

    Advances in orthodontics are leading to the use of minimally invasive technologies, such as transparent removable aligners, and are able to meet high demands in terms of performance and esthetics. However, the most correct method of cleaning these appliances, in order to minimize the effects of microbial colonization, remains to be determined. The aim of the present study was to identify the most effective method of cleaning removable orthodontic aligners, analyzing the growth of dental plaque as observed under scanning electron microscopy. Twelve subjects were selected for the study. All were free from caries and periodontal disease and were candidates for orthodontic therapy with invisible orthodontic aligners. The trial had a duration of 6 weeks, divided into three 2-week stages, during which three sets of aligners were used. In each stage, the subjects were asked to use a different method of cleaning their aligners: 1) running water (control condition); 2) effervescent tablets containing sodium carbonate and sulfate crystals followed by brushing with a toothbrush; and 3) brushing alone (with a toothbrush and toothpaste). At the end of each 2-week stage, the surfaces of the aligners were analyzed under scanning electron microscopy. The best results were obtained with brushing combined with the use of sodium carbonate and sulfate crystals; brushing alone gave slightly inferior results. On the basis of previous literature results relating to devices in resin, studies evaluating the reliability of domestic ultrasonic baths for domestic use should be encouraged. At present, pending the availability of experimental evidence, it can be suggested that dental hygienists should strongly advise patients wearing orthodontic aligners to clean them using a combination of brushing and commercially available tablets for cleaning oral appliances.

  7. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy. Rev. 1

    International Nuclear Information System (INIS)

    Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.; Schemer-Kohrn, Alan L.; Guzman, Anthony D.; Lavender, Curt A.

    2016-01-01

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  8. Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials

    International Nuclear Information System (INIS)

    Agudo Jácome, L.; Eggeler, G.; Dlouhý, A.

    2012-01-01

    Stereo transmission electron microscopy (TEM) provides a 3D impression of the microstructure in a thin TEM foil. It allows to perform depth and TEM foil thickness measurements and to decide whether a microstructural feature lies inside of a thin foil or on its surface. It allows appreciating the true three-dimensional nature of dislocation configurations. In the present study we first review some basic elements of classical stereo TEM. We then show how the method can be extended by working in the scanning transmission electron microscope (STEM) mode of a modern analytical 200 kV TEM equipped with a field emission gun (FEG TEM) and a high angle annular dark field (HAADF) detector. We combine two micrographs of a stereo pair into one anaglyph. When viewed with special colored glasses the anaglyph provides a direct and realistic 3D impression of the microstructure. Three examples are provided which demonstrate the potential of this extended stereo TEM technique: a single crystal Ni-base superalloy, a 9% Chromium tempered martensite ferritic steel and a NiTi shape memory alloy. We consider the effect of camera length, show how foil thicknesses can be measured, and discuss the depth of focus and surface effects. -- Highlights: ► The advanced STEM/HAADF diffraction contrast is extended to 3D stereo-imaging. ► The advantages of the new technique over stereo-imaging in CTEM are demonstrated. ► The new method allows foil thickness measurements in a broad range of conditions. ► We show that features associated with ion milling surface damage can be beneficial for appreciating 3D features of the microstructure.

  9. Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials

    Energy Technology Data Exchange (ETDEWEB)

    Agudo Jacome, L., E-mail: leonardo.agudo@bam.de [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Eggeler, G., E-mail: gunther.eggeler@ruhr-uni-bochum.de [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Dlouhy, A., E-mail: dlouhy@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 616 62 Brno (Czech Republic)

    2012-11-15

    Stereo transmission electron microscopy (TEM) provides a 3D impression of the microstructure in a thin TEM foil. It allows to perform depth and TEM foil thickness measurements and to decide whether a microstructural feature lies inside of a thin foil or on its surface. It allows appreciating the true three-dimensional nature of dislocation configurations. In the present study we first review some basic elements of classical stereo TEM. We then show how the method can be extended by working in the scanning transmission electron microscope (STEM) mode of a modern analytical 200 kV TEM equipped with a field emission gun (FEG TEM) and a high angle annular dark field (HAADF) detector. We combine two micrographs of a stereo pair into one anaglyph. When viewed with special colored glasses the anaglyph provides a direct and realistic 3D impression of the microstructure. Three examples are provided which demonstrate the potential of this extended stereo TEM technique: a single crystal Ni-base superalloy, a 9% Chromium tempered martensite ferritic steel and a NiTi shape memory alloy. We consider the effect of camera length, show how foil thicknesses can be measured, and discuss the depth of focus and surface effects. -- Highlights: Black-Right-Pointing-Pointer The advanced STEM/HAADF diffraction contrast is extended to 3D stereo-imaging. Black-Right-Pointing-Pointer The advantages of the new technique over stereo-imaging in CTEM are demonstrated. Black-Right-Pointing-Pointer The new method allows foil thickness measurements in a broad range of conditions. Black-Right-Pointing-Pointer We show that features associated with ion milling surface damage can be beneficial for appreciating 3D features of the microstructure.

  10. Practical Use of Scanning Low Energy Electron Microscope (SLEEM)

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Mikmeková, Eliška; Mikmeková, Šárka; Konvalina, Ivo; Frank, Luděk

    2016-01-01

    Roč. 22, S3 (2016), s. 1650-1651 ISSN 1431-9276 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning low energy * SLEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  11. Examination of mycological samples by means of the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1973-04-01

    Full Text Available Three species of Siphomycetes: Rhizopus arhizus, Rhizopus equinus and Rhizopus nigricans, as well as a Septomycete: Emericella nidulans, have been examined by means of a scanning electron microscope. Among the difjerent Rhizopus, this technique showed differences in the appearance of the sporangia. In Emericella nidulans, scanning microscopy enábled one to ascertain that the "Hull cells" were completely hollow and also demonstrated the ornemented aspect of the ascospores.

  12. Contact detection for nanomanipulation in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ru, Changhai, E-mail: rchhai@gmail.com [Automation College, Harbin Engineering University, Harbin 150001 (China); Robotics and Microsystems Center, Soochow University, Jiangsu 215021 (China); To, Steve, E-mail: Steve.to@utoronto.ca [Department of Mechanical and Industry Engineering, University of Toronto, Ontario, Canada M5S3G8 (Canada)

    2012-07-15

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000 Multiplication-Sign magnification while inducing little end-effector damage. -- Highlights: Black-Right-Pointing-Pointer We presents a simple method for obtaining the depth information in SEM-based nanomanipulation. Black-Right-Pointing-Pointer Detecting contact between an end-effector and a target surface using SEM as a vision sensor. Black-Right-Pointing-Pointer Additional touch/force sensors or specialized hardware need not be added. Black-Right-Pointing-Pointer Achieved high repeatability and accuracy. Black-Right-Pointing-Pointer Complete automatic contact detection within typically 60 s.

  13. Spin polarized electrons in surface science

    International Nuclear Information System (INIS)

    Siegmann, H.C.

    1983-01-01

    The potentialities of spin-polarised electron beams as a probe of surface magnetic properties are outlined. Elastic as well as inelastic scattering of electrons from solid surfaces are considered. (G.Q.)

  14. Aan der Waals terminated silicon(111) surfaces and interfaces. Preparation, morphology, and electronic properties

    International Nuclear Information System (INIS)

    Fritsche, R.

    2004-01-01

    The aim of this thesis is the implementation of the concept of the quasi-van der Waals epitaxy as a new perspective for the integration of reactive and lattice-defect fitted materials into the silicon technology. The experimental characterization of this approach pursues in two subsequent sections. First the chemical and electronic passivation of a three-dimensional substrate (silicon) is studied by means of an ultrathin buffer layer from the material class of the layered-lattice chalcogenides (GaSe). The substrate surface (Si(111):GaSe) modified in this way possesses an inert van der Waals surface and serves in the following as base for the deposition of the against the non-passivated substrate really reactive and lattice-defect fitted materials (II-VI-compound semiconductors and metals) The characterization of the electronic and chemical properties of the surfaces and interfaces pursues with highly resolved photoelectron spectroscopy (SXPS). The results are supplemented by the characterization of the morphology by the diffraction of low-energy electrons (LEED) and the scanning tunnel microscopy (STM)

  15. Angularly-selective transmission imaging in a scanning electron microscope.

    Science.gov (United States)

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  16. Enzymatic hydrolysis of Amaranth flour - differential scanning calorimetry and scanning electron microscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Barba de la Rosa, A.P.; Paredes-Lopez, O.; Carabez-Trejo, A.; Ordorica-Falomir, C. (Instituto Politecnico Nacional, Irapuato (Mexico). Centro de Investigacion y de Estudios Avanzados)

    1989-11-01

    High-protein amaranth flour (HPAF) and carbohydrate rich fraction (CRF) were produced from raw flour in a single-step process using a heat-stable alpha-amylase preparation. Protein content of flour increased from 15 to about 30 or 39% at liquefaction temperatures of 70 or 90{sup 0}C, respectively and 30 min hydrolysis time. CRF exhibited 14-22 DE. Enzymatic action at 70{sup 0}C increased endotherm temperature and gelatinization enthalpy of HPAF, in relation to gelatinized flour, as assessed by differential scanning calorimetry (DSC). Hydrolysis at 90{sup 0}C did not affect significantly (P > 0.05) DSC peak temperature. It is suggested that these changes in DSC performance might result from differences in amount and type of low-molecular weight carbohydrates and residual starch. Scanning electron microscopy (SEM) demonstrated that hydrolysis temperature changed substantially the structural appearance of flour particles. HPAF and CRF might find applications as dry milk extender and sweetener, respectively. (orig.).

  17. Quantitative Transmission Electron Microscopy of Nanoparticles and Thin-Film Formation in Electroless Metallization of Polymeric Surfaces

    Science.gov (United States)

    Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket

    2011-03-01

    Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.

  18. Microstructures and wear properties of surface treated Ti–36Nb–2Ta–3Zr–0.35O alloy by electron beam melting (EBM)

    International Nuclear Information System (INIS)

    Chen, Zijin; Liu, Yong; Wu, Hong; Zhang, Weidong; Guo, Wei; Tang, Huiping; Liu, Nan

    2015-01-01

    Highlights: • Gum metal was firstly modified via electron beam melting method. • The surface hardness and the wear resistance of TNTZO alloys are significantly increased through EBM process. • The phase constitutions and microstructural features of EBM treated TNTZO alloys are sensitive to the processing parameters. • The relationship between the wear property and the surface microstructure of TNTZO alloy is discussed. - Abstract: Ti–36Nb–2Ta–3Zr–0.35O (wt.%) (TNTZO, also called gum metal) alloy was surface treated by electron beam melting (EBM), in order to improve wear properties. The microstructures and phase constitutions of the treated surface were characterized by optical microscopy (OM), scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXD) and electron backscattered diffraction (EBSD). The results showed that the martensitic phase and dendrites were formed from the β phase alloy after the EBM treatment, and microstructures in the surface changed with the processing parameters. Compared with the untreated TNTZO alloy, the surface modified TNTZO alloys exhibited higher nano-hardness, 8.0 GPa, and the wear loss was also decreased apparently. The samples treated at a scanning speed of 0.5 m/s exhibited the highest wear resistance due to the fast cooling rate and the precipitation of acicular α″ phase. The relationship between the wear property and the surface microstructure of TNTZO alloy was discussed.

  19. The sinusoidal lining cells in "normal" human liver. A scanning electron microscopic investigation

    DEFF Research Database (Denmark)

    Horn, T; Henriksen, Jens Henrik Sahl; Christoffersen, P

    1986-01-01

    The scanning electron microscopic was used to study the fenestrations of human liver sinusoids. Thirteen biopsies, where light microscopy and transmission electron microscopy revealed normal sinusoidal architecture, were investigated. The number of fenestrae was calculated in acinar zone 3...

  20. Electron beam cladding of titanium on stainless steel plate

    International Nuclear Information System (INIS)

    Tomie, Michio; Abe, Nobuyuki; Yamada, Masanori; Noguchi, Shuichi.

    1990-01-01

    Fundamental characteristics of electron beam cladding was investigated. Titanium foil of 0.2mm thickness was cladded on stainless steel plate of 3mm thickness by scanning electron beam. Surface roughness and cladded layer were analyzed by surface roughness tester, microscope, scanning electron microscope and electron probe micro analyzer. Electron beam conditions were discussed for these fundamental characteristics. It is found that the energy density of the electron beam is one of the most important factor for cladding. (author)

  1. Large area fabrication of plasmonic nanoparticle grating structure by conventional scanning electron microscope

    International Nuclear Information System (INIS)

    Sudheer,; Tiwari, P.; Rai, V. N.; Srivastava, A. K.; Mukharjee, C.

    2015-01-01

    Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique

  2. Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope

    Science.gov (United States)

    Su, Chia-Ping; Syu, Wei-Jhe; Hsiao, Chien-Nan; Lai, Ping-Shan; Chen, Chien-Chun

    2017-08-01

    To investigate dislocations or heterostructures across interfaces is now of great interest to condensed matter and materials scientists. With the advances in aberration-corrected electron optics, the scanning transmission electron microscope has demonstrated its excellent capability of characterizing atomic structures within nanomaterials, and well-resolved atomic-resolution images can be obtained through long-exposure data acquisition. However, the sample drifting, carbon contamination, and radiation damage hinder further analysis, such as deriving three-dimensional (3D) structures from a series of images. In this study, a method for obtaining atomic-resolution images with significantly reduced exposure time was developed, using which an original high-resolution image with approximately one tenth the electron dose can be obtained by combining a fast-scan high-magnification image and a slow-scan low-magnification image. The feasibility of obtaining 3D atomic structures using the proposed approach was demonstrated through multislice simulation. Finally, the feasibility and accuracy of image restoration were experimentally verified. This general method cannot only apply to electron microscopy but also benefit to image radiation-sensitive materials using various light sources.

  3. Nano-tomography of porous geological materials using focused ion beam-scanning electron microscopy

    NARCIS (Netherlands)

    Liu, Yang; King, Helen E.; van Huis, Marijn A.; Drury, Martyn R.; Plümper, Oliver

    2016-01-01

    Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM) provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution

  4. Revealing the 1 nm/s Extensibility of Nanoscale Amorphous Carbon in a Scanning Electron Microscope

    DEFF Research Database (Denmark)

    Zhang, Wei

    2013-01-01

    In an ultra-high vacuum scanning electron microscope, the edged branches of amorphous carbon film (∼10 nm thickness) can be continuously extended with an eye-identifying speed (on the order of ∼1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation...... promoted by the electric field, which resulted from an inner secondary electron potential difference from the main trunk of carbon film to the tip end of branches under electron beam. This result demonstrates importance of applying electrical effects to modify properties of carbon materials. It may have...... positive implications to explore some amorphous carbon as electron field emission device. SCANNING 35: 261-264, 2013. © 2012 Wiley Periodicals, Inc....

  5. A scanning fluid dynamic gauging technique for probing surface layers

    International Nuclear Information System (INIS)

    Gordon, Patrick W; Chew, Y M John; Wilson, D Ian; Brooker, Anju D M; York, David W

    2010-01-01

    Fluid dynamic gauging (FDG) is a technique for measuring the thickness of soft solid deposit layers immersed in a liquid environment, in situ and in real time. This paper details the performance of a novel automated, scanning FDG probe (sFDG) which allows the thickness of a sample layer to be monitored at several points during an experiment, with a resolution of ±5 µm. Its application is demonstrated using layers of gelatine, polyvinyl alcohol (PVA) and baked tomato purée deposits. Swelling kinetics, as well as deformation behaviour—based on knowledge of the stresses imposed on the surface by the gauging flow—can be determined at several points, affording improved experimental data. The use of FDG as a surface scanning technique, operating as a fluid mechanical analogue of atomic force microscopy on a millimetre length scale, is also demonstrated. The measurement relies only on the flow behaviour, and is thus suitable for use in opaque fluids, does not contact the surface itself and does not rely on any specific physical properties of the surface, provided it is locally stiff

  6. Automated surface-scanning detection of pathogenic bacteria on fresh produce

    Science.gov (United States)

    Horikawa, Shin; Du, Songtao; Liu, Yuzhe; Chen, I.-Hsuan; Xi, Jianguo; Crumpler, Michael S.; Sirois, Donald L.; Best, Steve R.; Wikle, Howard C.; Chin, Bryan A.

    2017-05-01

    This paper investigates the effects of surface-scanning detector position on the resonant frequency and signal amplitude of a wireless magnetoelastic (ME) biosensor for direct pathogen detection on solid surfaces. The experiments were conducted on the surface of a flat polyethylene (PE) plate as a model study. An ME biosensor (1 mm × 0.2 mm × 30 μm) was placed on the PE surface, and a surface-scanning detector was brought close and aligned to the sensor for wireless resonant frequency measurement. The position of the detector was accurately controlled by using a motorized three-axis translation system (i.e., controlled X, Y, and Z positions). The results showed that the resonant frequency variations of the sensor were -125 to +150 Hz for X and Y detector displacements of +/-600 μm and Z displacements of +100 to +500 μm. These resonant frequency variations were small compared to the sensor's initial resonant frequency (< 0.007% of 2.2 MHz initial resonant frequency) measured at the detector home position, indicating high accuracy of the measurement. In addition, the signal amplitude was, as anticipated, found to decrease exponentially with increasing detection distance (i.e., Z distance). Finally, additional experiments were conducted on the surface of cucumbers. Similar results were obtained.

  7. Auger electron spectroscopy of alloy surfaces

    International Nuclear Information System (INIS)

    Overbury, S.H.; Somorjai, G.A.

    1975-03-01

    Regular solution models are used to predict surface segregation of the constituent of lowest surface free energy in homogeneous multicomponent systems. Analysis of the Auger electron emission intensities from alloys yield the surface composition and the depth distribution of the composition near the surface. Auger Electron Spectroscopy (AES) studies of the surface composition of the Ag--Au and Pb--In systems have been carried out as a function of bulk composition and temperature. Although these alloys have very different regular solution parameters their surface compositions are predictable by the regular solution models. (U.S.)

  8. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis.

    Science.gov (United States)

    Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley

    2015-06-01

    Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Excitation of surface and volume plasmons in a metal nanosphere by fast electrons

    Energy Technology Data Exchange (ETDEWEB)

    Gildenburg, V. B., E-mail: gil@appl.sci-nnov.ru; Kostin, V. A.; Pavlichenko, I. A. [University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation)

    2016-03-15

    Collective multipole oscillations (surface and volume plasmons) excited in a metal nanosphere by moving electron and corresponding inelastic scattering spectra are studied based on the hydrodynamic approach. Along with the bulk (dielectric) losses traditionally taken into account, the surface and radiative ones are also considered as the physical mechanisms responsible for the plasmon damping. The second and third mechanisms are found to be essential for the surface plasmons (at small or large cluster radii, respectively) and depend very differently on the multipole mode order. The differential equations are obtained which describe the temporal evolution of every particular mode as that one of a linear oscillator excited by the given external force, and the electron energy loss spectra are calculated. The changes in spectrum shape with the impact parameter and with the electron passage time are analyzed; the first of them is found to be in good enough agreement with the data of scanning transmission electron microscopy experiments. It is shown that, in the general case, a pronounced contribution to the formation of the loss spectrum is given by the both surface and volume plasmons with low and high multipole indices. In particular, at long electron passage time, the integral (averaged over the impact parameter) loss spectrum which is calculated for the free-electron cluster model contains two main peaks: a broad peak from merging of many high-order multipole resonances of the surface plasmons and a narrower peak of nearly the same height from merged volume plasmons excited by the electrons that travel through the central region of the cluster. Comparatively complex dependences of the calculated excitation coefficients and damping constants of various plasmons on the order of the excited multipole result in wide diversity of possible types of the loss spectrum even for the same cluster material and should be taken into account in interpretation of corresponding

  10. Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyoshi, Yoshifumi; Nemoto, Takashi; Kurata, Hiroki, E-mail: kurata@eels.kuicr.kyoto-u.ac.jp

    2017-04-15

    In this study, electron energy-loss spectroscopy (EELS) in conjunction with scanning transmission electron microscopy (STEM) was used to investigate surface plasmons in a single silver nanoparticle (NP) on a magnesium oxide substrate, employing an incident electron trajectory parallel to the substrate surface. This parallel irradiation allowed a direct exploration of the substrate effects on localized surface plasmon (LSP) excitations as a function of the distance from the substrate. The presence of the substrate was found to lower the symmetry of the system, such that the resonance energies of LSPs were dependent on the polarization direction relative to the substrate surface. The resulting mode splitting could be detected by applying different electron trajectories, providing results similar to those previously obtained from optical studies using polarized light. However, the LSP maps obtained by STEM-EELS analysis show an asymmetric intensity distribution with the highest intensity at the top surface of the NP (that is, far from the substrate), a result that is not predicted by optical simulations. We show that modifications of the applied electric field by the substrate cause this asymmetric intensity distribution in the LSP maps.

  11. Integration of a high-NA light microscope in a scanning electron microscope.

    Science.gov (United States)

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  12. Diffraction-unlimited optical imaging of unstained living cells in liquid by electron beam scanning of luminescent environmental cells.

    Science.gov (United States)

    Miyazaki, Hideki T; Kasaya, Takeshi; Takemura, Taro; Hanagata, Nobutaka; Yasuda, Takeshi; Miyazaki, Hiroshi

    2013-11-18

    An environmental cell with a 50-nm-thick cathodoluminescent window was attached to a scanning electron microscope, and diffraction-unlimited near-field optical imaging of unstained living human lung epithelial cells in liquid was demonstrated. Electrons with energies as low as 0.8 - 1.2 kV are sufficiently blocked by the window without damaging the specimens, and form a sub-wavelength-sized illumination light source. A super-resolved optical image of the specimen adhered to the opposite window surface was acquired by a photomultiplier tube placed below. The cells after the observation were proved to stay alive. The image was formed by enhanced dipole radiation or energy transfer, and features as small as 62 nm were resolved.

  13. Unveiling the Mysteries of Mars with a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM)

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Doloboff, I. J.; Jerman, G.

    2017-01-01

    Development of a miniaturized scanning electron microscope that will utilize the martian atmosphere to dissipate charge during analysis continues. This instrument is expected to be used on a future rover or lander to answer fundamental Mars science questions. To identify the most important questions, a survey was taken at the 47th Lunar and Planetary Science Conference (LPSC). From the gathered information initial topics were identified for a SEM on the martian surface. These priorities are identified and discussed below. Additionally, a concept of operations is provided with the goal of maximizing the science obtained with the minimum amount of communication with the instrument.

  14. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting

    Science.gov (United States)

    Sin, Wai Jack; Nai, Mui Ling Sharon; Wei, Jun

    2017-01-01

    As one of the powder bed fusion additive manufacturing technologies, electron beam melting (EBM) is gaining more and more attention due to its near-net-shape production capacity with low residual stress and good mechanical properties. These characteristics also allow EBM built parts to be used as produced without post-processing. However, the as-built rough surface introduces a detrimental influence on the mechanical properties of metallic alloys. Thereafter, understanding the effects of processing parameters on the part’s surface roughness, in turn, becomes critical. This paper has focused on varying the processing parameters of two types of contouring scanning strategies namely, multispot and non-multispot, in EBM. The results suggest that the beam current and speed function are the most significant processing parameters for non-multispot contouring scanning strategy. While for multispot contouring scanning strategy, the number of spots, spot time, and spot overlap have greater effects than focus offset and beam current. The improved surface roughness has been obtained in both contouring scanning strategies. Furthermore, non-multispot contouring scanning strategy gives a lower surface roughness value and poorer geometrical accuracy than the multispot counterpart under the optimized conditions. These findings could be used as a guideline for selecting the contouring type used for specific industrial parts that are built using EBM. PMID:28937638

  15. Effects of Root Debridement With Hand Curettes and Er:YAG Laser on Chemical Properties and Ultrastructure of Periodontally-Diseased Root Surfaces Using Spectroscopy and Scanning Electron Microscopy

    Science.gov (United States)

    Amid, Reza; Gholami, Gholam Ali; Mojahedi, Masoud; Aghalou, Maryam; Gholami, Mohsen; Mirakhori, Mahdieh

    2017-01-01

    Introduction: The efficacy of erbium-doped yttrium aluminum garnet (Er:YAG) laser for root debridement in comparison with curettes has been the subject of many recent investigations. Considering the possibility of chemical and ultra-structural changes in root surfaces following laser irradiation, this study sought to assess the effects of scaling and root planing (SRP) with curettes and Er:YAG laser on chemical properties and ultrastructure of root surfaces using spectroscopy and scanning electron microscopy (SEM). Methods: In this in vitro experimental study, extracted sound human single-rooted teeth (n = 50) were randomly scaled using manual curettes alone or in conjunction with Er:YAG laser at 100 and 150 mJ/pulse output energies. The weight percentages of carbon, oxygen, phosphorous and calcium remaining on the root surfaces were calculated using spectroscopy and the surface morphology of specimens was assessed under SEM. Data were analyzed using one-way analysis of variance (ANOVA). Results: No significant differences (P > 0.05) were noted in the mean carbon, oxygen, phosphorous and calcium weight percentages on root surfaces following SRP using manual curettes with and without laser irradiation at both output energies. Laser irradiation after SRP with curettes yielded rougher surfaces compared to the use of curettes alone. Conclusion: Although laser irradiation yielded rougher surfaces, root surfaces were not significantly different in terms of chemical composition following SRP using manual curettes with and without Er:YAG laser irradiation. Er:YAG laser can be safely used as an adjunct to curettes for SRP. PMID:28652898

  16. Channelling phenomenon in the gamma irradiated Benzo-quinone and other compounds observed under the scanning electron microscope

    International Nuclear Information System (INIS)

    Suleiman, Y.M.

    1984-01-01

    Scanning Electron Microscope (S.E.M.), has been used to examine the gamma irradiated pure crystals of Benzo-quinone and other compounds in the polycrystaline form. After gamma irradiation, shallow lines (channels) were observed on the crystal's surfaces when the crystal layers arrangements are parallel to the photons beam direction. Holes were also observed when those layers of the crystals are in the nonparallel case. The phenomenon has been studied and analysed in connected with the H-atom bonds disruption, and H-atoms migration through the crystal's layers. (author)

  17. Surface composite nanostructures of AZ91 magnesium alloy induced by high current pulsed electron beam treatment

    International Nuclear Information System (INIS)

    Li, M.C.; Hao, S.Z.; Wen, H.; Huang, R.F.

    2014-01-01

    High current pulsed electron beam (HCPEB) treatment was conducted on an AZ91 cast magnesium alloy with accelerating voltage 27 kV, energy density 3 J/cm 2 and pulse duration 2.5 μs. The surface microstructure was characterized by optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), and transmission electron microscope (TEM). The surface corrosion property was tested with electrochemical method in 3.5 wt.% NaCl solution. It is found that after 1 pulse of HCPEB treatment, the initial eutectic α phase and Mg 17 Al 12 particles started to dissolve in the surface modified layer of depth ∼15 μm. When using 15 HCPEB pulses, the Al content in surface layer increased noticeably, and the phase structure was modified as composite nanostructures consisted of nano-grained Mg 3.1 Al 0.9 domains surrounded by network of Mg 17 Al 12 phase. The HCPEB treated samples showed an improved corrosion resistance with cathodic current density decreased by two orders of magnitude as compared to the initial AZ91 alloy.

  18. Challenges of microtome‐based serial block‐face scanning electron microscopy in neuroscience

    Science.gov (United States)

    WANNER, A. A.; KIRSCHMANN, M. A.

    2015-01-01

    Summary Serial block‐face scanning electron microscopy (SBEM) is becoming increasingly popular for a wide range of applications in many disciplines from biology to material sciences. This review focuses on applications for circuit reconstruction in neuroscience, which is one of the major driving forces advancing SBEM. Neuronal circuit reconstruction poses exceptional challenges to volume EM in terms of resolution, field of view, acquisition time and sample preparation. Mapping the connections between neurons in the brain is crucial for understanding information flow and information processing in the brain. However, information on the connectivity between hundreds or even thousands of neurons densely packed in neuronal microcircuits is still largely missing. Volume EM techniques such as serial section TEM, automated tape‐collecting ultramicrotome, focused ion‐beam scanning electron microscopy and SBEM (microtome serial block‐face scanning electron microscopy) are the techniques that provide sufficient resolution to resolve ultrastructural details such as synapses and provides sufficient field of view for dense reconstruction of neuronal circuits. While volume EM techniques are advancing, they are generating large data sets on the terabyte scale that require new image processing workflows and analysis tools. In this review, we present the recent advances in SBEM for circuit reconstruction in neuroscience and an overview of existing image processing and analysis pipelines. PMID:25907464

  19. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  20. Analysis of archaeological materials through Scanning electron microscopy

    International Nuclear Information System (INIS)

    Camacho, A.; Tenorio C, D.; Elizalde, S.; Mandujano, C.; Cassiano, G.

    2005-01-01

    With the purpose to know the uses and the chemical composition of some cultural objects in the pre hispanic epoch this work presents several types of analysis for identifying them by means of the Scanning electron microscopy and its techniques as the Functional analysis of artifacts based on the 'tracks of use' analysis, also the X-ray spectroscopy and the X-ray dispersive energy (EDS) are mentioned, all of them allowing a major approach to the pre hispanic culture in Mexico. (Author)

  1. A simple way to obtain backscattered electron images in a scanning transmission electron microscope.

    Science.gov (United States)

    Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki

    2014-08-01

    We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope

    International Nuclear Information System (INIS)

    Wang Peng; Behan, Gavin; Kirkland, Angus I.; Nellist, Peter D.; Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2010-01-01

    We demonstrate that a transmission electron microscope fitted with two spherical-aberration correctors can be operated as an energy-filtered scanning confocal electron microscope. A method for establishing this mode is described and initial results showing 3D chemical mapping with nanoscale sensitivity to height and thickness changes in a carbon film are presented. Importantly, uncorrected chromatic aberration does not limit the depth resolution of this technique and moreover performs an energy-filtering role, which is explained in terms of a combined depth and energy-loss response function.

  3. Electronic structure and topography of annealed SrTiO3(1 1 1) surfaces studied with MIES and STM

    International Nuclear Information System (INIS)

    Goemann, Anissa; Goemann, Karsten; Frerichs, Martin; Kempter, Volker; Borchardt, Guenter; Maus-Friedrichs, Wolfgang

    2005-01-01

    Perovskites of ABO 3 type like strontium titanate (SrTiO 3 ) are of great practical concern as materials for oxygen sensors operating at high temperatures. It is well known that the surface layer shows different properties compared to the bulk. Numerous studies exist for the SrTiO 3 (1 0 0) and (1 1 0) surfaces which have investigated the changes in the electronic structure and topography as a function of the preparation conditions. They have indicated a rather complex behaviour of the surface and the near surface region of SrTiO 3 at elevated temperatures. Up to now, the behaviour of the SrTiO 3 (1 1 1) surfaces under thermal treatment is not sufficiently known. This contribution is intended to work out the relation between alteration of the surface topography with respect to the preparation conditions and the simultaneous changes of the electronic structure. We applied scanning tunneling microscopy (STM) to investigate the surface topography and, additionally, metastable impact electron spectroscopy (MIES) to study the surface electronic structure of reconstructed SrTiO 3 (1 1 1) surfaces. The crystals were heated up to 1000 deg. C under reducing and oxidizing conditions. Both preparation conditions cause strong changes of the surface topography and electronic structure. A microfaceting of the topmost layers is found

  4. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  5. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    Science.gov (United States)

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-12-01

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  6. Development of a method of absorbed dose on-line monitoring at product processing by scanned electron beam

    International Nuclear Information System (INIS)

    Pomatsalyuk, R.I.; Shevchenko, V.A.; Tenishev, A.Eh.; Titov, D.V.; Uvarov, V.L.

    2016-01-01

    The conditions of the contact-free absorbed dose monitoring at industrial product processing by electron beam are investigated. The method is based on analysing the collected charge in a stack monitor (SM) mounted down-stream of irradiated object. Using computer simulation on the basis of a modified transport code PENELOPE-2008, it is shown that by placing a filter of low-energy electrons before SM it is possible to obtain the one-to-one correlation dependence between the monitor charge and absorbed energy of radiation in the processed object. At a certain surface density of the filter, this dependence takes on the form similar to linear. The possibility to use an air gap between the object and SM as such a filter has been demonstrated. For the conditions of radiation plant with an electron accelerator LU-10 of NSC KIPT, the optimum distance of the SM location has been established. For the practical range of the electron energy, beam scan width and surface density of the irradiated product, the constants of ''product absorbed energy-to- SM charge '' linear dependence have been determined. The capability to establish the average absorbed dose in the object moving trough the irradiation zone on the SM current is shown. The calculation data are in satisfactory agreement with the results of measurements.

  7. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: maqomer@yahoo.com [Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan); Ali, G.; Ahmed, Ejaz; Haq, M.A.; Akhter, J.I. [Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan)

    2011-06-15

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  8. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    Science.gov (United States)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M. A.; Akhter, J. I.

    2011-06-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  9. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    International Nuclear Information System (INIS)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M.A.; Akhter, J.I.

    2011-01-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  10. Improved coating and fixation methods for scanning electron microscope autoradiography

    International Nuclear Information System (INIS)

    Weiss, R.L.

    1984-01-01

    A simple apparatus for emulsion coating is described. The apparatus is inexpensive and easily assembled in a standard glass shop. Emulsion coating for scanning electron microscope autoradiography with this apparatus consistently yields uniform layers. When used in conjunction with newly described fixation methods, this new approach produces reliable autoradiographs of undamaged specimens

  11. The importance of scanning electron microscopy (sem in taxonomy and morphology of Chironomidae (Diptera

    Directory of Open Access Journals (Sweden)

    Andrzej Kownacki

    2015-07-01

    Full Text Available The paper reports on the value of scanning electron microscopy (SEM in the taxonomy and morphology of Chironomidae. This method has been relatively rarely used in Chironomidae studies. Our studies suggest that the SEM method provides a lot of new information. For example, the plastron plate of the thoracic horn of Macropelopia nebulosa (Meigen under light microscopy is visible as points, while under SEM we have found that it consists of a reticular structure with holes. By using SEM a more precise picture of the body structure of Chironomidae can be revealed. It allows researchers to explain inconsistencies in the existing descriptions of species. Another advantage of the SEM method is obtaining spatial images of the body and organs of Chironomidae. However, the SEM method also has some limitations. The main problem is dirt or debris (e.g. algae, mud, secretions, mucus, bacteria, etc., which often settles on the external surface of structures, especially those which are uneven or covered with hair. The dirt should be removed after collection of chironomid material because if left in place it can become chemically fixed to various surfaces. It unnecessarily remains at the surface and final microscopic images may contain artifacts that obscure chironomid structures being investigated. In this way many details of the surface are thus unreadable. The results reported here indicate that SEM examination helps us to identify new morphological features and details that will facilitate the identification of species of Chironomidae and may help to clarify the function of various parts of the body. Fast development of electron microscope technique allows us to learn more about structure of different organisms.

  12. Electronic structure and dynamics of metal and metal-covered surfaces

    International Nuclear Information System (INIS)

    Yang, Shu.

    1992-01-01

    The unoccupied electronic states of;Ni(111) and Al(111) have been studied using angle-resolved inverse-photoemission (IPE) spectroscopy. We have characterized the n = 1 image potential state on Ni(111) measuring an effective mass of m * /m = 1, consistent with recent two-photon photoemission results as well as theoretical calculations using a phase-analysis model, but differing considerably from the earlier angle-resolved IPE measurements. The bulk related features on Ni(111) observed in our experiment agree very well with an empirical Ni band structure calculation. On Al(111), we have conducted an extensive study of the image potential resonance using both angle-resolved IPE spectroscopy and tunneling spectroscopy with the scanning tunneling microscope. We have used Al as a testing case for both nearly-free-electron model and first-principles calculations were needed to obtain a semi-quantitative account of the bulk features of Al, a simple metal. Improved quantitative agreement occurred when excitation effects were considered. In addition, several surface resonance features have been identified and characterized on Al(111). We have also conducted a geometric structural investigation of a metal overlayer system, Ni/Cu(111), using high-resolution electron energy loss spectroscopy with CO as a probe molecule. The results indicate island formation and two-dimensional mixing at the initial stage of bimetallic interface formation. A new adsorption site with CO bonded to both Ni and Cu has been discovered on the Ni-Cu intermixed surface. IPE results for the Cu-covered Ni(111) surface show an enhanced angular range for the Cu image state. Finally, the unique ability of Auger-photoelectron coincidence spectroscopy to probing local valence electronic structure has been tested in a case study of TaC(111). A novel Auger decay channel has also been observed

  13. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    Science.gov (United States)

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  14. Effect of fluoride and cobalt on forming enamel: scanning electron microscope and X-ray microanalysis study

    International Nuclear Information System (INIS)

    Ashrafi, S.H.; Eisenmann, D.R.; Zaki, A.E.; Liss, R.

    1988-01-01

    The forming surfaces of enamel of rat incisors were examined by scanning electron microscope one hour after injection of either 5 mg/100 g body weight of sodium fluoride or 12 mg/100 g body weight of cobalt chloride. The cell debris from the surfaces of the separated incisors was either gently wiped off with soft facial tissues or chemically removed by treating with NaOH, NaOCl or trypsin. Best results to remove cell debris were obtained from 0.25% trypsin treatment. SEM studies revealed that the surface of the normal secretory enamel was characteristic in appearance with well-developed smooth prism outlines. In fluoride specimens the prism outlines were feathery in appearance, laced with protruding spine-shaped clusters of mineral crystals. In the case of cobalt treatment, prism outlines were less uniform and in some areas they were incomplete. The calcium concentration of surface enamel was significantly lower in the cobalt-treated specimens than those from control and fluoride-treated animals. The Ca:Mg ratio was also lower in cobalt-treated specimens as compared to control and fluoride-treated ones

  15. A surface refractive index scanning system and method

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a surface refractive index scanning system for characterization of a sample. The system comprises a grating device for holding or receiving the sample, the device comprising at least a first grating region having a first grating width along a transverse direction, and a s......The invention relates to a surface refractive index scanning system for characterization of a sample. The system comprises a grating device for holding or receiving the sample, the device comprising at least a first grating region having a first grating width along a transverse direction...... a grating period Λ2 in the longitudinal direction, where the longitudinal direction is orthogonal to the transverse direction. A grating period spacing ΔΛ = Λ1 - Λ2 is finite. Further, the first and second grating periods are chosen to provide optical resonances for light respectively in a first...... wavelength band and a second wavelength band, light is being emitted, transmitted, or reflected in an out-of-plane direction, wherein the first wavelength band and the second wavelength band are at least partially non-overlapping in wavelength. The system further comprises a light source for illuminating...

  16. Surfaces and interfaces of electronic materials

    CERN Document Server

    Brillson, Leonard J

    2012-01-01

    An advanced level textbook covering geometric, chemical, and electronic structure of electronic materials, and their applications to devices based on semiconductor surfaces, metal-semiconductor interfaces, and semiconductor heterojunctions. Starting with the fundamentals of electrical measurements on semiconductor interfaces, it then describes the importance of controlling macroscopic electrical properties by atomic-scale techniques. Subsequent chapters present the wide range of surface and interface techniques available to characterize electronic, optical, chemical, and structural propertie

  17. Scanning electron and light microscopic study of microbial succession on bethlehem st. Nectaire cheese.

    Science.gov (United States)

    Marcellino, S N; Benson, D R

    1992-11-01

    St. Nectaire cheese is a semisoft cheese of French origin that, along with Brie and Camembert cheeses, belongs to the class of surface mold-ripened cheese. The surface microorganisms that develop on the cheese rind during ripening impart a distinctive aroma and flavor to this class of cheese. We have documented the sequential appearance of microorganisms on the cheese rind and in the curd over a 60-day ripening period. Scanning electron microscopy was used to visualize the development of surface fungi and bacteria. Light microscopy of stained paraffin sections was used to study cross sections through the rind. We also monitored the development of bacterial and yeast populations in and the pH of the curd and rind. The earliest stage of ripening (0 to 2 days) is dominated by the lactic acid bacterium Streptococcus cremoris and multilateral budding yeasts, primarily Debaryomyces and Torulopsis species. Geotrichum candidum follows closely, and then zygomycetes of the genus Mucor develop at day 4 of ripening. At day 20, the deuteromycete Trichothecium roseum appears. From day 20 until the end of the ripening process, coryneforms of the genera Brevibacterium and Arthrobacter can be seen near the surface of the cheese rind among fungal hyphae and yeast cells.

  18. Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization.

    Science.gov (United States)

    Li, Shan-Shan; Northrop, Brian H; Yuan, Qun-Hui; Wan, Li-Jun; Stang, Peter J

    2009-02-17

    Metallosupramolecular compounds have attracted a great deal of attention over the past two decades largely because of their unique, highly complex structural characteristics and their potential electronic, magnetic, optical, and catalytic properties. These molecules can be prepared with relative ease using coordination-driven self-assembly techniques. In particular, the use of electron-poor square-planar Pt(II) transition metals in conjunction with rigid, electron-rich pyridyl donors has enabled the spontaneous self-assembly of a rich library of 2D metallacyclic and 3D metallacage assemblies via the directional-bonding approach. With this progress in the preparation and characterization of metallosupramolecules, researchers have now turned their attention toward fully exploring and developing their materials properties. Assembling metallosupramolecular compounds on solid supports represents a vitally important step toward developing their materials properties. Surfaces provide a means of uniformly aligning and orienting these highly symmetric metallacycles and metallacages. This uniformity increases the level of coherence between molecules above that which can be achieved in the solution phase and provides a way to integrate adsorbed layers, or adlayers, into a solid-state materials setting. The dynamic nature of kinetically labile Pt(II)-N coordination bonds requires us to adjust deposition and imaging conditions to retain the assemblies' stability. Toward these aims, we have used scanning tunneling microscopy (STM) to image these adlayers and to understand the factors that govern surface self-assembly and the interactions that influence their structure and stability. This Account describes our efforts to deposit 2D rectangular and square metallacycles and 3D trigonal bipyramidal and chiral trigonal prism metallacages on highly oriented pyrolytic graphite (HOPG) and Au(111) substrates to give intact assemblies and ordered adlayers. We have investigated the effects

  19. Design and verification of the miniature optical system for small object surface profile fast scanning

    Science.gov (United States)

    Chi, Sheng; Lee, Shu-Sheng; Huang, Jen, Jen-Yu; Lai, Ti-Yu; Jan, Chia-Ming; Hu, Po-Chi

    2016-04-01

    As the progress of optical technologies, different commercial 3D surface contour scanners are on the market nowadays. Most of them are used for reconstructing the surface profile of mold or mechanical objects which are larger than 50 mm×50 mm× 50 mm, and the scanning system size is about 300 mm×300 mm×100 mm. There are seldom optical systems commercialized for surface profile fast scanning for small object size less than 10 mm×10 mm×10 mm. Therefore, a miniature optical system has been designed and developed in this research work for this purpose. Since the most used scanning method of such system is line scan technology, we have developed pseudo-phase shifting digital projection technology by adopting projecting fringes and phase reconstruction method. A projector was used to project a digital fringe patterns on the object, and the fringes intensity images of the reference plane and of the sample object were recorded by a CMOS camera. The phase difference between the plane and object can be calculated from the fringes images, and the surface profile of the object was reconstructed by using the phase differences. The traditional phase shifting method was accomplished by using PZT actuator or precisely controlled motor to adjust the light source or grating and this is one of the limitations for high speed scanning. Compared with the traditional optical setup, we utilized a micro projector to project the digital fringe patterns on the sample. This diminished the phase shifting processing time and the controlled phase differences between the shifted phases become more precise. Besides, the optical path design based on a portable device scanning system was used to minimize the size and reduce the number of the system components. A screwdriver section about 7mm×5mm×5mm has been scanned and its surface profile was successfully restored. The experimental results showed that the measurement area of our system can be smaller than 10mm×10mm, the precision reached to

  20. Influence of material surface on the scanning error of a powder-free 3D measuring system.

    Science.gov (United States)

    Kurz, Michael; Attin, Thomas; Mehl, Albert

    2015-11-01

    This study aims to evaluate the accuracy of a powder-free three-dimensional (3D) measuring system (CEREC Omnicam, Sirona), when scanning the surface of a material at different angles. Additionally, the influence of water was investigated. Nine different materials were combined with human tooth surface (enamel) to create n = 27 specimens. These materials were: Controls (InCoris TZI and Cerec Guide Bloc), ceramics (Vitablocs® Mark II and IPS Empress CAD), metals (gold and amalgam) and composites (Tetric Ceram, Filtek Supreme A2B and A2E). The highly polished samples were scanned at different angles with and without water. The 216 scans were then analyzed and descriptive statistics were obtained. The height difference between the tooth and material surfaces, as measured with the 3D scans, ranged from 0.83 μm (±2.58 μm) to -14.79 μm (±3.45 μm), while the scan noise on the materials was between 3.23 μm (±0.79 μm) and 14.24 μm (±6.79 μm) without considering the control groups. Depending on the thickness of the water film, measurement errors in the order of 300-1,600 μm could be observed. The inaccuracies between the tooth and material surfaces, as well as the scan noise for the materials, were within the range of error for measurements used for conventional impressions and are therefore negligible. The presence of water, however, greatly affects the scan. The tested powder-free 3D measuring system can safely be used to scan different material surfaces without the prior application of a powder, although drying of the surface prior to scanning is highly advisable.

  1. A study of internal oxidation in carburized steels by glow discharge optical emission spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    An, X; Cawley, J.; Rainforth, W.M.; Chen, L.

    2003-01-01

    The internal oxidation of Cr-Mn carburizing steel was studied. Internal oxidation was induced using a commercial carburizing process. Sputter erosion coupled with glow discharge optical emission spectroscopy (GDOES) was used to determine the depth profile elemental distribution within the internal oxidation layer (<10 μm). In addition, scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) studies were carried out on selected sputter eroded surfaces. Oxide type was identified primarily by transmission electron microscopy (TEM). The carburized surface was found to consist of a continuous oxide layer, followed by a complex internal oxidation layer, where Cr and Mn oxides were found to populate grain boundaries in a globular form in the near surface region. At greater depths (5-10 μm), Si oxides formed as a grain boundary network. The internal oxides (mainly complex oxides) grew quickly during the initial stages of the carburizing process (2 h, 800 deg. C+3 h, 930 deg. C). GDOES proved to be an excellent tool for the quantification of oxidation and element distribution as a function of depth, particularly when combined with SEM and TEM to identify oxide type and morphology

  2. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.S., E-mail: jinsong-wu@northwestern.edu [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Kim, A.M. [Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Bleher, R. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Myers, B.D. [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Marvin, R.G. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Inada, H.; Nakamura, K. [Hitachi High-Technologies Corporation, Ibaraki 312-8504 (Japan); Zhang, X.F. [Hitachi High Technologies America, Inc., 5960 Inglewood Drive, Pleasanton, California 94588 (United States); Roth, E. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Li, S.Y. [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); and others

    2013-05-15

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. - Highlights: ► Applications of STEM in characterization of biological samples are demonstrated. ► Elemental analyses are performed by dual EDS and EELS. ► Both the surface and internal structure of cells can be studied simultaneously. ► The imaging contrast in low-dose cryo-STEM has been analyzed.

  3. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Wu, J.S.; Kim, A.M.; Bleher, R.; Myers, B.D.; Marvin, R.G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. - Highlights: ► Applications of STEM in characterization of biological samples are demonstrated. ► Elemental analyses are performed by dual EDS and EELS. ► Both the surface and internal structure of cells can be studied simultaneously. ► The imaging contrast in low-dose cryo-STEM has been analyzed

  4. Three-dimensional optical transfer functions in the aberration-corrected scanning transmission electron microscope.

    Science.gov (United States)

    Jones, L; Nellist, P D

    2014-05-01

    In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  5. An overview on bioaerosols viewed by scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wittmaack, K. [GSF-National Research Centre for Environment and Health, Institute of Radiation Protection, 85758 Neuherberg (Germany)]. E-mail: wittmaack@gsf.de; Wehnes, H. [GSF-National Research Centre for Environment and Health, Institute of Pathology, 85758 Neuherberg (Germany); Heinzmann, U. [GSF-National Research Centre for Environment and Health, Institute of Pathology, 85758 Neuherberg (Germany); Agerer, R. [Ludwig-Maximilians University Munich, Department Biology, Biodiversity Research: Mycology, Menzinger Stasse 67, 80638 Munich (Germany)

    2005-06-15

    Bioaerosols suspended in ambient air were collected with single-stage impactors at a semiurban site in southern Germany during late summer and early autumn. Sampling was mostly carried out at a nozzle velocity of 35 m/s, corresponding to a minimum aerodynamic diameter (cut-off diameter) of aerosol particles of 0.8 {mu}m. The collected particles, sampled for short periods ({approx}15 min) to avoid pile-up, were characterized by scanning electron microscopy (SEM). The observed bioaerosols include brochosomes, fungal spores, hyphae, insect scales, hairs of plants and, less commonly, bacteria and epicuticular wax. Brochosomes, which serve as a highly water repellent body coating of leafhoppers, are hollow spheroids with diameters around 400 nm, resembling C{sub 60} or footballs (soccer balls). They are usually airborne not as individuals but in the form of large clusters containing up to 10,000 individual species or even more. Various types of spores and scales were observed, but assignment turned out be difficult due to the large number of fungi and insects from which they may have originated. Pollens were observed only once. The absence these presumably elastic particles suggests that they are frequently lost, at the comparatively high velocities, due to bounce-off from the nonadhesive impaction surfaces.

  6. An overview on bioaerosols viewed by scanning electron microscopy

    International Nuclear Information System (INIS)

    Wittmaack, K.; Wehnes, H.; Heinzmann, U.; Agerer, R.

    2005-01-01

    Bioaerosols suspended in ambient air were collected with single-stage impactors at a semiurban site in southern Germany during late summer and early autumn. Sampling was mostly carried out at a nozzle velocity of 35 m/s, corresponding to a minimum aerodynamic diameter (cut-off diameter) of aerosol particles of 0.8 μm. The collected particles, sampled for short periods (∼15 min) to avoid pile-up, were characterized by scanning electron microscopy (SEM). The observed bioaerosols include brochosomes, fungal spores, hyphae, insect scales, hairs of plants and, less commonly, bacteria and epicuticular wax. Brochosomes, which serve as a highly water repellent body coating of leafhoppers, are hollow spheroids with diameters around 400 nm, resembling C 60 or footballs (soccer balls). They are usually airborne not as individuals but in the form of large clusters containing up to 10,000 individual species or even more. Various types of spores and scales were observed, but assignment turned out be difficult due to the large number of fungi and insects from which they may have originated. Pollens were observed only once. The absence these presumably elastic particles suggests that they are frequently lost, at the comparatively high velocities, due to bounce-off from the nonadhesive impaction surfaces

  7. Qualitative analysis of barium particles coated in small intestinal mucosa of rabbit by using scanning electron microscopy

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Ha, Hyun Kwon; Lee, Yang Seob; Kim, Jae Kyun; Yoon, Seong Eon; Kim, Jung Hoon; Chung, Dong Jin; Auh, Yong Ho

    1998-01-01

    To qualitatively analysed barium coating status in the intestinal mucosa, we used scanning electron microscopy to observe barium particles coated in the small intestinal mucosa of rabbit, and we attempted to assess the relationship between electron microscopic findings and radiographic densities. Six different combination of barium and methylcellulose suspensions were infused into the resected small intestines of 15 rabbits. Barium powders were mixed with water to make 40% and 70% w/v barium solutions, and also mixed with 0.5% methylcellulose solutions were used as a double contrast agent. After the infusion of barium suspensions, a mammography unit was used to obtain radiographs of the small intestine, and their optical densities were measured by a densitometer. Thereafter, photographs of barium-coated small intestinal mucosa were obtained using a scanning electron microscope (x 8,000), and the number of barium particles in the unit area were measured. To compare the relationship between the electron microscopic findings and optical densities, statistical analysis using Spearman correlation was performed. This study shows that by using scanning electron microscopy, barium particles coated on the small intestinal mucosa can be qualitatively analysed. It also shows that the number of small barium particles measured by scanning electron microscopy is related to optical densities. (author). 14 refs., 2 figs

  8. Characterization of catalysts by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Targos, W.M.; Bradley, S.A.

    1989-01-01

    The dedicated scanning transmission electron microscope (STEM) is an integral tool for characterizing catalysts because of its unique ability to image and analyze nanosized volumes. This information is valuable in optimizing catalyst formulations and determining causes for reduced catalyst performance. For many commercial catalysts direct correlations between structural features of metal crystallites and catalytic performance are not attainable. When these instances occur, determination of elemental distribution may be the only information available. In this paper the authors discuss some of the techniques employed and limitations associated with characterizing commercial catalysts

  9. Validation of phalanx bone three-dimensional surface segmentation from computed tomography images using laser scanning

    International Nuclear Information System (INIS)

    DeVries, Nicole A.; Gassman, Esther E.; Kallemeyn, Nicole A.; Shivanna, Kiran H.; Magnotta, Vincent A.; Grosland, Nicole M.

    2008-01-01

    To examine the validity of manually defined bony regions of interest from computed tomography (CT) scans. Segmentation measurements were performed on the coronal reformatted CT images of the three phalanx bones of the index finger from five cadaveric specimens. Two smoothing algorithms (image-based and Laplacian surface-based) were evaluated to determine their ability to represent accurately the anatomic surface. The resulting surfaces were compared with laser surface scans of the corresponding cadaveric specimen. The average relative overlap between two tracers was 0.91 for all bones. The overall mean difference between the manual unsmoothed surface and the laser surface scan was 0.20 mm. Both image-based and Laplacian surface-based smoothing were compared; the overall mean difference for image-based smoothing was 0.21 mm and 0.20 mm for Laplacian smoothing. This study showed that manual segmentation of high-contrast, coronal, reformatted, CT datasets can accurately represent the true surface geometry of bones. Additionally, smoothing techniques did not significantly alter the surface representations. This validation technique should be extended to other bones, image segmentation and spatial filtering techniques. (orig.)

  10. Validation of phalanx bone three-dimensional surface segmentation from computed tomography images using laser scanning

    Energy Technology Data Exchange (ETDEWEB)

    DeVries, Nicole A.; Gassman, Esther E.; Kallemeyn, Nicole A. [The University of Iowa, Department of Biomedical Engineering, Center for Computer Aided Design, Iowa City, IA (United States); Shivanna, Kiran H. [The University of Iowa, Center for Computer Aided Design, Iowa City, IA (United States); Magnotta, Vincent A. [The University of Iowa, Department of Biomedical Engineering, Department of Radiology, Center for Computer Aided Design, Iowa City, IA (United States); Grosland, Nicole M. [The University of Iowa, Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, Center for Computer Aided Design, Iowa City, IA (United States)

    2008-01-15

    To examine the validity of manually defined bony regions of interest from computed tomography (CT) scans. Segmentation measurements were performed on the coronal reformatted CT images of the three phalanx bones of the index finger from five cadaveric specimens. Two smoothing algorithms (image-based and Laplacian surface-based) were evaluated to determine their ability to represent accurately the anatomic surface. The resulting surfaces were compared with laser surface scans of the corresponding cadaveric specimen. The average relative overlap between two tracers was 0.91 for all bones. The overall mean difference between the manual unsmoothed surface and the laser surface scan was 0.20 mm. Both image-based and Laplacian surface-based smoothing were compared; the overall mean difference for image-based smoothing was 0.21 mm and 0.20 mm for Laplacian smoothing. This study showed that manual segmentation of high-contrast, coronal, reformatted, CT datasets can accurately represent the true surface geometry of bones. Additionally, smoothing techniques did not significantly alter the surface representations. This validation technique should be extended to other bones, image segmentation and spatial filtering techniques. (orig.)

  11. Scanning tunneling microscopy and spectroscopy on GaN and InGaN surfaces; Rastertunnelmikroskopie und -spektroskopie an GaN- und InGaN-Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, David

    2009-12-02

    Optelectronic devices based on gallium nitride (GaN) and indium gallium nitride (InGaN) are in the focus of research since more than 20 years and still have great potential for optical applications. In the first part of this work non-polar surfaces of GaN are investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and scanning tunneling microscopy (STM). In SEM and AFM, the (1 anti 100)- and especially the (anti 2110)-plane are quite corrugated. For the first time, the (anti 2110)-plane of GaN is atomically resolved in STM. In the second part InGaN quantum dot layers are investigated by X-ray photoelectron spectroscopy (XPS), scanning tunneling spectroscopy (STS) and STM. The STMmeasurements show the dependency of surface morphology on growth conditions in the metalorganic vapour phase epitaxy (MOVPE). Nucleation, a new MOVPE-strategy, is based on phase separations on surfaces. It is shown that locally varying density of states and bandgaps can be detected by STS, that means bandgap histograms and 2D-bandgap-mapping. (orig.)

  12. In-Situ Microprobe Observations of Dispersed Oil with Low-Temperature Low-Vacuum Scanning Electron Microscope

    International Nuclear Information System (INIS)

    Mohsen, H.T.

    2010-01-01

    A low cost cryostat stage from high heat capacity material is designed and constructed, in attempt to apply size distribution techniques for examination of oil dispersions. Different materials were tested according to their heat capacity to keep the liquid under investigation in frozen state as long as possible during the introduction of the cryostat stage to the low-vacuum scanning electron microscope. Different concentrations of non ionic surfactant were added to artificially contaminated with 10000 ppm Balayeam base oil in 3.5 % saline water, where oil and dispersing liquid have been added and shacked well to be investigated under the microscope as fine frozen droplets. The efficiency of dispersion was examined using low temperature low-vacuum scanning electron microscope. The shape and size distributions of freeze oil droplets were studied by digital imaging processing technique in conjunction with scanning electron microscope counting method. Also elemental concentration of oil droplets was analyzed.

  13. Simultaneous correlative scanning electron and high-NA fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Nalan Liv

    Full Text Available Correlative light and electron microscopy (CLEM is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown.

  14. Fast-scan em with digital image processing for dynamic experiments

    Science.gov (United States)

    Charles W. McMillin; Fred C. Billingsley; Robert E. Frazer

    1973-01-01

    The recent introduction of accessory instrumentation capable of display at television scan rates suggests a broadened application for the scanning electron microscope - the direct observation of motion (dynamic events) at magnifactions otherwise unattainable. In one illustrative experiment, the transverse surface of southern pine was observed when subjected to large...

  15. Surface electrons of helium films

    International Nuclear Information System (INIS)

    Studart, N.; Hipolito, O.

    1986-01-01

    Theoretical calculations of some properties of two-dimensional electrons on a liquid helium film adsorbed on a solid substrate are reviewed. We describe the spectrum of electron bound states on bulk helium as well on helium films. The correlational properties, such as the structure factor and correlation energy, are determined as functions of the film thickness for different types of substrates in the framework of a Generalized Random-Phase Approximation. The collective excitations of this system are also described. The results for electrons on the surface of thin films and bulk helium are easily obtained. we examine the electron interaction with the excitations of the liquid helium surface resulting in a new polaron state, which was observed very recently. The ground state energy and the effective mass of this polaron are determined by using the path-integral formalism and unitary-transformation method. Recent speculations about the phase diagram of electrons on the helium film are also discussed. (Author) [pt

  16. Morphology of gills of the seawater fish Cathorops spixii (Agassiz (Ariidae by scanning and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Daura R. Eiras-Stofella

    2002-12-01

    Full Text Available Gills of the seawater fish Cathorops spixii (Agassiz, 1829 were submitted to routine processing for observation in scanning and transmission electron microscopy. The wrinkled surface of the gill filaments showed well-defined cellular ultrastructures. Microridges on cellular surface were projected over all gill structures, including respiratory lamellae. Chloride cells were usually at primary lamellae. Some rodlet cells were found. Mucous secretory cells were uncommon at all parts of the gill arches. The pharyngeal region of the gill arches showed a lot of taste buds but no spines. There were small and strong rakers. Such morphology is indicative of fishes that swallow small food but do not have filtering habits. At the ultrastructural level the gills of C. spixii presented the typical morphological pattern of Teleostei fishes.

  17. Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques

    International Nuclear Information System (INIS)

    Zhang Yue-Fei; Wang Li; Wei Bin; Ji Yuan; Han Xiao-Dong; Zhang Ze; Heiderhoff, R.; Geinzer, A. K.; Balk, L. J.

    2012-01-01

    The local thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the AlN sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3ω method. A thermal conductivity of 308 W/m·K within grains corresponding to that of high-purity single crystal AlN is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy. (condensed matter: structural, mechanical, and thermal properties)

  18. Correlative Analysis of Immunoreactivity in Confocal Laser-Scanning Microscopy and Scanning Electron Microscopy with Focused Ion Beam Milling

    Directory of Open Access Journals (Sweden)

    Takahiro eSonomura

    2013-02-01

    Full Text Available Three-dimensional reconstruction of ultrastructure of rat brain with minimal effort has recently been realized by scanning electron microscopy combined with focused ion beam milling (FIB-SEM. Because application of immunohistochemical staining to electron microscopy has a great advantage in that molecules of interest are specifically localized in ultrastructures, we here tried to apply immunocytochemistry to FIB-SEM and correlate immunoreactivity in confocal laser-scanning microcopy (CF-LSM with that in FIB-SEM. The dendrites of medium-sized spiny neurons in rat neostriatum were visualized with a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion, and thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2. After detecting the sites of terminals apposed to the dendrites in CF-LSM, GFP and VGluT2 immunoreactivities were further developed for electron microscopy by the immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB methods, respectively. In the contrast-inverted FIB-SEM images, silver precipitation and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were easily recognizable as in the images of transmission electron microscopy. In the sites of interest, some appositions were revealed to display synaptic specialization of asymmetric type. The present method is thus useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connection in the central neural circuit.

  19. Theoretical analysis of moiré fringe multiplication under a scanning electron microscope

    International Nuclear Information System (INIS)

    Li, Yanjie; Xie, Huimin; Chen, Pengwan; Zhang, Qingming

    2011-01-01

    In this study, theoretical analysis and experimental verification of fringe multiplication under a scanning electron microscope (SEM) are presented. Fringe multiplication can be realized by enhancing the magnification or the number of scanning lines under the SEM. A universal expression of the pitch of moiré fringes is deduced. To apply this method to deformation measurement, the calculation formulas of strain and displacement are derived. Compared to natural moiré, the displacement sensitivity is increased by fringe multiplication while the strain sensitivity may be retained or enhanced depending on the number of scanning lines used. The moiré patterns are formed by the interference of a 2000 lines mm −1 grating with the scanning lines of SEM, and the measured parameters of moiré fringes from experimental results agree well with theoretical analysis

  20. EDITORIAL: Three decades of scanning tunnelling microscopy that changed the course of surface science Three decades of scanning tunnelling microscopy that changed the course of surface science

    Science.gov (United States)

    Ramachandra Rao, M. S.; Margaritondo, Giorgio

    2011-11-01

    Three decades ago, with a tiny tip of platinum, the scientific world saw the real space imaging of single atoms with unprecedented spatial resolution. This signalled the birth of one of the most versatile surface probes, based on the physics of quantum mechanical tunnelling: the scanning tunnelling microscope (STM). Invented in 1981 by Gerd Binnig and Heinrich Rohrer of IBM, Zurich, it led to their award of the 1986 Nobel Prize. Atoms, once speculated to be abstract entities used by theoreticians for mere calculations, can be seen to exist for real with the nano-eye of an STM tip that also gives real-space images of molecules and adsorbed complexes on surfaces. From a very fundamental perspective, the STM changed the course of surface science and engineering. STM also emerged as a powerful tool to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as tribology, medical implants, catalysis, sensors and biology—besides elucidating the importance of local bonding geometries and defects, non-periodic structures and the co-existence of nano-scale phases. Atom-level probing, once considered a dream, has seen the light with the evolution of STM. An important off-shoot of STM was the atomic force microscope (AFM) for surface mapping of insulating samples. Then followed the development of a flurry of techniques under the general name of scanning probe microscopy (SPM). These techniques (STM, AFM, MFM, PFM etc) designed for atomic-scale-resolution imaging and spectroscopy, have led to brand new developments in surface analysis. All of these novel methods enabled researchers in recent years to image and analyse complex surfaces on microscopic and nanoscopic scales. All of them utilize a small probe for sensing the surface. The invention of AFM by Gerd Binnig, Calvin Quate and Christopher Gerber opened up new opportunities for characterization of a variety of materials, and various industrial applications could be

  1. Scanning electron microscope - some aspects of the instrument and its applications

    International Nuclear Information System (INIS)

    Thatte, M.R.

    1976-01-01

    Development of the science of microscopy leading to three different types of microscopes - the optical, the conventional transmission electron microscope (CTEM) and the scanning electron microscope(SEM) has been discussed. Special advantages of the SEM in the solution of problems in industrial laboratories are mentioned. A brief reference to the latest instruments announced by Siemens AG shows the modern trends in the technique. A close similarity in image building between SEM and television is indicated. Operational anatomy of the SEM is reviewed. (author)

  2. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  3. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Science.gov (United States)

    Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508

  4. Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments

    NARCIS (Netherlands)

    Rubio-Bollinger, G.; Castellanos-Gomez, A.; Bilan, S.; Zotti, L.A.; Arroyo, C.R.; Agraït, N.; Cuevas, J.

    2012-01-01

    We fabricate and characterize carbon-fiber tips for their use in combined scanning tunneling and force microscopy based on piezoelectric quartz tuning fork force sensors. An electrochemical fabrication procedure to etch the tips is used to yield reproducible sub-100-nm apex. We also study electron

  5. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Teruo, E-mail: t.hashimoto@manchester.ac.uk; Thompson, George E.; Zhou, Xiaorong; Withers, Philip J.

    2016-04-15

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. - Highlights: • The roughness of the ultramicrotomed block face of AA2024 in Al area was 1.2 nm. • Surface texture associated with chattering was evident in grains with 45° diamond knife. • A 76° rake angle minimises the stress on the block face. • Using the oscillating knife with a cutting speed of 0.04 mms{sup −1} minimised the surface texture. • A variety of material applications were presented.

  6. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    Science.gov (United States)

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Electron emission at the rail surface

    International Nuclear Information System (INIS)

    Thornhill, L.; Battech, J.

    1991-01-01

    In this paper the authors examine the processes by which current is transferred from the cathode rail to the plasma armature in an arc-driven railgun. Three electron emission mechanisms are considered, namely thermionic emission, field-enhanced thermionic emission (or Schottky emission), and photoemission. The author's calculations show that the dominant electron emission mechanism depends, to a great extent, on the work function of the rail surface, the rail surface temperature, the electric field at the rail surface, and the effective radiation temperature of the plasma. For conditions that are considered to be typical of a railgun armature, Schottky emission is the dominant electron emission mechanism, providing current densities on the order of 10 9 A/m 2

  8. Electron curing of surface coatings

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1974-01-01

    The technical development of electron curing of surface coatings has received great impetus since 1970 from dramatic changes in the economics of the conventional thermal process. The most important of these changes are reviewed, including: the Clear Air Act, increasing cost and restrictive allocation of energy, decreased availability and increased costs of solvents, competitive pressure for higher line productivity. The principles of free-radical initiated curing as they pertain to industrial coatings are reviewed. Although such electron initiated processes have been under active development for at least two decades, high volume production applications on an industrial scale have only recently appeared. These installations are surveyed with emphasis on the developments in machinery and coatings which have made this possible. The most significant economic advantages of electron curing are presented. In particular, the ability of electron curing to eliminate substrate damage and to eliminate the curing station (oven) as the pacing element for most industrial surface coating curing applications is discussed. Examples of several new processes of particular interest in the textile industry are reviewed, including the curing of transfer cast urethane films, flock adhesives, and graftable surface finishes

  9. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.

    Science.gov (United States)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-03-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  10. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Colliex, Christian, E-mail: christian.colliex@u-psud.fr; Kociak, Mathieu; Stéphan, Odile

    2016-03-15

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  11. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale

    International Nuclear Information System (INIS)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-01-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  12. Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion

    International Nuclear Information System (INIS)

    Svensson, K.; Jompol, Y.; Olin, H.; Olsson, E.

    2003-01-01

    A scanning tunneling microscope (STM) with a compact, three-dimensional, inertial slider design is presented. Inertial sliding of the STM tip, in three dimensions, enables coarse motion and scanning using only one piezoelectric tube. Using the same electronics both for scanning and inertial sliding, step lengths of less than 5% of the piezo range were achieved. The compact design, less than 1 cm3 in volume, ensures a low mechanical noise level and enables us to fit the STM into the sample holder of a transmission electron microscope (TEM), while maintaining atomic scale resolution in both STM and TEM imaging

  13. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    Science.gov (United States)

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    Science.gov (United States)

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  15. Healthy and diseased striated muscle studied by analytical scanning electron microscopy with special reference to fibre type

    International Nuclear Information System (INIS)

    Wroblewski, R.

    1982-01-01

    X-ray microanalytical investigations of striated muscles in the scanning electron microscope are reviewed. The main part of the studies was performed on cryosections cut with a conventional cryostat operating at -20 degrees C to -40 degrees C. The preparation procedure including different types of attachment of the sections to the specimen holder is described in detail. The elemental changes in muscle are related to the muscle fibre type as demonstrated by histochemical methods or to histochemically demonstrated inclusions in diseased muscles. This is of great importance, because muscle disorders are often characterised by selective involvement of different muscle fibre types. The preparation methods of muscle for analytical scanning electron microscopy and the obtained results are compared with studies performed on thin cryo and epoxy sections, analysed in the transmission and scanning-transmission electron microscope. It is evident that X-ray microanalysis performed on thick cryosections provide a quick survey of the elemental composition of whole cells, and should be followed in interesting cases by close examination on the organelle level studied in thin cryosections in the transmission and scanning-transmission electron microscope

  16. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope.

    Science.gov (United States)

    den Engelsen, Daniel; Harris, Paul G; Ireland, Terry G; Fern, George R; Silver, Jack

    2015-10-01

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Fabrication of all diamond scanning probes for nanoscale magnetometry

    OpenAIRE

    Appel Patrick; Neu Elke; Ganzhorn Marc; Barfuss Arne; Batzer Marietta; Gratz Micha; Tschoepe Andreas; Maletinsky Patrick

    2016-01-01

    The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes s...

  18. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.; Williams, C. C., E-mail: clayton@physics.utah.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  19. A morphological study of molecularly imprinted polymers using the scanning electron microscope

    International Nuclear Information System (INIS)

    Paniagua Gonzalez, Gema; Fernandez Hernando, Pilar; Durand Alegria, J.S.

    2006-01-01

    Molecular imprinting is an emerging technique for producing polymers with applications in affinity-based separation, in biomimetic sensors, in catalysis, etc. This variety of uses relies upon the production of polymers with different affinities, specificities, sensitivities and loading capacities. Research into the development of molecular imprinted polymers (MIPs) with new or improved morphologies - which involves modification of the polymerisation process - is therefore underway. This paper reports a comparative study of non-covalent MIPs synthesised by 'bulk' polymerisation using digoxin as template. These were synthesised under different conditions, i.e., changing the functional monomers employed (methacrylic acid or 2-vinylpyridine), the porogens (acetonitrile or dichloromethane) used, and by altering the volume of the latter. The polymerisation process was allowed to proceed either under UV light or in a thermostat-controlled waterbath. The surface morphology (was determined by scanning electron microscopy) and the ability of the different polymers to selectively rebind the template was then evaluated

  20. Imaging of surface plasmon polariton interference using phase-sensitive scanning tunneling microscope

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air

  1. Nanoscale electron transport at the surface of a topological insulator

    Science.gov (United States)

    Bauer, Sebastian; Bobisch, Christian A.

    2016-04-01

    The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.

  2. Body surface area determined by whole-body CT scanning: need for new formulae?

    DEFF Research Database (Denmark)

    Villa, Chiara; Primeau, Charlotte; Hesse, Ulrik

    2017-01-01

    Calculation of the estimated body surface area (BSA) by body height and weight has been a challenge in the past centuries due to lack of a well-documented gold standard. More recently, available techniques such as 3D laser surface scanning and CT scanning may be expected to quantify the BSA...... Mimics software, and BSA values were automatically extracted from the program. They were compared with nine predictive equations from the literature. Remarkably, close correlations (r > 0·90) were found between BSA values from CT scans and those from the predictive formulae. A mean BSA of the 54 cadavers...... equations, with the CT scan determination as gold standard. It is concluded that DuBois and DuBois' equation can be safely used in normal-weight male subjects with high accuracy, but it seems likely that BSA is underestimated in underweight subjects and overestimated in overweight individuals. Creation...

  3. Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy.

    Science.gov (United States)

    Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia

    2015-04-24

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.

  4. Sub-nanometre resolution imaging of polymer–fullerene photovoltaic blends using energy-filtered scanning electron microscopy

    Science.gov (United States)

    Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia

    2015-01-01

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738

  5. Second-Harmonic Generation Scanning Microscopy on Domains in Al Surfaces

    DEFF Research Database (Denmark)

    Pedersen, Kjeld; Bozhevolnyi, Sergey I.

    1999-01-01

    Scanning optical second-harmonic generation microscopy has been used to investigate domains in the surface of polycrystaline Al. Strong contrast among the crystalline grains is obtained due to variations in their crystallographic orientations and thus also nonlinear response. The origin of the co...

  6. Scanning Electron Microscope Calibration Using a Multi-Image Non-Linear Minimization Process

    Science.gov (United States)

    Cui, Le; Marchand, Éric

    2015-04-01

    A scanning electron microscope (SEM) calibrating approach based on non-linear minimization procedure is presented in this article. A part of this article has been published in IEEE International Conference on Robotics and Automation (ICRA), 2014. . Both the intrinsic parameters and the extrinsic parameters estimations are achieved simultaneously by minimizing the registration error. The proposed approach considers multi-images of a multi-scale calibration pattern view from different positions and orientations. Since the projection geometry of the scanning electron microscope is different from that of a classical optical sensor, the perspective projection model and the parallel projection model are considered and compared with distortion models. Experiments are realized by varying the position and the orientation of a multi-scale chessboard calibration pattern from 300× to 10,000×. The experimental results show the efficiency and the accuracy of this approach.

  7. Morphological classification of bioaerosols from composting using scanning electron microscopy

    International Nuclear Information System (INIS)

    Tamer Vestlund, A.; Al-Ashaab, R.; Tyrrel, S.F.; Longhurst, P.J.; Pollard, S.J.T.; Drew, G.H.

    2014-01-01

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors

  8. Morphological classification of bioaerosols from composting using scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tamer Vestlund, A. [Institute for Energy and Resource Technology, Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Building 40, Bedfordshire MK43 0AL (United Kingdom); FIRA International Ltd., Maxwell Road, Stevenage, Herts SG1 2EW (United Kingdom); Al-Ashaab, R.; Tyrrel, S.F.; Longhurst, P.J.; Pollard, S.J.T. [Institute for Energy and Resource Technology, Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Building 40, Bedfordshire MK43 0AL (United Kingdom); Drew, G.H., E-mail: g.h.drew@cranfield.ac.uk [Institute for Energy and Resource Technology, Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Building 40, Bedfordshire MK43 0AL (United Kingdom)

    2014-07-15

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.

  9. Molecular and electronic structure of osmium complexes confined to Au(111) surfaces using a self-assembled molecular bridge

    Energy Technology Data Exchange (ETDEWEB)

    Llave, Ezequiel de la; Herrera, Santiago E.; Adam, Catherine; Méndez De Leo, Lucila P.; Calvo, Ernesto J.; Williams, Federico J., E-mail: fwilliams@qi.fcen.uba.ar [INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química-Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA (Argentina)

    2015-11-14

    The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and the LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge.

  10. Scanning electron microscopy of dentition: methodology and ultrastructural morphology of tooth wear.

    Science.gov (United States)

    Shkurkin, G V; Almquist, A J; Pfeihofer, A A; Stoddard, E L

    1975-01-01

    Scanning electron micrographs were taken of sets of human molars-those of paleo-Indians used in mastication of, ostensibly, a highly abrasive diet, and those of contemporary Americans. Different ultrastructural patterns of enamel wear were observed between the groups.

  11. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya

    2016-05-26

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  12. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya; Bera, Ashok; Parida, Manas R.; Adhikari, Aniruddha; Shaheen, Basamat; Alarousu, Erkki; Sun, Jingya; Wu, Tao; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  13. Atomic and electronic structures of novel silicon surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  14. Surface characterization of weathered wood using a laser scanning system

    International Nuclear Information System (INIS)

    Arnold, M.; Lemaster, R.L.; Dost, W.A.

    1992-01-01

    Most of the existing methods to assess the effect of weathering on wood surfaces have some drawbacks that limit their use to specific tasks. The amount of surface erosion is often used as a measure for the weathering action. The application of a laser scanning system to reproduce surface profiles and to measure weathering erosion was tested on various samples and was found to be a very useful and superior alternative to existing methods. Further improvements of the system used can be made by refinements of the calibration procedures and by more comprehensive profile analyses. (author)

  15. Characterization of Emulsions of Fish Oil and Water by Cryo Scanning Electron Microscopy

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Horn, Anna Frisenfeldt; Jacobsen, Charlotte

    Addition of fish oil to industrially prepared food products is attractive to the food industry because of the well-documented health effects of the omega 3 fatty acids in the fish oil [1]. Polyunsaturated Fatty Acids including omega 3 fatty acids are highly susceptible to lipid oxidation due...... to the many double bonds. Emulsions of fish oil in water are potential candidates for a delivery system of fish oil to food products. It has been suggested that oxidation of oil-in-water emulsions is initiated at the interface between oil and water. It has also been proposed that oxidation is to some extent...... is to characterize fish oil in water emulsions with respect to oil droplet size, distribution, and ultimately to view the structure and thickness of the interface layer. A freeze-fractured surface viewed at low temperatures under the scanning electron microscope is a promising strategy to reveal variations...

  16. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Engelsen, Daniel den; Harris, Paul G.; Ireland, Terry G., E-mail: terry.ireland@brunel.ac.uk; Fern, George R.; Silver, Jack

    2015-10-15

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. - Highlights: • Contrast enhancement are observed in secondary electron and cathodoluminescent images of phosphor particles sitting on top of others. • Backscattered electrons largely explain the observed contrast enhancement. • After glow effects in CL-micrographs of phosphors enable the determination of decay times. • Phosphor saturation can be used to determine the decay time of individual spectral transitions.

  17. Scanning electronic microscopy on clays in soils used as road foundations

    International Nuclear Information System (INIS)

    Barelli, N.

    1982-01-01

    The scanning electron microscope (SEM) proves to be ideally suited for studying the morphology, texture and fabric of clays in soils used as road foundation. It is also seen that certain samples are easier to examine by SEM because of their larger crystallite sizes, better crystallinities and open textures. (C.L.B.) [pt

  18. Sample preparation method for scanning force microscopy

    CERN Document Server

    Jankov, I R; Szente, R N; Carreno, M N P; Swart, J W; Landers, R

    2001-01-01

    We present a method of sample preparation for studies of ion implantation on metal surfaces. The method, employing a mechanical mask, is specially adapted for samples analysed by Scanning Force Microscopy. It was successfully tested on polycrystalline copper substrates implanted with phosphorus ions at an acceleration voltage of 39 keV. The changes of the electrical properties of the surface were measured by Kelvin Probe Force Microscopy and the surface composition was analysed by Auger Electron Spectroscopy.

  19. [Inelastic electron scattering from surfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This program is aimed at the quantitative study of surface dynamical processes (vibrational, magnetic excitations) in crystalline slabs, ultrathin-layered materials, and chemisorbed systems on substrates, and of the geometric structure connected to these dynamical excitations. High-resolution electron-energy loss spectroscopy (HREELS) is a powerful probe. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50-300 eV). The analyses has been used to study surfaces of ordered alloys (NiAl). Ab-initio surface lattice dynamical results were combined with phonon-loss cross sections to achieve a more accurate microscopic description. First-principles phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross-section calculations. The combined microscopic approach was used to analyze EELS data of Cu(0001) and Ag(001) at two points. Positron diffraction is discussed as a structural and imaging tool. The relation between geometric structure of a film and its local magnetic properties will be studied in the future, along with other things

  20. Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok, E-mail: aljymittal@yahoo.co.in [Department of Chemistry, Maulana Azad National Institute of Technology (A Deemed University), Bhopal 462051 (India); Soni, R.K.; Dutt, Krishna; Singh, Swati [Department of Chemistry, Ch. Charan Singh University, Meerut 250004 (India)

    2010-06-15

    Polyethylene terephthalate (PET) waste flakes were degraded with aqueous methylamine and aqueous ammonia, respectively at room temperature in the presence and absence of quaternary ammonium salt as a catalyst for different periods of time. The aminolysed and ammonolysed PET samples were investigated for the surface morphology with the help of scanning electron micrograph (SEM). It shows that the semi-crystalline PET waste samples reduce to monodisperse rods before fully degradation to the end products. The presence of the catalyst provides site for degradation of PET waste and enhances the rate of degradation. The SEM shows early developments of fissures in comparison to the one in absence of quaternary ammonium salt used as catalyst.

  1. Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis

    International Nuclear Information System (INIS)

    Mittal, Alok; Soni, R.K.; Dutt, Krishna; Singh, Swati

    2010-01-01

    Polyethylene terephthalate (PET) waste flakes were degraded with aqueous methylamine and aqueous ammonia, respectively at room temperature in the presence and absence of quaternary ammonium salt as a catalyst for different periods of time. The aminolysed and ammonolysed PET samples were investigated for the surface morphology with the help of scanning electron micrograph (SEM). It shows that the semi-crystalline PET waste samples reduce to monodisperse rods before fully degradation to the end products. The presence of the catalyst provides site for degradation of PET waste and enhances the rate of degradation. The SEM shows early developments of fissures in comparison to the one in absence of quaternary ammonium salt used as catalyst.

  2. Effects of gamma radiation on hard dental tissues of albino rats using scanning electron microscope - Part 1

    Science.gov (United States)

    El-Faramawy, Nabil; Ameen, Reham; El-Haddad, Khaled; Maghraby, Ahmed; El-Zainy, Medhat

    2011-12-01

    In the present study, 40 adult male albino rats were used to study the effect of gamma radiation on the hard dental tissues (enamel surface, dentinal tubules and the cementum surface). The rats were irradiated at 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0 Gy gamma doses. The effects of irradiated hard dental tissues samples were investigated using a scanning electron microscope. For doses up to 0.5 Gy, there was no evidence of the existence of cracks on the enamel surface. With 1 Gy irradiation dose, cracks were clearly observed with localized erosive areas. At 2 Gy irradiation dose, the enamel showed morphological alterations as disturbed prismatic and interprismatic areas. An increase in dentinal tubules diameter and a contemporary inter-tubular dentine volume decrease were observed with higher irradiation dose. Concerning cementum, low doses,<0.5 Gy, showed surface irregularities and with increase in the irradiation dose to≥1 Gy, noticeable surface irregularities and erosive areas with decrease in Sharpey's fiber sites were observed. These observations could shed light on the hazardous effects of irradiation fields to the functioning of the human teeth.

  3. Fabrication of tungsten tip for scanning tunneling microscope by the lever principle

    International Nuclear Information System (INIS)

    Wang Yang; Wang Huabin; Chinese Academy of Sciences, Beijing; Gong Jinlong; Zhu Dezhang

    2007-01-01

    A novel experimental setup was designed to fabricate tungsten tips for scanning tunneling microscope (STM), based on simple mechanical lever principle. The equipment can quickly separate the tip from electrolyte to avoid the further etching of the fine-shaped tungsten tip. The setup is advantageous for its simplicity over complex electronic control systems. The use result in scanning electron microscope demonstrates that the radius of the tip can reach 50 nm. The tip was applied to scan the surface of highly-oriented pyrolytic graphite, and the results were satisfactory. It is shown that the tip can be used for the scanning of atomically resolved images. (authors)

  4. Surface anatomy scanning (SAS) in intracranial tumours: comparison with surgical findings

    International Nuclear Information System (INIS)

    Sumida, M.; Uozumi, T.; Kiya, K.; Arita, K.; Kurisu, K.; Onda, J.; Satoh, H.; Ikawa, F.; Yukawa, O.; Migita, K.; Hada, H.; Katada, K.

    1995-01-01

    We evaluated the usefulness of surface anatomy scanning (SAS) in intracranial tumours, comparing it with surgical findings. We examined 31 patients with brain tumours preoperatively. The tumours included 16 meningiomas, 8 gliomas, 4 metastases and 3 others. SAS clearly demonstrated the tumours, allowing them to be distinguished from the structures of the brain surface, including oedema, except in cases of metastasis. SAS clearly demonstrated large cortical veins. SAS is useful for three-dimensional delineation of the brain surface before surgery. (orig.)

  5. Analysis of improvement in performance and design parameters for enhancing resolution in an atmospheric scanning electron microscope.

    Science.gov (United States)

    Yoon, Yeo Hun; Kim, Seung Jae; Kim, Dong Hwan

    2015-12-01

    The scanning electron microscope is used in various fields to go beyond diffraction limits of the optical microscope. However, the electron pathway should be conducted in a vacuum so as not to scatter electrons. The pretreatment of the sample is needed for use in the vacuum. To directly observe large and fully hydrophilic samples without pretreatment, the atmospheric scanning electron microscope (ASEM) is needed. We developed an electron filter unit and an electron detector unit for implementation of the ASEM. The key of the electron filter unit is that electrons are transmitted while air molecules remain untransmitted through the unit. The electron detector unit collected the backscattered electrons. We conducted experiments using the selected materials with Havar foil, carbon film and SiN film. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Simultaneous Scanning Electron Microscope Imaging of Topographical and Chemical Contrast Using In-Lens, In-Column, and Everhart-Thornley Detector Systems.

    Science.gov (United States)

    Zhang, Xinming; Cen, Xi; Ravichandran, Rijuta; Hughes, Lauren A; van Benthem, Klaus

    2016-06-01

    The scanning electron microscope provides a platform for subnanometer resolution characterization of material morphology with excellent topographic and chemical contrast dependent on the used detectors. For imaging applications, the predominantly utilized signals are secondary electrons (SEs) and backscattered electrons (BSEs) that are emitted from the sample surface. Recent advances in detector technology beyond the traditional Everhart-Thornley geometry have enabled the simultaneous acquisition and discrimination of SE and BSE signals. This study demonstrates the imaging capabilities of a recently introduced new detector system that consists of the combination of two in-lens (I-L) detectors and one in-column (I-C) detector. Coupled with biasing the sample stage to reduce electron-specimen interaction volumes, this trinity of detector geometry allows simultaneous acquisition of signals to distinguish chemical contrast from topographical changes of the sample, including the identification of surface contamination. The I-C detector provides 4× improved topography, whereas the I-L detector closest to the sample offers excellent simultaneous chemical contrast imaging while not limiting the minimization of working distance to obtain optimal lateral resolution. Imaging capabilities and contrast mechanisms for all three detectors are discussed quantitatively in direct comparison to each other and the conventional Everhart-Thornley detector.

  7. Circular mode: a new scanning probe microscopy method for investigating surface properties at constant and continuous scanning velocities.

    Science.gov (United States)

    Nasrallah, Hussein; Mazeran, Pierre-Emmanuel; Noël, Olivier

    2011-11-01

    In this paper, we introduce a novel scanning probe microscopy mode, called the circular mode, which offers expanded capabilities for surface investigations especially for measuring physical properties that require high scanning velocities and/or continuous displacement with no rest periods. To achieve these specific conditions, we have implemented a circular horizontal displacement of the probe relative to the sample plane. Thus the relative probe displacement follows a circular path rather than the conventional back and forth linear one. The circular mode offers advantages such as high and constant scanning velocities, the possibility to be combined with other classical operating modes, and a simpler calibration method of the actuators generating the relative displacement. As application examples of this mode, we report its ability to (1) investigate the influence of scanning velocity on adhesion forces, (2) measure easily and instantly the friction coefficient, and (3) generate wear tracks very rapidly for tribological investigations. © 2011 American Institute of Physics

  8. Scanning Tunneling Spectroscopy of Potassium on Graphene

    Science.gov (United States)

    Cormode, Daniel; Leroy, Brian; Yankowitz, Matthew

    2012-02-01

    We investigate the effect of charged impurities on the electronic properties of large single crystal CVD grown graphene using scanning tunneling microscopy. Mono- and multilayer crystals were prepared by transferring graphene from copper onto exfoliated boron nitride flakes on 300 nm SiO2 substrates. The boron nitride provides an ultra flat surface for the graphene. Potassium atoms are controllably deposited on the graphene at low temperature by heating a nearby getter source. Scanning tunneling spectroscopy and transport measurements were performed in ultra high vacuum at 4.5 K. Transport measurements demonstrate the shifting of the Dirac point as the samples are doped, while STM measurements demonstrate the size, arrangement and local electronic influence of the potassium atoms.

  9. Neural Network for Nanoscience Scanning Electron Microscope Image Recognition.

    Science.gov (United States)

    Modarres, Mohammad Hadi; Aversa, Rossella; Cozzini, Stefano; Ciancio, Regina; Leto, Angelo; Brandino, Giuseppe Piero

    2017-10-16

    In this paper we applied transfer learning techniques for image recognition, automatic categorization, and labeling of nanoscience images obtained by scanning electron microscope (SEM). Roughly 20,000 SEM images were manually classified into 10 categories to form a labeled training set, which can be used as a reference set for future applications of deep learning enhanced algorithms in the nanoscience domain. The categories chosen spanned the range of 0-Dimensional (0D) objects such as particles, 1D nanowires and fibres, 2D films and coated surfaces, and 3D patterned surfaces such as pillars. The training set was used to retrain on the SEM dataset and to compare many convolutional neural network models (Inception-v3, Inception-v4, ResNet). We obtained compatible results by performing a feature extraction of the different models on the same dataset. We performed additional analysis of the classifier on a second test set to further investigate the results both on particular cases and from a statistical point of view. Our algorithm was able to successfully classify around 90% of a test dataset consisting of SEM images, while reduced accuracy was found in the case of images at the boundary between two categories or containing elements of multiple categories. In these cases, the image classification did not identify a predominant category with a high score. We used the statistical outcomes from testing to deploy a semi-automatic workflow able to classify and label images generated by the SEM. Finally, a separate training was performed to determine the volume fraction of coherently aligned nanowires in SEM images. The results were compared with what was obtained using the Local Gradient Orientation method. This example demonstrates the versatility and the potential of transfer learning to address specific tasks of interest in nanoscience applications.

  10. Fast-scanning heterodyne receiver for measurement of the electron cyclotron emission from high-temperature plasmas

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Arunasalam, V.; Bitzer, R.; Campbell, L.; Hosea, J.C.

    1979-03-01

    A fast-scanning heterodyne receiver was developed that measures the fundamental cyclotron emission from the PLT plasma and thus ascertains the time evolution of the electron temperature profile. The receiver scans 60 to 90 GHz every 10 milliseconds and is interfaced to a computer for completely automated calibrated temperature measurements

  11. Probing Free-Energy Surfaces with Differential Scanning Calorimetry

    Science.gov (United States)

    Sanchez-Ruiz, Jose M.

    2011-05-01

    Many aspects of protein folding can be understood in terms of projections of the highly dimensional energy landscape onto a few (or even only one) particularly relevant coordinates. These free-energy surfaces can be probed conveniently from experimental differential scanning calorimetry (DSC) thermograms, as DSC provides a direct relation with the protein partition function. Free-energy surfaces thus obtained are consistent with two fundamental scenarios predicted by the energy-landscape perspective: (a) well-defined macrostates separated by significant free-energy barriers, in some cases, and, in many other cases, (b) marginal or even vanishingly small barriers, which furthermore show a good correlation with kinetics for fast- and ultrafast-folding proteins. Overall, the potential of DSC to assess free-energy surfaces for a wide variety of proteins makes it possible to address fundamental issues, such as the molecular basis of the barrier modulations produced by natural selection in response to functional requirements or to ensure kinetic stability.

  12. A novel near real-time laser scanning device for geometrical determination of pleural cavity surface.

    Science.gov (United States)

    Kim, Michele M; Zhu, Timothy C

    2013-02-02

    During HPPH-mediated pleural photodynamic therapy (PDT), it is critical to determine the anatomic geometry of the pleural surface quickly as there may be movement during treatment resulting in changes with the cavity. We have developed a laser scanning device for this purpose, which has the potential to obtain the surface geometry in real-time. A red diode laser with a holographic template to create a pattern and a camera with auto-focusing abilities are used to scan the cavity. In conjunction with a calibration with a known surface, we can use methods of triangulation to reconstruct the surface. Using a chest phantom, we are able to obtain a 360 degree scan of the interior in under 1 minute. The chest phantom scan was compared to an existing CT scan to determine its accuracy. The laser-camera separation can be determined through the calibration with 2mm accuracy. The device is best suited for environments that are on the scale of a chest cavity (between 10cm and 40cm). This technique has the potential to produce cavity geometry in real-time during treatment. This would enable PDT treatment dosage to be determined with greater accuracy. Works are ongoing to build a miniaturized device that moves the light source and camera via a fiber-optics bundle commonly used for endoscopy with increased accuracy.

  13. Surface species formed by the adsorption and dissociation of water molecules on Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dept of Materials Science and Engineering UCB; Dept of Applied Science and Technology, UCB; Institut de Ciencia de Materials de Barcelona, Barcelona, Spain; Instituto de Ciencia de Materiales de Madrid, Madrid, Spain; Department of Mechanical Engineering, Yale University; Salmeron, Miquel; Shimizu, Tomoko K.; Mugarza, Aitor; Cerda, Jorge I.; Heyde, Markus; Qi, Yabing; Schwarz, Udo D.; Ogletree, D. Frank; Salmeron, Miquel

    2008-04-26

    The adsorption and dissociation of water on a Ru(0001) surface containing a small amount ({le} 3 %) of carbon impurities was studied by scanning tunneling microscopy (STM). Various surface species are formed depending on the temperature. These include molecular H{sub 2}O, H{sub 2}O-C complexes, H, O, OH and CH. Clusters of either pure H{sub 2}O or mixed H{sub 2}O-OH species are also formed. Each of these species produces a characteristic contrast in the STM images and can be identified by experiment and by ab initio total energy calculations coupled with STM image simulations. Manipulation of individual species via excitation of vibrational modes with the tunneling electrons has been used as supporting evidence.

  14. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  15. Surface-Plasmon-Driven Hot Electron Photochemistry.

    Science.gov (United States)

    Zhang, Yuchao; He, Shuai; Guo, Wenxiao; Hu, Yue; Huang, Jiawei; Mulcahy, Justin R; Wei, Wei David

    2017-11-30

    Visible-light-driven photochemistry has continued to attract heightened interest due to its capacity to efficiently harvest solar energy and its potential to solve the global energy crisis. Plasmonic nanostructures boast broadly tunable optical properties coupled with catalytically active surfaces that offer a unique opportunity for solar photochemistry. Resonant optical excitation of surface plasmons produces energetic hot electrons that can be collected to facilitate chemical reactions. This review sums up recent theoretical and experimental approaches for understanding the underlying photophysical processes in hot electron generation and discusses various electron-transfer models on both plasmonic metal nanostructures and plasmonic metal/semiconductor heterostructures. Following that are highlights of recent examples of plasmon-driven hot electron photochemical reactions within the context of both cases. The review concludes with a discussion about the remaining challenges in the field and future opportunities for addressing the low reaction efficiencies in hot-electron-induced photochemistry.

  16. Sample preparation methods for scanning electron microscopy of homogenized Al-Mg-Si billets: A comparative study

    International Nuclear Information System (INIS)

    Österreicher, Johannes Albert; Kumar, Manoj; Schiffl, Andreas; Schwarz, Sabine; Hillebrand, Daniel; Bourret, Gilles Remi

    2016-01-01

    Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopy images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.

  17. Sample preparation methods for scanning electron microscopy of homogenized Al-Mg-Si billets: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Österreicher, Johannes Albert; Kumar, Manoj [LKR Light Metals Technologies Ranshofen, Austrian Institute of Technology, Postfach 26, 5282 Ranshofen (Austria); Schiffl, Andreas [Hammerer Aluminium Industries Extrusion GmbH, Lamprechtshausener Straße 69, 5282 Ranshofen (Austria); Schwarz, Sabine [University Service Centre for Transmission Electron Microscopy, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Hillebrand, Daniel [Hammerer Aluminium Industries Extrusion GmbH, Lamprechtshausener Straße 69, 5282 Ranshofen (Austria); Bourret, Gilles Remi, E-mail: gilles.bourret@sbg.ac.at [Department of Materials Science and Physics, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg (Austria)

    2016-12-15

    Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopy images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.

  18. Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors.

    Science.gov (United States)

    He, Tao; Wu, Yanfei; D'Avino, Gabriele; Schmidt, Elliot; Stolte, Matthias; Cornil, Jérôme; Beljonne, David; Ruden, P Paul; Würthner, Frank; Frisbie, C Daniel

    2018-05-30

    Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure-charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure-property relationships in organic semiconductors.

  19. A cryogenic multichannel electronically scanned pressure module

    Science.gov (United States)

    Shams, Qamar A.; Fox, Robert L.; Adcock, Edward E.; Kahng, Seun K.

    1992-01-01

    Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.

  20. Surface electron structure of short-period semiconductor superlattice

    International Nuclear Information System (INIS)

    Bartos, I.; Czech Academy Science, Prague,; Strasser, T.; Schattke, W.

    2004-01-01

    Full text: Semiconductor superlattices represent man-made crystals with unique physical properties. By means of the directed layer-by-layer molecular epitaxy growth their electric properties can be tailored (band structure engineering). Longer translational periodicity in the growth direction is responsible for opening of new electron energy gaps (minigaps) with surface states and resonances localized at superlattice surfaces. Similarly as for the electron structure of the bulk, a procedure enabling to modify the surface electron structure of superlattices is desirable. Short-period superlattice (GaAs) 2 (AlAs) 2 with unreconstructed (100) surface is investigated in detail. Theoretical description in terms of full eigenfunctions of individual components has to be used. The changes of electron surface state energies governed by the termination of a periodic crystalline potential, predicted on simple models, are confirmed for this system. Large surface state shifts are found in the lowest minigap of the superlattice when this is terminated in four different topmost layer configurations. The changes should be observable in angle resolved photoelectron spectroscopy as demonstrated in calculations based on the one step model of photoemission. Surface state in the center of the two dimensional Brillouin zone moves from the bottom of the minigap (for the superlattice terminated by two bilayers of GaAs) to its top (for the superlattice terminated by two bilayers of AlAs) where it becomes a resonance. No surface state/resonance is found for a termination with one bilayer of AlAs. The surface state bands behave similarly in the corresponding gaps of the k-resolved section of the electron band structure. The molecular beam epitaxy, which enables to terminate the superlattice growth with atomic layer precision, provides a way of tuning the superlattice surface electron structure by purely geometrical means. The work was supported by the Grant Agency of the Academy of Sciences