WorldWideScience

Sample records for surface runoff waters

  1. Study on Water Quality of Surface Runoff and Groundwater Runoff on the Basis of Separation by a Numerical Filter

    OpenAIRE

    Kawara, Osami; Fukumoto, Kohji

    1994-01-01

    In this study we investigated the water quality of surface runoff and groundwater runoff from the basins of the Yodo River and the Asahi River based on that separated by a numerical filter. The water quality of the surface runoff is greatly different from the groundwater runoff. The tendency of concentration change in accordance with river discharges is different from each other. The water qtiality of groundwater runoff changes with river discharges clockwise in many cases. The differences of...

  2. Water erosion in surface soil conditions: runoff velocity, concentration and D50 index of sediments in runoff

    OpenAIRE

    Ramos,Júlio César; Bertol,Ildegardis; Barbosa,Fabrício Tondello; Bertól,Camilo; Mafra,Álvaro Luiz; Miquelluti,David José; Mecabô Júnior,José

    2016-01-01

    ABSTRACT Water erosion and contamination of water resources are influenced by concentration and diameter of sediments in runoff. This study aimed to quantify runoff velocity and concentration and the D50 index of sediments in runoff under different soil surface managements, in the following treatments: i) cropped systems: no-tilled soil covered by ryegrass (Lolium multiflorum Lam.) residue, with high soil cover and minimal roughness (HCR); no tilled soil covered by vetch (Vicia sativa L.) res...

  3. Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface water.

    Science.gov (United States)

    Sterk, Ankie; Schijven, Jack; de Roda Husman, Ana Maria; de Nijs, Ton

    2016-05-15

    Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by, for instance, bathing or drinking-water consumption. An increase in runoff, and associated wash-off of animal faeces from fields, is assumed to contribute to the increase of disease outbreaks during periods of high precipitation. Climate change is expected to increase winter precipitation and extreme precipitation events during summer, but has simultaneously also other effects such as temperature rise and changes in evapotranspiration. The question is to what extent the combination of these effects influence the input of zoonotic pathogens to the surface waters. To quantitatively analyse the impacts of climate change on pathogen runoff, pathogen concentrations reaching surface waters through runoff were calculated by combining an input model for catchment pathogen loads with the Wageningen Lowland Runoff Simulator (WALRUS). Runoff of Cryptosporidium and Campylobacter was evaluated under different climate change scenarios and by applying different scenarios for sources of faecal pollution in the catchments, namely dairy cows and geese and manure fertilization. Model evaluation of these scenarios shows that climate change has little overall impact on runoff of Campylobacter and Cryptosporidium from land to the surface waters. Even though individual processes like runoff fluxes, pathogen release and dilution are affected, either positively or negatively, the net effect on the pathogen concentration in surface waters and consequently also on infection risks through recreation seems limited. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    Science.gov (United States)

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.

  5. Experimental study on soluble chemical transfer to surface runoff from soil.

    Science.gov (United States)

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  6. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    Science.gov (United States)

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  7. Storm water runoff concentration matrix for urban areas

    Science.gov (United States)

    Göbel, P.; Dierkes, C.; Coldewey, W. G.

    2007-04-01

    The infrastructure (roads, sidewalk, commercial and residential structures) added during the land development and urbanisation process is designed to collect precipitation and convey it out of the watershed, typically in existing surface water channels, such as streams and rivers. The quality of surface water, seepage water and ground water is influenced by pollutants that collect on impervious surfaces and that are carried by urban storm water runoff. Heavy metals, e.g. lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), polycyclic aromatic hydrocarbons (PAH), mineral oil hydrocarbons (MOH) and readily soluble salts in runoff, contribute to the degradation of water. An intensive literature search on the distribution and concentration of the surface-dependent runoff water has been compiled. Concentration variations of several pollutants derived from different surfaces have been averaged. More than 300 references providing about 1300 data for different pollutants culminate in a representative concentration matrix consisting of medians and extreme values. This matrix can be applied to long-term valuations and numerical modelling of storm water treatment facilities.

  8. Transport of oxytetracycline, chlortetracycline, and ivermectin in surface runoff from irrigated pasture.

    Science.gov (United States)

    Bair, Daniel A; Popova, Ina E; Tate, Kenneth W; Parikh, Sanjai J

    2017-09-02

    The transport of oxytetracycline, chlortetracycline, and ivermectin from manure was assessed via surface runoff on irrigated pasture. Surface runoff plots in the Sierra Foothills of Northern California were used to evaluate the effects of irrigation water application rates, pharmaceutical application conditions, vegetative cover, and vegetative filter strip length on the pharmaceutical discharge in surface runoff. Experiments were designed to permit the maximum potential transport of pharmaceuticals to surface runoff water, which included pre-irrigation to saturate soil, trimming grass where manure was applied, and laying a continuous manure strip perpendicular to the flow of water. However, due to high sorption of the pharmaceuticals to manure and soil, less than 0.1% of applied pharmaceuticals were detected in runoff water. Results demonstrated an increase of pharmaceutical transport in surface runoff with increased pharmaceutical concentration in manure, the concentration of pharmaceuticals in runoff water remained constant with increased irrigation flow rate, and no appreciable decrease in pharmaceutical runoff was produced with the vegetative filter strip length increased from 30.5 to 91.5 cm. Most of the applied pharmaceuticals were retained in the manure or within the upper 5 cm of soil directly beneath the manure application sites. As this study evaluated conditions for high transport potential, the data suggest that the risk for significant chlortetracycline, oxytetracycline, and ivermectin transport to surface water from cattle manure on irrigated pasture is low.

  9. Detecting surface runoff location in a small catchment using distributed and simple observation method

    Science.gov (United States)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall

  10. [Research on evaluation of water quality of Beijing urban stormwater runoff].

    Science.gov (United States)

    Hou, Pei-Qiang; Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Zhou, Xiao-Ping

    2012-01-01

    The natural rainwater and stormwater runoff samples from three underlying surfaces (rooftop, campus road and ring road) were sampled and analyzed from July to October, 2010 in Beijing. Eight rainfall events were collected totally and thirteen water quality parameters were measured in each event. Grey relationship analysis and principal component analysis were applied to assess composite water quality and identify the main pollution sources of stormwater runoff. The results show that the composite water quality of ring road runoff is mostly polluted, and then is rooftop runoff, campus road runoff and rainwater, respectively. The composite water quality of ring road runoff is inferior to V class of surface water, while rooftop runoff, campus road runoff and rainwater are in II class of surface water. The mean concentration of TN and NH4(+)-N in rainwater and runoff is 5.49-11.75 mg x L(-1) and 2.90-5.67 mg x L(-1), respectively, indicating that rainwater and runoff are polluted by nitrogen (N). Two potential pollution sources are identified in ring road runoff: (1) P, SS and organic pollutant are possibly related to debris which is from vehicle tyre and material of ring road; (2) N and dissolved metal have relations with automobile exhaust emissions and bulk deposition.

  11. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    Science.gov (United States)

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  12. The Firstflush of Pollutants in Surface Runoff

    OpenAIRE

    Pejman Razi; Amir Taebi

    2005-01-01

    One of the factors impacting quality of water resources is pollution due to urban storm runoff during first stage of storm runoff and is commonly called "firsflush". At this stage the pollution load is rather high. However, if this pollution is properly controlled and managed, the size of the required treatment facilities will be considerably reduced. The surface runoff pollution in the city of Isfahan is high and necessitates the implementation of some control system. For this purpose, ten r...

  13. Water quality of surface runoff and lint yield in cotton under furrow irrigation in Northeast Arkansas.

    Science.gov (United States)

    Adviento-Borbe, M Arlene A; Barnes, Brittany D; Iseyemi, Oluwayinka; Mann, Amanda M; Reba, Michele L; Robertson, William J; Massey, Joseph H; Teague, Tina G

    2018-02-01

    Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US and yet, nutrients can be transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of furrow tillage practices and nitrogen (N) fertilizer placement on characteristics of runoff water quality during the growing season. The experiment was designed as a randomized complete block design with conventional (CT) and conservation furrow tillage (FT) in combination with either urea (URN) broadcast or 32% urea ammonium nitrate (UAN) injected, each applied at 101kgNha -1 . Concentrations of ammonium (NH 4 -N), nitrate (NO 3 -N), nitrite (NO 2 -N), and dissolved phosphorus (P) in irrigation runoff water and lint yields were measured in all treatments. The intensity and chemical form of nutrient losses were primarily controlled by water runoff volume and agronomic practice. Across tillage and fertilizer N treatments, median N concentrations in the runoff were water. Water pH, specific electrical conductivity, alkalinity and hardness were within levels that common to local irrigation water and less likely to impair pollution in waterways. Lint yields averaged 1111kgha -1 and were higher (P-value=0.03) in FT compared to CT treatments. Runoff volumes across irrigation events were greater (P-value=0.02) in CT than FT treatments, which increased NO 3 -N mass loads in CT treatments (394gNO 3 -Nha -1 season -1 ). Nitrate-N concentrations in CT treatments were still low and pose little threat to N contaminations in waterways. The findings support the adoption of conservation practices for furrow tillage and N fertilizer placement that can reduce nutrient runoff losses in furrow irrigation systems. Published by Elsevier B.V.

  14. Field application of farmstead runoff to vegetated filter strips: surface and subsurface water quality assessment.

    Science.gov (United States)

    Larson, Rebecca A; Safferman, Steven I

    2012-01-01

    Farmstead runoff poses significant environmental impacts to ground and surface waters. Three vegetated filter strips were assessed for the treatment of dairy farmstead runoff at the soil surface and subsurface at 0.3- or 0. 46-m and 0. 76-m depths for numerous storm events. A medium-sized Michigan dairy was retrofitted with two filter strips on sandy loam soil and a third filter strip was implemented on a small Michigan dairy with sandy soil to collect and treat runoff from feed storage, manure storage, and other impervious farmstead areas. All filter strips were able to eliminate surface runoff via infiltration for all storm events over the duration of the study, eliminating pollutant contributions to surface water. Subsurface effluent was monitored to determine the contributing groundwater concentrations of numerous pollutants including chemical oxygen demand (COD), metals, and nitrates. Subsurface samples have an average reduction of COD concentrations of 20, 11, and 85% for the medium dairy Filter Strip 1 (FS1), medium dairy Filter Strip 2 (FS2), and the small Michigan dairy respectively, resulting in average subsurface concentrations of 355, 3960, and 718 mg L COD. Similar reductions were noted for ammonia and total Kjeldahl nitrogen (TKN) in the subsurface effluent. The small Michigan dairy was able to reduce the pollutant leachate concentrations of COD, TKN, and ammonia over a range of influent concentrations. Increased influent concentrations in the medium Michigan dairy filter strips resulted in an increase in COD, TKN, and ammonia concentrations in the leachate. Manganese was leached from the native soils at all filter strips as evidenced by the increase in manganese concentrations in the leachate. Nitrate concentrations were above standard drinking water limits (10 mg L), averaging subsurface concentrations of 11, 45, and 25 mg L NO-N for FS1, FS2, and the small Michigan dairy, respectively. Copyright © by the American Society of Agronomy, Crop Science

  15. Runoff of pyrethroid insecticides from concrete surfaces following simulated and natural rainfalls.

    Science.gov (United States)

    Jiang, Weiying; Haver, Darren; Rust, Michael; Gan, Jay

    2012-03-01

    Intensive residential use of insecticides has resulted in their ubiquitous presence as contaminants in urban surface streams. For pest eradication, urban hard surfaces such as concrete are often directly treated with pesticides, and wind/water can also carry pesticides onto hard surfaces from surrounding areas. This study expanded on previous bench-scale studies by considering pesticide runoff caused by irrigation under dry weather conditions and rain during the wet season, and evaluated the effects of pesticide residence time on concrete, single versus recurring precipitations, precipitation intensity, and concrete surface conditions, on pesticide transferability to runoff water. Runoff from concrete 1 d after pesticide treatment contained high levels of bifenthrin (82 μg/L) and permethrin (5143 μg/L for cis and 5518 μg/L for trans), indicating the importance of preventing water contact on concrete after pesticide treatments. Although the runoff transferability quickly decreased as the pesticide residence time on concrete increased, detectable residues were still found in runoff water after 3 months (89 d) exposure to hot and dry summer conditions. ANOVA analysis showed that precipitation intensities and concrete surface conditions (i.e., acid wash, silicone seal, stamping, and addition of microsilica) did not significantly affect the pesticide transferability to runoff. For concrete slabs subjected to natural rainfalls during the winter wet season, pesticide levels in the runoff decreased as the time interval between pesticide application and the rain event increased. However, bifenthrin and permethrin were still detected at 0.15-0.17 and 0.75-1.15 μg/L in the rain runoff after 7 months (221 d) from the initial treatment. In addition, pesticide concentrations showed no decrease between the two rainfall events, suggesting that concrete surfaces contaminated by pesticides may act as a reservoir for pesticide residues, leading to sustained urban runoff

  16. RAINWATER MANAGEMENT AIMING TO IMPROVE THE QUALITY OF URBAN SURFACE RUNOFF

    Directory of Open Access Journals (Sweden)

    I. HAIDU

    2015-10-01

    Full Text Available Rainwater Management Aiming to Improve the Quality of Urban Surface Runoff. Currently many urban areas experience the quality degradation of rooftop runoff and accumulated rainwater. The present study aims to estimate the volume of water draining from rooftops within an area of 0.68 km² in the municipality of Cluj-Napoca. The volume of water flowing from rooftops presents a beneficial alternative not only for collecting rainwater for later use, but also for reducing the volume of water and for improving surface runoff quality in urban areas. The procedure was based on the Michel Simplified SCS-CN model, a derived variant of the most popular hydrological model, the Soil Conservation Service Curve Number (SCS-CN. The results of the applied method reveal that the highest rooftop runoff water values correspond to the summer months, these being based on daily rainfall data. Estimating the volume of water draining from rooftops for future harvesting is an important step in the sustainable management of rainwater in urban areas and in improving water quality.

  17. Evaluation of alternative surface runoff accounting procedures using the SWAT model

    Science.gov (United States)

    For surface runoff estimation in the Soil and Water Assessment Tool (SWAT) model, the curve number (CN) procedure is commonly adopted to calculate surface runoff by utilizing antecedent soil moisture condition (SCSI) in field. In the recent version of SWAT (SWAT2005), an alternative approach is ava...

  18. [Analysis of first flush effect of typical underlying surface runoff in Beijing urban city].

    Science.gov (United States)

    Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Hou, Pei-Qiang

    2013-01-01

    Rapid increase of the urban impervious underlying surfaces causes a great increase of urban runoff and the accumulation of pollutants on the roof and road surfaces brings many pollutants into the drainage system with the runoff, and it thus becomes a great threat to the urban water environment. To know the runoff pollution process and to build scientific basis for pollutant control, runoff processes from the roof and road surfaces were monitored and analyzed from 2004 to 2006, and the runoff EMC (Event Mean Concentration) was calculated. It was found that two types of runoff were seriously polluted by COD and TN. The COD and TN of roof runoff exceeded the fifth level of the surface water environmental quality standard (GB 3838-2002) by 3.64 and 4.80 times, respectively, and the COD and TN of road runoff exceeded by 3.73 and 1.07 times, respectively. M (V) curve was used to determine the relation between runoff volume and runoff pollution load. Various degrees of the first flush phenomenon were found for TSS, COD, TN and TP in roof runoff. But this phenomenon occurred only for TSS and TP of the road runoff, and on the whole it was not obvious. Properties of the underlying surfaces, rainfall intensity, and pollutant accumulation are all important factors affecting the roof and road runoff pollutant emission characteristics.

  19. Total pollution effect of urban surface runoff.

    Science.gov (United States)

    Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue

    2009-01-01

    For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.

  20. Ponds' water balance and runoff of endorheic watersheds in the Sahel

    Science.gov (United States)

    Gal, Laetitia; Grippa, Manuela; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Peugeot, Christophe

    2015-04-01

    The Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff

  1. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing.

    Science.gov (United States)

    Ouyang, Wei; Guo, Bobo; Hao, Fanghua; Huang, Haobo; Li, Junqi; Gong, Yongwei

    2012-12-30

    Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Perceived agricultural runoff impact on drinking water.

    Science.gov (United States)

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  3. The study of contamination of discharged runoff from surface water disposal channels of Bushehr city in 2012-2013

    Directory of Open Access Journals (Sweden)

    Vaheid Noroozi-Karbasdehi

    2016-09-01

    Full Text Available Background: In coastal cities, wastewater discharge into the sea is one of the options for sewage disposal that in case of non-compliance with health standards  in wastewater disposal will be led to the spread of infection and disease. On the other hand, water resources preservation and using them efficiently are the principles of sustainable development of each country. This study was aimed to investigate the contamination of discharged runoff from the surface water disposal channels of Bushehr city in 2012 - 13. Materials and Methods: In this study, Sampling was conducted by composite sampling method from output of the five main surface water disposal channels leading to the Persian Gulf located in the coastal region of Bushehr city during two seasons including wet (winter and dry (summer in 2012- 13. Then, experimental tests of BOD5, total coliform and fecal coliform were done on any of the 96 samples according to the standard method. Results: Analysis of the data showed that the BOD5, total coliform and fecal coliform of effluent runoff of the channels were more than the national standard output of disposal wastewaters into the surface waters, and the highest and lowest amount of BOD5 which obtained were 160 mg/L and 28 mg/L, respectively. Conclusion: considering the fact that discharged runoff from surface water disposal channels link from shoreline to sea in close distance and they often are as natural swimming sites and even fishing sites of Bushehr city, and also according to high level of organic and bacterial load of these channels, it is urgently required to be considered by the authorities.

  4. Surface runoff generation in a small watershed covered by sugarcane and riparian forest

    Directory of Open Access Journals (Sweden)

    Rafael Pires Fernandes

    2013-12-01

    Full Text Available Since an understanding of how runoff is generated is of great importance to soil conservation, to water availability and to the management of a watershed, the objective of this study was to understand the generation of surface runoff in a watershed covered by sugarcane and riparian forest. Nine surface runoff plots were set up, evenly distributed on the lower, middle and upper slopes. The lower portion was covered by riparian forest. We showed that the average surface runoff coefficient along the slope in the present study was higher than in other studies under different land uses. Furthermore, the surface runoff was higher under sugarcane compared to the riparian forest, especially after sugarcane harvesting. Besides land cover, other factors such as the characteristics of rainfall events, relief and physical soil characteristics such as soil bulk density and saturated hydraulic conductivity influenced the surface runoff generation.

  5. Modeling spray drift and runoff-related inputs of pesticides to receiving water.

    Science.gov (United States)

    Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S

    2018-03-01

    Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.

  6. Mathematical modeling of rainwater runoff over catchment surface ...

    African Journals Online (AJOL)

    The subject of an article is the mathematical modeling of the rainwater runoff along the surface catchment taking account the transport of pollution which permeates into the water flow from a porous media of soil at the certain areas of this surface. The developed mathematical model consists of two types of equations: the ...

  7. Reducing dissolved inorganic nitrogen in surface runoff water from sugarcane production systems.

    Science.gov (United States)

    Webster, A J; Bartley, R; Armour, J D; Brodie, J E; Thorburn, P J

    2012-01-01

    Nitrogen (N) lost from farms, especially as the highly bioavailable dissolved inorganic form, may be damaging Australia's Great Barrier Reef (GBR). As sugarcane is the dominant cropping system in GBR catchments, its N management practises are coming under increasing scrutiny. This study measured dissolved inorganic N lost in surface runoff water and sugarcane productivity over 3 years. The experiment compared the conventional fertiliser N application rate to sugarcane (average 180kg N/ha/year) and a rate based on replacing N exported in the previous crop (average 94kg N/ha/year). Dissolved inorganic N losses in surface water were 72%, 48% and 66% lower in the three monitored years in the reduced N fertiliser treatment. There was no significant difference in sugarcane yield between the two fertiliser N treatments, nor any treatment difference in soil mineral N - both of these results are indicators of the sustainability of the lower fertiliser N applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Surface Runoff of Pesticides from a Clay Loam Field in Sweden.

    Science.gov (United States)

    Larsbo, Mats; Sandin, Maria; Jarvis, Nick; Etana, Ararso; Kreuger, Jenny

    2016-07-01

    Pesticides stored at or close to the soil surface after field application can be mobilized and transported off the field when surface runoff occurs. The objective of our study was to quantify the potential pesticide losses in surface runoff from a conventionally managed agricultural field in a Swedish climate. This was achieved by measuring surface runoff volumes and concentrations in runoff of six spring-applied pesticides and autumn-applied glyphosate and its metabolite aminomethylphosphonic acid (AMPA). Measurements were performed for 3 yr both during the growing seasons and during intervening winter snowmelt periods on a clay loam field close to Uppsala. During growing seasons, surface runoff was generated on only five occasions during one 25-d period in 2012 when the infiltration capacity of the soil may have been reduced by structural degradation due to large cumulative rainfall amounts after harrowing. Concentrations in surface runoff exceeded Swedish water quality standards in all samples during this growing season for diflufenican and pirimicarb. Surface runoff was generated during three snowmelt periods during the winter of 2012-2013. All of the applied pesticides were found in snowmelt samples despite incorporation of residues by autumn plowing, degradation, and leaching into the soil profile during the period between spraying and sampling. Concentrations of glyphosate ranged from 0.12 to 7.4 μg L, and concentrations of AMPA ranged from 0 to 2.7 μg L. Our results indicate that temporal changes in hydraulic properties during the growing season and when the soil freezes during winter affect pesticide losses through surface runoff. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.

    Science.gov (United States)

    Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R

    2015-01-01

    When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Interception of rainfall and surface runoff in the Brazilian Cerrado

    Science.gov (United States)

    Tarso Oliveira, Paulo; Wendland, Edson; Nearing, Mark; Perea Martins, João

    2014-05-01

    The Brazilian Cerrado plays a fundamental role in water resources dynamics because it distributes fresh water to the largest basins in Brazil and South America. In recent decades, the native Cerrado vegetation has increasingly been replaced by agricultural crops and pasture. These land cover and land use changes have altered the hydrological processes. Meanwhile, little is known about the components of the water balance in the Brazilian Cerrado, mainly because the experimental field studies in this region are scarce or nonexistent. The objective of this study was to evaluate two hydrological processes under native Cerrado vegetation, the canopy interception (CI) and the surface runoff (R). The Cerrado physiognomy was classified as "cerrado sensu stricto denso" with an absolute density of 15,278 trees ha-1, and a basal area of 11.44 m2 ha-1. We measured the gross rainfall (P) from an automated tipping bucket rain gauge (model TB4) located in a tower with 11 m of height on the Cerrado. Throughfall (TF) was obtained from 15 automated tipping bucket rain gauges (model Davis) spread below the Cerrado vegetation and randomly relocated every month during the wet season. Stemflow (SF) was measured on 12 trees using a plastic hose wrapped around the trees trunks, sealed with neutral silicone sealant, and a bucket to store the water. The canopy interception was computed by the difference between P and the sum of TF and SF. Surface runoff under undisturbed Cerrado was collected in three plots of 100 m2(5 x 20 m) in size and slope steepness of approximately 0.09 m m-1. The experimental study was conducted between January 2012 and November 2013. We found TF of 81.0% of P and SF of 1.6% of P, i.e. the canopy interception was calculated at 17.4% of P. There was a statistically significant correlation (p 0.8. Our results suggest that the rainfall intensity, the characteristics of the trees trunks (crooked and twisted) and stand structure are the main factors that have influenced

  11. Colloidal mobilization of arsenic from mining-affected soils by surface runoff.

    Science.gov (United States)

    Gomez-Gonzalez, Miguel Angel; Voegelin, Andreas; Garcia-Guinea, Javier; Bolea, Eduardo; Laborda, Francisco; Garrido, Fernando

    2016-02-01

    Scorodite-rich wastes left as a legacy of mining and smelting operations pose a threat to environmental health. Colloids formed by the weathering of processing wastes may control the release of arsenic (As) into surface waters. At a former mine site in Madrid (Spain), we investigated the mobilization of colloidal As by surface runoff from weathered processing wastes and from sediments in the bed of a draining creek and a downstream sedimentation-pond. Colloids mobilized by surface runoff during simulated rain events were characterized for their composition, structure and mode of As uptake using asymmetric flow field-flow fractionation coupled to inductively plasma mass spectrometry (AF4-ICP-MS) and X-ray absorption spectroscopy (XAS) at the As and Fe K-edges. Colloidal scorodite mobilized in surface runoff from the waste pile is acting as a mobile As carrier. In surface runoff from the river bed and the sedimentation pond, ferrihydrite was identified as the dominant As-bearing colloidal phase. The results from this study suggest that mobilization of As-bearing colloids by surface runoff may play an important role in the dispersion of As from metallurgical wastes deposited above ground and needs to be considered in risk assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity

    NARCIS (Netherlands)

    Appels, W.M.; Bogaart, P.W.; Bogaart, P.W.; Zee, van der S.E.A.T.M.

    2016-01-01

    In flat lowland agricultural catchments in temperate climate zones with highly permeable sandy soils, surface runoff is a rare process with a large impact on the redistribution of sediments and solutes and stream water quality. We examine hydrological data obtained on two field sites in the

  13. The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: proof of widespread export to surface waters. Part II: the role of infiltration and surface runoff.

    Science.gov (United States)

    Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf

    2013-01-01

    Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters.

  14. Surface runoff water quality in a managed three zone riparian buffer.

    Science.gov (United States)

    Lowrance, Richard; Sheridan, Joseph M

    2005-01-01

    Managed riparian forest buffers are an important conservation practice but there are little data on the water quality effects of buffer management. We measured surface runoff volumes and nutrient concentrations and loads in a riparian buffer system consisting of (moving down slope from the field) a grass strip, a managed forest, and an unmanaged forest. The managed forest consisted of sections of clear-cut, thinned, and mature forest. The mature forest had significantly lower flow-weighted concentrations of nitrate, ammonium, total Kjeldahl N (TKN), sediment TKN, total N (nitrate + TKN), dissolved molybdate reactive P (DMRP), total P, and chloride. The average buffer represented the conditions along a stream reach with a buffer system in different stages of growth. Compared with the field output, flow-weighted concentrations of nitrate, ammonium, DMRP, and total P decreased significantly within the buffer and flow-weighted concentrations of TKN, total N, and chloride increased significantly within the buffer. All loads decreased significantly from the field to the middle of the buffer, but most loads increased from the middle of the buffer to the sampling point nearest the stream because surface runoff volume increased near the stream. The largest percentage reduction of the incoming nutrient load (at least 65% for all nutrient forms) took place in the grass buffer zone because of the large decrease (68%) in flow. The average buffer reduced loadings for all nutrient species, from 27% for TKN to 63% for sediment P. The managed forest and grass buffer combined was an effective buffer system.

  15. The effect of the runoff size on the pesticide concentration in runoff water and in FOCUS streams simulated by PRZM and TOXSWA.

    Science.gov (United States)

    Adriaanse, Paulien I; Van Leerdam, Robert C; Boesten, Jos J T I

    2017-04-15

    Within the European Union the exposure of aquatic organisms to pesticides is assessed by simulations with the so-called FOCUS Surface Water Scenarios. Runoff plays an important role in these scenarios. As little is known about the effect of runoff size on the exposure, we investigated the effect of runoff size on the concentration in the runoff water and in streams simulated with the PRZM and TOXSWA models for two FOCUS runoff scenarios. For weakly sorbing pesticides (K F,oc runoff water decreased exponentially with increasing daily runoff size. The runoff size hardly affected the pesticide concentration in the runoff water of strongly sorbing pesticides (K F,oc ≥1000Lkg -1 ). For weakly sorbing pesticides the concentration in the FOCUS stream reached a maximum at runoff sizes of about 0.3 to 1mm. The concentration increased rapidly when the runoff size increased from 0 to 0.1mm and gradually decreased when runoff exceeded 1mm. For strongly sorbing pesticides the occurrence of the maximum concentration in the stream is clearly less pronounced and lies approximately between 1 and 20mm runoff. So, this work indicates that preventing small runoff events (e.g. by vegetated buffer strips) reduces exposure concentrations strongly for weakly sorbing pesticides. A simple metamodel was developed for the ratio between the concentrations in the stream and in the runoff water. This model predicted the ratios simulated by TOXSWA very well and it demonstrated that (in addition to runoff size and concentration in runoff) the size of the pesticide-free base flow and pesticide treatment ratio of the catchment determine the stream concentration to a large extent. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. [Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].

    Science.gov (United States)

    Dong, Wen; Li, Huai-En; Li, Jia-Ke

    2013-02-01

    In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%.

  17. Urban Land: Study of Surface Run-off Composition and Its Dynamics

    Science.gov (United States)

    Palagin, E. D.; Gridneva, M. A.; Bykova, P. G.

    2017-11-01

    The qualitative composition of urban land surface run-off is liable to significant variations. To study surface run-off dynamics, to examine its behaviour and to discover reasons of these variations, it is relevant to use the mathematical apparatus technique of time series analysis. A seasonal decomposition procedure was applied to a temporary series of monthly dynamics with the annual frequency of seasonal variations in connection with a multiplicative model. The results of the quantitative chemical analysis of surface wastewater of the 22nd Partsjezd outlet in Samara for the period of 2004-2016 were used as basic data. As a result of the analysis, a seasonal pattern of variations in the composition of surface run-off in Samara was identified. Seasonal indices upon 15 waste-water quality indicators were defined. BOD (full), suspended materials, mineralization, chlorides, sulphates, ammonium-ion, nitrite-anion, nitrate-anion, phosphates (phosphorus), iron general, copper, zinc, aluminium, petroleum products, synthetic surfactants (anion-active). Based on the seasonal decomposition of the time series data, the contribution of trends, seasonal and accidental components of the variability of the surface run-off indicators was estimated.

  18. Drainage investigation of surface runoff for highway pavement

    Directory of Open Access Journals (Sweden)

    Al-adili Aqeel

    2018-01-01

    Full Text Available The aim of this study is to establish the effect of heavy rainfall and the chosen pavement layers on the drainage design, material selection and rutting resistance of the flexible pavement. The test in present study was started with wheel track passing without load and without rain falling on the pavement for a period of time, and it was noticed that no distress appeared on the surface of the pavement. Then, the load is gradually added by using wheel track load of 106 psi for five tests without rain falling and five other tests with gradually increasing rain fall duration and intensity. Deterioration and distresses appeared on the pavement when increasing the wheel track load to (150 psi under high intensity rain and long term duration of rain fall. By increasing the number of days, which is 103 days of study, when the pavement is saturated, the extra amount of the water will runoff. The clogging material which caused a decrease in the water seepage, increases the time of runoff ending. The clogging materials of fine particles that get deposited on the surface of the pavement resulted by passing the wheel track loading and wear & tear of the pavement surface, and other clogging materials such as salt in the water will penetrate to the pavement and seal the voids and decrease its water seepage. The water seepage decreases by increasing number of days, so the amount of the absorbed water decreases by 89% after 71 days of testing for high rain intensity (116 ml/min..

  19. Surface runoff scale effects in West African watersheds: Modeling and management options

    NARCIS (Netherlands)

    Giesen, van de N.C.; Stomph, T.J.; Ridder, de N.

    2005-01-01

    Measurements of surface runoff from uniform slopes of different lengths in West Africa have shown that longer slopes tend to have less runoff per unit of length than short slopes. The main reason for this scale effect is that once the rain stops, water on long slopes has more opportunity time to

  20. Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity

    NARCIS (Netherlands)

    Appels, W.M.; Bogaart, P.W.; Zee, van der S.E.A.T.M.

    2011-01-01

    Surface runoff on agricultural fields arises when rainfall exceeds infiltration. Excess water ponding in and flowing through local microtopography increases the hydrological connectivity of fields. In turn, an increased level of hydrological connectivity leads to a higher surface runoff flux at the

  1. Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms.

    Science.gov (United States)

    Ramos, M C; Quinton, J N; Tyrrel, S F

    2006-01-01

    The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h(-1) were conducted in a sandy loam soil packed into soil flumes (2.5m long x 1m wide) at a bulk density of 1400 kg m(-3), with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9 x 10(4) to 1.1 x 10(6) PFC 100mL(-1), depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.

  2. Surface runoff in the Itaim Watershed

    Directory of Open Access Journals (Sweden)

    Getulio Teixeira Batista

    2007-06-01

    Full Text Available This paper describes a work done in the Itaim watershed at Taubaté, SP, and had the objective of estimating the surface runoff based on the Curve-Number (CN method in area with vegetation cover of grassland (Brachiaria Decumbens, that prevails in this watershed. The surface runoff was estimated using three different methods: 1st values of accumulated Infiltration (IAc obtained in the field were used, considered as the Potential Infiltration (S, which varied from 15.37 mm to 51.88 mm with an average value of 23.46 mm. With those measured infiltration rates and using the maximum precipitation values for Taubaté, SP, with duration time of 3 hours: P = 54.4; 70.3; 80.8; 86.7; 90.9; 94.1 and 103.9 mm, respectively, for the return times, Tr = 2, 5, 10, 15, 25, 50 and 100 years, the following values of surface runoff were generated: 34.83; 49.33; 59.14; 64.71; 68.69; 71.73 and 81.10 mm, respectively; In the 2nd method it was considered that the prevailing vegetation cover of the watershed was Dirty Pasture (Pasture with regrowth of natural vegetation and therefore, a value of CN = 75 was used and generated a potential infiltration, S = 84,7 mm and resulted in surface runoff values that varied from 11 to 44 mm; In the 3rd method, the value of CN was considered equal to 66.57. This value was calculated weighting the contribution of all land use cover classes of the watershed, and as a result a higher value of potential infiltration, S = 127 mm, was obtained. Consequently, the surface runoff values were 5.33; 11.64; 16.72; 19.83; 22.16; 23.98 and 29.83 mm, respectively. Therefore, the comparison with the results obtained by the two Curve-Number methods (conventional and weighted allowed to be concluded that the Curve-Number method applied in a conventional way underestimated the surface runoff in the studied area. However, results indicate that it is possible to use this method for surface runoff estimates as long as adjustments based on potential

  3. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    Science.gov (United States)

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  4. Automated Measurement for Sensitivity Analysis of Runoff-Sediment Load at Varying Surface Gradients

    Directory of Open Access Journals (Sweden)

    Imanogor P.A.

    2015-07-01

    Full Text Available Direct measurement of surface runoff is often associated with errors and inaccuracies which results to unreliable hydrological data. An automatic Runoff-meter using tipping buckets arrangement calibrated to tip 0.14 liter of runoff water per tip with an accuracy of ± 0.001 litre was used to measure surface runoff from a steel bounded soil tray of dimension (1200 mm X 900 mm X 260 mm filled with sand loamy to the depth of 130 mm and inclined at angle (0 0 , 5 0 ,12 0 and 15 0 horizontal to the instrument. The effect of varying angles of inclination on runoff intensity, sediment loss rate and sediment loss is significant at 5 % confidence level, while surface runoff is not significant at 5 % confidence level. Total highest sediment loss of 458.2 g and 313.4 g were observed at angle 15 0 and 12 0 respectively. Total surface runoff of 361.5 mm and 445.8 mm were generated at inclined angle of 0 0 and 5 0 , while at angle 12 0 and 15 0 , 564.3 mm and 590.0 mm of surface runoff were generated. In addition, runoff intensity and sediment loss rate were highest at angle 15 0 , while the lowest values of 1.5mm/min and 5.43 g/min were obtained at angle of inclination 5 0 . The results showed that strong relationship existed among the hydrological variables as a result of subjecting the steel bounded soil tray to different angles of inclination. Such results would provide useful data for the running of physics-based deterministic model of surface runoff and erosion which will be useful for the design of hydrological structures, land use planning and management.

  5. Analysis of factors controlling soil phosphorus loss with surface runoff in Huihe National Nature Reserve by principal component and path analysis methods.

    Science.gov (United States)

    He, Jing; Su, Derong; Lv, Shihai; Diao, Zhaoyan; Bu, He; Wo, Qiang

    2018-01-01

    Phosphorus (P) loss with surface runoff accounts for the P input to and acceleration of eutrophication of the freshwater. Many studies have focused on factors affecting P loss with surface runoff from soils, but rarely on the relationship among these factors. In the present study, rainfall simulation on P loss with surface runoff was conducted in Huihe National Nature Reserve, in Hulunbeier grassland, China, and the relationships between P loss with surface runoff, soil properties, and rainfall conditions were examined. Principal component analysis and path analysis were used to analyze the direct and indirect effects on P loss with surface runoff. The results showed that P loss with surface runoff was closely correlated with soil electrical conductivity, soil pH, soil Olsen P, soil total nitrogen (TN), soil total phosphorus (TP), and soil organic carbon (SOC). The main driving factors which influenced P loss with surface runoff were soil TN, soil pH, soil Olsen P, and soil water content. Path analysis and determination coefficient analysis indicated that the standard multiple regression equation for P loss with surface runoff and each main factor was Y = 7.429 - 0.439 soil TN - 6.834 soil pH + 1.721 soil Olsen-P + 0.183 soil water content (r = 0.487, p runoff. The effect of physical and chemical properties of undisturbed soils on P loss with surface runoff was discussed, and the soil water content and soil Olsen P were strongly positive influences on the P loss with surface runoff.

  6. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    Science.gov (United States)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  7. Spatiotemporal variability of saturation excess surface runoff in flat fields due to interactions with meso- and microtopography

    NARCIS (Netherlands)

    Appels, W.M.; Noij, I.G.A.M.; Massop, H.T.L.

    2013-01-01

    Surface runoff is the fastest route from field to stream and the main transport route for sediment and adsorbed contaminants, and as such an important cause of surface water contamination in agricultural areas. The goals of the study were to explain differences in measured surface runoff volumes and

  8. The effect of the runoff size on the pesticide concentration in runoff water and in FOCUS streams simulated by PRZM and TOXSWA

    NARCIS (Netherlands)

    Adriaanse, Pauline; Leerdam, van R.C.; Boesten, Jos J.T.I.

    2017-01-01

    Within the European Union the exposure of aquatic organisms to pesticides is assessed by simulations with the so-called FOCUS Surface Water Scenarios. Runoff plays an important role in these scenarios. As little is known about the effect of runoff size on the exposure, we investigated the effect of

  9. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    Science.gov (United States)

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  10. Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland.

    Science.gov (United States)

    Wang, Jun; Cheng, Qingyu; Xue, Shengguo; Rajendran, Manikandan; Wu, Chuan; Liao, Jiaxin

    2018-04-01

    A great deal of manganese and associated heavy metals (such as Ni, Cu, Zn, Cd, Pb, etc.) was produced in manganese mining, smelting, and other processes and weathering and leaching of waste slag, which entered rainwater runoff by different means under the action of rainfall runoff. It caused heavy metal pollution in water environment to surrounding areas, and then environmental and human health risks were becoming increasingly serious. In the Xiangtan manganese mine, we studied the characteristics of nutritional pollutants and heavy metals by using the method of bounded runoff plots on the manganese tailing wasteland after carrying out some site treatments using three different approaches, such as (1) exposed tailings, the control treatment (ET), (2) external-soil amelioration and colonization of Cynodon dactylon (Linn.) Pers. turf (EC), and (3) external-soil amelioration and seedling seeding propagation of Cynodon dactylon (Linn.) Pers. (ES). The research showed that the maximum runoff occurred in 20,140,712 rainfall events, and the basic law of runoff was EC area > ET area > ES area in the same rainfall event. The concentration of total suspended solids (TSS) and chemical oxygen demand (COD) of three ecological restoration areas adopted the following rule: ET area > EC area > ES area. Nitrogen (N) existed mainly in the form of water soluble while phosphorus (P) was particulate. The highest concentrations of total nitrogen (TN) and total phosphorus (TP) were 11.57 ± 2.99 mg/L in the EC area and 1.42 ± 0.56 mg/L in the ET area, respectively. Cr, Ni, Pb, Zn, Mn, and Cu in surface runoff from three restoration types all exceeded the class V level of the environmental quality standard for surface water except Cu in EC and ES areas. Pollution levels of heavy metals in surface runoff from three restoration areas are shown as follows: ET area > EC area > ES area. There was a significant positive correlation between TSS and runoff, COD, and TP. And this

  11. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Surface runoff from urban areas. New aspects; Neue Aspekte in der Behandlung von Siedlungsabfluessen

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Stephan [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Bereich Siedlungswasserwirtschaft und Wasserguetewirtschaft; Lambert, Benedikt [Bioplan Landeskulturgesellschaft, Sinsheim (Germany); Grotehusmann, Dieter [Ingenieurgesellschaft fuer Stadthydrologie, Hannover (Germany)

    2010-12-15

    The surface runoff from urban areas is one of the most important sources of pollutants emitted into surface waters. Suspended solids which act as a transport vehicle for many anthropogenic pollutants (e. g. heavy metals, PAH) are a key factor in this regard. The development of efficient measures of storm water runoff treatment thus requires a further differentiation of suspended solids in a fine (clay and silt) and coarse (sand and gravel) fraction. Both fractions show distinctly different characteristics in pollutant loading, transport and retention on urban surfaces and sewer systems. The primary aim of storm water runoff treatment is the reduction of the fine particles which are always highly loaded with anthropogenic pollutants. In contrast the coarse particles are almost unpolluted especially if they have a low organic share. The widespread sedimentation tanks with surface loadings between 10 and 2 m/h are very inefficient. A significant, save and lasting reduction of the emitted load of fine particles requires a considerable reduction of the surface loads. That can be achieved with the installation of lamellar settler or the utilization of the very large volumes of flood management tanks frequently present in urban areas. Filtration plants are highly efficient but there application in urban areas is limited due to their high space demands. (orig.)

  13. Engineering evaluation/cost analysis: Waste Pit Area storm water runoff control, Feed Materials Production Center, Fernald, Ohio

    International Nuclear Information System (INIS)

    1990-08-01

    This report evaluates remedial action alternatives at the Feed Materials production Center in response to the need to contain contaminated storm water runoff. The storm water is being contaminated as it falls over a radioactive/chemical waste pit which contains uranium contaminated wastes. Alternatives considered include no action, surface capping, surface capping with lateral drainage, runoff collection and treatment, and source removal

  14. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    Science.gov (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  15. Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field.

    Science.gov (United States)

    Chrétien, François; Giroux, Isabelle; Thériault, Georges; Gagnon, Patrick; Corriveau, Julie

    2017-05-01

    With their application as seed coatings, the use of neonicotinoid insecticides increased dramatically during the last decade. They are now frequently detected in aquatic ecosystems at concentrations susceptible to harm aquatic invertebrates at individual and population levels. This study intent was to document surface runoff and subsurface tile drain losses of two common neonicotinoids (thiamethoxam and clothianidin) compared to those of companion herbicides (atrazine, glyphosate, S-metolachlor and mesotrione) at the edge of a 22.5-ha field under a corn-soybean rotation. A total of 14 surface runoff and tile drain discharge events were sampled over two years. Events and annual unit mass losses were computed using flow-weighted concentrations and total surface runoff and tile drain flow volumes. Detection frequencies close to 100% in edge-of-field surface runoff and tile drain water samples were observed for thiamethoxam and clothianidin even though only thiamethoxam had been applied in the first year. In 2014, thiamethoxam median concentrations in surface runoff and tile drain samples were respectively 0.46 and 0.16 μg/L, while respective maximum concentrations of 2.20 and 0.44 μg/L were measured in surface runoff and tile drain samples during the first post-seeding storm event. For clothianidin, median concentrations in surface runoff and tile drain samples were 0.02 and 0.01, μg/L, and respective maximum concentrations were 0.07 μg/L and 0.05 μg/L. Surface runoff and tile drain discharge were key transport mechanisms with similar contributions of 53 and 47% of measured mass losses, respectively. Even if thiamethoxam was applied at a relatively low rate and had a low mass exportation value (0.3%), the relative toxicity was one to two orders of magnitude higher than those of the other chemicals applied in 2014 and 2015. Companion herbicides, except glyphosate in tile drains, exceeded their water quality guideline during one sampling campaign after

  16. Experimental study of water fluxes in a residential area: 2. Road infiltration, runoff and evaporation

    Science.gov (United States)

    Ragab, R.; Rosier, P.; Dixon, A.; Bromley, J.; Cooper, J. D.

    2003-08-01

    Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water-table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October-March) and summer (April-September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21-24% of annual rainfall, with more evaporation taking place during summer than winter.

  17. Heavy metal contamination in surface runoff sediments of the urban area of Vilnius, Lithuania

    Directory of Open Access Journals (Sweden)

    Gytautas Ignatavičius

    2017-02-01

    Full Text Available Surface runoff from urbanized territories carries a wide range of pollutants. Sediments in untreated runoff from direct discharge stormwater systems significantly contribute to urban waterway pollution. In this study, heavy metal (Pb, Zn, Cu, Cr, Ba, As and Fe contamination in surface runoff sediments of the urban area of the city of Vilnius was investigated. The surface runoff sediment samples were collected from seven dischargers with the highest volume rate of water flow and concentrations of suspended solids. The geospatial analysis of the distribution of heavy metals shows that there are several active pollution sources supplying the dischargers with contaminated sediments. Most of these areas are located in the central part of the city and in old town with intense traffic. Principal components analysis and t-test results clearly depicted the significantly different chemical compositions of winter and autumn surface sediment samples. The sampling approach and assessment of results provide a useful tool to examine the contamination that is generated in urban areas, distinguish pollution sources and give a better understanding of the importance of permeable surfaces and green areas.

  18. Predicting Surface Runoff from Catchment to Large Region

    Directory of Open Access Journals (Sweden)

    Hongxia Li

    2015-01-01

    Full Text Available Predicting surface runoff from catchment to large region is a fundamental and challenging task in hydrology. This paper presents a comprehensive review for various studies conducted for improving runoff predictions from catchment to large region in the last several decades. This review summarizes the well-established methods and discusses some promising approaches from the following four research fields: (1 modeling catchment, regional and global runoff using lumped conceptual rainfall-runoff models, distributed hydrological models, and land surface models, (2 parameterizing hydrological models in ungauged catchments, (3 improving hydrological model structure, and (4 using new remote sensing precipitation data.

  19. Modelling monthly runoff generation processes following land use changes: groundwater-surface runoff interactions

    Science.gov (United States)

    Bari, M.; Smettem, K. R. J.

    A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall-runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall-runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted

  20. Modelling monthly runoff generation processes following land use changes: groundwater–surface runoff interactions

    Directory of Open Access Journals (Sweden)

    M. Bari

    2004-01-01

    Full Text Available A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, 'Ernies' (control, fully forested and 'Lemon' (54% cleared are in a zone of mean annual rainfall of 725 mm, while 'Salmon' (control, fully forested and 'Wights' (100% cleared are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i immediately after clearing due to reduced evapotranspiration, and (ii through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i an upper zone unsaturated store, (ii a transient stream zone store, (ii a lower zone unsaturated store and (iv a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and

  1. International approaches to the hydraulic control of surface water runoff in mitigating flood and environmental risks

    Directory of Open Access Journals (Sweden)

    Ballard Bridget Woods

    2016-01-01

    Full Text Available This paper compares and contrasts a number of international approaches to the hydraulic control of surface water runoff from new development and redevelopment, known as sustainable drainage systems (SuDS or low impact development (LID. The paper provides a commentary on the progress and current status of national standards for SuDS in the UK to control the frequency, flow rate and volume of runoff from both frequent and extreme rainfall events, and the best practice design criteria presented in the revised UK CIRIA SuDS Manual, published in November 2015. The paper then compares these design criteria and standards with those developed and applied in China, USA, France and Germany and also looks at the drivers behind their development. The benefits of these different approaches are assessed in the context of flood risk mitigation, climate resilience and wider environmental protection objectives, including water quality, morphology and ecology. The paper also reviews the design approaches promoted by the new SuDS Manual and internationally for delivering additional benefits for urban spaces (such as recreation, visual character, education and economic growth through multi-functional urban design.

  2. Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia

    Science.gov (United States)

    Glotov, V. E.; Glotova, L. P.

    2018-01-01

    The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some

  3. [Pollution Characteristics of Surface Runoff of Typical Town in Chongqing City].

    Science.gov (United States)

    Wang, Long-tao; Duan, Bing-zheng; Zhao, Jian-wei; Hua, Yu-mei; Zhu, Duan-wei

    2015-08-01

    Six kinds of impermeable underlying surface, cement tile roof, asbestos roof, cement flat roof, residential concrete pavement, asphalt pavement of restaurants, asphalt pavement of oil depot, and a combined sewer overflow canal in the Jiansheng town of Dadukou district in Chongqing city were chosen as sample plots to study the characteristics of nutritional pollutants and heavy metals in town runoff. The research showed that the average mass concentrations of TSS, COD, TN, TP in road runoff were (1681.2 +/- 677.2), (1154.7 +/- 415.5), (12.07 +/- 2.72), (3.32 +/- 1.15) mgL(-1), respectively. These pollutants were higher than those in roof runoff which were (13.3 +/- 6.5), (100.4 +/- 24.8), (3.58 +/- 0.70), (0.10 +/- 0.02) mg x L(-1), respectively. TDN accounted for 62.60% +/- 34.38% of TN, and TDP accounted for 42.22% +/- 33.94% of TP in the runoff of impermeable underlying surface. Compared with the central urban runoff, town runoff in our study had higher mass concentrations of these pollutants. The mass concentrations of TSS, COD, TDN, TN, TDP and TP in the combined sewer overflow were (281.57 +/- 308.38), (231.21 +/- 42.95), (8.16 +/- 2.78), (10.60 +/- 3.94), (0.38 +/- 0.23) and (1.51 +/- 0.75) mg x L(-1), respectively. The average levels of heavy metals in this kind of runoff did not exceed the class VI level of the surface water environmental quality standard. Most pollutants in the combined sewer overflow had first flush. However, this phenomenon was very rare for TSS. There was a significant positive correlation between TSS and COD, TP in the combined sewer overflow. And this correlation was significant between NH4+ -N and TP, TDP, TN, TDP. However, a negative correlation existed between NO3- -N and all other indicators.

  4. Statistical analysis and modelling of surface runoff from arable fields

    OpenAIRE

    P. Fiener; K. Auerswald; F. Winter; M. Disse

    2013-01-01

    Surface runoff generation on arable fields is an important driver of (local) flooding, on-site and off-site damages by erosion, and of nutrient and agrochemical transport. In general, three different processes generate surface runoff (Hortonian runoff, saturation excess runoff, and return of subsurface flow). Despite the developments in our understanding of these processes it remains difficult to predict, which processes govern runoff generation during the course of an event or through...

  5. Effect of sugarcane cropping systems on herbicide losses in surface runoff.

    Science.gov (United States)

    Nachimuthu, Gunasekhar; Halpin, Neil V; Bell, Michael J

    2016-07-01

    Herbicide runoff from cropping fields has been identified as a threat to the Great Barrier Reef ecosystem. A field investigation was carried out to monitor the changes in runoff water quality resulting from four different sugarcane cropping systems that included different herbicides and contrasting tillage and trash management practices. These include (i) Conventional - Tillage (beds and inter-rows) with residual herbicides used; (ii) Improved - only the beds were tilled (zonal) with reduced residual herbicides used; (iii) Aspirational - minimum tillage (one pass of a single tine ripper before planting) with trash mulch, no residual herbicides and a legume intercrop after cane establishment; and (iv) New Farming System (NFS) - minimum tillage as in Aspirational practice with a grain legume rotation and a combination of residual and knockdown herbicides. Results suggest soil and trash management had a larger effect on the herbicide losses in runoff than the physico-chemical properties of herbicides. Improved practices with 30% lower atrazine application rates than used in conventional systems produced reduced runoff volumes by 40% and atrazine loss by 62%. There were a 2-fold variation in atrazine and >10-fold variation in metribuzin loads in runoff water between reduced tillage systems differing in soil disturbance and surface residue cover from the previous rotation crops, despite the same herbicide application rates. The elevated risk of offsite losses from herbicides was illustrated by the high concentrations of diuron (14μgL(-1)) recorded in runoff that occurred >2.5months after herbicide application in a 1(st) ratoon crop. A cropping system employing less persistent non-selective herbicides and an inter-row soybean mulch resulted in no residual herbicide contamination in runoff water, but recorded 12.3% lower yield compared to Conventional practice. These findings reveal a trade-off between achieving good water quality with minimal herbicide contamination and

  6. Effect of Saturated Near Surface on Nitrate and Ammonia Nitrogen Losses in Surface Runoff at the Loess Soil Hillslope

    Directory of Open Access Journals (Sweden)

    Yu-bin Zhang

    2010-01-01

    Full Text Available Water pollution from agricultural fields is a global problem and cause of eutrophication of surface waters. A laboratory study was designed to evaluate the effects of near-surface hydraulic gradients on NO3–N and NH4–N losses in surface runoff from soil boxes at 27% slope undersimulated rainfall of a loess soil hillslope. Experimental treatments included two near-surface hydraulic gradients (free drainage, FD; saturation, SA, three fertilizer application rates (control, no fertilizer input; low, 120 kg N ha-1; high, 240 kg N ha-1, and simulated rainfall of 100 mm h-1 was applied for 70 min. The results showed that saturated near-surface soil moisture had dramatic effects on NO3–N and NH4–N losses and water quality. Under the low fertilizer treatment, average NO3–N concentrations in runoff water of SA averaged 2.2 times greater than that of FD, 1.6 times greater for NH4–N. Under the high fertilizer treatment, NO3–N concentrations in runoff water from SA averaged 5.7 times greater than that of FD, 4.3 times greater for NH4–N. Nitrogen loss formed with NO3–N is dominant during the event, but not NH4–N. Under the SA condition, the total loss of NO3–N from low fertilizer treatment was 34.2 to 42.3% of applied nitrogen, while under the FD treatment that was 3.9 to 6.9%. However, the total loss of NH4–N was less than 1% of applied nitrogen. These results showed that saturated condition could make significant contribution to water quality problems.

  7. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments

    NARCIS (Netherlands)

    Zhao, Longshan; Hou, Rui; Wu, Faqi; Keesstra, Saskia

    2018-01-01

    Agriculture has a large effect on the properties of the soil and with that on soil hydrology. The partitioning of rainfall into infiltration and runoff is relevant to understand runoff generation, infiltration and soil erosion. Tillage manages soil surface properties and generates soil surface

  8. Future Changes in Surface Runoff over Korea Projected by a Regional Climate Model under A1B Scenario

    Directory of Open Access Journals (Sweden)

    Ji-Woo Lee

    2014-01-01

    Full Text Available This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM, namely, the Global/Regional Integrated Model System (GRIMs, Regional Model Program (RMP. The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4. The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070 simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.

  9. Modeling global distribution of agricultural insecticides in surface waters

    International Nuclear Information System (INIS)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J.; Schäfer, Ralf B.; Fornaroli, Riccardo; Liess, Matthias

    2015-01-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  10. Sensitivity of point scale surface runoff predictions to rainfall resolution

    Directory of Open Access Journals (Sweden)

    A. J. Hearman

    2007-01-01

    Full Text Available This paper investigates the effects of using non-linear, high resolution rainfall, compared to time averaged rainfall on the triggering of hydrologic thresholds and therefore model predictions of infiltration excess and saturation excess runoff at the point scale. The bounded random cascade model, parameterized to three locations in Western Australia, was used to scale rainfall intensities at various time resolutions ranging from 1.875 min to 2 h. A one dimensional, conceptual rainfall partitioning model was used that instantaneously partitioned water into infiltration excess, infiltration, storage, deep drainage, saturation excess and surface runoff, where the fluxes into and out of the soil store were controlled by thresholds. The results of the numerical modelling were scaled by relating soil infiltration properties to soil draining properties, and in turn, relating these to average storm intensities. For all soil types, we related maximum infiltration capacities to average storm intensities (k* and were able to show where model predictions of infiltration excess were most sensitive to rainfall resolution (ln k*=0.4 and where using time averaged rainfall data can lead to an under prediction of infiltration excess and an over prediction of the amount of water entering the soil (ln k*>2 for all three rainfall locations tested. For soils susceptible to both infiltration excess and saturation excess, total runoff sensitivity was scaled by relating drainage coefficients to average storm intensities (g* and parameter ranges where predicted runoff was dominated by infiltration excess or saturation excess depending on the resolution of rainfall data were determined (ln g*<2. Infiltration excess predicted from high resolution rainfall was short and intense, whereas saturation excess produced from low resolution rainfall was more constant and less intense. This has important implications for the accuracy of current hydrological models that use time

  11. The Effect of Water Harvesting Techniques on Runoff, Sedimentation, and Soil Properties

    Science.gov (United States)

    Al-Seekh, Saleh H.; Mohammad, Ayed G.

    2009-07-01

    This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65-85% and sedimentation by 58-69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.

  12. The effect of water harvesting techniques on runoff, sedimentation, and soil properties.

    Science.gov (United States)

    Al-Seekh, Saleh H; Mohammad, Ayed G

    2009-07-01

    This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65-85% and sedimentation by 58-69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.

  13. Pesticide exposure assessment for surface waters in the EU. Part 2: Determination of statistically based run-off and drainage scenarios for Germany.

    Science.gov (United States)

    Bach, Martin; Diesner, Mirjam; Großmann, Dietlinde; Guerniche, Djamal; Hommen, Udo; Klein, Michael; Kubiak, Roland; Müller, Alexandra; Preuss, Thomas G; Priegnitz, Jan; Reichenberger, Stefan; Thomas, Kai; Trapp, Matthias

    2017-05-01

    In order to assess surface water exposure to active substances of plant protection products (PPPs) in the European Union (EU), the FOCUS (FOrum for the Co-ordination of pesticide fate models and their USe) surface water workgroup introduced four run-off and six drainage scenarios for Step 3 of the tiered FOCUSsw approach. These scenarios may not necessarily represent realistic worst-case situations for the different Member States of the EU. Hence, the suitability of the scenarios for risk assessment in the national authorisation procedures is not known. Using Germany as an example, the paper illustrates how national soil-climate scenarios can be developed to model entries of active substances into surface waters from run-off and erosion (using the model PRZM) and from drainage (using the model MACRO). In the authorisation procedure for PPPs on Member State level, such soil-climate scenarios can be used to determine exposure endpoints with a defined overall percentile. The approach allows the development of national specific soil-climate scenarios and to calculate percentile-based exposure endpoints. The scenarios have been integrated into a software tool analogous to FOCUS-SWASH which can be used in the future to assess surface water exposure in authorisation procedures of PPPs in Germany. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  14. Introduction of inclined open channels for the control of surface runoff of slopes in road structures

    Directory of Open Access Journals (Sweden)

    Hniad O.

    2018-01-01

    Full Text Available The phenomenon of water erosion induced by runoff speeds at the surface of the embankments causes their instability. Particularly in road environments, gullying on the slope's surface due to runoffs causes landslides, which in turn cause considerable damage and consequent disorders to the road network. The aim of this research is to put in place a new technology for superficial water drainage on slope surfaces. Our study has developed a methodology involving the change of the geometric configuration of the water flow, aiming at velocity control of the flows by choosing slanting waterways with small slopes coupled to vertical drains. A modelling of the proposed solution will evaluate its effectiveness as to prevent the erosive factor and to identify other factors that are responsible for slope disorders.

  15. Impervious surfaces and sewer pipe effects on stormwater runoff temperature

    Science.gov (United States)

    Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.

    2013-10-01

    The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.

  16. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models

    Science.gov (United States)

    Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.

    2018-05-01

    Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.

  17. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption

    Energy Technology Data Exchange (ETDEWEB)

    Awad, John [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Leeuwen, John van, E-mail: John.VanLeeuwen@unisa.edu.au [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); State Key Laboratory for Environmental Aquatic Chemistry, CAS, Beijing (China); Barbara Hardy Institute, University of South Australia, South Australia 5095 (Australia); Abate, Dawit [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Pichler, Markus; Bestland, Erick [School of the Environment, Flinders University, Bedford Park, South Australia 5042 (Australia); Chittleborough, David J. [School of Physical Sciences, University of Adelaide, North Terrace, South Australia 5005 (Australia); Fleming, Nigel [South Australian Research and Development Institute, P.O. Box 397, Adelaide, SA 5000 (Australia); Cohen, Jonathan; Liffner, Joel [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Drikas, Mary [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, South Australia 5000 (Australia); State Key Laboratory for Environmental Aquatic Chemistry, CAS, Beijing (China)

    2015-10-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~ 30 cm and ~ 60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV–visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on

  18. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption

    International Nuclear Information System (INIS)

    Awad, John; Leeuwen, John van; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J.; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary

    2015-01-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~ 30 cm and ~ 60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV–visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on

  19. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  20. [Effect of antecedent dry period on water quality of urban storm runoff pollution].

    Science.gov (United States)

    Bian, Bo

    2009-12-01

    Identified the main factor influencing urban rainfall-runoff pollution provides a scientific basis for urban rainfall-runoff pollution control and management. Therefore, starting in May 2006, a study was conducted to characterize water quality from representative land uses types in Zhenjiang to analyse the effect of antecedent dry period on stormwater runoff quality. The results show that the beginning of rainfall, with the increase of antecedent dry periods, the percentages of less than 40 microm is increased, the correlation of the water quality parameters (TN, TP, Zn, Pb, Cu, TSS and COD) and antecedent dry period shows a significant positive correlation, dissolved pollutants in the initial period surface runoff is increased. These findings show that facilitating the recognition of antecedent dry periods is the main factor influencing the change in concentration and partitioning of pollutants to provide the scientific basis for non-point source pollution control and management.

  1. Runoff water quality from broiler litter-amended tall fescue in response to natural precipitation in the Ozark Highlands.

    Science.gov (United States)

    Menjoulet, B C; Brye, K R; Pirani, A L; Haggard, B E; Gbur, E E

    2009-01-01

    The Arkansas poultry industry produced more than 1.2 billion broiler chickens (Gallus gallus domesticus) and generated approximately 1.3 million Mg of broiler litter in 2002. High transportation costs of relocating broiler litter have led to annual land applications near poultry houses, increasing concern for potential surface water contamination from runoff. The objective of this study was to evaluate the effect of broiler litter application rate on runoff water quality in response to natural precipitation. Six plots (1.5 by 6.0 m), located on a Captina silt loam (finesilty, siliceous, active, mesic Typic Fragiudult), were amended with fresh broiler litter at 0, 5.6, and 11.2 Mg ha(-1) (control, low, and high litter treatments, respectively) once annually for 4 yr (May 2003 through April 2007). Runoff collected after each runoff-producing event was analyzed for soluble nutrients and metals. Cumulative runoff did not differ among litter treatments over the 4-yr study. At times, flow-weighted mean (FWM) concentrations of As from all litter treatments exceeded the maximum contaminant level for drinking water (0.01 mg As L(-1)). Four-year FWM Fe concentrations and runoff losses were greater (P precipitation is temporally variable, evaluating runoff water quality in response to natural precipitation over several years is key to ascertaining the long-term impacts of surface-applied soil amendments like broiler litter.

  2. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.

    Science.gov (United States)

    Smith, Douglas R; King, Kevin W; Johnson, Laura; Francesconi, Wendy; Richards, Pete; Baker, Dave; Sharpley, Andrew N

    2015-03-01

    The midwestern United States offers some of the most productive agricultural soils in the world. Given the cool humid climate, much of the region would not be able to support agriculture without subsurface (tile) drainage because high water tables may damage crops and prevent machinery usage in fields at critical times. Although drainage is designed to remove excess soil water as quickly as possible, it can also rapidly transport agrochemicals, including phosphorus (P). This paper illustrates the potential importance of tile drainage for P transport throughout the midwestern United States. Surface runoff and tile drainage from fields in the St. Joseph River Watershed in northeastern Indiana have been monitored since 2008. Although the traditional concept of tile drainage has been that it slowly removes soil matrix flow, peak tile discharge occurred at the same time as peak surface runoff, which demonstrates a strong surface connection through macropore flow. On our research fields, 49% of soluble P and 48% of total P losses occurred via tile discharge. Edge-of-field soluble P and total P areal loads often exceeded watershed-scale areal loadings from the Maumee River, the primary source of nutrients to the western basin of Lake Erie, where algal blooms have been a pervasive problem for the last 10 yr. As farmers, researchers, and policymakers search for treatments to reduce P loading to surface waters, the present work demonstrates that treating only surface runoff may not be sufficient to reach the goal of 41% reduction in P loading for the Lake Erie Basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Southern California Water Bulletin for 1953: General review of the water resources of Southern California for the water year of 1952-53 with special reference to the surface runoff for the water year of 1951-52

    Science.gov (United States)

    Hofman, Walter; Briggs, R.C.; Littlefield, W.M.

    1954-01-01

    This WATER BULLETTIN is one of a series issued annually since June 1944. Its main purpose is to present a brief analysis of those phases of the local water supply associated with the work of the Geological Survey. The first part of this review deals with the water resources for the water year ending September 30, 1953. It contains a brief analysis of the annual precipitation, the provisional runoff at a few stations, the changes in water reserves both in surface reservoirs and underground, and the imported waters. It concludes by pointing out the deficiences in the local water reserves. This bulletin has been prepared by the Surface Water Branch; the section on ground-water conditions was prepared chiefly from information supplied by the Ground Hater Branch.

  4. Herbicide monitoring in soil, runoff waters and sediments in an olive orchard.

    Science.gov (United States)

    Calderon, Maria Jesus; De Luna, Elena; Gomez, Jose Alfonso; Hermosin, M Carmen

    2016-11-01

    Occurrences of surface water contamination by herbicides in areas where olive orchards are established reveal a need to understand soil processes affecting herbicide fate at field scale for this popular Mediterranean crop. A monitoring study with two herbicides (terbuthylazine and oxyfluorfen) in the first 2cm of soil, runoff waters, and sediments, was carried out after under natural rainfall conditions following winter herbicide application. At the end of the 107day field experiment, no residues of the soil applied terbuthylazine were recovered, whereas 42% of the oxyfluorfen applied remained in the top soil. Very low levels of both herbicides were measured in runoff waters; however, concentrations were slightly higher for terbuthylazine (0.53% of applied) than for oxyfluorfen (0.03% of applied), relating to their respective water solubilities. Congruent with soil residue data, 38.15% of the applied oxyfluorfen was found in runoff-sediment, compared to only 0.46% for terbuthylazine. Accordingly, the herbicide soil distribution coefficients measured within runoff field tanks was much greater for oxyfluorfen (Kd=3098) than for terbuthylazine (Kd=1.57). The herbicide oxyfluorfen is co-transported with sediment in runoff, remaining trapped and/or adsorbed to soil particle aggregates, due in part to its low water solubility. In contrast, terbuthylazine soil dissipation may be associated more so with leaching processes, favored by its high water solubility, low sorption, and slow degradation. By comparing these two herbicides, our results reaffirm the importance of herbicide physico-chemical properties in dictating their behavior in soil and also suggest that herbicides with low solubility, as seen in the case oxyfluorfen, remain susceptible to offsite transport associated with sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Transport of lincomycin to surface and ground water from manure-amended cropland.

    Science.gov (United States)

    Kuchta, Sandra L; Cessna, Allan J; Elliott, Jane A; Peru, Kerry M; Headley, John V

    2009-01-01

    Livestock manure containing antimicrobials becomes a possible source of these compounds to surface and ground waters when applied to cropland as a nutrient source. The potential for transport of the veterinary antimicrobial lincomycin to surface waters via surface runoff and to leach to ground water was assessed by monitoring manure-amended soil, simulated rainfall runoff, snowmelt runoff, and ground water over a 2-yr period in Saskatchewan, Canada, after fall application of liquid swine manure to cropland. Liquid chromatography tandem mass spectrometry was used to quantify lincomycin in all matrix extracts. Initial concentrations in soil (46.3-117 mug kg(-1)) were not significantly different (p > 0.05) for manure application rates ranging from 60,000 to 95,000 L ha(-1) and had decreased to nondetectable levels by mid-summer the following year. After fall manure application, lincomycin was present in all simulated rainfall runoff (0.07-2.7 mug L(-1)) and all snowmelt runoff (0.038-3.2 mug L(-1)) samples. Concentrations in snowmelt runoff were not significantly different from those in simulated rainfall runoff the previous fall. On average, lincomycin concentrations in ephemeral wetlands dissipated by 50% after 31 d. Concentrations of lincomycin in ground water were generally <0.005 mug L(-1). This study demonstrates that the management practice of using livestock manure from confined animal feeding operations as a plant nutrient source on cropland may result in antimicrobial transport to surface and ground waters.

  6. Semantic 3d City Model to Raster Generalisation for Water Run-Off Modelling

    Science.gov (United States)

    Verbree, E.; de Vries, M.; Gorte, B.; Oude Elberink, S.; Karimlou, G.

    2013-09-01

    Water run-off modelling applied within urban areas requires an appropriate detailed surface model represented by a raster height grid. Accurate simulations at this scale level have to take into account small but important water barriers and flow channels given by the large-scale map definitions of buildings, street infrastructure, and other terrain objects. Thus, these 3D features have to be rasterised such that each cell represents the height of the object class as good as possible given the cell size limitations. Small grid cells will result in realistic run-off modelling but with unacceptable computation times; larger grid cells with averaged height values will result in less realistic run-off modelling but fast computation times. This paper introduces a height grid generalisation approach in which the surface characteristics that most influence the water run-off flow are preserved. The first step is to create a detailed surface model (1:1.000), combining high-density laser data with a detailed topographic base map. The topographic map objects are triangulated to a set of TIN-objects by taking into account the semantics of the different map object classes. These TIN objects are then rasterised to two grids with a 0.5m cell-spacing: one grid for the object class labels and the other for the TIN-interpolated height values. The next step is to generalise both raster grids to a lower resolution using a procedure that considers the class label of each cell and that of its neighbours. The results of this approach are tested and validated by water run-off model runs for different cellspaced height grids at a pilot area in Amersfoort (the Netherlands). Two national datasets were used in this study: the large scale Topographic Base map (BGT, map scale 1:1.000), and the National height model of the Netherlands AHN2 (10 points per square meter on average). Comparison between the original AHN2 height grid and the semantically enriched and then generalised height grids shows

  7. Seasonal surface layer dynamics and sensitivity to runoff in a high Arctic fjord (Young Sound/Tyrolerfjord, 74°N)

    DEFF Research Database (Denmark)

    Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren

    2014-01-01

    Runoff from the Greenland Ice Sheet, local glaciers, and snowmelt along the northeastern Greenland coastline has a significant impact on coastal water masses flowing south toward Denmark Strait. Very few direct measurements of runoff currently exist in this large area, and the water masses near...... runoff estimates for the area. We also show that a total runoff between 0.9 and 1.4 km3 in 2006 is in accordance with observed surface salinities and calculated freshwater content in the fjord. This indicates that earlier reported runoff to the area is significantly underestimated and that melt from...... glaciers and the Greenland Ice Sheet in this region may be up to 50% larger than the current estimate. Model simulations indicate the presence of a cold low-saline coastal water mass formed by runoff from fjords north of the Young Sound/Tyrolerfjord system. Simulations of passive and age tracers show...

  8. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff

    Science.gov (United States)

    Occhipinti, Marti L.; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence

    2017-01-01

    Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner’s lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L–1, respectively. Of TN, the proportion of nitrate–N was 58% and other–N was 42%, whereas of TP, orthophosphate–P was 75% and other–P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters. PMID:28604811

  9. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption.

    Science.gov (United States)

    Awad, John; van Leeuwen, John; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary

    2015-10-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~30 cm and ~60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV-visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on the

  10. Phosphorus loss to runoff water twenty-four hours after application of liquid swine manure or fertilizer.

    Science.gov (United States)

    Tabbara, Hadi

    2003-01-01

    Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.

  11. Napropamide residues in runoff and infiltration water from pepper production.

    Science.gov (United States)

    Antonious, George F; Patterson, Matthew A

    2005-01-01

    A field study was conducted on a Lowell silty loam soil of 2.7% organic matter at the Kentucky State University Research Farm, Franklin County, Kentucky. Eighteen universal soil loss equation (USLE) standard plots (22 x 3.7 m each) were established on a 10% slope. Three soil management practices were used: (i) class-A biosolids (sewage sludge), (ii) yard waste compost, each mixed with native soil at a rate of 50 ton acre(-1) on a dry-weight basis, and (iii) a no-mulch (NM) treatment (rototilled bare soil), used for comparison purposes. Devrinol 50-DF "napropamide" [N,N-diethyl-2-(1-naphthyloxy) propionamide] was applied as a preemergent herbicide, incorporated into the soil surface, and the plots were planted with 60-day-old sweet bell pepper seedlings. Napropamide residues one hour following spraying averaged 0.8, 0.4, and 0.3 microg g(-1) dry soil in sewage sludge, yard waste compost, and no-mulch treatments, respectively. Surface runoff water, runoff sediment, and napropamide residues in runoff were significantly reduced by the compost and biosolid treatments. Yard waste compost treatments increased water infiltration and napropamide residues in the vadose zone compared to sewage sludge and NM treatments. Total pepper yields from yard waste compost amended soils (9187 lbs acre(-1)) was significantly higher (P soil amended with class-A biosolids (6984 lbs acre(-1)) or the no-mulch soil (7162 lbs acre(-1)).

  12. ICUD-0061 Field station to quantify overland runoff from urban green areas

    DEFF Research Database (Denmark)

    Nielsen, Kristoffer; Duus, L. B.; Møldrup, Per

    2017-01-01

    A hydrological field station is established to measure storm water runoff from a 4300 m2 pervious catchment in an urban landscape. The objective is to explore potential flood early warning indicators and assess the consequences of runoff from pervious surfaces to urban drainage systems in addition...... to runoff from impermeable surfaces. Soil volumetric water content and soil-water matric potential are measured in several sensor clusters in the catchment. It is found that measured surface runoff and soil volumetric water content are well correlated while matric potential is an on-off indicator...

  13. Estimation of surface runoff for calculating recharge in the karstic massif of Ports of Beseit (Tarragona, Spain) combining water balance in the soil and analysis of flow hydrographs

    International Nuclear Information System (INIS)

    Espinosa Martinez, S.; Custodio, E.

    2016-01-01

    For the right estimation of aquifer recharge by precipitation surface taking into account runoff is particularly relevant. Non considering it in the estimation of the groundwater resources can overestimate them. In the Baix Ebre aquifer system, in southern Catalonia, the surface and vadose zone runoff produced in the karstified carbonate formations in the Ports de Beseit massif has to be evaluated in order to achieve a better estimation of the resources transferred from this massif to the Plana de La Galera plain. Starting from the conceptual hydrogeological model, the average annual runoff is estimated. It includes the discharge from temporal perched aquifers in the Ports de Beseit massif, in the Matarraña river basin, and in the SE watershed to the Plana de La Galera plain. This is performed by analyzing the river and tributaries hydrographs, the filling and emptying hydrographs of the Ulldecona reservoir, and the soil water balance using the Visual Balan code applied to obtain the runoff in the Ulldecona reservoir watershed. The runoff has been estimated about 105±20 mm·yr−1, which represents 20–30% of average annual recharge in the Ports, estimated with soil water balance and atmospheric chloride deposition balance, about 350–500 mm·yr−1, which is mostly transferred laterally to the Plana de La Galera plain. (Author)

  14. Estimation of surface runoff for calculating recharge in the karstic massif of Ports of Beseit (Tarragona, Spain) combining water balance in the soil and analysis of flow hydrographs

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa Martinez, S.; Custodio, E.

    2016-07-01

    For the right estimation of aquifer recharge by precipitation surface taking into account runoff is particularly relevant. Non considering it in the estimation of the groundwater resources can overestimate them. In the Baix Ebre aquifer system, in southern Catalonia, the surface and vadose zone runoff produced in the karstified carbonate formations in the Ports de Beseit massif has to be evaluated in order to achieve a better estimation of the resources transferred from this massif to the Plana de La Galera plain. Starting from the conceptual hydrogeological model, the average annual runoff is estimated. It includes the discharge from temporal perched aquifers in the Ports de Beseit massif, in the Matarraña river basin, and in the SE watershed to the Plana de La Galera plain. This is performed by analyzing the river and tributaries hydrographs, the filling and emptying hydrographs of the Ulldecona reservoir, and the soil water balance using the Visual Balan code applied to obtain the runoff in the Ulldecona reservoir watershed. The runoff has been estimated about 105±20 mm·yr−1, which represents 20–30% of average annual recharge in the Ports, estimated with soil water balance and atmospheric chloride deposition balance, about 350–500 mm·yr−1, which is mostly transferred laterally to the Plana de La Galera plain. (Author)

  15. Interpretation of the mitigation of runoff on the FOCUS Surface Water Scenarios as described in the FOCUS l&M report

    NARCIS (Netherlands)

    Horst, ter M.M.S.; Adriaanse, P.I.; Boesten, J.J.T.I.

    2009-01-01

    Our interpretation is that the reduced runoff fluxes (water and mass) of the 20 ha upstream are combined with the unchanged runoff water fluxes of the remaining 80 ha upstream catchment. This implies that the reduction factor on exposure concentrations in FOCUS streams of Step 4 FOCUS scenarios

  16. Influence of soil water repellency on runoff and solute loss from New Zealand pasture

    Science.gov (United States)

    Jeyakumar, P.; Müller, K.; Deurer, M.; van den Dijssel, C.; Mason, K.; Green, S.; Clothier, B. E.

    2012-04-01

    Soil water repellency (SWR) has been reported in New Zealand, but knowledge on its importance for the country's economy and environment is limited. Our recent survey on the occurrence of SWR under pasture across the North Island of New Zealand showed that most soils exhibited SWR when dry independent of climate but influenced by the soil order. SWR is discussed as an important soil surface condition enhancing run-off and the transfer of fertilizers and pesticides from agricultural land into waterways. So far, the impact of SWR on run-off has rarely been measured. We developed a laboratory-scale run-off measurement apparatus (ROMA) to quantify directly the impact of SWR on run-off from undisturbed soil slabs. We compared the run-off resulting from the run-on of water with that resulting from an ethanol (30% v/v) solution, which is a fully-wetting liquid even in severely hydrophobic soils. Thus, the experiments with the ethanol solution can be understood as a proxy measure of the wetting-up behaviour of hydrophilic soils. We conducted ROMA run-off experiments with air-dried soil slabs (460 mm long x 190 mm wide x 50 mm deep) collected from pastoral sites, representing three major soil orders in the North Island: Recent Soil (Fluvisol), Gley Soil (Gleysol), and Organic Soil (Histosol), with water followed by the ethanol solution at a run-on rate of 60 mm/h. Bromide was applied at 80 kg KBr/ha prior to the water experiments to assess potential solute losses via run-off. The air-dried soils had a high degree and persistence of SWR (contact angles, 97, 98 and 104° , and potential water drop penetration times, 42, 54 and 231 min for the Fluvisol, Gleysol and Histosol, respectively). Under identical soil and experimental conditions, water generated run-off from all soils, but in the experiments with the ethanol solution, the entire ethanol solution infiltrated into the soils. The ranking of the run-off coefficients of the soils directly reflected their ranking in

  17. High spatial-temporal resolution and integrated surface and subsurface precipitation-runoff modelling for a small stormwater catchment

    Science.gov (United States)

    Hailegeorgis, Teklu T.; Alfredsen, Knut

    2018-02-01

    Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is

  18. The impact of runoff and surface hydrology on Titan's climate

    Science.gov (United States)

    Faulk, Sean; Lora, Juan; Mitchell, Jonathan

    2017-10-01

    Titan’s surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane “wetlands” reservoirs realistically produce many observed features of Titan’s atmosphere, whereas “aquaplanet” simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan’s surface. The wetlands configuration is, in part, motivated by Titan’s large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. To isolate the singular impact of surface runoff on Titan’s climatology, we run simulations without parameterizations of subsurface flow and topography-atmosphere interactions. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan’s hydrology provides new insight into the complex interaction between Titan’s atmosphere and surface, demonstrates the influence of surface runoff on Titan’s global climate

  19. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    Directory of Open Access Journals (Sweden)

    Celio I. Chagas

    2014-10-01

    Full Text Available Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in depressions along the tributary network from these lands devoted to cattle production. The aims of this work were: (i to gather a reliable set of data from different monitoring periods and scales, (ii to search for simple and sensible variables to be used as indicators for surface water quality advising purposes and (iii to corroborate previous biological contamination conceptual models for this region. Concentration of pollution indicators in these ponds was related to mean stocking rates from nearby fields and proved to depend significantly on the accumulated water and sediments. Viable mesophiles and total coliforms were found mainly attached to large sediments rather than in the runoff water phase. Seasonal sampling showed that the time period between the last significant runoff event and each sampling date regarding enterococci proved to be a sensible variable for predicting contamination. Enterococci concentration tended to increase gradually until the next extraordinary runoff event washed away contaminants. The mentioned relationship may be useful for designing early warning surface water contamination programs regarding enterococci dynamics and other related microbial pollutants as well.

  20. Contamination by urban superficial runoff: accumulated heavy metals on a road surface

    Directory of Open Access Journals (Sweden)

    Carlos Alfonso Zafra Mejía

    2007-01-01

    Full Text Available Studying the behaviour of accumulated contamination on urban surfaces is important in designing control methods minimising the impacts of surface runoff on the environment. This paper presents data regarding the sediment collected on the surface of an urban road in the city of Torrelavega in northern Spain during a period of 65 days during which 132 samples were collected. Two types of sediment collection samples were obtained: vacuumed dry samples (free load and those swept up following vacuuming (fixed load. The results showed that heavy metal concentration in the collected sediment (Pb, Zn, Cu and Cd was inversely proportional to particle diameter. High heavy metal concentrations were found in the smaller fraction (63 pm. Regression equations were calculated for heavy metal concentration regarding particle diameter. Large heavy metal loads were found in the larger fraction (125 pm. The results provide information for analysing runoff water quality in urban areas and designing treatment strategies.

  1. Modeling diffuse sources of surface water contamination with plant protection products

    Science.gov (United States)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  2. A mathematical model for soil solute transfer into surface runoff as influenced by rainfall detachment.

    Science.gov (United States)

    Yang, Ting; Wang, Quanjiu; Wu, Laosheng; Zhao, Guangxu; Liu, Yanli; Zhang, Pengyu

    2016-07-01

    Nutrients transport is a main source of water pollution. Several models describing transport of soil nutrients such as potassium, phosphate and nitrate in runoff water have been developed. The objectives of this research were to describe the nutrients transport processes by considering the effect of rainfall detachment, and to evaluate the factors that have greatest influence on nutrients transport into runoff. In this study, an existing mass-conservation equation and rainfall detachment process were combined and augmented to predict runoff of nutrients in surface water in a Loess Plateau soil in Northwestern Yangling, China. The mixing depth is a function of time as a result of rainfall impact, not a constant as described in previous models. The new model was tested using two different sub-models of complete-mixing and incomplete-mixing. The complete-mixing model is more popular to use for its simplicity. It captured the runoff trends of those high adsorption nutrients, and of nutrients transport along steep slopes. While the incomplete-mixing model predicted well for the highest observed concentrations of the test nutrients. Parameters inversely estimated by the models were applied to simulate nutrients transport, results suggested that both models can be adopted to describe nutrients transport in runoff under the impact of rainfall. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. GIS-based Approach to Estimate Surface Runoff in Small Catchments: A Case Study

    Directory of Open Access Journals (Sweden)

    Vojtek Matej

    2016-09-01

    Full Text Available The issue of surface runoff assessment is one of the important and relevant topics of hydrological as well as geographical research. The aim of the paper is therefore to estimate and assess surface runoff on the example of Vyčoma catchment which is located in the Western Slovakia. For this purpose, SCS runoff curve number method, modeling in GIS and remote sensing were used. An important task was the creation of a digital elevation model (DEM, which enters the surface runoff modeling and affects its accuracy. Great attention was paid to the spatial interpretation of land use categories applying aerial imagery from 2013 and hydrological soil groups as well as calculation of maximum daily rainfall with N-year return periods as partial tasks in estimating surface runoff. From the methodological point of view, the importance of the paper can be seen in the use of a simple GIS-based approach to assess the surface runoff conditions in a small catchment.

  4. MODELING OF STORM WATER RUNOFF FROM GREEN ROOFS

    Directory of Open Access Journals (Sweden)

    Ewa Burszta-Adamiak

    2014-10-01

    Full Text Available Apart from direct measurements, modelling of runoff from green roofs is valuable source of information about effectiveness of this type of structure from hydrological point of view. Among different type of models, the most frequently used are numerical models. They allow to assess the impact of green roofs on decrease and attenuation of runoff, reduction of peak runoff and value of water retention. This paper presents preliminary results of research on computing the rate of runoff from green roofs using GARDENIA model. The analysis has been carried out for selected rainfall events registered during measuring campaign on pilot-scale green roofs. Obtained results are promising and show good fit between observed and simulated runoff.

  5. Direct measurements of meltwater runoff on the Greenland ice sheet surface.

    Science.gov (United States)

    Smith, Laurence C; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T; Chu, Vena W; Rennermalm, Åsa K; Ryan, Jonathan C; Cooper, Matthew G; Gleason, Colin J; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L; Cullather, Richard I; Zhao, Bin; Willis, Michael J; Hubbard, Alun; Box, Jason E; Jenner, Brittany A; Behar, Alberto E

    2017-12-12

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km 2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. Copyright © 2017 the Author(s). Published by PNAS.

  6. Direct measurements of meltwater runoff on the Greenland ice sheet surface

    Science.gov (United States)

    Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H.; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Willis, Michael J.; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.

    2017-12-01

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.

  7. Rooftop runoff as a source of contamination: a review.

    Science.gov (United States)

    Lye, Dennis J

    2009-10-15

    Scientific reports concerning chemical and microbiological contaminant levels of rainwater runoff from rooftop collection in both urban and rural areas are reviewed. This alternative source of water has been documented to often contain substantial amounts of contaminants. Studies describing levels of heavy metal contamination specific to runoff from rooftop catchment areas containing exposed metal surfaces are discussed. Depending upon the intended use, scientific evidence is also accumulating that various treatments and disinfections will be required prior to release of roof-runoff water either into surface waters or for more direct consumer usage. For microbial contamination, current proposed standards and guidelines regarding this type of water source are shown to vary widely worldwide. Scientific literature reveals a lack of clarity regarding water quality guidelines and health related standards for certain types of rooftop runoff. Studies suggests that rainwater collection systems which are properly designed, maintained, and treated may provide a valuable supplement to existing water supplies by reducing demand on community water supplies/infrastructure costs, enhancing effective management of storm water runoff, and increasing restoration of underground reservoirs through controlled infiltration.

  8. Effects of long-term poultry litter application on phosphorus soil chemistry and runoff water quality.

    Science.gov (United States)

    Reiter, Mark S; Daniel, Tommy C; DeLaune, Paul B; Sharpley, Andrew N; Lory, John A

    2013-11-01

    Continuous application of poultry litter (PL) significantly changes many soil properties, including soil test P (STP); Al, Fe, and Ca concentrations; and pH, which can affect the potential for P transport in surface runoff water. We conducted rainfall simulations on three historically acidic silt loam soils in Arkansas, Missouri, and Virginia to establish if long-term PL applications would affect soil inorganic P fractions and the resulting dissolved reactive P (DRP) in runoff water. Soil samples (0-5 cm depth) were taken to find sites ranging in Mehlich-3 STP from 20 to 1154 mg P kg. Simulated rainfall events were conducted on 3-m plots at 6.7 cm h, and runoff was collected for 30 min. Correlation between Mehlich-3 and runoff DRP indicated a linear relationship to 833 mg Mehlich-3 P kg. As Mehlich-3 STP increased, a concomitant increase in soil pH and Ca occurred on all soils. Soil P fractionation demonstrated that, as Mehlich-3 STP generally increased above 450 mg P kg (from high to very high), the easily soluble and loosely bound P fractions decreased by 3 to 10%. Water-insoluble complexes of P bound to Al and Ca were the main drivers in the reduction of DRP in runoff, accounting for up to 43 and 38% of total P, respectively. Basing runoff DRP concentration projections solely on Mehlich-3 STP may overestimate runoff P losses from soils receiving long-term PL applications due to dissolution of water-insoluble Ca-P compounds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    Science.gov (United States)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  10. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores

  11. Nutrient concentrations in leachate and runoff from dairy cattle lots with different surface materials

    Science.gov (United States)

    Nitrogen (N) and phosphorus (P) loss from agriculture persists as a water quality issue, and outdoor cattle lots can have a high loss potential. We monitored hydrology and nutrient concentrations in leachate and runoff from dairy heifer lots constructed with three surface materials (soil, sand, bark...

  12. Specifics of surface runoff contents and treatment in large cities

    OpenAIRE

    V.N. Chechevichkin; N.I. Vatin

    2014-01-01

    The degree of surface runoff pollution in large cities has been assessed in modern conditions in the case study of production sites of St. Petersburg. Increased content of petroleum derivatives and heavy metal ions both in rainwater runoff and especially in snowmelt runoff has been revealed. It has been established that the composition of infiltration runoff from the newly built-up sites within the city limits commonly depends on their background, especially in the places of former unaut...

  13. Control of fjordic deep water renewal by runoff modification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A; Edelsten, D J

    1976-09-01

    Loch Etive is a Scottish fjord subject to fresh-water run off which renders it markedly brackish. This paper considers the frequency of deep water renewal, developing a model which relates the timing of all such renewals to runoff records. Using the model one can examine the effect of changes caused by interference with the natural runoff pattern.

  14. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW.

    Science.gov (United States)

    Wang, Hong; Gao, Jian-en; Zhang, Shao-long; Zhang, Meng-jie; Li, Xing-hua

    2013-01-01

    Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model-the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m(2) area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed values were 1.54×10(-2) m(3)/m(2)/h and 0.12×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed volumes were 3.46×10(-2) m(3)/m(2)/h and 4.91×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources.

  15. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW with a surface runoff model-the Soil Conservation Service (SCS were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m(2 area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10(-2 m(3/m(2/h in the bare slope scenario, while the observed values were 1.54×10(-2 m(3/m(2/h and 0.12×10(-2 m(3/m(2/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min, the simulated mean groundwater runoff modulus was 2.82×10(-2 m(3/m(2/h in the bare slope scenario, while the observed volumes were 3.46×10(-2 m(3/m(2/h and 4.91×10(-2 m(3/m(2/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources.

  16. Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows?

    Directory of Open Access Journals (Sweden)

    Mark E. Grismer

    2016-05-01

    Full Text Available Determination of overland sheet flow depths, velocities and celerities across the hillslope in watershed modeling is important towards estimation of surface storage, travel times to streams and soil detachment rates. It requires careful characterization of the flow processes. Similarly, determination of the temporal variation of hillslope-riparian-stream hydrologic connectivity requires estimation of the shallow subsurface soil hydraulic conductivity and soil-water retention (i.e., drainable porosities parameters. Field rainfall and runoff simulation studies provide considerable information and insight into these processes; in particular, that sheet flows are likely laminar and that shallow hydraulic conductivities and storage can be determined from the plot studies. Here, using a 1 m by 2 m long runoff simulation flume, we found that for overland flow rates per unit width of roughly 30–60 mm2/s and bedslopes of 10%–66% with varying sand roughness depths that all flow depths were predicted by laminar flow equations alone and that equivalent Manning’s n values were depth dependent and quite small relative to those used in watershed modeling studies. Even for overland flow rates greater than those typically measured or modeled and using Manning’s n values of 0.30–0.35, often assumed in physical watershed model applications for relatively smooth surface conditions, the laminar flow velocities were 4–5 times greater, while the laminar flow depths were 4–5 times smaller. This observation suggests that travel times, surface storage volumes and surface shear stresses associated with erosion across the landscape would be poorly predicted using turbulent flow assumptions. Filling the flume with fine sand and conducting runoff studies, we were unable to produce sheet flow, but found that subsurface flows were onflow rate, soil depth and slope dependent and drainable porosities were only soil depth and slope dependent. Moreover, both the sand

  17. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment

    Science.gov (United States)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman

    2017-12-01

    Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity

  18. Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface water

    NARCIS (Netherlands)

    Sterk, Ankie; Schijven, Jack|info:eu-repo/dai/nl/07497498X; de Roda Husman, Ana Maria|info:eu-repo/dai/nl/139498281; de Nijs, Ton|info:eu-repo/dai/nl/074972219

    2016-01-01

    Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by, for instance, bathing or drinking-water consumption. An increase in runoff, and associated wash-off of animal faeces from fields,

  19. Constraining Glacial Runoff Contributions to Water Resources in the Cordillera Real, Bolivia using Environmental Tracers

    Science.gov (United States)

    Guido, Z.; McIntosh, J. C.; Papuga, S. A.

    2013-12-01

    Warming temperatures in recent decades have contributed to substantial reductions in glaciers in many mountain regions around the globe, including the South American Andes. Melting of these glaciers taps water resources accumulated in past climates, and the diminishing ice marks a decrease in a nonrenewable water source that begs the question: how will future water supplies be impacted by climate change. Water resource management and climate adaptation efforts can be informed by knowledge of the extent to which glaciers contribute to seasonal streamflows, but remote locations and scant monitoring often limit this quantification. In Bolivia, more than two million people draw water from watersheds fed, in part, by glaciers. The amount to which these glaciers contribute to the water supply, however, is not well constrained. We apply elemental and isotopic tracers in an end-member mixing model to quantify glacial runoff contributions to local water supplies. We present oxygen and deuterium isotopes and major anion concentrations (sulfate and chloride) of shallow groundwater, streams, reservoirs, small arroyos, and glacial runoff. Isotopic and anion mixing models suggest between 45-67% of the water measured in high altitude streams originated from within the glacial footprint during the 2011 wet season, while glacial runoff contributed about 42-53% of the water in reservoirs in the 2012 dry season. Data also show that shallow groundwater is connected to glacial-fed streams. Any future decrease in glacial runoff may contribute to a reduction in surface water supplies and lower groundwater levels downstream, perhaps below the depth of hand-dug wells common in rural communities.

  20. Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning

    Science.gov (United States)

    Berg, Matthew D.; Marcantonio, Franco; Allison, Mead A.; McAlister, Jason; Wilcox, Bradford P.; Fox, William E.

    2016-06-01

    Rangelands cover a large portion of the earth's land surface and are undergoing dramatic landscape changes. At the same time, these ecosystems face increasing expectations to meet growing water supply needs. To address major gaps in our understanding of rangeland hydrologic function, we investigated historical watershed-scale runoff and sediment yield in a dynamic landscape in central Texas, USA. We quantified the relationship between precipitation and runoff and analyzed reservoir sediment cores dated using cesium-137 and lead-210 radioisotopes. Local rainfall and streamflow showed no directional trend over a period of 85 years, resulting in a rainfall-runoff ratio that has been resilient to watershed changes. Reservoir sedimentation rates generally were higher before 1963, but have been much lower and very stable since that time. Our findings suggest that (1) rangeland water yields may be stable over long periods despite dramatic landscape changes while (2) these same landscape changes influence sediment yields that impact downstream reservoir storage. Relying on rangelands to meet water needs demands an understanding of how these dynamic landscapes function and a quantification of the physical processes at work.

  1. Transfer of spatio-temporal multifractal properties of rainfall to simulated surface runoff

    Science.gov (United States)

    Gires, Auguste; Giangola-Murzyn, Agathe; Richard, Julien; Abbes, Jean-Baptiste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Willinger, Bernard; Cardinal, Hervé; Thouvenot, Thomas

    2014-05-01

    In this paper we suggest to use scaling laws and more specifically Universal Multifractals (UM) to analyse in a spatio-temporal framework both the radar rainfall and the simulated surface runoff. Such tools have been extensively used to analyse and simulate geophysical fields extremely variable over wide range of spatio-temporal scales such as rainfall, but have not often if ever been applied to surface runoff. Such novel combined analysis helps to improve the understanding of the rainfall-runoff relationship. Two catchments of the chair "Hydrology for resilient cities" sponsored by Véolia, and of the European Interreg IV RainGain project are used. They are both located in the Paris area: a 144 ha flat urban area in the Seine-Saint-Denis County, and a 250 ha urban area with a significant portion of forest located on a steep hillside of the Bièvre River. A fully distributed urban hydrological model currently under development called Multi-Hydro is implemented to represent the catchments response. It consists in an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. The fully distributed model is tested with pixels of size 5, 10 and 20 m. In a first step the model is validated for three rainfall events that occurred in 2010 and 2011, for which the Météo-France radar mosaic with a resolution of 1 km in space and 5 min in time is available. These events generated significant surface runoff and some local flooding. The sensitivity of the model to the rainfall resolution is briefly checked by stochastically generating an ensemble of realistic downscaled rainfall fields (obtained by continuing the underlying cascade process which is observed on the available range of scales) and inputting them into the model. The impact is significant on both the simulated sewer flow and surface runoff. Then rainfall fields are generated with the help of discrete multifractal cascades and inputted in the

  2. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  3. Responses of Surface Runoff to Climate Change and Human Activities in the Arid Region of Central Asia: A Case Study in the Tarim River Basin, China

    Science.gov (United States)

    Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui

    2013-04-01

    Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.

  4. Effects of mechanical harvest plus chipping and prescribed fire on Sierran runoff water quality.

    Science.gov (United States)

    Loupe, T M; Miller, W W; Johnson, D W; Sedinger, J S; Carroll, E M; Walker, R F; Murphy, J D; Stein, C M

    2009-01-01

    Fire suppression in Sierran ecosystems creates a substantial wildfire hazard and may exacerbate nutrient inputs into Lake Tahoe by allowing the buildup of O horizon material, which serves as a source for high N and P concentrations in runoff water. The purpose of this study was to evaluate the effects of biomass reduction using cut-to-length mechanical harvest followed by chipping and controlled burning on surface runoff volume and water quality. Based on previous findings regarding N and P leaching flux and soil solution concentrations, we hypothesized that controlled burning and/or mechanical harvest with residue chipping does not increase inorganic N, P, and S concentrations in overland flow. Runoff, snowmelt, and rainfall were collected, volume measurements were taken, and samples were analyzed for NO(3)-N, NH(4)-N, PO(4)-P, and SO(4). Runoff volume, season, and year were identified as important parameters influencing overland flow nutrient concentrations and loads. Higher nutrient concentrations were commonly associated with summer rather than winter runoff, but the opposite was true for nutrient loads due to the higher runoff volumes. Treatment (unharvested, harvested, unburned, burned) effect was a strong predictor for discharge loads of NO(3)-N and SO(4) but was a weak predictor for PO(4)-P. Discharge loads of NO(3)-N and SO(4) were greater for the unburned harvested and the burned unharvested treatments than for the unburned, unharvested control sites or the burned and harvested combined treatment. Although mechanical harvest and/or controlled burning had a small initial impact on increased nutrient loading, the effects were minimal compared with background levels. Hence, these management practices may have the potential to improve forest health without the danger of large-magnitude nutrient mobilization and degradation of runoff water quality found with wildfire.

  5. Influence of the Trojan Nickel Mine on surface water quality, Mazowe valley, Zimbabwe: Runoff chemistry and acid generation potential of waste rock

    Science.gov (United States)

    Lupankwa, Keretia; Love, David; Mapani, Benjamin; Mseka, Stephen; Meck, Maideyi

    The impacts of mining on the environment depend on the nature of the ore body, the type of mining and the size of operation. The focus of this study is on Trojan Nickel Mine which is located 90 km north of Harare, Zimbabwe. It produces nickel from iron, iron-nickel and copper-nickel sulphides and disposes of waste rock in a rock dump. Surface water samples were taken at 11 points selected from a stream which drains the rock dump, a stream carrying underground water and the river into which these streams discharge. Samples were analysed for metals using atomic absorption spectrometry, for sulphates by gravitation and for carbonates and bicarbonates by back titration. Ninteen rock samples were collected from the dump and static tests were performed using the Sobek acid base accounting method. The results show that near neutral runoff (pH 7.0-8.5) with high concentrations of sulphate (over 100 mg/L) and some metals (Pb > 1.0 mg/L and Ni > 0.2 mg/L) emanates from the dump. This suggests that acid mine drainage is buffered in the dump (probably by carbonates). This is supported by the static tests, which show that the fine fraction of dump material neutralises acid. Runoff from the dump flows into a pond. Concentrations of sulphates and metals decrease after the dump runoff enters the pond, but sufficient remains to increase levels of calcium, sulphate, bicarbonate, iron and lead in the Pote River. The drop in concentrations at the pond indicates that the settling process has a positive effect on water quality. This could be enhanced by treating the pond water to raise pH, thus precipitating out metals and decreasing their concentrations in water draining from the pond.

  6. Amending greenroof soil with biochar to affect runoff water quantity and quality

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Deborah A.; Johnson, Gwynn R. [Portland State University, Mechanical and Materials Engineering, POB 751, Portland, OR 97207 (United States); Spolek, Graig A., E-mail: graig@cecs.pdx.edu [Portland State University, Mechanical and Materials Engineering, POB 751, Portland, OR 97207 (United States)

    2011-08-15

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4 cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. - Highlights: > Biochar in green roof soil reduces nitrogen and phosphorus in the runoff. > Addition of biochar reduces turbidity of runoff. > Addition of biochar reduces total organic carbon content in runoff by 67-72%. > Biochar improves water retention of saturated soil. - In this controlled laboratory experiment, greenroof soil was amended by the addition of biochar, which reduced the water runoff concentration of nitrogen, phosphorus, and organic carbon.

  7. Amending greenroof soil with biochar to affect runoff water quantity and quality

    International Nuclear Information System (INIS)

    Beck, Deborah A.; Johnson, Gwynn R.; Spolek, Graig A.

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4 cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. - Highlights: → Biochar in green roof soil reduces nitrogen and phosphorus in the runoff. → Addition of biochar reduces turbidity of runoff. → Addition of biochar reduces total organic carbon content in runoff by 67-72%. → Biochar improves water retention of saturated soil. - In this controlled laboratory experiment, greenroof soil was amended by the addition of biochar, which reduced the water runoff concentration of nitrogen, phosphorus, and organic carbon.

  8. Small drains, big problems: the impact of dry weather runoff on shoreline water quality at enclosed beaches.

    Science.gov (United States)

    Rippy, Megan A; Stein, Robert; Sanders, Brett F; Davis, Kristen; McLaughlin, Karen; Skinner, John F; Kappeler, John; Grant, Stanley B

    2014-12-16

    Enclosed beaches along urban coastlines are frequent hot spots of fecal indicator bacteria (FIB) pollution. In this paper we present field measurements and modeling studies aimed at evaluating the impact of small storm drains on FIB pollution at enclosed beaches in Newport Bay, the second largest tidal embayment in Southern California. Our results suggest that small drains have a disproportionate impact on enclosed beach water quality for five reasons: (1) dry weather surface flows (primarily from overirrigation of lawns and ornamental plants) harbor FIB at concentrations exceeding recreational water quality criteria; (2) small drains can trap dry weather runoff during high tide, and then release it in a bolus during the falling tide when drainpipe outlets are exposed; (3) nearshore turbulence is low (turbulent diffusivities approximately 10(-3) m(2) s(-1)), limiting dilution of FIB and other runoff-associated pollutants once they enter the bay; (4) once in the bay, runoff can form buoyant plumes that further limit vertical mixing and dilution; and (5) local winds can force buoyant runoff plumes back against the shoreline, where water depth is minimal and human contact likely. Outdoor water conservation and urban retrofits that minimize the volume of dry and wet weather runoff entering the local storm drain system may be the best option for improving beach water quality in Newport Bay and other urban-impacted enclosed beaches.

  9. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NARCIS (Netherlands)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-01-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in

  10. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.

    Science.gov (United States)

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger

    2014-01-01

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  11. Hydrologic conditions controlling runoff generation immediately after wildfire

    Science.gov (United States)

    Ebel, Brian A.; Moody, John A.; Martin, Deborah A.

    2012-01-01

    We investigated the control of postwildfire runoff by physical and hydraulic properties of soil, hydrologic states, and an ash layer immediately following wildfire. The field site is within the area burned by the 2010 Fourmile Canyon Fire in Colorado, USA. Physical and hydraulic property characterization included ash thickness, particle size distribution, hydraulic conductivity, and soil water retention curves. Soil water content and matric potential were measured indirectly at several depths below the soil surface to document hydrologic states underneath the ash layer in the unsaturated zone, whereas precipitation and surface runoff were measured directly. Measurements of soil water content showed that almost no water infiltrated below the ash layer into the near-surface soil in the burned site at the storm time scale (i.e., minutes to hours). Runoff generation processes were controlled by and highly sensitive to ash thickness and ash hydraulic properties. The ash layer stored from 97% to 99% of rainfall, which was critical for reducing runoff amounts. The hydrologic response to two rain storms with different rainfall amounts, rainfall intensity, and durations, only ten days apart, indicated that runoff generation was predominantly by the saturation-excess mechanism perched at the ash-soil interface during the first storm and predominantly by the infiltration-excess mechanism at the ash surface during the second storm. Contributing area was not static for the two storms and was 4% (saturation excess) to 68% (infiltration excess) of the catchment area. Our results showed the importance of including hydrologic conditions and hydraulic properties of the ash layer in postwildfire runoff generation models.

  12. Sensitivity-Based Modeling of Evaluating Surface Runoff and Sediment Load using Digital and Analog Mechanisms

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya

    2014-07-01

    Full Text Available Analyses of runoff- sediment measurement and evaluation using automated and convectional runoff-meters was carried out at Meteorological and Hydrological Station of Auchi Polytechnic, Auchi using two runoff plots (ABCDa and EFGHm of area 2m 2 each, depth 0.26 m and driven into the soil to the depth of 0.13m. Runoff depths and intensities were measured from each of the positioned runoff plot. Automated runoff-meter has a measuring accuracy of ±0.001l/±0.025 mm and rainfall depth-intensity was measured using tipping-bucket rainguage during the period of 14-month of experimentation. Minimum and maximum rainfall depths of 1.2 and 190.3 mm correspond to measured runoff depths (MRo of 0.0 mm for both measurement approaches and 60.4 mm and 48.9 mm respectively. Automated runoffmeter provides precise, accurate and instantaneous result over the convectional measurement of surface runoff. Runoff measuring accuracy for automated runoff-meter from the plot (ABCDa produces R 2 = 0.99; while R 2 = 0.96 for manual evaluation in plot (EFGHm. WEPP and SWAT models were used to simulate the obtained hydrological variables from the applied measurement mechanisms. The outputs of sensitivity simulation analysis indicate that data from automated measuring systems gives a better modelling index and such could be used for running robust runoff-sediment predictive modelling technique under different reservoir sedimentation and water management scenarios.

  13. Simulating high frequency water quality monitoring data using a catchment runoff attenuation flux tool (CRAFT).

    Science.gov (United States)

    Adams, Russell; Quinn, Paul F; Perks, Matthew; Barber, Nicholas J; Jonczyk, Jennine; Owen, Gareth J

    2016-12-01

    High resolution water quality data has recently become widely available from numerous catchment based monitoring schemes. However, the models that can reproduce time series of concentrations or fluxes have not kept pace with the advances in monitoring data. Model performance at predicting phosphorus (P) and sediment concentrations has frequently been poor with models not fit for purpose except for predicting annual losses. Here, the data from the Eden Demonstration Test Catchments (DTC) project have been used to calibrate the Catchment Runoff Attenuation Flux Tool (CRAFT), a new, parsimonious model developed with the aim of modelling both the generation and attenuation of nutrients and sediments in small to medium sized catchments. The CRAFT has the ability to run on an hourly timestep and can calculate the mass of sediments and nutrients transported by three flow pathways representing rapid surface runoff, fast subsurface drainage and slow groundwater flow (baseflow). The attenuation feature of the model is introduced here; this enables surface runoff and contaminants transported via this pathway to be delayed in reaching the catchment outlet. It was used to investigate some hypotheses of nutrient and sediment transport in the Newby Beck Catchment (NBC) Model performance was assessed using a suite of metrics including visual best fit and the Nash-Sutcliffe efficiency. It was found that this approach for water quality models may be the best assessment method as opposed to using a single metric. Furthermore, it was found that, when the aim of the simulations was to reproduce the time series of total P (TP) or total reactive P (TRP) to get the best visual fit, that attenuation was required. The model will be used in the future to explore the impacts on water quality of different mitigation options in the catchment; these will include attenuation of surface runoff. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Leaching of additives from construction materials to urban storm water runoff.

    Science.gov (United States)

    Burkhardt, M; Zuleeg, S; Vonbank, R; Schmid, P; Hean, S; Lamani, X; Bester, K; Boller, M

    2011-01-01

    Urban water management requires further clarification about pollutants in storm water. Little is known about the release of organic additives used in construction materials and the impact of these compounds to storm water runoff. We investigated sources and pathways of additives used in construction materials, i.e., biocides in facades' render as well as root protection products in bitumen membranes for rooftops. Under wet-weather conditions, the concentrations of diuron, terbutryn, carbendazim, irgarol 1051 (all from facades) and mecoprop in storm water and receiving water exceeded the predicted no-effect concentrations values and the Swiss water quality standard of 0.1 microg/L. Under laboratory conditions maximum concentrations of additives were in the range of a few milligrams and a few hundred micrograms per litre in runoff of facades and bitumen membranes. Runoff from aged materials shows approximately one to two orders of magnitude lower concentrations. Concentrations decreased also during individual runoff events. In storm water and receiving water the occurrence of additives did not follow the typical first flush model. This can be explained by the release lasting over the time of rainfall and the complexity of the drainage network. Beside the amounts used, the impact of construction materials containing hazardous additives on water quality is related clearly to the age of the buildings and the separated sewer network. The development of improved products regarding release of hazardous additives is the most efficient way of reducing the pollutant load from construction materials in storm water runoff.

  15. Simplified Laboratory Runoff Procedure (SLRP): Procedure and Application

    National Research Council Canada - National Science Library

    Price, Richard

    2000-01-01

    The Simplified Laboratory Runoff Procedure (SLRP) was developed to provide a faster, less expensive approach to evaluate surface runoff water quality from dredged material placed in an upland environment...

  16. Fill and spill drives runoff connectivity over frozen ground

    Science.gov (United States)

    Coles, A. E.; McDonnell, J. J.

    2018-03-01

    Snowmelt-runoff processes on frozen ground are poorly understood at the hillslope scale. This is especially true for hillslopes on the northern Great Plains of North America where long periods of snow-covered frozen ground with very shallow slopes mask any spatial patterns and process controls on connectivity and hillslope runoff generation. This study examines a 4.66 ha (46,600 m2) hillslope on the northern Great Plains during the 2014 spring snowmelt season to explore hillslope runoff processes. Specifically, we explore the spatial patterns of runoff production source areas and examine how surface topography and patterns of snow cover, snow water equivalent, soil water content, and thawed layer depth - which we measured on a 10 m grid across our 46,600 m2 hillslope - affect melt water partitioning and runoff connectivity. A key question was whether or not the controls on connectivity are consistent with the fill and spill mechanism found in rain-dominated and unfrozen soil domains. The contrast between the slow infiltration rates into frozen soil and the relatively fast rates of snowmelt delivery to the soil surface resulted in water accumulation in small depressions under the snowpack. Consequently, infiltration was minimal over the 12 day melt period. Instead, nested filling of micro- and meso-depressions was followed by macro-scale, whole-slope spilling. This spilling occurred when large patches of ponded water exceeded the storage capacity behind downslope micro barriers in the surface topography, and flows from them coalesced to drive a rapid increase in runoff at the hillslope outlet. These observations of ponded water and flowpaths followed mapable fill and spill locations based on 2 m resolution digital topographic analysis. Interestingly, while surface topography is relatively unimportant under unfrozen conditions at our site because of low relief and high infiltrability, surface topography shows episodically critical importance for connectivity and

  17. Effect of urban stormwater runoff on ground water beneath recharge basins on Long Island, New York

    Science.gov (United States)

    Ku, H.F.; Simmons, D.L.

    1986-01-01

    Urban stormwater runoff was monitored during 1980-82 to investigate the source, type, quantity, and fate of contaminants routed to the more than 3,000 recharge basins on Long Island and to determine whether this runoff might be a significant source of contamination to the groundwater reservoir. Forty-six storms were monitored at five recharge basins in representative land use areas (strip commercial, shopping-mall parking lot, major highway, low-density residential, and medium-density residential). Runoff:precipitation ratios indicate that all storm runoff is derived from precipitation on impervious surfaces in the drainage area, except during storms of high intensity or long duration, when additional runoff can be derived from precipitation on permeable surfaces. Lead was present in highway runoff in concentrations up to 3300 micrograms/L, and chloride was found in parking lot runoff concentrations up to 1,100 mg/L during winter, when salt is used for deicing. In the five composite stormwater samples and nine groundwater grab samples that were analyzed for 113 EPA-designated ' priority pollutants, ' four constituents were detected in concentrations exceeding New York State guidelines of 50 micrograms/L for an individual organic compound in drinking water: p-chloro-m-cresol (79 micrograms/L); 2 ,4-dimethylphenol (96 micrograms/L); 4-nitrophenol (58 micrograms/L); and methylene chloride (230 micrograms/L in either groundwater or stormwater at the highway basin). One stormwater sample and two groundwater samples exceeded New York State guidelines for total organic compounds in drinking water (100 micrograms/L). The presence of these constituents is attributed to contamination from point sources rather than to the quality of runoff from urban areas. The median number of indicator bacteria in stormwater ranged from 0.1 to 10 billion MPN/100 ml. Fecal coliforms and fecal streptococci increased by 1 to 2 orders of magnitude during the warm season. The use of recharge

  18. Estimation of Surface Runoff in the Jucar River Basin from Rainfall Data and SMOS Soil Moisture

    Science.gov (United States)

    Garcia Leal, Julio A.; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Gonzalez Robles, Maura; Herrera Daza, Eddy; Khodayar, Samiro; Lopez-Baeza, Ernesto

    2013-04-01

    Surface runoff is the water that flows after soil is infiltrated to full capacity and excess water from rain, meltwater, or other sources flows over the land. When the soil is saturated and the depression storage filled, and rain continues to fall, the rainfall will immediately produce surface runoff. The Soil Conservation Service Curve Number (SCS-CN) method is widely used for determining the approximate direct runoff volume for a given rainfall event in a particular area. The advantage of the method is its simplicity and widespread inclusion in existing computer models. It was originally developed by the US Department of Agriculture, Soil Conservation Service, and documented in detail in the National Engineering Handbook, Sect. 4: Hydrology (NEH-4) (USDA-SCS, 1985). Although the SCS-CN method was originally developed in the United States and mainly for the evaluation of storm runoff in small agricultural watersheds, it soon evolved well beyond its original objective and was adopted for various land uses and became an integral part of more complex, long-term, simulation models. The basic assumption of the SCS-CN method is that, for a single storm, the ratio of actual soil retention after runoff begins to potential maximum retention is equal to the ratio of direct runoff to available rainfall. This relationship, after algebraic manipulation and inclusion of simplifying assumptions, results in the following equation given in USDA-SCS (1985): (P--0,2S)2 Q = (P + 0,8S) where Q is the average runoff (mm), P the effective precipitation (mm) and S is potential maximum retention (mm) after the rainfall event. The study has been applied to the Jucar River Basin area, East of Spain. A selection of recent significant rainfall events has been made corresponding to the periods around 22nd November, 2011 and 28-29 September and 10 October, 2012, from Jucar River Basin Authority rain gauge data. Potential maximum retention values for each point have been assumed as the first

  19. Statistical analysis and modelling of surface runoff from arable fields in central Europe

    Directory of Open Access Journals (Sweden)

    P. Fiener

    2013-10-01

    Full Text Available Surface runoff generation on arable fields is an important driver of flooding, on-site and off-site damages by erosion, and of nutrient and agrochemical transport. In general, three different processes generate surface runoff (Hortonian runoff, saturation excess runoff, and return of subsurface flow. Despite the developments in our understanding of these processes it remains difficult to predict which processes govern runoff generation during the course of an event or throughout the year, when soil and vegetation on arable land are passing many states. We analysed the results from 317 rainfall simulations on 209 soils from different landscapes with a resolution of 14 286 runoff measurements to determine temporal and spatial differences in variables governing surface runoff, and to derive and test a statistical model of surface runoff generation independent from an a priori selection of modelled process types. Measured runoff was related to 20 time-invariant soil properties, three variable soil properties, four rain properties, three land use properties and many derived variables describing interactions and curvilinear behaviour. In an iterative multiple regression procedure, six of these properties/variables best described initial abstraction and the hydrograph. To estimate initial abstraction, the percentages of stone cover above 10% and of sand content in the bulk soil were needed, while the hydrograph could be predicted best from rain depth exceeding initial abstraction, rainfall intensity, soil organic carbon content, and time since last tillage. Combining the multiple regressions to estimate initial abstraction and surface runoff allowed modelling of event-specific hydrographs without an a priori assumption of the underlying process. The statistical model described the measured data well and performed equally well during validation. In both cases, the model explained 71 and 58% of variability in accumulated runoff volume and instantaneous

  20. Runoff losses of excreted chlortetracycline, sulfamethazine, and tylosin from surface-applied and soil-incorporated beef cattle feedlot manure.

    Science.gov (United States)

    Amarakoon, Inoka D; Zvomuya, Francis; Cessna, Allan J; Degenhardt, Dani; Larney, Francis J; McAllister, Tim A

    2014-03-01

    Veterinary antimicrobials in land-applied manure can move to surface waters via rain or snowmelt runoff, thus increasing their dispersion in agro-environments. This study quantified losses of excreted chlortetracycline, sulfamethazine, and tylosin in simulated rain runoff from surface-applied and soil-incorporated beef cattle ( L.) feedlot manure (60 Mg ha, wet wt.). Antimicrobial concentrations in runoff generally reflected the corresponding concentrations in the manure. Soil incorporation of manure reduced the concentrations of chlortetracycline (from 75 to 12 μg L for a 1:1 mixture of chlortetracycline and sulfamethazine and from 43 to 17 μg L for chlortetracycline alone) and sulfamethazine (from 3.9 to 2.6 μg L) in runoff compared with surface application. However, there was no significant effect of manure application method on tylosin concentration (range, 0.02-0.06 μg L) in runoff. Mass losses, as a percent of the amount applied, for chlortetracycline and sulfamethazine appeared to be independent of their respective soil sorption coefficients. Mass losses of chlortetracycline were significantly reduced with soil incorporation of manure (from 6.5 to 1.7% when applied with sulfamethazine and from 6.5 to 3.5% when applied alone). Mass losses of sulfamethazine (4.8%) and tylosin (0.24%) in runoff were not affected by manure incorporation. Although our results confirm that cattle-excreted veterinary antimicrobials can be removed via surface runoff after field application, the magnitudes of chlortetracycline and sulfamethazine losses were reduced by soil incorporation of manure immediately after application. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Adhesion of and to soil in runoff as influenced by polyacrylamide.

    Science.gov (United States)

    Bech, Tina B; Sbodio, Adrian; Jacobsen, Carsten S; Suslow, Trevor

    2014-11-01

    Polyacrylamide (PAM) is used in agriculture to reduce soil erosion and has been reported to reduce turbidity, nutrients, and pollutants in surface runoff water. The objective of this work was to determine the effect of PAM on the concentration of enteric bacteria in surface runoff by comparing four enteric bacteria representing phenotypically different motility and hydrophobicity from three soils. Results demonstrated that bacterial surface runoff was differentially influenced by the PAM treatment. Polyacrylamide treatment increased surface runoff for adhered and planktonic cells from a clay soil; significantly decreased surface runoff of adhered bacteria, while no difference was observed for planktonic bacteria from the sandy loam; and significantly decreased the surface runoff of planktonic cells, while no difference was observed for adhered bacteria from the clay loam. Comparing strains from a final water sample collected after 48 h showed a greater loss of while serovar Poona was almost not detected. Thus, (i) the PAM efficiency in reducing the concentration of enteric bacteria in surface runoff was influenced by soil type and (ii) variation in the loss of enteric bacteria highlights the importance of strain-specific properties that may not be captured with general fecal indicator bacteria. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Polyacrylamide preparations for protection of water quality threatened by agricultural runoff contaminants

    International Nuclear Information System (INIS)

    Entry, J.A.; Sojka, R.E.; Watwood, Maribeth; Ross, Craig

    2002-01-01

    Polyacrylamide preparations show promise in reducing flow of sediments, nutrients and microorganisms from animal production facilities. - Waste streams associated with a variety of agricultural runoff sources are major contributors of nutrients, pesticides and enteric microorganisms to surface and ground waters. Water soluble anionic polyacrylamide (PAM) was found to be a highly effective erosion-preventing and infiltration-enhancing polymer, when applied at rates of 1-10 g m -3 in furrow irrigation water. Water flowing from PAM treated irrigation furrows show large reductions in sediment, nutrients and pesticides. Recently PAM and PAM+CaO and PAM+Al(SO 4 ) 3 mixtures have been shown to filter bacteria, fungi and nutrients from animal wastewater. Low concentrations of PAM [175-350 g PAM ha -1 as PAM or as PAM+CaO and PAM+Al(SO 4 ) mixture] applied to the soil surface, resulted in dramatic decreases (10 fold) of total, coliform and fecal streptococci bacteria in cattle, fish and swine wastewater leachate and surface runoff. PAM treatment also filtered significant amounts of NH 4 , PO 4 and total P in cattle and swine wastewater. This points to the potential of developing PAM as a water quality protection measure in combination with large-scale animal feeding operations. Potential benefits of PAM treatment of animal facility waste streams include: (1) low cost, (2) easy and quick application, (3) suitability for use with other pollution reduction techniques. Research on the efficacy of PAM for removal of protozoan parasites and viruses and more thorough assessment of PAM degradation in different soils is still needed to completely evaluate PAM treatment as an effective waste water treatment. We will present analysis and feasibility of using PAM, PAM+Al(SO 4 ) 3 , and PAM+CaO application for specific applications. Our results demonstrate their potential efficacy in reducing sediment, nutrients and microorganisms from animal production facility effluents

  3. The measurement of dry deposition and surface runoff to quantify urban road pollution in Taipei, Taiwan.

    Science.gov (United States)

    Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang

    2013-10-16

    Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01-5.14 g/m(2) · day and 78-87% of these solids are in the 75-300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads.

  4. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia

    Science.gov (United States)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.

    2009-04-01

    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes

  5. Using the Sacramento soil moisture accounting model to provide short-term forecasts of surface runoff for daily decision making in nutrient management

    Science.gov (United States)

    Managing the timing of fertilizer and manure application is critical to protecting water quality in agricultural watersheds. When fertilizers and manures are applied at inopportune times (e.g., just prior to a rainfall event that produces surface runoff) the risk of surface water contamination is un...

  6. Water quality of surface runoff and lint yield in cotton under furrow irrigation in Northeast Arkansas

    Science.gov (United States)

    Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US and yet, nutrients can be transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of furrow tillage practices and nitrog...

  7. A rainfall-runoff model for two small ungauged catchment using the water balance of a reservoir for calibration

    NARCIS (Netherlands)

    de Hamer, W.; Love, D.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2007-01-01

    In semi‐arid regions, small artificial surface reservoirs are important to meet the domestic and agricultural water requirements of smallholder farmers. The research objective of the study was to determine the rainfall‐runoff relation of two ungauged rivers using the measured water levels of the

  8. Effects of Climate Change and Human Activities on Surface Runoff in the Luan River Basin

    Directory of Open Access Journals (Sweden)

    Sidong Zeng

    2015-01-01

    Full Text Available Quantifying the effects of climate change and human activities on runoff changes is the focus of climate change and hydrological research. This paper presents an integrated method employing the Budyko-based Fu model, hydrological modeling, and climate elasticity approaches to separate the effects of the two driving factors on surface runoff in the Luan River basin, China. The Budyko-based Fu model and the double mass curve method are used to analyze runoff changes during the period 1958~2009. Then two types of hydrological models (the distributed Soil and Water Assessment Tool model and the lumped SIMHYD model and seven climate elasticity methods (including a nonparametric method and six Budyko-based methods are applied to estimate the contributions of climate change and human activities to runoff change. The results show that all quantification methods are effective, and the results obtained by the nine methods are generally consistent. During the study period, the effects of climate change on runoff change accounted for 28.3~46.8% while those of human activities contributed with 53.2~71.7%, indicating that both factors have significant effects on the runoff decline in the basin, and that the effects of human activities are relatively stronger than those of climate change.

  9. Depuration of highway runoff water into grass-covered embankments.

    Science.gov (United States)

    Boivin, P; Saadé, M; Pfeiffer, H R; Hammecker, C; Degoumois, Y

    2008-06-01

    The management of polluted road runoff water is an important issue in environmental protection. A strategy could be to perform local depuration by infiltration into the soils of the embankment, but knowledge for designing such systems is lacking. This study aims at discussing the relevant soil properties, by estimating the long-term depuration of road runoff water infiltrating into the sandy soil embankment of the A9 highway in Wallis, Switzerland. This was done by estimating the heavy metals (HM) mass balance of two sites 23 and 12 years old, respectively. The accumulated HM were estimated by soil and GB analyses. The HM input was estimated by average water quality and traffic. The results were discussed using two-dimensional simulation of infiltration and a 14 months in situ monitoring of the runoff from the pavement to the embankment and at the bottom of the embankment. The soil properties were appropriate for both small particle adsorption and filtration. A good match between input and stored pollutant charges was found, and the HM profiles accorded well with infiltration simulation and monitoring results, which showed that 80-100% of the runoff water infiltrated into the embankment. Replacement of the cracked concrete gutters by an infiltration channel made of similar soil is recommended. These results oppose the Swiss guidelines for road-polluted water infiltration, as much more clayey soils are recommended. These later soils are difficult to find in Switzerland, and may allow for preferential flow through macro pores, in contrast to the studied site.

  10. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    Science.gov (United States)

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  11. Mitigation of dimethazone residues in soil and runoff water from agricultural field.

    Science.gov (United States)

    Antonious, George F

    2011-01-01

    Dimethazone, also known as clomazone [2-[(2-chlorophenyl) methyl]- 4,4-dimethyl-3-isoxaolidinone] is a pre-emergent nonionic herbicide commonly used in agriculture. A field study was conducted on a silty-loam soil of 10 % slope to monitor off-site movement and persistence of dimethazone in soil under three management practices. Eighteen plots of 22 x 3.7 m each were separated using stainless steel metal borders and the soil in six plots was mixed with municipal sewage sludge (MSS) and yard waste (YW) compost (MSS+YW) at 15 t acre⁻¹ on dry weight basis, six plots were mixed with MSS at 15 t acre⁻¹, and six unamended plots (NM) were used for comparison purposes. The objectives of this investigation were to: (i) monitor the dissipation and half-life (T₁/₂) of dimethazone in soil under three management practices; (ii) determine the concentration of dimethazone residues in runoff and infiltration water following natural rainfall events; and (iii) assess the impact of soil amendments on the transport of NO₃, NH₄, and P into surface and subsurface water. Gas chromatography/mass spectrometery (GC/MS) analyses of soil extracts indicated the presence of ion fragments at m/z 125 and 204 that can be used for identification of dimethazone residues. Intitial deposits of dimethazone varied from 1.3 μg g⁻¹ dry native soil to 3.2 and 11.8 μg g⁻¹ dry soil in MSS and MSS+YW amended soil, respectively. Decline of dimethazone residues in the top 15 cm native soil and soil incorporated with amendments revealed half-life (T₁/₂) values of 18.8, 25.1, and 43.0 days in MSS+YW, MSS, and NM treatments, respectively. Addition of MSS+YW mix and MSS alone to native soil increased water infiltration, lowering surface runoff water volume and dimethazone residues in runoff following natural rainfall events.

  12. A mathematical model for the transfer of soil solutes to runoff under water scouring.

    Science.gov (United States)

    Yang, Ting; Wang, Quanjiu; Wu, Laosheng; Zhang, Pengyu; Zhao, Guangxu; Liu, Yanli

    2016-11-01

    The transfer of nutrients from soil to runoff often causes unexpected pollution in water bodies. In this study, a mathematical model that relates to the detachment of soil particles by water flow and the degree of mixing between overland flow and soil nutrients was proposed. The model assumes that the mixing depth is an integral of average water flow depth, and it was evaluated by experiments with three water inflow rates to bare soil surfaces and to surfaces with eight treatments of different stone coverages. The model predicted outflow rates were compared with the experimentally observed data to test the accuracy of the infiltration parameters obtained by curve fitting the models to the data. Further analysis showed that the comprehensive mixing coefficient (ke) was linearly correlated with Reynolds' number Re (R(2)>0.9), and this relationship was verified by comparing the simulated potassium concentration and cumulative mass with observed data, respectively. The best performance with the bias error analysis (Nash Sutcliffe coefficient of efficiency (NS), relative error (RE) and the coefficient of determination (R(2))) showed that the predicted data by the proposed model was in good agreement with the measured data. Thus the model can be used to guide soil-water and fertilization management to minimize nutrient runoff from cropland. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Characterizations of the first flush in storm water runoff from an urban roadway.

    Science.gov (United States)

    Lee, B C; Matsui, S; Shimizu, Y; Matsuda, T

    2005-07-01

    Storm water runoff from urban roadways contains anthropogenic pollutants, which are mainly generated from traffic-related activities. The purpose of this study was to evaluate the characteristics of pollutants from the roadway runoff as well as first flush effects. Storm water runoff was sampled during five storm events from the experimental site in Otsu, Shiga, Japan. From the hydrographs and pollutographs for the roadway runoff, the concentration of pollutants increased with increasing runoff flow in the low flow rate event, but did not significantly increase in the high flow rate event. Moreover, according to the analysis of cumulative pollutant mass versus runoff volume curves from five storm events, the first 50% of the runoff volume transported 62% of TOC and Mo, 60% of SS, 59% of Fe, Mn and Cu, 58% of Ni, 57% of Cd and Pb, 56% of Al, 55% of Zn, and 54% of Cr, as the mean values. The first 30% and 80% of the runoff volume also transported 34-43% mass of the pollutants and 82-88% mass of the pollutants, respectively. This study for storm water runoff may also provide useful information to correctly design treatment facilities, such as detention tanks and ponds, filtration and adsorption systems.

  14. Testing the Runoff Tool in Sicilian vineyards: adopting best management practices to prevent agricultural surface runoff

    Science.gov (United States)

    Singh, Manpriet; Dyson, Jeremy; Capri, Ettore

    2016-04-01

    Over the last decades rainfall has become more intense in Sicily, making large proportions of steeply sloping agricultural land more vulnerable to soil erosion, mainly orchards and vineyards (Diodato and Bellocchi 2010). The prevention of soil degradation is indirectly addressed in the European Union's Water Framework Directive (2000/60/EC) and Sustainable Use Directive (2009/128/EC). As a consequence, new EU compliance conditions for food producers requires them to have tools and solutions for on-farm implementation of sustainable practices (Singh et al. 2014). The Agricultural Runoff and Best Management Practice Tool has been developed by Syngenta to help farm advisers and managers diagnose the runoff potential from fields with visible signs of soil erosion. The tool consists of 4 steps including the assessment of three key landscape factors (slope, topsoil permeability and depth to restrictive horizon) and 9 mainly soil and crop management factors influencing the runoff potential. Based on the runoff potential score (ranging from 0 to 10), which is linked to a runoff potential class, the Runoff Tool uses in-field and edge-of-the-field Best Management Practices (BMPs) to mitigate runoff (aligned with advice from ECPA's TOPPS-prowadis project). The Runoff tool needs testing in different regions and crops to create a number of use scenarios with regional/crop specific advice on BMPs. For this purpose the Tool has been tested in vineyards of the Tasca d'Almerita and Planeta wineries, which are large family-owned estates with long-standing tradition in viticulture in Sicily. In addition to runoff potential scores, Visual Soil Assessment (VSA) scores have been calculated to allow for a comparison between different diagnostic tools. VSA allows for immediate diagnosis of soil quality (a higher score means a better soil quality) including many indicators of runoff (Shepherd 2008). Runoff potentials were moderate to high in all tested fields. Slopes were classified as

  15. Abrupt Greenland Ice Sheet runoff and sea water temperature changes since 1821, recorded by coralline algae

    Science.gov (United States)

    Kamenos, N.; Hoey, T.; Bedford, J.; Claverie, T.; Fallick, A. E.; Lamb, C. M.; Nienow, P. W.; O'Neill, S.; Shepherd, I.; Thormar, J.

    2012-12-01

    The Greenland Ice Sheet (GrIS) contains the largest store of fresh water in the northern hemisphere, equivalent to ~7.4m of eustatic sea level rise, but its impacts on current, past and future sea level, ocean circulation and European climate are poorly understood. Previous estimates of GrIS melt, from 26 years of satellite observations and temperature driven melt-models over 48 years, show a trend of increasing melt. There are however no runoff data of comparable duration with which to validate temperature-based runoff models, or relationships between the spatial extent of melt and runoff. Further, longer runoff records that extend GrIS melt records to centennial timescales will enable recently observed trends to be put into a better historical context. We measured Mg/Ca, δ18O and structural cell size in annual growth bands of red coralline algae to reconstruct: (1) near surface sea water temperature; and, (2) melt/runoff from the GrIS. (1) Temperature: we reconstructed the longest (1821-2009) sub-annual resolution record of water temperature in Disko Bugt (western Greenland) showing an abrupt change in temperature oscillation patterns during the 1920s which may be attributable to the interaction between atmospheric temperature and mass loss from Jakobshavn Isbrae glacier. (2) GrIS runoff: using samples from distal parts of Søndre Strømfjord we produced the first reconstruction of decadal (1939-2002) GrIS runoff. We observed significant negative relationships between historic runoff, relative salinity and marine summer temperature. Our reconstruction shows a trend of increasing reconstructed runoff since the mid 1980s. In situ summer marine temperatures followed a similar trend. We suggest that since 1939 atmospheric temperatures have been important in forcing runoff. Subject to locating in situ coralline algae samples, these methods can be applied across hundreds to thousands of years. These results show that our technique has significant potential to enhance

  16. The Measurement of Dry Deposition and Surface Runoff to Quantify Urban Road Pollution in Taipei, Taiwan

    Science.gov (United States)

    Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang

    2013-01-01

    Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01–5.14 g/m2·day and 78–87% of these solids are in the 75–300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads. PMID:24135820

  17. Leaching of additives from construction materials to urban storm water runoff

    DEFF Research Database (Denmark)

    Burkhardt, Mike; Zuleeg, S.; Boller, M.

    2011-01-01

    Urban water management requires further clarification about pollutants in storm water. Little is known about the release of organic additives used in construction materials and the impact of these compounds to storm water runoff. We investigated sources and pathways of additives used...... shows approximately one to two orders of magnitude lower concentrations. Concentrations decreased also during individual runoff events. In storm water and receiving water the occurrence of additives did not follow the typical first flush model. This can be explained by the release lasting over the time...

  18. Rainfall, runoff, and water-quality data for the urban storm-water program in the Albuquerque, New Mexico, metropolitan area, water year 2004

    Science.gov (United States)

    Kelly, Todd; Romero, Orlando; Jimenez, Mike

    2006-01-01

    Urbanization has dramatically increased precipitation runoff to the system of drainage channels and natural stream channels in the Albuquerque, New Mexico, metropolitan area. Rainfall and runoff data are important for planning and designing future storm-water conveyance channels in newly developing areas. Storm-water quality also is monitored in accordance with the National Pollutant Discharge Elimination System mandated by the U.S. Environmental Protection Agency. The Albuquerque Metropolitan Arroyo Flood Control Authority, the City of Albuquerque, and the U.S. Geological Survey began a cooperative program to collect hydrologic data to assist in assessing the quality and quantity of surface-water resources in the Albuquerque area. This report presents water-quality, streamflow, and rainfall data collected from October 1, 2003, to September 30, 2004 (water year 2004). Also provided is a station analysis for each of the 18 streamflow-gaging sites and 39 rainfall-gaging sites, which includes a description of monitoring equipment, problems associated with data collection during the year, and other information used to compute streamflow discharges or rainfall records. A hydrographic comparison shows the effects that the largest drainage channel in the metropolitan area, the North Floodway Channel, has on total flow in the Rio Grande.

  19. Regulating urban surface runoff through nature-based solutions - An assessment at the micro-scale.

    Science.gov (United States)

    Zölch, Teresa; Henze, Lisa; Keilholz, Patrick; Pauleit, Stephan

    2017-08-01

    Urban development leads to changes of surface cover that disrupt the hydrological cycle in cities. In particular, impermeable surfaces and the removal of vegetation reduce the ability to intercept, store and infiltrate rainwater. Consequently, the volume of stormwater runoff and the risk of local flooding rises. This is further amplified by the anticipated effects of climate change leading to an increased frequency and intensity of heavy rain events. Hence, urban adaptation strategies are required to mitigate those impacts. A nature-based solution, more and more promoted in politics and academia, is urban green infrastructure as it contributes to the resilience of urban ecosystems by providing services to maintain or restore hydrological functions. However, this poses a challenge to urban planners in deciding upon effective adaptation measures as they often lack information on the performance of green infrastructure to moderate surface runoff. It remains unclear what type of green infrastructure (e.g. trees, green roofs), offers the highest potential to reduce discharge volumes and to what extent. Against this background, this study provides an approach to gather quantitative evidence on green infrastructure's regulation potential. We use a micro-scale scenario modelling approach of different variations of green cover under current and future climatic conditions. The scenarios are modelled with MIKE SHE, an integrated hydrological simulation tool, and applied to a high density residential area of perimeter blocks in Munich, Germany. The results reveal that both trees and green roofs increase water storage capacities and hence reduce surface runoff, although the main contribution of trees lies in increasing interception and evapotranspiration, whereas green roofs allow for more retention through water storage in their substrate. With increasing precipitation intensities as projected under climate change their regulating potential decreases due to limited water

  20. Water infiltration into exposed fractured rock surfaces

    International Nuclear Information System (INIS)

    Rasmussen, T.C.; Evans, D.D.

    1993-01-01

    Fractured rock media are present at many existing and potential waste disposal sites, yet characterization data and physical relationships are not well developed for such media. This study focused on water infiltration characteristics of an exposed fractured rock as an approach for defining the upper boundary condition for unsaturated-zone water percolation and contaminant transport modeling. Two adjacent watersheds of 0.24 and 1.73 ha with slopes up to 45% were instrumented for measuring rainfall and runoff. Fracture density was measured from readily observable fracture traces on the surface. Three methods were employed to evaluate the rainfall-runoff relationship. The first method used the annual totals and indicated that only 22.5% of rainfall occurred as runoff for the 1990-1991 water year, which demonstrates a high water intake rate by the exposed fracture system. The second method employed total rainfall and runoff for individual storms in conjunction with the commonly used USDA Soil Conservation Service curve number method developed for wide ranges of soils and vegetation. Curve numbers between 75 and 85 were observed for summer and winter storms with dry antecedent runoff conditions, while values exceeded 90 for wet conditions. The third method used a mass-balance approach for four major storms, which indicated that water intake rates ranged from 2.0 to 7.3 mm h -1 , yielding fracture intake velocities ranging from 122 to 293 m h -1 . The three analyses show the complexity of the infiltration process for fractured rock. However, they contribute to a better understanding of the upper boundary condition for predicting contaminant transport through an unsaturated fractured rock medium. 17 refs., 4 figs., 1 tab

  1. Runoff and water-quality characteristics of three Discovery Farms in North Dakota, 2008–16

    Science.gov (United States)

    Galloway, Joel M.; Nustad, Rochelle A.

    2017-12-21

    Agricultural producers in North Dakota are aware of concerns about degrading water quality, and many of the producers are interested in implementing conservation practices to reduce the export of nutrients from their farms. Producers often implement conservation practices without knowledge of the water quality of the runoff from their farm or if conservation practices they may implement have any effect on water quality. In response to this lack of information, the U.S. Geological Survey, in cooperation with North Dakota State University Extension Service and in coordination with an advisory group consisting of State agencies, agricultural producers, and commodity groups, implemented a monitoring study as part of a Discovery Farms program in North Dakota in 2007. Three data-collection sites were established at each of three farms near Underwood, Embden, and Dazey, North Dakota. The purpose of this report is to describe runoff and water-quality characteristics using data collected at the three Discovery Farms during 2008–16. Runoff and water-quality data were used to help describe the implications of agricultural conservation practices on runoff and water-quality patterns.Runoff characteristics of monitoring sites at the three farms were determined by measuring flow volume and precipitation. Runoff at the Underwood farm monitoring sites generally was controlled by precipitation in the area, antecedent soil moisture conditions, and, after 2012, possibly by the diversion ditch constructed by the producer. Most of the annual runoff was in March and April each year during spring snowmelt. Runoff characteristics at the Embden farm are complex because of the mix of surface runoff and flow through two separate drainage tile systems. Annual flow volumes for the drainage tiles sites (sites E2 and E3) were several orders of magnitude greater than measured at the surface water site E1. Site E1 generally only had runoff briefly in March and April during spring snowmelt and

  2. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Science.gov (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  3. Field evidences and theoretical analysis of the gravity-driven wetting front instability of water runoffs on concrete structures

    NARCIS (Netherlands)

    Kuntz, M.; Van Mier, J.G.M.

    1997-01-01

    A series of field observations of the evolution of water runoffs over several vertical concrete walls directly exposed to rain falls is reported in this note. In all the cases, the main water flow originated from the top horizontal surface of the walls. The observations show that the gravity-driven

  4. The cretaceous nappe in High Normandy (France) and its relations with surface water

    International Nuclear Information System (INIS)

    Conrad, G.; Jouzel, J.; Merlivat, L.; Puyoo, S.

    1978-01-01

    The isotopic characteristics of precipitation water, surface run-off and ground water run-off in the Normandy have been analyzed since October 1974. A balance of the data obtained during the 1974/75, 1975/76, and 1976/77 hydrological cycles is presented. The first two cycles had some interesting characteristics. According to the national meteorological centre, the highest run-off since 14 years has been measured during the 1974/75 cycle while the 1975/76 cycle showed the highest deficit. (orig.) [de

  5. Effects of different management regimes on soil erosion and surface runoff in semi-arid to sub-humid rangelands

    NARCIS (Netherlands)

    Oudenhoven, van A.P.E.; Veerkamp, C.J.; Alkemade, Rob; Leemans, Rik

    2015-01-01

    Over one billion people's livelihoods depend on dry rangelands through livestock grazing and agriculture. Livestock grazing and other management activities can cause soil erosion, increase surface runoff and reduce water availability. We studied the effects of different management regimes on soil

  6. Polyacrylamide preparations for protection of water quality threatened by agricultural runoff contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Entry, J.A.; Sojka, R.E.; Watwood, Maribeth; Ross, Craig

    2002-12-01

    Polyacrylamide preparations show promise in reducing flow of sediments, nutrients and microorganisms from animal production facilities. - Waste streams associated with a variety of agricultural runoff sources are major contributors of nutrients, pesticides and enteric microorganisms to surface and ground waters. Water soluble anionic polyacrylamide (PAM) was found to be a highly effective erosion-preventing and infiltration-enhancing polymer, when applied at rates of 1-10 g m{sup -3} in furrow irrigation water. Water flowing from PAM treated irrigation furrows show large reductions in sediment, nutrients and pesticides. Recently PAM and PAM+CaO and PAM+Al(SO{sub 4}){sub 3} mixtures have been shown to filter bacteria, fungi and nutrients from animal wastewater. Low concentrations of PAM [175-350 g PAM ha{sup -1} as PAM or as PAM+CaO and PAM+Al(SO{sub 4}) mixture] applied to the soil surface, resulted in dramatic decreases (10 fold) of total, coliform and fecal streptococci bacteria in cattle, fish and swine wastewater leachate and surface runoff. PAM treatment also filtered significant amounts of NH{sub 4}, PO{sub 4} and total P in cattle and swine wastewater. This points to the potential of developing PAM as a water quality protection measure in combination with large-scale animal feeding operations. Potential benefits of PAM treatment of animal facility waste streams include: (1) low cost, (2) easy and quick application, (3) suitability for use with other pollution reduction techniques. Research on the efficacy of PAM for removal of protozoan parasites and viruses and more thorough assessment of PAM degradation in different soils is still needed to completely evaluate PAM treatment as an effective waste water treatment. We will present analysis and feasibility of using PAM, PAM+Al(SO{sub 4}){sub 3}, and PAM+CaO application for specific applications. Our results demonstrate their potential efficacy in reducing sediment, nutrients and microorganisms from animal

  7. Seasonal surface layer dynamics and sensitivity to runoff in a high Arctic fjord (Young Sound/Tyrolerfjord, 74°N)

    Science.gov (United States)

    Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren

    2014-09-01

    Runoff from the Greenland Ice Sheet, local glaciers, and snowmelt along the northeastern Greenland coastline has a significant impact on coastal water masses flowing south toward Denmark Strait. Very few direct measurements of runoff currently exist in this large area, and the water masses near the coast are also difficult to measure due to the presence of icebergs and sea ice. Measurements from the Zackenberg Research station, located in Young Sound/Tyrolerfjord in northeast Greenland (74°N), provide some of the few observations of hydrographic, hydrologic, and atmospheric parameters from this remote area. Here we analyze measurements from the fjord and also measurements in the ambient water masses, which are found in the outer fjord and between the fjord and the East Greenland Current and validate and apply a numerical model of the fjord. A model sensitivity study allows us to constrain runoff estimates for the area. We also show that a total runoff between 0.9 and 1.4 km3 in 2006 is in accordance with observed surface salinities and calculated freshwater content in the fjord. This indicates that earlier reported runoff to the area is significantly underestimated and that melt from glaciers and the Greenland Ice Sheet in this region may be up to 50% larger than the current estimate. Model simulations indicate the presence of a cold low-saline coastal water mass formed by runoff from fjords north of the Young Sound/Tyrolerfjord system. Simulations of passive and age tracers show that residence time of river water during the summer period is about 1 month in the inner part of the fjord. This article was corrected on 10 OCT 2014. See the end of the full text for details.

  8. Bioretention storm water control measures decrease the toxicity of copper roof runoff.

    Science.gov (United States)

    LaBarre, William J; Ownby, David R; Rader, Kevin J; Lev, Steven M; Casey, Ryan E

    2017-06-01

    The present study evaluated the ability of 2 different bioretention storm water control measures (SCMs), planter boxes and swales, to decrease the toxicity of sheet copper (Cu) roofing runoff to Daphnia magna. The present study quantified changes in storm water chemistry as it passed through the bioretention systems and utilized the biotic ligand model (BLM) to assess whether the observed D. magna toxicity could be predicted by variations found in water chemistry. Laboratory toxicity tests were performed using select storm samples with D. magna cultured under low ionic strength conditions that were appropriate for the low ionic strength of the storm water samples being tested. The SCMs decreased toxicity of Cu roof runoff in both the BLM results and the storm water bioassays. Water exiting the SCMs was substantially higher than influent runoff in pH, ions, alkalinity, and dissolved organic carbon and substantially lower in total and dissolved Cu. Daphnids experienced complete mortality in untreated runoff from the Cu roof (the SCM influent); however, for planter and swale effluents, survival averaged 86% and 95%, respectively. The present study demonstrated that conventional bioretention practices, including planter boxes and swales, are capable of decreasing the risk of adverse effects from sheet Cu roof runoff to receiving systems, even before considering dilution of effluents in those receiving systems and associated further reductions in copper bioavailability. Environ Toxicol Chem 2017;36:1680-1688. © 2016 SETAC. © 2016 SETAC.

  9. Possibilities of water run-off models by using geological information systems

    International Nuclear Information System (INIS)

    Oeverland, H.; Kleeberg, H.B.

    1992-01-01

    The movement of water in a given region is determined by a number of regional factors, e.g. land use and topography. However, the available precipitation-runoff models take little account of this regional information. Geological information systems, on the other hand, are instruments for efficient management, presentation and evaluation of local information, so the best approach would be a combination of the two types of models. The requirements to be met by such a system are listed; they result from the processes to be modelled (continuous runoff, high-water runoff, mass transfer) but also from the available data and their acquisition and processing. Ten of the best-known precipitation-runoff models are presented and evaluated on the basis of the requirements listed. The basic concept of an integrated model is outlined, and additional modulus required for modelling are defined. (orig./BBR) [de

  10. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate

    Science.gov (United States)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.

    2017-12-01

    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan

  11. Transport of three veterinary antimicrobials from feedlot pens via simulated rainfall runoff.

    Science.gov (United States)

    Sura, Srinivas; Degenhardt, Dani; Cessna, Allan J; Larney, Francis J; Olson, Andrew F; McAllister, Tim A

    2015-07-15

    Veterinary antimicrobials are introduced to wider environments by manure application to agricultural fields or through leaching or runoff from manure storage areas (feedlots, stockpiles, windrows, lagoons). Detected in manure, manure-treated soils, and surface and ground water near intensive cattle feeding operations, there is a concern that environmental contamination by these chemicals may promote the development of antimicrobial resistance in bacteria. Surface runoff and leaching appear to be major transport pathways by which veterinary antimicrobials eventually contaminate surface and ground water, respectively. A study was conducted to investigate the transport of three veterinary antimicrobials (chlortetracycline, sulfamethazine, tylosin), commonly used in beef cattle production, in simulated rainfall runoff from feedlot pens. Mean concentrations of veterinary antimicrobials were 1.4 to 3.5 times higher in surface material from bedding vs. non-bedding pen areas. Runoff rates and volumetric runoff coefficients were similar across all treatments but both were significantly higher from non-bedding (0.53Lmin(-1); 0.27) than bedding areas (0.40Lmin(-1); 0.19). In keeping with concentrations in pen surface material, mean concentrations of veterinary antimicrobials were 1.4 to 2.5 times higher in runoff generated from bedding vs. non-bedding pen areas. Water solubility and sorption coefficient of antimicrobials played a role in their transport in runoff. Estimated amounts of chlortetracycline, sulfamethazine, and tylosin that could potentially be transported to the feedlot catch basin during a one in 100-year precipitation event were 1.3 to 3.6ghead(-1), 1.9ghead(-1), and 0.2ghead(-1), respectively. This study demonstrates the magnitude of veterinary antimicrobial transport in feedlot pen runoff and supports the necessity of catch basins for runoff containment within feedlots. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  12. Surface runoff and phosphorus (P) loss from bamboo (Phyllostachys ...

    African Journals Online (AJOL)

    Jane

    2011-08-24

    Aug 24, 2011 ... Key words: Phyllostachys pubescens, ecosystem, surface runoff, phosphorus (P) loss. .... targets and corresponding nutrient demand, nutrient balance and nutrient use .... rainfall, rainfall intensity as well as solar radiation and.

  13. Modeling global distribution of agricultural insecticides in surface waters.

    Science.gov (United States)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Bridge Deck Runoff: Water Quality Analysis and BMP Effectiveness

    Science.gov (United States)

    2010-12-01

    The Alaska Department of Transportation (ADOT) is responsible for more than 700 bridges - most span water bodies. Are these water bodies affected by stormwater runoff from ADOT bridges? What are the regulatory and economic constraints on the ADOT reg...

  15. Surface Runoff Estimation Using SMOS Observations, Rain-gauge Measurements and Satellite Precipitation Estimations. Comparison with Model Predictions

    Science.gov (United States)

    Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy

    Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.

  16. Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-01-01

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing cosntitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control. PMID:23202881

  17. Snowmelt runoff: a new focus of urban nonpoint source pollution.

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-11-30

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing constitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control.

  18. Diffuse emission and control of copper in urban surface runoff.

    Science.gov (United States)

    Boller, M A; Steiner, M

    2002-01-01

    Copper washed off from roofs and roads is considered to be a major contribution to diffuse copper pollution of urban environments. In order to guarantee sustainable protection of soils and water, the long-term strategy is to avoid or replace copper containing materials on roofs and fagades. Until achievement of this goal, a special adsorber system is suggested to control the diffuse copper fluxes by retention of copper by a mixture of granulated iron-hydroxide (GEH) and calcium carbonate. Since future stormwater runoff concepts are based on decentralised runoff infiltration into the underground, solutions are proposed which provide for copper retention in infiltration sites using GEH adsorption layers. The example of a large copper façade of which the runoff is treated in an adsorption trench reveals the first full-scale data on façade runoff and adsorber performance. During the first year of investigation average façade runoff concentrations in the range of 1-10 mg Cu/l are reduced by 96-99% in the adsorption ditch.

  19. Water redistribution at the soil surface : ponding and surface runoff in flat areas

    NARCIS (Netherlands)

    Appels, W.M.

    2013-01-01

    In The Netherlands, one of the most important targets for the improvement of surface water quality as aimed for in the European Water Framework Directive, is the reduction of nutrient concentrations (both nitrogen and phosphorus). To identify the most suitable and effective measures for reducing the

  20. Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate.

    Science.gov (United States)

    Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D

    2016-04-15

    Sediment and heavy metals in stormwater runoff are key pollutants of urban waterways, and their presence in stormwater is driven by climatic factors such as rainfall intensity. This study describes the total suspended solids (TSS) and heavy metal concentrations found in runoff from four different urban surfaces within a residential/institutional catchment, in a climate where rainfall is typically of low intensity (runoff quality from a compilation of international studies. The road runoff had the highest TSS concentrations, while copper and galvanized roof runoff had the highest copper and zinc concentrations, respectively. Pollutant concentrations were found to be significantly different between surfaces; quantification and prediction of pollutant contributions from urban surfaces should thus take account of the different surface materials, instead of being aggregated into more generalized categories such as land use. The TSS and heavy metal concentrations were found to be at the low to medium end of ranges observed internationally, except for total copper and zinc concentrations generated by dissolution of copper and galvanized roofing material respectively; these concentrations were at least as high as those reported internationally. TSS wash-off from the roofs was seen to be a source-limited process, where all available TSS is washed off during the rain event despite the low intensity rainfall, whereas both road TSS and heavy metals wash-off from roof and road surfaces appeared to all be transport-limited and therefore some carryover of pollutants occurs between rain events. A first flush effect was seen from most surfaces for TSS, but not for heavy metals. This study demonstrates that in low intensity rainfall climates, quantification of untreated runoff quality from key individual surface types in a catchment are needed to enable development of targeted and appropriately sized stormwater treatment systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hillslope run-off thresholds with shrink–swell clay soils

    Science.gov (United States)

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Lane, John W.; Uribe, Hamil C.; Arumí, José Luis; Selker, John S.

    2015-01-01

    Irrigation experiments on 12 instrumented field plots were used to assess the impact of dynamic soil crack networks on infiltration and run-off. During applications of intensity similar to a heavy rainstorm, water was seen being preferentially delivered within the soil profile. However, run-off was not observed until soil water content of the profile reached field capacity, and the apertures of surface-connected cracks had closed >60%. Electrical resistivity measurements suggested that subsurface cracks persisted and enhanced lateral transport, even in wet conditions. Likewise, single-ring infiltration measurements taken before and after irrigation indicated that infiltration remained an important component of the water budget at high soil water content values, despite apparent surface sealing. Overall, although the wetting and sealing of the soil profile showed considerable complexity, an emergent property at the hillslope scale was observed: all of the plots demonstrated a strikingly similar threshold run-off response to the cumulative precipitation amount. 

  2. A Probabilistic Model for Propagating Ungauged Basin Runoff Prediction Variability and Uncertainty Into Estuarine Water Quality Dynamics and Water Quality-Based Management Decisions

    Science.gov (United States)

    Anderson, R.; Gronewold, A.; Alameddine, I.; Reckhow, K.

    2008-12-01

    The latest official assessment of United States (US) surface water quality indicates that pathogens are a leading cause of coastal shoreline water quality standard violations. Rainfall-runoff and hydrodynamic water quality models are commonly used to predict fecal indicator bacteria (FIB) concentrations in these waters and to subsequently identify climate change, land use, and pollutant mitigation scenarios which might improve water quality and lead to reinstatement of a designated use. While decay, settling, and other loss kinetics dominate FIB fate and transport in freshwater systems, previous authors identify tidal advection as a dominant fate and transport process in coastal estuaries. As a result, acknowledging hydrodynamic model input (e.g. watershed runoff) variability and parameter (e.g tidal dynamics parameter) uncertainty is critical to building a robust coastal water quality model. Despite the widespread application of watershed models (and associated model calibration procedures), we find model inputs and parameters are commonly encoded as deterministic point estimates (as opposed to random variables), an approach which effectively ignores potential sources of variability and uncertainty. Here, we present an innovative approach to building, calibrating, and propagating uncertainty and variability through a coupled data-based mechanistic (DBM) rainfall-runoff and tidal prism water quality model. While we apply the model to an ungauged tributary of the Newport River Estuary (one of many currently impaired shellfish harvesting waters in Eastern North Carolina), our model can be used to evaluate water quality restoration scenarios for coastal waters with a wide range of designated uses. We begin by calibrating the DBM rainfall-runoff model, as implemented in the IHACRES software package, using a regionalized calibration approach. We then encode parameter estimates as random variables (in the rainfall-runoff component of our comprehensive model) via the

  3. Evaluation of Livestock Runoff as a Source of Water Polution in Northern Utah

    OpenAIRE

    Wieneke, Stephen T.; George, Dennis B.; Filip, Daniel S.; Finney, Brad

    1980-01-01

    A mathematical model was developed to predict the impact of dairy and beef cattle feedlot runoff on receiving streams. The mathematical expressions used in the model describing runoff quantity and quality were not only a function of single rain or snow precipitation events but also consecutive events prior to the runoff occurrence. The runoff quantity and quality were also a function of feedlot surface. Computer s...

  4. Model feasibility study of radioactive pathways from atmosphere to surface water

    International Nuclear Information System (INIS)

    Smith, R.E.; Summer, R.M.; Ferreira, V.A.

    1990-03-01

    A feasibility study of the atmosphere to surface-water radionuclide pathways was performed for small catchments, using a physically-based hydro-ecosystem model, Opus. Detailed time-intensity precipitation records from Arizona and Georgia were used as input to drive the model. Tests of model sensitivity to distribution coefficients, Kd, for Cs-137, Cs-134, and Sr-90 illustrated different vegetation-soil-erosion-runoff pathways, in response to agricultural management practices. Results reflected the fact that low Kd values allow a radionuclide to infiltrate into the soil profile and isolate it from subsequent runoff and erosion. Of the radionuclides and physical settings studied, only the Sr-90, with low Kd values, is sufficiently mobile and long-lived to be removed from the system via percolation below the root zone. Conversely, highly-adsorbed radionuclides were subject to removal by adsorption to sediment particles and subsequent runoff. Comparison of different effective half-lives of I-131 demonstrated the importance of the timing of an erosion-runoff storm event during or immediately after a fallout event. Seasonal timing of a fallout event and crop management also affect the fate of this short-lived radionuclide. Removal by solution to surface-water runoff was negligible for all nuclides studied. 34 refs., 14 figs., 2 tabs

  5. Exposure Through Runoff and Ground Water Contamination Differentially Impact Behavior and Physiology of Crustaceans in Fluvial Systems.

    Science.gov (United States)

    Steele, Alexandra N; Belanger, Rachelle M; Moore, Paul A

    2018-06-19

    Chemical pollutants enter aquatic systems through numerous pathways (e.g., surface runoff and ground water contamination), thus associating these contaminant sources with varying hydrodynamic environments. The hydrodynamic environment shapes the temporal and spatial distribution of chemical contaminants through turbulent mixing. The differential dispersal of contaminants is not commonly addressed in ecotoxicological studies and may have varying implications for organism health. The purpose of this study is to understand how differing routes of exposure to atrazine alter social behaviors and physiological responses of aquatic organisms. This study used agonistic encounters in crayfish Orconectes virilis as a behavioral assay to investigate impact of sublethal concentrations of atrazine (0, 40, 80, and 160 µg/L) delivered by methods mimicking ground water and surface runoff influx into flow-through exposure arenas for a total of 23 h. Each experimental animal participated in a dyadic fight trial with an unexposed opponent. Fight duration and intensity were analyzed. Experimental crayfish hepatopancreas and abdominal muscle tissue samples were analyzed for cytochrome P450 and acetylcholinesterase levels to discern mechanism of detoxification and mode of action of atrazine. Atrazine delivered via runoff decreased crayfish overall fight intensity and contrastingly ground water delivery increased overall fight intensity. The behavioral differences were mirrored by increases in cytochrome P450 activity, whereas no differences were found in acetylcholinesterase activity. This study demonstrates that method of delivery into fluvial systems has differential effects on both behavior and physiology of organisms and emphasizes the need for the consideration of delivery pathway in ecotoxicological studies and water-impairment standards.

  6. The chemical composition of precipitation and runoff water on an arid limestone hillside, northern Negev, Israel

    Science.gov (United States)

    Yair, Aaron; Karnieli, Arnon; Issar, Arie

    1991-12-01

    The study deals with the chemistry of precipitation and runoff water on an arid limestone hillside (467 m 2) the upper part of which is rocky and the lower part soil covered. Rainfall was measured with a rain recorder and sampled with a sequential collector which samples consecutive fractions of 2 mm. Runoff rate was measured with a stage recorder and runoff water was collected immediately after each flow from a collecting tank. Rain and runoff samples were analysed for their major constituents: Na +, K +, Ca 2+, Mg 2+, Cl -, SO 2-4 and HCO -3. Rainfall during the study year (1981/1982) amounted to 75 mm. The salt input by rainfall was 8 g m -2. The salt output by runoff was 1.2 g m -2 for the rocky area and 0.5 g m -2 for the soil-covered area, indicating a substantial net gain for the different areas. Both rainwater and runoff water have a calcium bicarbonate composition. These two ions represent some 55% of the dissolved ions. Runoff water is enriched by a factor of 2 in comparison with rainwater. Finally, the chemistry of runoff water from very small hillslope areas is quite similar to that of flood waters in the major channels of the Negev, pointing to a very limited chemical enrichment with increasing drainage area.

  7. APPLICATION OF GIS IN MODELING ZILBERCHAI BASIN RUNOFF

    Directory of Open Access Journals (Sweden)

    L. Malekani

    2014-10-01

    Full Text Available Runoff is one of most important hydrological variables that are used in many civil works, planning for optimal use of reservoirs, organizing rivers and warning flood. The runoff curve number (CN is a key factor in determining runoff in the SCS (Soil Conservation Service based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS are now being used in combination with the SCS-CN method. This work uses a methodology of determining surface runoff by Geographic Information System model and applying SCS-CN method that needs the necessary parameters such as land use map, hydrologic soil groups, rainfall data, DEM, physiographic characteristic of the basin. The model is built by implementing some well known hydrologic methods in GIS like as ArcHydro, ArcCN-Runoff for modeling of Zilberchai basin runoff. The results show that the high average weighted of curve number indicate that permeability of the basin is low and therefore likelihood of flooding is high. So the fundamental works is essential in order to increase water infiltration in Zilberchai basin and to avoid wasting surface water resources. Also comparing the results of the computed and observed runoff value show that use of GIS tools in addition to accelerate the calculation of the runoff also increase the accuracy of the results. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in large basins.

  8. Application of GIS in Modeling Zilberchai Basin Runoff

    Science.gov (United States)

    Malekani, L.; Khaleghi, S.; Mahmoodi, M.

    2014-10-01

    Runoff is one of most important hydrological variables that are used in many civil works, planning for optimal use of reservoirs, organizing rivers and warning flood. The runoff curve number (CN) is a key factor in determining runoff in the SCS (Soil Conservation Service) based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS) are now being used in combination with the SCS-CN method. This work uses a methodology of determining surface runoff by Geographic Information System model and applying SCS-CN method that needs the necessary parameters such as land use map, hydrologic soil groups, rainfall data, DEM, physiographic characteristic of the basin. The model is built by implementing some well known hydrologic methods in GIS like as ArcHydro, ArcCN-Runoff for modeling of Zilberchai basin runoff. The results show that the high average weighted of curve number indicate that permeability of the basin is low and therefore likelihood of flooding is high. So the fundamental works is essential in order to increase water infiltration in Zilberchai basin and to avoid wasting surface water resources. Also comparing the results of the computed and observed runoff value show that use of GIS tools in addition to accelerate the calculation of the runoff also increase the accuracy of the results. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in large basins.

  9. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards.

    Science.gov (United States)

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi

    2016-03-15

    Soil and water loss in agriculture is a major problem throughout the world, and especially in Mediterranean areas. Non-conservation agricultural practices have further aggravated the situation, especially in vineyards, which are affected by one of the highest rates of soil loss among cultivated lands. Therefore, it is necessary to find the right soil practices for more sustainable viticulture. In this regard, straw mulching has proven to be effective in other crop and fire affected soils, but, nonetheless, little research has been carried out in vineyards. This research tests the effect of barley straw mulching on soil erosion and surface runoff on vineyards in Eastern Spain where the soil and water losses are non-sustainable. An experiment was setup using rainfall simulation tests at 55 mm h(-1) over 1h on forty paired plots of 0.24 m(2): twenty bare and twenty straw covered. Straw cover varied from 48 to 90% with a median value of 59% as a result of the application of 75 g of straw per m(2). The use of straw mulch resulted in delayed ponding and runoff generation and, as a consequence, the median water loss decreased from 52.59 to 39.27% of the total rainfall. The straw cover reduced the median sediment concentration in runoff from 9.8 to 3.0 g L(-1) and the median total sediment detached from 70.34 to 15.62 g per experiment. The median soil erosion rate decreased from 2.81 to 0.63 Mg ha(-1)h(-1) due to the straw mulch protection. Straw mulch is very effective in reducing soil erodibility and surface runoff, and this benefit was achieved immediately after the application of the straw. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Does runoff or temperature control chemical weathering rates?

    International Nuclear Information System (INIS)

    Eiriksdottir, Eydis Salome; Gislason, Sigurdur Reynir; Oelkers, Eric H.

    2011-01-01

    Highlights: → The rate chemical weathering is affected by both temperature and runoff. Separating out these two factors is challenging because runoff tends to increase with increasing temperature. → In this study, natural river water samples collected on basaltic catchments over a five year period are used together with experimentally derived dissolution rate model for basaltic glass to pull apart the effects of runoff and temperature. → This study shows that the rate of chemical denudation is controlled by both temperature and runoff, but is dominated by runoff. - Abstract: The rate of chemical denudation is controlled by both temperature and runoff. The relative role of these two factors in the rivers of NE Iceland is determined through the rigorous analysis of their water chemistry over a 5-a period. River catchments are taken to be analogous to laboratory flow reactors; like the fluid in flow reactors, the loss of each dissolved element in river water is the sum of that of the original rainwater plus that added from kinetically controlled dissolution and precipitation reactions. Consideration of the laboratory determined dissolution rate behaviour of basalts and measured water chemistry indicates that the maximum effect of changing temperature on chemical denudation in the NE Icelandic rivers was 5-25% of the total change, whereas that of runoff was 75-95%. The bulk of the increased denudation rates with runoff appear to stem from an increase in reactive surface area for chemical weathering of catchment solids.

  11. Impacts of transportation infrastructure on storm water and surfaces waters in Chittenden County, Vermont, USA.

    Science.gov (United States)

    2014-06-01

    Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...

  12. Effects of storm-water runoff on water quality of the Edwards Aquifer near Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Schertz, Terry L.; Slade, Raymond M.; Rawson, Jack

    1984-01-01

    Analyses of samples collected from Barton Springs at approximately weekly Intervals and from Barton Creek and five wells in the Austin area during selected storm-runoff periods generally show that recharge during storm runoff resulted in significant temporal and area! variations in the quality of ground water in the recharge zone of the Edwards aquifer. Recharge during storm runoff resulted in significant increases of bacterial densities in the ground water. Densities of fecal coliform bacteria in samples collected from Barton Springs, the major point of ground-water discharge, ranged from less than 1 colony per 100 milliliters during dry weather in November 1981 and January and August 1982 to 6,100 colonies per 100 milliliters during a storm in May 1982. Densities of fecal streptococcal bacteria ranged from 1 colony per 100 miniliters during dry weather in December 1981 to 11,000 colonies per 100 miniliters during a storm in May 1982.

  13. Effectiveness of Runoff Control Legislation and Active, Beautiful, Clean (ABC Waters Design Features in Singapore

    Directory of Open Access Journals (Sweden)

    Xue Ping Goh

    2017-08-01

    Full Text Available Storm water management in Singapore has always been a challenge due to intense rainfall in a flat, low-lying and urbanised catchment. PUB’s (Singapore’s National Water Agency recent runoff control regulation limits the runoff coefficient to 0.55 for developments larger than or equal to 0.2 ha. The use of Active, Beautiful, Clean (ABC Waters design features are encouraged to attain peak runoff reduction. Hence the paper focuses on (i determining the actual hydrological response regime of Singapore using the relationship between runoff coefficient (C, land use and slope; and (ii investigating the effectiveness of ABC Waters design features in delaying and reducing peak runoff using a modelling approach. Based on a Storm Water Management Model (SWMM model and using elevation, land use and soil data as inputs, the peak C-values were obtained for 50 m × 50 m grid cells. The results show that for the same land use, the one with steeper slope resulted in a higher runoff coefficient. Simulations were carried out in two study areas, Green Walk District and Tengah Subcatchment, where ABC Waters design features (such as porous pavements, green roofs, rain gardens and detention tanks were incorporated to reduce C-values. Results showed that peak C-values can be reduced to less than 0.55 after increasing the green areas and constructing detention facilities. Reduction in peak discharge (22% to 63% and a delay in peak discharge by up to 30 min were also observed. Hence, it is recommended to consider the relationship between slope and land use while determining runoff coefficients; and to incorporate ABC Waters design features in urban design to reduce the peak flow and runoff coefficient (C.

  14. Rainfall-runoff model for prediction of waterborne viral contamination in a small river catchment

    Science.gov (United States)

    Gelati, E.; Dommar, C.; Lowe, R.; Polcher, J.; Rodó, X.

    2013-12-01

    We present a lumped rainfall-runoff model aimed at providing useful information for the prediction of waterborne viral contamination in small rivers. Viral contamination of water bodies may occur because of the discharge of sewage effluents and of surface runoff over areas affected by animal waste loads. Surface runoff is caused by precipitation that cannot infiltrate due to its intensity and to antecedent soil water content. It may transport animal feces to adjacent water bodies and cause viral contamination. We model streamflow by separating it into two components: subsurface flow, which is produced by infiltrated precipitation; and surface runoff. The model estimates infiltrated and non-infiltrated precipitation and uses impulse-response functions to compute the corresponding fractions of streamflow. The developed methodologies are applied to the Glafkos river, whose catchment extends for 102 km2 and includes the city of Patra. Streamflow and precipitation observations are available at a daily time resolution. Waterborne virus concentration measurements were performed approximately every second week from the beginning of 2011 to mid 2012. Samples were taken at several locations: in river water upstream of Patras and in the urban area; in sea water at the river outlet and approximately 2 km south-west of Patras; in sewage effluents before and after treatment. The rainfall-runoff model was calibrated and validated using observed streamflow and precipitation data. The model contribution to waterborne viral contamination prediction was benchmarked by analyzing the virus concentration measurements together with the estimated surface runoff values. The presented methodology may be a first step towards the development of waterborne viral contamination alert systems. Predicting viral contamination of water bodies would benefit sectors such as water supply and tourism.

  15. Runoff modeling of the Amazon basin using 18 O as a conservative tracer

    International Nuclear Information System (INIS)

    Mortatti, Jefferson; Victoria, Reynaldo L.; Moraes, Jorge M.; Rodrigues Junior, Jose C.; Matsumoto, Otavio M.

    1997-01-01

    Using the δO 18 O content of natural waters as a conservative tracer, a runoff modelling of the Amazon river basin was carried out in order to study the hydrological characteristics of the precipitation-runoff relationship. Measurements of the δ 18 O in rainfall waters made in the high Solimoes region at Benjamin Constant, in the central part of basin at Manaus, and at the mouth near the Marajo Island, while the river waters were measured at Obidos only, as a proxy for the mouth, during the 1973-1974 hydrological years. The hydrography separation of the Amazon river was performed using the isotopic method to estimate the contributions of the surface runoff (event water) and baseflow (pre-event water) components to the total river flow. At peak discharge, the average contribution of the baseflow was 57% of the total river flow. The annual average contributions for surface runoff and baseflow were 30.3 and 69.7%, respectively. The residence time of the subsurface water in the basin was estimated as being 7 months, by fitting a sinusoidal function to the isotopic values of rainfall and river waters. The low values of the amplitude damping in the basin suggest high mixing waters during the runoff process. (author). 21 refs., 4 figs., 1 tab

  16. Precipitation and runoff water quality from an urban parking lot and implications for tree growth

    Science.gov (United States)

    C. H. Pham; H. G. Halverson; G. M. Heisler

    1978-01-01

    The water quality of precipitation and runoff from a large parking lot in New Brunswick, New Jersey was studied during the early growing season, from March to June 1976. Precipitation and runoff from 10 storms were analyzed. The runoff was higher in all constituents considered except for P, Pb, and Cu. Compared with published values for natural waters, sewage effluent...

  17. Sink plot for runoff measurements on semi-flat terrains: preliminary data and their potential hydrological and ecological implications

    Directory of Open Access Journals (Sweden)

    Kidron Giora J.

    2014-12-01

    Full Text Available In arid and semiarid regions where water is the main limiting factor, water redistribution is regarded as an important hydrological process of great ecological value. By providing additional water to certain loci, moist pockets of great productivity are formed, characterized by high plant biomass and biological activity. These moist pockets are often a result of runon. Yet, although runoff may take place on semi-flat undulating surfaces, runoff measurements are thus far confined to slopes, where a sufficient gradient facilitates downslope water harvesting. On undulating surfaces of mounds and depressions, such as in interdunes, no quantification of the amount of water reaching depressions is feasible due to the fact that no reliable method for measuring the runoff amounts in semi-flat terrains is available. The current paper describes specific runoff plots, designed to measure runoff in depressions (sinks. These plots, termed sink plots (SPs, were operative in the Hallamish dunefield (Negev Desert, Israel. The paper presents measurements of runoff yield that were carried out between January 2013 and January 2014 on SPs and compared them to runoff obtained from crusted slope plots and fine-grained (playa surfaces. The potential hydrological and ecological implications of water redistribution within semi-flat terrains for this and other arid ecosystems are discussed.

  18. Discussion on runoff purification technology of highway bridge deck based on water quality safety

    Science.gov (United States)

    Tan, Sheng-guang; Liu, Xue-xin; Zou, Guo-ping; Xiong, Xin-zhu; Tao, Shuang-cheng

    2018-06-01

    Aiming at the actual problems existing, including a poor purification effect of highway bridge runoff collection and treatment system across sensitive water and necessary manual emergency operation, three kinds of technology, three pools system of bridge runoff purification, the integral pool of bridge runoff purification and ecological planting tank, are put forward by optimizing the structure of purification unit and system setting. At the same time, we come up with an emergency strategy for hazardous material leakage basing on automatic identification and remote control of traffic accidents. On the basis of combining these with the optimized pool structure, sensitive water safety can be guaranteed and water pollution, from directly discharging of bridge runoff, can be decreased. For making up for the shortages of green highway construction technology, the technique has important reference value.

  19. Surface water storage capacity of twenty tree species in Davis, California

    Science.gov (United States)

    Qingfu Xiao; E. Gregory. McPherson

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage...

  20. Precipitation-runoff relations and water-quality characteristics at edge-of-field stations, Discovery Farms and Pioneer Farm, Wisconsin, 2003-8

    Science.gov (United States)

    Stuntebeck, Todd D.; Komiskey, Matthew J.; Peppler, Marie C.; Owens, David W.; Frame, Dennis R.

    2011-01-01

    A cooperative study between the U.S. Geological Survey, the University of Wisconsin (UW)-Madison Discovery Farms program (Discovery Farms), and the UW-Platteville Pioneer Farm program (Pioneer Farm) was developed to identify typical ranges and magnitudes, temporal distributions, and principal factors affecting concentrations and yields of sediment, nutrients, and other selected constituents in runoff from agricultural fields. Hydrologic and water-quality data were collected year-round at 23 edge-of-field monitoring stations on 5 privately owned Discovery Farms and on Pioneer Farm during water years 2003-8. The studied farms represented landscapes, soils, and farming systems typical of livestock farms throughout southern Wisconsin. Each farm employed a variety of soil, nutrient, and water-conservation practices to help minimize sediment and nutrient losses from fields and to improve crop productivity. This report summarizes the precipitation-runoff relations and water-quality characteristics measured in edge-of-field runoff for 26 "farm years" (aggregate years of averaged station data from all 6 farms for varying monitoring periods). A relatively wide range of constituents typically found in agricultural runoff were measured: suspended sediment, phosphorus (total, particulate, dissolved reactive, and total dissolved), and nitrogen (total, nitrate plus nitrite, organic, ammonium, total Kjeldahl and total Kjeldahl-dissolved), chloride, total solids, total suspended solids, total volatile suspended solids, and total dissolved solids. Mean annual precipitation was 32.8 inches for the study period, about 3 percent less than the 30-year mean. Overall mean annual runoff was 2.55 inches per year (about 8 percent of precipitation) and the distribution was nearly equal between periods of frozen ground (54 percent) and unfrozen ground (46 percent). Mean monthly runoff was highest during two periods: February to March and May to June. Ninety percent of annual runoff occurred

  1. Identification of soil P fractions that are associated with P loss from surface runoff under various cropping systems and fertilizer rates on sloped farmland.

    Science.gov (United States)

    Li, Xinghua; Wang, Baona; Yang, Tewu; Zhu, Duanwei; Nie, Zhongnan; Xu, Junchi

    2017-01-01

    Soil phosphorus (P) fractions and runoff P concentration were measured to understand the fate of soil P entering surface runoff water during summer cropping season of different double cropping systems under two fertilizer regimes. The dominant form of runoff P was particulate P (PP). Runoff total P (TP) was higher at the vegetative growth stage and lower at the crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P and amounts increased with sediment content in runoff water. Runoff P discharge was closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P load during the summer in this region.

  2. Identification of soil P fractions that are associated with P loss from surface runoff under various cropping systems and fertilizer rates on sloped farmland.

    Directory of Open Access Journals (Sweden)

    Xinghua Li

    Full Text Available Soil phosphorus (P fractions and runoff P concentration were measured to understand the fate of soil P entering surface runoff water during summer cropping season of different double cropping systems under two fertilizer regimes. The dominant form of runoff P was particulate P (PP. Runoff total P (TP was higher at the vegetative growth stage and lower at the crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P and amounts increased with sediment content in runoff water. Runoff P discharge was closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P load during the summer in this region.

  3. Century-scale variability in global annual runoff examined using a water balance model

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2011-01-01

    A monthly water balance model (WB model) is used with CRUTS2.1 monthly temperature and precipitation data to generate time series of monthly runoff for all land areas of the globe for the period 1905 through 2002. Even though annual precipitation accounts for most of the temporal and spatial variability in annual runoff, increases in temperature have had an increasingly negative effect on annual runoff after 1980. Although the effects of increasing temperature on runoff became more apparent after 1980, the relative magnitude of these effects are small compared to the effects of precipitation on global runoff. ?? 2010 Royal Meteorological Society.

  4. An at-grade stabilization structure impact on runoff and suspended sediment

    Science.gov (United States)

    Minks, Kyle R.; Lowery, Birl; Madison, Fred W.; Ruark, Matthew; Frame, Dennis R.; Stuntebeck, Todd D.; Komiskey, Matthew J.

    2012-01-01

    In recent years, agricultural runoff has received more attention as a major contributor to surface water pollution. This is especially true for the unglaciated area of Wisconsin, given this area's steep topography, which makes it highly susceptible to runoff and soil loss. We evaluated the ability of an at-grade stabilization structure (AGSS), designed as a conservation practice to reduce the amount of overland runoff and suspended sediment transported to the surface waters of an agricultural watershed. Eight years of storm and baseflow data collected by the US Geological Survey–Wisconsin Water Science Center on a farm in west central Wisconsin were analyzed for changes in precipitation, storm runoff volume, and suspended sediment concentration before and after installation of an AGSS. The agricultural research site was designed as a paired watershed study in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects model analyses were conducted to determine if any statistically significant changes occurred in the water quality parameters before and after the AGSS was installed. Results indicated no significant changes (p = 0.51) in average event precipitation and runoff volumes before and after installation of the AGSS in either the treatment (NW) or control (SW) watersheds. However, the AGSS did significantly reduce the average suspended sediment concentration in the event runoff water (p = 0.02) in the NW from 972 to 263 mg L–1. In addition, particle size analyses, using light diffraction techniques, were conducted on soil samples taken from within the AGSS and adjacent valley and ridge top to determine if suspended sediments were being retained within the structure. Statistical analysis revealed a significantly (p clay inside the AGSS (37%) than outside (30%). These results indicate that the AGSS was successful in reducing the amount of suspended sediment transported to nearby

  5. Hydrological regime shift in a constructed catchment: Effect of vegetation encroachment on surface runoff

    Science.gov (United States)

    Hinz, C.; Caviedes-Voullieme, D.; Andezhath Mohanan, A.; Brueck, Y.; Zaplata, M.

    2017-12-01

    The Hühnerwasser catchment (Chicken Creek) was constructed to provide discharge for a small stream in the post-mining landscape of Lusatia, Germany. It has an area of 6 ha and quaternary sands with a thickness of 2-4 m were dumped on to a clay liner to prevent deep drainage. After completion of the construction the catchment was left to develop on its own without intervention and has been monitored since 2005. The upper part of the catchment discharges water and sediment into the lower part forming an alluvial fan. Below the alluvial fan is a pond receiving all surface and subsurface water from the upper catchment. After the formation of the drainage network vegetation started growing and surface runoff decreased until the water balance was dominated by evapotranspiration. This regime shift and the rate at which it happened depends on the vegetation encroachment into the rills and the interrill areas. Based on the hypothesis that vegetation will increase surface roughness and infiltration behavior, aerial photos were used to map rills and vegetation within and outside the rills for the last 10 years to obtain a time series of change. Observational evidence clearly shows that vegetation encroaches from the bottom, from the interrill areas as well as from the top. The rills themselves did not change their topology, however, the width of the erosion rills and gully increased at the bottom. For a subcatchment area a high resolution a physical based numerical model of overland flow was developed to explicitly assess the importance of increasing roughness and infiltration capacity for surface runoff. For the purpose of analyzing the effect of rainfall variability a rainfall generator was developed to carry out large sets of simulations. The simulations provide a means to assess how the roughness/infiltration feedback affects the rate of regime shift for a set of parameters that are consistent with the observed hydrological behavior of the drainage network.

  6. Surface Runoff and Snowmelt Infiltration into the Soil on Plowlands in the Forest-Steppe and Steppe Zones of the East European Plain

    Science.gov (United States)

    Barabanov, A. T.; Dolgov, S. V.; Koronkevich, N. I.; Panov, V. I.; Petel'ko, A. I.

    2018-01-01

    Long-term series of observations over the spring water balance elements on fields with hydrologically contrasting agricultural backgrounds―a loose soil after fall moldboard plowing and a plowland compacted by 12-16% compared to the former soil (perennial grasses, winter crops, stubble)―have been analyzed. The values of surface runoff and water infiltration into the soil in the steppe and forest-steppe zones of European Russia have been calculated for the spring (flooding) period and the entire cold season. The hydrological role of fall plowing has been shown, and water balance elements for the current (1981-2016) and preceding (1957-1980) periods have been compared. A significant decrease in runoff and an increase of water reserve in the soil have been revealed on all plowland types. Consequences of changes in the spring water balance on plowland have been analyzed.

  7. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

    Science.gov (United States)

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.

    2004-01-01

    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored

  8. Surface water quality in a water run-off canal system: A case study in Jubail Industrial City, Kingdom of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Zia Mahmood Siddiqi

    2016-06-01

    Full Text Available Water quality in a run-off canal system in an industrial area was evaluated for a range of physical and chemical properties comprising trace metals (including mercury (Hg, chromium (Cr, iron (Fe, manganese (Mn, salinity, pH, turbidity, total dissolved solids, total suspended solids, chemical oxygen demand (COD, and dissolved oxygen. High concentrations of potassium (K (1.260–2.345 mg/l and calcium (Ca (19.170–35510 mg/l demonstrated that the salinity in the water was high, which indicates that industrial effluents from fertilizer manufacturing and Chlor-alkali units are being discharged into the canal system. Almost all the metal concentrations in water and sediment were within the thresholds established by the local regulatory body. Concentrations of Cr (0.0154–0.0184 mg/l, Mn (0.0608–0.199 mg/l, Fe (0.023–0.035 mg/l, COD (807–916 mg/l, and turbidity (633 ± 15–783 ± 22 NTU were high where the canal discharges into the Persian Gulf; these discharges may compromise the health of the aquatic ecosystem. There is concern about the levels of Hg in water (0.00135–0.0084 mg/l, suspended sediment (0.00308–0.0096 mg/l, and bed sediment (0.00172–0.00442 mg/l because of the bio-accumulative nature of Hg. We also compared the total Hg concentrations in fish from Jubail, and two nearby cities. Hg contents were highest in fish tissues from Jubail. This is the first time that heavy metal pollution has been assessed in this water run-off canal system; information about Hg is of particular interest and will form the basis of an Hg database for the area that will be useful for future investigations.

  9. The effect of polyacrylamide (PAM) applications on infiltration, runoff ...

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... reduced surface runoff and soil losses, but increased infiltration rates. The effectiveness of ... Soil and water conservation is essential for sustaining food production and ...... Earth Surface Processes, 4:241-255. McIntyre DS ...

  10. Soil Surface Runoff Scheme for Improving Land-Hydrology and Surface Fluxes in Simple SiB (SSiB)

    Science.gov (United States)

    Sud, Y. C.; Mocko, David M.

    1999-01-01

    Evapotranspiration on land is hard to measure and difficult to simulate. On the scale of a GCM grid, there is large subgrid-scale variability of orography, soil moisture, and vegetation. Our hope is to be able to tune the biophysical constants of vegetation and soil parameters to get the most realistic space-averaged diurnal cycle of evaporation and its climatology. Field experiments such as First ISLSCP Field Experiment (FIFE), Boreal Ecosystem-Atmosphere Study (BOREAS), and LBA help a great deal in improving our evapotranspiration schemes. However, these improvements have to be matched with, and coupled to, consistent improvement in land-hydrology; otherwise, the runoff problems will intrinsically reflect on the soil moisture and evapotranspiration errors. Indeed, a realistic runoff simulation also ensures a reasonable evapotranspiration simulation provided the precipitation forcing is reliable. We have been working on all of the above problems to improve the simulated hydrologic cycle. Through our participation in the evaluation and intercomparison of land-models under the behest of Global Soil Wetness Project (GSWP), we identified a few problems with Simple SiB (SSIB; Xue et al., 1991) hydrology in regions of significant snowmelt. Sud and Mocko (1999) show that inclusion of a separate snowpack model, with its own energy budget and fluxes with the atmosphere aloft and soil beneath, helps to ameliorate some of the deficiencies of delayed snowmelt and excessive spring season runoff. Thus, much more realistic timing of melt water generation was simulated with the new snowpack model in the subsequent GSWP re-evaluations using 2 years of ISLSCP Initiative I forcing data for 1987 and 1988. However, we noted an overcorrection of the low meltwater infiltration of SSiB. While the improvement in snowmelt timing was found everywhere, the snowmelt infiltration has became excessive in some regions, e.g., Lena river basin. This leads to much reduced runoff in many basins as

  11. A Future Estimation of the Surface Runoff in the Greek Region: A Case Study of one of the Main Catchments Areas (Aravissos - Central Macedonia)

    Science.gov (United States)

    Anagnostopoulou, C.; Tolika, K.; Vafiadis, M.

    2010-09-01

    According to the IPCC latest report (IPCC, 2007) many semi-arid and arid areas, as the Mediterranean basin, are particularly exposed to the impacts of climate change and may suffer a decrease of water resources in the future. By the middle of the 21st century it is estimated that the annual average river runoff and water availability will decrease over these dry regions at mid-latitudes. So, it is of great importance the study of the future changes in the hydrological cycle, due to the increasing freshwater demands. The main scope of the present study is to estimate the future changes of the surface runoff in the Aravissos area (central Macedonia - Greece) due to the enhanced greenhouse effect until the end of the 21st century. The selection of Aravissos was based to the fact that the water needs of the second largest in population city in Greece (Thessaloniki) are covered mainly by the selected catchments area. Daily precipitation, temperature, relative humidity, wind speed and sunlight duration data derived from updated regional climate models, are used for selected grid points covering the domain of study. The main two climatological parameters (precipitation -temperature) are on a first step evaluated in comparison to re-analysis data (E-Obs -Ensembles project) for the same grid points. On a second step, utilizing several different evapotranspiration methods we calculated the surface runoff for two different time periods: the first in the middle and the second at the end of the 21st century. The first results of the study showed that the surface runoff depends on the methodology used for the calculation of the evapotranspiration but also from the regional model. Acknowledgements: This study has been supported by the CC-WaterS project (Contract number SEE/A/022/2.1/X)

  12. Assessment of surface runoff depth changes in S\\varǎţel River basin, Romania using GIS techniques

    Science.gov (United States)

    Romulus, Costache; Iulia, Fontanine; Ema, Corodescu

    2014-09-01

    S\\varǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in S\\varǎţel catchment, between 1990-2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.

  13. Runoff velocity behaviour on smooth pavement and paving blocks surfaces measured by a tilted plot

    Directory of Open Access Journals (Sweden)

    Sedyowati Laksni

    2017-06-01

    Full Text Available Paving blocks have been widely known as an alternative technology for reducing runoff discharge due to their infiltration performance and capability of retarding the flow. Surface configuration of the different paving blocks types and the openings area play important role in decreasing the runoff velocity. In this study, we investigated the surface runoff velocity on two types of paving blocks layers, and a smooth pavement as comparison. The paving blocks type were rectangular blocks, which have 3.2% openings ratio and hexagonal blocks, which have 6.5% openings ratio. We used a tilted plot covering area of 2 × 6 m, equipped by a rainfall simulator to accommodate the variation of surface slope and rainfall intensity. We measured the velocity by using modification of dye tracer and buoyancy method. The data were then tabulated and graphed based on the paving types and the surface slopes. Generally, the velocity-slope relationship has demonstrated that the increase in surface slope leads to the increase in velocity. In this study, the result showed that slope and rainfall intensity simultaneously influenced the velocity (F = 19.91 > Ftable = 5.14; P < 0.05. However, the findings of this study showed a weak relationship between the changes of surface slope and the changes of runoff velocity on the rectangular blocks (R2 = 0.38. The greater slope did not always invariably lead to the greater runoff velocity. It was likely that there was other predictor variable that was not identified before, and need to be further investigated.

  14. Change detection of runoff-urban growth relationship in urbanised watershed

    International Nuclear Information System (INIS)

    Abas, Aisya Azizah; Hashim, Mazlan

    2014-01-01

    Urban growth has negative environmental impacts that create water-based disasters such as flash floods and storm runoff causing billions of dollars worth of damage each year. Due to serious flash floods in urbanised areas of Malaysia, water resource management is a vital issue. This paper reports on a study that has been carried out using remote sensing techniques and hydrological modelling for examining the spatial patterns changes of urban areas and its impacts on surface runoff. The estimation of surface runoff based on the Soil Conservation Service Curve Number (SCS CN) method was performed by integrating both remote sensing and Geographic Information System (GIS) techniques. Remote sensing is a data sources for monitoring urban growth by quantifying the changes of urban area and its environmental impact are then analysed by using a GIS-based hydrological model. By linking the integrated approach of remote sensing and GIS, the relationship of runoff with urban expansion are further examined. Hence, the changes in runoff due to urbanisation are analysed. This methodology is applied to the central region of Malaysia in Kuala Lumpur, where rapid urban growth has occurred over the last decade. The results showed that there was a significant between spatial patterns of urban growth and estimated runoff depth. The increase in runoff from year 2000, 2006 and 2010 are estimated about five percent

  15. Amending greenroof soil with biochar to affect runoff water quantity and quality.

    Science.gov (United States)

    Beck, Deborah A; Johnson, Gwynn R; Spolek, Graig A

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Efficiency assessment of runoff harvesting techniques using a 3D coupled surface-subsurface hydrological model

    International Nuclear Information System (INIS)

    Verbist, K.; Cronelis, W. M.; McLaren, R.; Gabriels, D.; Soto, G.

    2009-01-01

    In arid and semi-arid zones runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Both in literature and in the field, a large variety of runoff collecting systems are found, as well as large variations in design and dimensions. Therefore, detailed measurements were performed on a semi-arid slope in central Chile to allow identification of the effect of a simple water harvesting technique on soil water availability. For this purpose, twenty two TDR-probes were installed and were monitored continuously during and after a simulated rainfall event. These data were used to calibrate the 3D distributed flow model HydroGeoSphere, to assess the runoff components and soil water retention as influenced by the water harvesting technique, both under simulated and natural rainfall conditions. (Author) 6 refs.

  17. Storm water runoff-a source of emerging contaminants in urban streams

    Science.gov (United States)

    Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.

    2016-12-01

    Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This

  18. Conductivity as an indicator of surface water quality in the proximity ...

    African Journals Online (AJOL)

    2015-10-05

    Oct 5, 2015 ... FeCr smelting did not significantly impact surface water quality, but that surface run-off and/or groundwater leaching ... (EIAs) were required, or for older FeCr smelters during the .... then used for the determination of conductivity with a Hanna ... significant differences in the conductivity values measured at.

  19. Assessing the water balance in the Sahel : Impact of small scale rainfall variability on runoff. Part 2 : Idealized modeling of runoff sensitivity

    OpenAIRE

    Vischel, Théo; Lebel, Thierry

    2007-01-01

    As in many other semi-arid regions in the world, the Sahelian hydrological environment is characterized by a mosaic of small endoreic catchments with dry soil surface conditions producing mostly Hortonian runoff. Using an SCS-type event based rainfall-runoff model, an idealized modeling experiment of a Sahelian environment is set up to study the sensitivity of runoff to small scale rainfall variability. A set of 548 observed rain events is used to force the hydrological model to study the sen...

  20. Control of water infiltration into near surface LLW disposal units: Task report, A discussion

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1988-03-01

    The principal pathway for water entry into LLW disposal units in the humid eastern United States is through their covers. Two types of sub-surface features that may be constructed to enhance run-off (surface or sub-surface run-off) and thus reduce percolation are the resistive layer barrier, and the conductive layer barrier. The resistive layer barrier is the compacted soil or compacted clay layer and depends on compaction of permeable porous material to obtain low flow rates. The conductive layer barrier is a special case of the capillary barrier. Use is made of the capillary barrier phenomenon not only to increase the moisture content above an interface but to divert water away from the waste. During such diversion the water is at all times at negative capillary potential or under tension in the flow layer. A very effective barrier system might be constructed by placing a resistive barrier over a conductive barrier. Such a system must fail if appreciable subsidence takes place. An alternate procedure called bioengineering management utilizes engineered features at the surface (as opposed to the subsurface) to ensure adequate run-off. The engineered features are combined with stressed vegetation, that is, vegetation in an overdraft condition, to control deep percolation. (59 refs., 10 figs.)

  1. Enhancing Seasonal Water Outlooks: Needs and Opportunities in the Critical Runoff Season

    Science.gov (United States)

    Ray, A. J.; Barsugli, J. J.; Yocum, H.; Stokes, M.; Miskus, D.

    2017-12-01

    The runoff season is a critical period for the management of water supply in the western U.S., where in many places over 70% of the annual runoff occurs in the snowmelt period. Managing not only the volume, but the intra-seasonal timing of the runoff is important for optimizing storage, as well as achieving other goals such as mitigating flood risk, and providing peak flows for riparian habitat management, for example, for endangered species. Western river forecast centers produce volume forecasts for western reservoirs that are key input into many water supply decisions, and also short term river forecasts out to 10 days. The early volume forecasts each year typically begin in December, and are updated throughout the winter and into the runoff season (April-July for many areas, but varies). This presentation will discuss opportunities for enhancing this existing suite of RFC water outlooks, including the needs for and potential use for "intraseasonal" products beyond those provided by the Ensemble Streamflow Prediction system and the volume forecasts. While precipitation outlooks have little skill for many areas and seasons, and may not contribute significantly to the outlook, late winter and spring temperature forecasts have meaningful skill in certain areas and sub-seasonal to seasonal time scales. This current skill in CPC temperature outlooks is an opportunity to translate these products into information about the snowpack and potential runoff timing, even where the skill in precipitation is low. Temperature is important for whether precipitation falls as snow or rain, which is critical for streamflow forecasts, especially in the melt season in snowpack-dependent watersheds. There is a need for better outlooks of the evolution of snowpack, conditions influencing the April-July runoff, and the timing of spring peak or shape of the spring hydrograph. The presentation will also discuss a our work with stakeholders of the River Forecast Centers and the NIDIS

  2. Methods on estimation of the evaporation from water surface

    International Nuclear Information System (INIS)

    Trajanovska, Lidija; Tanushevska, Dushanka; Aleksovska, Nina

    2001-01-01

    The whole world water supply on the Earth is in close dependence on hydrological cycle connected with water circulation at Earth-Atmosphere route through evaporation, precipitation and water runoff. Evaporation exists worldwide where the atmosphere is unsatiated of water steam (when there is humidity in short supply) and it depends on climatic conditions in some regions. The purpose of this paper is to determine a method for estimation of evaporation of natural water surface in our areas, that means its determination as exact as possible. (Original)

  3. Microbial and chemical markers: runoff transfer in animal manure-amended soils.

    Science.gov (United States)

    Jaffrezic, Anne; Jardé, Emilie; Pourcher, Anne-Marie; Gourmelon, Michèle; Caprais, Marie-Paule; Heddadj, Djilali; Cottinet, Patrice; Bilal, Muhamad; Derrien, Morgane; Marti, Romain; Mieszkin, Sophie

    2011-01-01

    Fecal contamination of water resources is evaluated by the enumeration of the fecal coliforms and Enterococci. However, the enumeration of these indicators does not allow us to differentiate between the sources of fecal contamination. Therefore, it is important to use alternative indicators of fecal contamination to identify livestock contamination in surface waters. The concentration of fecal indicators (, enteroccoci, and F-specific bacteriophages), microbiological markers (Rum-2-bac, Pig-2-bac, and ), and chemical fingerprints (sterols and stanols and other chemical compounds analyzed by 3D-fluorescence excitation-matrix spectroscopy) were determined in runoff waters generated by an artificial rainfall simulator. Three replicate plot experiments were conducted with swine slurry and cattle manure at agronomic nitrogen application rates. Low amounts of bacterial indicators (1.9-4.7%) are released in runoff water from swine-slurry-amended soils, whereas greater amounts (1.1-28.3%) of these indicators are released in runoff water from cattle-manure-amended soils. Microbial and chemical markers from animal manure were transferred to runoff water, allowing discrimination between swine and cattle fecal contamination in the environment via runoff after manure spreading. Host-specific bacterial and chemical markers were quantified for the first time in runoff waters samples after the experimental spreading of swine slurry or cattle manure. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  4. High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts.

    Science.gov (United States)

    Lefrancq, Marie; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Landry, David; Payraudeau, Sylvain

    2017-06-01

    Rainfall-induced peaks in pesticide concentrations can occur rapidly. Low frequency sampling may therefore largely underestimate maximum pesticide concentrations and fluxes. Detailed storm-based sampling of pesticide concentrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is lacking. High frequency monitoring (2min) of seven pesticides (Dimetomorph, Fluopicolide, Glyphosate, Iprovalicarb, Tebuconazole, Tetraconazole and Triadimenol) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of a vineyard catchment in the Layon catchment in France. The maximum pesticide concentrations were 387μgL -1 . Samples from all of the runoff events exceeded the legal limit of 0.1μgL -1 for at least one pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles (25%). The point and average (time or discharge-weighted) concentrations indicated up to a 30- or 4-fold underestimation of the TU obtained when measuring the maximum concentrations, respectively. This highlights the important role of sampling methods for assessing peak exposure. High resolution sampling combined with concentration-discharge hysteresis analyses revealed that clockwise responses were predominant (52%), indicating that Hortonian runoff is the prevailing surface runoff trigger mechanism in the study catchment. The hysteresis patterns for suspended solids and pesticides were highly dynamic and storm- and chemical-dependent. Intense rainfall events induced stronger C-Q hysteresis (magnitude). This study provides new insights into the complexity of pesticide dynamics in runoff water and highlights the ability of hysteresis analysis to improve understanding of pesticide supply and transport. Copyright © 2017 Elsevier B.V. All

  5. [Characterization and source apportionment of pollutants in urban roadway runoff in Chongqing].

    Science.gov (United States)

    Zhang, Qian-Qian; Wang, Xiao-Ke; Hao, Li-Ling; Hou, Pei-Qiang; Ouyang, Zhi-Yun

    2012-01-01

    By investigating surface runoff from urban roadway in Chongqing, we assessed the characteristics of surface runoff pollution and the effect of rainfall intensity and antecedent dry weather period on water quality. Using multivariate statistical analysis of data of runoff quality, potential pollutants discharged from urban roadway runoff were identified. The results show that the roadway runoff has high levels of COD, TP and TN, the EMC were 60.83-208.03 mg x L(-1), 0.47-1.01 mg x L(-1) and 2.07-5.00 mg x L(-1) respectively, being the main pollutants; The peaks of pollutant concentration are ahead of or synchronous with the peak of runoff volume; the peaks of pollutant concentrations are mostly occurred within 10 minutes of rainfall. The heavy metal concentrations fluctuate dentately during runoff proceeding. Two potential pollution sources to urban roadway runoff apportioned by using principal component analysis are: vehicle's traffic loss and atmospheric dry and wet deposition, and municipal wastes.

  6. Effects of low-impact-development (LID) practices on streamflow, runoff quantity, and runoff quality in the Ipswich River Basin, Massachusetts-A Summary of field and modeling studies

    Science.gov (United States)

    Zimmerman, Marc J.; Waldron, Marcus C.; Barbaro, Jeffrey R.; Sorenson, Jason R.

    2010-01-01

    Low-impact-development (LID) approaches are intended to create, retain, or restore natural hydrologic and water-quality conditions that may be affected by human alterations. Wide-scale implementation of LID techniques may offer the possibility of improving conditions in river basins, such as the Ipswich River Basin in Massachusetts, that have run dry during the summer because of groundwater withdrawals and drought. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of LID enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of * replacing an impervious parking-lot surface with a porous surface on groundwater quality, * installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and * installing a 3,000-ft2 (square-foot) green roof on the quantity and quality of rainfall-generated roof runoff. In addition to these small-scale installations, the U.S. Geological Survey's Ipswich River Basin model was used to simulate the basin-wide effects on streamflow of several changes: broad-scale implementation of LID techniques, reduced water-supply withdrawals, and water-conservation measures. Water-supply and conservation scenarios for application in model simulations were developed with the assistance of two technical advisory committees that included representatives of State agencies responsible for water resources, the U.S. Environmental Protection Agency, the U.S. Geological Survey, water suppliers, and non-governmental organizations. From June

  7. Barium as a potential indicator of phosphorus in agricultural runoff.

    Science.gov (United States)

    Ahlgren, Joakim; Djodjic, Faruk; Wallin, Mats

    2012-01-01

    In many catchments, anthropogenic input of contaminants, and in particular phosphorus (P), into surface water is a mixture of agricultural and sewage runoff. Knowledge about the relative contribution from each of these sources is vital for mitigation of major environmental problems such as eutrophication. In this study, we investigated whether the distribution of trace elements in surface waters can be used to trace the contamination source. Water from three groups of streams was investigated: streams influenced only by agricultural runoff, streams influenced mainly by sewage runoff, and reference streams. Samples were collected at different flow regimes and times of year and analyzed for 62 elements using ICP-MS. Our results show that there are significant differences between the anthropogenic sources affecting the streams in terms of total element composition and individual elements, indicating that the method has the potential to trace anthropogenic impact on surface waters. The elements that show significant differences between sources are strontium (p barium (p barium shows the greatest potential as a tracer for an individual source of anthropogenic input to surface waters. We observed a strong relationship between barium and total P in the investigated samples (R(2) = 0.78), which could potentially be used to apportion anthropogenic sources of P and thereby facilitate targeting of mitigation practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Water retention and runoff formation in the Krkonoše Mts

    Czech Academy of Sciences Publication Activity Database

    Šír, Miloslav; Tesař, Miroslav

    2013-01-01

    Roč. 50, August (2013), s. 97-106 ISSN 0139-925X R&D Projects: GA TA ČR TA02021451 Institutional support: RVO:67985874 Keywords : mountain hydrology * runoff formation * catchment water retention * soil water movement Subject RIV: DA - Hydrology ; Limnology

  9. Estimation of Runoff for Ozat Catchment using RS and GIS Based SCS-CN Method

    OpenAIRE

    Dipesh B. Chavda1,; Jaydip J. Makwana*2,; Hitesh V. Parmar3; Arvind N. Kunapara2; Girish V. Prajapati

    2016-01-01

    Estimation of runoff in a watershed is a prerequisite for design of hydraulic structures, reservoir operation and for soil erosion control measures. Water resource planning and management is important and critical issue in arid and semi-arid regions. Runoff from a watershed affected by several geo-morphological parameters and for a particular watershed land use change can affect the runoff volume and runoff rate significantly. Several methods are investigated to estimate the surface runoff fr...

  10. Pollutant concentrations in road runoff: Southeast Queensland case study

    Energy Technology Data Exchange (ETDEWEB)

    Drapper, D.; Tomlinson, R.; Williams, P.

    2000-04-01

    This paper discusses the results of research into the pollutants in runoff from road pavement surfaces following natural rainfall events. Road runoff water quality was monitored at 21 sites centering around Brisbane, in southeast Queensland, Australia. The sites were selected according to traffic volumes, surrounding land use, pavement surface type, ease of access, and commercial vehicle percentage. Bridge sites were chosen for convenience of sample collection and minimized infrastructure modification. First flush grab samplers were permanently installed at each site to collect the first 20 L of runoff from one of the bridge drainage scuppers. The runoff samples were tested for a number of heavy metals, hydrocarbons, pesticides, and other physical characteristics. The observed results fall within the ranges of concentrations reported internationally and nationally but do not typically follow the 30,000 average annual daily traffic results reported in the United States. Traffic volumes have not been found to be the best indicator of road runoff pollutant concentrations. Interevent duration has been found to be a statistically significant factor for pollutant concentrations. Sites incorporating exit lanes have recorded higher concentrations of acid-extractable copper and zinc, tending to support the hypothesis that brake pad and tire wear caused by rapid deceleration contributes to the concentrations of these metals in road runoff. Laser particle sizing has shown that a significant proportion of the sediment found in the runoff is <100 {micro}m. However, these particulates do settle in water within 24 h, under laboratory conditions. This may be due to the presence of heavy metals.

  11. Quality of surface water and ground water in the proposed artificial-recharge project area, Rillito Creek basin, Tucson, Arizona, 1994

    Science.gov (United States)

    Tadayon, Saeid

    1995-01-01

    Controlled artificial recharge of surface runoff is being considered as a water-management technique to address the problem of ground-water overdraft. The planned use of recharge facilities in urban areas has caused concern about the quality of urban runoff to be recharged and the potential for ground-water contamination. The proposed recharge facility in Rillito Creek will utilize runoff entering a 1-mile reach of the Rillito Creek between Craycroft Road and Swan Road for infiltration and recharge purposes within the channel and excavated overbank areas. Physical and chemical data were collected from two surface-water and two ground-water sites in the study area in 1994. Analyses of surface-water samples were done to determine the occurrence and concentration of potential contaminants and to determine changes in quality since samples were collected during 1987-93. Analyses of ground-water samples were done to determine the variability of ground-water quality at the monitoring wells throughout the year and to determine changes in quality since samples were collected in 1989 and 1993. Surface-water samples were collected from Tanque Verde Creek at Sabino Canyon Road (streamflow-gaging station Tanque Verde Creek at Tucson, 09484500) and from Alamo Wash at Fort Lowell Road in September and May 1994, respectively. Ground-water samples were collected from monitoring wells (D- 13-14)26cbb2 and (D-13-14)26dcb2 in January, May, July, and October 1994. In surface water, calcium was the dominant cation, and bicarbonate was the dominant anion. In ground water, calcium and sodium were the dominant cations and bicarbonate was the dominant anion. Surface water in the area is soft, and ground water is moderately hard to hard. In surface water and ground water, nitrogen was found predominantly as nitrate. Concentrations of manganese in ground-water samples ranged from 60 to 230 micrograms per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant

  12. Hydro engineering Feasibility Study of Surface Runoff Water Harvesting in Al-Ajeej Basin, North West Iraq

    Directory of Open Access Journals (Sweden)

    Thair M. Al-Taiee

    2013-04-01

    Full Text Available The hydro engineering  characteristics of Al-Ajeej basin which was located within south Sinjar plain north west Iraq was analyzed to predict the possibility of surface runoff harvesting during rainfall season in the upstream sites in this basin using watershed modeling system (WMS. The hydrological feasibility of constructing small dam on Al-Ajeej valley with some preliminary design calculations were presented. The best optimum dam site was selected to be located (3.95 km downstream the confluence of Al-Badee branch with Al-Ajeej valley (35° 46¢ 6² Latitude and Longitude 41° 36¢ 11² having a catchment's area of (3043km2. The proposed dam  height was (12.5 meter with a dam length of (1277m, while the normal storage volume of the reservoir is (38.8 million m3. Construction a dams in such sites characterized by water shortage during all  around the year will give an aid in the sustainable development of such area by increasing  the cultivation lands, the agricultural products and also modify the income of the villagers living  in this area leading to prevent them leaving their lands to other places

  13. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].

    Science.gov (United States)

    Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun

    2016-03-15

    To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.

  14. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China.

    Science.gov (United States)

    Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer

    2018-01-01

    As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.

  15. The effect of different surface materials on runoff quality in permeable pavement systems.

    Science.gov (United States)

    Li, Haiyan; Li, Zhifei; Zhang, Xiaoran; Li, Zhuorong; Liu, Dongqing; Li, Tanghu; Zhang, Ziyang

    2017-09-01

    To investigate the effect of different permeable pavement surface materials on the removal of pollutants from urban storm-runoff, six commonly surface materials (porous asphalt, porous concrete, cement brick, ceramic brick, sand base brick, and shale brick) were selected in this study and the research was carried out by column experiments. Except the concentrations of total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (NH 4 -N), nitrate nitrogen (NO 3 -N), total nitrogen (TN), and total phosphorus (TP) in the influent and effluent that were measured, the removal mechanism of pollutants was discussed further. The results indicate that the surface materials influence the removal efficiency of pollutants greatly and have different effects on certain pollutant. Furthermore, the physical interception and adsorption would be the main mechanism for the removal of pollutants from runoff. For example, for all surface materials, the average removal efficiency of TSS is nearly about 90.0% because of physical interception. Due to the amount of iron oxide, the removal efficiency of COD, NO 3 -N, and TN of shale brick was 88.2, 35.1, and 17.5%, respectively. NH 4 -N and TN can be easily removed by porous asphalt due to the high content of organic matter. By lacking of useful adsorption sites, all the surface materials had little effect on the removal of TP from runoff. This research could offer useful guidelines for the better design of permeable pavement system and promote the insight into the removal mechanism of pollutants in permeable pavement system. Graphical abstract Different types of materials for the different types of pollutants in the runoff purification capacity were significantly different, overall, shale brick and porous asphalt Shale bricks and porous asphalt have a better purification effect according to the six kinds of materials.

  16. Influence of Cattle Trails on Runoff Quantity and Quality.

    Science.gov (United States)

    Miller, Jim J; Curtis, Tony; Chanasyk, David S; Willms, Walter D

    2017-03-01

    Cattle trails in grazed pastures close to rivers may adversely affect surface water quality of the adjacent river by directing runoff to it. The objective of this 3-yr study (2013-2015) in southern Alberta, Canada, was to determine if cattle trails significantly increased the risk of runoff and contaminants (sediment, nutrients) compared with the adjacent grazed pasture (control). A portable rainfall simulator was used to generate artificial rainfall (140 mm h) and runoff. The runoff properties measured were time to runoff and initial abstraction (infiltration), total runoff depth and average runoff rates, as well as concentrations and mass loads of sediment, N, and P fractions. Cattle trails significantly ( ≤ 0.10) decreased time to runoff and initial abstraction (26-32%) in the 2 yr measured and increased total runoff depth, runoff coefficients, and average runoff rates (21-51%) in 2 of 3 yr. Concentrations of sediment, N, and P fractions in runoff were not significantly greater for cattle trails than for control areas. However, mass loads of total suspended solids (57-85% increase), NH-N (31-90%), and dissolved reactive P (DRP) (30-92%) were significantly greater because of increased runoff volumes. Overall, runoff quantity and loads of sediment, NH-N, and DRP were greater for cattle trails compared with the adjacent grazed pasture, and hydrologic connection with cattle-access sites on the riverbank suggests that this could adversely affect water quality in the adjacent river. Extrapolation of the study results should be tempered by the specific conditions represented by this rainfall simulation study. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Impact of Soil and Water Conservation Interventions on Watershed Runoff Response in a Tropical Humid Highland of Ethiopia.

    Science.gov (United States)

    Sultan, Dagnenet; Tsunekawa, Atsushi; Haregeweyn, Nigussie; Adgo, Enyew; Tsubo, Mitsuru; Meshesha, Derege Tsegaye; Masunaga, Tsugiyuki; Aklog, Dagnachew; Fenta, Ayele Almaw; Ebabu, Kindiye

    2018-05-01

    Various soil and water conservation measures (SWC) have been widely implemented to reduce surface runoff in degraded and drought-prone watersheds. But little quantitative study has been done on to what extent such measures can reduce watershed-scale runoff, particularly from typical humid tropical highlands of Ethiopia. The overall goal of this study is to analyze the impact of SWC interventions on the runoff response by integrating field measurement with a hydrological CN model which gives a quantitative analysis future thought. Firstly, a paired-watershed approach was employed to quantify the relative difference in runoff response for the Kasiry (treated) and Akusty (untreated) watersheds. Secondly, a calibrated curve number hydrological modeling was applied to investigate the effect of various SWC management scenarios for the Kasiry watershed alone. The paired-watershed approach showed a distinct runoff response between the two watersheds however the effect of SWC measures was not clearly discerned being masked by other factors. On the other hand, the model predicts that, under the current SWC coverage at Kasiry, the seasonal runoff yield is being reduced by 5.2%. However, runoff yields from Kasiry watershed could be decreased by as much as 34% if soil bunds were installed on cultivated land and trenches were installed on grazing and plantation lands. In contrast, implementation of SWC measures on bush land and natural forest would have little effect on reducing runoff. The results on the magnitude of runoff reduction under optimal combinations of SWC measures and land use will support decision-makers in selection and promotion of valid management practices that are suited to particular biophysical niches in the tropical humid highlands of Ethiopia.

  18. Evaluation of Surface Water Harvesting Potential in Aq Emam Watershed System in the Golestan Province

    Directory of Open Access Journals (Sweden)

    s. nazaryan

    2016-02-01

    Full Text Available Introduction : Given its low and sparse precipitation both in spatial and temporal scales, Iran is nestled in an arid and semiarid part of the world. On the other hand, because of population growth, urbanization and the development of agriculture and industry sector is frequently encountered with increasing water demand. The increasing trend of water demand will widen the gap between water supply and demand in the future. This, in turn, necessitates urgent attention to the fundamentals of economic planning and allocation of water resources. Considering the limited resources and the declining water table and salinization of groundwater, especially in semi-arid areas forces us to exploit surface waters. When we evaluate the various methods of collecting rainwater, surface water that is the outcome of rainfall-runoff responses in a basin, is found to be a potential source of water and it can be useful to meet some of our water demand if managed properly. Water shortages in arid areas are critical, serious and persistent. Thus, water harvesting is an effective and economic goal. The most important step in the implementation of rain water harvesting systems is proper site selection that could cause significant savings in time and cost. In this study the potential of surface waters in the Aq Emam catchment in the east Golestan province was evaluated. The purpose of this study is to provide a framework for locating areas with water harvesting potential. Materials and Methods: For spatial evaluation of potential runoff, first, the amount of runoff is calculated using curve number and runoff potential maps were prepared with three classes: namely, the potential for low, medium and high levels. Finally, to identify suitable areas for rain water harvesting, rainfall maps, soil texture, slope and land use were weighted and multiplied based on their importance in order to determine the appropriate areas to collect runoff Results and Discussion : The results

  19. STWIR, a microorganism transport with infiltration and runoff add-on module for the KINEROS2 runoff and erosion model: documentation and user manual

    Science.gov (United States)

    Runoff from manured fields is often considered to be the source of microorganisms in the surface water used for irrigation, recreation, and household needs. Concerns about microbial safety of this water resulted in development of predictive models for estimating the concentrations and total numbers ...

  20. Atmospheric and surface water pollution interpretation in the Gdansk beltway impact range by the use of multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dubiella-Jackowska, Aleksandra; Polkowska, Zaneta; Kudlak, Blazej; Namiesnik, Jacek [Chemical Faculty, Department of Analytical Chemistry, Gdansk University of Technology, Gdansk (Poland); Astel, Aleksander [Environmental Chemistry Research Unit, Institute of Biology and Environmental Protection, Pomeranian Academy, Slupsk (Poland); Staszek, Wojciech [Faculty of Physical Geography and Environmental Management, University of Gdansk, Gdansk (Poland)

    2010-09-15

    The present study deals with the application of the hierarchical cluster analysis and non-parametric tests in order to interpret the Gdansk Beltway impact range. The data set represents concentration values for major inorganic ions (Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, F{sup -}, Cl{sup -}, NO{sub 3}{sup -}, and SO{sub 4}{sup 2-}) as well as electrolytic conductivity and pH measured in various water samples [precipitation, throughfall water, road runoff, and surface water (drainage ditches, surface water reservoirs, and spring water)] collected in the vicinity of the beltway. Several similarity groups were discovered both in the objects and in the variables modes according to the water sample. In the majority of cases clear anthropogenic (fertilizers usage and transport, road salting in winter) and semi-natural (sea salt aerosols, erosion of construction materials) impacts were discovered. Spatial variation was discovered for road runoff samples and samples collected from surface water reservoirs and springs. Surprisingly no clear seasonal variability was discovered for precipitation chemistry, while some evidences for existing of summer and winter specific chemical profile was discovered for road runoff samples. In general, limited range of the Gdansk Beltway impact was proven. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Runoff generation in a Mediterranean semi-arid landscape: Thresholds, scale, rainfall and catchment characteristics

    Science.gov (United States)

    Ries, Fabian; Schmidt, Sebastian; Sauter, Martin; Lange, Jens

    2016-04-01

    Surface runoff acts as an integrated response of catchment characteristics and hydrological processes. In the Eastern Mediterranean region, a lack of runoff data has hindered a better understanding of runoff generation processes on the catchment scale, despite the importance of surface runoff as a water resource or flood hazard. Our main aim was to identify and explain differences in catchment runoff reactions across a variety of scales. Over a period of five years, we observed runoff in ephemeral streams of seven watersheds with sizes between 3 and 129 km2. Landuse and surface cover types (share of vegetation, bare soil and rock outcrops) were derived from aerial images by objective classification techniques. Using data from a dense rainfall network we analysed the effects of scale, catchment properties and aridity on runoff generation. Thereby we extracted rainfall and corresponding runoff events from our time-series to calculate event based rainfall characteristics and catchment runoff coefficients. Soil moisture observations provided additional information on antecedent moisture conditions, infiltration characteristics and the evolution of saturated areas. In contrast to the prevailing opinion that the proportion of Hortonian overland flow increases with aridity, we found that in our area the largest share (> 95 %) of runoff is generated by saturation excess overland flow in response to long lasting, rainfall events of high amount. This was supported by a strong correlation between event runoff and precipitation totals. Similar rainfall thresholds (50 mm) for runoff generation were observed in all investigated catchments. No scale effects on runoff coefficients were found; instead we identified up to three-fold runoff coefficients in catchments with larger extension of arid areas, higher percentage of rock outcrops and urbanization. Comparing two headwater catchments with noticeable differences in extent of olive orchards, no difference in runoff generation was

  2. Detecting the long-term impacts from climate variability and increasing water consumption on runoff in the Krishna river basin (India

    Directory of Open Access Journals (Sweden)

    L. M. Bouwer

    2006-01-01

    Full Text Available Variations in climate, land-use and water consumption can have profound effects on river runoff. There is an increasing demand to study these factors at the regional to river basin-scale since these effects will particularly affect water resources management at this level. This paper presents a method that can help to differentiate between the effects of man-made hydrological developments and climate variability (including both natural variability and anthropogenic climate change at the basin scale. We show and explain the relation between climate, water consumption and changes in runoff for the Krishna river basin in central India. River runoff variability due to observed climate variability and increased water consumption for irrigation and hydropower is simulated for the last 100 years (1901–2000 using the STREAM water balance model. Annual runoff under climate variability is shown to vary only by about 14–34 millimetres (6–15%. It appears that reservoir construction after 1960 and increasing water consumption has caused a persistent decrease in annual river runoff of up to approximately 123 mm (61%. Variation in runoff under climate variability only would have decreased over the period under study, but we estimate that increasing water consumption has caused runoff variability that is three times higher.

  3. A regional coupled surface water/groundwater model of the Okavango Delta, Botswana

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Gumbricht, T.; Kinzelbach, W.

    2006-01-01

    In the endorheic Okavango River system in southern Africa a balance between human and environmental water demands has to be achieved. The runoff generated in the humid tropical highlands of Angola flows through arid Namibia and Botswana before forming a large inland delta and eventually being...... of a surface water flow component based on the diffusive wave approximation of the Saint- Venant equations, a groundwater component, and a relatively simple vadose zone component for calculating the net water exchange between land and atmosphere. The numerical scheme is based on the groundwater simulation......, spectacular wildlife, and a first- class tourism infrastructure, depend on the combined effect of the highly seasonal runoff in the Okavango River and variable local climate. The annual fluctuations in the inflow are transformed into vast areas of seasonally inundated floodplains. Water abstraction...

  4. Frequency analysis of urban runoff quality in an urbanizing catchment of Shenzhen, China

    Science.gov (United States)

    Qin, Huapeng; Tan, Xiaolong; Fu, Guangtao; Zhang, Yingying; Huang, Yuefei

    2013-07-01

    This paper investigates the frequency distribution of urban runoff quality indicators using a long-term continuous simulation approach and evaluates the impacts of proposed runoff control schemes on runoff quality in an urbanizing catchment in Shenzhen, China. Four different indicators are considered to provide a comprehensive assessment of the potential impacts: total runoff depth, event pollutant load, Event Mean Concentration, and peak concentration during a rainfall event. The results obtained indicate that urban runoff quantity and quality in the catchment have significant variations in rainfall events and a very high rate of non-compliance with surface water quality regulations. Three runoff control schemes with the capacity to intercept an initial runoff depth of 5 mm, 10 mm, and 15 mm are evaluated, respectively, and diminishing marginal benefits are found with increasing interception levels in terms of water quality improvement. The effects of seasonal variation in rainfall events are investigated to provide a better understanding of the performance of the runoff control schemes. The pre-flood season has higher risk of poor water quality than other seasons after runoff control. This study demonstrates that frequency analysis of urban runoff quantity and quality provides a probabilistic evaluation of pollution control measures, and thus helps frame a risk-based decision making for urban runoff quality management in an urbanizing catchment.

  5. Surface-water investigations at Barrow, Alaska

    Science.gov (United States)

    Jones, Stanley H.

    1972-01-01

    The U.S. Public Health Service is currently developing plans for a long-term water supply and sewage treatment system for the village of Barrow, Alaska. To assist in planning, the U.S. Geological Survey was requested to initiate a cooperative streamflow data-collection program with the U.S. Public Health Service in June 1972 to determine the availability of surface water and the areal distribution of runoff in the Barrow area. This basic-data report summarizes the streamflow data collected from June 1 through July 10, 1972, at three gaging stations in the Barrow area (fig. 1) and discusses the future data-collection program.

  6. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    Science.gov (United States)

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved

  7. Runoff and sediment yield model for predicting nuclide transport in watersheds using BIOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Wenzel, W.J.

    1990-09-01

    The environmental risk simulation model BIOTRAN was interfaced with a series of new subroutines (RUNOFF, GEOFLX, EROSON, and AQUIFER) to predict the movement of nuclides, elements, and pertinent chemical compounds in association with sediments through lateral and channel flow of runoff water. In addition, the movement of water into and out of segmented portions of runoff channels was modeled to simulate the dynamics of moisture flow through specified aquifers within the watershed. The BIOTRAN soil water flux subroutine, WATFLX, was modified to interface the relationships found in the SPUR model for runoff and sediment transport into channels with the particle sorting relationships to predict radionuclide enrichment and movement in watersheds. The new subroutines were applied specifically to Mortandad Canyon within Los Alamos National Laboratory by simultaneous simulation of eight surface vegetational subdivisions and associated channel and aquifer segments of this watershed. This report focuses on descriptions of the construction and rationale for the new subroutines and on discussing both input characteristics and output relationships to known runoff events from Mortandad Canyon. Limitations of the simplified input on model behavior are also discussed. Uranium-238 was selected as the nuclide for demonstration of the model because it could be assumed to be homogeneously distributed over the watershed surface. 22 refs., 18 figs., 9 tabs.

  8. Comparative Analysis of Water Quality between the Runoff Entrance and Middle of Recycling Irrigation Reservoirs

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2015-07-01

    Full Text Available Recycling irrigation reservoirs (RIRs are an emerging aquatic ecosystem of critical importance, for conserving and protecting increasingly scarce water resources. Here, we compare water quality between runoff entrance and middle of four RIRs in nurseries in Virginia (VA and Maryland (MD. Surface water temperature (T and oxidation-reduction potential (ORP were lower in the middle than at the entrance, while the trend was opposite for dissolved oxygen (DO, pH and chlorophyll a (Chla. The magnitude of these differences between the entrance and middle decreased with increasing depth. These differences were magnified by water stratification from April to October. Minimum differences were observed for electrical conductivity (EC, total dissolved solids (TDS and turbidity (TUR. Cluster analyses were performed on water quality difference data to evaluate whether the differences vary with respect to reservoirs. Two clusters were formed with one consisting primarily of VA reservoirs, and the other consisting mostly of MD reservoirs in both years. Water quality in the middle and at the entrance of RIRs was expected to vary greatly because of runoff inflow. The two-point water quality differences observed here, although statistically significant, are not large enough to cause significant impact on crop health and productivity for most water quality parameters except pH. Additional analysis of outlet data shows that the range and magnitude of water quality difference between the middle and the outlet are comparable to those between the middle and entrance of RIRs. These results indicate that monitoring at a single point is sufficient to obtain reliable water quality estimates for most water quality parameters in RIRs except pH. This is important when considering the cost of labor and equipment necessary for documenting water quality in agricultural production systems. However, additional pH measurements are still necessary to make practical water quality

  9. [Hydrology and water quality of rainfall-runoff in combined sewerage system along Suzhou Creek in central Shanghai].

    Science.gov (United States)

    Cheng, Jiang; Yang, Kai; Huang, Xiao-Fang; Lü, Yong-Peng

    2009-07-15

    In order to obtain the processes of hydrology and water quality of urban combined sewerage system (CSS) in highly urbanized region, the precipitation, discharge and pollutant concentration of four different intensity rainfall (light rain, moderate rain, heavy rain and storm) were measured from Jul. to Sep. 2007 in the Chendulu CSS along Suzhou Creek in Shanghai. The results show that the shapes of runoff graph are similar to rainfall graph, with a weaker fluctuation range and a 15-25 min delay between rainfall and runoff graph. Runoff coefficients of the four different rainfall are 0.33, 0.62, 0.67 and 0.73, respectively. The 30/30 first flush phenomenon is found in Chendulu CSS. The peak of pollutant concentration graph lags rainfall peak about 30-40 min. The pH and event mean concentration (EMC) of Cu, Zn, Cr, Cd, Pb and Ni totally measure up to environmental quality standards V for surface water of China besides COD, BOD5, NH4(+) -N and TP, and the EMC of COD, BOD5, NH4(+) -N and TP are 225.0-544.1, 31.5-98.9, 8.9-44.2 and 1.98-3.52 mg x L(-1), respectively. The rainfall-runoff pollutant concentration in Chendulu CSS is close to those of other foreign cites. At the confidence level of p < 0.01, good relationships exist between SS and COD, BOD5, NH4(+) -N and TP, respectively, and the average proportion of particulate organic pollutant and nutrient is 70.21%.

  10. Contribution of hydrological data to the understanding of the spatio-temporal dynamics of F-specific RNA bacteriophages in river water during rainfall-runoff events.

    Science.gov (United States)

    Fauvel, Blandine; Cauchie, Henry-Michel; Gantzer, Christophe; Ogorzaly, Leslie

    2016-05-01

    Heavy rainfall events were previously reported to bring large amounts of microorganisms in surface water, including viruses. However, little information is available on the origin and transport of viral particles in water during such rain events. In this study, an integrative approach combining microbiological and hydrological measurements was investigated to appreciate the dynamics and origins of F-specific RNA bacteriophage fluxes during two distinct rainfall-runoff events. A high frequency sampling (automatic sampler) was set up to monitor the F-specific RNA bacteriophages fluxes at a fine temporal scale during the whole course of the rainfall-runoff events. A total of 276 rainfall-runoff samples were collected and analysed using both infectivity and RT-qPCR assays. The results highlight an increase of 2.5 log10 and 1.8 log10 of infectious F-specific RNA bacteriophage fluxes in parallel of an increase of the water flow levels for both events. Faecal pollution was characterised as being mainly from anthropic origin with a significant flux of phage particles belonging to the genogroup II. At the temporal scale, two successive distinct waves of phage pollution were established and identified through the hydrological measurements. The first arrival of phages in the water column was likely to be linked to the resuspension of riverbed sediments that was responsible for a high input of genogroup II. Surface runoff contributed further to the second input of phages, and more particularly of genogroup I. In addition, an important contribution of infectious phage particles has been highlighted. These findings imply the existence of a close relationship between the risk for human health and the viral contamination of flood water. Copyright © 2016 Luxembourg institute of Science and Technology. Published by Elsevier Ltd.. All rights reserved.

  11. Dairy heifer manure management, dietary phosphorus, and soil test P effects on runoff phosphorus.

    Science.gov (United States)

    Jokela, William E; Coblentz, Wayne K; Hoffman, Patrick C

    2012-01-01

    Manure application to cropland can contribute to runoff losses of P and eutrophication of surface waters. We conducted a series of three rainfall simulation experiments to assess the effects of dairy heifer dietary P, manure application method, application rate, and soil test P on runoff P losses from two successive simulated rainfall events. Bedded manure (18-21% solids) from dairy heifers fed diets with or without supplemental P was applied on a silt loam soil packed into 1- by 0.2-m sheet metal pans. Manure was either surface-applied or incorporated (Experiment 1) or surface-applied at two rates (Experiment 2) to supply 26 to 63 kg P ha. Experiment 3 evaluated runoff P from four similar nonmanured soils with average Bray P1-extractable P levels of 11, 29, 51, and 75 mg kg. We measured runoff quantity, total P (TP), dissolved reactive P (DRP), and total and volatile solids in runoff collected for 30 min after runoff initiation from two simulated rain events (70 mm h) 3 or 4 d apart. Manure incorporation reduced TP and DRP concentrations and load by 85 to 90% compared with surface application. Doubling the manure rate increased runoff DRP and TP concentrations an average of 36%. In the same experiment, P diet supplementation increased water-extractable P in manure by 100% and increased runoff DRP concentration threefold. Concentrations of solids, TP, and DRP in runoff from Rain 2 were 25 to 75% lower than from Rain 1 in Experiments 1 and 2. Runoff DRP from nonmanured soils increased quadratically with increasing soil test P. These results show that large reductions in P runoff losses can be achieved by incorporation of manure, avoiding unnecessary diet P supplementation, limiting manure application rate, and managing soils to prevent excessive soil test P levels. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Development of a Small-Scale, High Efficiency Bioremediation System for Removing Nitrate from Nursery Runoff Water

    Science.gov (United States)

    Nitrate concentrations in runoff water from the nursery ranged from 70 to 253 mg NO3-N/L. An estimated 62 to 67% of the nitrate applied during fertigation events left the production site in runoff water. Irrigation losses during these events accounted for 36 to 49% of the amount applied, with flow r...

  13. Initial conditions of urban permeable surfaces in rainfall-runoff models using Horton’s infiltration

    DEFF Research Database (Denmark)

    Davidsen, Steffen; Löwe, Roland; Høegh Ravn, Nanna

    2017-01-01

    Infiltration is a key process controlling runoff, but varies depending on antecedent conditions. This study provides estimates on initial conditions for urban permeable surfaces via continuous simulation of the infiltration capacity using historical rain data. An analysis of historical rainfall...... records show that accumulated rainfall prior to large rain events does not depend on the return period of the event. Using an infiltration-runoff model we found that for a typical large rain storm, antecedent conditions in general lead to reduced infiltration capacity both for sandy and clayey soils...... and that there is substantial runoff for return periods above 1–10 years....

  14. [Influences of municipal sludge applied in slope vegetation restoration on surface water environment].

    Science.gov (United States)

    Zhen, Chen Guang; Leng, Ping Sheng; Liu, Li Juan; Dou, De Quan; Hu, Zeng Hui

    2018-04-01

    The application of municipal sludge in ecological restoration has a good prospect for avoiding the food chain of grain crops, but its influences on surface water environmental are unclear. The municipal sludge and construction waste were mixed with 1:1 (V/V) as growth media, which were covered over simulation coal gangue slopes. Eight native woody species were sowed in the mixed media. The plant growth and coverage, as well as conductivity, pH, the concentrations of nitrogen (N), phosphorus (P), potassium (K), heavy metal and polycyclic aromatic hydrocarbon (PAHs) of surface and underground runoff of the slopes in the growing season were investigated. The results showed that plants grew well on the mixed media. The average plant coverage reached 60%. The pH of the surface and underground runoff changed little and near to neutral. The conductivity, N, P, K, heavy metal and PAHs contents of the slope runoff were high. The N and P contents in the growing season were above the National Standards of Surface Water Quality (GB 3838-2002) V. The contents of heavy metal were the highest in July. The contents of As lied at the GB IV-V, whereas other heavy metal contents up to GB II-IV. With strong rain leaching in the summer as well as the absorption, degrading and fix effect of plant-soil system on chemical substrates, the conductivity and N, P, K, heavy metal and PAHs contents of the slope runoff significantly decreased. The contents of heavy metal in late stage of growing season arrived at GB 2-3. The contents of PAHs reduced by about 50%. The direct application of municipal sludge in ecological restoration of coal gangue slope were beneficial to plant growth. The plant-soil system might gradually decrease the harmful substance concentrations in the growth media. The negative influences on surface water environment mainly came from eutrophication of N and P. Generally, the environmental safety is manageable.

  15. Impacts of water quality variation and rainfall runoff on Jinpen Reservoir, in Northwest China

    Directory of Open Access Journals (Sweden)

    Zi-zhen Zhou

    2015-10-01

    Full Text Available The seasonal variation characteristics of the water quality of the Jinpen Reservoir and the impacts of rainfall runoff on the reservoir were investigated. Water quality monitoring results indicated that, during the stable stratification period, the maximum concentrations of total nitrogen, total phosphorus, ammonia nitrogen, total organic carbon, iron ion, and manganese ion in the water at the reservoir bottom on September 6 reached 2.5 mg/L, 0.12 mg/L, 0.58 mg/L, 3.2 mg/L, 0.97 mg/L, and 0.32 mg/L, respectively. Only heavy storm runoff can affect the main reservoir and cause the water quality to seriously deteriorate. During heavy storms, the stratification of the reservoir was destroyed, and the reservoir water quality consequently deteriorated due to the high-turbidity particulate phosphorus and organic matter in runoff. The turbidity and concentrations of total phosphorus and total organic carbon in the main reservoir increased to 265 NTU, 0.224 mg/L, and 3.9 mg/L, respectively. Potential methods of dealing with the water problems in the Jinpen Reservoir are proposed. Both in stratification and in storm periods, the use of measures such as adjusting intake height, storing clean water, and releasing turbid flow can be helpful to safeguarding the quality of water supplied to the water treatment plants.

  16. Quantifying runoff water quality characteristics from nurseries and avocado groves subjected to altered irrigation and fertilizer regimes

    Science.gov (United States)

    Samant, S. A.; Beighley, R. E.

    2007-12-01

    surface water quality, aquatic habitats, and overall stream health. Preliminary results for runoff water quality (N and P) and plant growth characteristics from two months of monitoring are presented.

  17. Surface coal mine land reclamation using a dry flue gas desulfurization product: Short-term and long-term water responses.

    Science.gov (United States)

    Chen, Liming; Stehouwer, Richard; Tong, Xiaogang; Kost, Dave; Bigham, Jerry M; Dick, Warren A

    2015-09-01

    Abandoned coal-mined lands are a worldwide concern due to their potential negative environmental impacts, including erosion and development of acid mine drainage. A field study investigated the use of a dry flue gas desulfurization product for reclamation of abandoned coal mined land in USA. Treatments included flue gas desulfurization product at a rate of 280 Mg ha(-1) (FGD), FGD at the same rate plus 112 Mg ha(-1) yard waste compost (FGD/C), and conventional reclamation that included 20 cm of re-soil material plus 157 Mg ha(-1) of agricultural limestone (SOIL). A grass-legume sward was planted after treatment applications. Chemical properties of surface runoff and tile water (collected from a depth of 1.2m below the ground surface) were measured over both short-term (1-4 yr) and long-term (14-20 yr) periods following reclamation. The pH of surface runoff water was increased from approximately 3, and then sustained at 7 or higher by all treatments for up to 20 yr, and the pH of tile flow water was also increased and sustained above 5 for 20 yr. Compared with SOIL, concentrations of Ca, S and B in surface runoff and tile flow water were generally increased by the treatments with FGD product in both short- and long-term measurements and concentrations of the trace elements were generally not statistically increased in surface runoff and tile flow water over the 20-yr period. However, concentrations of As, Ba, Cr and Hg were occasionally elevated. These results suggest the use of FGD product for remediating acidic surface coal mined sites can provide effective, long-term reclamation. Copyright © 2015. Published by Elsevier Ltd.

  18. Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters.

    Science.gov (United States)

    Stehle, Sebastian; Dabrowski, James Michael; Bangert, Uli; Schulz, Ralf

    2016-03-01

    Regulatory risk assessment considers vegetated buffer strips as effective risk mitigation measures for the reduction of runoff-related pesticide exposure of surface waters. However, apart from buffer strip widths, further characteristics such as vegetation density or the presence of erosion rills are generally neglected in the determination of buffer strip mitigation efficacies. This study conducted a field survey of fruit orchards (average slope 3.1-12.2%) of the Lourens River catchment, South Africa, which specifically focused on the characteristics and attributes of buffer strips separating orchard areas from tributary streams. In addition, in-stream and erosion rill water samples were collected during three runoff events and GIS-based modeling was employed to predict losses of pesticides associated with runoff. The results show that erosion rills are common in buffer strips (on average 13 to 24 m wide) of the tributaries (up to 6.5 erosion rills per km flow length) and that erosion rills represent concentrated entry pathways of pesticide runoff into the tributaries during rainfall events. Exposure modeling shows that measured pesticide surface water concentrations correlated significantly (R(2)=0.626; pregulatory risk assessment procedures conducted for pesticide authorization. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Best management practices to reduce and prevent water pollution with herbicides from run-off and erosion

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2014-02-01

    Full Text Available The natural phenomenon of run-off and erosion lead to unpreventable pesticide water pollution in case of extreme weather conditions. In this relationship the use of herbicides involves a higher risk than other pesticides because of the specific terms of application. Directive 2009/128/EC for the sustainable use of pesticides aspires to enhanced water protection. German national action plan contains quantitative objectives which require strong reduction of water pollution by run-off and erosion of pesticides and accordingly herbicides. The European TOPPS prowadis project developed a consolidated and basic diagnosis concept for the first time to determine the field specific run-off risk. Compatible mitigation measures were linked to specific risk scenarios. Risk diagnosis and suitable mitigation measures determine best management practices for the prevention of run-off and erosion. Different new diagnosis methods and the implementation are presented. Further documents and information are available on the web [http://www.topps-life.org/].

  20. Simulation of rainfall-runoff response in mined and unmined watersheds in coal areas of West Virginia

    Science.gov (United States)

    Puente, Celso; Atkins, John T.

    1989-01-01

    Meteorologic and hydrologic data from five small watersheds in the coal areas of West Virginia were used to calibrate and test the U.S. Geological Survey Precipitation-Runoff Modeling System for simulating streamflow under various climatic and land-use conditions. Three of the basins--Horsecamp Run, Gilmer Run, and Collison Creek--are primarily forested and relatively undisturbed. The remaining basins--Drawdy Creek and Brier Creek-are extensively mined, both surface and underground above stream drainage level. Low-flow measurements at numerous synoptic sites in the mined basins indicate that coal mining has substantially altered the hydrologic system of each basin. The effects of mining on streamflow that were identified are (1) reduced base flow in stream segments underlain by underground mines, (2) increased base flow in streams that are downdip and stratigraphically below the elevation of the mined coal beds, and (3) interbasin transfer of ground water through underground mines. These changes probably reflect increased permeability of surface rocks caused by subsidence fractures associated with collapsed underground mines in the basin. Such fractures would increase downward percolation of precipitation, surface and subsurface flow, and ground-water flow to deeper rocks or to underground mine workings. Model simulations of the water budgets for the unmined basins during the 1972-73 water years indicate that total annual runoff averaged 60 percent of average annual precipitation; annual evapotranspiration losses averaged 40 percent of average annual precipitation. Of the total annual runoff, approximately 91 percent was surface and subsurface runoff and 9 percent was groundwater discharge. Changes in storage in the soil zone and in the subsurface and ground-water reservoirs in the basins were negligible. In contrast, water-budget simulations for the mined basins indicate significant differences in annual recharge and in total annual runoff. Model simulations of

  1. Case study: design, operation, maintenance and water quality management of sustainable storm water ponds for roof runoff.

    Science.gov (United States)

    Scholz, Miklas

    2004-12-01

    The purpose of this case study was to optimise design, operation and maintenance guidelines, and to assess the water treatment potential of a storm water pond system after 15 months of operation. The system was based on a combined silt trap, attenuation pond and vegetated infiltration basin. This combination was used as the basis for construction of a roof water runoff system from a single domestic property. United Kingdom Building Research Establishment and Construction Industry Research and Information Association, and German Association for Water, Wastewater and Waste design guidelines were tested. These design guidelines failed because they did not consider local conditions. The infiltration function for the infiltration basin was logarithmic. Algal control techniques were successfully applied, and treatment of rainwater runoff from roofs was found to be largely unnecessary for recycling (e.g., watering plants). However, seasonal and diurnal variations of biochemical oxygen demand, dissolved oxygen and pH were recorded.

  2. Documentation of a heat and water transfer model for seasonally frozen soils with application to a precipitation-runoff model

    Science.gov (United States)

    Emerson, Douglas G.

    1991-01-01

    A model that simulates heat and water transfer in soils during freezing and thawing periods was developed and incorporated into the U.S. Geological Survey's Precipitation-Runoff Modeling System. The transfer of heat 1s based on an equation developed from Fourier's equation for heat flux. Field capacity and infiltration rate can vary throughout the freezing and thawing period, depending on soil conditions and rate and timing of snowmelt. The transfer of water within the soil profile is based on the concept of capillary forces. The model can be used to determine the effects of seasonally frozen soils on ground-water recharge and surface-water runoff. Data collected for two winters, 1985-86 and 1986-87, on three runoff plots were used to calibrate and verify the model. The winter of 1985-86 was colder than normal and snow cover was continuous throughout the winter. The winter of 1986-87 was wanner than normal and snow accumulated for only short periods of several days.Runoff, snowmelt, and frost depths were used as the criteria for determining the degree of agreement between simulated and measured data. The model was calibrated using the 1985-86 data for plot 2. The calibration simulation agreed closely with the measured data. The verification simulations for plots 1 and 3 using the 1985-86 data and for plots 1 and 2 using the 1986-87 data agreed closely with the measured data. The verification simulation for plot 3 using the 1986-87 data did not agree closely. The recalibratlon simulations for plots 1 and 3 using the 1985-86 data Indicated small improvement because the verification simulations for plots 1 and 3 already agreed closely with the measured data.

  3. Field-testing competing runoff source and hydrochemical conceptualisations

    Science.gov (United States)

    Western, A. W.; Saffarpour, S.; Adams, R.; Costelloe, J. F.; McDonnell, J.

    2014-12-01

    There are competing conceptualisations of heterogeneity in catchment systems. It is often convenient to divide catchments into zones, for example the soil profile, groundwater aquifers (saturated zone), riparian zones, etc. We also often divide flow sources into distinct categories such as surface runoff, interflow and baseflow, implying a few distinct stores of water. In tracer hydrology we typically assume water from such zones has distinct and invariant chemistry that is used to infer the runoff source mixture through conservative mixing model techniques such as End-Member Mixing Analysis (EMMA). An alternative conceptualisation is that catchments consist of a large number of stores with varying residence times. In this case individual stores contribute a variable proportion of flow and may have a temporally varying composition due to processes such as evapo-concentration. Hence they have a variable influence on the hydrochemistry of runoff. In this presentation, examples from two field studies in southern Australia will be presented that examine the relationships between hydrologic and hydrochemical conceptualisations and the relative variation within and between different hydrologic zones. The implications for water quality behaviour will be examined and the additional behavioural complexities associated with interactions between runoff pathways for non-conservative chemical species will be discussed.

  4. A heat and water transfer model for seasonally frozen soils with application to a precipitation-runoff model

    Science.gov (United States)

    Emerson, Douglas G.

    1994-01-01

    A model that simulates heat and water transfer in soils during freezing and thawing periods was developed and incorporated into the U.S. Geological Survey's Precipitation-Runoff Modeling System. The model's transfer of heat is based on an equation developed from Fourier's equation for heat flux. The model's transfer of water within the soil profile is based on the concept of capillary forces. Field capacity and infiltration rate can vary throughout the freezing and thawing period, depending on soil conditions and rate and timing of snowmelt. The model can be used to determine the effects of seasonally frozen soils on ground-water recharge and surface-water runoff. Data collected for two winters, 1985-86 and 1986-87, on three runoff plots were used to calibrate and verify the model. The winter of 1985-86 was colder than normal, and snow cover was continuous throughout the winter. The winter of 1986-87 was warmer than normal, and snow accumulated for only short periods of several days. as the criteria for determining the degree of agreement between simulated and measured data. The model was calibrated using the 1985-86 data for plot 2. The calibration simulation agreed closely with the measured data. The verification simulations for plots 1 and 3 using the 1985-86 data and for plots 1 and 2 using the 1986-87 data agreed closely with the measured data. The verification simulation for plot 3 using the 1986-87 data did not agree closely. The recalibration simulations for plots 1 and 3 using the 1985-86 data indicated little improvement because the verification simulations for plots 1 and 3 already agreed closely with the measured data.

  5. Estimation of runoff mitigation by morphologically different cover crop root systems

    Science.gov (United States)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  6. Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event

    International Nuclear Information System (INIS)

    Smith, D.R.; Owens, P.R.; Leytem, A.B.; Warnemuende, E.A.

    2007-01-01

    Nutrient losses to surface waters following fertilization contribute to eutrophication. This study was conducted to compare the impacts of fertilization with inorganic fertilizer, swine (Sus scrofa domesticus) manure or poultry (Gallus domesticus) litter on runoff water quality, and how the duration between application and the first runoff event affects resulting water quality. Fertilizers were applied at 35 kg P ha -1 , and the duration between application and the first runoff event varied between 1 and 29 days. Swine manure was the greatest risk to water quality 1 day after fertilization due to elevated phosphorus (8.4 mg P L -1 ) and ammonium (10.3 mg NH 4 -N L -1 ) concentrations; however, this risk decreased rapidly. Phosphorus concentrations were 2.6 mg L -1 29 days after fertilization with inorganic fertilizer. This research demonstrates that manures might be more environmentally sustainable than inorganic fertilizers, provided runoff events do not occur soon after application. - Fertilization with manures results in lower nutrient runoff than inorganic fertilizers, especially if at least one week passes between fertilization and runoff

  7. "Efficiency Space" - A Framework for Evaluating Joint Evaporation and Runoff Behavior

    Science.gov (United States)

    Koster, Randal

    2014-01-01

    At the land surface, higher soil moisture levels generally lead to both increased evaporation for a given amount of incoming radiation (increased evaporation efficiency) and increased runoff for a given amount of precipitation (increased runoff efficiency). Evaporation efficiency and runoff efficiency can thus be said to vary with each other, motivating the development of a unique hydroclimatic analysis framework. Using a simple water balance model fitted, in different experiments, with a wide variety of functional forms for evaporation and runoff efficiency, we transform net radiation and precipitation fields into fields of streamflow that can be directly evaluated against observations. The optimal combination of the functional forms the combination that produces the most skillful stream-flow simulations provides an indication for how evaporation and runoff efficiencies vary with each other in nature, a relationship that can be said to define the overall character of land surface hydrological processes, at least to first order. The inferred optimal relationship is represented herein as a curve in efficiency space and should be valuable for the evaluation and development of GCM-based land surface models, which by this measure are often found to be suboptimal.

  8. Impact of animal waste application on runoff water quality in field experimental plots.

    Science.gov (United States)

    Hill, Dagne D; Owens, William E; Tchoounwou, Paul B

    2005-08-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers

  9. Inorganic constituents in surface runoff from urbanised areas in winter: the case study of the city of Brest, Belarus

    Directory of Open Access Journals (Sweden)

    Ina Bulskaya

    2014-03-01

    Full Text Available The aim of this paper was to study the inorganic constituents of snow and snowmelt surface runoff in a case study of the city of Brest and to indicate components that could pose a threat to the environment. Samples of snow and snowmelt runoff were analysed for the following parameters: total suspended solids, pH, the contents of nitrate, phosphate and ammonium ions, and of heavy metals. The concentrations of most of these pollutants were higher in the snowmelt runoff than in snow. The concentrations of pollutants in the snowmelt surface runoff exceeded the levels established by national regulations (maximum permissible concentrations.

  10. A protocol for conducting rainfall simulation to study soil runoff.

    Science.gov (United States)

    Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B

    2014-04-03

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.

  11. A characterization of Greenland Ice Sheet surface melt and runoff in contemporary reanalyses and a regional climate model

    Directory of Open Access Journals (Sweden)

    Richard eCullather

    2016-02-01

    Full Text Available For the Greenland Ice Sheet (GrIS, large-scale melt area has increased in recent years and is detectable via remote sensing, but its relation to runoff is not known. Historical, modeled melt area and runoff from Modern-Era Retrospective Analysis for Research and Applications (MERRA-Replay, the Interim Re-Analysis of the European Centre for Medium Range Weather Forecasts (ERA-I, the Climate Forecast System Reanalysis (CFSR, the Modèle Atmosphérique Régional (MAR, and the Arctic System Reanalysis (ASR are examined. These sources compare favorably with satellite-derived estimates of surface melt area for the period 2000-2012. Spatially, the models markedly disagree on the number of melt days in the interior of the southern part of the ice sheet, and on the extent of persistent melt areas in the northeastern GrIS. Temporally, the models agree on the mean seasonality of daily surface melt and on the timing of large-scale melt events in 2012. In contrast, the models disagree on the amount, seasonality, spatial distribution, and temporal variability of runoff. As compared to global reanalyses, time series from MAR indicate a lower correlation between runoff and melt area (r2 = 0.805. Runoff in MAR is much larger in the second half of the melt season for all drainage basins, while the ASR indicates larger runoff in the first half of the year. This difference in seasonality for the MAR and to an extent for the ASR provide a hysteresis in the relation between runoff and melt area, which is not found in the other models. The comparison points to a need for reliable observations of surface runoff.

  12. Estrogenic activity, estrogens, and calcium in runoff post-layer litter application from rainfall simulated events

    Science.gov (United States)

    Estrogens in runoff from fields fertilized with animal wastes have been implicated as endocrine disruptors of fish in recipient surface waters. The goal of this study was to measure estrogenic activity in runoff post-application of animal waste with the greatest potential for estrogenic activity - ...

  13. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p 0.46, p 0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  14. [Research of the Stormwater Runoff and Pollution Characteristics in Rural Area of Yuhang District, Hangzhou].

    Science.gov (United States)

    Duan, Sheng-hui; Zhao, Yu; Shan, Bao-qing; Tang, Wen-zhong; Zhang, Wen-qiang; Zhang, Shu-zhen; Lang, Chao

    2015-10-01

    In order to investigate the pollution characteristics of stormwater runoff in the southern developed rural region, the runoff samples were collected from four different underlying surfaces during three storm events in Caoqiao and Pujia Tou, which are two typical villages and are located in Yuhang District of Hangzhou. The content of nutrition (nitrogen and phosphorus) and heavy metals (Mn, Cu, Zn, Ni, Cr, Cd, As, Pb) in the simples were analyzed, and the difference of EMC ( event mean concentration) and pollution load of the contaminants in the runoff on different underlying surfaces were compared. The results showed that the EMC of TSS, COD, NH4(+)-N, TP and TN were 16.19, 21.01, 0.74, 1.39 and 2.39 mg x L(-1) in the Caoqiao, respectively; as to Pujia Tou, they were 3.10, 15.69, 0.90, 0.78 and 3.58 mg x L(-1), respectively. The content of heavy metals was all lower than the national surface water quality of two type water in the runoff. Compared with the quality standards for surface water, the EMC of TP was 9 times and 3. 5 times higher and TN was 1. 8 times and 1. 2 times higher in two areas. Besides, the pollution loads of TSS and COD were the highest in farmland.

  15. Design and Season Influence Nitrogen Dynamics in Two Surface Flow Constructed Wetlands Treating Nursery Irrigation Runoff

    Directory of Open Access Journals (Sweden)

    Sarah A. White

    2017-12-01

    Full Text Available Constructed wetlands (CWs are used to remediate runoff from a variety of agricultural, industrial, and urban sources. CW remediation performance is often evaluated at the laboratory scale over durations less than one year. The purpose of this study was to characterize the effect of CW design (cell depth and residence time on nitrogen (N speciation and fate across season and years in two free water surface wetlands receiving runoff from irrigated plant production areas at an ornamental plant nursery. Water quality (mg·L−1 of nitrate, nitrite, and ammonium, dissolved oxygen and oxidation reduction potential was monitored at five sites within each of two CWs each month over four years. Nitrate-N was the dominant form of ionic N present in both CWs. Within CW1, a deep cell to shallow cell design, nitrate comprised 86% of ionic N in effluent. Within CW2, designed with three sequential deep cells, nitrate comprised only 66% of total N and ammonium comprised 27% of total N in CW2 effluent. Differences in ionic N removal efficacies and shifts in N speciation in CW1 and CW2 were controlled by constructed wetland design (depth and hydraulic retention time, the concentration of nutrients entering the CW, and plant species richness.

  16. Calculation of intercepted runoff depth based on stormwater quality and environmental capacity of receiving waters for initial stormwater pollution management.

    Science.gov (United States)

    Peng, Hai-Qin; Liu, Yan; Gao, Xue-Long; Wang, Hong-Wu; Chen, Yi; Cai, Hui-Yi

    2017-11-01

    While point source pollutions have gradually been controlled in recent years, the non-point source pollution problem has become increasingly prominent. The receiving waters are frequently polluted by the initial stormwater from the separate stormwater system and the wastewater from sewage pipes through stormwater pipes. Consequently, calculating the intercepted runoff depth has become a problem that must be resolved immediately for initial stormwater pollution management. The accurate calculation of intercepted runoff depth provides a solid foundation for selecting the appropriate size of intercepting facilities in drainage and interception projects. This study establishes a separate stormwater system for the Yishan Building watershed of Fuzhou City using the InfoWorks Integrated Catchment Management (InfoWorks ICM), which can predict the stormwater flow velocity and the flow of discharge outlet after each rainfall. The intercepted runoff depth is calculated from the stormwater quality and environmental capacity of the receiving waters. The average intercepted runoff depth from six rainfall events is calculated as 4.1 mm based on stormwater quality. The average intercepted runoff depth from six rainfall events is calculated as 4.4 mm based on the environmental capacity of the receiving waters. The intercepted runoff depth differs when calculated from various aspects. The selection of the intercepted runoff depth depends on the goal of water quality control, the self-purification capacity of the water bodies, and other factors of the region.

  17. Urban Stormwater Runoff. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Simko, Robert A.

    Urban stormwater runoff collects pollutants from many parts of a city and is an important consideration in water quality planning. Presented is an instructor's guide for a learning session covering various aspects of urban runoff including pollutant sources, management practices, and regulatory programs. Intended for citizen advisory groups, this…

  18. Stormwater runoff plumes in the Southern California Bight: A comparison study with SAR and MODIS imagery.

    Science.gov (United States)

    Holt, Benjamin; Trinh, Rebecca; Gierach, Michelle M

    2017-05-15

    Stormwater runoff is the largest source of pollution in the Southern California Bight (SCB), resulting from untreated runoff and pollutants from urban watersheds entering the coastal waters after rainstorms. We make use of both satellite SAR and MODIS-Aqua ocean color imagery to examine two different components of runoff plumes, the surface slick and the sediment discharge. We expand on earlier satellite SAR studies by examining an extensive collection of multi-platform SAR imagery, spanning from 1992 to 2014, that provides a more comprehensive view of the plume surface slick characteristics, illustrated with distribution maps of the extent and flow direction of the plumes. The SAR-detected surface plumes are compared with coincident rain and runoff measurements, and with available measured shoreline fecal bacteria loads. We illustrate differences in the detection of SAR surface plumes with the sediment-related discharge plumes derived from MODIS imagery. A conceptual satellite stormwater runoff monitoring approach is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Pollution loads in urban runoff and sanitary wastewater.

    Science.gov (United States)

    Taebi, Amir; Droste, Ronald L

    2004-07-05

    While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha.year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control.

  20. Pollution loads in urban runoff and sanitary wastewater

    International Nuclear Information System (INIS)

    Taebi, Amir; Droste, Ronald L.

    2004-01-01

    While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha·year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control

  1. Assessing the response of runoff to climate change and human ...

    Indian Academy of Sciences (India)

    Jinfeng Wang

    2018-03-27

    Mar 27, 2018 ... Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and ... land use scenarios that converted agricultural land into mixed ..... two periods to analyze the characteristics of runoff.

  2. Towards a better understanding of flood generation and surface water inundation mechanisms using NASA remote sensing data products

    Science.gov (United States)

    Lucey, J.; Reager, J. T., II; Lopez, S. R.

    2017-12-01

    Floods annually cause several weather-related fatalities and financial losses. According to NOAA and FEMA, there were 43 deaths and 18 billion dollars paid out in flood insurance policies during 2005. The goal of this work is to improve flood prediction and flood risk assessment by creating a general model of predictability of extreme runoff generation using various NASA products. Using satellite-based flood inundation observations, we can relate surface water formation processes to changes in other hydrological variables, such as precipitation, storage and soil moisture, and understand how runoff generation response to these forcings is modulated by local topography and land cover. Since it is known that a flood event would cause an abnormal increase in surface water, we examine these underlying physical relationships in comparison with the Dartmouth Flood Observatory archive of historic flood events globally. Using ground water storage observations (GRACE), precipitation (TRMM or GPCP), land use (MODIS), elevation (SRTM) and surface inundation levels (SWAMPS), an assessment of geological and climate conditions can be performed for any location around the world. This project utilizes multiple linear regression analysis evaluating the relationship between surface water inundation, total water storage anomalies and precipitation values, grouped by average slope or land use, to determine their statistical relationships and influences on inundation data. This research demonstrates the potential benefits of using global data products for early flood prediction and will improve our understanding of runoff generation processes.

  3. Persistence of oxyfluorfen in soil, runoff water, sediment and plants of a sunflower cultivation.

    Science.gov (United States)

    Mantzos, N; Karakitsou, A; Hela, D; Patakioutas, G; Leneti, E; Konstantinou, I

    2014-02-15

    A field dissipation and transport study of oxyfluorfen in a sunflower cultivation under Mediterranean conditions have been conducted in silty clay plots (cultivated and uncultivated) with two surface slopes (1% and 5%). The soil dissipation and transport of oxyfluorfen in runoff water and sediment, as well as the uptake by sunflower plants, were investigated over a period of 191 days. Among different kinetic models assayed, soil dissipation rate of oxyfluorfen was better described by first-order kinetics. The average half-life was 45 and 45.5 days in cultivated plots with soil slopes 5% and 1% respectively, and 50.9 and 52.9 days in uncultivated plots with soil slopes 5% and 1%. The herbicide was detected below the 10 cm soil layer 45 days after application (DAA). Limited amounts of oxyfluorfen were moved with runoff water and the cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.007% and 0.005% of the initial applied active ingredient, while for the plots with slope of 1%, the respective values were 0.002% and 0.001%. The maximum concentration of oxyfluorfen in sediment ranged from 1.46 μg g(-1) in cultivated plot with soil slope 1% to 2.33 μg g(-1) in uncultivated plot with soil slope 5%. The cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.217% and 0.170% while for the plots with slope of 1%, the respective values were 0.055% and 0.025%. Oxyfluorfen was detected in sunflower plants until the day of harvest; maximum concentrations in stems and leaves (0.042 μg g(-1)) were observed 33 DAA and in roots (0.025 μg g(-1)) 36 DAA. In conclusion, oxyfluorfen hardly moves into silty clay soil and exhibited low run-off potential so it represents a low risk herbicide for the contamination of ground and adjacent water resources. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. [Research on spatial differentiation of urban stormwater runoff quality by source area monitoring].

    Science.gov (United States)

    Li, Li-Qing; Zhu, Ren-Xiao; Guo, Shu-Gang; Yin, Cheng-Qing

    2010-12-01

    Runoff samples were collected from 14 source areas in Hanyang district during four rain events in an attempt to investigate the spatial differentiation and influencing factors of urban stormwater runoff quality. The outcomes are expected to offer practical guidance in sources control of urban runoff pollution. The results revealed that particle-bound proportion of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in stormwater runoff were 58% +/- 17%, 65% +/- 13% and 92% +/- 6%, respectively. The fractions of ammonia, nitrate and dissolved organic nitrogen were homogeneous in dissolved nitrogen composition. Urban surface function, traffic volume, land use, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. The highest magnitude of urban stormwater runoff pollution was expected in the old urban residential area, followed by general residential with restaurants, commercial and transport area, new developments and green land. In addition, the magnitude of road stormwater runoff pollution is positively correlated to traffic volume, in the following order: the first trunk road > the second trunk road > minor road. Street sweeping and critical source areas controls should be implemented to mitigate the adverse effects of urban stormwater runoff on receive waters.

  5. Climate change and runoff in south-western Australia

    Science.gov (United States)

    Silberstein, R. P.; Aryal, S. K.; Durrant, J.; Pearcey, M.; Braccia, M.; Charles, S. P.; Boniecka, L.; Hodgson, G. A.; Bari, M. A.; Viney, N. R.; McFarlane, D. J.

    2012-12-01

    SummaryThis paper presents the results of computer simulations of runoff from 13 major fresh and brackish river basins in south-western Australia (SWA) under climate projections obtained from 15 GCMs with three future global warming scenarios equivalent to global temperature rises of 0.7 °C, 1.0 °C and 1.3 °C by 2030. The objective was to apply an efficient methodology, consistent across a large region, to examine the implications of the best available projections in climate trends for future surface water resources. An ensemble of rainfall-runoff models was calibrated on stream flow data from 1975 to 2007 from 106 gauged catchments distributed throughout the basins of the study area. The sensitivity of runoff to projected changes in mean annual rainfall is examined using the climate 'elasticity' concept. Averaged across the study area, all 15 GCMs project declines in rainfall under all global warming scenarios with a median decline of 8% resulting in a median decline in runoff of 25%. Such uniformity in projections from GCMs is unusual. Over SWA the average annual runoff under the 5th wettest and 5th driest of the 45 projections of the 2030 climate declines by 10 and 42%, respectively. Under the 5th driest projection the runoff decline ranges from 53% in the northern region to 40% in the southern region. Strong regional variations in climate sensitivity are found with the proportional decline in runoff greatest in the northern region and the greatest volumetric declines in the wetter basins in the south. Since the mid 1970s stream flows into the major water supply reservoirs in SWA have declined by more than 50% following a 16% rainfall reduction. This has already had major implications for water resources planning and for the preservation of aquatic and riparian ecosystems in the region. Our results indicate that this reduction in runoff is likely to continue if future climate projections eventuate.

  6. Urban rainwater runoff quantity and quality - A potential endogenous resource in cities?

    Science.gov (United States)

    Angrill, Sara; Petit-Boix, Anna; Morales-Pinzón, Tito; Josa, Alejandro; Rieradevall, Joan; Gabarrell, Xavier

    2017-03-15

    Rainwater harvesting might help to achieve self-sufficiency, but it must comply with health standards. We studied the runoff quantity and quality harvested from seven urban surfaces in a university campus in Barcelona according to their use (pedestrian or motorized mobility) and materials (concrete, asphalt and slabs). An experimental rainwater harvesting system was used to collect the runoff resulting from a set of rainfall events. We estimated the runoff coefficient and initial abstraction of each surface and analyzed the physicochemical and microbiological properties, and hydrocarbon and metal content of the samples. Rainfall intensity, surface material and state of conservation were essential parameters. Because of low rainfall intensity and surface degradation, the runoff coefficient was variable, with a minimum of 0.41. Concrete had the best quality, whereas weathering and particulate matter deposition led to worse quality in asphalt areas. Physicochemical runoff quality was outstanding when compared to superficial and underground water. Microorganisms were identified in the samples (>1 CFU/100 mL) and treatment is required to meet human consumption standards. Motorized traffic mostly affects the presence of metals such as zinc (31.7 μg/L). In the future, sustainable mobility patterns might result in improved rainwater quality standards. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland.

    Science.gov (United States)

    Burkhardt, Michael; Stamm, Christian; Waul, Christopher; Singer, Heinz; Müller, Stephan

    2005-01-01

    Despite their common use in animal production the environmental fate of the veterinary sulfonamide antibiotics after excretion is only poorly understood. We performed irrigation experiments to investigate the transport of these substances with surface runoff on grassland. Liquid manure from pigs treated with sulfadimidine was spiked with sulfadiazine, sulfathiazole, the herbicide atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), and the conservative tracer bromide and spread onto eight plots. Four plots received the same amounts of the spiked substances in aqueous solution (controls). Apart from the application matrix we varied the time between application and irrigation. Manure increased the runoff volume up to six times compared with the controls. It seemed that manure enhanced the runoff by sealing the soil surface. On manured plots the relative antibiotic concentrations in runoff were higher than on the controls, reaching an average of 0.3% (sulfadiazine), 0.8% (sulfathiazole), and 1.4% (sulfadimidine) of the input concentrations after a 1-d contact time. The corresponding values on the controls were 0.16% for sulfadiazine and 0.08% for sulfathiazole. After 3 d, the maximum values on the manured plots were even higher, whereas they had fallen below the limit of quantification on the controls. As a consequence, the sulfonamide losses were 10 to 40 times larger on the manured plots. The relative mobility of the sulfonamides on the control plots followed the trend expected from their chromatographic separation but the opposite was found on the manured plots. Hence it is important to consider explicitly the physical and chemical effects of manure when assessing the environmental fate of sulfonamides.

  8. Development of urban runoff model FFC-QUAL for first-flush water-quality analysis in urban drainage basins.

    Science.gov (United States)

    Hur, Sungchul; Nam, Kisung; Kim, Jungsoo; Kwak, Changjae

    2018-01-01

    An urban runoff model that is able to compute the runoff, the pollutant loadings, and the concentrations of water-quality constituents in urban drainages during the first flush was developed. This model, which is referred to as FFC-QUAL, was modified from the existing ILLUDAS model and added for use during the water-quality analysis process for dry and rainy periods. For the dry period, the specifications of the coefficients for the discharge and water quality were used. During rainfall, we used the Clark and time-area methods for the runoff analyses of pervious and impervious areas to consider the effects of the subbasin shape; moreover, four pollutant accumulation methods and the washoff equation for computing the water quality each time were used. According to the verification results, FFC-QUAL provides generally similar output as the measured data for the peak flow, total runoff volume, total loadings, peak concentration, and time of peak concentration for three rainfall events in the Gunja subbasin. In comparison with the ILLUDAS, SWMM, and MOUSE models, there is little difference between these models and the model developed in this study. The proposed model should be useful in urban watersheds because of its simplicity and its capacity to model common pollutants (e.g., biological oxygen demand, chemical oxygen demand, Escherichia coli, suspended solids, and total nitrogen and phosphorous) in runoff. The proposed model can also be used in design studies to determine how changes in infrastructure will affect the runoff and pollution loads. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Integrating remotely sensed surface water extent into continental scale hydrology.

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R 2 , RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  10. Contribution and loading estimation of organochlorine pesticides from rain and canopy throughfall to runoff in an urban environment.

    Science.gov (United States)

    Zhang, Wei; Ye, Youbin; Tong, Yindong; Ou, Langbo; Hu, Dan; Wang, Xuejun

    2011-01-30

    Concentrations of OCPs in rain, canopy throughfall, and runoff water were measured in the Beijing metropolitan area during the rainy seasons from 2006 to 2007. This study was conducted to calculate the fluxes of OCPs in rain and canopy throughfall, as well as their contributions to runoff. At urban sites, the contribution of HCB and ΣHCHs from rainfall accounted for approximately 50% of the mass in runoff. At the site with significant coverage of landscaping trees, the HCB, ΣHCHs, and ΣDDTs from the net canopy throughfall accounted for approximately 10% of the mass in the runoff. Based on the data obtained in this study, loadings of OCPs (in μg) in rain, net canopy throughfall, and runoff water were calculated. The input of OCPs from rain and canopy throughfall water accounted for a significant portion of urban runoff. In cities undergoing rapid urban sprawl, monitoring and control of the transport of OCPs in urban runoff are essential for effective control of environmental hazards in surface water bodies. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. First stages of zinc runoff in humid tropical climate

    International Nuclear Information System (INIS)

    Meraz, E.; Veleva, L.; Acosta, M.

    2007-01-01

    Frequently used metals in building application are Zinc and hot dip galvanized steel. The zinc has a relatively good atmospheric resistance, due to its oxidation in air and formation of protective layer. However, some of the zinc corrosion products can be dissolved by pluvial precipitations and water condensed on the metal surface. This process is called metal runoff. In order to estimate el zinc runoff in humid tropical climate, since its firs stages, samples of pure zinc and hot dip galvanized steel have been exposed during 2 years in outdoor atmosphere (rural and urban). The data reveal high annual values of zinc runoff (8,20-12,40±0.30 g/m''2 ano), being this process 80% of total mass loss of corroded zinc. The runoff and corrosion processes are more accelerated for zinc, than that of galvanized steel. The principal factors that control the runoff process are discussed. (Author) 48 refs

  12. Hydrology in a mediterranean mountain environment. The Vallcebre research catchment (north eastern Spain) II. Rainfall-runoff relationships and runoff processes

    International Nuclear Information System (INIS)

    Latron, J.; Solar, M.; Nord, G.; Llorens, P.; Gallart, F.

    2009-01-01

    Hydrological response and runoff processes have been studied in the Vallcebre research basins (North Eastern Spain) for almost 20 years. Results obtained allowed to build a more complete perceptual model of the hydrological functioning of Mediterranean mountains basins. On a seasonal and monthly scale, there was no simple relationship between rainfall and runoff depths. Monthly rainfall and runoff values revealed the existence of a threshold in the relationship between rainfall and runoff depths. At the event scale, the storm-flow coefficient had a clear seasonal pattern. The effect of the water table position on how rainfall and runoff volumes relate was observed. Examination of soil water potential and water table dynamics during representative floods helped to identify 3 types of characteristic hydrological behaviour during the year. Under dry conditions, runoff was generated essentially as infiltration excess runoff in low permeable areas, whereas saturation excess runoff dominated during wetting-up and wet conditions. During wetting-up transition, saturated areas resulted from the development of scattered perched water tables, whereas in wet conditions they were linked to the rise of the shallow water table. (Author) 8 refs.

  13. Effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek, Indianapolis, Indiana

    Science.gov (United States)

    Martin, Jeffrey D.

    1995-01-01

    In 1986, the U.S. Geological Survey and the Indianapolis Department of Public Works began a study to evaluate the effects of combined-sewer overflows and urban runoff discharging to Fall Geek on the White River. This report describes the effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek during summer 1987 by comparing the water quality during base flow with that during storm runoff and by comparing water quality in the urbanized area with that in the less urbanized area upstream from the combined-sewer overflows. Data were collected at three streamflow-gaging stations located upstream from, downstream from, and in the middle of 27 combined-sewer overflows on Fall Creek. The most downstream station also was immediately downstream from the discharge of filter backwash from a water-treatment plant for public supply.

  14. Impact of Animal Waste Application on Runoff Water Quality in Field Experimental Plots

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2005-08-01

    Full Text Available Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium

  15. Nature and analysis of chemical species: pollution effects on surface waters and groundwater

    International Nuclear Information System (INIS)

    Young, R.H.F.

    1975-01-01

    A literature review of 103 items covers: nutrients in surface waters; runoff and waste discharges primarily from energy-intensive activities; groundwater pollution causes, effects, controls and monitoring; land and subsurface wastewater disposal; radionuclides; biological effects; thermal effluents; and biological and mathematical models for rivers

  16. Transporte de solutos no solo e no escoamento superficial: I - desenvolvimento do modelo e simulação do movimento de água e escoamento superficial Solute transport in soil and surface runoff: I - model development and simulation of soil water movement and surface runoff

    Directory of Open Access Journals (Sweden)

    Luiz Fernando C. de Oliveira

    2000-04-01

    Full Text Available Desenvolveu-se um modelo matemático para simulação do transporte de soluto no solo e no escoamento superficial. As equações diferenciais que regem os processos de transporte são resolvidas numericamente, pelo método das diferenças finitas. Para se avaliar o desempenho do modelo proposto, montou-se um experimento em nível de campo, constituído de nove parcelas, nas quais foram aplicadas três lâminas de irrigação com diferentes intensidades de precipitação; antes e após a aplicação da irrigação foram retiradas amostras de solo, para a obtenção dos perfis de umidade e, no final da parcela, coletou-se a vazão escoada superficialmente, pelo método direto. Os resultados simulados pelo modelo foram comparados com os experimentais, através do erro relativo médio. O modelo desenvolvido mostrou-se adequado para se descrever os processos de movimento de água no solo e escoamento superficial, apresentando comportamento semelhante aos das observações experimentais, podendo ser utilizado para simular esses processos, desde que os parâmetros de entrada do modelo sejam representativos.A mathematical model was developed to simulate solute transport in both soil and in surface runoff. The differential equations that govern the transport processes are numerically solved through the finite difference method. For the evaluation of the proposed model a field experiment was planned with nine plots under three irrigation levels with different rainfall intensities. Soil was sampled before and after irrigation to obtain moisture content profiles. At the end of the plot runoff flow was collected by the direct method. The model-simulated results were compared with the experimental data through the mean relative error. The developed model was found to describe adequately water movement and surface runoff, showing a behavior similar to experimental observations, making possible the utilization of the model to simulate these processes, if the

  17. Effect of slope and plant cover on run-off, soil loss and water use ...

    African Journals Online (AJOL)

    An average of 6,2t/ha soil loss and 80,6% run-off of the amount of water applied occurred from the pioneer veld (0,7% basal cover) on the steepest slope. In all the successional stages more run-off and less soil loss occurred from wet soil than from dry soil. Significant (P<0,01) relationships between basal and canopy cover ...

  18. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  19. Evaluation of Surface Runoff Water in a Freshwater Confined Disposal Facility - Effects of Vegetation

    National Research Council Canada - National Science Library

    Price, R

    2002-01-01

    The U.S. Army Engineer Research and Development Center, Vicksburg, MS, is conducting a series of laboratory and field studies to determine the effectiveness of the Simplified Laboratory Runoff Procedure (SLRP...

  20. Insecticide toxicity to Hyalella curvispina in runoff and stream water within a soybean farm (Buenos Aires, Argentina).

    Science.gov (United States)

    Mugni, H; Ronco, A; Bonetto, C

    2011-03-01

    Toxicity to the locally dominant amphipod Hyalella curvispina was assessed in a first-order stream running through a cultivated farm. Cypermethrin, chlorpyrifos, endosulfan and glyphosate were sprayed throughout the studied period. Toxicity was assayed under controlled laboratory conditions with runoff and stream water samples taken from the field under steady state and flood conditions. Ephemeral toxicity pulses were observed as a consequence of farm pesticide applications. After pesticide application, runoff water showed 100% mortality to H. curvispina for 1 month, but no mortality thereafter. Toxicity persistence was shortest in stream water, intermediate in stream sediments and longest in soil samples. Runoff had a more important toxicity effect than the exposure to direct aerial fumigation. The regional environmental features determining fast toxicity dissipation are discussed. Copyright © 2010. Published by Elsevier Inc.

  1. Can Urban Trees Reduce the Impact of Climate Change on Storm Runoff?

    Directory of Open Access Journals (Sweden)

    Katarina ZABRET

    2015-11-01

    Full Text Available The process of urbanisation leads to significant changes in surface cover, which influence the hydrological properties of an area. The infiltration of precipitation into the soil is reduced, so that both surface water runoff and the velocity at which water travels have increased drastically. In recent decades climate change has also been observed to affect precipitation trends. Many studies have shown that the amount of rainfall is increasing and that heavy rainfall events are becoming more frequent. These changes are producing more runoff, which has to be drained. Urban trees can reduce the amount of precipitation reaching the ground due to rainfall interception, and are becoming increasingly recognized as an effective means for the regulation of storm water volumes and costs. The study measured rainfall interception in an urban area. It shows that Betula pendula can intercept 20.6% of annual rainfall, whereas Pinus nigra could intercept as much as 51.0% of annual rainfall. The advantage of rainfall interception was shown in the case of a parking lot where the planting of trees was able to reduce runoff by up to 17%.

  2. Micropollutants in stormwater runoff and combined sewer overflow in the Copenhagen area, Denmark

    DEFF Research Database (Denmark)

    Birch, Heidi; Mikkelsen, Peter Steen; Jensen, J.K.

    2011-01-01

    Stormwater runoff contains a broad range of micropollutants. In Europe a number of these substances are regulated through the Water Framework Directive, which establishes Environmental Quality Standards (EQSs) for surface waters. Knowledge about discharge of these substances through stormwater...... runoff and combined sewer overflows (CSOs) is essential to ensure compliance with the EQSs. Results from a screening campaign including more than 50 substances at four stormwater discharge locations and one CSO in Copenhagen are reported here. Heavy metal concentrations were detected at levels similar...

  3. Infiltration and runoff generation processes in fire-affected soils

    Science.gov (United States)

    Moody, John A.; Ebel, Brian A.

    2014-01-01

    Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall),  tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of  tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that  tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.

  4. Runoff and Evapotranspiration Sensitivities to a Changing Climate in the Western U.S.

    Science.gov (United States)

    Gao, M.; Xiao, M.; Lettenmaier, D. P.

    2017-12-01

    Climate change is likely to alter streamflow seasonal patterns, affect water availability, and otherwise pose challenges to water resources management. It is therefore important to understand how streamflow will respond to changes in climate. Previous studies have mostly focused on runoff sensitivity to precipitation (P) and temperature change, but runoff sensitivity to potential evapotranspiration (PET) is less well understood. In order to investigate how variations in precipitation and PET influence runoff, we conducted both statistical and model-based analyses of 84 near-natural basins in California, Oregon, and Washington. We obtained meteorological forcing data at 1/16 degree spatial resolution for each basin from the University of Washington/UCLA Experimental Surface Water Monitor, and observed runoff data from USGS. For the statistical method, we applied three estimators of the precipitation elasticity of runoff from previous studies. We also estimated the PET elasticity of runoff, using Penman-Monteith reference ET as a surrogate for PET. For the modelling method, we implemented the Sacramento Soil Moisture Accounting (SAC-SMA) Model, where PET is an explicit input. We performed experiments in which we changed P and PET by 1% individually to examine their effects on runoff, from which we computed the P and PET elasticities. We explore the spatial patterns in the elasticities of runoff and their relationships with basin characteristics and climatology. We also evaluate how well the statistical and model-based results meet the complementary relationship posited by Dooge (based on the Budyko Hypothesis) that the precipitation and PET elasticities of annual runoff should sum to one.

  5. Forms of phosphorus transfer in runoff under no-tillage in a soil treated with successive swine effluents applications.

    Science.gov (United States)

    Lourenzi, Cledimar Rogério; Ceretta, Carlos Alberto; Tiecher, Tadeu Luis; Lorensini, Felipe; Cancian, Adriana; Stefanello, Lincon; Girotto, Eduardo; Vieira, Renan Costa Beber; Ferreira, Paulo Ademar Avelar; Brunetto, Gustavo

    2015-04-01

    Successive swine effluent applications can substantially increase the transfer of phosphorus (P) forms in runoff. The aim of this study was to evaluate P accumulation in the soil and transfer of P forms in surface runoff from a Hapludalf soil under no-tillage subjected to successive swine effluent applications. This research was carried out in the Agricultural Engineering Department of the Federal University of Santa Maria, Brazil, from 2004 to 2007, on a Typic Hapludalf soil. Swine effluent rates of 0, 20, 40, and 80 m3 ha(-1) were broadcast over the soil surface prior to sowing of different species in a crop rotation. Soil samples were collected in stratified layers, and the levels of available P were determined. Samples of water runoff from the soil surface were collected throughout the period, and the available, soluble, particulate, and total P were measured. Successive swine effluent applications led to increases in P availability, especially in the soil surface, and P migration through the soil profile. Transfer of P forms was closely associated with runoff, which is directly related to rainfall volume. Swine effluent applications also reduced surface runoff. These results show that in areas with successive swine effluent applications, practices that promote higher water infiltration into the soil are required, e.g., crop rotation and no-tillage system.

  6. Effects of cropping systems on water runoff, soil erosion and nutrient loss in the Moldavian Plateau, Romania

    Energy Technology Data Exchange (ETDEWEB)

    Ailincai, C.; Jitareanu, G.; Bucur, D.; Ailincai, D.; Raus, L.; Filipov, F.

    2009-07-01

    The experiments carried out at the Podu-lloaiei Agricultural Research Sation, during 1986-2008, had the following objectives: the study of water runoff and soil losses, by erosion, in different crops; the annual rate of erosion process under the influence of anti-erosion protection of different crops; the influence of water runoff and soil erosion on losses of organic matter and mineral elements from soil. (Author) 7 refs.

  7. Effects of cropping systems on water runoff, soil erosion and nutrient loss in the Moldavian Plateau, Romania

    International Nuclear Information System (INIS)

    Ailincai, C.; Jitareanu, G.; Bucur, D.; Ailincai, D.; Raus, L.; Filipov, F.

    2009-01-01

    The experiments carried out at the Podu-lloaiei Agricultural Research Sation, during 1986-2008, had the following objectives: the study of water runoff and soil losses, by erosion, in different crops; the annual rate of erosion process under the influence of anti-erosion protection of different crops; the influence of water runoff and soil erosion on losses of organic matter and mineral elements from soil. (Author) 7 refs.

  8. Modeling of runoff pollution load in a data scarce situation using ...

    African Journals Online (AJOL)

    This study used Soil Water Assessment Tool (SWAT) to simulate temporal-spatial distribution of surface water runoff (river flow), sediment and nutrient generation in Sondu watershed, and to identify soil erosion and nutrient source hot spots. Annual sediment generation to the lake is 80,000 t/yr composed of mainly silt while ...

  9. Effects of land disposal of municipal sewage sludge on soil, streambed sediment, and ground- and surface-water quality at a site near Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Gaggiani, N.G.

    1991-01-01

    The report describes the effects of burial and land application of municipal sewage sludge on soil and streambed sediment and water quality in the underlying aquifers and surface water within and around the Lowry sewage-sludge-disposal area. The existing ground-water observation-well network at the disposal area was expanded for the study. Surface-water-sampling sites were selected so that runoff could be sampled from intense rainstorms or snowmelt. The sampling frequency for ground-water and surface-water runoff was changed from yearly to quarterly, and soil samples were collected. Four years of data were collected from 1984 to 1987 during the expanded monitoring program at the Lowry sewage-sludge-disposal area. These data, in addition to the data collected by the U.S. Geological Survey from 1981 to 1983, were used to determine effects of sewage-sludge-disposal on soil and streambed sediment and surface- and ground-water quality at the disposal area.

  10. Combination of geochemical and hydrobiological tracers for the analysis of runoff generating processes in a lowland catchment

    Science.gov (United States)

    Faber, Claas; Wu, Naicheng; Ulrich, Uta; Fohrer, Nicola

    2015-04-01

    Since lowlands are characterised by flat topography and low hydraulic gradients, groundwater inflow has a large influence to streamflow generation in such catchments. In catchments with intense agricultural land use, artificial drainages are often another major contributor to streamflow. They shorten the soil passage and thus change the matter retention potential as well as runoff dynamics of a catchment. Contribution of surface runoff to streamflow is usually less important in volume. However, due to high concentrations of agrochemicals, surface runoff can constitute an important entry pathway into water bodies, especially if strong precipitation events coincide with fertilizer or pesticide application. The DFG funded project "Separating surface runoff from tile drainage flow in agricultural lowland catchments based on diatoms to improve modelled runoff components and phosphorous transport" investigates prevalent processes in this context in a 50 km² lowland catchment (Kielstau, Schleswig-Holstein, Germany) with the goal of improving existing models. End Member Mixing Analysis (EMMA) is used in the project to determine the relative importance of groundwater, tile drainage and surface runoff to streamflow at daily time steps. It became apparent that geochemical tracers are suitable for distinguishing surface runoff, but are weak for the separation of tile drainage and groundwater influence. We attribute this to the strong and complex interaction between soil water and shallow groundwater tables in the catchment. Recent studies (e.g. Pfister et al. 2011, Tauro et al. 2013) show the potential of diatoms as indicators for hydrological processes. Since we found diatoms to be suitable for the separation of tile drainage and stream samples (Wu et al., unpublished data) in our catchment, we are able to include diatom derived indices (e.g. density, species moisture indices, diversity indices) as traces in EMMA. Our results show that the inclusion of diatom data in the

  11. Modeling detailed hydro-meteorological surfaces and runoff response in large diverse watersheds

    International Nuclear Information System (INIS)

    Byrne, J.; Kienzle, S.W.; MacDonald, R.J.

    2008-01-01

    An understanding of local variability in climatic conditions over complex terrain is imperative to making accurate assessments of impacts from climate change on fresh water ecosystems (Daly, 2006). The derivation of representative spatial data in diverse environments poses a significant challenge to the modelling community. This presentation describes the current status of a long term ongoing hydro-climate model development program. We are developing a gridded hydroclimate dataset for diverse watersheds using SimGrid (Larson, 2008; Lapp et al., 2005; Sheppard, 1996), a model that applies the Mountain Climate Model (MTCLIM; Hungerford et al., 1989) to simulate hydro-climatic conditions over diverse terrain. The model uses GIS based terrain categories (TC) classified by slope, aspect, elevation, and soil water storage. SimGrid provides daily estimates of solar radiation, air temperature, relative humidity, precipitation, snowpack and soil water storage over space. Earlier versions of the model have been applied in the St. Mary (Larson, 2008) and upper Oldman basins (Lapp et al., 2005), giving realistic estimates of hydro-climatic variables. The current study demonstrates improvements to the estimation of temperature, precipitation, snowpack, soil water storage and runoff from the basin. Soil water storage data for the upper drainage were derived with GIS and included in SimGrid to estimate soil water flux over the time period. These changes help improve the estimation of spatial climatic variability over the basin while accounting for topographical influence. In further work we will apply spatial hydro-climatic surfaces from the SimGrid model to assess the hydrologic response to environmental change for watersheds in Canada and beyond. (author)

  12. Simulation of Runoff Hydrograph on Soil Surfaces with Different Microtopography Using a Travel Time Method at the Plot Scale.

    Science.gov (United States)

    Zhao, Longshan; Wu, Faqi

    2015-01-01

    In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (vm) and ponding time of depression (tp), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (li) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (vi) was derived from the upstream flow accumulation area using vm. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of li/vi) and tp. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs.

  13. Simulation of Runoff Hydrograph on Soil Surfaces with Different Microtopography Using a Travel Time Method at the Plot Scale

    Science.gov (United States)

    Zhao, Longshan; Wu, Faqi

    2015-01-01

    In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (v m) and ponding time of depression (t p), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (l i) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (v i) was derived from the upstream flow accumulation area using v m. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of l i/v i) and t p. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs. PMID:26103635

  14. An approximate analytical solution for describing surface runoff and sediment transport over hillslope

    Science.gov (United States)

    Tao, Wanghai; Wang, Quanjiu; Lin, Henry

    2018-03-01

    Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.

  15. Nutrient Runoff Losses from Liquid Dairy Manure Applied with Low-Disturbance Methods.

    Science.gov (United States)

    Jokela, William; Sherman, Jessica; Cavadini, Jason

    2016-09-01

    Manure applied to cropland is a source of phosphorus (P) and nitrogen (N) in surface runoff and can contribute to impairment of surface waters. Tillage immediately after application incorporates manure into the soil, which may reduce nutrient loss in runoff as well as N loss via NH volatilization. However, tillage also incorporates crop residue, which reduces surface cover and may increase erosion potential. We applied liquid dairy manure in a silage corn ( L.)-cereal rye ( L.) cover crop system in late October using methods designed to incorporate manure with minimal soil and residue disturbance. These include strip-till injection and tine aerator-band manure application, which were compared with standard broadcast application, either incorporated with a disk or left on the surface. Runoff was generated with a portable rainfall simulator (42 mm h for 30 min) three separate times: (i) 2 to 5 d after the October manure application, (ii) in early spring, and (iii) after tillage and planting. In the postmanure application runoff, the highest losses of total P and dissolved reactive P were from surface-applied manure. Dissolved P loss was reduced 98% by strip-till injection; this result was not statistically different from the no-manure control. Reductions from the aerator band method and disk incorporation were 53 and 80%, respectively. Total P losses followed a similar pattern, with 87% reduction from injected manure. Runoff losses of N had generally similar patterns to those of P. Losses of P and N were, in most cases, lower in the spring rain simulations with fewer significant treatment effects. Overall, results show that low-disturbance manure application methods can significantly reduce nutrient runoff losses compared with surface application while maintaining residue cover better than incorporation by tillage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. water quality evaluation of spring waters in nsukka, nigeria

    African Journals Online (AJOL)

    ES Obe

    2013-07-02

    Jul 2, 2013 ... directly from an underground formation from, which water flows naturally to the surface or from a bored ... evidence that surface runoff is readily entering the spring. This may mean the spring is contaminated with ... soil, hydrological factors that lead to runoff, and by biological processes within the aquatic.

  17. Modelling surface-water depression storage in a Prairie Pothole Region

    Science.gov (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie

    2018-01-01

    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  18. Combining hydraulic model, hydrogeomorphological observations and chemical analyses of surface waters to improve knowledge on karst flash floods genesis

    Directory of Open Access Journals (Sweden)

    F. Raynaud

    2015-06-01

    Full Text Available During a flood event over a karst watershed, the connections between surface and ground waters appear to be complex ones. The karst may attenuate surface floods by absorbing water or contribute to the surface flood by direct contribution of karst waters in the rivers (perennial and overflowing springs and by diffuse resurgence along the hillslopes. If it is possible to monitor each known outlet of a karst system, the diffuse contribution is yet difficult to assess. Furthermore, all these connections vary over time according to several factors such as the water content of the soil and underground, the rainfall characteristics, the runoff pathways. Therefore, the contribution of each compartment is generally difficult to assess, and flood dynamics are not fully understood. To face these misunderstandings and difficulties, we analysed surface waters during six recent flood events in the Lirou watershed (a karst tributary of the Lez, in South of France. Because of the specific chemical signature of karst waters, chemical analyses can supply information about water pathways and flood dynamics. Then, we used the dilution law to combine chemical results, flow data and field observations to assess the dynamics of the karst component of the flood. To end, we discussed the surface or karst origin of the waters responsible for the apparent runoff coefficient rise during flash karst flood.

  19. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  20. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis.

    Science.gov (United States)

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  1. ISLSCP II UNH/GRDC Composite Monthly Runoff

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The University of New Hampshire (UNH)/Global Runoff Data Centre (GRDC) composite runoff data combines simulated water balance model runoff estimates...

  2. Experimental study on influence of vegetation coverage on runoff in wind-water erosion crisscross region

    Science.gov (United States)

    Wang, Jinhua; Zhang, Ronggang; Sun, Juan

    2018-02-01

    Using artificial rainfall simulation method, 23 simulation experiments were carried out in water-wind erosion crisscross region in order to analyze the influence of vegetation coverage on runoff and sediment yield. The experimental plots are standard plots with a length of 20m, width of 5m and slope of 15 degrees. The simulation experiments were conducted in different vegetation coverage experimental plots based on three different rainfall intensities. According to the experimental observation data, the influence of vegetation coverage on runoff and infiltration was analyzed. Vegetation coverage has a significant impact on runoff, and the higher the vegetation coverage is, the smaller the runoff is. Under the condition of 0.6mm/min rainfall intensity, the runoff volume from the experimental plot with 18% vegetation coverage was 1.2 times of the runoff from the experimental with 30% vegetation coverage. What’s more, the difference of runoff is more obvious in higher rainfall intensity. If the rainfall intensity reaches 1.32mm/min, the runoff from the experimental plot with 11% vegetation coverage is about 2 times as large as the runoff from the experimental plot with 53%vegetation coverage. Under the condition of small rainfall intensity, the starting time of runoff in the experimental plot with higher vegetation coverage is later than that in the experimental plot with low vegetation coverage. However, under the condition of heavy rainfall intensity, there is no obvious difference in the beginning time of runoff. In addition, the higher the vegetation coverage is, the deeper the rainfall infiltration depth is.The results can provide reference for ecological construction carried out in wind erosion crisscross region with serious soil erosion.

  3. Prediction and optimization of runoff via ANFIS and GA

    Directory of Open Access Journals (Sweden)

    D.K. Ghose

    2013-06-01

    Full Text Available In planning of water resource projects, the estimation of the availability of water plays an important role. The first step in the water availability estimation is the computation of runoff resulting from the precipitation on river catchments. The length of the runoff measured in a stream may be of short period or long period depending upon the catchment characteristics. Keeping this in mind the present work is focused on two different model generation. In the first phase of this study, runoff rating curves are developed considering present day water level (H(t as input and present day runoff (Q(t as the model output. In the second phase of the study runoff prediction models are developed considering 1 day lag water level (H(t − 1, 2 day lag water level (H(t − 2 and 1 day lag runoff (Q(t − 1 as inputs and 1 day ahead runoff (Q(t + 1 as the output of the model. Models developed and used for prediction of runoff are Non-Linear Multiple Regression (NLMR and Adaptive Neuro-Fuzzy Inference System (ANFIS. Both the models were trained and tested to predict the performance of models. Genetic Algorithm (GA is then coupled with NLMR model to obtain the condition of hydrological parameter for which the runoff is maximum.

  4. Surface runoff fluxes of nutrients in montane forests in Piedras Blancas region, Antioquia (Colombia)

    International Nuclear Information System (INIS)

    Ruiz Suescun, Oscar Andres; Acosta Jaramillo, Juan Jose; Leon Pelaez, Juan Diego

    2005-01-01

    In natural montane oak forests (Quercus humboldtii Bonpl.), pine (Pinus patula Schltdl and cham.) and cypress (Cupressus lusitanica Mill.) plantations in the region of Piedras Blancas, Antioquia, surface runoff flows (SRF) were measured over 16 months. Runoff was measured using 2 m wide x 10 m long runoff bounded plots, collector tanks and a volumetric counter system. Nutrient flows for the oak forest, pine and cypress plantations were, respectively: P total (0,51, 0,08 and 0,42 kg ha-y), Ca (0,13, 0,21 and 1,27 kg ha- y); Mg (0,07, 0,07 and 0,34 kg ha-y); K (0,89, 0,71 and 2,60 kg ha-y); Fe (0,04, 0,04 and 0,47 kg ha-y) and Mn (0,01, 0,01 and 0,08 kg ha-y)

  5. Transport of Three Antimicrobials in Runoff from Windrows of Composting Beef Cattle Manure.

    Science.gov (United States)

    Sura, Srinivas; Degenhardt, Dani; Cessna, Allan J; Larney, Francis J; Olson, Andrew F; McAllister, Tim A

    2016-03-01

    Rain runoff from windrowed or stockpiled manure may contain antimicrobials with the potential to contaminate surface and ground water. To quantify the concentration of antimicrobials transported in runoff from windrowed manure, antimicrobials were administered continuously in feed to beef cattle () as follows: 44 mg of chlortetracycline kg feed (dry weight), a 1:1 mixture of 44 mg of chlortetracycline and 44 mg sulfamethazine kg feed, and 11 mg of tylosin kg feed. Cattle in a fourth treatment group received no antimicrobials (control). Manure from the cattle was used to construct two windrows per treatment. On Days 2 and 21 of composting, a portable Guelph Rainfall Simulator II was used to apply deionized water at an intensity of 127 mm h to each windrow, and the runoff was collected. Manure samples were collected before rain simulations on Days 2 and 21 of composting for antimicrobial analysis. On Day 2, average concentrations of chlortetracycline, sulfamethazine, and tylosin in manure were 2580, 450, and 120 μg kg, respectively, with maximum concentrations in runoff of 2740, 3600, and 4930 μg L, respectively. Concentrations of all three antimicrobials in runoff were higher ( runoff from a windrow (3 m long, 2.5 m wide, 1.5 m high) were approximately 0.87 to 0.94, 1.57, and 1.23 g, respectively. This study demonstrates the importance of windrow composting in reducing antimicrobial concentrations in manure. The runoff from windrows can be a source of antimicrobials and demonstrates the need for containment of runoff from composting facilities to mitigate antimicrobial contamination of surface and groundwater resources. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Rainfall runoff and erosion in Napa Valley vineyards: effects of slope, cover and surface roughness

    Science.gov (United States)

    Battany, M. C.; Grismer, M. E.

    2000-05-01

    The effects of slope, cover and surface roughness on rainfall runoff, infiltration and erosion were determined at two sites on a hillside vineyard in Napa County, California, using a portable rainfall simulator. Rainfall simulation experiments were carried out at two sites, with five replications of three slope treatments (5%, 10% and 15%) in a randomized block design at each site (0%bsol;64 m2 plots). Prior to initiation of the rainfall simulations, detailed assessments, not considered in previous vineyard studies, of soil slope, cover and surface roughness were conducted. Significant correlations (at the 95% confidence level) between the physical characteristics of slope, cover and surface roughness, with total infiltration, runoff, sediment discharge and average sediment concentration were obtained. The extent of soil cracking, a physical characteristic not directly measured, also affected analysis of the rainfall-runoff-erosion process. Average cumulative runoff and cumulative sediment discharge from site A was 87% and 242% greater, respectively, than at site B. This difference was linked to the greater cover, extent of soil cracking and bulk density at site B than at site A. The extent of soil cover was the dominant factor limiting soil loss when soil cracking was not present. Field slopes within the range of 4-16%, although a statistically significant factor affecting soil losses, had only a minor impact on the amount of soil loss. The Horton infiltration equation fit field data better than the modified Philip's equation. Owing to the variability in the treatment parameters affecting the rainfall-runoff-erosion process, use of ANOVA methods were found to be inappropriate; multiple-factor regression analysis was more useful for identifying significant parameters. Overall, we obtained similar values for soil erosion parameters as those obtained from vineyard erosion studies in Europe. In addition, it appears that results from the small plot studies may be

  7. Assessment of two loss methods for estimation of surface runoff in Zaafrania urban catchment, North-East of Algeria

    OpenAIRE

    Dahdouh Yacina; Ouerdachi Lahbassi

    2018-01-01

    Surface runoff is a major problem in urban catchments; its generation is always related to the amount of effective rainfall dropped over the surface, however in urban catchments the process is considerably altered by the emergence of impervious areas. In this study the Soil Consevation Service – curve number (SCS-CN) and the Green–Ampt loss methods were used in rainfall-runoff modelling in the Zaafrania urban catchment which is located in Annaba city in the north east of Algeria. The two loss...

  8. Quantifying climate change impacts on runoff of zoonotic pathogens from land

    Science.gov (United States)

    Sterk, Ankie; de Roda Husman, Ana Maria; Stergiadi, Maria; de Nijs, Ton; Schijven, Jack

    2013-04-01

    Several studies have shown a correlation between rainfall and waterborne disease outbreaks. One of the mechanisms whereby rainfall may cause outbreaks is through an increase in runoff of animal faeces from fields to surface waters. Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by water recreation or drinking-water consumption. Climate changes affect runoff because of increasing winter precipitation and more extreme precipitation events, as well as changes in evaporation. Furthermore, drier summers are leading to longer periods of high soil moisture deficits, increasing the hydrophobicity of soil and consequently changing infiltration capacities. A conceptual model is designed to describe the impacts of climate changes on the terrestrial and aquatic ecosystems, which are both directly and indirectly affecting pathogen loads in the environment and subsequent public health risks. One of the major outcomes was the lack of quantitative data and limited qualitative analyses of impacts of climate changes on pathogen runoff. Quantifying the processes by which micro-organisms are transported from fields to waters is important to be able to estimate such impacts to enable targeted implementation of effective intervention measures. A quantitative model using Mathematica software will be developed to estimate concentrations of pathogens originating from overland flow during runoff events. Different input sources will be included by applying different land-use scenarios, including point source faecal pollution from dairy cows and geese and diffuse source pollution by fertilization. Zoonotic pathogens, i.e. Cryptosporidium and Campylobacter, were selected based on transport properties, faecal loads and disease burden. Transport and survival rates of these pathogens are determined including effects of changes in precipitation but also temperature induced

  9. Limited Dissolved Phosphorus Runoff Losses from Layered Double Hydroxide and Struvite Fertilizers in a Rainfall Simulation Study.

    Science.gov (United States)

    Everaert, Maarten; da Silva, Rodrigo C; Degryse, Fien; McLaughlin, Mike J; Smolders, Erik

    2018-03-01

    The enrichment of P in surface waters has been linked to P runoff from agricultural fields amended with fertilizers. Novel slow-release mineral fertilizers, such as struvite and P-exchanged layered double hydroxides (LDHs), have received increasing attention for P recycling from waste streams, and these fertilizers may potentially reduce the risk of runoff losses. Here, a rainfall simulation experiment was performed to evaluate P runoff associated with the application of recycled slow-release fertilizers relative to that of a soluble fertilizer. Monoammonium phosphate (MAP), struvite, and LDH granular fertilizers were broadcasted at equal total P doses on soil packed in trays (5% slope) and covered with perennial ryegrass ( L.). Four rainfall simulation events of 30 min were performed at 1, 5, 15, and 30 d after the fertilizer application. Runoff water from the trays was collected, filtered, and analyzed for dissolved P. For the MAP treatment, P runoff losses were high in the first two rain events and leveled off in later rain events. In total, 42% of the applied P in the MAP treatment was lost due to runoff. In the slow-release fertilizer treatments, P runoff losses were limited to 1.9 (struvite) and 2.4% (LDH) of the applied doses and were more similar over the different rain events. The use of these novel P fertilizer forms could be beneficial in areas with a high risk of surface water eutrophication and a history of intensive fertilization. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Urban runoff (URO) process for MODFLOW 2005: simulation of sub-grid scale urban hydrologic processes in Broward County, FL

    Science.gov (United States)

    Decker, Jeremy D.; Hughes, J.D.

    2013-01-01

    Climate change and sea-level rise could cause substantial changes in urban runoff and flooding in low-lying coast landscapes. A major challenge for local government officials and decision makers is to translate the potential global effects of climate change into actionable and cost-effective adaptation and mitigation strategies at county and municipal scales. A MODFLOW process is used to represent sub-grid scale hydrology in urban settings to help address these issues. Coupled interception, surface water, depression, and unsaturated zone storage are represented. A two-dimensional diffusive wave approximation is used to represent overland flow. Three different options for representing infiltration and recharge are presented. Additional features include structure, barrier, and culvert flow between adjacent cells, specified stage boundaries, critical flow boundaries, source/sink surface-water terms, and the bi-directional runoff to MODFLOW Surface-Water Routing process. Some abilities of the Urban RunOff (URO) process are demonstrated with a synthetic problem using four land uses and varying cell coverages. Precipitation from a hypothetical storm was applied and cell by cell surface-water depth, groundwater level, infiltration rate, and groundwater recharge rate are shown. Results indicate the URO process has the ability to produce time-varying, water-content dependent infiltration and leakage, and successfully interacts with MODFLOW.

  11. Disagreement between Hydrological and Land Surface models on the water budgets in the Arctic: why is this and which of them is right?

    Science.gov (United States)

    Blyth, E.; Martinez-de la Torre, A.; Ellis, R.; Robinson, E.

    2017-12-01

    The fresh-water budget of the Artic region has a diverse range of impacts: the ecosystems of the region, ocean circulation response to Arctic freshwater, methane emissions through changing wetland extent as well as the available fresh water for human consumption. But there are many processes that control the budget including a seasonal snow packs building and thawing, freezing soils and permafrost, extensive organic soils and large wetland systems. All these processes interact to create a complex hydrological system. In this study we examine a suite of 10 models that bring all those processes together in a 25 year reanalysis of the global water budget. We assess their performance in the Arctic region. There are two approaches to modelling fresh-water flows at large scales, referred to here as `Hydrological' and `Land Surface' models. While both approaches include a physically based model of the water stores and fluxes, the Land Surface models links the water flows to an energy-based model for processes such as snow melt and soil freezing. This study will analyse the impact of that basic difference on the regional patterns of evapotranspiration, runoff generation and terrestrial water storage. For the evapotranspiration, the Hydrological models tend to have a bigger spatial range in the model bias (difference to observations), implying greater errors compared to the Land-Surface models. For instance, some regions such as Eastern Siberia have consistently lower Evaporation in the Hydrological models than the Land Surface models. For the Runoff however, the results are the other way round with a slightly higher spatial range in bias for the Land Surface models implying greater errors than the Hydrological models. A simple analysis would suggest that Hydrological models are designed to get the runoff right, while Land Surface models designed to get the evapotranspiration right. Tracing the source of the difference suggests that the difference comes from the treatment

  12. Runoff from armored slopes

    International Nuclear Information System (INIS)

    Codell, R.B.

    1986-01-01

    Models exist for calculating overland flow on hillsides but no models have been found which explicitly deal with runoff from armored slopes. Flow on armored slopes differs from overland flow, because substantial flow occurs beneath the surface of the rock layer at low runnoff, and both above and below the surface for high runoff. In addition to the lack of a suitable model, no estimates of the PMP exist for such small areas and for very short durations. This paper develops a model for calculating runoff from armored embankments. The model considers the effect of slope, drainage area and ''flow concentration'' caused by irregular grading or slumping. A rainfall-duration curve based on the PMP is presented which is suitable for very small drainage areas. The development of the runoff model and rainfall-duration curve is presented below, along with a demonstration of the model on the design of a hypothetical tailings embankment

  13. Comparison of Surface Runoff Generation, and Soil and Nutrient Loss in Kakhk Treated and Representative Watersheds, Khorasan Razavi Province

    Directory of Open Access Journals (Sweden)

    Davood Davoodi Moghadam

    2017-02-01

    Full Text Available Introduction: It is vital to control land degradation, for conserving precious natural treasures. Quantification of runoff production and soil and nutrient loss from wild lands under different managerial systems is one of the scientific and optimal management in agriculture and natural resources, as a major component of sustainable development. Many researches have been conducted to assess the effects of different land uses on soil erosion and runoff generation throughout the globe. Most of which, mainly verified the detrimental effects of human intervention on land degradation. However, limited comprehensive and comparative studies have been conducted to consider the amount of surface runoff generation, and soil and nutrient loss from watersheds with different management patterns viz. untreated and treated small watersheds. Materials and Methods: The present study aimed to compare surface runoff generation,soil and nutrient loss in Kakhk treated and untreated watersheds with an area ca. 222 ha and precipitation of some 243 mm per annum. Other physical and geological characteristics of the paired watersheds were also similar to allow assessing the effects of study measures on soil, water and nutrient losses. The area under consideration has been located in Khorasan Razavi Province in northeastern Iran. The present study was performed in plots with standard size of 22.1 × 1.8 m in treating and representative areas, with three replicates and on the storm basis occurred during early 2011 and mid-2014. The treated plots were covered by biological measures viz. seeding, bunching and exclusre. The study plots have been situated on eastern,western and northern aspects with respective slope of 55, 40 and 40 %. The entire runoff from study plots were collected in a container in 0.5×1×1 m. The sediment concentration was also measured in 2-liter samples taken from the container after a complete mixing of the entire collected runoff. The sample was

  14. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils.

    Science.gov (United States)

    Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong

    2015-01-01

    The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.

  15. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications.

    Science.gov (United States)

    Sun, Zhandong; Lotz, Tom; Chang, Ni-Bin

    2017-12-15

    Effects of land use development on runoff patterns are salient at a hydrological response unit scale. However, quantitative analysis at the watershed scale is still a challenge due to the complex spatial heterogeneity of the upstream and downstream hydrological relationships and the inherent structure of drainage systems. This study aims to use the well-calibrated Soil and Water Assessment Tool (SWAT) to assess the response of hydrological processes under different land use scenarios in a large lake watershed (Lake Dongting) in the middle Yangtze River basin in China. Based on possible land use changes, scale-dependent land use scenarios were developed and parameters embedded in SWAT were calibrated and validated for hydrological systems analysis. This approach leads to the simulation of the land use change impacts on the hydrological cycle. Results indicated that evapotranspiration, surface runoff, groundwater flow, and water yield were affected by the land use change scenarios in different magnitudes. Overall, changes of land use and land cover have significant impacts on runoff patterns at the watershed scale in terms of both the total water yield (i.e., groundwater flow, surface runoff, and interflow, minus transmission losses) and the spatial distribution of runoff. The changes in runoff distribution were resulted in opposite impacts within the two land use scenarios including forest and agriculture. Water yield has a decrease of 1.8 percent in the forest-prone landscape scenario and an increase of 4.2 percent in the agriculture-rich scenario during the simulated period. Surface runoff was the most affected component in the hydrological cycle. Whereas surface runoff as part of water yield has a decrease of 8.2 percent in the forest- prone landscape scenario, there is an increase of 8.6 percent in the agriculture-rich landscape scenario. Different runoff patterns associated with each land use scenario imply the potential effect on flood or drought mitigation

  16. Reducing N losses through surface runoff from rice-wheat rotation by improving fertilizer management.

    Science.gov (United States)

    Cao, Yansheng; Sun, Huifeng; Liu, Yaqin; Fu, Zishi; Chen, Guifa; Zou, Guoyan; Zhou, Sheng

    2017-02-01

    To better understand N runoff losses from rice-wheat rotation and demonstrate the effectiveness of improved fertilizer management in reducing N runoff losses, a field study was conducted for three consecutive rice-wheat rotations. Nitrogen losses through surface runoff were measured for five treatments, including CK without N application, C200, C300 simulating the conventional practices, CO200, and CO300. Optimum N rate was applied for C200 and CO200, and 30% of chemical fertilizer was substituted with organic fertilizer for CO200 and CO300 with respect to C200 and C300, respectively. Rice season had higher runoff coefficients than wheat season. Approximately 52% of total N was lost as NH 4 + -N in rice season, ranging from 21 to 83%, and in wheat season, the proportion of NO 3 - -N in total N averaged 53% with a variation from 38 to 67%. The N treatments lost less total N in rice season (1.67-10.7 kg N ha -1 ) than in wheat season (1.72-17.1 kg N ha -1 ). These suggested that a key to controlling N runoff losses from rice-wheat rotation was to limit NO 3 - -N accumulation in wheat season. In both seasons, N runoff losses for C200 and CO300 were lower than those for C300. CO200 better cut N losses than C200 and CO300, with 64 and 57% less N in rice and wheat seasons than C300, respectively. Compared with the conventional practices, optimum N inputs integrated with co-application of organic and chemical fertilizers could reduce N runoff losses with a better N balance under rice-wheat rotation.

  17. Runoff and soil loss from bench terraces. 1. An event-based model of rainfall infiltration and surface runoff.

    NARCIS (Netherlands)

    van Dijk, A.I.J.M.; Bruijnzeel, L.A.

    2004-01-01

    Overland flow resulting from an excess of rain over infiltration is an essential component of many models of runoff and erosion from fields or catchments. The spatially variable infiltration (SVI) model and a set of associated equations relating depth of runoff and maximum rate of 'effective' runoff

  18. A comparative study of the grain-size distribution of surface dust and stormwater runoff quality on typical urban roads and roofs in Beijing, China.

    Science.gov (United States)

    Shen, Zhenyao; Liu, Jin; Aini, Guzhanuer; Gong, Yongwei

    2016-02-01

    The deposition of pollutants on impervious surfaces is a serious problem associated with rapid urbanization, which results in non-point-source pollution. Characterizing the build-up and wash-off processes of pollutants in urban catchments is essential for urban planners. In this paper, the spatial variation and particle-size distributions of five heavy metals and two nutrients in surface dust were analyzed, and the runoff water first-flush effect (FF30) and event-mean concentrations (EMCs) of 10 common constituents were characterized. The relationships between runoff variables and stormwater characteristics were examined from three typical urban impervious surfaces in Beijing, China. Dust on road surfaces with smaller grain sizes had higher pollutant concentrations, whereas concentrations of Mn, Zn, Fe, and TP in roof surface dust increased with grain size. Particles with grain sizes of 38-74 and 125-300 μm contributed most to the total pollutant load in roads, while particles with the smallest grain sizes (roads. The maximum intensity (I max) and the antecedent dry days (ADD) were critical parameters for EMCs in roads, while ADD was the only dominant parameter for EMCs on our studied roof. The rainfall intensity (RI) and maximum intensity (I max) were found to be the parameters with the strongest correlation to the first-flush effect on both roads and roofs. Significant correlations of total suspended solids (TSS) concentration in runoff with grain-size fractions of surface dust indicated that coarser particles (74-300 μm) are most likely to contribute to the solid-phase pollutants, and finer particles (<38 μm) are likely the main source of dissolved pollutants.

  19. Emerging contaminants in surface waters in China—a short review

    International Nuclear Information System (INIS)

    Yang, Guang; Zhang, Guangming; Fan, Maohong

    2014-01-01

    Emerging contaminants (ECs) have drawn attention to many countries due to their persistent input and potential threat to human health and the environment. This article reviews the current contamination sources and their status for surface waters in China. The contamination levels of ECs in surface waters are in the range ng L −1 to μg L −1 in China, apparently about the same as the situation in other countries. ECs enter surface water via runoff, drainage, rainfall, and wastewater treatment effluent. The frequency of occurrence of ECs increased rapidly from 2006 to 2011; a significant reason is the production and consumption of pharmaceuticals and personal care products. As for the distribution of EC pollution in China, the frequency of occurrence of ECs in eastern regions is higher than in western regions. A majority of EC studies have focused on surface waters of the Haihe River and Pearl River watersheds due to their highly developed industries and intense human activity. Legislative and administrative regulation of ECs is lacking in China. To remove ECs, a number of technologies, such as absorption by activated carbon, membrane filtration technology, and advanced oxidation processes, have been researched. (letter)

  20. Emerging contaminants in surface waters in China—a short review

    Science.gov (United States)

    Yang, Guang; Fan, Maohong; Zhang, Guangming

    2014-07-01

    Emerging contaminants (ECs) have drawn attention to many countries due to their persistent input and potential threat to human health and the environment. This article reviews the current contamination sources and their status for surface waters in China. The contamination levels of ECs in surface waters are in the range ng L-1 to μg L-1 in China, apparently about the same as the situation in other countries. ECs enter surface water via runoff, drainage, rainfall, and wastewater treatment effluent. The frequency of occurrence of ECs increased rapidly from 2006 to 2011; a significant reason is the production and consumption of pharmaceuticals and personal care products. As for the distribution of EC pollution in China, the frequency of occurrence of ECs in eastern regions is higher than in western regions. A majority of EC studies have focused on surface waters of the Haihe River and Pearl River watersheds due to their highly developed industries and intense human activity. Legislative and administrative regulation of ECs is lacking in China. To remove ECs, a number of technologies, such as absorption by activated carbon, membrane filtration technology, and advanced oxidation processes, have been researched.

  1. The use of simulated rainfall to study the discharge process and the influence factors of urban surface runoff pollution loads.

    Science.gov (United States)

    Qinqin, Li; Qiao, Chen; Jiancai, Deng; Weiping, Hu

    2015-01-01

    An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm⁻². Smaller particle sizes (pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.

  2. Prescribed Fire Effects on Runoff, Erosion, and Soil Water Repellency on Steeply-Sloped Sagebrush Rangeland over a Five Year Period

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.

    2014-12-01

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to manage vegetation and fuels on sagebrush rangelands and to reduce the potential for large catastrophic fires and mass erosion events. The impact of burning on event hydrologic and erosion responses is strongly related to the degree to which burning alters vegetation, ground cover, and surface soils and the intensity and duration of precipitation. Fire impacts on hydrologic and erosion response may be intensified or reduced by inherent site characteristics such as topography and soil properties. Parameterization of these diverse conditions in predictive tools is often limited by a lack of data and/or understanding for the domain of interest. Furthermore, hydrologic and erosion functioning change as vegetation and ground cover recover in the years following burning and few studies track these changes over time. In this study, we evaluated the impacts of prescribed fire on vegetation, ground cover, soil water repellency, and hydrologic and erosion responses 1, 2, and 5 yr following burning of a mountain big sagebrush community on steep hillslopes with fine-textured soils. The study site is within the Reynolds Creek Experimental Watershed, southwestern Idaho, USA. Vegetation, ground cover, and soil properties were measured over plot scales of 0.5 m2 to 9 m2. Rainfall simulations (0.5 m2) were used to assess the impacts of fire on soil water repellency, infiltration, runoff generation, and splash-sheet erosion. Overland flow experiments (9 m2) were used to assess the effects of fire-reduced ground cover on concentrated-flow runoff and erosion processes. The study results provide insight regarding fire impacts on runoff, erosion, and soil water repellency in the immediate and

  3. Toxicity and chemical analyses of airport runoff waters in Poland.

    Science.gov (United States)

    Sulej, Anna Maria; Polkowska, Zaneta; Wolska, Lidia; Cieszynska, Monika; Namieśnik, Jacek

    2014-05-01

    The aim of this study was to assess the ecotoxicological effects of various compounds in complex airport effluents using a chemical and ecotoxicological integrated strategy. The present work deals with the determination of sum of PCBs, PAHs, pesticides, cations, anions, phenols, anionic, cationic, non-ionic detergents, formaldehyde and metals--as well as TOC and conductivity--in runoff water samples collected from 2009 to 2011 at several locations on two Polish international airports. Two microbiotests (Vibrio fischeri bacteria and the crustacean Thamnocephalus platyurus) have been used to determine the ecotoxicity of airport runoff waters. The levels of many compounds exceeded several or even several tens of times the maximum permissible levels. Analysis of the obtained data shows that samples that displayed maximum toxicity towards the bioindicators Vibrio fischeri were not toxic towards Thamnocephalus platyurus. Levels of toxicity towards T. platyurus are strongly correlated with pollutants that originate from the technological operations related to the maintenance of airport infrastructure. The integrated (chemical-ecotoxicological) approach to environmental contamination assessment in and around airports yields extensive information on the quality of the environment. These methodologies can be then used as tools for tracking the environmental fate of these compounds and for assessing the environmental effect of airports. Subsequently, these data will provide a basis for airport infrastructure management.

  4. Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework

    Science.gov (United States)

    Achieng, K. O.; Zhu, J.

    2017-12-01

    There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?

  5. Soil aggregate stability and size-selective sediment transport with surface runoff as affected by organic residue amendment.

    Science.gov (United States)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-12-31

    Aggregate breakdown influences the availability of soil particles for size-selective sediment transport with surface runoff during erosive rainfall events. Organic matter management is known to affect aggregate stability against breakdown, but little is known about how this translates into rainfall-induced aggregate fragmentation and sediment transport under field conditions. In this study, we performed field experiments in which artificial rainfall was applied after pre-wetting on three pairs of arable soil plots (1.5×0.75m) six weeks after incorporating a mixture of grass and wheat straw into the topsoil of one plot in each pair (OI treatment) but not on the other plot (NI treatment). Artificial rainfall was applied for approximately 2h on each pair at an intensity of 49.1mmh -1 . In both treatments, discharge and sediment concentration in the discharge were correlated and followed a similar temporal pattern after the onset of surface runoff: After a sharp increase at the beginning both approached a steady state. But the onset of runoff was more delayed on the OI plots, and the discharge and sediment concentration were in average only roughly half as high on the OI as on the NI plots. With increasing discharge the fraction of coarse sediment increased. This relationship did not differ between the two treatments. Thus, due to the lower discharge, the fraction of fine particles in the exported sediment was larger in the runoff from the OI plots than from the NI plots. The later runoff onset and lower discharge rate was related to a higher initial aggregate stability on the OI plots. Terrestrial laser scanning proved to be a very valuable method to map changes in the micro-topography of the soil surfaces. It revealed a much less profound decrease in surface roughness on the OI than on the NI plots. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 94, Group ESH-19. Progress report

    International Nuclear Information System (INIS)

    Conrad, R.; Childs, M.; Lyons, C.R.; Coriz, F.

    1996-08-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory during FY94 to characterize possible contaminant movement out of Area G through surface-water and sediment runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. Ten metals were also analyzed on selected soils using analytical laboratory techniques. All radiochemical data are compared with analogous samples collected during FY 93 and reported in LA-12986. Baseline concentrations for future disposal operations were established for metals and radionuclides by a sampling program in the proposed Area G Expansion Area. Considering the amount of radioactive waste that has been disposed at Area G, there is evidence of only low concentrations of radionuclides on perimeter surface soils. Consequently, little radioactivity is leaving the confines of Area G via the surface water runoff pathway

  7. Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China

    International Nuclear Information System (INIS)

    Shi, Yali; Gao, Lihong; Li, Wenhui; Wang, Yuan; Liu, Jiemin; Cai, Yaqi

    2016-01-01

    The occurrence, spatial distribution and seasonal variation of 14 organophosphate esters (OPEs) were investigated in urban surface water (river and lake water) from July 2013 to June 2014 in Beijing, China. Sewage influent and effluent samples, as well as rainwater and road runoff samples were also analyzed as the potential sources of OPEs in surface water. Tris(2-chloro-1-methylethyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) were the most abundant OPEs with the average concentrations of 291 ng L"−"1 and 219 ng L"−"1, respectively. Relatively high concentrations of OPEs were detected in rivers located at southern and eastern urban of Beijing, which was probably attributed to the treated and untreated sewage discharge. Besides, higher levels of OPEs were observed in urban surface water in the summer, and the wet deposition (rainfall) was confirmed to be an important factor for this observation. Risk assessment showed low or medium risk of OPEs for the organisms (algae, crustacean and fish). - Highlights: • High levels of OPEs were detected in urban surface water of Beijing, China. • Seasonal variation revealed higher levels of OPEs in the summer. • Wastewater, rainwater and road runoff samples were analyzed as sources of OPEs. • The risks of OPEs to the organisms (algae, crustacean and fish) were assessed. - The occurrence, spatial distribution and seasonal variation of OPEs in urban surface water were investigated from densely populated big city (Beijing, China).

  8. Use of isotopically labeled fertilizer to trace nitrogen fertilizer contributions to surface, soil, and ground water

    Science.gov (United States)

    Wilkison, D.H.; Blevins, D.W.; Silva, S.R.

    2000-01-01

    The fate and transport of a single N fertilizer application through plants, soil, runoff, and the unsaturated and saturated zones was determined for four years at a field site under continuous corn (Zea mays L.) management. Claypan soils, which underlie the site, were hypothesized to restrict the movement of agrichemicals from the soil surface to ground water. However, N fertilizer moved rapidly through preferential flow paths in the soil and into the underlying glacial till aquifer. Most N transport occurred during the fall and winter when crops were not available to use excess N. Forty months after application, 33 percent of the fertilizer had been removed by grain harvests, 30 percent had been transpired to the atmosphere, and 33 percent had migrated to ground water. Although runoff volumes were 50 percent greater than infiltration, less than 2 percent of the fertilizer was lost to runoff. Small measured denitrification rates and large measured dissolved oxygen concentrations in ground water favor the long-term stability of NO3-1 in ground water. Successive fertilizer applications, in areas that lack the ability to moderate N concentrations through consumptive N reactions, risk the potential of N-saturated ecosystems.

  9. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    International Nuclear Information System (INIS)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-01-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  10. Seasonal herbicide monitoring in soil, runoff and sediments of an olive orchard under conventional tillage

    Science.gov (United States)

    Calderón, Maria Jesus; de Luna, Elena; Gómez, José Alfonso; Cornejo, Juan; Hermosín, M. Carmen

    2015-04-01

    Several pollution episodes in surface and groundwaters with pesticides have occurred in areas where olive crops are established. For that reason, it is necessary to know the evolution of some pesticides in olive trees plantation depending on their seasonal application. This is especially important when conventional tillage is used. A monitoring of two herbicides (terbuthylazine and oxyfluorfen)in the first cm of soil and, in runoff and sediment yield was carried out after several rainfall events. The rainfall occurred during the study was higher in winter than in spring giving rise more runoff in winter. However, no differences in sediment yields were observed between spring and winter. Terbuthylazine depletion from soil is associated to the first important rainfall events in both seasons (41 mm in spring and 30 mm in winter). At the end of the experiment, no terbuthylazine soil residues were recovered in winter whereas 15% of terbuthylazine applied remained in spring. Oxyfluorfen showed a character more persistent than terbuthylazine remaining 48% of the applied at the end of the experiment due to its low water solubility. Higher percentage from the applied of terbuthylazine was recovered in runoff in winter (0.55%) than in spring (0.17%). Nevertheless, no differences in terbuthylazine sediments yields between both seasons were observed. That is in agreement with the values of runoff and sediment yields accumulated in tanks in both seasons. Due to the low water solubility of oxyfluorfen very low amount of this herbicide was recovered in runoff. Whereas, in sediment yields the 39.5% of the total applied was recovered. These data show that the dissipation of terbuthylazine from soil is closely related with leaching processes and in less extent with runoff. However, oxyfluorfen dissipation is more affected by runoff processes since this herbicide is co-transported in sediment yields. Keywords: olive crop, pesticide, runoff, sediments, surface water, groundwater

  11. Concentration and spectroscopic characteristics of DOM in surface runoff and fracture flow in a cropland plot of a loamy soil.

    Science.gov (United States)

    Xian, Qingsong; Li, Penghui; Liu, Chen; Cui, Junfang; Guan, Zhuo; Tang, Xiangyu

    2018-05-01

    Being crucial for predicting the impact of source inputs on a watershed in rainfall events, an understanding of the dynamics and characteristics of dissolved organic matter (DOM) export from the soil under particular land use types, particularly those associated with underground flows is still largely lacking. A field study was carried out using a 1500m 2 slope farmland plot in the hilly area of Sichuan Basin, Southwest China. The discharge of surface runoff and fracture flow was recorded and samples were collected in four representative rainfall events. For DOM characterization, concentration of dissolved organic carbon (DOC) and absorbance/excitation-emission matrix (EEM) fluorescence were analyzed. Soil water potential was also determined using tensiometers for understanding the runoff generation mechanisms. The DOC values for both surface and fracture flow showed significant responses to rainfall, with hydrological path being the primary factor in determining DOM dynamics. EEM-PARAFAC analyses indicated that the soil DOM mainly consisted of two terrestrial humic-like components with peaks located at Ex/Em 270(380)/480nm (C1) and 250(320)/410nm (C2), respectively. Concentrations of these components also responded strongly to rainfall, fluctuating in good agreement with the corresponding DOCs. Although there was no change in the presence of the components themselves, their relative distributions varied during precipitation, with the C1/C2 ratio increasing with the proportion of soil pre-event water. As the dynamic changes of soil DOM characteristics can be successfully captured using spectroscopic techniques, they may serve as a tracer for understanding hydrological paths based on their potential correlations with water source differences during rains. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Interactions between surface runoff, hydro sediments and radionuclides (210Pb, 226Ra, 228Ra, Th e U) at Alto Ribeirão das Antas, Poços de Caldas, MG, Brazil

    International Nuclear Information System (INIS)

    Moreira, Flavio Henrique de Souza

    2017-01-01

    Knowledge about hydrological and sedimentological dynamics of a river basin is fundamental to the adequate management of water resources, and it can support the identification of contaminants in the water, the estimation of water erosion, the estimation of reservoir siltation, and even the reduction of water treatment costs. The study carried out in Alto Ribeirão das Antas River Basin assessed, throughout seasons, all interactions between the surface runoff and the transport of suspended and underwater hydro-sediments, through direct monitoring of two sites at the Ribeirão das Antas channel. Concurrently, the potential of the indirect monitoring of suspended solids concentration was evaluated using an optical turbidity sensor. The hydrological results point to a high precipitation in the region, however with a well balanced distribution among the humid months, allowing the basin’s high capacity to transform precipitation into surface runoff. Sediment transport rates characterize the studied area as a low sediment production region. The sedimentological regime was found to be in accordance with the surface runoff regime, reflected by the seasonality of the transported masses. The estimation of transport of sediment in suspension through optical turbidity sensor presented promising results. Most of the results of radionuclides 210 Pb, 226 Ra, 228 Ra, Th and U observed in water and in suspended hydro-sediment were below the detection limit of the methodology, whereas in the riverbed hydro-sediments quantification of radionuclides was possible. The radiometric results indicate absence of radionuclide carriage from the Águas Claras Dam at INB Caldas to Ribeirão das Antas. The low concentration values of radioactive elements observed in the study may be of natural origin, once the Poços de Caldas Plateau region presents a geological constitution endowed with anomalies associated to radionuclides. (author)

  13. The role of storage capacity in coping with intra-annual runoff variability on a global scale

    Science.gov (United States)

    Gaupp, Franziska; Hall, Jim; Dadson, Simon

    2015-04-01

    Intra-annual variability poses a risk to water security in many basins as runoff is unevenly distributed over the year. Areas such as Northern Africa, Australia and the South-Western USA are characterized by a high coefficient of variability of monthly runoff. Analyzing the global risk of water scarcity, this study examines 680 basin-country units (BCUs) (403 river basins divided by country borders). By calculating the water balance for each BCU, the interplay of runoff on the one hand and domestic, industrial and environmental water needs on the other hand is shown. In contrast to other studies on average water scarcity, this work focuses on variability of water supply as metrics based on annual average water availability and demand can underestimate the risk of scarcity. The model is based on the assumption that each country-basin with sub-basins and tributaries can be treated as one single reservoir with storage capacity aggregated over that BCU. It includes surface runoff and the possibility to withdraw groundwater as water supply. The storage capacity of each BCU represents the ability to transfer water from wet months to dry months in order to buffer and cope with intra-annual water supply variability and to meet total water demand. Average monthly surface runoff per country-basin for the period 1979 to 2012 is derived from outcomes of the hydrological model Mac-PDM. Mac-PDM is forced with monthly ERAI-Interim reanalysis climate data on a one degree resolution. Groundwater withdrawal capacity, total water demand and storage capacity are taken from the IMPACT model provided by the International Food Research Institute (IFPRI). Storage refers to any kind of surface reservoir whose water can be managed and used for human activities in the industrial, domestic and agricultural sectors. Groundwater withdrawal capacity refers to the technological capacity to pump water rather than the amount of groundwater available. Total water demand includes consumptive water

  14. Modelling surface run-off and trends analysis over India

    Indian Academy of Sciences (India)

    exponential model was developed between the rainfall and the run-off that predicted the run-off with an R2 of ... precipitation and other climate parameters is well documented ...... Sen P K 1968 Estimates of the regression coefficient based.

  15. Sensitivity Analysis of the Surface Runoff Coefficient of HiPIMS in Simulating Flood Processes in a Large Basin

    Directory of Open Access Journals (Sweden)

    Yueling Wang

    2018-03-01

    Full Text Available To simulate flood processes at the basin level, the GPU-based High-Performance Integrated Hydrodynamic Modelling System (HiPIMS is gaining interest as computational capability increases. However, the difficulty of coping with rainfall input to HiPIMS reduces the possibility of acquiring a satisfactory simulation accuracy. The objective of this study is to test the sensitivity of the surface runoff coefficient in the HiPIMS source term in the Misai basin with an area of 797 km2 in south China. To achieve this, the basin was divided into 909,824 grid cells, to each of which a Manning coefficient was assigned based on its land use type interpreted from remote sensing data. A sensitivity analysis was conducted for three typical flood processes under four types of surface runoff coefficients, assumed a priori, upon three error functions. The results demonstrate the crucial role of the surface runoff coefficient in achieving better simulation accuracy and reveal that this coefficient varies with flood scale and is unevenly distributed over the basin.

  16. Runoff of pesticides from rice fields in the Ile de Camargue (Rhone river delta, France): Field study and modeling

    International Nuclear Information System (INIS)

    Comoretto, Laetitia; Arfib, Bruno; Talva, Romain; Chauvelon, Philippe; Pichaud, Marc; Chiron, Serge; Hoehener, Patrick

    2008-01-01

    A field study on the runoff of pesticides was conducted during the cultivation period in 2004 on a hydraulically isolated rice farm of 120 ha surface with one central water outlet. Four pesticides were studied: Alphamethrin, MCPA, Oxadiazon, and Pretilachlor. Alphamethrin concentrations in runoff never exceeded 0.001 μg L -1 . The three other pesticides were found in concentrations between 5.2 and 28.2 μg L -1 in the runoff water shortly after the application and decreased thereafter. The data for MCPA compared reasonably well with predictions by an analytical runoff model, accounting for volatilization, degradation, leaching to groundwater, and sorption to soil. The runoff model estimated that runoff accounted for as much as 18-42% of mass loss for MCPA. Less runoff is observed and predicted for Oxadiazon and Pretilachlor. It was concluded that runoff from rice paddies carries important loads of dissolved pesticides to the wetlands in the Ile de Camargue, and that the model can be used to predict this runoff. - Runoff of dissolved pesticides was measured on a rice farm in the Camargue (France) and modeled with an analytical model

  17. Modeling precipitation-runoff relationships to determine water yield from a ponderosa pine forest watershed

    Science.gov (United States)

    Assefa S. Desta

    2006-01-01

    A stochastic precipitation-runoff modeling is used to estimate a cold and warm-seasons water yield from a ponderosa pine forested watershed in the north-central Arizona. The model consists of two parts namely, simulation of the temporal and spatial distribution of precipitation using a stochastic, event-based approach and estimation of water yield from the watershed...

  18. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    Science.gov (United States)

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Commercial pesticide applicators, farmers, and homeowners apply about 1 billion pounds of pesticides annually to agricultural land, non-crop land, and urban areas throughout the United States (Gilliom and others, 2006, p. 1). The U.S. Environmental Protection Agency (USEPA) defines a pesticide as any substance used to kill or control insects, weeds, plant diseases, and other pest organisms. Although there are important benefits from the proper use of pesticides, like crop protection and prevention of human disease outbreaks, there are also risks. One risk is the contamination of groundwater and surface-water resources. Data collected during 1992-2001 from 51 major hydrologic systems across the United States indicate that one or more pesticide or pesticide breakdown product was detected in more than 50 percent of 5,057 shallow (less than 20 feet below land surface) wells and in all of the 186 stream sites that were sampled in agricultural and urban areas (Gilliom and others, 2006, p. 2-4). Pesticides can contaminate surface water and groundwater from both point sources and non-point sources. Point sources are from specific locations such as spill sites, disposal sites, pesticide drift during application, and application of pesticides to control aquatic pests. Non-point sources represent the dominant source of surface water and groundwater contamination and may include agricultural and urban runoff, erosion, leaching from application sites, and precipitation that has become contaminated by upwind applications. Pesticides typically enter surface water when rainfall or irrigation exceeds the infiltration capacity of soil and resulting runoff then transports pesticides to streams, rivers, and other surface-water bodies. Contamination of groundwater may result directly from spills near poorly sealed well heads and from pesticide applications through improperly designed or malfunctioning irrigation systems that also are used to apply pesticides (chemigation; Carpenter and

  19. Capacity of biochar application to maintain energy crop productivity: soil chemistry, sorghum growth, and runoff water quality effects.

    Science.gov (United States)

    Schnell, Ronnie W; Vietor, Donald M; Provin, Tony L; Munster, Clyde L; Capareda, Sergio

    2012-01-01

    Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.) Moench] treatments were installed in box lysimeters under greenhouse conditions. Treatments comprised increasing rates (0, 1.5, and 3.0 Mg ha) of topdressed or incorporated biochar supplemented with N fertilizer or N, P, and K fertilizer. Simulated rain was applied at 21 and 34 d after planting, and mass runoff loss of N, P, and K was measured. A mass balance of total N, P, and K was performed after 45 d. Returning 3.0 Mg ha of biochar did not affect sorghum biomass, soil total, or Mehlich-3-extractable nutrients compared to control soil. Yet, biochar contributed to increased concentration of dissolved reactive phosphorus (DRP) and mass loss of total phosphorus (TP) in simulated runoff, especially if topdressed. It was estimated that up to 20% of TP in topdressed biochar was lost in surface runoff after two rain events. Poor recovery of nutrients during pyrolysis and excessive runoff loss of nutrients for topdressed biochar, especially K, resulted in negative nutrient balances. Efforts to conserve nutrients during pyrolysis and incorporation of biochar at rates derived from annual biomass yields will be necessary for biochar use in sustainable energy crop production. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field

    OpenAIRE

    Abdulfatah Faraj Aboufayed

    2013-01-01

    Water erosion is the most important problems of the soil in the Jabel Nefusa area located in northwest of Libya; therefore, erosion station had been established in the Faculty of Veterinary and dryfarming research Station, University of the Al-japel Al-gharbi in Zentan. The length of the station is 72.6 feet, 6 feet width and the percentage of its slope is 3%. The station were established to measure the amount of soil eroded and amount of surface water produced during the seasons 95/96 and 96...

  1. Rainfall simulations to study the types of groundcover on surface runoff and soil erosion in Champagne vineyards in France

    Science.gov (United States)

    Xavier, Morvan; Christophe, Naisse; Issa Oumarou, Malam; Jean-François, Desprats; Anne, Combaud; Olivier, Cerdan

    2015-04-01

    In the literature, grass cover is often considered to be one of the best methods of limiting runoff in the vineyards; But results can vary, especially when the plot area is Champagne vineyards in France, was to quantify the influence of the cultivation practices in the inter-rows of vines and determine the influence of the density of the grass cover in the wheel tracks on the surface runoff and soil erosion in experimental plots of 0.25 m2 under simulated rainfall. Three types of ground cover were studied. In the bark-and-vine-prunings plots, the runoff coefficient ranged from 1.3 to 4.0% and soil losses were <1 g/m²/h. In the bare soil plot, the highest runoff coefficient of the study was found (80.0%) and soil losses reached 7.4 g/m²/h. In the grass cover plots, the runoff coefficient and amount of eroded soil were highly variable: the runoff coefficients ranged from 0.4 to 77.0%, and soil losses were between less than 1 and 13.4 g/m²/h. Soil type, soil moisture, slope and agricultural practices did not account for the variability. In fact, the density of grass cover in the wheel tracks explained a portion of this variability. The lack of grass in the centre of the inter-row allowed for a preferential flow and created an erosion line in the wheel tracks where the soil was compacted. This study showed that grass cover in a vineyard was not necessarily sufficient to reduce surface runoff and prevent soil erosion. To be effective, the grass cover must be dense enough in the wheel tracks of agricultural machinery to avoid runoff coefficients close to those achieved with bare soil.

  2. Multiple sources of boron in urban surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Hasenmueller, Elizabeth A., E-mail: eahasenm@wustl.edu; Criss, Robert E.

    2013-03-01

    Previous studies attribute abnormal boron (B) levels in streams and groundwaters to wastewater and fertilizer inputs. This study shows that municipal drinking water used for lawn irrigation contributes substantial non-point loads of B and other chemicals (S-species, Li, and Cu) to surface waters and shallow groundwaters in the St. Louis, Missouri, area. Background levels and potential B sources were characterized by analysis of lawn and street runoff, streams, rivers, springs, local rainfall, wastewater influent and effluent, and fertilizers. Urban surface waters and groundwaters are highly enriched in B (to 250 μg/L) compared to background levels found in rain and pristine, carbonate-hosted streams and springs (< 25 μg/L), but have similar concentrations (150 to 259 μg/L) compared to municipal drinking waters derived from the Missouri River. Other data including B/SO{sub 4}{sup 2-}−S and B/Li ratios confirm major contributions from this source. Moreover, sequential samples of runoff collected during storms show that B concentrations decrease with increased discharge, proving that elevated B levels are not primarily derived from combined sewer overflows (CSOs) during flooding. Instead, non-point source B exhibits complex behavior depending on land use. In urban settings B is rapidly mobilized from lawns during “first flush” events, likely representing surficial salt residues from drinking water used to irrigate lawns, and is also associated with the baseflow fraction, likely derived from the shallow groundwater reservoir that over time accumulates B from drinking water that percolates into the subsurface. The opposite occurs in small rural watersheds, where B is leached from soils by recent rainfall and covaries with the event water fraction. Highlights: ► Boron sources and loads differ between urban and rural watersheds. ► Wastewaters are not the major boron source in small St. Louis, MO watersheds. ► Municipal drinking water used for lawn

  3. Runoff and windblown vehicle spray from road surfaces, risks and measures for soil and water.

    NARCIS (Netherlands)

    Schipper, P.N.M.; Comans, R.N.J.; Dijkstra, J.J.; Vergouwen, L.

    2007-01-01

    Soil and surface water along roads are exposed to pollution from motorways. The main pollutants are polycyclic aromatic hydrocarbons (PAH), mineral oil, heavy metals and salt. These pollutants originate from vehicles (fuel, wires, leakage), wear and degradation of road surfaces and road furniture

  4. Metamodeling as a tool to size vegetative filter strips for surface runoff pollution control in European watersheds.

    Science.gov (United States)

    Lauvernet, Claire; Muñoz-Carpena, Rafael; Carluer, Nadia

    2015-04-01

    In Europe, a significant presence of contaminants is found in surface water, partly due to pesticide applications. Vegetative filter strips or buffer zones (VFS), often located along rivers, are a common best management practice (BMP) to reduce non point source pollution of water by reducing surface runoff. However, they need to be adapted to the agro-ecological and climatic conditions, both in terms of position and size, in order to be efficient. The TOPPS-PROWADIS project involves European experts and stakeholders to develop and recommend BMPs to reduce pesticide transfer by drift or runoff in several European countries. In this context, IRSTEA developed a guide accompanying the use of different tools, which allows designing site-specific VFS by simulating their efficiency to limit transfers using the mechanistic model VFSMOD. This method which is very complete assumes that the user provides detailed field knowledge and data, which are not always easily available. The aim of this study is to assist the buffer sizing by using a unique tool with a reduced set of parameters, adapted to the available information from the end-users. In order to fill in the lack of real data in many practical applications, a set of virtual scenarios was selected to encompass a large range of agro-pedo-climatic conditions in Europe, considering both the upslope agricultural field and the VFS characteristics. As a first step first, in this work we present scenarios based on North-West of France climate consisting of different rainfall intensities and durations, hillslope lengths and slopes, humidity conditions, a large set of field rainfall/runoff characteristics for the contributing area, and several shallow water table depths and soil types for the VFS. The sizing method based on the mechanistic model VFSMOD was applied for all these scenarios, and a global sensitivity analysis (GSA) of the VFS optimal length was performed for all the input parameters in order to understand their

  5. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    OpenAIRE

    Munoz Carpena, R.; Lauvernet, C.; Carluer, N.

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To si...

  6. Estimating runoff from ungauged catchments for reservoir water ...

    African Journals Online (AJOL)

    The Lower Middle Zambezi Basin is sandwiched between three hydropower ... This study applied a rainfall-runoff model (HEC-HMS) and GIS techniques to ... Missing data were generated using the mean value infilling method. ... A hydrological model, HEC- HMS, was used to simulate runoff from the ungauged catchments.

  7. Estimating Runoff and Soil Moisture Deficit in Guinea Savannah Region of Nigeria using Water Balance Method

    Directory of Open Access Journals (Sweden)

    A. R. Adesiji

    2012-12-01

    Full Text Available The estimation of runoff and soil moisture deficit in Guinea Savannah region using semi arid model based on soil water balance technique (SAMBA was carried out. The input to the SAMBA model are daily rainfall, daily evapotranspiration, type and date of planting of crop, and soil parameters. The estimated runoff was validated with field measurement taken in a 67.23 ha catchment in the study area. The annual rainfall for the year under study (2009 is 1356.2 mm, the estimated annual evapotranspiration. runoff and recharge are 638mm, 132.93mm, and 447.8mm respectively. Recharge was experienced 23 days after a significant depth of rainfall was recorded. For the crop growth in the catchment, the soil was cropped with a pepper and the growth monitored from the planting to the harvesting. The crop enjoyed so much moisture throughout the growing period as Total Available Water in the soil is greater than Soil Moisture Deficit (TAW>SMD. The model results show that the larger percentage of the total annual rainfall was lost to evaporation and recharge during the growing season. The low runoff and high recharge are attributed to soil characteristics of the area and moderate terrain of the study area.

  8. Multifactor analysis and simulation of the surface runoff and soil infiltration at different slope gradients

    Science.gov (United States)

    Huang, J.; Kang, Q.; Yang, J. X.; Jin, P. W.

    2017-08-01

    The surface runoff and soil infiltration exert significant influence on soil erosion. The effects of slope gradient/length (SG/SL), individual rainfall amount/intensity (IRA/IRI), vegetation cover (VC) and antecedent soil moisture (ASM) on the runoff depth (RD) and soil infiltration (INF) were evaluated in a series of natural rainfall experiments in the South of China. RD is found to correlate positively with IRA, IRI, and ASM factors and negatively with SG and VC. RD decreased followed by its increase with SG and ASM, it increased with a further decrease with SL, exhibited a linear growth with IRA and IRI, and exponential drop with VC. Meanwhile, INF exhibits a positive correlation with SL, IRA and IRI and VC, and a negative one with SG and ASM. INF was going up and then down with SG, linearly rising with SL, IRA and IRI, increasing by a logit function with VC, and linearly falling with ASM. The VC level above 60% can effectively lower the surface runoff and significantly enhance soil infiltration. Two RD and INF prediction models, accounting for the above six factors, were constructed using the multiple nonlinear regression method. The verification of those models disclosed a high Nash-Sutcliffe coefficient and low root-mean-square error, demonstrating good predictability of both models.

  9. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-08-01

    Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981-2006 (R2 > 0.46, p 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly stream flow in winter and early spring for rivers located at mid-to-high latitudes. In addition, LH

  10. Surface-water resources of Polecat Creek basin, Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1956-01-01

    A compilation of basic data on surface waters in Polecat Creek basin is presented on a monthly basis for Heyburn Reservoir and for Polecat Creek at Heyburn, Okla. Chemical analyses are shown for five sites in the basin. Correlation of runoff records with those for nearby basins indicates that the average annual runoff of the basin above gaging station at Heyburn is 325 acre-feet per square mile. Estimated duration curves of daily flow indicate that under natural conditions there would be no flow in Polecat Creek at Heyburn (drainage area, 129 square miles) about 16 percent of the time on an average, and that the flow would be less than 3 cubic feet per second half of the time. As there is no significant base flow in the basin, comparable low flows during dry-weather periods may be expected in other parts of the basin. During drought periods Heyburn Reservoir does not sustain a dependable low-water flow in Polecat Creek. Except for possible re-use of the small sewage effluent from city of Sapulpa, dependable supplies for additional water needs on the main stem will require development of supplemental storage. There has been no regular program for collection of chemical quality data in the basin, but miscellaneous analyses indicate a water of suitable quality for municipal and agricultural uses in Heyburn Reservoir and Polecat Creek near Heyburn. One recent chemical analysis indicates the possibility of a salt pollution problem in the Creek near Sapulpa. (available as photostat copy only)

  11. Assessment of runoff contributing catchment areas in rainfall runoff modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Johansen, C.; Schaarup-Jensen, Kjeld

    2006-01-01

    In numerical modelling of rainfall caused runoff in urban sewer systems an essential parameter is the hydrological reduction factor which defines the percentage of the impervious area contributing to the surface flow towards the sewer. As the hydrological processes during a rainfall are difficult...... to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till now...... recommended literature values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literature values of the hydrological reduction factor are over-estimated for this type of catchment. In addition, different catchment descriptions...

  12. Treatment of atrazine in nursery irrigation runoff by a constructed wetland.

    Science.gov (United States)

    Runes, Heather B; Jenkins, Jeffrey J; Moore, James A; Bottomley, Peter J; Wilson, Bruce D

    2003-02-01

    To investigate the treatment capability of a surface flow wetland at a container nursery near Portland, Oregon, atrazine was introduced during simulated runoff events. Treatment efficiency was evaluated as the percent atrazine recovered (as percent of applied) in the water column at the wetland's outlet. Atrazine treatment efficiency at the outlet of the constructed wetland during a 7-d period ranged from 18-24% in 1998 (experiments 1-3) and 16-17% in 1999 (experiments 4 and 5). Changes in total flow, or frequency and intensity of runoff events did not affect treatment. For experiment 6 in 1999, where the amount, frequency, and duration of runoff events exceeded all other experiments, treatment was compromised. For all experiments, deethylatrazine (DEA) and deisopropylatrazine (DIA) accounted for 13-21% of the initial application. Hydroxyatrazine (HA) was rarely detected in the water. Organic carbon adsorption coefficients (Koc) were determined from batch equilibrium sorption isotherms with wetland sediment, and they decreased in the order of HA > DIA > atrazine > DEA. Static water-sediment column experiments indicated that sorption is an important mechanism for atrazine loss from water passing through the constructed wetland. The results of the MPN assay indicated the existence in the wetland of a low-density population of microorganisms with the potential to mineralize atrazine's ethyl side chain.

  13. Urban Runoff: Getting to the Nonpoint

    OpenAIRE

    Pendall, Rolf

    1994-01-01

    Mandates for water-quality improvement have forced regulators and planners to confront the problem of urban runoff, still an important source of water pollution. This ar­ticle discusses those mandates and how to meet them, and provides examples of ongoing nonpoint water pollution control programs in the San Francisco Bay Area. These examples suggest that cleanup of urban runoff may require more comprehensive regional planning to encourage a de­velopment pattern conducive to pollution control.

  14. Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.

    Science.gov (United States)

    Zhang, Xuyang; Goh, Kean S

    2015-11-01

    Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Effects of field storage method on E. coli concentrations measured in storm water runoff

    Science.gov (United States)

    Storm water runoff is increasingly assessed for fecal indicator organisms (e.g., Escherichia coli, E. coli) and its impact on contact recreation. Concurrently, use of autosamplers along with logistic, economic, technical, and personnel barriers are challenging conventional protocols for sample hold...

  16. Geochemical Tracing of Potential Hydraulic Connections between Groundwater and Run-Off Water in Northeastern Kansas, USA

    Directory of Open Access Journals (Sweden)

    Norbert Clauer

    2017-11-01

    Full Text Available This study is focused on establishing the extent of potential hydraulic connections of local lowland aquifers with the run-off waters of a nearby creek and two major rivers in and around Fort Riley in northeastern Kansas, USA. It is based on collective evidence by combining the contents of several major and trace elements of the waters with their oxygen, hydrogen and Sr isotopic compositions. The area of investigation is located a few miles to the west of the Kansas Konza Prairie, which is a United States designated site for regular monitoring of ecological and environmental configurations. The δ18O and δD of the run-off waters from the two rivers and the creek, and of the ground waters from local aquifers are almost identical. Relative to the General Meteoric Water Line, the δ18O-δD data have a tendency to deviate towards relatively lower δ18O values, as do generally the sub-surface waters of intra-continental basins. The observed stable isotope compositions for these waters preclude any significant impact by either an evapo-transpiration process by the vegetation, or an interaction with immediate mineral-rock matrices. The 87Sr/86Sr ratios of the aquifer waters collected from wells close to the Kansas River were markedly different from those of the river waters, confirming a lack of hydraulic interactions between the aquifers and the river. On the contrary, ground waters from wells at a relative distance from the Kansas River have 87Sr/86Sr ratios, Sr contents and Sr/Ca ratios that are similar to those of the river water, suggesting a hydraulic connection between these aquifers and the river, as well as a lack of any impact of the vegetation. An underground water supply from nearby Summer Hill located to the north of the study area has also been detected, except for its western border where no interactions occurred apparently between the aquifer waters and the reservoir rocks, or with the creek and river waters. The 87Sr/86Sr signatures

  17. The role of soil in the generation of urban runoff : development and evaluation of a 2D model

    OpenAIRE

    BERTHIER, E; ANDRIEU, H; CREUTIN, JD

    2004-01-01

    A two-dimensional numerical model is developed to determine the role of soil in the formation of urban catchment runoff. The model is based on a modeling unit, called the Urban Hydrological Element (UHE), which corresponds to the cross-section of an urban cadastral parcel. Water flow in the soil of a UHE is explicitly simulated with a finite element code for solving the Richards' equation. Two runoff components, dependent on soil behavior, are represented: runoff from natural surfaces and dra...

  18. A simple rainfall-runoff model based on hydrological units applied to the Teba catchment (south-east Spain)

    Science.gov (United States)

    Donker, N. H. W.

    2001-01-01

    A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall-runoff relationship of the 202 km2 Teba river catchment, located in semi-arid south-eastern Spain. The period of available data (1976-1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years.The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes.The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum.Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level.

  19. Estimating the tritium input to groundwater from wine samples: Groundwater and direct run-off contribution to Central European surface waters

    International Nuclear Information System (INIS)

    Roether, W.

    1967-01-01

    yearly average of precipitation. This is reflected also by river measurements, which in the absence of a direct run-off contribution, show a surprisingly low tritium content. The Weser river, which has its catchment area in the hilly districts and the lowlands of Northern Germany, is an example of dependence on large groundwater bodies and shows large fluctuations in tritium concentration correlated with rainfall. These fluctuations originate from the varying ratio of direct run-off to groundwater contribution, the direct run-off being much higher in tritium than the groundwater during the period of investigation (1963-65). The minimum tritium values for the Weser show that the groundwater contributions in 1964 had an average level as low as, or lower than 150 T.U. Fluctuations in the tritium concentration of the Alpenrhein, the main inflow of Lake Constance, are relatively small. This is obviously due to the fact that in this case the groundwater draining to the river is replaced fast enough to keep the concentrations of direct run-off and groundwater closely similar. Lake Constance, which is layered in summer and mixed in winter, was followed up in its response to the increased atmospheric tritium levels of recent years. The information on internal mixing of the lake thus obtained is compared to the mixing parameters obtained by other methods. The deep-water activity increased from 150 to 450 T.U. between 1963 and 1965. (author)

  20. Quantifying the Impact of Seasonal and Short-term Manure Application Decisions on Phosphorus Loss in Surface Runoff.

    Science.gov (United States)

    Vadas, Peter A; Good, Laura W; Jokela, William E; Karthikeyan, K G; Arriaga, Francisco J; Stock, Melanie

    2017-11-01

    Agricultural phosphorus (P) management is a research and policy issue due to P loss from fields and water quality degradation. Better information is needed on the risk of P loss from dairy manure applied in winter or when runoff is imminent. We used the SurPhos computer model and 108 site-years of weather and runoff data to assess the impact of these two practices on dissolved P loss. Model results showed that winter manure application can increase P loss by 2.5 to 3.6 times compared with non-winter applications, with the amount increasing as the average runoff from a field increases. Increased P loss is true for manure applied any time from late November through early March, with a maximum P loss from application in late January and early February. Shifting manure application to fields with less runoff can reduce P loss by 3.4 to 7.5 times. Delaying manure application when runoff is imminent can reduce P loss any time of the year, and sometimes quite significantly, but the number of times that application delays will reduce P loss is limited to only 3 to 9% of possible spreading days, and average P loss may be reduced by only 15% for winter-applied manure and 6% for non-winter-applied manure. Overall, long-term strategies of shifting manure applications to low runoff seasons and fields can potentially reduce dissolved P loss in runoff much more compared with near-term, tactical application decisions of avoiding manure application when runoff is imminent. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Use of modified pine bark for removal of pesticides from stormwater runoff

    Science.gov (United States)

    Mandla A. Tshabalala

    2003-01-01

    Pesticide entrainment in stormwater runoff can contribute to non-point source pollution of surface waters. Granular activated carbon has been successfully used for removing pesticides from wastewater. However, implementation of granular activated carbon sorption media in stormwater filtration systems comes with high initial capital investment and operating costs....

  2. Predicting runoff of suspended solids and particulate phosphorus for selected Louisiana soils using simple soil tests.

    Science.gov (United States)

    Udeigwe, Theophilus K; Wang, Jim J; Zhang, Hailin

    2007-01-01

    This study was conducted to evaluate the relationships among total suspended solids (TSS) and particulate phosphorus (PP) in runoff and selected soil properties. Nine Louisiana soils were subjected to simulated rainfall events, and runoff collected and analyzed for various parameters. A highly significant relationship existed between runoff TSS and runoff turbidity. Both runoff TSS and turbidity were also significantly related to runoff PP, which on average accounted for more than 98% of total P (TP) in the runoff. Runoff TSS was closely and positively related to soil clay content in an exponential fashion (y=0.10e0.01x, R2=0.91, Psoil electrical conductivity (EC) (y=0.02 x(-3.95), R2=0.70, Psoil suspension turbidity" (SST) which measures turbidity in a 1:200 soil/water suspension, exhibited highly significant linear relationships with runoff TSS (y=0.06x-4.38, R2=0.82, Psoil clay content and EC in a multiple regression, suggesting that SST was able to account for the integrated effect of clay content and electrolytic background on runoff TSS. The SST test could be used for assessment and management of sediment and particulate nutrient losses in surface runoff.

  3. Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin

    Directory of Open Access Journals (Sweden)

    M. Prasch

    2013-05-01

    Full Text Available Water supply of most lowland cultures heavily depends on rain and melt water from the upstream mountains. Especially melt-water release of alpine mountain ranges is usually attributed a pivotal role for the water supply of large downstream regions. Water scarcity is assumed as consequence of glacier shrinkage and possible disappearance due to global climate change (GCC, in particular for large parts of Central and Southeast Asia. In this paper, the application and validation of a coupled modeling approach with regional climate model (RCM outputs and a process-oriented glacier and hydrological model is presented for the central Himalayan Lhasa River basin despite scarce data availability. Current and possible future contributions of ice melt to runoff along the river network are spatially explicitly shown. Its role among the other water balance components is presented. Although glaciers have retreated and will continue to retreat according to the chosen climate scenarios, water availability is and will be primarily determined by monsoon precipitation and snowmelt. Ice melt from glaciers is and will be a minor runoff component in summer monsoon-dominated Himalayan river basins.

  4. A dynamic continental runoff routing model applied to the last Northern Hemisphere deglaciation

    Directory of Open Access Journals (Sweden)

    H. Goelzer

    2012-05-01

    Full Text Available We describe and evaluate a dynamical continental runoff routing model for the Northern Hemisphere that calculates the runoff pathways in response to topographic modifications due to changes in ice thickness and isostatic adjustment. The algorithm is based on the steepest gradient method and takes as simplifying assumption that depressions are filled at all times and water drains through the lowest outlet points. It also considers changes in water storage and lake drainage in post-processing mode that become important in the presence of large ice dammed proglacial lakes. Although applicable to other scenarios as well, the model was conceived to study the routing of freshwater fluxes during the last Northern Hemisphere deglaciation. For that specific application we simulated the Northern Hemisphere ice sheets with an existing 3-D thermomechanical ice sheet model, which calculates changes in topography due to changes in ice cover and isostatic adjustment, as well as the evolution of freshwater fluxes resulting from surface ablation, iceberg calving and basal melt. The continental runoff model takes this input, calculates the drainage pathways and routes the freshwater fluxes to the surface grid points of an existing ocean model. This results in a chronology of temporally and spatially varying freshwater fluxes from the Last Glacial Maximum to the present day. We analyse the dependence of the runoff routing to grid resolution and parameters of the isostatic adjustment module of the ice sheet model.

  5. Lateral, Vertical, and Longitudinal Source Area Connectivity Drive Runoff and Carbon Export Across Watershed Scales

    Science.gov (United States)

    Zimmer, Margaret A.; McGlynn, Brian L.

    2018-03-01

    Watersheds are three-dimensional hydrologic systems where the longitudinal expansion/contraction of stream networks, vertical connection/disconnection between shallow and deep groundwater systems, and lateral connectivity of these water sources to streams mediate runoff production and nutrient export. The connectivity of runoff source areas during both baseflow and stormflow conditions and their combined influence on biogeochemical fluxes remain poorly understood. Here we focused on a set of 3.3 and 48.4 ha nested watersheds (North Carolina, USA). These watersheds comprise ephemeral and intermittent runoff-producing headwaters and perennial runoff-producing lowlands. Within these landscape elements, we characterized the timing and magnitude of precipitation, runoff, and runoff-generating flow paths. The active surface drainage network (ASDN) reflected connectivity to, and contributions from, source areas that differed under baseflow and stormflow conditions. The baseflow-associated ASDN expanded and contracted seasonally, driven by the rise and fall of the seasonal water table. Superimposed on this were event-activated source area contributions driven by connectivity to surficial and shallow subsurface flow paths. Frequently activated shallow flow paths also caused increased in-stream dissolved organic carbon (DOC) concentrations with increases in runoff across both watershed scales. The spread and variability within this DOC-runoff relationship was driven by a seasonal depletion of DOC from continual shallow subsurface flow path activation and subsequent replenishment from autumn litterfall. Our findings suggest that hydrobiogeochemical signals at larger watershed outlets can be driven by the expansion, contraction, and connection of lateral, longitudinal, and vertical source areas with distinct runoff generation processes.

  6. Phosphorus runoff from sewage sludge applied to different slopes of lateritic soil.

    Science.gov (United States)

    Chen, Yan Hui; Wang, Ming Kuang; Wang, Guo; Chen, Ming Hua; Luo, Dan; Ding, Feng Hua; Li, Rong

    2011-01-01

    Sewage sludge (SS) applied to sloping fields at rates that exceed annual forest nutrient requirements can be a source of phosphorus (P) in runoff. This study investigates the effects of different slopes (18, 27, 36, and 45%) on P in runoff from plots amended with SS (120 Mg ha). Lateritic soil (pH 5.2) was exposed to five simulated rainfalls (90 mm h) on outdoor plots. When sludge was broadcast and mixed with surface soils, the concentrations and loss in runoff of total P in the mixed sample (MTP), total P in the settled sample (STP), total particulate P (TPP), total suspended P (TSP), and total dissolved P (TDP) were highest at 1 or 18 d after application. Initially, pollution risks to surface waters generally increased to different degrees with steeper slopes, and then diminished gradually with dwindling differences between the slopes. The runoff losses coefficient of MTP increased in the order 36 > 45 > 27 > 18%. The initial event (1 and 18 d) accounted for 67.0 to 83.6% of total runoff P losses. Particulate fraction were dominant carriers for P losses, while with the lower slopes there was higher content of P per unit particulate fraction in runoff. Phosphorus losses were greatly affected by the interaction of sludge-soil-runoff and the modification of soil properties induced by sludge amendment. It is recommended to choose lower slopes (soils should be studied further in the field under a wider diversity of conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa

    Directory of Open Access Journals (Sweden)

    A.C. Guzha

    2018-02-01

    New hydrological insights: Forest cover loss is accompanied by increased stream discharges and surface runoff. No significant difference in stream discharge is observed between bamboo and pine plantation catchments, and between cultivated and tea plantation catchments. Trend analyses show that despite forest cover loss, 63% of the watersheds show non-significant changes in annual discharges while 31% show increasing trends. Half of the watersheds show non-significant trends in wet season flows and low flows while 35% reveal decreasing trends in low flows. Modeling studies estimate that forest cover loss increases annual discharges and surface runoff by 16 ± 5.5% and 45 ± 14%, respectively. Peak flows increased by a mean of 10 ± 2.8% while low flows decreased by a mean of 7 ± 5.3%. Increased forest cover decreases annual discharges and surface runoff by 13 ± 1.9% and 25 ± 5%, respectively. Weak correlations between forest cover and runoff (r = 0.42, p < 0.05, mean discharge (r = 0.63, p < 0.05 and peak discharge (r = 0.67, p < 0.05 indicate that forest cover alone is not an accurate predictor of hydrological fluxes in East African catchments. The variability in these results supports the need for long-term field monitoring to better understand catchment responses and to improve the calibration of currently used simulation models.

  8. High-resolution projections of surface water availability for Tasmania, Australia

    Directory of Open Access Journals (Sweden)

    J. C. Bennett

    2012-05-01

    Full Text Available Changes to streamflows caused by climate change may have major impacts on the management of water for hydro-electricity generation and agriculture in Tasmania, Australia. We describe changes to Tasmanian surface water availability from 1961–1990 to 2070–2099 using high-resolution simulations. Six fine-scale (∼10 km2 simulations of daily rainfall and potential evapotranspiration are generated with the CSIRO Conformal Cubic Atmospheric Model (CCAM, a variable-resolution regional climate model (RCM. These variables are bias-corrected with quantile mapping and used as direct inputs to the hydrological models AWBM, IHACRES, Sacramento, SIMHYD and SMAR-G to project streamflows.

    The performance of the hydrological models is assessed against 86 streamflow gauges across Tasmania. The SIMHYD model is the least biased (median bias = −3% while IHACRES has the largest bias (median bias = −22%. We find the hydrological models that best simulate observed streamflows produce similar streamflow projections.

    There is much greater variation in projections between RCM simulations than between hydrological models. Marked decreases of up to 30% are projected for annual runoff in central Tasmania, while runoff is generally projected to increase in the east. Daily streamflow variability is projected to increase for most of Tasmania, consistent with increases in rainfall intensity. Inter-annual variability of streamflows is projected to increase across most of Tasmania.

    This is the first major Australian study to use high-resolution bias-corrected rainfall and potential evapotranspiration projections as direct inputs to hydrological models. Our study shows that these simulations are capable of producing realistic streamflows, allowing for increased confidence in assessing future changes to surface water variability.

  9. [Total pollution features of urban runoff outlet for urban river].

    Science.gov (United States)

    Luo, Hong-Bing; Luo, Lin; Huang, Gu; He, Qiang; Liu, Ping

    2009-11-01

    The urban stormwater runoff discharged to urban river, especially to rainfall source river, cannot be ignored. In this study, the Futian River watershed in Shenzhen city in a typical southern city of China is taken as the research object. In order to guide the pollution control for urban river, the eighteen rainfall events were monitored, and the total pollution features of the urban runoff outlet for this urban river were analyzed and discussed by using the process of pollutographs, the identifying to first flush, event mean concentration (EMC), etc. Results show that the concentrations of COD, SS, TN, TP and BOD5 are ten times more than the grade V of the environmental quality standards for surface water during the runoff time; the pollution caused by heavy metals (Cr, Ge, Cu, Hg and As) in runoff at a typical rainfall event is serious; the average and range of pollutant concentration at this runoff outlet in study area are evidently higher than at Shapingba in Chongqing city of China and at Silerwood in Canada, but are lower than at Shilipu in Wuhan city of China. The first flushes of COD, SS, BOD5, especially COD and SS, are evident, but the TN and TP are not. The average EMC of COD, TN, TP and BOD5 are 224.14, 571.15, 5.223, 2.04, 143.5 mg/L, respectively. To some extent, the EMC of COD is about two times of the value of the near cities, Macao and Zhuhai. The EMC of TN and TP are obviously higher than Beijing, Guangzhou and Shanghai. To compared with foreign counties, the EMC of the study area in Shenzhen is obviously much higher than the cities of Korean, USA and Canada. So the total pollution caused by the urban surface runoff in study area is serious and necessary to be treated.

  10. A methodology for the evaluation of global warming impact on soil moisture and runoff

    International Nuclear Information System (INIS)

    Valdes, J.B.; Seoane, R.S.; North, G.R.

    1993-01-01

    Global warming is expected to increase the intensity of the global hydrologic cycle. Precipitation and temperature patterns, soil moisture requirements, and the physical structure of the vegetation canopy play important roles in the hydrologic system of drainage basins. Changes in these phenomena, because of a buildup Of CO 2 and other trace gases, have the potential to affect the quantity, quality, timing, and spatial distribution of water available to satisfy the many demands placed on the resource by society. In this work a methodology for the evaluation of impact on soil moisture concentration and direct surface runoff is presented. The methodology integrates stochastic models of hydroclimatic input variables with a model of water balance in the soil. This allows the derivation of the probability distribution of soil moisture concentration and direct surface runoff for different combinations of climate and soil characteristics, ranging from humid to semi-arid and arid. These PDFs asses, in a comprehensive manner, the impact that climate change have on soil moisture and runoff and allow the water resources planner to make more educated decisions in the planning and design of water resources systems. The methodology was applied to three sites in Texas. To continue in the line of research suggested by Delworth and Manabe the authors computed the autocorrelation function (ACF) and the spectra of both precipitation inputs and soil moisture concentration outputs for all scenarios of climate change

  11. Effects of earthworms on slopewash, surface runoff, and fine-litter transport on a humid-tropical forested hillslope in eastern Puerto Rico: Chapter G in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    Science.gov (United States)

    Larsen, Matthew C.; Liu, Zhigang Liu; Zou, Xiaoming; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    Rainfall, slopewash (the erosion of soil particles), surface runoff, and fine-litter transport were measured in tropical wet forest on a hillslope in the Luquillo Experimental Forest, Puerto Rico, from February 1998 until April 2000. Slopewash data were collected using Gerlach troughs at eight plots, each 2 square meters in area. Earthworms were excluded by electroshocking from four randomly selected plots. The other four (control) plots were undisturbed. During the experiment, earthworm population in the electroshocked plots was reduced by 91 percent. At the end of the experiment, the electroshocked plots had 13 percent of earthworms by count and 6 percent by biomass as compared with the control plots. Rainfall during the sampling period (793 days) was 9,143 millimeters. Mean and maximum rainfall by sampling period (mean of 16 days) were 189 and 563 millimeters, respectively. Surface runoff averaged 0.6 millimeters and 1.2 millimeters by sampling period for the control and experimental plots, equal to 0.25 and 0.48 percent of mean rainfall, respectively. Disturbance of the soil environment by removal of earthworms doubled runoff and increased the transport (erosion) of soil and organic material by a factor of 4.4. When earthworms were removed, the erosion of mineral soil (soil mass left after ashing) and the transport of fine litter were increased by a factor of 5.3 and 3.4, respectively. It is assumed that increased runoff is a function of reduced soil porosity, resulting from decreased burrowing and reworking of the soil in the absence of earthworms. The background, or undisturbed, downslope transport of soil, as determined from the control plots, was 51 kilograms per hectare and the "disturbance" rate, determined from the experimental plots, was 261 kilograms per hectare. The background rate for downslope transport of fine litter was 71 kilograms per hectare and the disturbance rate was 246 kilograms per hectare. Data from this study indicate that the reduction

  12. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    Science.gov (United States)

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  13. Vegetated Ditches for the Mitigation of Pesticides Runoff in the Po Valley.

    Directory of Open Access Journals (Sweden)

    Stefan Otto

    Full Text Available In intensive agricultural systems runoff is one of the major potential diffuse pollution pathways for pesticides and poses a risk to surface water. Ditches are common in the Po Valley and can potentially provide runoff mitigation for the protection of watercourses. The effectiveness depends on ditch characteristics, so there is an urgent need for site-specific field trials. The use of a fugacity model (multimedia model can allows recognition of the mitigation main processes. A field experiment was conducted in order to evaluate the mitigation capacity of a typical vegetated ditch, and results were compared with predictions by a fugacity model. To evaluate herbicide mitigation after an extreme runoff, the ditch was flooded with water containing mesotrione, S-metolachlor and terbuthylazine. Two other subsequent floods with uncontaminated water were applied 27 and 82 days later to evaluate herbicides release. Results show that the ditch can immediately reduce runoff concentration of herbicides by at least 50% even in extreme flooding conditions. The half-distances were about 250 m. As a general rule, a runoff of 1 mm from 5 ha is mitigated by 99% in 100 m of vegetated ditch. Herbicides retention in the vegetated ditch was reversible, and the second flood mobilized 0.03-0.2% of the previous one, with a concentration below the drinking water limit of 0.1 μg L(-1. No herbicide was detected in the third flood, because the residual amount in the ditch was too low. Fugacity model results show that specific physical-chemical parameters may be used and a specific soil-sediment-plant compartment included for modelling herbicides behaviour in a vegetated ditch, and confirm that accumulation is low or negligible for herbicides with a half-life of 40 days or less. Shallow vegetated ditches can thus be included in a general agri-environment scheme for the mitigation of pesticides runoff together with wetlands and linear buffer strips. These structures are

  14. Vegetated Ditches for the Mitigation of Pesticides Runoff in the Po Valley.

    Science.gov (United States)

    Otto, Stefan; Pappalardo, Salvatore E; Cardinali, Alessandra; Masin, Roberta; Zanin, Giuseppe; Borin, Maurizio

    2016-01-01

    In intensive agricultural systems runoff is one of the major potential diffuse pollution pathways for pesticides and poses a risk to surface water. Ditches are common in the Po Valley and can potentially provide runoff mitigation for the protection of watercourses. The effectiveness depends on ditch characteristics, so there is an urgent need for site-specific field trials. The use of a fugacity model (multimedia model) can allows recognition of the mitigation main processes. A field experiment was conducted in order to evaluate the mitigation capacity of a typical vegetated ditch, and results were compared with predictions by a fugacity model. To evaluate herbicide mitigation after an extreme runoff, the ditch was flooded with water containing mesotrione, S-metolachlor and terbuthylazine. Two other subsequent floods with uncontaminated water were applied 27 and 82 days later to evaluate herbicides release. Results show that the ditch can immediately reduce runoff concentration of herbicides by at least 50% even in extreme flooding conditions. The half-distances were about 250 m. As a general rule, a runoff of 1 mm from 5 ha is mitigated by 99% in 100 m of vegetated ditch. Herbicides retention in the vegetated ditch was reversible, and the second flood mobilized 0.03-0.2% of the previous one, with a concentration below the drinking water limit of 0.1 μg L(-1). No herbicide was detected in the third flood, because the residual amount in the ditch was too low. Fugacity model results show that specific physical-chemical parameters may be used and a specific soil-sediment-plant compartment included for modelling herbicides behaviour in a vegetated ditch, and confirm that accumulation is low or negligible for herbicides with a half-life of 40 days or less. Shallow vegetated ditches can thus be included in a general agri-environment scheme for the mitigation of pesticides runoff together with wetlands and linear buffer strips. These structures are present in the

  15. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Directory of Open Access Journals (Sweden)

    G. Tang

    2012-08-01

    Full Text Available Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i modify a DGVM for simulating land surface water balances; (ii evaluate the modified model in simulating actual evapotranspiration (ET, soil moisture, and surface runoff at regional or watershed scales; and (iii gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ DGVM. To evaluate the model we ran LH using historical (1981–2006 climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981–2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52. The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15% with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt

  16. Numerical simulation of runoff from extreme rainfall events in a mountain water catchment

    Directory of Open Access Journals (Sweden)

    J. Burguete

    2002-01-01

    Full Text Available A numerical model for unsteady shallow water flow over initially dry areas is applied to a case study in a small drainage area at the Spanish Ebro River basin. Several flood mitigation measures (reforestation, construction of a small reservoir and channelization are simulated in the model in order to compare different extreme rainfall-runoff scenarios.

  17. A simple metric to predict stream water quality from storm runoff in an urban watershed.

    Science.gov (United States)

    Easton, Zachary M; Sullivan, Patrick J; Walter, M Todd; Fuka, Daniel R; Petrovic, A Martin; Steenhuis, Tammo S

    2010-01-01

    The contribution of runoff from various land uses to stream channels in a watershed is often speculated and used to underpin many model predictions. However, these contributions, often based on little or no measurements in the watershed, fail to appropriately consider the influence of the hydrologic location of a particular landscape unit in relation to the stream network. A simple model was developed to predict storm runoff and the phosphorus (P) status of a perennial stream in an urban watershed in New York State using the covariance structure of runoff from different landscape units in the watershed to predict runoff in time. One hundred and twenty-seven storm events were divided into parameterization (n = 85) and forecasting (n = 42) data sets. Runoff, dissolved P (DP), and total P (TP) were measured at nine sites distributed among three land uses (high maintenance, unmaintained, wooded), three positions in the watershed (near the outlet, midwatershed, upper watershed), and in the stream at the watershed outlet. The autocorrelation among runoff and P concentrations from the watershed landscape units (n = 9) and the covariance between measurements from the landscape units and measurements from the stream were calculated and used to predict the stream response. Models, validated using leave-one-out cross-validation and a forecasting method, were able to correctly capture temporal trends in streamflow and stream P chemistry (Nash-Sutcliffe efficiencies, 0.49-0.88). The analysis suggests that the covariance structure was consistent for all models, indicating that the physical processes governing runoff and P loss from these landscape units were stationary in time and that landscapes located in hydraulically active areas have a direct hydraulic link to the stream. This methodology provides insight into the impact of various urban landscape units on stream water quantity and quality.

  18. River runoff influences on the Central Mediterranean overturning circulation

    Science.gov (United States)

    Verri, Giorgia; Pinardi, N.; Oddo, P.; Ciliberti, S. A.; Coppini, G.

    2018-03-01

    The role of riverine freshwater inflow on the Central Mediterranean Overturning Circulation (CMOC) was studied using a high-resolution ocean model with a complete distribution of rivers in the Adriatic and Ionian catchment areas. The impact of river runoff on the Adriatic and Ionian Sea basins was assessed by a twin experiment, with and without runoff, from 1999 to 2012. This study tries to show the connection between the Adriatic as a marginal sea containing the downwelling branch of the anti-estuarine CMOC and the large runoff occurring there. It is found that the multiannual CMOC is a persistent anti-estuarine structure with secondary estuarine cells that strengthen in years of large realistic river runoff. The CMOC is demonstrated to be controlled by wind forcing at least as much as by buoyancy fluxes. It is found that river runoff affects the CMOC strength, enhancing the amplitude of the secondary estuarine cells and reducing the intensity of the dominant anti-estuarine cell. A large river runoff can produce a positive buoyancy flux without switching off the antiestuarine CMOC cell, but a particularly low heat flux and wind work with normal river runoff can reverse it. Overall by comparing experiments with, without and with unrealistically augmented runoff we demonstrate that rivers affect the CMOC strength but they can never represent its dominant forcing mechanism and the potential role of river runoff has to be considered jointly with wind work and heat flux, as they largely contribute to the energy budget of the basin. Looking at the downwelling branch of the CMOC in the Adriatic basin, rivers are demonstrated to locally reduce the volume of Adriatic dense water formed in the Southern Adriatic Sea as a result of increased water stratification. The spreading of the Adriatic dense water into the Ionian abyss is affected as well: dense waters overflowing the Otranto Strait are less dense in a realistic runoff regime, with respect to no runoff experiment, and

  19. The economic benefits of rainwater-runoff reduction by urban green spaces: a case study in Beijing, China.

    Science.gov (United States)

    Zhang, Biao; Xie, Gaodi; Zhang, Canqiang; Zhang, Jing

    2012-06-15

    Urbanization involves the replacement of vegetated surfaces with impervious built surfaces, and it often results in an increase in the rate and volume of rainwater surface runoff. Urban green spaces play a positive role in rainwater-runoff reduction. However, few studies have explored the benefits of rainwater-runoff reduction by urban green spaces. Based on inventory data of urban green spaces in Beijing, the paper evaluated the economic benefits of rainwater-runoff reduction by urban green spaces, using the rainwater-runoff-coefficient method as well as the economic valuation methods. The results showed that, 2494 cubic meters of potential runoff was reduced per hectare of green area and a total volume of 154 million cubic meters rainwater was stored in these urban green spaces, which almost corresponds to the annual water needs of the urban ecological landscape in Beijing. The total economic benefit was 1.34 billion RMB in 2009 (RMB: Chinese currency, US$1=RMB6.83), which is equivalent to three-quarters of the maintenance cost of Beijing's green spaces; the value of rainwater-runoff reduction was 21.77 thousand RMB per hectare. In addition, the benefits in different districts and counties were ranked in the same order as urban green areas, and the average benefits per hectare of green space showed different trends, which may be related to the impervious surface index in different regions. This research will contribute to an understanding of the role that Beijing's green spaces play in rainwater regulation and in the creation and scientific management of urban green spaces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Zebrafish and clean water technology: assessing soil bioretention as a protective treatment for toxic urban runoff.

    Science.gov (United States)

    McIntyre, J K; Davis, J W; Incardona, J P; Stark, J D; Anulacion, B F; Scholz, N L

    2014-12-01

    Urban stormwater contains a complex mixture of contaminants that can be acutely toxic to aquatic biota. Green stormwater infrastructure (GSI) is a set of evolving technologies intended to reduce impacts on natural systems by slowing and filtering runoff. The extent to which GSI methods work as intended is usually assessed in terms of water quantity (hydrology) and quality (chemistry). Biological indicators of GSI effectiveness have received less attention, despite an overarching goal of protecting the health of aquatic species. Here we use the zebrafish (Danio rerio) experimental model to evaluate bioinfiltration as a relatively inexpensive technology for treating runoff from an urban highway with dense motor vehicle traffic. Zebrafish embryos exposed to untreated runoff (48-96h; six storm events) displayed an array of developmental abnormalities, including delayed hatching, reduced growth, pericardial edema, microphthalmia (small eyes), and reduced swim bladder inflation. Three of the six storms were acutely lethal, and sublethal toxicity was evident across all storms, even when stormwater was diluted by as much as 95% in clean water. As anticipated from exposure to cardiotoxic polycyclic aromatic hydrocarbons (PAHs), untreated runoff also caused heart failure, as indicated by circulatory stasis, pericardial edema, and looping defects. Bioretention treatment dramatically improved stormwater quality and reversed nearly all forms of developmental toxicity. The zebrafish model therefore provides a versatile experimental platform for rapidly assessing GSI effectiveness. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Performance of Grass Filter Strip in Copper and Zinc Removal in Surface and Subsurface Runoff

    Directory of Open Access Journals (Sweden)

    Huo Weijie

    2017-01-01

    Full Text Available Three filter strips were conducted on self-designed soil bins. Taking a filter strip with no vegetation as contrast, the effectiveness of vegetation and soil conditions on heavy metals (including copper and zinc removal efficiencies were investigated by simulated runoff experiment. The results showed that the adsorbed state is the main existing form of heavy metal. For surface runoff, most of total copper and total zinc are trapped in first 4m and it is ineffective to increase the distance beyond 4m for removal. Vegetation has no significant effect on total copper and total zinc removal, while the soil with higher content of organic matter is contributing to total Zn interception. For subsurface runoff, the removal efficiencies of total copper and total zinc can reach to above 95.38% and both vegetation and soil conditions have no significant effects. Vegetation is contributing to copper ion and zinc ion removal significantly. Soil condition is only a significant factor to zinc ion, with higher content of organic matter as a contributing factor.

  2. Flexible Reactive Berm (FRBerm) for Removal of Heavy Metals from Runoff Water

    Science.gov (United States)

    2016-03-01

    coefficient, and sediment clogging coefficients. Also, the flexible reactive barrier system permitted overtopping and filter socks would be arranged in a...FINAL REPORT Flexible Reactive Berm (FRBerm) for Removal of Heavy Metals from Runoff Water ESTCP Project ER-201213 MARCH 2016...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME

  3. Variability of Snow Ablation: Consequences for Runoff Generation at the Process Scale and Lessons for Large Cold Regions Catchments

    Science.gov (United States)

    Pomeroy, J. W.; Carey, S. K.; Granger, R. J.; Hedstrom, N. R.; Janowicz, R.; Pietroniro, A.; Quinton, W. L.

    2002-12-01

    The supply of water to large northern catchments such as the Mackenzie and Yukon Rivers is dominated by snowmelt runoff from first order mountain catchments. In order to understand the timing, peak and duration of the snowmelt freshet at larger scale it is important to appreciate the spatial and temporal variability of snowmelt and runoff processes at the source. For this reason a comprehensive hydrology study of a Yukon River headwaters catchment, Wolf Creek Research Basin, near Whitehorse, has focussed on the spatial variability of snow ablation and snowmelt runoff generation and the consequences for the water balance in a mountain tundra zone. In northern mountain tundra, surface energetics vary with receipt of solar radiation, shrub vegetation cover and initial snow accumulation. Therefore the timing of snowmelt is controlled by aspect, in that south facing slopes become snow-free 4-5 weeks before the north facing. Runoff generation differs widely between the slopes; there is normally no spring runoff generated from the south facing slope as all meltwater evaporates or infiltrates. On the north facing slope, snowmelt provides substantial runoff to hillside macropores which rapidly route water to the stream channel. Macropore distribution is associated with organic terrain and discontinuous permafrost, which in turn result from the summer surface energetics. Therefore the influence of small-scale snow redistribution and energetics as controlled by topography must be accounted for when calculating contributing areas to larger scale catchments, and estimating the effectiveness of snowfall in generating streamflow. This concept is quite distinct from the drainage controlled contributing area that has been found useful in temperate-zone hydrology.

  4. Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area

    Science.gov (United States)

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Shi, Tuo; Zong, Min; Walter, M. Todd

    2018-01-01

    Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns. PMID:29673182

  5. Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area.

    Science.gov (United States)

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Shi, Tuo; Zong, Min; Walter, M Todd

    2018-04-17

    Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns.

  6. Chemical quality of surface waters in Devils Lake basin, North Dakota

    Science.gov (United States)

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    fallen slowly. Hydrologic changes that may have caused Devils Lake to alter from a very large, moderately deep lake of fresh water to a small, shallow body of brackish water are discussed and evaluated on the basis of scanty information. During several years of average precipitation, temperature, and evaporation, Devils Lake and lakes upstream should receive nearly a quarter of an inch of runoff annually from the drainage area of about 3,000 square miles. Approximately 55 square miles of tributary area would be required to maintain each square mile of lake surface. However, runoff, expressed as percentage of the average, differs greatly from year to year. The amount of runoff retained in upstream lakes also Varies greatly. For these two reasons, annual inflow to Devils Lake is extremely variable. Because many waterways in this basin have no surface outlets at normal stages, runoff collects in depressions, is concentrated by evaporation, and forms saline or alkaline lakes. The chemical and physical properties of the lake waters vary chiefly with changes in lake stage and volume of inflow. Scattered records from 1899 to 1923 and more comprehensive data from 1948 to 1952 show a range of salt concentration from 6,130 to 25,000 parts per million (ppm) in the water of Devils Lake. Although concentration has varied, the chemical composition of the dissolved solids has not changed appreciably. Lake waters are more concentrated in the lower part of the basin, downstream from Devils Lake. For periods of record the salt concentration ranged from 14,932 to 62,000 ppm in East Devils Lake and from 19,000 to 106,000 ppm in east Stump Lake. Current and past tonnages of dissolved solids in Devils Lake, East Bay Devils Lake, East Devils Lake, and east and west Stump Lakes were computed from concentrations and from altitude-capacity curves for each lake. Neither the average rate of diversion of water to restore Devils Lake to a higher level nor the quality of the divert

  7. Water quality of storm runoff and comparison of procedures for estimating storm-runoff loads, volume, event-mean concentrations, and the mean load for a storm for selected properties and constituents for Colorado Springs, southeastern Colorado, 1992

    Science.gov (United States)

    Von Guerard, Paul; Weiss, W.B.

    1995-01-01

    The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110

  8. Off site transport of fungicides with snowmelt and rainfall runoff from golf course fairway turf

    Science.gov (United States)

    Pesticides associated with the turfgrass industry have been detected in storm runoff and surface waters of urban watersheds; inferring contaminant contributions from residential, urban, and recreational sources. Golf course turf often requires multiple applications of pesticides at rates that exceed...

  9. Soil macropores: Control on infiltration, hillslope and surface hydrology on a reclaimed surface-mined watershed

    International Nuclear Information System (INIS)

    Guebert, M.D.; Gardner, T.W.

    1992-01-01

    The hydrologic response of a surface-mined watershed in central Pennsylvania is controlled by rapid macropore flow within the unsaturated man-made topsoil. Newly reclaimed surface-mined watersheds in central Pennsylvania exhibit low steady-state infiltration rates (1--2 cm/hr) and produce runoff dominated by infiltration-excess overland flow. However, within four years after reclamation, infiltration rates on some mine surfaces approach premined rates (8 cm/hr). As infiltration rate increases, the volume of infiltrated water increases, but the total porosity of minesoil matrix remains constant. There is little change in the surface discharge volume, indicating that infiltrated water continues to contribute to the basin surface discharge by the processes of throughflow and return flow. Throughflow in the topsoil horizon occurs in rapid response to rainfall input, producing large volumes of water with throughflow rates closely related to rainfall rates and with throughflow peaks following rainfall peaks by only minutes. Increased return flow alters the shape of the surface runoff hydrograph by slightly lagging behind infiltration excess overland flow. These changes in the shape of the surface runoff hydrograph reduce the potential for severe gully erosion on the reclaimed site. In addition, throughflow water remains predominantly in the topsoil horizon, and therefore has limited contact with potentially acid-producing backfill. Better understanding of macropore flow processes in reclaimed minesoils will help investigators evaluate past strategies and develop new reclamation techniques that will minimize the short-term surface erosional effects of mining and reclamation, while optimizing the long-term effluent and groundwater quality

  10. Water-quality characteristics in runoff for three discovery farms in North Dakota, 2008-12

    Science.gov (United States)

    Nustad, Rochelle A.; Rowland, Kathleen M.; Wiederholt, Ronald

    2015-01-01

    The U.S. Geological Survey, in cooperation with North Dakota State University Agriculture Research Extension and in collaboration with North Dakota State Department of Health, North Dakota State Water Commission, U.S. Environmental Protection Agency, and several agricultural producers, helped organize a Discovery Farms program in North Dakota in 2007. Discharge measurements and water-quality samples collected at the three Farms (Underwood, Dazey, and Embden) were used to describe water-quality characteristics in runoff, and compute estimates of annual loads and yields for selected constituents from spring 2008 through fall 2012.

  11. Assessing the controls of the snow energy balance and water available for runoff in a rain-an-snow environment

    Science.gov (United States)

    Adam B. Mazurkiewicz; David G. Callery; Jeffrey J. McDonnell

    2008-01-01

    Rain-on-snow (ROS) melt production and its contribution to water available for runoff is poorly understood. In the Pacific Northwest (PNW) of the USA, ROS drives many runoff events with turbulent energy exchanges dominating the snow energy balance (EB). While previous experimental work in the PNW (most notably the H.J. Andrews Experimental Forest (HJA» has quantified...

  12. Determination of characteristics maximal runoff mountain rivers in ...

    African Journals Online (AJOL)

    ... water) on the rivers of the Crimean Mountains were used materials of observations for long-term period (from the beginning of observations to 2010 inclusive) on 54 of streamflow station with using a the so-called «operator» model for maximum runoff formation. Keywords: maximum runoff; rain floods; hillslope runoff; karst ...

  13. Trend and concentrations of legacy lead (Pb) in highway runoff.

    Science.gov (United States)

    Kayhanian, Masoud

    2012-01-01

    This study presents the results of lead (Pb) concentrations from both highway runoff and contaminated soil along 32 and 23 highway sites, respectively. In general, the Pb concentration on topsoil (0-15 cm) along highways was much higher than the Pb concentration in subsurface soil (15-60 cm). The Pb deposited on soil appears to be anthropogenic and a strong correlation was found between the Pb concentration in surface soil and highway runoff in urban areas. The concentration of Pb measured during 1980s from highways runoff throughout the world was up to 11 times higher than the measured values in mid 1990 s and 2000s. The current Pb deposited on soil near highways appears to be a mixture of paint, tire weight balance and old leaded gasoline combustion. Overall, the Pb phase-out regulation reduced the Pb deposits in the environment and consequently lowered Pb loading into receiving waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Surface-rain interactions: differences in copper runoff for copper sheet of different inclination, orientation, and atmospheric exposure conditions.

    Science.gov (United States)

    Hedberg, Yolanda S; Goidanich, Sara; Herting, Gunilla; Wallinder, Inger Odnevall

    2015-01-01

    Predictions of the diffuse dispersion of metals from outdoor constructions such as roofs and facades are necessary for environmental risk assessment and management. An existing predictive model has been compared with measured data of copper runoff from copper sheets exposed at four different inclinations facing four orientations at two different urban sites (Stockholm, Sweden, and Milan, Italy) during a 4-year period. Its applicability has also been investigated for copper sheet exposed at two marine sites(Cadiz, Spain, for 5 years, and Brest, France, for 9 years). Generally the model can be used for all given conditions. However, vertical surfaces should be considered as surfaces inclined 60-80 due to wind driven effects. The most important parameters that influence copper runoff, and not already included in the model, are the wind and rain characteristics that influence the actual rainfall volume impinging the surface of interest.

  15. INTEGRATION OF SATELLITE RAINFALL DATA AND CURVE NUMBER METHOD FOR RUNOFF ESTIMATION UNDER SEMI-ARID WADI SYSTEM

    Directory of Open Access Journals (Sweden)

    E. O. Adam

    2017-11-01

    Full Text Available The arid and semi-arid catchments in dry lands in general require a special effective management as the scarcity of resources and information which is needed to leverage studies and investigations is the common characteristic. Hydrology is one of the most important elements in the management of resources. Deep understanding of hydrological responses is the key towards better planning and land management. Surface runoff quantification of such ungauged semi-arid catchments considered among the important challenges. A 7586 km2 catchment under investigation is located in semi-arid region in central Sudan where mean annual rainfall is around 250 mm and represent the ultimate source for water supply. The objective is to parameterize hydrological characteristics of the catchment and estimate surface runoff using suitable methods and hydrological models that suit the nature of such ungauged catchments with scarce geospatial information. In order to produce spatial runoff estimations, satellite rainfall was used. Remote sensing and GIS were incorporated in the investigations and the generation of landcover and soil information. Five days rainfall event (50.2 mm was used for the SCS CN model which is considered the suitable for this catchment, as SCS curve number (CN method is widely used for estimating infiltration characteristics depending on the landcover and soil property. Runoff depths of 3.6, 15.7 and 29.7 mm were estimated for the three different Antecedent Moisture Conditions (AMC-I, AMC-II and AMC-III. The estimated runoff depths of AMCII and AMCIII indicate the possibility of having small artificial surface reservoirs that could provide water for domestic and small household agricultural use.

  16. Relationship between Organic Carbon Runoff to River and Land Cover

    Science.gov (United States)

    Kim, G. S.; Lee, S. G.; Lim, C. H.; Lee, W.; Yoo, S.; Kim, S. J.; Heo, S.; Lee, W. K.

    2017-12-01

    Carbon is an important unit in understanding the ecosystem and energy circulation. Each ecosystem, land, water, and atmosphere, is interconnected through the exchange of energy and organic carbon. In the rivers, primary producers utilize the organic carbon from the land. Understanding the organic carbon uptake into the river is important for understanding the mechanism of river ecosystems. The main organic carbon source of the river is land. However, it is difficult to observe the amount of organic carbon runoff to the river. Therefore, an indirect method should be used to estimate the amount of organic carbon runoff to the river. The organic carbon inflow is caused by the runoff of organic carbon dissolved in water or the inflow of organic carbon particles by soil loss. Therefore, the hydrological model was used to estimate organic carbon runoff through the flow of water. The land cover correlates with soil respiration, soil loss, and so on, and the organic carbon runoff coefficient will be estimated to the river by land cover. Using the organic carbon concentration from water quality data observed at each point in the river, we estimate the amount of organic carbon released from the land. The reason is that the runoff from the watershed converges into the rivers in the watershed, the watershed simulation is conducted based on the water quality data observation point. This defines a watershed that affects organic carbon observation sites. The flow rate of each watershed is calculated by the SWAT (Soil and Water Assessment Tool), and the total organic carbon runoff is calculated by using flow rate and organic carbon concentration. This is compared with the factors related to the amount of organic carbon such as land cover, soil loss, and soil organic carbon, and spatial analysis is carried out to estimate the organic carbon runoff coefficient per land cover.

  17. Groundwater suppression and surface water diversion structures applied to closed shallow land burial trenches

    International Nuclear Information System (INIS)

    Davis, E.C.; Stansfield, R.G.; Melroy, L.A.; Huff, D.D.

    1984-01-01

    Shallow depth to groundwater, surface drainage, and subsurface flow during storm events are major environmental concerns of low-level radioactive waste management operations in humid regions. At two waste disposal sites within the Oak Ridge National Laboratory (ORNL), groups of closed trenches have experienced these problems and have been shown to collect and hold water with seasonal fluctuations ranging from 1 to 2 m. In an attempt to correct these water-related problems, the older of the two sites [Solid Waste Storage Area Four (SWSA 4)] was equipped in September 1975 with asphalt lined drainage-ways designed to prevent infiltration of storm drainage from a 13.8-ha upslope catchment. At the second site (49-Trench area of SWSA 6), the entire 0.44-ha trench area was capped with a bentonite clay cover in 1976. These attempts have not corrected the water problems. In September 1983, engineered drainage projects were initiated at both the disposal sites. The SWSA 4 project was designed to divert surface runoff and shallow subsurface flow which originates upslope of the site away from the disposal area. The second project, a passive French drain constructed in SWSA 6, was aimed strictly at suppressing the site water table, thus preventing its intersection with the bottoms of disposal trenches. Postconstruction monitoring for performance evaluation has shown that the water table in the 49-Trench area has been suppressed to a depth > 4.9 m below the ground surface over 50% of the site as compared to a depth of only 2.1 m for certain parts of the same area observed during seasonally wet months prior to drain construction. The SWSA 4 project evaluation indicates that 56% of the Winter-Spring 1984 runoff was diverted around SWSA 4 via the drainage system

  18. Application of MIKE SHE to study the impact of coal mining on river runoff in Gujiao mining area, Shanxi, China.

    Directory of Open Access Journals (Sweden)

    Jianhua Ping

    Full Text Available Coal mining is one of the core industries that contribute to the economic development of a country but deteriorate the environment. Being the primary source of energy, coal has become essential to meet the energy demand of a country. It is excavated by both opencast and underground mining methods and affects the environment, especially hydrological cycle, by discharging huge amounts of mine water. Natural hydrological processes have been well known to be vulnerable to human activities, especially large scale mining activities, which inevitably generate surface cracks and subsidence. It is therefore valuable to assess the impact of mining on river runoff for the sustainable development of regional economy. In this paper, the impact of coal mining on river runoff is assessed in one of the national key coal mining sites, Gujiao mining area, Shanxi Province, China. The characteristics of water cycle are described, the similarities and differences of runoff formation are analyzed in both coal mining and pre-mining periods. The integrated distributed hydrological model named MIKE SHE is employed to simulate and evaluate the influence of coal mining on river runoff. The study shows that mining one ton of raw coal leads to the reduction of river runoff by 2.87 m3 between 1981 and 2008, of which the surface runoff decreases by 0.24 m3 and the baseflow by 2.63 m3. The reduction degree of river runoff for mining one ton of raw coal shows an increasing trend over years. The current study also reveals that large scale coal mining initiates the formation of surface cracks and subsidence, which intercepts overland flow and enhances precipitation infiltration. Together with mine drainage, the natural hydrological processes and the stream flows have been altered and the river run off has been greatly reduced.

  19. Application of MIKE SHE to study the impact of coal mining on river runoff in Gujiao mining area, Shanxi, China.

    Science.gov (United States)

    Ping, Jianhua; Yan, Shiyan; Gu, Pan; Wu, Zening; Hu, Caihong

    2017-01-01

    Coal mining is one of the core industries that contribute to the economic development of a country but deteriorate the environment. Being the primary source of energy, coal has become essential to meet the energy demand of a country. It is excavated by both opencast and underground mining methods and affects the environment, especially hydrological cycle, by discharging huge amounts of mine water. Natural hydrological processes have been well known to be vulnerable to human activities, especially large scale mining activities, which inevitably generate surface cracks and subsidence. It is therefore valuable to assess the impact of mining on river runoff for the sustainable development of regional economy. In this paper, the impact of coal mining on river runoff is assessed in one of the national key coal mining sites, Gujiao mining area, Shanxi Province, China. The characteristics of water cycle are described, the similarities and differences of runoff formation are analyzed in both coal mining and pre-mining periods. The integrated distributed hydrological model named MIKE SHE is employed to simulate and evaluate the influence of coal mining on river runoff. The study shows that mining one ton of raw coal leads to the reduction of river runoff by 2.87 m3 between 1981 and 2008, of which the surface runoff decreases by 0.24 m3 and the baseflow by 2.63 m3. The reduction degree of river runoff for mining one ton of raw coal shows an increasing trend over years. The current study also reveals that large scale coal mining initiates the formation of surface cracks and subsidence, which intercepts overland flow and enhances precipitation infiltration. Together with mine drainage, the natural hydrological processes and the stream flows have been altered and the river run off has been greatly reduced.

  20. Trend and concentrations of legacy lead (Pb) in highway runoff

    International Nuclear Information System (INIS)

    Kayhanian, Masoud

    2012-01-01

    This study presents the results of lead (Pb) concentrations from both highway runoff and contaminated soil along 32 and 23 highway sites, respectively. In general, the Pb concentration on topsoil (0–15 cm) along highways was much higher than the Pb concentration in subsurface soil (15–60 cm). The Pb deposited on soil appears to be anthropogenic and a strong correlation was found between the Pb concentration in surface soil and highway runoff in urban areas. The concentration of Pb measured during 1980s from highways runoff throughout the world was up to 11 times higher than the measured values in mid 1990s and 2000s. The current Pb deposited on soil near highways appears to be a mixture of paint, tire weight balance and old leaded gasoline combustion. Overall, the Pb phase-out regulation reduced the Pb deposits in the environment and consequently lowered Pb loading into receiving waters. - Highlights: ► Pb concentrations in highway runoff ranged from 0.5 to 752 mg/L. ► 78% of total lead concentration in highway runoff was in particulate form. ► Pb deposited on highway sites was mostly within 0 to 15 cm of soil column. ► Pb concentration in highway runoff and top soil was strongly correlated. ► Current Pb concentration in highway runoff is up to 11 times lower than late 1980s. - Most Pb deposited on soil near highways is within the top 15 cm. This Pb is the major sources of Pb concentration in highway runoff that has substantially been reduced since lead phase-out era.

  1. Characteristics of Phosphorus Runoff Losses from Typical Paddy Fields in Guangdong Province, China

    Directory of Open Access Journals (Sweden)

    NING Jian-feng

    2018-03-01

    Full Text Available Three experimental paddy fields located in the city of Zengcheng, Qingyuan and Gaozhou in Guangdong Province were selected to monitor the runoff losses of phosphorus from the year of 2008 to 2012. The results showed that runoff event in paddy field occurred mainly in the early rice season. The runoff concentration of total phosphorus(TP under conventional fertilization treatment was in the range of 0.02~1.56 mg·L-1. It was recorded that TP concentration in 11%~18% of the total runoff samples exceeded the grade Ⅴ of the national surface water environmental quality(0.4 mg·L-1. Peak concentration of different phosphorus forms[TP, dissolved total P(DTP and particulate P(PP] were observed within 14 days after fertilization, which indicated the high environmental pollution risk of phosphorus during this period. Application of phosphorus fertilizer increased runoff load of DTP in paddy field and showed no effect on that of PP and TP. The annual runoff loads of 0.63~4.05, 0.33~2.91 kg·hm-2 and 1.10~6.68 kg·hm-2 for DTP, PP and TP, respectively, were recorded under conventional fertilizer model. Runoff load of phosphorus exhibited wide spatial and temporal variation during experimental period. Runoff coefficient of 0.06%~6.81% of phosphorus was recorded. It was observed that DTP dominated the phosphorus runoff load. Phosphorus runoff losses from paddy field was affected by a variety of natural and human factors, and fertilization, precipitation and runoff volume were identified as the main factors.

  2. Assessment of the effectiveness of soil and water conservation measures in reducing runoff and soil loss: establishment of a European database

    International Nuclear Information System (INIS)

    Maetens, W.; Vanmaercke, M.; Poesen, J.

    2009-01-01

    Soil erosion by water is recognised as a major soil degradation process that requires a global approach. Large regions all over the world are in need of integrated conservation strategies that sustainable prevent and remediate soil erosion. therefore, quantitative and globally interpretable data are needed in support of models and decision making. the effects of various soil and water conservation techniques (SWCT) on runoff and soil loss in Europe have been extensively studied over the last 60 years. Runoff plots are the most widely used measurement technique to study the effects of SWCT on runoff and soil loss by water erosion. Hence, many data are available. However, the insights gained hereby remain mostly local and often qualitative whereas the full potential of the available data is not exploited yet. This is mainly due to the fragmentation of knowledge and extrapolation difficulties inherently linked with this type of data. (Author) 8 refs.

  3. GRACE storage-runoff hystereses reveal the dynamics of ...

    Science.gov (United States)

    Watersheds function as integrated systems where climate and geology govern the movement of water. In situ instrumentation can provide local-scale insights into the non-linear relationship between streamflow and water stored in a watershed as snow, soil moisture, and groundwater. However, there is a poor understanding of these processes at the regional scale—primarily because of our inability to measure water stores and fluxes in the subsurface. Now NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites quantify changes in the amount of water stored across and through the Earth, providing measurements of regional hydrologic behavior. Here we apply GRACE data to characterize for the first time how regional watersheds function as simple, dynamic systems through a series of hysteresis loops. While the physical processes underlying the loops are inherently complex, the vertical integration of terrestrial water in the GRACE signal provides process-based insights into the dynamic and non-linear function of regional-scale watersheds. We use this process-based understanding with GRACE data to effectively forecast seasonal runoff (mean R2 of 0.91) and monthly runoff (mean R2 of 0.77) in three regional-scale watersheds (>150,000 km2) of the Columbia River Basin, USA. Data from the Gravity Recovery and Climate Experiment (GRACE) satellites provide a novel dataset for understanding changes in the amount of water stored across and through the surface of the Ear

  4. A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa

    Science.gov (United States)

    de Winnaar, G.; Jewitt, G. P. W.; Horan, M.

    Water scarce countries such as South Africa are subject to various hydrological constraints which can often be attributed to poor rainfall partitioning, particularly within resource poor farming communities that are reliant on rainfed agriculture. Recent initiatives to address this have shifted focus to explore more efficient alternatives to water supply and the recognition of numerous opportunities to implement runoff harvesting as a means to supplement water availability. However, increasing the implementation of runoff harvesting, without encountering unintended impacts on downstream hydrological and ecological systems, requires better understanding of the hydrologic and environmental impacts at catchment scale. In this paper the representation of spatial variations in landscape characteristics such as soil, land use, rainfall and slope information is shown to be an important step in identifying potential runoff harvesting sites, after which modelling the hydrological response in catchments where extensive runoff harvesting is being considered can be performed and likely impacts assessed. Geographic information systems (GIS) was utilised as an integrating tool to store, analyse and manage spatial information and when linked to hydrological response models, provided a rational means to facilitate decision making by providing catchment level identification, planning and assessment of runoff harvesting sites as illustrated by a case study at the Potshini catchment, a small sub-catchment in the Thukela River basin, South Africa. Through the linked GIS, potential runoff harvesting sites are identified relative to areas that concentrate runoff and where the stored water will be appropriately distributed. Based on GIS analysis it was found that 17% percent of the Potshini catchment area has a high potential for generating surface runoff, whereas an analysis of all factors which influence the location of such systems, shows that 18% is highly suitable for runoff

  5. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations.

    Science.gov (United States)

    Cerdà, A; Keesstra, S D; Rodrigo-Comino, J; Novara, A; Pereira, P; Brevik, E; Giménez-Morera, A; Fernández-Raga, M; Pulido, M; di Prima, S; Jordán, A

    2017-11-01

    Rainfall-induced soil erosion is a major threat, especially in agricultural soils. In the Mediterranean belt, vineyards are affected by high soil loss rates, leading to land degradation. Plantation of new vines is carried out after deep ploughing, use of heavy machinery, wheel traffic, and trampling. Those works result in soil physical properties changes and contribute to enhanced runoff rates and increased soil erosion rates. The objective of this paper is to assess the impact of the plantation of vineyards on soil hydrological and erosional response under low frequency - high magnitude rainfall events, the ones that under the Mediterranean climatic conditions trigger extreme soil erosion rates. We determined time to ponding, Tp; time to runoff, Tr; time to runoff outlet, Tro; runoff rate, and soil loss under simulated rainfall (55 mm h -1 , 1 h) at plot scale (0.25 m 2 ) to characterize the runoff initiation and sediment detachment. In recent vine plantations (50 years; O). Slope gradient, rock fragment cover, soil surface roughness, bulk density, soil organic matter content, soil water content and plant cover were determined. Plantation of new vineyards largely impacted runoff rates and soil erosion risk at plot scale in the short term. Tp, Tr and Tro were much shorter in R plots. Tr-Tp and Tro-Tr periods were used as connectivity indexes of water flow, and decreased to 77.5 and 33.2% in R plots compared to O plots. Runoff coefficients increased significantly from O (42.94%) to R plots (71.92%) and soil losses were approximately one order of magnitude lower (1.8 and 12.6 Mg ha -1 h -1 for O and R plots respectively). Soil surface roughness and bulk density are two key factors that determine the increase in connectivity of flows and sediments in recently planted vineyards. Our results confirm that plantation of new vineyards strongly contributes to runoff initiation and sediment detachment, and those findings confirms that soil erosion control strategies

  6. Formation of runoff at the hillslope scale during intense precipitation

    Directory of Open Access Journals (Sweden)

    S. Scherrer

    2007-01-01

    Full Text Available On 60 m2 hillslope plots, at 18 mainly grassland locations in Switzerland rain was applied at rates of 50–100 mm/h for between 3 and 6 h. The generated flows were measured, including overland flow, near surface and subsurface flow 0.5–1.3 m below the surface. At some locations less than 2% of the rain flowed down the slope either on or below the surface, whereas at some others more than 90% of the rain ran off. At the majority of sites most runoff was overland flow, though at a few sites subsurface flow, usually via macropores was dominant. Data collected during each of 48 high intensity sprinkling experiments were used to distinguish, which processes were dominant in each experiment. Which dominant and subsidiary processes occurred depended on interactions between infiltration rate, change in soil water storage and drainage of the soil water. These attributes were often not directly linked to parameters usually considered important like vegetation, slope, soil clay content and antecedent soil moisture. Considering the structure of the soil in combination with these attributes, process determination was in many cases fairly straightforward, indicating the possibility of reliably predicting runoff processes at a site. However, at some sites, effects occurred that were not easily recognizable and led to surprising results.

  7. Assessment of two loss methods for estimation of surface runoff in Zaafrania urban catchment, North-East of Algeria

    Directory of Open Access Journals (Sweden)

    Dahdouh Yacina

    2018-03-01

    Full Text Available Surface runoff is a major problem in urban catchments; its generation is always related to the amount of effective rainfall dropped over the surface, however in urban catchments the process is considerably altered by the emergence of impervious areas. In this study the Soil Consevation Service – curve number (SCS-CN and the Green–Ampt loss methods were used in rainfall-runoff modelling in the Zaafrania urban catchment which is located in Annaba city in the north east of Algeria. The two loss methods were carried out within Hydrologic Engineering Center – Hydrologic Modelling System (HEC-HMS, the choice of the appropriate method for simulating runoff hydrographs in the study area was made by comparing the simulated hydrographs versus observed data using visual inspection and statistical analysis. The results indicate that SCS-CN loss method fit better in the case of 100 years return period NSE (0.462 than in 10 years NSE (0.346 and the results of calibration of Green–Ampt loss method for the 100 years return period NSE (0.417 provide best fit than the case of 10 years NSE (0.381. Furthermore, the results of both return periods (10 and 100 years of SCS-CN loss method provide best fit than the results of return periods (10 and 100 years of Green–Ampt loss method. It could be concluded that SCS-CN method is preferred to the Green–Ampt method for event based rainfall-runoff modelling.

  8. Storm runoff analysis using environmental isotopes and major ions

    International Nuclear Information System (INIS)

    Fritz, P.; Cherry, J.A.; Sklash, M.; Weyer, K.U.

    1976-01-01

    At a given locality the oxygen-18 content of rainwater varies from storm to storm but within broad seasonal trends. Very frequently, especially during heavy summer storms, the stable isotope composition of rainwater differs from that of the groundwater in the area. This isotopic difference can be used to differentiate between 'prestorm' and 'rain' components in storm runoff. This approach to the use of natural 18 O was applied in four hydrogeologically very different basins in Canada. Their surface areas range from less than 2km 2 to more than 700km 2 . Before, during and after the storm events samples of stream water, groundwater and rain were analysed for 18 O and in some cases for deuterium, major ions and electrical conductance. The 18 O hydrograph separations show that groundwater was a major component of the runoff in each of the basins, and usually exceeded 50% of the total water discharged. Even at peak stream flow most of discharge was subsurface water. The identification of geographic sources rather than time sources appears possible if isotope techniques are used in conjunction with chemical analyses, hydrological data - such as flow measurements - and visual observations. (author)

  9. An Overview of Rainfall-Runoff Model Types

    Science.gov (United States)

    This report explores rainfall-runoff models, their generation methods, and the categories under which they fall. Runoff plays an important role in the hydrological cycle by returning excess precipitation to the oceans and controlling how much water flows into stream systems. Mode...

  10. Rainfall-runoff and hydraulic modelling integration in the Blatina River

    International Nuclear Information System (INIS)

    Timko, J.

    2017-01-01

    This paper investigates the use and integration of rainfall-runoff modelling and hydrologic modelling of Blatina river catchment. Characteristics of physical-geographical sphere and its components were created within the model, enhancing the robustness of input data for the mathematical modelling of landscape runoff. Rainfall-runoff model HEC-HMS utilised in this research allows using a wide range of methodologies to determine the movement of water in the riverbed, water losses in the basin, hydraulic and hydrological methods of transformation and base-flow. Loss and transformation of water in the basin were modeled with curve numbers method SCS-CN. The simulated hydrograph was calibrated using rainfall-runoff event from June 2009. The same event was also modelled after the deforestation of the focus area. Using hydraulic model MIKE 21, a flood of focus rainfall-runoff area was simulated under both current real and changed land cover scenarios. (authors)

  11. Depletion of barium and radium-226 in Black Sea surface waters over the past thirty years

    International Nuclear Information System (INIS)

    Kenison Falkner, K.K.; Edmond, J.M.; O'Neill, D.J.; Todd, J.F.; Moore, W.S.

    1991-01-01

    The nearly landlocked waters of the Black Sea support a valuable fishery, but are also particularly vulnerable to anthropogenic disturbance. Here we use dissolved barium and radium-226 as tracers, to investigate the biogeochemical health of the sea. Both elements are brought to surface waters by vertical mixing of deeper, enriched waters, and by rivers; these inputs should ordinarily be balanced by outflow of surface waters at the Bosphorus, and by biologically mediated removal of 226 Ra-bearing barite. We show, however, that surface-water inventories have been substantially depleted over the past few decades: recent (1988-89) barium concentrations were 1.6 times lower than in 1958 and 1967. These observations suggest that steady-state cycling of these elements has been perturbed by increased primary productivity, presumably fuelled by nutrients from industry and agricultural runoff, and to a lesser extent by decreased fluvial sediment loads owing to extensive impoundment of rivers in the region. (author)

  12. Transport of silver nanoparticles by runoff and erosion - A flume experiment.

    Science.gov (United States)

    Mahdi, Karrar N M; Commelin, Meindert; Peters, Ruud J B; Baartman, Jantiene E M; Ritsema, Coen; Geissen, Violette

    2017-12-01

    Silver nanoparticles (AgNPs) are being used in many products as they have unique antimicrobial-biocidal properties. After disposal of these products AgNPs can reach the soil environment possibly affecting soil organisms and disrupting plants. This work aimed to study the transport of AgNPs by water and sediment during overland flow and soil erosion. This was done in a laboratory setting, using a flume and rainfall simulator. A low concentration of AgNPs (50μg·kg -1 ) was applied to two soil-flumes with slope percentages of 20% and 10%. The rainfall was applied in four events of 15min each with a total amount of rainfall of 15mm during each event. After applying the rainfall, samples of the non-transported background soil (BS) and the transported sediment (Sf) were collected from the flume surface. Runoff sediment (RS) and water (RW) were collected from the outlet. AgNPs were detected in all samples collected. However, concentration varied according to sample type (soil or water), time of collection (for runoff water and sediment) and the slope of the soil flume. Higher concentrations of AgNPs in soil were detected in the BS than in the Sf likely due to the BS having more fine particles (silt and clay). The AgNPs concentration in the runoff sediments increased with subsequent applied rain events. In addition, increasing the slope of the flume from 10% to 20% increased the total AgNPs transported with the runoff sediment by a factor 1.5. The study confirms that AgNPs can be transported by both overland flow and sediment due to erosion. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. How would peak rainfall intensity affect runoff predictions using conceptual water balance models?

    Directory of Open Access Journals (Sweden)

    B. Yu

    2015-06-01

    Full Text Available Most hydrological models use continuous daily precipitation and potential evapotranspiration for streamflow estimation. With the projected increase in mean surface temperature, hydrological processes are set to intensify irrespective of the underlying changes to the mean precipitation. The effect of an increase in rainfall intensity on the long-term water balance is, however, not adequately accounted for in the commonly used hydrological models. This study follows from a previous comparative analysis of a non-stationary daily series of stream flow of a forested watershed (River Rimbaud in the French Alps (area = 1.478 km2 (1966–2006. Non-stationarity in the recorded stream flow occurred as a result of a severe wild fire in 1990. Two daily models (AWBM and SimHyd were initially calibrated for each of three distinct phases in relation to the well documented land disturbance. At the daily and monthly time scales, both models performed satisfactorily with the Nash–Sutcliffe coefficient of efficiency (NSE varying from 0.77 to 0.92. When aggregated to the annual time scale, both models underestimated the flow by about 22% with a reduced NSE at about 0.71. Exploratory data analysis was undertaken to relate daily peak hourly rainfall intensity to the discrepancy between the observed and modelled daily runoff amount. Preliminary results show that the effect of peak hourly rainfall intensity on runoff prediction is insignificant, and model performance is unlikely to improve when peak daily precipitation is included. Trend analysis indicated that the large decrease of precipitation when daily precipitation amount exceeded 10–20 mm may have contributed greatly to the decrease in stream flow of this forested watershed.

  14. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 (Version 2.1) Catchments for the Conterminous United States: Runoff

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the estimated surface water runoff within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the...

  15. The Idiosyncrasies of Storage and Implications for Catchment Runoff (Invited)

    Science.gov (United States)

    Spence, C.

    2010-12-01

    Because water goes into storage when it rains, perhaps the entire concept of a direct rainfall-runoff process is erroneous and misleading. Perhaps the runoff generation process is merely the conversion of storage to runoff. Using this perspective as a foundation, it then becomes important to understand how catchments retain water, where this storage is distributed and what controls the distribution of this storage. There is a growing body of observational evidence that the idiosyncrasies of storage in the catchment are crucial for runoff generation. These idiosyncrasies are important enough that some hydrologists are questioning assumptions of steady state, linearity, and topographic control in existing theories and algorithms of runoff generation. For instance, thresholds that control the release of water have been identified at many scales and in many landscapes. Hysteresis in storage-runoff relationships at all scales manifest because of these thresholds. Because storage thresholds at a range of scales are now known to be important for runoff response, connectivity has become an important concept crucial to interpreting catchment runoff response. There appears to be growing acceptance of such ideas as thresholds, hysteresis and connectivity in the hydrological literature. Theoretical development and model parameterization have begun, but there remains much work to resolve these field observations. In particular, our community should strive to investigate the relevance of storage-runoff relationships partly through innovative measurement techniques and the development of model structures appropriate for the requisite testing of these theories in a diversity of landscapes.

  16. Importance of moisture determination in studies of infiltration and surface runoff for long periods

    Directory of Open Access Journals (Sweden)

    Fabian Fulginiti

    2011-08-01

    Full Text Available The determination of the natural soil moisture is essential to solve problems related to irrigation water requirements, environmental considerations, and determination of surplus water. For the determination of runoff one can adopt models that consider exclusively the infiltration as a loss or one could use computational models of infiltration to model the infiltrated water. Models based on the infiltration calculation consider well the interaction between infiltration - runoff processes and provide additional information on the phenomenon of infiltration which establishes the existing conditions of moisture in the soil before the occurrence of a new event (simulation for long periods. These models require solving Richards’s equation and for this purpose it is necessary to determine the relation between the soil moisture - suction and hydraulic conductivity - suction which require the determination of the hydraulic properties that can be obtained by measuring the water content by moisture profiles. The aim of this study was the verification of these moisture curves in loessic soils in the south of the city of Cordoba, Argentina. To do this, measurements were done and compared with results of infiltration models based on the determined hydraulic functions. The measurements were done using three probes installed at different depths. The results showed that the values obtained with NETRAIN adequately represent the behavior of wetting and drying conditions of the studied soil.The determination of these curves provided a basis for future studies that include the advancement of agricultural chemicals in the soil and its potential capacity to pollute groundwater, fundamental issue to define environmental management policies.

  17. Climate change impact on the river runoff: regional study for the Central Asian Region

    International Nuclear Information System (INIS)

    Agaitseva, Natalya

    2004-01-01

    increase is expected in evaporation from water surfaces of 15-20%. The most severe and climate conditions in the watershed area were predicted under the CCCM model. According to this model, if CO 2 concentration in the atmosphere is doubled, then the runoffs of the Syrdarya and Amudarya rivers are expected to be reduced by 28 and 40%, respectively. According to GFDL and GISS scenarios, presented.(Author)e experiencethe catchment area would increase by 3-4 o C and average annual precipitation volume by 10-15%. Under these scenarios, one could expect that no significant reduction in the Amudarya and Syrdarya runoff would occur. An air temperature rise of 1-2 o C will intensify the process of ice degradation. In 1957-180 glaciers in the Aral Sea river basins lost 115.5 km 3 Of ice (approximately 104 km 3 of water), which constituted almost 20 per cent of the 1957 ice reserve. By 2000 another 14 per cent of the 1957 reserve were lost. By 2020 glaciers will lose at least another 10 per cent of their initial volume. Calculations of regional climatic scenarios by the year 2030 also indicate persistence of present runoff volumes accompanied by an increase in fluctuations from year. Longer-term assessments are more pessimistic, since, along with increasing evaporation, water resource inputs (snow and glaciers in the mountains) are continuously shrinking. (Author)

  18. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  19. Effectiveness of narrow grass hedges in reducing atrazine runoff under different slope gradient conditions.

    Science.gov (United States)

    Wang, Qinghai; Li, Cui; Chen, Chao; Chen, Jie; Zheng, Ruilun; Que, Xiaoe

    2018-03-01

    Atrazine is frequently detected in surface runoff and poses a potential threat to the environment. Grass hedges may minimize runoff loss of atrazine from crop fields. Therefore, the effectiveness of two grass hedges (Melilotus albus and Pennisetum alopecuroides) in controlling atrazine runoff was investigated using simulated rainfall on lands at different slope gradients (15 and 20%) in northern China. Results showed that a storm (40 mm in 1 h), occurring 4 h after atrazine application, caused a loss of 3% of the applied amount. Atrazine loss under 20% slope was significantly greater than that under 15% slope in control plots. Atrazine exports associated with the water fraction accounted for the majority of total loss. Pennisetum hedges were more efficient in controlling atrazine loss with runoff compared to Melilotus hedges. No significant difference in the capacity of grass hedges to reduce atrazine exports was observed between 15 and 20% slopes. These findings suggest grass hedges are effective in minimizing atrazine runoff in northern China, and Pennisetum hedges should be preferentially used on sloping croplands in similar climatic regions.

  20. Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution

    OpenAIRE

    Jiunian Guan; Baixing Yan; Hui Zhu; Yingying Xu

    2012-01-01

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting season...

  1. RUNOFF POTENTIAL OF MUREŞ RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mureş River Upper Basin Tributaries. The upper basin of the Mureş River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  2. [Runoff loss of soil mineral nitrogen and its relationship with grass coverage on Loess slope land].

    Science.gov (United States)

    Zhang, Yali; Li, Huai'en; Zhang, Xingchang; Xiao, Bo

    2006-12-01

    In a simulated rainfall experiment on Loess slope land, this paper determined the rainfall, surface runoff and the effective depth of interaction (EDI) between rainfall and soil mineral nitrogen, and studied the effects of grass coverage on the EDI and the runoff loss of soil mineral nitrogen. The results showed that with the increase of EDI, soil nitrogen in deeper layers could be released into surface runoff through dissolution and desorption. The higher the grass coverage, the deeper the EDI was. Grass coverage promoted the interaction between surface runoff and surface soil. On the slope land with 60%, 80% and 100% of grass coverage, the mean content of runoff mineral nitrogen increased by 34.52%, 32.67% and 6.00%, while surface runoff decreased by 4.72%, 9.84% and 12.89%, and eroded sediment decreased by 83.55%, 87.11% and 89.01%, respectively, compared with bare slope land. The total runoff loss of soil mineral nitrogen on the lands with 60%, 80%, and 100% of grass coverage was 95.73%, 109.04%, and 84.05% of that on bare land, respectively. Grass cover had dual effects on the surface runoff of soil mineral nitrogen. On one hand, it enhanced the influx of soil mineral nitrogen to surface runoff, and on the other hand, it markedly decreased the runoff, resulting in the decrease of soil mineral nitrogen loss through runoff and sediment. These two distinct factors codetermined the total runoff loss of soil mineral nitrogen.

  3. Cr(VI) and Conductivity as Indicators of Surface Water Pollution from Ferrochrome Production in South Africa: Four Case Studies

    Science.gov (United States)

    Loock-Hattingh, M. M.; Beukes, J. P.; van Zyl, P. G.; Tiedt, L. R.

    2015-10-01

    South Africa is one of the largest ferrochromium (FeCr) producers. Most FeCr is exported to developed countries. Therefore the impact of this industry is of national and international importance. Cr(VI) and conductivity of surface water in four case study areas, near five FeCr smelters were monitored for approximately 1 year. Results indicated that FeCr production in three case study areas had a negative influence on the Cr(VI) concentration and/or the conductivity of surface waters. In the remaining case study areas, drinking water, originating from groundwater, was severely polluted with Cr(VI). The main factors causing pollution were surface run-off and/or seepage, while atmospheric deposition did not seem to contribute significantly. The extinction of diatoms during a severe Cr(VI) surface water pollution event (concentrations up to 216 µg/L) in one of the case study areas was also observed, which clearly indicates the ecological impact of such surface water pollution events.

  4. Formation of hydroxyl radical (sm-bulletOH) in illuminated surface waters contaminated with acidic mine drainage

    International Nuclear Information System (INIS)

    Allen, J.M.; Lucas, S.; Allen, S.K.

    1996-01-01

    Formation rates and steady-state concentrations of hydroxyl radical ( sm-bullet OH) in illuminated surface water samples collected in west-central Indiana that receive acidic mine drainage runoff are reported. Formation rates for sm-bullet OH in samples were measured by the addition of 1 x 10 -3 M benzene prior to illuminate in order to effectively scavenge all of the sm-bullet OH formed, thereby yielding phenol. The sm-bullet OH formation rates were calculated from the measured phenol formation rates. Steady-state concentrations of sm-bullet OH were measured by the addition of 5 x 10 -7 M nitrobenzene to the samples prior to illumination. Estimated sunlight sm-bullet OH formation rates range from 16 microM h -1 to 265 microM h -1 . Estimated sunlight steady-state sm-bullet OH concentrations range from 6.7 x 10 -15 to 4.0 x 10 -12 M. Both the formation rates and steady-state concentrations for sm-bullet OH are thus two to three orders of magnitude higher than values reported in the literature for other sunlit surface water samples. Due to the very high rates of formation and steady-state concentrations for sm-bullet OH in these samples, the authors conclude that aqueous-phase reactions involving sm-bullet OH represent a significant pathway by which organic pollutants in illuminated surface waters receiving acidic mine drainage runoff may be consumed

  5. Surface water ponding on clayey soils managed by conventional and conservation tillage in boreal conditions

    Directory of Open Access Journals (Sweden)

    L. ALAKUKKU

    2008-12-01

    Full Text Available Surface water ponding and crop hampering due to soil wetness was monitored in order to evaluate the effects of conservation tillage practices and perennial grass cover on soil infiltrability for five years in situ in gently sloping clayey fields. Thirteen experimental areas, each having three experimental fields, were established in southern Finland. The fields belonged to: autumn mouldboard ploughing (AP, conservation tillage (CT and perennial grass in the crop rotation (PG. In the third year, direct drilled (DD fields were established in five areas. Excluding PG, mainly spring cereals were grown in the fields. Location and surface area of ponded water (in the spring and autumn as well as hampered crop growth (during June-July were determined in each field by using GPS devices and GIS programs. Surface water ponding or crop hampering occurred when the amount of rainfall was clearly greater than the long-term average. The mean of the relative area of the ponded surface water, indicating the risk of surface runoff, and hampered crop growth was larger in the CT fields than in the AP fields. The differences between means were, however, not statistically significant. Complementary soil physical measurements are required to investigate the reasons for the repeated surface water ponding.;

  6. Assessment of copper removal from highway stormwater runoff using Apatite II(TM) and compost : laboratory and field testing.

    Science.gov (United States)

    2015-03-01

    -Stormwater runoff introduces heavy metals to surface waters that are harmful to aquatic organisms, : including endangered salmon. This work evaluates Apatite II, a biogenic fish bone based adsorbent, for removing metal : from stormwater. The meta...

  7. South Asian summer monsoon variability during the last ˜54 kyrs inferred from surface water salinity and river runoff proxies

    Science.gov (United States)

    Gebregiorgis, D.; Hathorne, E. C.; Sijinkumar, A. V.; Nath, B. Nagender; Nürnberg, D.; Frank, M.

    2016-04-01

    The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and δ18O analyses and to estimate seawater δ18O (δ18Osw). The difference between surface and thermocline temperatures (ΔT) and δ18Osw (Δδ18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our Δδ18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the δ18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ∼18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum δ18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation

  8. Climatic and land-use driven change of runoff throughout Sweden

    Science.gov (United States)

    Worman, A. L. E.; Riml, J.; Lindstrom, G.

    2015-12-01

    Changes in runoff can be caused by climatic variations, land-use changes and water regulation. In this paper we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. The latter function characterizes the surface water-groundwater interaction, stream network topology and open channel hydraulics. Based on daily data of digitalized hydro-climatological data from 1961, we constructed synthetic, but calibrated data of runoff from 1001 watersheds in Sweden. From spectral analysis of the data we found periodic fluctuations occurring on time scales of about a decade and a bi-annual peak. These multi-annual fluctuations could be statistically linked through the coherence spectra to climatic indices like the NAO, PDO, geostrophic wind velocity and sun spot numbers on common periods of 3,6 and 7,6 years. Such long-term fluctuations in runoff are not significantly affected by the land-use or regulation other than indirectly through impact on local hydro-climate. Based on a spectral separation of precipitation and impulse response function of the watersheds, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. There is a statistically significant increasing slope of the catchments impulse response function for 63 of the 79 catchments and this suggest a significant hydrological effect of land-use practice in agriculture, urbanisation and forestry.

  9. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, runoff from livestock pens, and seepage from pits containing animal wastes. Long-term fecal coliform data at two sampling stations on the Rio de la Plata indicate that since 1984, the geometric mean of five consecutive samples commonly has been at or below 2,000 colonies per 100 milliliters (established as the sanitary quality goal in Puerto Rico for Class SD type waters). At the sampling station upstream of Comerio, the geometric mean concentration has been near 500 colonies per 100 milliliters; downstream of the town of Comerio, the geometric mean concentration has been near 2,000 colonies per 100 milliliters concentration. The data at these stations also indicate that fecal coliform concentrations increase commonly above 2,000 colonies per 100 milliliters during storm-runoff events, ranging from 1,000 to 100,000 colonies per 100 milliliters at both stations. Geologic, topographic, soil, hydrogeologic, and streamflow data were used to divide the municipio of Comerio into five hydrogeologic terranes. The integrated database was then used to evaluate the ground-water development potential of each hydrogeologic terrane. Analysis suggests that areas with slopes greater than 15 degrees have relatively low ground-water development potential. Fractures may be important locally in enhancing the water-bearing properties in the hydrogeologic terranes containing igneous rocks. The integrated hydrogeologic approach used in this study can serve as an important tool for regulatory agencies of Puerto Rico and the municipio of Comerio to evaluate the ground-water resource development potential, examine ground- and surface-water interaction, and determine the effect of land-use practices on ground-water quantity and quality. Stream low-flow statistics document the general hydrology under current land and water uses. Low-flow characteristics may substantially change as a re

  10. Assessment of climate and land use change impacts on surface water runoff and connectivity in a continuous permafrost catchment on the Arctic Coastal Plain, Alaska

    Science.gov (United States)

    Gaedeke, A.; Arp, C. D.; Liljedahl, A. K.; Daanen, R. P.; Whitman, M. S.

    2016-12-01

    A changing climate is leading to rapid transformations of hydrological processes in low-gradient Arctic terrestrial ecosystems which are dominated by lakes and ponds, wetlands, polygonised tundra, and connecting stream and river networks. The aim of this study is to gain a deeper understanding of the impacts of climate and land use change on surface water availability and connectivity by utilizing the process-based, spatially distributed hydrological model WaSiM. Crea Creek Watershed (30 km2), which is located in the National Petroleum Reserve-Alaska (NPR-A) was chosen as study area because of its permafrost landforms (bedfast and floating ice lakes, high and low centered polygons), existing observational data (discharge, snow depth, and meteorological variables since 2009), and resource management issues related to permafrost degradation and aquatic habitat dynamics. Foremost of concern is oil development scheduled to begin starting in 2017 with the construction of a permanent road and drilling pad directly within the Crea Watershed. An interdisciplinary team consisting of scientists and regional stakeholders defined the following scenarios to be simulated using WaSiM: (1) industrial development (impact of water removal from lakes (winter) for ice road construction on downstream (summer) runoff), (2) permanent road construction to allow oil companies access to develop and extract petroleum, and (3) potential modes of climate change including warmer, snowier winters and prolonged drought during summers. Downscaled meteorological output from the Weather Research & Forecasting Model (WRF) will be used as the forcing for analysis of climate scenarios alone and for assessment of land-use responses under varying climate scenarios. Our results will provide regional stakeholders with information on the impacts of climate and land use change on surface water connectivity that affects aquatic habitat, as well as lake hydrologic interactions with permafrost. These finding

  11. A simple rainfall-runoff model for the single and long term hydrological performance of green roofs

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen

    Green roofs are being widely implemented for storm water control and runoff reduction. There is need for incorporating green roofs into urban drainage models in order to evaluate their impact. These models must have low computational costs and fine time resolution. This paper aims to develop...... a model of green roof hydrological performance. A simple conceptual model for the long term and single event hydrological performance of green roofs, shows to be capable of reproducing observed runoff measurements. The model has surface and subsurface storage components representing the overall retention...... capacity of the green roof. The runoff from the system is described by the non-linear reservoir method and the storage capacity of the green roof is continuously re-established by evapotranspiration. Runoff data from a green roof in Denmark are collected and used for parameter calibration....

  12. A Synopsis of Technical Issues of Concern for Monitoring Trace Elements in Highway and Urban Runoff

    Science.gov (United States)

    Breault, Robert F.; Granato, Gregory E.

    2000-01-01

    Trace elements, which are regulated for aquatic life protection, are a primary concern in highway- and urban-runoff studies because stormwater runoff may transport these constituents from the land surface to receiving waters. Many of these trace elements are essential for biological activity and become detrimental only when geologic or anthropogenic sources exceed concentrations beyond ranges typical of the natural environment. The Federal Highway Administration and State Transportation Agencies are concerned about the potential effects of highway runoff on the watershed scale and for the management and protection of watersheds. Transportation agencies need information that is documented as valid, current, and scientifically defensible to support planning and management decisions. There are many technical issues of concern for monitoring trace elements; therefore, trace-element data commonly are considered suspect, and the responsibility to provide data-quality information to support the validity of reported results rests with the data-collection agency. Paved surfaces are fundamentally different physically, hydraulically, and chemically from the natural surfaces typical of most freshwater systems that have been the focus of many traceelement- monitoring studies. Existing scientific conceptions of the behavior of trace elements in the environment are based largely upon research on natural systems, rather than on systems typical of pavement runoff. Additionally, the logistics of stormwater sampling are difficult because of the great uncertainty in the occurrence and magnitude of storm events. Therefore, trace-element monitoring programs may be enhanced if monitoring and sampling programs are automated. Automation would standardize the process and provide a continuous record of the variations in flow and water-quality characteristics. Great care is required to collect and process samples in a manner that will minimize potential contamination or attenuation of trace

  13. Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping management.

    Science.gov (United States)

    Bierman, Peter M; Horgan, Brian P; Rosen, Carl J; Hollman, Andrew B; Pagliari, Paulo H

    2010-01-01

    Phosphorus enrichment of surface water is a concern in many urban watersheds. A 3-yr study on a silt loam soil with 5% slope and high soil test P (27 mg kg(-1) Bray P1) was conducted to evaluate P fertilization and clipping management effects on P runoff from turfgrass (Poa pratensis L.) under frozen and nonfrozen conditions. Four fertilizer treatments were compared: (i) no fertilizer, (ii) nitrogen (N)+potassium (K)+0xP, (iii) N+K+1xP, and (iv) N+K+3xP. Phosphorus rates were 21.3 and 63.9 kg ha(-1) yr(-1) the first year and 7.1 and 21.3 kg ha(-1) yr(-1) the following 2 yr. Each fertilizer treatment was evaluated with clippings removed or clippings recycled back to the turf. In the first year, P runoff increased with increasing P rate and P losses were greater in runoff from frozen than nonfrozen soil. In year 2, total P runoff from the no fertilizer treatment was greater than from treatments receiving fertilizer. This was because reduced turf quality resulted in greater runoff depth from the no fertilizer treatment. In year 3, total P runoff from frozen soil and cumulative total P runoff increased with increasing P rate. Clipping management was not an important factor in any year, indicating that returning clippings does not significantly increase P runoff from turf. In the presence of N and K, P fertilization did not improve turf growth or quality in any year. Phosphorus runoff can be reduced by not applying P to high testing soils and avoiding fall applications when P is needed.

  14. Mineral Adsorbents for Removal of Metals in Urban Runoff

    Science.gov (United States)

    Bjorklund, Karin; Li, Loretta

    2014-05-01

    The aim of this research was to determine the capacity of four different soil minerals to adsorb metals frequently detected in urban runoff. These are low-cost, natural and commercially available soil minerals. Contaminated surface runoff from urban areas is a major cause of concern for water quality and aquatic ecosystems worldwide. Pollution in urban areas is generated by a wide array of non-point sources, including vehicular transportation and building materials. Some of the most frequently detected pollutants in urban runoff are metals. Exhaust gases, tire wear and brake linings are major sources of such metals as Pb, Zn and Cu, while impregnated wood, plastics and galvanized surfaces may release As, Cd, Cr and Zn. Many metals have toxic effects on aquatic plants and animals, depending on metal speciation and bioavailability. The removal efficiency of pollutants in stormwater depends on treatment practices and on the properties the pollutant. The distribution of metals in urban runoff has shown, for example, that Pb is predominantly particle-associated, whereas Zn and Cd are present mainly in dissolved form. Many metals are also attached to colloids, which may act as carriers for contaminants, thereby facilitating their transport through conventional water treatment processes. Filtration of stormwater is one of the most promising techniques for removal of particulates, colloidal and truly dissolved pollutants, provided that effective filtration and adsorption media are used. Filtration and infiltration are used in a wide array of stormwater treatment methods e.g. porous paving, infiltration drains and rain gardens. Several soil minerals were investigated for their potential as stormwater filter materials. Laboratory batch tests were conducted to determine the adsorption capacity of these minerals. A synthetic stormwater was tested, with spiked concentrations corresponding to levels reported in urban runoff, ranging from 50-1,500 µg/L for Zn; 5-250 µg/L for Cu

  15. Wood ash or dolomite treatment of catchment areas - effects of mercury in runoff water

    Energy Technology Data Exchange (ETDEWEB)

    Parkman, H; Munthe, J [Swedish Environmental Research Inst., Stockholm (Sweden)

    1996-11-01

    A future increased use of biomass as a source of energy, and the planned restoration of mineral nutrient balance in the forest soils by returning the wood ashes, has led to concern for new environmental disturbances. The objectives of the present study were to investigate if the outflow of total mercury (TotHg) and methyl mercury (MeHg) from catchment areas treated with granulated wood ash (1988, 2.2 tons/ha, `ashed area`) or dolomite (1985, 5 tons/ha, `limed area`) differed from the outflow from an untreated (reference) area, and if variations in Hg outflow were correlated with changes in the outflow of organic substances or pH. The study areas are situated in Vaermland, Sweden. Samples of run-off water were taken weekly or monthly (depending on water-flow) during on year (1993-94). The outflow of MeHg, TotHg as well as H+ and dissolved organic material (DOC) was lower from the limed area compared to the other two areas, which did not differ significantly. There was a strong covariation between concentrations of DOC and MeHg and a weaker relation between DOC and TotHg in the run-off waters. MeHg also covaried with temperature while TotHg covaried with pH and water-supply. No difference was found when comparing Hg-data from the limed area before, directly after and eight years after the liming event. 13 refs, 12 figs, 1 tab

  16. Independent effects of temperature and precipitation on modeled runoff in the conterminous United States

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2011-01-01

    A water-balance model is used to simulate time series of water-year runoff for 4 km ?? 4 km grid cells for the conterminous United States during the 1900-2008 period. Model outputs are used to examine the separate effects of precipitation and temperature on runoff variability. Overall, water-year runoff has increased in the conterminous United States and precipitation has accounted for almost all of the variability in water-year runoff during the past century. In contrast, temperature effects on runoff have been small for most locations in the United States even during periods when temperatures for most of the United States increased significantly. Copyright 2011 by the American Geophysical Union.

  17. An investigation of roof runoff during rain events at the Royal Military College of Canada and potential discharge to Lake Ontario.

    Science.gov (United States)

    Kelly, David G; Weir, Ron D; White, Steven D

    2011-01-01

    The Royal Military College of Canada, located on the north eastern shore of Lake Ontario, possesses an abundance of copper roofs and lacks surface water treatment prior to discharge into Lake Ontario. Rainwater, roof runoff and soil samples were collected and analyzed for copper and other parameters. Copper was consistently detected in runoff samples with average concentrations of 3200 +/- 2100 microg/L. Multivariable linear regression analysis for a dependant copper runoff concentration yielded an adjusted R2 value of 0.611, based on an independent variable model using minimum temperature, maximum temperature, total precipitation, and wind speed. Lake water samples taken in the vicinity of storm water outfalls draining areas with copper roofs ranged from 2.0 to 40 microg/L copper. Such data exceed the 2.0 microg/L Canadian Water Quality Guidelines for the Protection of Aquatic Life as outlined by the Canadian Council of Ministers of the Environment (CCME). Analysis of raw, filtered and digested forms suggested that the majority of copper present in runoff and lake water samples was in a dissolved form. The majority of soils taken in this study displayed copper concentrations below the 63 microg/g CCME residential/parkland land use limits. These findings suggested that ion exchange processes between runoff water and soil do not occur to a sufficient extent to elevate copper levels in soil. It may therefore be concluded that the eventual fate of copper, which is not discharged via storm water outfalls, is lost to the water table and Lake Ontario through the sub-soil.

  18. Summary of Surface-Water Quality Data from the Illinois River Basin in Northeast Oklahoma, 1970-2007

    Science.gov (United States)

    Andrews, William J.; Becker, Mark F.; Smith, S. Jerrod; Tortorelli, Robert L.

    2009-01-01

    periods. Concentrations of nitrogen, phosphorus, and sediment, and counts of bacteria generally increased with streamflow at the five sites, probably due to runoff from the land surface and re-suspension of streambed sediments. Phosphorus concentrations typically exceeded the Oklahoma standard of 0.037 milligrams per liter for Scenic Rivers. Concentrations of chlorophyll-a in phytoplankton in water samples collected at the five sites were not well correlated with streamflow, nor to concentrations of the nutrients nitrogen and phosphorus, probably because much of the algae growing in these streams are periphyton attached to streambed cobbles and other debris, rather than phytoplankton in the water column. Sediment concentrations correlated with phosphorus concentrations in water samples collected at the sites, probably due to sorption of phosphorus to soil particles and streambed sediments and runoff of soils and animal wastes at the land surface and resuspension of streambed sediments and phosphorus during wet, high-flow periods. Fecal coliform bacteria counts at the five sites sometimes exceeded the Oklahoma Primary Body Contact Standard of 400 colonies per 100 milliliters when streamflows were greater than 1000 cubic feet per second. Ultimately, Lake Tenkiller, an important ecological and economic resource for the region, receives the compounds that runoff the land surface or seep to local streams from groundwater in the basin. Because of eutrophication from increased nutrient loading, Lake Tenkiller is listed for impairment by diminished dissolved oxygen concentrations, phosphorus, and chlorophyll-a by the State of Oklahoma in evaluation of surface-water quality required by section 303d of the Clean Water Act. Stored phosphorus in soils and streambed and lakebed sediments may continue to provide phosphorus to local streams and lakes for decades to come. Steps are being made to reduce local sources of phosphorus, including upgrades in capacity and effective

  19. Runoff erosion

    OpenAIRE

    Evelpidou, Niki (Ed.); Cordier, Stephane (Ed.); Merino, Agustin (Ed.); Figueiredo, Tomás de (Ed.); Centeri, Csaba (Ed.)

    2013-01-01

    Table of Contents PART I – THEORY OF RUNOFF EROSION CHAPTER 1 - RUNOFF EROSION – THE MECHANISMS CHAPTER 2 - LARGE SCALE APPROACHES OF RUNOFF EROSION CHAPTER 3 - MEASURING PRESENT RUNOFF EROSION CHAPTER 4 - MODELLING RUNOFF EROSION CHAPTER 5 - RUNOFF EROSION AND HUMAN SOCIETIES: THE INFLUENCE OF LAND USE AND MANAGEMENT PRACTICES ON SOIL EROSION PART II - CASE STUDIES CASE STUDIES – INTRODUCTION: RUNOFF EROSION IN MEDITERRANEAN AREA CASE STUDY 1: Soil Erosion Risk...

  20. A 3-step framework for understanding the added value of surface soil moisture measurements for large-scale runoff prediction via data assimilation - a synthetic study in the Arkansas-Red River basin

    Science.gov (United States)

    Mao, Y.; Crow, W. T.; Nijssen, B.

    2017-12-01

    Soil moisture (SM) plays an important role in runoff generation both by partitioning infiltration and surface runoff during rainfall events and by controlling the rate of subsurface flow during inter-storm periods. Therefore, more accurate SM state estimation in hydrologic models is potentially beneficial for streamflow prediction. Various previous studies have explored the potential of assimilating SM data into hydrologic models for streamflow improvement. These studies have drawn inconsistent conclusions, ranging from significantly improved runoff via SM data assimilation (DA) to limited or degraded runoff. These studies commonly treat the whole assimilation procedure as a black box without separating the contribution of each step in the procedure, making it difficult to attribute the underlying causes of runoff improvement (or the lack thereof). In this study, we decompose the overall DA process into three steps by answering the following questions (3-step framework): 1) how much can assimilation of surface SM measurements improve surface SM state in a hydrologic model? 2) how much does surface SM improvement propagate to deeper layers? 3) How much does (surface and deeper-layer) SM improvement propagate into runoff improvement? A synthetic twin experiment is carried out in the Arkansas-Red River basin ( 600,000 km2) where a synthetic "truth" run, an open-loop run (without DA) and a DA run (where synthetic surface SM measurements are assimilated) are generated. All model runs are performed at 1/8 degree resolution and over a 10-year period using the Variable Infiltration Capacity (VIC) hydrologic model at a 3-hourly time step. For the DA run, the ensemble Kalman filter (EnKF) method is applied. The updated surface and deeper-layer SM states with DA are compared to the open-loop SM to quantitatively evaluate the first two steps in the framework. To quantify the third step, a set of perfect-state runs are generated where the "true" SM states are directly inserted

  1. What Can Catchment Transit Time Distributions Tell Us About Runoff Mechanisms? Exploring "Age Equifinality" with an Integrated Surface-Groundwater Model.

    Science.gov (United States)

    Wilusz, D. C.; Harman, C. J.; Ball, W. P.; Maxwell, R. M.; Buda, A. R.

    2017-12-01

    The backward transit-time distribution (bTTD) is the time-varying, probabilistic distribution of water travel times or, equivalently, water ages in catchment outflow. The bTTD is increasingly seen as a master variable of catchment hydrology that links flow and transport processes, in part because it is believed to embed information about runoff generation mechanisms (RGMs) that are difficult to directly observe. The ability to use water age to make inferences about RGMs depends on the degree of "age equifinality" in a watershed, defined here as the phenomenon where significant volumes of similarly-aged water are delivered to the outlet by different RGMs at the same time. When age equifinality is low (e.g., all discharge is old groundwater), the mapping of water age to the RGM may be simple; when age equifinality is high (e.g., discharge is a mix of old groundwater and old interflow), this mapping may be impossible. In this study we conduct experiments in a virtual watershed to (1) understand the hydrologic conditions that lead to age equifinality, (2) identify relationships between water age and RGMs that are particularly obscured/unobscured by age equifinality, and (3) test the generalizability of these relationships in other watersheds. Our experiments used the fully-distributed surface-groundwater model ParFlow, which simulates a suite of RGMs, plus SLIM-FAST particle tracking. To improve realism, the watershed model was parameterized and forced using extensive field data from the USDA's Mahantango Creek experimental catchment in PA, USA. The model output is being interrogated to understand the time-varying relationships between the composition of RGMs and the bTTD at the outlet. We are also testing the robustness of these relationships by re-running our model with controlled differences in climate, topography, and scale. Initial results suggest high age equifinality at peak flows due to overlapping young water contributions from infiltration- and saturation

  2. Incorporating human-water dynamics in a hyper-resolution land surface model

    Science.gov (United States)

    Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.

    2017-12-01

    The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in

  3. Run-off of strontium with melting snow in spring

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.

    1986-09-01

    When assessing the consequences of atmospheric releases caused by a large reactor accident, one usually finds that the major contributions to the dose are via nutrition and from exposure to radiation from radioactive materials deposited on ground. The experiment described is concerned with run-off from agricultural surface which has been contaminated with strontiom while covered with snow. Migration experiments show a significant difference between summer and winter conditions. Roughly 54% of the strontium with which the experimental area was contaminated, ran off with the melt-water. Under winter conditions, portions of the contaminant will flow with the melt-water without coming in contact with the soil

  4. Modeling time-dependent toxicity to aquatic organisms from pulsed exposure of PAHs in urban road runoff

    International Nuclear Information System (INIS)

    Zhang Wei; Ye Youbin; Tong Yindong; Ou Langbo; Hu Dan; Wang Xuejun

    2011-01-01

    Understanding of the magnitude of urban runoff toxicity to aquatic organisms is important for effective management of runoff quality. In this paper, the aquatic toxicity of polycyclic aromatic hydrocarbons (PAHs) in urban road runoff was evaluated through a damage assessment model. Mortality probability of the organisms representative in aquatic environment was calculated using the monitored PAHs concentration in road runoff. The result showed that the toxicity of runoff in spring was higher than those in summer. Analysis of the time-dependent toxicity of series of runoff water samples illustrated that the toxicity of runoff water in the final phase of a runoff event may be as high as those in the initial phase. Therefore, the storm runoff treatment systems or strategies designed for capture and treatment of the initial portion of runoff may be inappropriate for control of runoff toxicity. - Research highlights: → Toxicity resulting from realistic exposure patterns of urban runoff is evaluated. → Toxicity of runoff water in the final phase is as high as the initial phase. → Treatment of the initial runoff portion is inappropriate to abate runoff toxicity. - Toxicity to aquatic organisms after sequential pulsed exposure to PAHs in urban road runoff is evaluated.

  5. Quantity and quality of runoff reduction and recharge enhancement from constructed rain gardens and vegetated retention ponds in Austin, Texas

    Science.gov (United States)

    Eljuri, A. G.; Moffett, K. B.

    2013-12-01

    Rain gardens and retention ponds are intended to reduce storm water and pollutant runoff to rivers and streams, rain gardens by enhancing infiltration and retention ponds by promoting evaporation. The City of Austin, Texas is actively investing money and time into these storm water management solutions, but there are no data comparing their effectiveness. In particular, comparisons of rain gardens against control plots and new wetland-vegetated retention pond designs against traditional grassy pond designs are lacking. This study quantifies the quantity and quality of storm runoff to and from five sites: three engineered sites, two rain gardens receiving direct runoff from the same residential roof and a planted retention pond receiving municipal parking lot runoff, and two control sites, a mulched residential lawn receiving direct roof runoff and a grassy municipal retention pond receiving parking lot runoff. A locally installed rain gauge monitors precipitation rates and we collect and analyze rainwater chemistry. Each site is instrumented with bottles to collect direct runoff samples and suction lysimeters within and below the root zone, at 10 cm and 40 cm depth, from which to collect soil water. Soil moisture sensors at 5 cm, 25 cm, and 50 cm depth are used to monitor changes in soil moisture profiles over time. Evapotranspiration rates were determined using local meteorological data and stomatal conductance measurements at the sites. Infiltrometer tests, soil characterizations, and vegetation surveys were also conducted at each site. The soil at the rain gardens are highly mixed with pebbles at the top and become a more uniform soil towards the bottom of the root zone. This differs from the control site where the soil is uniform except for the thin layer of wood chips at the surface. The water samples were analyzed for pH, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and cations (incl. cadmium, iron, zinc, and lead) and anions (incl

  6. Run-off regime of the small rivers in mountain landscapes (on an example of the mountain "Mongun-taiga

    Science.gov (United States)

    Pryahina, G.; Zelepukina, E.; Guzel, N.

    2012-04-01

    Hydrological characteristics calculations of the small mountain rivers in the basins with glaciers frequently cause complexity in connection with absence of standard hydrological supervision within remote mountain territories. The unique way of the actual information reception on a water mode of such rivers is field work. The rivers of the mountain Mongun-taiga located on a joint of Altai and Sayan mountains became hydrological researches objects of Russian geographical society complex expeditions in 2010-2011. The Mongun-taiga cluster of international biosphere reserve "Ubsunurskaya hollow" causes heightened interest of researchers — geographers for many years. The original landscape map in scale 1:100000 has been made, hydrological supervision on the rivers East Mugur and ugur, belonging inland basin of Internal Asia are lead. Supervision over the river drain East Mugur runoff were spent in profile of glacier tongue (the freezing area - 22 % (3.2 km2) from the reception basin) and in the closing alignment of the river located on distance of 3,4 km below tongue of glacier. During researches following results have been received. During the ablation period diurnal fluctuations with a strongly shown maximum and minimum of water discharges are typically for the small rivers with considerable share of a glacial food. The run-off maximum from the glacier takes place from 2 to 7 p.m., the run-off minimum is observed early in the morning. High speed of thawed snow running-off from glacier tongue and rather small volume of dynamic stocks water on an ice surface lead to growth of water discharge. In the bottom profile the time of maximum and minimum of water discharge is displaced on the average 2 hours, it depends of the water travel time. Maximum glacial run-off discharge (1.12 m3/s) in the upper profile was registered on July 16 (it was not rain). Volumes of daily runoff in the upper and bottom profiles were 60700-67600 m3 that day. The run-off from nonglacial part of

  7. Application of the Kineros model for predicting the effect of land use on the surface run-off Case study in Brantas sub-watershed, Klojen District, Malang City, East Java Province of Indonesia

    Directory of Open Access Journals (Sweden)

    Bisri Mohammad

    2017-12-01

    Full Text Available This study intended to illustrate the distribution of surface run-off. The methodology was by using Kineros model (kinetic run-off and erosion model. This model is a part of AGWA program which is as the development of ESRI ArcView SIG software that is as a tool for analysing hydrological phenomena in research about watershed simulating the process of infiltration, run-off depth, and erosion in a watershed of small scale such as ≤100 km2. The procedures are as follow: to analyse the run-off depth in Brantas sub-watershed, Klojen District by using Kineros model based on the land use change due to the rainfall simulation with the return period of 2 years, 5 years, 10 years, and 25 years. Results show that the difference of land use affect the surface run-off or there is the correlation between land use and surface run-off depth. The maximum surface run-off depth in the year 2000 was 134.26 mm; in 2005 it was 139.36 mm; and in 2010 it was 142.76 mm. There was no significant difference between Kineros model and observation in field, the relative error was only 9.09%.

  8. The Spatiotemporal Variations of Runoff in the Yangtze River Basin under Climate Change

    OpenAIRE

    Xiao, Ziwei; Shi, Peng; Jiang, Peng; Hu, Jianwei; Qu, Simin; Chen, Xingyu; Chen, Yingbing; Dai, Yunqiu; Wang, Jianjin

    2018-01-01

    A better understanding of the runoff variations contributes to a better utilization of water resources and water conservancy planning. In this paper, we analyzed the runoff changes in the Yangtze River Basin (YRB) including the spatiotemporal characteristics of intra-annual variation, the trend, the mutation point, and the period of annual runoff using various statistical methods. We also investigated how changes in the precipitation and temperature could impact on runoff. We found that the i...

  9. Further insight into the mechanism of heavy metals partitioning in stormwater runoff.

    Science.gov (United States)

    Djukić, Aleksandar; Lekić, Branislava; Rajaković-Ognjanović, Vladana; Veljović, Djordje; Vulić, Tatjana; Djolić, Maja; Naunovic, Zorana; Despotović, Jovan; Prodanović, Dušan

    2016-03-01

    Various particles and materials, including pollutants, deposited on urban surfaces are washed off by stormwater runoff during rain events. The interactions between the solid and dissolved compounds in stormwater runoff are phenomena of importance for the selection and improvement of optimal stormwater management practices aimed at minimizing pollutant input to receiving waters. The objective of this research was to further investigate the mechanisms responsible for the partitioning of heavy metals (HM) between the solid and liquid phases in urban stormwater runoff. The research involved the collection of samples from urban asphalt surfaces, chemical characterization of the bulk liquid samples, solids separation, particle size distribution fractionation and chemical and physico-chemical characterization of the solid phase particles. The results revealed that a negligible fraction of HM was present in the liquid phase (less than 3% by weight), while there was a strong correlation between the total content of heavy metals and total suspended solids. Examinations of surface morphology and mineralogy revealed that the solid phase particles consist predominantly of natural macroporous materials: alpha quartz (80%), magnetite (11.4%) and silicon diphosphate (8.9%). These materials have a low surface area and do not have significant adsorptive capacity. These materials have a low surface area and do not have significant adsorptive capacity. The presence of HM on the surface of solid particles was not confirmed by scanning electron microscopy and energy dispersive X-ray microanalyses. These findings, along with the results of the liquid phase sample characterization, indicate that the partitioning of HM between the liquid and solid phases in the analyzed samples may be attributed to precipitation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Large-scale runoff generation – parsimonious parameterisation using high-resolution topography

    OpenAIRE

    L. Gong; S. Halldin; C.-Y. Xu

    2010-01-01

    World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow) and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting a very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms...

  11. Escoamento superficial em diferentes sistemas de manejo em um Nitossolo Háplico típico Surface runoff in different soil management systems on Typic Hapudox soil

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2008-06-01

    Full Text Available O preparo mecânico do solo influencia o seu manejo e danifica a estrutura, diminui a porosidade e a infiltração de água e aumenta o escoamento superficial. Utilizando-se simulador de chuvas, estudaram-se os tratamentos, preparo convencional (PC; semeadura direta em resíduo queimado (SQ; semeadura direta em resíduo dessecado (SD; e semeadura direta tradicional em resíduo dessecado (ST, cultivados, além de um preparo convencional sem cultivo do solo (SC - testemunha e de um campo nativo (CN, em um Nitossolo Háplico no Planalto Sul Catarinense, entre março de 2001 e fevereiro de 2004, com o objetivo de quantificar o escoamento superficial. Ao milho e feijão se aplicaram três testes de chuva em cada um e à soja cinco testes. Quantificaram-se os tempos de início (TI e pico (TP de enxurrada, a taxa constante (TE e o volume de enxurrada (VE e o coeficiente C da Equação Racional. Os TI, TP e TE, coeficiente C e VE, foram influenciados pelo preparo e cultivo do solo. O TI e o TP foram menores nos tratamentos PC e SC, enquanto a TE, o coeficiente C e o VE, também foram menores, mas nos tratamentos SD e ST. A TE variou de 18 mm h-1 na ST a 44 mm h-1 no SC, enquanto o coeficiente C variou de 0,29 na ST a 0,71 no SC. A variação do VE foi de 106 m³ ha-1 na ST a 434 m³ ha-1 no SC, na média dos cultivos.Soil tillage influences soil management and damages structure, reduces the porosity and water infiltration and increases surface runoff. A rotating-boom rainfall simulator was used to investigate the treatments: conventional tillage (CT, no-tillage in burn residue (NB, no-tillage in desiccated residue (ND, and traditional no-tillage in desiccated residue (NT, both cropped, as well as conventional tillage without crop (bare soil - BS, and native pasture treatment (NP, in a Typic Hapludox soil, in the Southern Plateau of Santa Catarina State, Brazil, from March, 2001 to February, 2004, with the objective of quantifying surface runoff. Three

  12. The assessment of land use change impact on watersheds runoff using SWAT: case study of Urmia Lake in Iran

    Science.gov (United States)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein

    2015-04-01

    Lake Urmia, long counted among the world's largest saltwater lakes, contains only 5% of the amount of water it did just 20 years ago. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. It has been believed that land use changes in Lake Urmia basin is one of the most important factors in shrinkage of Urmia Lake in recent decades. Transforming the traditional agricultural practices (i.e., wheat) to the more water consuming practices (i.e., apple orchards) is one of the most important reasons increased agricultural water consumption in the watershed. In this study we assessed the effect of the land use changes of watershed in hydrological runoff processing in the Nazloo chai watershed, one of the most important river basins of the Urmia Lake basin. Actually the rapid and at the same time unreasonable transformations of land use in farm lands of Urmia lake sub basins, extremely has been raised the amount of blue water (surface or groundwater) consumption in watershed which leads to dramatic decrement of watershed runoff amounts. One of the most unfavorable consequences of land use change was changing the blue and green (rainwater insofar as it does not become runoff) water usage patterns in watershed, in addition to water use increment. The soil and water assessment tool (SWAT), one of the most important and reliable models which was used to model the rainfall runoff, has been used in current study. The land use maps were extracted from Landsat images archives for the most severe turning points in respect of land use change in the recent 30 years. After calibrating the model, several land use patterns of historical data were used in the model to produce the runoff. The results showed the strong relation between land use change and runoff reduction in the Lake Urmia basin.

  13. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    Science.gov (United States)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  14. RUNOFF AND EROSION IN DIFFERENT (AGRO CLIMATOLOGICAL ZONES OF LATIN AMERICA AND PROPOSALS FOR SOIL AND WATER CONSERVATION SCENARIOS

    Directory of Open Access Journals (Sweden)

    Donald Gabriels

    2005-05-01

    Full Text Available Steeplands, when cleared from forests, are susceptible to erosion by rainfall and are prone toland degradation and desertification processes.The dominant factors affecting those erosion processes and hence the resulting runoff and soillosses are the aggressiveness of the rainfall during the successive plant growth stages, the soilcover-management, but also the topography (slope length and slope steepness. Depending onthe type of (agro climatological zone, the runoff water should either be limited and controlled(excess of water or should be enhanced and collected from the slope on the downslopecropping area if water is short (negative soil water balance.Examples are given of practical applications in Ecuador where alternative soil conservationscenarios are proposed in maize cultivation in small fields on steep slopes. Adding peas andbarley in the rotation of maize and beans resulted only in a slight decrease of the soil losses.Subdividing the fields into smaller parcels proved to give the best reduction in soil loss.Because the average slope steepness is high, erosion control measures such as contourploughing and strip cropping have only small effects.Erosion and its effect on productivity of a sorghum -livestock farming system are assessed onfour different areas in Venezuela with different levels of erosion. A Productivity Index (PIand an Erosion Risk Index (ERI were used to classify the lands for soil conservationpriorities and for alternative land uses. Intensive agriculture can be applied on slightly erodedsoil, whereas severely eroded soil can be used with special crops or agro-forestry. Semiintensiveagriculture is possible on moderately eroded soil.Reforestation of drylands in Chili requires understanding of the infiltration/runoff process inorder to determine dimensions of water harvesting systems. Infiltration processes in semi-aridregions of Chile were evaluated, using rainfall experiments and constant-head infiltrationmeasurements

  15. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 1993

    International Nuclear Information System (INIS)

    Conrad, R.; Childs, M.; Rivera-Dirks, C.; Coriz, F.

    1995-07-01

    Area G, in Technical Area 54, has been the principle facility at Los Alamos National Laboratory for the storage and disposal of low-level and transuranic (TRU) radioactive wastes since 1957. The current environmental investigation consisted of ESH-19 personnel who collected soil and single-stage water samples around the perimeter of Area G to characterize possible contaminant movement through surface-water runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241 (soil only), and cesium 137. The metals, mercury, lead, and barium, were analyzed using x-ray fluorescence

  16. Impact of Practice Change on Runoff Water Quality and Vegetable Yield—An On-Farm Case Study

    Directory of Open Access Journals (Sweden)

    Gunasekhar Nachimuthu

    2017-03-01

    Full Text Available Intensive agricultural practices in farming systems in eastern Australia have been identified as a contributor to the poor runoff water quality entering the Great Barrier Reef (GBR. A field investigation was carried out to measure the off-farm water quality and productivity in a coastal farming system in northeastern Australia. Two vegetable crops (capsicum and zucchini were grown in summer 2010–2011 and winter 2011 respectively using four different management practices (Conventional—plastic mulch, bare inter-row conventional tillage and commercial fertilizer inputs; Improved—improved practice with plastic mulch, inter-row vegetative mulch, zonal tillage and reduced fertilizer rates; Trash mulch—improved practice with cane-trash or forage-sorghum mulch with reduced fertilizer rates, minimum or zero tillage; and Vegetable only—improved practice with Rhodes grass or forage-sorghum mulch, minimum or zero tillage, reduced fertilizer rates. Results suggest improved and trash mulch systems reduced sediment and nutrient loads by at least 50% compared to conventional systems. The residual nitrate nitrogen in soil accumulated at the end-of-break crop cycle was lost by deep drainage before the subsequent sugarcane crop could utilize it. These results suggest that future research into establishing the linkages between deep drainage, groundwater quality and lateral movement into adjacent streams is needed. The improvement in runoff water quality was accompanied by yield reductions of up to 55% in capsicum and 57% in zucchini under trash mulch systems, suggesting a commercially unacceptable trade-off between water quality and productivity for a practice change. The current study has shown that variations around improved practice (modified nutrient application strategies under plastic mulch, but with an inter-space mulch to minimize runoff and sediment loss may be the most practical solution to improve water quality and maintain productivity

  17. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords

    Science.gov (United States)

    Arimitsu, Mayumi L.; Piatt, John F.; Mueter, Franz J.

    2016-01-01

    To better understand the influence of glacier runoff on fjord ecosystems, we sampled oceanographic conditions, nutrients, zooplankton, forage fish and seabirds within 4 fjords in coastal areas of the Gulf Alaska. We used generalized additive models and geostatistics to identify the range of glacier runoff influence into coastal waters within fjords of varying estuarine influence and topographic complexity. We also modeled the response of depth-integrated chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. The effects of glacial runoff were traced at least 10 km into coastal fjords by cold, turbid, stratified and generally nutrient-rich near-surface conditions. Glacially modified physical gradients, nutrient availability and among-fjord differences explained 67% of the variation in phytoplankton abundance, which is a driver of ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were related to environmental gradients that could be traced to glacial freshwater input, particularly turbidity and temperature. Seabird density was predicted by prey availability and silicate concentrations, which may be a proxy for upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were attributable to an influx of cold, fresh and sediment-laden water, whereas differences were likely related to fjord topography and local differences in estuarine vs. ocean influence. We anticipate that continued changes in the timing and volume of glacial runoff will ultimately alter coastal ecosystems in the future.

  18. The effect of leaf litter cover on surface runoff and soil erosion in Northern China.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter, four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05. Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05, and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05 were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05 with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.

  19. Soil erosion-runoff relationships: insights from laboratory studies

    Science.gov (United States)

    Mamedov, Amrakh; Warrington, David; Levy, Guy

    2016-04-01

    Understanding the processes and mechanisms affecting runoff generation and subsequent soil erosion in semi-arid regions is essential for the development of improved soil and water conservation management practices. Using a drip type laboratory rain simulator, we studied runoff and soil erosion, and the relationships between them, in 60 semi-arid region soils varying in their intrinsic properties (e.g., texture, organic matter) under differing extrinsic conditions (e.g., rain properties, and conditions prevailing in the field soil). Both runoff and soil erosion were significantly affected by the intrinsic soil and rain properties, and soil conditions within agricultural fields or watersheds. The relationship between soil erosion and runoff was stronger when the rain kinetic energy was higher rather than lower, and could be expressed either as a linear or exponential function. Linear functions applied to certain limited cases associated with conditions that enhanced soil structure stability, (e.g., slow wetting, amending with soil stabilizers, minimum tillage in clay soils, and short duration exposure to rain). Exponential functions applied to most of the cases under conditions that tended to harm soil stability (e.g., fast wetting of soils, a wide range of antecedent soil water contents and rain kinetic energies, conventional tillage, following biosolid applications, irrigation with water of poor quality, consecutive rain simulations). The established relationships between runoff and soil erosion contributed to a better understanding of the mechanisms governing overland flow and soil loss, and could assist in (i) further development of soil erosion models and research techniques, and (ii) the design of more suitable management practices for soil and water conservation.

  20. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.

    Science.gov (United States)

    Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène

    2009-09-01

    A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater.

  1. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    Science.gov (United States)

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  2. Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau.

    Science.gov (United States)

    Wang, Yuanyuan; Zhang, Yongqiang; Chiew, Francis H S; McVicar, Tim R; Zhang, Lu; Li, Hongxia; Qin, Guanghua

    2017-11-13

    As the "Asian Water Tower", the Tibetan Plateau (TP) provides water resources for more than 1.4 billion people, but suffers from climatic and environmental changes, followed by the changes in water balance components. We used state-of-the-art satellite-based products to estimate spatial and temporal variations and trends in annual precipitation, evapotranspiration and total water storage change across eastern TP, which were then used to reconstruct an annual runoff variability series for 2003-2014. The basin-scale reconstructed streamflow variability matched well with gauge observations for five large rivers. Annual runoff increased strongly in dry part because of increases in precipitation, but decreased in wet part because of decreases in precipitation, aggravated by noticeable increases in evapotranspiration in the north of wet part. Although precipitation primarily governed temporal-spatial pattern of runoff, total water storage change contributed greatly to runoff variation in regions with wide-spread permanent snow/ice or permafrost. Our study indicates that the contrasting runoff trends between the dry and wet parts of eastern TP requires a change in water security strategy, and attention should be paid to the negative water resources impacts detected for southwestern part which has undergone vast glacier retreat and decreasing precipitation.

  3. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.

    Science.gov (United States)

    Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A

    2015-04-01

    The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil water pressures, rainfall and runoff.

    Science.gov (United States)

    L.R. Ahuja; S. A. El-Swaify

    1979-01-01

    Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...

  5. Acid-base status of soils in groundwater discharge zones — relation to surface water acidification

    Science.gov (United States)

    Norrström, Ann Catrine

    1995-08-01

    Critical load calculations have suggested that groundwater at depth of 2 m in Sweden is very sensitive to acid load. As environmental isotope studies have shown that most of the runoff in streams has passed through the soil, there is a risk in the near future of accelerated acidification of surface waters. To assess the importance of the last soil horizon of contact before discharge, the upper 0-0.2m of soils in seven discharge zones were analysed for pools of base cations, acidity and base saturation. The sites were about 3-4 m 2 in size and selected from two catchments exposed to different levels of acid deposition. The soils in the seven sites had high concentrations of exchangeable base cations and consequently high base saturation. The high correlation ( r2 = 0.74) between base saturation in the soils of the discharge zones and mean pH of the runoff waters suggested that the discharge zone is important for surface water acidification. The high pool of exchangeable base cations will buffer initially against the acid load. As the cation exchange capacity (meq dm -3) and base saturation were lower in the sites from the catchment receiving lower deposition, these streams may be more vulnerable to acidification in the near future. The high concentration of base cations in non-exchangeable fractions may also buffer against acidification as it is likely that some of these pools will become exchangeable with time.

  6. Multivariate statistical techniques for the evaluation of surface water quality of the Himalayan foothills streams, Pakistan

    Science.gov (United States)

    Malik, Riffat Naseem; Hashmi, Muhammad Zaffar

    2017-10-01

    Himalayan foothills streams, Pakistan play an important role in living water supply and irrigation of farmlands; thus, the water quality is closely related to public health. Multivariate techniques were applied to check spatial and seasonal trends, and metals contamination sources of the Himalayan foothills streams, Pakistan. Grab surface water samples were collected from different sites (5-15 cm water depth) in pre-washed polyethylene containers. Fast Sequential Atomic Absorption Spectrophotometer (Varian FSAA-240) was used to measure the metals concentration. Concentrations of Ni, Cu, and Mn were high in pre-monsoon season than the post-monsoon season. Cluster analysis identified impaired, moderately impaired and least impaired clusters based on water parameters. Discriminant function analysis indicated spatial variability in water was due to temperature, electrical conductivity, nitrates, iron and lead whereas seasonal variations were correlated with 16 physicochemical parameters. Factor analysis identified municipal and poultry waste, automobile activities, surface runoff, and soil weathering as major sources of contamination. Levels of Mn, Cr, Fe, Pb, Cd, Zn and alkalinity were above the WHO and USEPA standards for surface water. The results of present study will help to higher authorities for the management of the Himalayan foothills streams.

  7. High Severity Wildfire Effect On Rainfall Infiltration And Runoff: A Cellular Automata Based Simulation

    Science.gov (United States)

    Vergara-Blanco, J. E.; Leboeuf-Pasquier, J.; Benavides-Solorio, J. D. D.

    2017-12-01

    A simulation software that reproduces rainfall infiltration and runoff for a storm event in a particular forest area is presented. A cellular automaton is utilized to represent space and time. On the time scale, the simulation is composed by a sequence of discrete time steps. On the space scale, the simulation is composed of forest surface cells. The software takes into consideration rain intensity and length, individual forest cell soil absorption capacity evolution, and surface angle of inclination. The software is developed with the C++ programming language. The simulation is executed on a 100 ha area within La Primavera Forest in Jalisco, Mexico. Real soil texture for unburned terrain and high severity wildfire affected terrain is employed to recreate the specific infiltration profile. Historical rainfall data of a 92 minute event is used. The Horton infiltration equation is utilized for infiltration capacity calculation. A Digital Elevation Model (DEM) is employed to reproduce the surface topography. The DEM is displayed with a 3D mesh graph where individual surface cells can be observed. The plot colouring renders water content development at the cell level throughout the storm event. The simulation shows that the cumulative infiltration and runoff which take place at the surface cell level depend on the specific storm intensity, fluctuation and length, overall terrain topography, cell slope, and soil texture. Rainfall cumulative infiltration for unburned and high severity wildfire terrain are compared: unburned terrain exhibits a significantly higher amount of rainfall infiltration.It is concluded that a cellular automaton can be utilized with a C++ program to reproduce rainfall infiltration and runoff under diverse soil texture, topographic and rainfall conditions in a forest setting. This simulation is geared for an optimization program to pinpoint the locations of a series of forest land remediation efforts to support reforestation or to minimize runoff.

  8. Perennial grass management impacts on runoff and sediment export from vegetated channels in pulse flow runoff events

    International Nuclear Information System (INIS)

    Wilson, H.M.; Cruse, R.M.; Burras, C.L.

    2011-01-01

    The goal of the United States Congress is to replace 30% of United States petroleum with biofuels by 2030. If this goal will be accomplished, it is estimated that 25-50% of the land enrolled in the Conservation Reserve Program (CRP) have its biomass removed. However, the purpose of many conservation practices enrolled in CRP is to improve or maintain water quality and not to serve as a source of biomass. This study was conducted to determine if biomass removal has an effect on runoff and sediment export from vegetated channels during low intensity storms that occur frequently. In June 2006, 24 channels were created that measured 2 m x 10 m. The treatments of grass species (big bluestem, corn, smooth bromegrass, and switchgrass) and biomass removal (removed, not removed) were applied to the channels in a split-plot arrangement. Three times in 2007 and 3 more times in 2008, a 787 L load of water with suspended sediment was drained on the head and sides of each experimental unit and the entire load of water that ran off was collected, weighed, and sampled for sediment concentration. Biomass removal increased runoff and sediment by an average of 15% over the two years of the study. The channels planted to perennial C4 grasses were most effective at reducing runoff and sediment export, while the corn was consistently the least effective at reducing runoff and sediment export. (author)

  9. Perennial grass management impacts on runoff and sediment export from vegetated channels in pulse flow runoff events

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, H.M. [Department of Agriculture and Natural Resources, University of Minnesota-Crookston, 2900 University Avenue, Crookston, MN 56716 (United States); Cruse, R.M.; Burras, C.L. [Agronomy Department, Iowa State University, Ames, IA 50010-1010 (United States)

    2011-01-15

    The goal of the United States Congress is to replace 30% of United States petroleum with biofuels by 2030. If this goal will be accomplished, it is estimated that 25-50% of the land enrolled in the Conservation Reserve Program (CRP) have its biomass removed. However, the purpose of many conservation practices enrolled in CRP is to improve or maintain water quality and not to serve as a source of biomass. This study was conducted to determine if biomass removal has an effect on runoff and sediment export from vegetated channels during low intensity storms that occur frequently. In June 2006, 24 channels were created that measured 2 m x 10 m. The treatments of grass species (big bluestem, corn, smooth bromegrass, and switchgrass) and biomass removal (removed, not removed) were applied to the channels in a split-plot arrangement. Three times in 2007 and 3 more times in 2008, a 787 L load of water with suspended sediment was drained on the head and sides of each experimental unit and the entire load of water that ran off was collected, weighed, and sampled for sediment concentration. Biomass removal increased runoff and sediment by an average of 15% over the two years of the study. The channels planted to perennial C4 grasses were most effective at reducing runoff and sediment export, while the corn was consistently the least effective at reducing runoff and sediment export. (author)

  10. The effect of poultry manure application rate and AlCl(3) treatment on bacterial fecal indicators in runoff.

    Science.gov (United States)

    Brooks, J P; Adeli, A; McLaughlin, M R; Miles, D M

    2012-12-01

    Increasing costs associated with inorganic fertilizer have led to widespread use of broiler litter. Proper land application, typically limiting nutrient loss, is essential to protect surface water. This study was designed to evaluate litter-borne microbial runoff (heterotrophic plate count bacteria, staphylococci, Escherichia coli, enterococci, and Clostridium perfringens) while applying typical nutrient-control methods. Field studies were conducted in which plots with high and low litter rates, inorganic fertilizer, AlCl(3)-treated litter, and controls were rained on five times using a rain generator. Overall, microbial runoff from poultry litter applied plots was consistently greater (2-5 log(10) plot(-1)) than controls. No appreciable effect on microbial runoff was noted from variable litter application rate or AlCl(3) treatments, though rain event, not time, significantly affected runoff load. C. perfringens and staphylococci runoff were consistently associated with poultry litter application, during early rain events, while other indicators were unreliable. Large microbial runoff pulses were observed, ranging from 10(2) to 10(10) CFU plot(-1); however, only a small fraction of litter-borne microbes were recoverable in runoff. This study indicated that microbial runoff from litter-applied plots can be substantial, and that methods intended to reduce nutrient losses do not necessarily reduce microbial runoff.

  11. Hydrologic conditions and water quality of rainfall and storm runoff for two agricultural areas of the Oso Creek watershed, Nueces County, Texas, 2005-08

    Science.gov (United States)

    Ockerman, Darwin J.; Fernandez, Carlos J.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and water quality of rainfall and storm runoff of two primarily agricultural subwatersheds of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is about 5,145 acres. The other area, a subwatershed drained by an unnamed tributary to Oso Creek (hereinafter, Oso Creek tributary), is about 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during the study period October 2005-September 2008. Seventeen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Twenty-four composite runoff water-quality samples (12 at West Oso Creek, 12 at Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-six discrete suspended-sediment samples (12 West Oso Creek, 14 Oso Creek tributary) and 17 bacteria samples (10 West Oso Creek, 7 Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the two subwatersheds. Quantities of fertilizers and pesticides applied in the two subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff from the two subwatersheds occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 13.95 inches compared with 9.45 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 3

  12. Urban evaporation rates for water-permeable pavements.

    Science.gov (United States)

    Starke, P; Göbel, P; Coldewey, W G

    2010-01-01

    In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.

  13. Responses of hydrochemical inorganic ions in the rainfall-runoff processes of the experimental catchments and its significance for tracing

    Science.gov (United States)

    Gu, W.-Z.; Lu, J.-J.; Zhao, X.; Peters, N.E.

    2007-01-01

    Aimed at the rainfall-runoff tracing using inorganic ions, the experimental study is conducted in the Chuzhou Hydrology Laboratory with special designed experimental catchments, lysimeters, etc. The various runoff components including the surface runoff, interflow from the unsaturated zone and the groundwater flow from saturated zone were monitored hydrometrically. Hydrochemical inorganic ions including Na+, K+, Ca2+, Mg2+, Cl-, SO42-, HCO3- + CO32-, NO3-, F-, NH4-, PO42-, SiO2 and, pH, EC, 18O were measured within a one month period for all processes of rainfall, various runoff components and groundwater within the catchment from 17 boreholes distributed in the Hydrohill Catchment, few soil water samples were also included. The results show that: (a) all the runoff components are distinctly identifiable from both the relationships of Ca2+ versus Cl-/SO42-, EC versus Na+/(Na+ + Ca2+) and, from most inorganic ions individually; (b) the variation of inorganic ions in surface runoff is the biggest than that in other flow components; (c) most ions has its lowermost concentration in rainfall process but it increases as the generation depths of runoff components increased; (d) quantitatively, ion processes of rainfall and groundwater flow display as two end members of that of other runoff components; and (e) the 18O processes of rainfall and runoff components show some correlation with that of inorganic ions. The results also show that the rainfall input is not always the main source of inorganic ions of various runoff outputs due to the process of infiltration and dissolution resulted from the pre-event processes. The amount and sources of Cl- of runoff components with various generation mechanisms challenge the current method of groundwater recharge estimation using Cl-.

  14. Water chemistry of surface waters affected by the Fourmile Canyon wildfire, Colorado, 2010-2011

    Science.gov (United States)

    McCleskey, R. Blaine; Writer, Jeffrey H.; Murphy, Sheila F.

    2012-01-01

    In September 2010, the Fourmile Canyon fire burned about 23 percent of the Fourmile Creek watershed in Boulder County, Colo. Water-quality sampling of Fourmile Creek began within a month after the wildfire to assess its effects on surface-water chemistry. Water samples were collected from five sites along Fourmile Creek (above, within, and below the burned area) monthly during base flow, twice weekly during snowmelt runoff, and at higher frequencies during storm events. Stream discharge was also monitored. Water-quality samples were collected less frequently from an additional 6 sites on Fourmile Creek, from 11 tributaries or other inputs, and from 3 sites along Boulder Creek. The pH, electrical conductivity, temperature, specific ultraviolet absorbance, total suspended solids, and concentrations (dissolved and total) of major cations (calcium, magnesium, sodium, and potassium), anions (chloride, sulfate, alkalinity, fluoride, and bromide), nutrients (nitrate, ammonium, and phosphorus), trace metals (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, mercury, lithium, manganese, molybdenum, nickel, lead, rubidium, antimony, selenium, strontium, vanadium, and zinc), and dissolved organic carbon are here reported for 436 samples collected during 2010 and 2011.

  15. Impact of global SST gradients on the Mediterranean runoff changes across the Plio-Pleistocene transition

    Science.gov (United States)

    Colleoni, Florence; Cherchi, Annalisa; Masina, Simona; Brierley, Christopher M.

    2015-06-01

    This work explores the impact of the development of global meridional and zonal sea surface temperature (SST) gradients on the Mediterranean runoff variability during the Plio-Pleistocene transition, about 3 Ma. Results show that total annual mean Pliocene Mediterranean runoff is about 40% larger than during the preindustrial period due to more increased extratropical specific humidity. As a consequence of a weakened and extended Hadley cell, the Pliocene northwest Africa hydrological network produces a discharge 30 times larger than today. Our results support the conclusion that during the Pliocene, the Mediterranean water deficit was reduced relative to today due to a larger river discharge. By means of a stand-alone atmospheric general circulation model, we simulate the separate impact of extratropical and equatorial SST cooling on the Mediterranean runoff. While cooling the equatorial SST does not imply significant changes to the Pliocene Mediterranean hydrological budget, the extratropical SST cooling increases the water deficit due to a decrease in precipitation and runoff. Consequently, river discharge from this area reduces to preindustrial levels. The main teleconnections acting upon the Mediterranean area today, i.e., the North Atlantic Oscillation during winter and the "monsoon-desert" mechanism during summer already have a large influence on the climate of our Pliocene simulations. Finally, our results also suggest that in a climate state significantly warmer than today, changes of the Hadley circulation could potentially lead to increased water resources in northwest Africa.

  16. The sources, impact and management of car park runoff pollution: a review.

    Science.gov (United States)

    Revitt, D Michael; Lundy, Lian; Coulon, Frédéric; Fairley, Martin

    2014-12-15

    Traffic emissions contribute significantly to the build-up of diffuse pollution loads on urban surfaces with their subsequent mobilisation and direct discharge posing problems for receiving water quality. This review focuses on the impact and mitigation of solids, metals, nutrients and organic pollutants in the runoff deriving from car parks. Variabilities in the discharged pollutant levels and in the potentials for pollutant mitigation complicate an impact assessment of car park runoff. The different available stormwater best management practices and proprietary devices are reported to be capable of reductions of between 20% and almost 100% for both suspended solids and a range of metals. This review contributes to prioritising the treatment options which can achieve the appropriate pollutant reductions whilst conforming to the site requirements of a typical car park. By applying different treatment scenarios to the runoff from a hypothetical car park, it is shown that optimal performance, in terms of ecological benefits for the receiving water, can be achieved using a treatment train incorporating permeable paving and bioretention systems. The review identifies existing research gaps and emphasises the pertinent management practices as well as design issues which are relevant to the mitigation of car park pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The impacts of conifer harvesting on runoff water quality: a regional survey for Wales

    Science.gov (United States)

    Neal, C.; Reynolds, B.; Wilkinson, J.; Hill, T.; Neal, M.; Hill, S.; Harrow, M.

    Major, minor and trace element chemistry of runoff at stormflow and baseflow from 67 catchments (2 to 5 ha in area) has been determined to investigate the effects of clear felling and replanting of conifers on stream water quality across Wales. Samples, collected by local forestry workers (Forest Enterprise staff) on a campaign basis on up to eight occasions, were for 16 mature first rotation standing forest: the remainder represented areas completely clear felled from less than one to up to forty years previously. As the waters drain acidic and acid sensitive soils, acidic runoff is often encountered. However, higher pH values with associated positive alkalinities and base cation enrichments are observed due to the influence of weathering reactions within the bedrock. There is little systematic variation in water quality between baseflow and stormflow for each site indicating a complex and erratic contribution of waters from the soil and underlying parent material. 80% or more of the data points show hardly any changes with felling time, but there are a few outlier points with much higher concentrations that provide important information on the processes operative. The clearest outlier felling response is for nitrate at five of the more recently felled sites on brown earth, gley and podzolic soil types. ANC, the prime indicator of stream acidity, shows a diverse response from both high to low outlier values (>+400 to -300 μEq/l). In parallel to nitrate, aluminium, potassium and barium concentrations are higher in waters sampled up to 4 years post felling, but the time series response is even less clear than that for nitrate. Cadmium, zinc and lead and lanthanides/actinides show large variations from site to site due to localized vein ore-mineralization in the underlying bedrock. The survey provides a strong indication that forest harvesting can have marked local effects on some chemical components of runoff for the first four years after felling but that this is

  18. The impacts of conifer harvesting on runoff water quality: a regional survey for Wales

    Directory of Open Access Journals (Sweden)

    C. Neal

    1998-01-01

    Full Text Available Major, minor and trace element chemistry of runoff at stormflow and baseflow from 67 catchments (2 to 5 ha in area has been determined to investigate the effects of clear felling and replanting of conifers on stream water quality across Wales. Samples, collected by local forestry workers (Forest Enterprise staff on a campaign basis on up to eight occasions, were for 16 mature first rotation standing forest: the remainder represented areas completely clear felled from less than one to up to forty years previously. As the waters drain acidic and acid sensitive soils, acidic runoff is often encountered. However, higher pH values with associated positive alkalinities and base cation enrichments are observed due to the influence of weathering reactions within the bedrock. There is little systematic variation in water quality between baseflow and stormflow for each site indicating a complex and erratic contribution of waters from the soil and underlying parent material. 80% or more of the data points show hardly any changes with felling time, but there are a few outlier points with much higher concentrations that provide important information on the processes operative. The clearest outlier felling response is for nitrate at five of the more recently felled sites on brown earth, gley and podzolic soil types. ANC, the prime indicator of stream acidity, shows a diverse response from both high to low outlier values (>+400 to -300 μEq/l. In parallel to nitrate, aluminium, potassium and barium concentrations are higher in waters sampled up to 4 years post felling, but the time series response is even less clear than that for nitrate. Cadmium, zinc and lead and lanthanides/actinides show large variations from site to site due to localized vein ore-mineralization in the underlying bedrock. The survey provides a strong indication that forest harvesting can have marked local effects on some chemical components of runoff for the first four years after felling

  19. Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events

    Science.gov (United States)

    Caviedes-Voullième, Daniel; García-Navarro, Pilar; Murillo, Javier

    2012-07-01

    SummaryHydrological simulation of rain-runoff processes is often performed with lumped models which rely on calibration to generate storm hydrographs and study catchment response to rain. In this paper, a distributed, physically-based numerical model is used for runoff simulation in a mountain catchment. This approach offers two advantages. The first is that by using shallow-water equations for runoff flow, there is less freedom to calibrate routing parameters (as compared to, for example, synthetic hydrograph methods). The second, is that spatial distributions of water depth and velocity can be obtained. Furthermore, interactions among the various hydrological processes can be modeled in a physically-based approach which may depend on transient and spatially distributed factors. On the other hand, the undertaken numerical approach relies on accurate terrain representation and mesh selection, which also affects significantly the computational cost of the simulations. Hence, we investigate the response of a gauged catchment with this distributed approach. The methodology consists of analyzing the effects that the mesh has on the simulations by using a range of meshes. Next, friction is applied to the model and the response to variations and interaction with the mesh is studied. Finally, a first approach with the well-known SCS Curve Number method is studied to evaluate its behavior when coupled with a shallow-water model for runoff flow. The results show that mesh selection is of great importance, since it may affect the results in a magnitude as large as physical factors, such as friction. Furthermore, results proved to be less sensitive to roughness spatial distribution than to mesh properties. Finally, the results indicate that SCS-CN may not be suitable for simulating hydrological processes together with a shallow-water model.

  20. Distributions of typical contaminant species in urban short-term storm runoff and their fates during rain events: a case of Xiamen City.

    Science.gov (United States)

    Wei, Qunshan; Zhu, Gefu; Wu, Peng; Cui, Li; Zhang, Kaisong; Zhou, Jingjing; Zhang, Wenru

    2010-01-01

    The pollutants in urban storm runoff, which lead to an non-point source contamination of water environment around cities, are of great concerns. The distributions of typical contaminants and the variations of their species in short term storm runoff from different land surfaces in Xiamen City were investigated. The concentrations of various contaminants, including organic matter, nutrients (i.e., N and P) and heavy metals, were significantly higher in parking lot and road runoff than those in roof and lawn runoff. The early runoff samples from traffic road and parking lot contained much high total nitrogen (TN 6-19 mg/L) and total phosphorus (TP 1-3 mg/L). A large proportion (around 60%) of TN existed as total dissolved nitrogen (TDN) species in most runoff. The percentage of TDN and the percentage of total dissolved phosphorus remained relatively stable during the rain events and did not decrease as dramatically as TN and TP. In addition, only parking lot and road runoff were contaminated by heavy metals, and both Pb (25-120 microg/L) and Zn (0.1-1.2 mg/L) were major heavy metals contaminating both runoff. Soluble Pb and Zn were predominantly existed as labile complex species (50%-99%), which may be adsorbed onto the surfaces of suspended particles and could be easily released out when pH decreased. This would have the great impact to the environment.