Sample records for surface runoff soil

  1. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria. (United States)

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A


    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  2. Surface Roughness effects on Runoff and Soil Erosion Rates Under Simulated Rainfall (United States)

    Soil surface roughness is identified as one of the controlling factors governing runoff and soil loss yet, most studies pay little attention to soil surface roughness. In this study, we analyzed the influence of random soil surface roughness on runoff and soil erosion rates. Bulk samples of a silt l...

  3. Experimental study on soluble chemical transfer to surface runoff from soil. (United States)

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei


    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  4. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments

    NARCIS (Netherlands)

    Zhao, Longshan; Hou, Rui; Wu, Faqi; Keesstra, Saskia


    Agriculture has a large effect on the properties of the soil and with that on soil hydrology. The partitioning of rainfall into infiltration and runoff is relevant to understand runoff generation, infiltration and soil erosion. Tillage manages soil surface properties and generates soil surface

  5. Water erosion in surface soil conditions: runoff velocity, concentration and D50 index of sediments in runoff

    Directory of Open Access Journals (Sweden)

    Júlio César Ramos


    Full Text Available ABSTRACT Water erosion and contamination of water resources are influenced by concentration and diameter of sediments in runoff. This study aimed to quantify runoff velocity and concentration and the D50 index of sediments in runoff under different soil surface managements, in the following treatments: i cropped systems: no-tilled soil covered by ryegrass (Lolium multiflorum Lam. residue, with high soil cover and minimal roughness (HCR; no tilled soil covered by vetch (Vicia sativa L. residue, with high soil cover and minimal roughness (HCV; chiseled soil after ryegrass crop removing the above-ground residues and keeping only the root system, with high roughness (HRR; chiseled soil after vetch crop removing the above-ground residues and keeping only the root system, with high roughness (HRV; ii bare and chiseled soil, with high roughness (BHR. The research was conducted on a Humic Dystrupept under simulated rainfall. The design was completely randomized and each treatment was replicated twice. Eight rainfall events of controlled intensity (65 mm h−1 were applied to each treatment for 90 minutes. The D50 index, runoff velocity and sediment concentration were influenced by crop and soil management. Runoff velocity was more intensely reduced by cover crop residues than by surface roughness. Regardless of surface condition, the D50 index and concentration of sediment in runoff were lower under ryegrass than vetch crop. Runoff velocity and the D50 index were exponentially and inversely correlated with soil cover by residues and with surface roughness, while the D50 index was positively and exponentially correlated with runoff velocity.

  6. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil. (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo


    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  7. Effect of soil surface conditions on runoff velocity and sediment mean aggregate diameter (United States)

    César Ramos, Júlio; Bertol, Ildegardis; Paz González, Antonio; de Souza Werner, Romeu; Marioti, Juliana; Henrique Bandeira, Douglas; Andrighetti Leolatto, Lidiane


    Soil cover and soil management are the factors that most influence soil erosion by water, because they directly affect soil surface roughness and surface cover. The main effect of soil cover by crop residues consists in dissipation of kinetic energy of raindrops and also partly kinetic energy of runoff, so that the soil disaggregation is considerably reduced but, in addition, soil cover captures detached soil particles, retains water on its surface and decreases runoff volume and velocity. In turn, soil surface roughness, influences soil surface water storage and infiltration and also runoff volume and velocity, sediment retention and subsequently water and sediment losses. Based on the above rationale, we performed a field experiment to assess the influence of soil cover and soil surface roughness on decay of runoff velocity as well as on mean diameter of transported sediments (D50 index). The following treatments were evaluated: SRR) residues of Italian ryegrass (Lolium multiflorum) on a smooth soil surfcace, SRV) residues of common vetch (Vicia sativa) on a smooth soil surface, SSR) scarification after cultivation of Italian ryegrass resulting in a rough surface, SSV) scarification after cultivation of common vetch resulting in a rough surface, and SBS) scarified bare soil with high roughness as a control. The field experiments was performed on an Inceptisol in South Brazil under simulated rainfall conditions during 2012. Experimental plots were 11 m long and 3.5 m wide with an area of 38.5 m2. Six successive simulated rainfall tests were applied using a rotating-boom rain simulator. During each test, rain intensity was 60 mmhr-1, whereas rain duration was 90 minutes. Runoff velocity showed no significant differences between cultivated treatments. However, when compared to bare soil treatment, SBS (0.178 m s-1) and irrespective of the presence of surface crop residues or scarification operations, cultivated soil treatments significantly reduced runoff velocity

  8. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.


    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores

  9. Multifactor analysis and simulation of the surface runoff and soil infiltration at different slope gradients (United States)

    Huang, J.; Kang, Q.; Yang, J. X.; Jin, P. W.


    The surface runoff and soil infiltration exert significant influence on soil erosion. The effects of slope gradient/length (SG/SL), individual rainfall amount/intensity (IRA/IRI), vegetation cover (VC) and antecedent soil moisture (ASM) on the runoff depth (RD) and soil infiltration (INF) were evaluated in a series of natural rainfall experiments in the South of China. RD is found to correlate positively with IRA, IRI, and ASM factors and negatively with SG and VC. RD decreased followed by its increase with SG and ASM, it increased with a further decrease with SL, exhibited a linear growth with IRA and IRI, and exponential drop with VC. Meanwhile, INF exhibits a positive correlation with SL, IRA and IRI and VC, and a negative one with SG and ASM. INF was going up and then down with SG, linearly rising with SL, IRA and IRI, increasing by a logit function with VC, and linearly falling with ASM. The VC level above 60% can effectively lower the surface runoff and significantly enhance soil infiltration. Two RD and INF prediction models, accounting for the above six factors, were constructed using the multiple nonlinear regression method. The verification of those models disclosed a high Nash-Sutcliffe coefficient and low root-mean-square error, demonstrating good predictability of both models.

  10. A method of determining surface runoff by (United States)

    Donald E. Whelan; Lemuel E. Miller; John B. Cavallero


    To determine the effects of watershed management on flood runoff, one must make a reliable estimate of how much the surface runoff can be reduced by a land-use program. Since surface runoff is the difference between precipitation and the amount of water that soaks into the soil, such an estimate must be based on the infiltration capacity of the soil.

  11. The effect of leaf litter cover on surface runoff and soil erosion in Northern China.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter, four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05. Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05, and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05 were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05 with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.

  12. Recharging infiltration of precipitation water through the light soil, in the absence of surface runoff

    Directory of Open Access Journals (Sweden)

    Czyżyk Franciszek


    Full Text Available The article presents the value of recharging infiltration of precipitation through the light soil and its distribution over time, based on five-year of lysimetric research. The effect of organic and mineral fertilization on the infiltration was studied. In lysimeters does not occur the phenomenon of surface runoff, and thus, by analogy, the results of the research can be applied to agriculturally used lowland areas with sandy soils. The results showed that the infiltration is very changeable in time. On its value, in addition to precipitation, the greatest influence has evapotranspiration. The largest infiltration occurs in March after the spring thaws (IE = 70-81% monthly precipitation and the smallest in August (IE = 1.2-15.0% precipitation, depending on the type of fertilizer used and the level of fertilization. The soil fertilization, especially by using organic fertilizer (compost, is a factor, which has significantly influence on reduction of the recharging infiltration. The soil fertilization with compost reduced the infiltration of 7.4-9.0%, and with mineral fertilization of 5.4-7.0% of annual precipitation totals, compared with the infiltration through the soil not fertilized. The average annual index of infiltration was 21.8-25.3% of annual precipitation totals in variant of soil fertilized and 30.7% in case of the soil not fertilized.

  13. The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China (United States)

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan


    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (prunoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, prunoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (prunoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858

  14. Free and conjugated estrogen exports in surface-runoff from poultry litter-amended soil. (United States)

    Dutta, Sudarshan; Inamdar, Shreeram; Tso, Jerry; Aga, Diana S; Sims, J Tom


    Land application of animal manures such as poultry litter is a common practice, especially in states with surplus manure. Past studies have shown that animal manure may contain estrogens, which are classified as endocrine-disrupting chemicals and may pose a threat to aquatic and wildlife species. We evaluated the concentrations of estrogens in surface runoff from experimental plots (5 x 12 m each) receiving raw and pelletized poultry litter. We evaluated the free (estrone, E1; 17beta-estradiol, E2beta; estriol, E3) and conjugate forms (glucuronides and sulfates) of estrogens, which differ in their toxicity. Sampling was performed for 10 natural storm events over a 4-mo period (April-July 2008). Estrogen concentrations were screened using enzyme-linked immunosorbent assay (ELISA), followed by quantification using liquid chromatography with tandem mass spectrometry (LC/MS/MS). Concentrations of estrogens from ELISA were much higher than the LC/MS/MS values, indicating crossreactivity with organic compounds. Exports of estrogens were much lower from soils amended with pelletized poultry litter than the raw form of the litter. No-tillage management practice also resulted in a lower export of estrogens with surface runoff compared with reduced tillage. The concentrations and exports of conjugate forms of estrogens were much higher than the free forms for some treatments, indicating that the conjugate forms should be considered for a comprehensive assessment of the threat posed by estrogens.

  15. Effect of Saturated Near Surface on Nitrate and Ammonia Nitrogen Losses in Surface Runoff at the Loess Soil Hillslope

    Directory of Open Access Journals (Sweden)

    Yu-bin Zhang


    Full Text Available Water pollution from agricultural fields is a global problem and cause of eutrophication of surface waters. A laboratory study was designed to evaluate the effects of near-surface hydraulic gradients on NO3–N and NH4–N losses in surface runoff from soil boxes at 27% slope undersimulated rainfall of a loess soil hillslope. Experimental treatments included two near-surface hydraulic gradients (free drainage, FD; saturation, SA, three fertilizer application rates (control, no fertilizer input; low, 120 kg N ha-1; high, 240 kg N ha-1, and simulated rainfall of 100 mm h-1 was applied for 70 min. The results showed that saturated near-surface soil moisture had dramatic effects on NO3–N and NH4–N losses and water quality. Under the low fertilizer treatment, average NO3–N concentrations in runoff water of SA averaged 2.2 times greater than that of FD, 1.6 times greater for NH4–N. Under the high fertilizer treatment, NO3–N concentrations in runoff water from SA averaged 5.7 times greater than that of FD, 4.3 times greater for NH4–N. Nitrogen loss formed with NO3–N is dominant during the event, but not NH4–N. Under the SA condition, the total loss of NO3–N from low fertilizer treatment was 34.2 to 42.3% of applied nitrogen, while under the FD treatment that was 3.9 to 6.9%. However, the total loss of NH4–N was less than 1% of applied nitrogen. These results showed that saturated condition could make significant contribution to water quality problems.

  16. The effect of leaf litter cover on surface runoff and soil erosion in Northern China. (United States)

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan


    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (psoil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, psoil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (perosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.

  17. Linking crop structure, throughfall, soil surface conditions, runoff and soil detachment: 10 land uses analyzed in Northern Laos. (United States)

    Lacombe, Guillaume; Valentin, Christian; Sounyafong, Phabvilay; de Rouw, Anneke; Soulileuth, Bounsamai; Silvera, Norbert; Pierret, Alain; Sengtaheuanghoung, Oloth; Ribolzi, Olivier


    In Montane Southeast Asia, deforestation and unsuitable combinations of crops and agricultural practices degrade soils at an unprecedented rate. Typically, smallholder farmers gain income from "available" land by replacing fallow or secondary forest by perennial crops. We aimed to understand how these practices increase or reduce soil erosion. Ten land uses were monitored in Northern Laos during the 2015 monsoon, using local farmers' fields. Experiments included plots of the conventional system (food crops and fallow), and land uses corresponding to new market opportunities (e.g. commercial tree plantations). Land uses were characterized by measuring plant cover and plant mean height per vegetation layer. Recorded meteorological variables included rainfall intensity, throughfall amount, throughfall kinetic energy (TKE), and raindrop size. Runoff coefficient, soil loss, and the percentage areas of soil surface types (free aggregates and gravel; crusts; macro-faunal, vegetal and pedestal features; plant litter) were derived from observations and measurements in 1-m 2 micro-plots. Relationships between these variables were explored with multiple regression analyses. Our results indicate that TKE induces soil crusting and soil loss. By reducing rainfall infiltration, crusted area enhances runoff, which removes and transports soil particles detached by splash over non-crusted areas. TKE is lower under land uses reducing the velocity of raindrops and/or preventing an increase in their size. Optimal vegetation structures combine minimum height of the lowest layer (to reduce drop velocity at ground level) and maximum coverage (to intercept the largest amount of rainfall), as exemplified by broom grass (Thysanolaena latifolia). In contrast, high canopies with large leaves will increase TKE by enlarging raindrops, as exemplified by teak trees (Tectona grandis), unless a protective understorey exists under the trees. Policies that ban the burning of multi-layered vegetation

  18. Soil aggregate stability and size-selective sediment transport with surface runoff as affected by organic residue amendment. (United States)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer


    Aggregate breakdown influences the availability of soil particles for size-selective sediment transport with surface runoff during erosive rainfall events. Organic matter management is known to affect aggregate stability against breakdown, but little is known about how this translates into rainfall-induced aggregate fragmentation and sediment transport under field conditions. In this study, we performed field experiments in which artificial rainfall was applied after pre-wetting on three pairs of arable soil plots (1.5×0.75m) six weeks after incorporating a mixture of grass and wheat straw into the topsoil of one plot in each pair (OI treatment) but not on the other plot (NI treatment). Artificial rainfall was applied for approximately 2h on each pair at an intensity of 49.1mmh -1 . In both treatments, discharge and sediment concentration in the discharge were correlated and followed a similar temporal pattern after the onset of surface runoff: After a sharp increase at the beginning both approached a steady state. But the onset of runoff was more delayed on the OI plots, and the discharge and sediment concentration were in average only roughly half as high on the OI as on the NI plots. With increasing discharge the fraction of coarse sediment increased. This relationship did not differ between the two treatments. Thus, due to the lower discharge, the fraction of fine particles in the exported sediment was larger in the runoff from the OI plots than from the NI plots. The later runoff onset and lower discharge rate was related to a higher initial aggregate stability on the OI plots. Terrestrial laser scanning proved to be a very valuable method to map changes in the micro-topography of the soil surfaces. It revealed a much less profound decrease in surface roughness on the OI than on the NI plots. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Soils - Potential Runoff (United States)

    Kansas Data Access and Support Center — This digital spatial data set provides information on the spatial distribution of potential runoff-contributing areas in Kansas. Potential runoff-contributing areas...

  20. Comparison of Surface Runoff Generation, and Soil and Nutrient Loss in Kakhk Treated and Representative Watersheds, Khorasan Razavi Province

    Directory of Open Access Journals (Sweden)

    Davood Davoodi Moghadam


    Full Text Available Introduction: It is vital to control land degradation, for conserving precious natural treasures. Quantification of runoff production and soil and nutrient loss from wild lands under different managerial systems is one of the scientific and optimal management in agriculture and natural resources, as a major component of sustainable development. Many researches have been conducted to assess the effects of different land uses on soil erosion and runoff generation throughout the globe. Most of which, mainly verified the detrimental effects of human intervention on land degradation. However, limited comprehensive and comparative studies have been conducted to consider the amount of surface runoff generation, and soil and nutrient loss from watersheds with different management patterns viz. untreated and treated small watersheds. Materials and Methods: The present study aimed to compare surface runoff generation,soil and nutrient loss in Kakhk treated and untreated watersheds with an area ca. 222 ha and precipitation of some 243 mm per annum. Other physical and geological characteristics of the paired watersheds were also similar to allow assessing the effects of study measures on soil, water and nutrient losses. The area under consideration has been located in Khorasan Razavi Province in northeastern Iran. The present study was performed in plots with standard size of 22.1 × 1.8 m in treating and representative areas, with three replicates and on the storm basis occurred during early 2011 and mid-2014. The treated plots were covered by biological measures viz. seeding, bunching and exclusre. The study plots have been situated on eastern,western and northern aspects with respective slope of 55, 40 and 40 %. The entire runoff from study plots were collected in a container in 0.5×1×1 m. The sediment concentration was also measured in 2-liter samples taken from the container after a complete mixing of the entire collected runoff. The sample was

  1. Identification of soil P fractions that are associated with P loss from surface runoff under various cropping systems and fertilizer rates on sloped farmland.

    Directory of Open Access Journals (Sweden)

    Xinghua Li

    Full Text Available Soil phosphorus (P fractions and runoff P concentration were measured to understand the fate of soil P entering surface runoff water during summer cropping season of different double cropping systems under two fertilizer regimes. The dominant form of runoff P was particulate P (PP. Runoff total P (TP was higher at the vegetative growth stage and lower at the crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P and amounts increased with sediment content in runoff water. Runoff P discharge was closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P load during the summer in this region.

  2. Identification of soil P fractions that are associated with P loss from surface runoff under various cropping systems and fertilizer rates on sloped farmland (United States)

    Li, Xinghua; Wang, Baona; Yang, Tewu; Zhu, Duanwei; Nie, Zhongnan; Xu, Junchi


    Soil phosphorus (P) fractions and runoff P concentration were measured to understand the fate of soil P entering surface runoff water during summer cropping season of different double cropping systems under two fertilizer regimes. The dominant form of runoff P was particulate P (PP). Runoff total P (TP) was higher at the vegetative growth stage and lower at the crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P and amounts increased with sediment content in runoff water. Runoff P discharge was closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P load during the summer in this region. PMID:28650990

  3. Runoff and windblown vehicle spray from road surfaces, risks and measures for soil and water.

    NARCIS (Netherlands)

    Schipper, P.N.M.; Comans, R.N.J.; Dijkstra, J.J.; Vergouwen, L.


    Soil and surface water along roads are exposed to pollution from motorways. The main pollutants are polycyclic aromatic hydrocarbons (PAH), mineral oil, heavy metals and salt. These pollutants originate from vehicles (fuel, wires, leakage), wear and degradation of road surfaces and road furniture

  4. Runoff modeling of the Mara River using satellite observed soil ...

    African Journals Online (AJOL)

    The model is developed based on the relationships found between satellite observed soil moisture and rainfall and the measured runoff. It uses the satellite observed rainfall as the prime forcing, and the soil moisture to separate the fast surface runoff and slow base flow contributions. The soil moisture and rainfall products ...

  5. Mathematical modeling of rainwater runoff over catchment surface ...

    African Journals Online (AJOL)

    Mathematical modeling of rainwater runoff over catchment surface and mass transfer of contaminant incoming to water stream from soil. ... rainwater runoff along the surface catchment taking account the transport of pollution which permeates into the water flow from a porous media of soil at the certain areas of this surface.

  6. Escoamento superficial em diferentes sistemas de manejo em um Nitossolo Háplico típico Surface runoff in different soil management systems on Typic Hapudox soil

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol


    Full Text Available O preparo mecânico do solo influencia o seu manejo e danifica a estrutura, diminui a porosidade e a infiltração de água e aumenta o escoamento superficial. Utilizando-se simulador de chuvas, estudaram-se os tratamentos, preparo convencional (PC; semeadura direta em resíduo queimado (SQ; semeadura direta em resíduo dessecado (SD; e semeadura direta tradicional em resíduo dessecado (ST, cultivados, além de um preparo convencional sem cultivo do solo (SC - testemunha e de um campo nativo (CN, em um Nitossolo Háplico no Planalto Sul Catarinense, entre março de 2001 e fevereiro de 2004, com o objetivo de quantificar o escoamento superficial. Ao milho e feijão se aplicaram três testes de chuva em cada um e à soja cinco testes. Quantificaram-se os tempos de início (TI e pico (TP de enxurrada, a taxa constante (TE e o volume de enxurrada (VE e o coeficiente C da Equação Racional. Os TI, TP e TE, coeficiente C e VE, foram influenciados pelo preparo e cultivo do solo. O TI e o TP foram menores nos tratamentos PC e SC, enquanto a TE, o coeficiente C e o VE, também foram menores, mas nos tratamentos SD e ST. A TE variou de 18 mm h-1 na ST a 44 mm h-1 no SC, enquanto o coeficiente C variou de 0,29 na ST a 0,71 no SC. A variação do VE foi de 106 m³ ha-1 na ST a 434 m³ ha-1 no SC, na média dos cultivos.Soil tillage influences soil management and damages structure, reduces the porosity and water infiltration and increases surface runoff. A rotating-boom rainfall simulator was used to investigate the treatments: conventional tillage (CT, no-tillage in burn residue (NB, no-tillage in desiccated residue (ND, and traditional no-tillage in desiccated residue (NT, both cropped, as well as conventional tillage without crop (bare soil - BS, and native pasture treatment (NP, in a Typic Hapludox soil, in the Southern Plateau of Santa Catarina State, Brazil, from March, 2001 to February, 2004, with the objective of quantifying surface runoff. Three

  7. Soil surface changes increase runoff and erosion risk after a low–moderate severity fire

    NARCIS (Netherlands)

    Stoof, C.R.; Ferreira, A.J.D.; Mol, W.; Berg, van den J.; Kort, De A.; Drooger, S.; Slingerland, E.C.; Mansholt, A.U.; Ritsema, C.J.


    Post-fire land degradation is to a large degree determined by what happens to soil properties and ground cover during and after the fire. To study fire impact in relation to fire intensity and post-fire soil exposure, a 9-ha Portuguese shrubland catchmentwas burned by experimental fire in the 2008/9

  8. Surface Runoff and Snowmelt Infiltration into the Soil on Plowlands in the Forest-Steppe and Steppe Zones of the East European Plain (United States)

    Barabanov, A. T.; Dolgov, S. V.; Koronkevich, N. I.; Panov, V. I.; Petel'ko, A. I.


    Long-term series of observations over the spring water balance elements on fields with hydrologically contrasting agricultural backgrounds―a loose soil after fall moldboard plowing and a plowland compacted by 12-16% compared to the former soil (perennial grasses, winter crops, stubble)―have been analyzed. The values of surface runoff and water infiltration into the soil in the steppe and forest-steppe zones of European Russia have been calculated for the spring (flooding) period and the entire cold season. The hydrological role of fall plowing has been shown, and water balance elements for the current (1981-2016) and preceding (1957-1980) periods have been compared. A significant decrease in runoff and an increase of water reserve in the soil have been revealed on all plowland types. Consequences of changes in the spring water balance on plowland have been analyzed.

  9. Estimation of surface runoff for calculating recharge in the karstic massif of Ports of Beseit (Tarragona, Spain) combining water balance in the soil and analysis of flow hydrographs

    International Nuclear Information System (INIS)

    Espinosa Martinez, S.; Custodio, E.


    For the right estimation of aquifer recharge by precipitation surface taking into account runoff is particularly relevant. Non considering it in the estimation of the groundwater resources can overestimate them. In the Baix Ebre aquifer system, in southern Catalonia, the surface and vadose zone runoff produced in the karstified carbonate formations in the Ports de Beseit massif has to be evaluated in order to achieve a better estimation of the resources transferred from this massif to the Plana de La Galera plain. Starting from the conceptual hydrogeological model, the average annual runoff is estimated. It includes the discharge from temporal perched aquifers in the Ports de Beseit massif, in the Matarraña river basin, and in the SE watershed to the Plana de La Galera plain. This is performed by analyzing the river and tributaries hydrographs, the filling and emptying hydrographs of the Ulldecona reservoir, and the soil water balance using the Visual Balan code applied to obtain the runoff in the Ulldecona reservoir watershed. The runoff has been estimated about 105±20 mm·yr−1, which represents 20–30% of average annual recharge in the Ports, estimated with soil water balance and atmospheric chloride deposition balance, about 350–500 mm·yr−1, which is mostly transferred laterally to the Plana de La Galera plain. (Author)

  10. Variability of Measured Runoff and Soil Loss from Field Plots

    Directory of Open Access Journals (Sweden)

    F. Asadzadeh


    Full Text Available Introduction: Field plots are widely used in studies related to the measurements of soil loss and modeling of erosion processes. Research efforts are needed to investigate factors affecting the data quality of plots. Spatial scale or size of plots is one of these factors which directly affects measuring runoff and soil loss by means of field plots. The effect of plot size on measured runoff or soil loss from natural plots is known as plot scale effect. On the other hand, variability of runoff and sediment yield from replicated filed plots is a main source of uncertainty in measurement of erosion from plots which should be considered in plot data interpretation processes. Therefore, there is a demand for knowledge of soil erosion processes occurring in plots of different sizes and of factors that determine natural variability, as a basis for obtaining soil loss data of good quality. This study was carried out to investigate the combined effects of these two factors by measurement of runoff and soil loss from replicated plots with different sizes. Materials and Methods: In order to evaluate the variability of runoff and soil loss data seven plots, differing in width and length, were constructed in a uniform slope of 9% at three replicates at Koohin Research Station in Qazvin province. The plots were ploughed up to down slope in September 2011. Each plot was isolated using soil beds with a height of 30 cm, to direct generated surface runoff to the lower part of the plots. Runoff collecting systems composed of gutters, pipes and tankswere installed at the end of each plot. During the two-year study period of 2011-2012, plots were maintained in bare conditions and runoff and soil loss were measured for each single event. Precipitation amounts and characteristics were directly measured by an automatic recording tipping-bucket rain gauge located about 200 m from the experimental plots. The entire runoff volume including eroded sediment was measured on

  11. Runoff and Nutrient Losses from Constructed Soils Amended with Compost

    Directory of Open Access Journals (Sweden)

    N. E. Hansen


    Full Text Available Composted organic materials used to stabilize roadside embankments in Texas promote rapid revegetation of soils disturbed by construction activities. Yet, adding compost to soil may increase total and soluble plant nutrients available for loss in runoff water. Composted municipal biosolids and dairy manure products were applied to soils in Texas according to prescribed Texas Department of Transportation specifications for stabilizing roadside soils. The specifications included a method for incorporating compost into soils prior to seeding or applying a compost and woodchip mix over a disturbed soil and then seeding. Applying compost and woodchips over the soil surface limited sediment losses (14 to 32 fold decrease compared to incorporating compost into the soil. Yet, the greatest total phosphorus and nitrogen losses in runoff water occurred from soils where the compost and woodchip mix was applied. The greatest losses of soluble phosphorus also occurred when the compost and woodchip mix was applied. In contrast, nitrate-nitrogen losses in runoff were similar when compost was incorporated in the soil or applied in the woodchip mix. Compost source affected the nutrient losses in runoff. While the composted municipal biosolids added greater nutrient loads to the soil, less nutrient loss in runoff occurred.

  12. Multiscale soil moisture measurement for mapping surface runoff generation on torrential headwater catchments (Draix-Bléone field observatory, South Alps, France) (United States)

    Florian, Mallet; Vincent, Marc; Johnny, Douvinet; Philippe, Rossello; Bouteiller Caroline, Le; Jean-Philippe, Malet; Julien, Gance


    soilwater flow of from the surface to - 30 cm. Another distributed approach will be carried out from a measurement of cosmic neutrons mitigation (Cosmic ray sensor) to estimate a soil moisture averaged value over 40 ha (Zreda et al., 2012). Finally, the smallest scale (slope and catchment) will be approached using remote sensing with a drone and/or satellite imagery (IR, passive and active microwave). This concatenation of scales with different combinations of time steps should enable us to better understand the hydrological dynamics in torrential environments. It aims at mapping the stormflow generation on a catchment at the flood scale and defining the main determinants of surface runoff. These results may contribute to the improvement of runoff simulation and flood prediction. References : Uhlenbrook S., J.J. McDonnell and C. Leibundgut, 2003. Preface: Runoff generation implications for river basin modelling. Hydrological Processes, Special Issue, 17: 197-198. Andrew W. Western, Sen-Lin Zhou, Rodger B. Grayson, Thomas A. MacMahon, Günter Blöshl, David J. Wilson, 2004. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology 286. Zreda, M., Shuttleworth WJ., Zeng X., Zweck C., Desilets D., Franz TE. et al., 2012. COSMOS: the COsmic-ray Soil Moisture Observing System. Hydrology and Earth System Sciences, 16(11): 4079-4099.

  13. Using Data Assimilation Method Via an Ensemble Kalman Filter to Predict Adsorptive Solute Cr(Ⅵ) Transfer from Soil into Surface Runoff (United States)

    Tong, J.


    With the development of modern agriculture, large amount of fertilizer and pesticide outflow from farming land causes great wastes and contributes to serious pollution of surface water and groundwater, which threatens ecological environment and human life. In this paper, laboratory experiments are conducted to simulate adsorbed Cr(VI) transfer from soil into runoff. A two-layer in-mixing analytical model is developed to to analyze laboratory experimental results. A data assimilation (DA) method via the ensemble Kalman filter (EnKF) is used to update parameters and improve predictions. In comparison with the observed data, DA results are much better than forward model predictions. Based on the used rainfall and relevant physical principles, the updated value of the incomplete mixing coefficient is about 7.4 times of the value of the incomplete mixing coefficient in experiment 1 and about 14.0 times in experiment 2, which indicates the loss of Cr(VI) in soil solute is mainly due to infiltration, rather than surface runoff. With the increase of soil adsorption ability and the mixing layer depth, the loss of soil solute will decrease. These results provide information for preventing and reducing the agricultural nonpoint source pollution.

  14. A protocol for conducting rainfall simulation to study soil runoff. (United States)

    Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B


    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.

  15. Modelling surface runoff and water fluxes over contrasted soils in pastoral Sahel: evaluation of the ALMIP2 land surface models over the Gourma region in Mali (United States)

    Land surface processes play an important role in West African monsoon variability and land –atmosphere coupling has been shown to be particularly important in the Sahel. In addition, the evolution of hydrological systems in this region, and particularly the increase of surface water and runoff coeff...

  16. Characterisation of soil microtopography effects on runoff and soil erosion rates under simulated rainfall (United States)

    Soil surface roughness is commonly identified as one of the dominant factors governing runoff and interrill erosion. Yet, because of difficulties in acquiring the data, most studies pay little attention to soil surface roughness. This is particularly true for soil erosion models which commonly don't...

  17. Numerical model of rainwater runoff over the catchment surface and ...

    African Journals Online (AJOL)

    ... runoff along the surface catchment and transport of impurity which permeates into the water flow from soil at the certain areas of this surface. This system consists of two types of equations: the first of them describes the changes of water layer thickness over the slope surface given the precipitation and evaporation, and the ...

  18. Project test plan for runoff and erosion on fine-soil barrier surfaces and rock-covered side slopes

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Hoover, K.A.; Cadwell, L.L.


    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company are working together to develop protective barriers to isolate near-surface radioactive waste. The purpose of the barriers is to protect defense wastes at the US Department of Energy's (DOE) Hanford Site from infiltration of precipitation, biointrusion, and surficial erosion for up to 10,000 years without the need for long-term monitoring, maintenance, or institutional control. The barriers will be constructed of layered earth and rock material designed to direct surface and groundwater pathways away from the buried waste. To address soil erosion as it applies to barrier design and long-term stability, a task designed to study this problem has been included in the Protective Barriers Program at PNL. The barrier soil-erosion task will investigate the ability of the soil cover and side slopes to resist the erosional and destabilizing processes from externally applied water. The study will include identification and field testing of the dominant processes contributing to erosion and barrier failure. The effects of rock mulches, vegetation cover on the top fine-grained soil surface, as well as the stability of rock armoring on the side slopes, will be evaluated. Some of the testing will include the effects of animal intrusion on barrier erosion, and these will be coordinated with other animal intrusion studies. 6 refs., 4 figs., 1 tab.

  19. Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff (United States)

    Leonard F. DeBano; Raymond M. Rice; Conrad C. Eugene


    This state-of-the-art report summarizes what is known about the effects of heat on soil during chaparral fires. It reviews the literature on the effects of such fires on soil properties, availabilty and loss of plant nutrients, soil wettability, erosion, and surface runoff. And it reports new data collected during recent prescribed burns and a wildfire in southern...

  20. Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity

    NARCIS (Netherlands)

    Appels, W.M.; Bogaart, P.W.; Bogaart, P.W.; Zee, van der S.E.A.T.M.


    In flat lowland agricultural catchments in temperate climate zones with highly permeable sandy soils, surface runoff is a rare process with a large impact on the redistribution of sediments and solutes and stream water quality. We examine hydrological data obtained on two field sites in the

  1. The impact of soil compaction on runoff (United States)

    Rogger, Magdalena; Blöschl, Günter


    Soil compaction caused by intensive agricultural practices is known to influence runoff processes at the local scale and is often speculated to have an impact on flood events at much larger scales. Due to the complex and diverse mechanisms related to soil compaction, the key processes influencing runoff at different scales are still poorly understood. In this study we are analyzing data from a subsoil compaction database [Trautner et al., 2003] that includes the results of a large number of field and laboratory experiments across Europe. We are focusing on changes in parameters relevant for hydrology such as saturated hydraulic conductivity and bulk density. We will compare the observed impacts in relation to climatic and soil conditions. The specific type of agricultural practice causing the soil compaction is also taken into account. In a further step the results of this study shall be used to derive a toy model for scenario analysis in order to identify the potential impacts of soil compaction on runoff processes at larger scales then the plot scale. Reference : Trautner, A., Van den Akker, J.J.H., Fleige, H, Arvidsson, J. and Horn, R., 2003. A subsoil compaction database: its development, structure and content. Soil & Till. Res. 73: 9-13.

  2. Nutrient, metal and microbial loss in surface runoff following treated sludge and dairy cattle slurry application to an Irish grassland soil

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, D.P. [Teagasc, Environment Research Centre, Johnstown Castle, Co. Wexford (Ireland); Civil Engineering, National University of Ireland, Galway, Co. Galway (Ireland); Healy, M.G. [Civil Engineering, National University of Ireland, Galway, Co. Galway (Ireland); Fleming, G.T.A. [Microbiology, National University of Ireland, Galway, Co. Galway (Ireland); Grant, J. [Teagasc, Ashtown, Co. Dublin (Ireland); Wall, D. [Teagasc, Environment Research Centre, Johnstown Castle, Co. Wexford (Ireland); Morrison, L. [Earth and Ocean Sciences and Ryan Institute, National University of Ireland, Galway, Co. Galway (Ireland); Cormican, M. [School of Medicine, National University of Ireland, Galway, Co. Galway (Ireland); Fenton, O., E-mail: [Teagasc, Environment Research Centre, Johnstown Castle, Co. Wexford (Ireland)


    Treated municipal sewage sludge (“biosolids”) and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising from the land application of four types of treated biosolids and DCS to field micro-plots at three time intervals (24, 48, 360 h) after application. Losses from biosolids-amended plots or DCS-amended plots followed a general trend of highest losses occurring during the first rainfall event and reduced losses in the subsequent events. However, with the exception of total and faecal coliforms and some metals (Ni, Cu), the greatest losses were from the DCS-amended plots. For example, average losses over the three rainfall events for dissolved reactive phosphorus and ammonium-nitrogen from DCS-amended plots were 5 and 11.2 mg L{sup −1}, respectively, which were in excess of the losses from the biosolids plots. When compared with slurry treatments, for the parameters monitored biosolids generally do not pose a greater risk in terms of losses along the runoff pathway. This finding has important policy implications, as it shows that concern related to the reuse of biosolids as a soil fertiliser, mainly related to contaminant losses upon land application, may be unfounded. - Highlights: • This study investigated surface runoff of contaminants from biosolids in field plots. • Contaminants investigated were nutrients, metals, microbes and trace elements. • Compared to slurry, biosolids do not pose a greater risk of contaminant losses. • Fears concerning contaminant losses from land applied biosolids may be unfounded.

  3. Evaluation of alternative surface runoff accounting procedures using the SWAT model (United States)

    For surface runoff estimation in the Soil and Water Assessment Tool (SWAT) model, the curve number (CN) procedure is commonly adopted to calculate surface runoff by utilizing antecedent soil moisture condition (SCSI) in field. In the recent version of SWAT (SWAT2005), an alternative approach is ava...

  4. Surface runoff generation in a small watershed covered by sugarcane and riparian forest

    Directory of Open Access Journals (Sweden)

    Rafael Pires Fernandes


    Full Text Available Since an understanding of how runoff is generated is of great importance to soil conservation, to water availability and to the management of a watershed, the objective of this study was to understand the generation of surface runoff in a watershed covered by sugarcane and riparian forest. Nine surface runoff plots were set up, evenly distributed on the lower, middle and upper slopes. The lower portion was covered by riparian forest. We showed that the average surface runoff coefficient along the slope in the present study was higher than in other studies under different land uses. Furthermore, the surface runoff was higher under sugarcane compared to the riparian forest, especially after sugarcane harvesting. Besides land cover, other factors such as the characteristics of rainfall events, relief and physical soil characteristics such as soil bulk density and saturated hydraulic conductivity influenced the surface runoff generation.

  5. Propagation of soil moisture memory to runoff and evapotranspiration (United States)

    Orth, R.; Seneviratne, S. I.


    As a key variable of the land-climate system soil moisture is a main driver of runoff and evapotranspiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (persistence) characteristics. Also for runoff many studies report distinct low frequency variations that represent a memory. Using data from over 100 near-natural catchments located across Europe we investigate in this study the connection between soil moisture memory and the respective memory of runoff and evapotranspiration on different time scales. For this purpose we use a simple water balance model in which dependencies of runoff (normalized by precipitation) and evapotranspiration (normalized by radiation) on soil moisture are fitted using runoff observations. The model therefore allows to compute memory of soil moisture, runoff and evapotranspiration on catchment scale. We find considerable memory in soil moisture and runoff in many parts of the continent, and evapotranspiration also displays some memory on a monthly time scale in some catchments. We show that the memory of runoff and evapotranspiration jointly depend on soil moisture memory and on the strength of the coupling of runoff and evapotranspiration to soil moisture. Furthermore we find that the coupling strengths of runoff and evapotranspiration to soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological forcing. To better interpret the magnitude of the respective memories across Europe we finally provide a new perspective on hydrological memory by relating it to the mean duration required to recover from anomalies exceeding a certain threshold.

  6. Dairy heifer manure management, dietary phosphorus, and soil test P effects on runoff phosphorus. (United States)

    Jokela, William E; Coblentz, Wayne K; Hoffman, Patrick C


    Manure application to cropland can contribute to runoff losses of P and eutrophication of surface waters. We conducted a series of three rainfall simulation experiments to assess the effects of dairy heifer dietary P, manure application method, application rate, and soil test P on runoff P losses from two successive simulated rainfall events. Bedded manure (18-21% solids) from dairy heifers fed diets with or without supplemental P was applied on a silt loam soil packed into 1- by 0.2-m sheet metal pans. Manure was either surface-applied or incorporated (Experiment 1) or surface-applied at two rates (Experiment 2) to supply 26 to 63 kg P ha. Experiment 3 evaluated runoff P from four similar nonmanured soils with average Bray P1-extractable P levels of 11, 29, 51, and 75 mg kg. We measured runoff quantity, total P (TP), dissolved reactive P (DRP), and total and volatile solids in runoff collected for 30 min after runoff initiation from two simulated rain events (70 mm h) 3 or 4 d apart. Manure incorporation reduced TP and DRP concentrations and load by 85 to 90% compared with surface application. Doubling the manure rate increased runoff DRP and TP concentrations an average of 36%. In the same experiment, P diet supplementation increased water-extractable P in manure by 100% and increased runoff DRP concentration threefold. Concentrations of solids, TP, and DRP in runoff from Rain 2 were 25 to 75% lower than from Rain 1 in Experiments 1 and 2. Runoff DRP from nonmanured soils increased quadratically with increasing soil test P. These results show that large reductions in P runoff losses can be achieved by incorporation of manure, avoiding unnecessary diet P supplementation, limiting manure application rate, and managing soils to prevent excessive soil test P levels. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Total pollution effect of urban surface runoff. (United States)

    Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue


    For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.

  8. Adhesion of and to soil in runoff as influenced by polyacrylamide. (United States)

    Bech, Tina B; Sbodio, Adrian; Jacobsen, Carsten S; Suslow, Trevor


    Polyacrylamide (PAM) is used in agriculture to reduce soil erosion and has been reported to reduce turbidity, nutrients, and pollutants in surface runoff water. The objective of this work was to determine the effect of PAM on the concentration of enteric bacteria in surface runoff by comparing four enteric bacteria representing phenotypically different motility and hydrophobicity from three soils. Results demonstrated that bacterial surface runoff was differentially influenced by the PAM treatment. Polyacrylamide treatment increased surface runoff for adhered and planktonic cells from a clay soil; significantly decreased surface runoff of adhered bacteria, while no difference was observed for planktonic bacteria from the sandy loam; and significantly decreased the surface runoff of planktonic cells, while no difference was observed for adhered bacteria from the clay loam. Comparing strains from a final water sample collected after 48 h showed a greater loss of while serovar Poona was almost not detected. Thus, (i) the PAM efficiency in reducing the concentration of enteric bacteria in surface runoff was influenced by soil type and (ii) variation in the loss of enteric bacteria highlights the importance of strain-specific properties that may not be captured with general fecal indicator bacteria. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. A 3-step framework for understanding the added value of surface soil moisture measurements for large-scale runoff prediction via data assimilation - a synthetic study in the Arkansas-Red River basin (United States)

    Mao, Y.; Crow, W. T.; Nijssen, B.


    Soil moisture (SM) plays an important role in runoff generation both by partitioning infiltration and surface runoff during rainfall events and by controlling the rate of subsurface flow during inter-storm periods. Therefore, more accurate SM state estimation in hydrologic models is potentially beneficial for streamflow prediction. Various previous studies have explored the potential of assimilating SM data into hydrologic models for streamflow improvement. These studies have drawn inconsistent conclusions, ranging from significantly improved runoff via SM data assimilation (DA) to limited or degraded runoff. These studies commonly treat the whole assimilation procedure as a black box without separating the contribution of each step in the procedure, making it difficult to attribute the underlying causes of runoff improvement (or the lack thereof). In this study, we decompose the overall DA process into three steps by answering the following questions (3-step framework): 1) how much can assimilation of surface SM measurements improve surface SM state in a hydrologic model? 2) how much does surface SM improvement propagate to deeper layers? 3) How much does (surface and deeper-layer) SM improvement propagate into runoff improvement? A synthetic twin experiment is carried out in the Arkansas-Red River basin ( 600,000 km2) where a synthetic "truth" run, an open-loop run (without DA) and a DA run (where synthetic surface SM measurements are assimilated) are generated. All model runs are performed at 1/8 degree resolution and over a 10-year period using the Variable Infiltration Capacity (VIC) hydrologic model at a 3-hourly time step. For the DA run, the ensemble Kalman filter (EnKF) method is applied. The updated surface and deeper-layer SM states with DA are compared to the open-loop SM to quantitatively evaluate the first two steps in the framework. To quantify the third step, a set of perfect-state runs are generated where the "true" SM states are directly inserted

  10. Surface runoff in the Itaim Watershed

    Directory of Open Access Journals (Sweden)

    Getulio Teixeira Batista


    Full Text Available This paper describes a work done in the Itaim watershed at Taubaté, SP, and had the objective of estimating the surface runoff based on the Curve-Number (CN method in area with vegetation cover of grassland (Brachiaria Decumbens, that prevails in this watershed. The surface runoff was estimated using three different methods: 1st values of accumulated Infiltration (IAc obtained in the field were used, considered as the Potential Infiltration (S, which varied from 15.37 mm to 51.88 mm with an average value of 23.46 mm. With those measured infiltration rates and using the maximum precipitation values for Taubaté, SP, with duration time of 3 hours: P = 54.4; 70.3; 80.8; 86.7; 90.9; 94.1 and 103.9 mm, respectively, for the return times, Tr = 2, 5, 10, 15, 25, 50 and 100 years, the following values of surface runoff were generated: 34.83; 49.33; 59.14; 64.71; 68.69; 71.73 and 81.10 mm, respectively; In the 2nd method it was considered that the prevailing vegetation cover of the watershed was Dirty Pasture (Pasture with regrowth of natural vegetation and therefore, a value of CN = 75 was used and generated a potential infiltration, S = 84,7 mm and resulted in surface runoff values that varied from 11 to 44 mm; In the 3rd method, the value of CN was considered equal to 66.57. This value was calculated weighting the contribution of all land use cover classes of the watershed, and as a result a higher value of potential infiltration, S = 127 mm, was obtained. Consequently, the surface runoff values were 5.33; 11.64; 16.72; 19.83; 22.16; 23.98 and 29.83 mm, respectively. Therefore, the comparison with the results obtained by the two Curve-Number methods (conventional and weighted allowed to be concluded that the Curve-Number method applied in a conventional way underestimated the surface runoff in the studied area. However, results indicate that it is possible to use this method for surface runoff estimates as long as adjustments based on potential

  11. Coupling Modified Linear Spectral Mixture Analysis and Soil Conservation Service Curve Number (SCS-CN Models to Simulate Surface Runoff: Application to the Main Urban Area of Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Jianhui Xu


    Full Text Available Land surface characteristics, including soil type, terrain slope, and antecedent soil moisture, have significant impacts on surface runoff during heavy precipitation in highly urbanized areas. In this study, a Linear Spectral Mixture Analysis (LSMA method is modified to extract high-precision impervious surface, vegetation, and soil fractions. In the modified LSMA method, the representative endmembers are first selected by combining a high-resolution image from Google Earth; the unmixing results of the LSMA are then post-processed to reduce errors of misclassification with Normalized Difference Built-up Index (NDBI and Normalized Difference Vegetation Index (NDVI. The modified LSMA is applied to the Landsat 8 Operational Land Imager (OLI image from 18 October 2015 of the main urban area of Guangzhou city. The experimental result indicates that the modified LSMA shows improved extraction performance compared with the conventional LSMA, as it can significantly reduce the bias and root-mean-square error (RMSE. The improved impervious surface, vegetation, and soil fractions are used to calculate the composite curve number (CN for each pixel according to the Soil Conservation Service curve number (SCS-CN model. The composite CN is then adjusted with regional data of the terrain slope and total 5-day antecedent precipitation. Finally, the surface runoff is simulated with the SCS-CN model by combining the adjusted CN and real precipitation data at 1 p.m., 4 May 2015.

  12. The development and evaluation of new runoff parameterization representations coupled with Noah Land Surface Model (United States)

    Zheng, Z.; Zhang, W.; Xu, J.


    As a key component of the global water cycle, runoff plays an important role in earth climate system by affecting the land surface water and energy balance. Realistic runoff parameterization within land surface model (LSM) is significant for accurate land surface modeling and numerical weather and climate prediction. Hence, optimization and refinement of runoff formulation in LSM can further improve model predictive capability of surface-to-atmosphere fluxes which influences the complex interactions between the land surface and atmosphere. Moreover, the performance of runoff simulation in LSM would essential to drought and flood prediction and warning. In this study, a new runoff parameterization named XXT (Xin'anjiang x TOPMODEL) was developed by introducing the water table depth into the soil moisture storage capacity distribution curve (SMSCC) from Xin'anjiang model for surface runoff calculation improvement and then integrating with a TOPMODEL-based groundwater scheme. Several studies had already found a strong correlation between the water table depth and land surface processes. In this runoff parameterization, the dynamic variation of surface and subsurface runoff calculation is connected in a systematic way through the change of water table depth. The XXT runoff parameterization was calibrated and validated with datasets both from observation and Weather Research & Forecasting model (WRF) outputs, the results with high Nash-efficiency coefficient indicated that it has reliable capability of runoff simulation in different climate regions. After model test, the XXT runoff parameterization is coupled with the unified Noah LSM 3.2 instead of simple water balance model (SWB) in order to alleviate the runoff simulating bias which may lead to poor energy partition and evaporation. The impact of XXT is investigated through application of a whole year (1998) simulation at surface flux site of Champaign, Illinois (40.01°N, 88.37°W). The results show that Noah

  13. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils. (United States)

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L


    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  14. Escoamento superficial e desagregação do solo em entressulcos em solo franco-argilo-arenoso com resíduos vegetais Interrill surface runoff and soil detachment on a sandy clay loam soil with residue cover

    Directory of Open Access Journals (Sweden)

    Elemar Antonino Cassol


    depth and hydraulic roughness, and a decrease in the mean flow velocity, due to an increase in the viscous forces from the physical interference of residue on runoff, thus contributing to a reduction in interrill soil detachment rate (Di. The Di was 5.35x10-4 kg m-2 s-1 for bare soil and was reduced to 1.50x10-5 kg m-2 s-1 for soil with 100% of surface cover. The Laflen's and the potential models were adequate to estimate the coefficient of soil coverage by residue in direct contact with soil as a function of the soil surface cover.

  15. Impacts of reforestation approaches on runoff control in the hilly red soil region of Southern China (United States)

    Zheng, Hua; Chen, Falin; Ouyang, Zhiyun; Tu, Naimei; Xu, Weihua; Wang, Xiaoke; Miao, Hong; Li, Xiquan; Tian, Yuxin


    SummaryVegetation structure and soil properties are not only correlated with forest management practices, but also affect soil and water loss significantly. To estimate the long-term influences of regenerating forest cover on soil and water loss from degraded land, the runoff and soil loss in the context of different forest restoration approaches, including a control plot (CL) and plantations of slash pine (Pinus elliottii), Chinese fir (Cunninghamia lanceolata), tea-oil camellia (Camellia oleifera), and natural secondary forest, were monitored in runoff plots over a 4-year period (2000-2003) in a hilly red soil region in Southern China. Relevant ecological factors and management intensity, were also measured. The results indicated that the four forest restoration approaches decreased surface runoff by 63.0-88.1% and soil erosion by 75.5-97.1% compared to the control. Moreover, runoff and soil erosion in tea-camellia plantation (TCP) and natural secondary forest (NSF) plots were significantly lower than with other treatments. Canopy cover, litter fall, plant roots, plant life forms, soil properties, and vegetation structure are important ecological factors that determine the magnitude of soil loss. Vegetation structure and plant life forms are the main factors reducing surface runoff and the movement of sediments. Effective control of soil and water loss in NSF and TCP are closely related to multiply stratified communities and the presence of specific plant life forms (the herbaceous keystone species Dicranopteris linearis), respectively. In addition, the above mentioned factors were sensitive to forest management patterns, including improper mechanical cultivation. Management practices should attempt to minimize disturbances to these factors to control runoff and soil erosion in each forest management unit. In particular, mechanical cultivation should loosen the soil around the base of a tree only, instead of over the entire ground surface, in the early stages of

  16. Phosphorus runoff from Coastal Plain forest soil in Louisiana (United States)

    Although not a common practice, poultry litter (PL) may be used for forest fertilization. Despite usually low soil phosphorus (P) and runoff under forest, repeated or high rates of PL application may cause appreciable P loss. Phosphorus in natural runoff under loblolly pine (Pinus taeda L.) fertiliz...

  17. Runoff modeling of the Mara River using Satellite Observed Soil ...

    African Journals Online (AJOL)

    ecosystem, famous for the scenic large scale seasonal wildebeest migration. In the south-western ... MATERIALS AND METHODS. 2.1. In-situ measurements. Runoff data was utilized for validation and calibration of the soil moisture-runoff model. The data was obtained for Mara ... In this study we apply a modified version of ...

  18. A study of soil surface characteristics in a small watershed in the hilly, gullied area on the Chinese Loess Plateau

    NARCIS (Netherlands)

    Liu Guobin,; Xu Mingxiang,; Ritsema, C.J.


    Soil surface characteristics are closely related to soil surface depressional storage, infiltration, runoff generation and soil erosion, especially in highly erodible loess soil. Soil surface random roughness, soil cohesion and aggregate stability are necessary parameters in the Limburg Soil Erosion

  19. Hillslope run-off thresholds with shrink–swell clay soils (United States)

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Lane, John W.; Uribe, Hamil C.; Arumí, José Luis; Selker, John S.


    Irrigation experiments on 12 instrumented field plots were used to assess the impact of dynamic soil crack networks on infiltration and run-off. During applications of intensity similar to a heavy rainstorm, water was seen being preferentially delivered within the soil profile. However, run-off was not observed until soil water content of the profile reached field capacity, and the apertures of surface-connected cracks had closed >60%. Electrical resistivity measurements suggested that subsurface cracks persisted and enhanced lateral transport, even in wet conditions. Likewise, single-ring infiltration measurements taken before and after irrigation indicated that infiltration remained an important component of the water budget at high soil water content values, despite apparent surface sealing. Overall, although the wetting and sealing of the soil profile showed considerable complexity, an emergent property at the hillslope scale was observed: all of the plots demonstrated a strikingly similar threshold run-off response to the cumulative precipitation amount. 

  20. Estimating runoff and soil moisture deficit in guinea savannah region ...

    African Journals Online (AJOL)

    The estimation ofrunoff and soil moisture deficit in Guinea Savannah region using semi arid model based on soil water balance technique (SAMBA) was carried out. The input to the SAMBA model are daily rainfall, daily evapotranspiration. type and date of planting of crop, and soil parameters. The estimated runoff was ...

  1. Surface runoff and phosphorus (P) loss from bamboo (Phyllostachys ...

    African Journals Online (AJOL)



    Aug 24, 2011 ... The average bioavailable phosphorus (BAP) concentration of the runoff was 0.23 mg/l and the various phosphorus ... Key words: Phyllostachys pubescens, ecosystem, surface runoff, phosphorus (P) loss. INTRODUCTION .... runoff samples were used for total P (TP) determination following perchloric acid ...

  2. Prairie and turf buffer strips for controlling runoff from paved surfaces. (United States)

    Steinke, K; Stier, J C; Kussow, W R; Thompson, A


    Eutrophication of surface waters due to nonpoint source pollution from urban environments has raised awareness of the need to decrease runoff from roads and other impervious surfaces. These concerns have led to precautionary P application restrictions on turf and requirements for vegetative buffer strips. The impacts of two plant communities and three impervious/pervious surface ratios were assessed on runoff water quality and quantity. A mixed forb/grass prairie and a Kentucky bluegrass (Poa pratensis L.) blend were seeded and runoff was monitored and analyzed for total volume, total P, soluble P, soluble organic P, bioavailable P, total suspended solids, and total organic suspended solids. Mean annual runoff volumes, all types of mean annual P nutrient losses, and sediment loads were not significantly affected by treatments because over 80% of runoff occurred during frozen soil conditions. Total P losses from prairie and turf were similar, averaging 1.96 and 2.12 kg ha(-1) yr(-1), respectively. Vegetation appeared to be a likely contributor of nutrients, particularly from prairie during winter dormancy. When runoff occurred during non-frozen soil conditions turf allowed significantly (P runoff volumes compared with prairie vegetation and the 1:2 and 1:4 impervious/pervious surface ratios had less runoff than the 1:1 ratio (P runoff occurs during frozen ground conditions, vegetative buffers strips alone are unlikely to dramatically reduce runoff and nutrient loading into surface waters. Regardless of vegetation type or size, natural nutrient biogeochemical cycling will cause nutrient loss in surface runoff waters, and these values may represent baseline thresholds below which values cannot be obtained.

  3. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. (United States)

    Cerdà, A; Keesstra, S D; Rodrigo-Comino, J; Novara, A; Pereira, P; Brevik, E; Giménez-Morera, A; Fernández-Raga, M; Pulido, M; di Prima, S; Jordán, A


    Rainfall-induced soil erosion is a major threat, especially in agricultural soils. In the Mediterranean belt, vineyards are affected by high soil loss rates, leading to land degradation. Plantation of new vines is carried out after deep ploughing, use of heavy machinery, wheel traffic, and trampling. Those works result in soil physical properties changes and contribute to enhanced runoff rates and increased soil erosion rates. The objective of this paper is to assess the impact of the plantation of vineyards on soil hydrological and erosional response under low frequency - high magnitude rainfall events, the ones that under the Mediterranean climatic conditions trigger extreme soil erosion rates. We determined time to ponding, Tp; time to runoff, Tr; time to runoff outlet, Tro; runoff rate, and soil loss under simulated rainfall (55 mm h -1 , 1 h) at plot scale (0.25 m 2 ) to characterize the runoff initiation and sediment detachment. In recent vine plantations (50 years; O). Slope gradient, rock fragment cover, soil surface roughness, bulk density, soil organic matter content, soil water content and plant cover were determined. Plantation of new vineyards largely impacted runoff rates and soil erosion risk at plot scale in the short term. Tp, Tr and Tro were much shorter in R plots. Tr-Tp and Tro-Tr periods were used as connectivity indexes of water flow, and decreased to 77.5 and 33.2% in R plots compared to O plots. Runoff coefficients increased significantly from O (42.94%) to R plots (71.92%) and soil losses were approximately one order of magnitude lower (1.8 and 12.6 Mg ha -1 h -1 for O and R plots respectively). Soil surface roughness and bulk density are two key factors that determine the increase in connectivity of flows and sediments in recently planted vineyards. Our results confirm that plantation of new vineyards strongly contributes to runoff initiation and sediment detachment, and those findings confirms that soil erosion control strategies

  4. Evaluating the Soil Vulnerability Index (SVI), an index to characterize inherent vulnerability of croplands to runoff and leaching (United States)

    Soil erosion and nutrient loss from surface runoff and sub-surface flows are critical problems for croplands in the United States. Assessing cropland vulnerability to runoff and leaching is needed for watershed or regional land use and land management planning and conservation resources allocation. ...

  5. Sensitivity-Based Modeling of Evaluating Surface Runoff and Sediment Load using Digital and Analog Mechanisms

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya


    Full Text Available Analyses of runoff- sediment measurement and evaluation using automated and convectional runoff-meters was carried out at Meteorological and Hydrological Station of Auchi Polytechnic, Auchi using two runoff plots (ABCDa and EFGHm of area 2m 2 each, depth 0.26 m and driven into the soil to the depth of 0.13m. Runoff depths and intensities were measured from each of the positioned runoff plot. Automated runoff-meter has a measuring accuracy of ±0.001l/±0.025 mm and rainfall depth-intensity was measured using tipping-bucket rainguage during the period of 14-month of experimentation. Minimum and maximum rainfall depths of 1.2 and 190.3 mm correspond to measured runoff depths (MRo of 0.0 mm for both measurement approaches and 60.4 mm and 48.9 mm respectively. Automated runoffmeter provides precise, accurate and instantaneous result over the convectional measurement of surface runoff. Runoff measuring accuracy for automated runoff-meter from the plot (ABCDa produces R 2 = 0.99; while R 2 = 0.96 for manual evaluation in plot (EFGHm. WEPP and SWAT models were used to simulate the obtained hydrological variables from the applied measurement mechanisms. The outputs of sensitivity simulation analysis indicate that data from automated measuring systems gives a better modelling index and such could be used for running robust runoff-sediment predictive modelling technique under different reservoir sedimentation and water management scenarios.

  6. Modelling monthly runoff generation processes following land use changes: groundwater-surface runoff interactions (United States)

    Bari, M.; Smettem, K. R. J.

    A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall-runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall-runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted

  7. Modelling monthly runoff generation processes following land use changes: groundwater–surface runoff interactions

    Directory of Open Access Journals (Sweden)

    M. Bari


    Full Text Available A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, 'Ernies' (control, fully forested and 'Lemon' (54% cleared are in a zone of mean annual rainfall of 725 mm, while 'Salmon' (control, fully forested and 'Wights' (100% cleared are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i immediately after clearing due to reduced evapotranspiration, and (ii through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i an upper zone unsaturated store, (ii a transient stream zone store, (ii a lower zone unsaturated store and (iv a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and

  8. Automated Measurement for Sensitivity Analysis of Runoff-Sediment Load at Varying Surface Gradients

    Directory of Open Access Journals (Sweden)

    Imanogor P.A.


    Full Text Available Direct measurement of surface runoff is often associated with errors and inaccuracies which results to unreliable hydrological data. An automatic Runoff-meter using tipping buckets arrangement calibrated to tip 0.14 liter of runoff water per tip with an accuracy of ± 0.001 litre was used to measure surface runoff from a steel bounded soil tray of dimension (1200 mm X 900 mm X 260 mm filled with sand loamy to the depth of 130 mm and inclined at angle (0 0 , 5 0 ,12 0 and 15 0 horizontal to the instrument. The effect of varying angles of inclination on runoff intensity, sediment loss rate and sediment loss is significant at 5 % confidence level, while surface runoff is not significant at 5 % confidence level. Total highest sediment loss of 458.2 g and 313.4 g were observed at angle 15 0 and 12 0 respectively. Total surface runoff of 361.5 mm and 445.8 mm were generated at inclined angle of 0 0 and 5 0 , while at angle 12 0 and 15 0 , 564.3 mm and 590.0 mm of surface runoff were generated. In addition, runoff intensity and sediment loss rate were highest at angle 15 0 , while the lowest values of 1.5mm/min and 5.43 g/min were obtained at angle of inclination 5 0 . The results showed that strong relationship existed among the hydrological variables as a result of subjecting the steel bounded soil tray to different angles of inclination. Such results would provide useful data for the running of physics-based deterministic model of surface runoff and erosion which will be useful for the design of hydrological structures, land use planning and management.

  9. Joint variability of global runoff and global sea surface temperatures (United States)

    McCabe, G.J.; Wolock, D.M.


    Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.

  10. Chlortetracycline and tylosin runoff from soils treated with antimicrobial containing manure. (United States)

    Hoese, A; Clay, S A; Clay, D E; Oswald, J; Trooien, T; Thaler, R; Carlson, C G


    This study assessed the runoff potential of tylosin and chlortetracycline (CTC) from soils treated with manure from swine fed rations containing the highest labeled rate of each chemical. Slurry manures from the swine contained either CTC at 108 microg/g or tylosin at 0.3 microg/g. These manures were surface applied to clay loam, silty clay loam, and silt loam soils at a rate of 0.22 Mg/ha. In one trial, tylosin was applied directly to the soil surface to examine runoff potential of water and chemical when manure was not present. Water was applied using a sprinkler infiltrometer 24-hr after manure application with runoff collected incrementally every 5 min for about 45 min. A biofilm crust formed on all manure-treated surfaces and infiltration was impeded with > 70% of the applied water collected as runoff. The total amount of CTC collected ranged from 0.9 to 3.5% of the amount applied whereas tylosin ranged from 8.4 to 12%. These data indicate that if surface-applied manure contains antimicrobials, runoff could lead to offsite contamination.

  11. Predicting Surface Runoff from Catchment to Large Region

    Directory of Open Access Journals (Sweden)

    Hongxia Li


    Full Text Available Predicting surface runoff from catchment to large region is a fundamental and challenging task in hydrology. This paper presents a comprehensive review for various studies conducted for improving runoff predictions from catchment to large region in the last several decades. This review summarizes the well-established methods and discusses some promising approaches from the following four research fields: (1 modeling catchment, regional and global runoff using lumped conceptual rainfall-runoff models, distributed hydrological models, and land surface models, (2 parameterizing hydrological models in ungauged catchments, (3 improving hydrological model structure, and (4 using new remote sensing precipitation data.

  12. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff. (United States)

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael


    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.


    Directory of Open Access Journals (Sweden)

    E. Panidi


    Full Text Available In our study we estimate relationships between quantitative parameters of relief, soil runoff regime, and spatial distribution of radioactive pollutants in the soil. The study is conducted on the test arable area located in basin of the upper Oka River (Orel region, Russia. Previously we collected rich amount of soil samples, which make it possible to investigate redistribution of the Chernobyl-origin cesium-137 in soil material and as a consequence the soil runoff magnitude at sampling points. Currently we are describing and discussing the technique applied to large-scale mapping of the soil runoff. The technique is based upon the cesium-137 radioactivity measurement in the different relief structures. Key stages are the allocation of the places for soil sampling points (we used very high resolution space imagery as a supporting data; soil samples collection and analysis; calibration of the mathematical model (using the estimated background value of the cesium-137 radioactivity; and automated compilation of the map (predictive map of the studied territory (digital elevation model is used for this purpose, and cesium-137 radioactivity can be predicted using quantitative parameters of the relief. The maps can be used as a support data for precision agriculture and for recultivation or melioration purposes.

  14. Potential of ASCAT Soil Moisture Product to Improve Runoff Prediction (United States)

    Brocca, L.; Melone, F.; Moramarco, T.; Wagner, W.; Naeimi, V.; Bartalis, Z.; Hasenauer, S.


    The role and the importance of soil moisture for meteorological, agricultural and hydrological applications is widely known. Remote sensing offers the unique capability to monitor soil moisture over large areas (catchment scale) with, nowadays, a temporal resolution suitable for hydrological purposes. However, the accuracy of the remotely sensed soil moisture estimates have to be carefully checked. Therefore, the assessment of the effects of assimilating satellite- derived soil moisture estimates into rainfall-runoff models at different scales and over different regions represents an important scientific and operational issue. In this context, the soil wetness index (SWI) product derived from the Advanced Scatterometer (ASCAT) sensor was tested in this study. The SWI was firstly compared with the soil moisture temporal pattern derived from a continuous rainfall-runoff model (MISDc). Then, by using a simple data assimilation technique, the SWI was assimilated into MISDc and the model performance on flood estimation was analyzed. Moreover, three synthetic experiments considering errors on rainfall, model parameters and initial soil wetness conditions were carried out. These experiments allowed to further investigate the SWI potential when uncertain conditions take place.The most significant flood events, which occurred in the period 2000-2009 for five subcatchments of the Upper Tiber River in central Italy, ranging in extension between 100 and 650 km2, were used as case studies. Results reveal that the SWI derived from the ASCAT sensor can be conveniently used to improve runoff prediction in the study area, mainly if the initial soil wetness conditions are unknown.

  15. Flood damage claims reveal insights about surface runoff in Switzerland (United States)

    Bernet, D. B.; Prasuhn, V.; Weingartner, R.


    A few case studies in Switzerland exemplify that not only overtopping water bodies frequently cause damages to buildings. Reportedly, a large share of the total loss due to flooding in Switzerland goes back to surface runoff that is formed and is propagating outside of regular watercourses. Nevertheless, little is known about when, where and why such surface runoff occurs. The described process encompasses surface runoff formation, followed by unchannelised overland flow until a water body is reached. It is understood as a type of flash flood, has short response times and occurs diffusely in the landscape. Thus, the process is difficult to observe and study directly. A promising source indicating surface runoff indirectly are houseowners' damage claims recorded by Swiss Public Insurance Companies for Buildings (PICB). In most of Switzerland, PICB hold a monopoly position and insure (almost) every building. Consequently, PICB generally register all damages to buildings caused by an insured natural hazard (including surface runoff) within the respective zones. We have gathered gapless flood related claim records of most of all Swiss PICB covering more than the last two decades on average. Based on a subset, we have developed a methodology to differentiate claims related to surface runoff from other causes. This allows us to assess the number of claims as well as total loss related to surface runoff and compare these to the numbers of overtopping watercourses. Furthermore, with the good data coverage, we are able to analyze surface runoff related claims in space and time, from which we can infer spatial and temporal characteristics of surface runoff. Although the delivered data of PICB are heterogeneous and, consequently, time-consuming to harmonize, our first results show that exploiting these damage claim records is feasible and worthwhile to learn more about surface runoff in Switzerland.

  16. Forms of phosphorus transfer in runoff under no-tillage in a soil treated with successive swine effluents applications. (United States)

    Lourenzi, Cledimar Rogério; Ceretta, Carlos Alberto; Tiecher, Tadeu Luis; Lorensini, Felipe; Cancian, Adriana; Stefanello, Lincon; Girotto, Eduardo; Vieira, Renan Costa Beber; Ferreira, Paulo Ademar Avelar; Brunetto, Gustavo


    Successive swine effluent applications can substantially increase the transfer of phosphorus (P) forms in runoff. The aim of this study was to evaluate P accumulation in the soil and transfer of P forms in surface runoff from a Hapludalf soil under no-tillage subjected to successive swine effluent applications. This research was carried out in the Agricultural Engineering Department of the Federal University of Santa Maria, Brazil, from 2004 to 2007, on a Typic Hapludalf soil. Swine effluent rates of 0, 20, 40, and 80 m3 ha(-1) were broadcast over the soil surface prior to sowing of different species in a crop rotation. Soil samples were collected in stratified layers, and the levels of available P were determined. Samples of water runoff from the soil surface were collected throughout the period, and the available, soluble, particulate, and total P were measured. Successive swine effluent applications led to increases in P availability, especially in the soil surface, and P migration through the soil profile. Transfer of P forms was closely associated with runoff, which is directly related to rainfall volume. Swine effluent applications also reduced surface runoff. These results show that in areas with successive swine effluent applications, practices that promote higher water infiltration into the soil are required, e.g., crop rotation and no-tillage system.

  17. Testing the Runoff Tool in Sicilian vineyards: adopting best management practices to prevent agricultural surface runoff (United States)

    Singh, Manpriet; Dyson, Jeremy; Capri, Ettore


    Over the last decades rainfall has become more intense in Sicily, making large proportions of steeply sloping agricultural land more vulnerable to soil erosion, mainly orchards and vineyards (Diodato and Bellocchi 2010). The prevention of soil degradation is indirectly addressed in the European Union's Water Framework Directive (2000/60/EC) and Sustainable Use Directive (2009/128/EC). As a consequence, new EU compliance conditions for food producers requires them to have tools and solutions for on-farm implementation of sustainable practices (Singh et al. 2014). The Agricultural Runoff and Best Management Practice Tool has been developed by Syngenta to help farm advisers and managers diagnose the runoff potential from fields with visible signs of soil erosion. The tool consists of 4 steps including the assessment of three key landscape factors (slope, topsoil permeability and depth to restrictive horizon) and 9 mainly soil and crop management factors influencing the runoff potential. Based on the runoff potential score (ranging from 0 to 10), which is linked to a runoff potential class, the Runoff Tool uses in-field and edge-of-the-field Best Management Practices (BMPs) to mitigate runoff (aligned with advice from ECPA's TOPPS-prowadis project). The Runoff tool needs testing in different regions and crops to create a number of use scenarios with regional/crop specific advice on BMPs. For this purpose the Tool has been tested in vineyards of the Tasca d'Almerita and Planeta wineries, which are large family-owned estates with long-standing tradition in viticulture in Sicily. In addition to runoff potential scores, Visual Soil Assessment (VSA) scores have been calculated to allow for a comparison between different diagnostic tools. VSA allows for immediate diagnosis of soil quality (a higher score means a better soil quality) including many indicators of runoff (Shepherd 2008). Runoff potentials were moderate to high in all tested fields. Slopes were classified as

  18. Rainfall, soil moisture, and runoff dynamics in New Mexico pinon-juniper woodland watersheds (United States)

    Carlos Ochoa; Alexander Fernald; Vincent Tidwell


    Clearing trees in pinon-juniper woodlands may increase grass cover and infiltration, leading to reduced surface runoff and erosion. This study was conducted to evaluate pinon-juniper hydrology conditions during baseline data collection in a paired watershed study. We instrumented six 1.0 to 1.3 ha experimental watersheds near Santa Fe, NM to collect rainfall, soil...

  19. Soil Erosion and runoff response to plant-cover strips on semiarid slopes (SE Spain)

    NARCIS (Netherlands)

    Martinez-Raya, A.; Duran Zuazo, V.H.; Francia-Martinez, J.R.


    Over a four-year period (1997-2000), soil loss and surface-runoff patterns were monitored in hillside erosion plots with almond trees under different plant-cover strips (thyme, barley and lentils) on the south flank of the Sierra Nevada (Lanjaron) in south-eastern Spain. The erosion plots (580 m

  20. Variation of runoff source areas under different soil wetness ...

    African Journals Online (AJOL)


    Apr 3, 2018 ... as successful (Hawkins, 1993). The same is true for mountain regions because there is often a complex interaction between rainfall-runoff processes and landscape factors (Rezaei-Sadr,. 2015). While some of these factors (e.g., land use and cover, topography, soil characteristics, and hydrologic condition) ...

  1. Impact of carbonaceous materials in soil on the transport of soil-bound PAHs during rainfall-runoff events

    International Nuclear Information System (INIS)

    Luo, Xiaolin; Zheng, Yi; Wu, Bin; Lin, Zhongrong; Han, Feng; Zhang, Wei; Wang, Xuejun


    Polycyclic Aromatic Hydrocarbons (PAHs) transported from contaminated soils by surface runoff pose significant risk for aquatic ecosystems. Based on a rainfall-runoff simulation experiment, this study investigated the impact of carbonaceous materials (CMs) in soil, identified by organic petrology analysis, on the transport of soil-bound PAHs under rainfall conditions. The hypothesis that composition of soil organic matter significantly impacts the enrichment and transport of PAHs was proved. CMs in soil, varying significantly in content, mobility and adsorption capacity, act differently on the transport of PAHs. Anthropogenic CMs like black carbon (BC) largely control the transport, as PAHs may be preferentially attached to them. Eventually, this study led to a rethink of the traditional enrichment theory. An important implication is that CMs in soil have to be explicitly considered to appropriately model the nonpoint source pollution of PAHs (possibly other hydrophobic chemicals as well) and assess its environmental risk. -- Highlights: •Composition of SOM significantly impacts the enrichment and transport of PAHs. •Anthropogenic carbonaceous materials in soil largely control the transport of PAHs. •The classic enrichment theory is invalid if anthropogenic CMs are abundant in the soil. •Organic petrology analysis introduced to study the fate and transport of PAHs. -- Anthropogenic carbonaceous materials in soil, especially black carbon, largely control the transport of soil-bound PAHs during rainfall-runoff events

  2. Modelling surface run-off and trends analysis over India

    Indian Academy of Sciences (India)

    responsible for run-off generation plays a major role in run-off modelling at region scales. Remote sensing, GIS and advancement of the computer technology based evaluation of land surface prop- erties at spatial and temporal scales are very useful input data for hydrological models. Using remote sensing data is not only ...

  3. Herbicide monitoring in soil, runoff waters and sediments in an olive orchard. (United States)

    Calderon, Maria Jesus; De Luna, Elena; Gomez, Jose Alfonso; Hermosin, M Carmen


    Occurrences of surface water contamination by herbicides in areas where olive orchards are established reveal a need to understand soil processes affecting herbicide fate at field scale for this popular Mediterranean crop. A monitoring study with two herbicides (terbuthylazine and oxyfluorfen) in the first 2cm of soil, runoff waters, and sediments, was carried out after under natural rainfall conditions following winter herbicide application. At the end of the 107day field experiment, no residues of the soil applied terbuthylazine were recovered, whereas 42% of the oxyfluorfen applied remained in the top soil. Very low levels of both herbicides were measured in runoff waters; however, concentrations were slightly higher for terbuthylazine (0.53% of applied) than for oxyfluorfen (0.03% of applied), relating to their respective water solubilities. Congruent with soil residue data, 38.15% of the applied oxyfluorfen was found in runoff-sediment, compared to only 0.46% for terbuthylazine. Accordingly, the herbicide soil distribution coefficients measured within runoff field tanks was much greater for oxyfluorfen (Kd=3098) than for terbuthylazine (Kd=1.57). The herbicide oxyfluorfen is co-transported with sediment in runoff, remaining trapped and/or adsorbed to soil particle aggregates, due in part to its low water solubility. In contrast, terbuthylazine soil dissipation may be associated more so with leaching processes, favored by its high water solubility, low sorption, and slow degradation. By comparing these two herbicides, our results reaffirm the importance of herbicide physico-chemical properties in dictating their behavior in soil and also suggest that herbicides with low solubility, as seen in the case oxyfluorfen, remain susceptible to offsite transport associated with sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of Potato (Solanum tuberosum L.) Cropping Systems on Soil and Nutrient Losses Through Runoff in a Humic Nitisol, Kenya (United States)

    Nyawade, Shadrack; Charles, Gachene; Karanja, Nancy; Elmar, Schulte-Geldermann


    Soil erosion has been identified as one of the major causes of soil productivity decline in the potato growing areas of East African Highlands. Potato establishes a protective soil cover only at about 45-60 days after planting and does not yield sufficient surface mulch upon harvest which leaves the soil bare at the critical times when rainfall intensities are usually high thus exposes soil to erosion. A field study was carried out using runoff plots during the short and long rainy seasons of 2014/15 respectively at the University of Nairobi Upper Kabete Farm, Kenya. The objectives were to assess the effect of soil surface roughness and potato cropping systems on soil loss and runoff, to determine the effect of erosion on nutrient enrichment ratio and to evaluate the soil organic matter fraction most susceptible to soil erosion. The treatments comprised of Bare Soil (T1); Potato + Garden Pea (Pisum sativa) (T2); Potato + Climbing Bean (Phaseolus vulgaris) (T3); Potato + Dolichos (Lablab purpureus) (T4) and Sole Potato (Solanum tuberosum L.) (T5). The amount of soil loss and runoff recorded in each event differed significantly between treatments (ppotato plots (T5), while mean cumulative runoff reduced by 8.5, 17.1 and 28.3 mm from T2, T3 and T4 respectively when compared with the sole potato plots (T5) indicating that T4 plots provided the most effective cover in reducing soil loss and runoff. Regression analyses revealed that both runoff and soil loss related significantly with surface roughness and percent cover (R2=0.83 and 0.73 respectively, ppotato cropping systems so as to minimize soil and nutrient losses due to erosion. Acknowledgement This study was part of the CIP-Sub Saharan Africa managed project-"Improved Soil Fertility Management for Sustainable Intensification in Potato Based Systems in Ethiopia and Kenya"-funded by the BMZ/GIZ International Agricultural Research for Development Fund.

  5. A methodology for the evaluation of global warming impact on soil moisture and runoff

    International Nuclear Information System (INIS)

    Valdes, J.B.; Seoane, R.S.; North, G.R.


    Global warming is expected to increase the intensity of the global hydrologic cycle. Precipitation and temperature patterns, soil moisture requirements, and the physical structure of the vegetation canopy play important roles in the hydrologic system of drainage basins. Changes in these phenomena, because of a buildup Of CO 2 and other trace gases, have the potential to affect the quantity, quality, timing, and spatial distribution of water available to satisfy the many demands placed on the resource by society. In this work a methodology for the evaluation of impact on soil moisture concentration and direct surface runoff is presented. The methodology integrates stochastic models of hydroclimatic input variables with a model of water balance in the soil. This allows the derivation of the probability distribution of soil moisture concentration and direct surface runoff for different combinations of climate and soil characteristics, ranging from humid to semi-arid and arid. These PDFs asses, in a comprehensive manner, the impact that climate change have on soil moisture and runoff and allow the water resources planner to make more educated decisions in the planning and design of water resources systems. The methodology was applied to three sites in Texas. To continue in the line of research suggested by Delworth and Manabe the authors computed the autocorrelation function (ACF) and the spectra of both precipitation inputs and soil moisture concentration outputs for all scenarios of climate change

  6. Polyacrylamide application versus forest residue mulching for reducing post-fire runoff and soil erosion. (United States)

    Prats, Sergio Alegre; Martins, Martinho António Dos Santos; Malvar, Maruxa Cortizo; Ben-Hur, Meni; Keizer, Jan Jacob


    For several years now, forest fires have been known to increase overland flow and soil erosion. However, mitigation of these effects has been little studied, especially outside the USA. This study aimed to quantify the effectiveness of two so-called emergency treatments to reduce post-fire runoff and soil losses at the microplot scale in a eucalyptus plantation in north-central Portugal. The treatments involved the application of chopped eucalyptus bark mulch at a rate of 10-12 Mg ha(-1), and surface application of a dry, granular, anionic polyacrylamide (PAM) at a rate of 50 kg ha(-1). During the first year after a wildfire in 2010, 1419 mm of rainfall produced, on average, 785 mm of overland flow in the untreated plots and 8.4 Mg ha(-1) of soil losses. Mulching reduced these two figures significantly, by an average 52 and 93%, respectively. In contrast, the PAM-treated plots did not differ from the control plots, despite slightly lower runoff but higher soil erosion figures. When compared to the control plots, mean key factors for runoff and soil erosion were different in the case of the mulched but not the PAM plots. Notably, the plots on the lower half of the slope registered bigger runoff and erosion figures than those on the upper half of the slope. This could be explained by differences in fire intensity and, ultimately, in pre-fire standing biomass. © 2013 Elsevier B.V. All rights reserved.

  7. Effects of tillage on runoff from a bare clayey soil on a semi-arid ...

    African Journals Online (AJOL)

    Effects of tillage on runoff from a bare clayey soil on a semi-arid ecotope in the Limpopo Province of South Africa. ... IRWH is a special type of no-till (NT) crop production practice that promotes runoff from a crusted runoff strip into basins where the water infiltrates beyond evaporation but is available for crop use. Runoff was ...

  8. Modeling climate change effects on runoff and soil erosion in southeastern Arizona rangelands and implications for mitigation with rangeland conservation practices (United States)

    Climate change is expected to impact runoff and soil erosion on rangelands in the southwestern United States. This study was done to evaluate the potential impacts of precipitation changes on soil erosion and surface runoff in southeastern Arizona using seven GCM models with three emission scenarios...

  9. Modelling the impact of increasing soil sealing on runoff coefficients at regional scale: a hydropedological approach

    Directory of Open Access Journals (Sweden)

    Ungaro Fabrizio


    Full Text Available Soil sealing is the permanent covering of the land surface by buildings, infrastructures or any impermeable artificial material. Beside the loss of fertile soils with a direct impact on food security, soil sealing modifies the hydrological cycle. This can cause an increased flooding risk, due to urban development in potential risk areas and to the increased volumes of runoff. This work estimates the increase of runoff due to sealing following urbanization and land take in the plain of Emilia Romagna (Italy, using the Green and Ampt infiltration model for two rainfall return periods (20 and 200 years in two different years, 1976 and 2008. To this goal a hydropedological approach was adopted in order to characterize soil hydraulic properties via locally calibrated pedotransfer functions (PTF. PTF inputs were estimated via sequential Gaussian simulations coupled with a simple kriging with varying local means, taking into account soil type and dominant land use. Results show that in the study area an average increment of 8.4% in sealed areas due to urbanization and sprawl induces an average increment in surface runoff equal to 3.5 and 2.7% respectively for 20 and 200-years return periods, with a maximum > 20% for highly sealed coast areas.

  10. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment (United States)

    Farrick, Kegan K.; Branfireun, Brian A.


    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  11. Seasonal herbicide monitoring in soil, runoff and sediments of an olive orchard under conventional tillage (United States)

    Calderón, Maria Jesus; de Luna, Elena; Gómez, José Alfonso; Cornejo, Juan; Hermosín, M. Carmen


    Several pollution episodes in surface and groundwaters with pesticides have occurred in areas where olive crops are established. For that reason, it is necessary to know the evolution of some pesticides in olive trees plantation depending on their seasonal application. This is especially important when conventional tillage is used. A monitoring of two herbicides (terbuthylazine and oxyfluorfen)in the first cm of soil and, in runoff and sediment yield was carried out after several rainfall events. The rainfall occurred during the study was higher in winter than in spring giving rise more runoff in winter. However, no differences in sediment yields were observed between spring and winter. Terbuthylazine depletion from soil is associated to the first important rainfall events in both seasons (41 mm in spring and 30 mm in winter). At the end of the experiment, no terbuthylazine soil residues were recovered in winter whereas 15% of terbuthylazine applied remained in spring. Oxyfluorfen showed a character more persistent than terbuthylazine remaining 48% of the applied at the end of the experiment due to its low water solubility. Higher percentage from the applied of terbuthylazine was recovered in runoff in winter (0.55%) than in spring (0.17%). Nevertheless, no differences in terbuthylazine sediments yields between both seasons were observed. That is in agreement with the values of runoff and sediment yields accumulated in tanks in both seasons. Due to the low water solubility of oxyfluorfen very low amount of this herbicide was recovered in runoff. Whereas, in sediment yields the 39.5% of the total applied was recovered. These data show that the dissipation of terbuthylazine from soil is closely related with leaching processes and in less extent with runoff. However, oxyfluorfen dissipation is more affected by runoff processes since this herbicide is co-transported in sediment yields. Keywords: olive crop, pesticide, runoff, sediments, surface water, groundwater

  12. Runoff and soil erosion for an undisturbed tropical woodland in the Brazilian Cerrado (United States)

    Oliveira, Paulo Tarso S.; Nearing, Mark; Wendland, Edson


    The Brazilian Cerrado is a large and important economic and environmental region that is experiencing major loss of its natural landscapes due to pressures of food and energy production, which has caused large increases in soil erosion. However the magnitude of the soil erosion increases in this region is not well understood, in part because scientific studies of surface runoff and soil erosion are scarce or nonexistent in undisturbed Cerrado vegetation. In this study we measured natural rainfall-driven rates of runoff and soil erosion for an undisturbed tropical woodland classified as "cerrado sensu stricto denso" and bare soil to compute the Universal Soil Loss Equation (USLE) cover and management factor (C-factor) to help evaluate the likely effects of land use change on soil erosion rates. Replicated data on precipitation, runoff, and soil loss on plots (5 x 20 m) under bare soil and cerrado were collected for 55 erosive storms occurring in 2012 and 2013. The measured annual precipitation was 1247.4 mm and 1113.0 mm for 2012 and 2013, resulting in a rainfall erosivity index of 4337.1 MJ mm ha-1 h-1 and 3546.2 MJ mm ha-1 h-1, for each year respectively. The erosive rainfall represented 80concentrated in the wet season, which generally runs from October through March. In the plots on bare soil, the runoff coefficient for individual rainfall events (total runoff divided by total rainfall) ranged from 0.003 to 0.860 with an average value and standard deviation of 0.212 ± 0.187. Moreover, the runoff coefficient found for the bare soil plots (~20infiltration capacity. In forest areas the leaf litter and the more porous soil tend to promote the increase of infiltration and water storage, rather than rapid overland flow. Indeed, runoff coefficients ranged from 0.001 to 0.030 with an average of less than 1under undisturbed cerrado. The soil losses measured under bare soil and cerrado were 15.68 t ha-1yr-1 and 0.24 t ha-1 yr-1 in 2012, and 14.82 t ha-1 yr-1, 0.11 t ha-1

  13. Soil amendments for heavy metals removal from stormwater runoff discharging to environmentally sensitive areas (United States)

    Trenouth, William R.; Gharabaghi, Bahram


    Concentrations of dissolved metals in stormwater runoff from urbanized watersheds are much higher than established guidelines for the protection of aquatic life. Five potential soil amendment materials derived from affordable, abundant sources have been tested as filter media using shaker tests and were found to remove dissolved metals in stormwater runoff. Blast furnace (BF) slag and basic oxygenated furnace (BOF) slag from a steel mill, a drinking water treatment residual (DWTR) from a surface water treatment plant, goethite-rich overburden (IRON) from a coal mine, and woodchips (WC) were tested. The IRON and BOF amendments were shown to remove 46-98% of dissolved metals (Cr, Co, Cu, Pb, Ni, Zn) in repacked soil columns. Freundlich adsorption isotherm constants for six metals across five materials were calculated. Breakthrough curves of dissolved metals and total metal accumulation within the filter media were measured in column tests using synthetic runoff. A reduction in system performance over time occurred due to progressive saturation of the treatment media. Despite this, the top 7 cm of each filter media removed up to 72% of the dissolved metals. A calibrated HYDRUS-1D model was used to simulate long-term metal accumulation in the filter media, and model results suggest that for these metals a BOF filter media thickness as low as 15 cm can be used to improve stormwater quality to meet standards for up to twenty years. The treatment media evaluated in this research can be used to improve urban stormwater runoff discharging to environmentally sensitive areas (ESAs).

  14. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment (United States)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman


    Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity

  15. Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil. (United States)

    Wu, Lei; Peng, Mengling; Qiao, Shanshan; Ma, Xiao-Yi


    Soil erosion is a universal phenomenon on the Loess Plateau but it exhibits complex and typical mechanism which makes it difficult to understand soil loss laws on slopes. We design artificial simulated rainfall experiments including six rainfall intensities (45, 60, 75, 90, 105, 120 mm/h) and five slopes (5°, 10°, 15°, 20°, 25°) to reveal the fundamental changing trends of runoff and sediment yield on bare loess soil. Here, we show that the runoff yield within the initial 15 min increased rapidly and its trend gradually became stable. Trends of sediment yield under different rainfall intensities are various. The linear correlation between runoff and rainfall intensity is obvious for different slopes, but the correlations between sediment yield and rainfall intensity are weak. Runoff and sediment yield on the slope surface both presents an increasing trend when the rainfall intensity increases from 45 mm/h to 120 mm/h, but the increasing trend of runoff yield is higher than that of sediment yield. The sediment yield also has an overall increasing trend when the slope changes from 5° to 25°, but the trend of runoff yield is not obvious. Our results may provide data support and underlying insights needed to guide the management of soil conservation planning on the Loess Plateau.

  16. How development and disturbance of biological soil crust do affect runoff and erosion in drylands?

    Energy Technology Data Exchange (ETDEWEB)

    Chamizo, S.; Canton, Y.; Afana, A.; Lazaro, R.; Domingo, F.; Sole-Benet, A.


    Deserts and semiarid ecosystems (shrub lands and grasslands) are the largest terrestrial biome, covering more than 40% of the Earth's terrestrial surface and Biological Soil Crusts (BSCs) are the predominant surface type in most of those ecosystems covering up to 70% of its surface. BSCs have been demonstrated to be very vulnerable to disturbance due to human activities and their loss has been implicated as a factor leading to accelerate soil erosion and other forms of land degradation. Incorporation of the response of different type of soil crusts and the effects of the their disturbance is likely to improve the prediction of runoff and water erosion models in arid and semi-arid catchments. The aim of this work is to analyse the influence of crust disturbance on infiltration and erosion. Extreme rainfall simulations at micro plots scale were performed in two semiarid ecosystems with different lithology and conditions of occurrence of BSCs: El Cautivo and Amoladeras. (Author) 10 refs.

  17. Effect of sugarcane cropping systems on herbicide losses in surface runoff. (United States)

    Nachimuthu, Gunasekhar; Halpin, Neil V; Bell, Michael J


    Herbicide runoff from cropping fields has been identified as a threat to the Great Barrier Reef ecosystem. A field investigation was carried out to monitor the changes in runoff water quality resulting from four different sugarcane cropping systems that included different herbicides and contrasting tillage and trash management practices. These include (i) Conventional - Tillage (beds and inter-rows) with residual herbicides used; (ii) Improved - only the beds were tilled (zonal) with reduced residual herbicides used; (iii) Aspirational - minimum tillage (one pass of a single tine ripper before planting) with trash mulch, no residual herbicides and a legume intercrop after cane establishment; and (iv) New Farming System (NFS) - minimum tillage as in Aspirational practice with a grain legume rotation and a combination of residual and knockdown herbicides. Results suggest soil and trash management had a larger effect on the herbicide losses in runoff than the physico-chemical properties of herbicides. Improved practices with 30% lower atrazine application rates than used in conventional systems produced reduced runoff volumes by 40% and atrazine loss by 62%. There were a 2-fold variation in atrazine and >10-fold variation in metribuzin loads in runoff water between reduced tillage systems differing in soil disturbance and surface residue cover from the previous rotation crops, despite the same herbicide application rates. The elevated risk of offsite losses from herbicides was illustrated by the high concentrations of diuron (14μgL(-1)) recorded in runoff that occurred >2.5months after herbicide application in a 1(st) ratoon crop. A cropping system employing less persistent non-selective herbicides and an inter-row soybean mulch resulted in no residual herbicide contamination in runoff water, but recorded 12.3% lower yield compared to Conventional practice. These findings reveal a trade-off between achieving good water quality with minimal herbicide contamination and

  18. A mathematical model for the transfer of soil solutes to runoff under water scouring. (United States)

    Yang, Ting; Wang, Quanjiu; Wu, Laosheng; Zhang, Pengyu; Zhao, Guangxu; Liu, Yanli


    The transfer of nutrients from soil to runoff often causes unexpected pollution in water bodies. In this study, a mathematical model that relates to the detachment of soil particles by water flow and the degree of mixing between overland flow and soil nutrients was proposed. The model assumes that the mixing depth is an integral of average water flow depth, and it was evaluated by experiments with three water inflow rates to bare soil surfaces and to surfaces with eight treatments of different stone coverages. The model predicted outflow rates were compared with the experimentally observed data to test the accuracy of the infiltration parameters obtained by curve fitting the models to the data. Further analysis showed that the comprehensive mixing coefficient (ke) was linearly correlated with Reynolds' number Re (R(2)>0.9), and this relationship was verified by comparing the simulated potassium concentration and cumulative mass with observed data, respectively. The best performance with the bias error analysis (Nash Sutcliffe coefficient of efficiency (NS), relative error (RE) and the coefficient of determination (R(2))) showed that the predicted data by the proposed model was in good agreement with the measured data. Thus the model can be used to guide soil-water and fertilization management to minimize nutrient runoff from cropland. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby


    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  20. Potential effects of vinasse as a soil amendment to control runoff and soil loss (United States)

    Hazbavi, Z.; Sadeghi, S. H. R.


    Application of organic materials are well known as environmental practices in soil restoration, preserving soil organic matter and recovering degraded soils of arid and semiarid lands. Therefore, the present research focused on evaluating the effectiveness of vinasse, a byproduct mainly of the sugar-ethanol industry, on soil conservation under simulated rainfall. Vinasse can be recycled as a soil amendment due to its organic matter content. Accordingly, the laboratory experiments were conducted by using 0.25 m2 experimental plots at 20 % slope and rainfall intensity of 72 mm h-1 with 0.5 h duration. The effect of vinasse was investigated on runoff and soil loss control. Experiments were set up as a control (with no amendment) and three treated plots with doses of 0.5, 1, and 1.5 L m-2 of vinasse subjected to simulated rainfall. Laboratory results indicated that vinasse at different levels could not significantly (P > 0.05) decrease the runoff amount and soil loss rate in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 mL and 46 g for the study plot at a 1 L m-2 level of vinasse application.

  1. Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine manure slurry. (United States)

    Joy, Stacey R; Bartelt-Hunt, Shannon L; Snow, Daniel D; Gilley, John E; Woodbury, Bryan L; Parker, David B; Marx, David B; Li, Xu


    Due to the use of antimicrobials in livestock production, residual antimicrobials and antimicrobial resistance genes (ARGs) could enter the environment following the land application of animal wastes and could further contaminate surface and groundwater. The objective of this study was to determine the effect of various manure land application methods on the fate and transport of antimicrobials and ARGs in soil and runoff following land application of swine manure slurry. Swine manure slurries were obtained from facilities housing pigs that were fed chlortetracyline, tylosin or bacitracin and were land applied via broadcast, incorporation, and injection methods. Three rainfall simulation tests were then performed on amended and control plots. Results show that land application methods had no statistically significant effect on the aqueous concentrations of antimicrobials in runoff. However, among the three application methods tested broadcast resulted in the highest total mass loading of antimicrobials in runoff from the three rainfall simulation tests. The aqueous concentrations of chlortetracyline and tylosin in runoff decreased in consecutive rainfall events, although the trend was only statistically significant for tylosin. For ARGs, broadcast resulted in significantly higher erm genes in runoff than did incorporation and injection methods. In soil, the effects of land application methods on the fate of antimicrobials in top soil were compound specific. No clear trend was observed in the ARG levels in soil, likely because different host cells may respond differently to the soil environments created by various land application methods.

  2. Runoff on Pavements of Soil-Cement Blocks – an Experimental Boarding

    Directory of Open Access Journals (Sweden)

    Zegarra-Tarqui Jorge Luis


    Full Text Available The article evaluates the reduction of runoff in pavements constructed with rectangular blocks of soil-cement. The tests were conducted in a pilot pavement built with soil-cement blocks, seated in a metal box of 50 cm × 50 cm (area = 2500 cm2, with declivities of 1%, 3% and 5%. Mean intensities of 76.9 mm / I 117.7 mm / h were used, values close to the intensities calculated by intensity-frequency-duration (i-f- -d equation of the city of Salvador, Brazil, for return periods of 2 and 5 years, respectively. The medium runoff coefficient was C = 0.61, this value is close to the coefficient of pavement with rectangular blocks (C = 0.6 and it has a lower value than the coefficient for concrete block pavement (C = 0.78. On the other hand, considering that areas with more than 2500 cm2 are constituted by coupling of area units of 50 cm × 50 cm, the splash losses are part of the runoff, obtaining the coefficient Csuperficial + splashing, which showed values in the 0.74 to 0.89 range, these values were found close to the coefficient of concrete block pavement (C = 0.78 and below the concrete pavement (C = 0.95, respectively, but factors such as displacement time of runoff on surface, depressions on the surface, roughness of pavement, evaporation and others, should reduce this value. Then, the pavement of soil-cement blocks can be considered in the category of semi-permeable for the area size used.

  3. [Runoff and sediment yielding processes on red soil engineering accumulation containing gravels by a simulated rainfall experiment]. (United States)

    Shi, Qian-hua; Wang, Wen-long; Guo, Ming-ming; Bai, Yun; Deng, Li-qiang; Li, Jian-ming; Li, Yao-lin


    Engineering accumulation formed in production and construction projects is characterized by unique structure and complex material composition. Characteristics of soil erosion on the engineering accumulation significantly differ from those on farmland. An artificially simulated rainfall experiment was carried out to investigate the effects of rainfall intensity on the processes of runoff and sediment yielding on the engineering accumulation of different gravel contents (0%, 10%, 20% and 30%) in red soil regions. Results showed that the initial time of runoff generation decreased with increases in rainfall intensity and gravel content, the decreased amplitudes being about 48.5%-77.9% and 4.2%-34.2%, respectively. The initial time was found to be a power function of rainfall intensity. Both runoff velocity and runoff rate manifested a trend of first rising and then in a steady state with runoff duration. Rainfall intensity was found to be the main factor influencing runoff velocity and runoff rate, whereas the influence of gravel content was not significant. About 10% of gravel content was determined to be a critical value in the influence of gravel content on runoff volume. For the underlying surface of 10% gravel content, the runoff volume was least at rainfall intensity of 1.0 mm · min(-1) and maximum at rainfall intensity of greater than 1.0 mm · min(-1). The runoff volume in- creased 10%-60% with increase in rainfall intensity. Sediment concentration showed a sharp decline in first 6 min and then in a stable state in rest of time. Influence of rainfall intensity on sediment concentration decreased as gravel content increased. Gravels could reduce sediment yield significantly at rainfall intensity of greater than 1.0 mm · min(-1). Sediment yield was found to be a linear function of rainfall intensity and gravel content.

  4. Investigation of Rainfall-Runoff Processes and Soil Moisture Dynamics in Grassland Plots under Simulated Rainfall Conditions

    Directory of Open Access Journals (Sweden)

    Nana Zhao


    Full Text Available The characteristics of rainfall-runoff are important aspects of hydrological processes. In this study, rainfall-runoff processes and soil moisture dynamics at different soil depths and slope positions of grassland with two different row spacings (5 cm and 10 cm, respectively, referred to as R5 and R10 were analyzed, by means of a solution of rainfall simulation experiments. Bare land was also considered as a comparison. The results showed that the mechanism of runoff generation was mainly excess infiltration overland flow. The surface runoff amount of R5 plot was greater than that of R10, while the interflow amount of R10 was larger than that of R5 plot, although the differences of the subsurface runoff processes between plots R5 and R10 were little. The effects of rainfall intensity on the surface runoff were significant, but not obvious on the interflow and recession curve, which can be described as a simple exponential equation, with a fitting degree of up to 0.854–0.996. The response of soil moisture to rainfall and evapotranspiration was mainly in the 0–20 cm layer, and the response at the 40 cm layer to rainfall was slower and generally occurred after the rainfall stopped. The upper slope generally responded fastest to rainfall, and the foot of the slope was the slowest. The results presented here could provide insights into understanding the surface and subsurface runoff processes and soil moisture dynamics for grasslands in semi-arid regions.

  5. Interception of rainfall and surface runoff in the Brazilian Cerrado (United States)

    Tarso Oliveira, Paulo; Wendland, Edson; Nearing, Mark; Perea Martins, João


    The Brazilian Cerrado plays a fundamental role in water resources dynamics because it distributes fresh water to the largest basins in Brazil and South America. In recent decades, the native Cerrado vegetation has increasingly been replaced by agricultural crops and pasture. These land cover and land use changes have altered the hydrological processes. Meanwhile, little is known about the components of the water balance in the Brazilian Cerrado, mainly because the experimental field studies in this region are scarce or nonexistent. The objective of this study was to evaluate two hydrological processes under native Cerrado vegetation, the canopy interception (CI) and the surface runoff (R). The Cerrado physiognomy was classified as "cerrado sensu stricto denso" with an absolute density of 15,278 trees ha-1, and a basal area of 11.44 m2 ha-1. We measured the gross rainfall (P) from an automated tipping bucket rain gauge (model TB4) located in a tower with 11 m of height on the Cerrado. Throughfall (TF) was obtained from 15 automated tipping bucket rain gauges (model Davis) spread below the Cerrado vegetation and randomly relocated every month during the wet season. Stemflow (SF) was measured on 12 trees using a plastic hose wrapped around the trees trunks, sealed with neutral silicone sealant, and a bucket to store the water. The canopy interception was computed by the difference between P and the sum of TF and SF. Surface runoff under undisturbed Cerrado was collected in three plots of 100 m2(5 x 20 m) in size and slope steepness of approximately 0.09 m m-1. The experimental study was conducted between January 2012 and November 2013. We found TF of 81.0% of P and SF of 1.6% of P, i.e. the canopy interception was calculated at 17.4% of P. There was a statistically significant correlation (p 0.8. Our results suggest that the rainfall intensity, the characteristics of the trees trunks (crooked and twisted) and stand structure are the main factors that have influenced

  6. Surface runoff and retention of transported pollutants in strips of riparian vegetation with and without trees (United States)

    Giaccio, Gustavo; Laterra, Pedro; Aparicio, Virginia; Costa, Jose Luis


    In this study, some aspects related to the effect of the crack willow (Salix fragilis L.) invasion on the reduction of runoff and sediment retention, glyphosate, nitrogen and phosphorus in riparian environments with herbaceous vegetation of the Austral Pampa of Argentina were analysed. In order to evaluate the influence of the willows on the filtering mechanisms, surface runoff simulation experiments were carried out in plots of 1.5 m x 2.5 m in environments characterized by the presence vs. the absence of willows. In spite of the small length of the experimental plots, glyphosate retention in the tree-less plots reached 73.6%, a higher value than that recorded in tree stands (43.8%). However, sediment, nitrogen and phosphorus retention did not vary significantly between treatments. On the other hand, the reduction of the volume of runoff in the sites with trees reached 63%, a superior value to the one registered in strips without trees (31%). The presence of trees only significantly modified the biophysical properties of hydraulic conductivity, surface roughness, aerial biomass and soil moisture, compared to areas with no trees. Partial correlation analysis for both tree and no-tree environments showed that the reduction in runoff volume increased significantly with hydraulic conductivity, soil sand content and depth at the water table, and decreased with apparent density, soil moisture and the slope of the riverbank. However, sediment retention increased significantly with aerial, mulch and root biomass and decreased with the slope of the riparian strip. Glyphosate retention increased significantly with sediment retention and decreased with the slope of the riparian strip and the mulch biomass. Nitrogen retention increased with the reduction of runoff flow, soil hydraulic conductivity and depth to the water table and decreased with slope and sediment retention. While, phosphorus retention increased with sediment retention and decreased with slope and soil content

  7. Effect of slope and plant cover on run-off, soil loss and water use ...

    African Journals Online (AJOL)

    An average of 6,2t/ha soil loss and 80,6% run-off of the amount of water applied occurred from the pioneer veld (0,7% basal cover) on the steepest slope. In all the successional stages more run-off and less soil loss occurred from wet soil than from dry soil. Significant (P<0,01) relationships between basal and canopy cover ...


    This project examined a common, but poorly understood, problem associated with land development, namely the modifications made to soil structure and the associated reduced rainfall infiltration and increased runoff. The project was divided into two separate major tasks: 1) to tes...

  9. Agriculturization in the Argentinean Northern Humid Pampas: the Impact on Soil Structure and Runoff (United States)

    Sasal, M. C.; Léonard, J.; Andriulo, A.; Wilson, M. G.


    Argentina is among the countries with the largest cropped area under no-tillage (NT). No tillage was adopted in the northern Humid Pampas to reduce the widespread soil degradation by water erosion. With the advent of genetically modified soybean varieties, NT has developed exponentially. This evolution, combined with the influence of the international market trend, has resulted in large changes in crop sequence composition toward the disappearance of pastures and the expansion of soybean monoculture. The aim of this work was to evaluate the long-term consequences of these changes on the topsoil structure and the way in which the evolution of soil structure relates to the simplification of the crop sequence and to runoff at a regional scale. We analyzed the topsoil structure of 25 sites with Argiudolls having 4 to 29 consecutive years of NT using the cultural profile approach. An intensification sequence index (ISI) was calculated as the ratio between the length of the growth period and the length of the year. Fifteen natural-rainfall runoff plots (100 m2) with 3.5% slope were used to analyze the relationship between soil structural state, crop sequence and runoff for four years. Four types of soil structures were identified and a general pattern of vertical soil structure organization was revealed. The top centimeters of 72% of the sites were dominated by a granular structure. Platy soil structure development was omnipresent: all sites exhibited a horizontal platy structure (<10 cm thick) developing either directly from the soil surface or from below the granular structure. Below the platy structure layer, a gamma soil structure (with visible structural porosity) was observed in all sites (30-75% of the A horizon), while compacted delta soil structure was detected in localized zones. A significant parabolic relationship (R2=0.60) was found between the number of consecutive years under NT and the proportion of platy structure in the A horizon. The proportion of

  10. Amending greenroof soil with biochar to affect runoff water quantity and quality

    International Nuclear Information System (INIS)

    Beck, Deborah A.; Johnson, Gwynn R.; Spolek, Graig A.


    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4 cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. - Highlights: → Biochar in green roof soil reduces nitrogen and phosphorus in the runoff. → Addition of biochar reduces turbidity of runoff. → Addition of biochar reduces total organic carbon content in runoff by 67-72%. → Biochar improves water retention of saturated soil. - In this controlled laboratory experiment, greenroof soil was amended by the addition of biochar, which reduced the water runoff concentration of nitrogen, phosphorus, and organic carbon.

  11. Amending greenroof soil with biochar to affect runoff water quantity and quality

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Deborah A.; Johnson, Gwynn R. [Portland State University, Mechanical and Materials Engineering, POB 751, Portland, OR 97207 (United States); Spolek, Graig A., E-mail: [Portland State University, Mechanical and Materials Engineering, POB 751, Portland, OR 97207 (United States)


    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4 cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. - Highlights: > Biochar in green roof soil reduces nitrogen and phosphorus in the runoff. > Addition of biochar reduces turbidity of runoff. > Addition of biochar reduces total organic carbon content in runoff by 67-72%. > Biochar improves water retention of saturated soil. - In this controlled laboratory experiment, greenroof soil was amended by the addition of biochar, which reduced the water runoff concentration of nitrogen, phosphorus, and organic carbon.

  12. Impact of Soil and Water Conservation Interventions on Watershed Runoff Response in a Tropical Humid Highland of Ethiopia. (United States)

    Sultan, Dagnenet; Tsunekawa, Atsushi; Haregeweyn, Nigussie; Adgo, Enyew; Tsubo, Mitsuru; Meshesha, Derege Tsegaye; Masunaga, Tsugiyuki; Aklog, Dagnachew; Fenta, Ayele Almaw; Ebabu, Kindiye


    Various soil and water conservation measures (SWC) have been widely implemented to reduce surface runoff in degraded and drought-prone watersheds. But little quantitative study has been done on to what extent such measures can reduce watershed-scale runoff, particularly from typical humid tropical highlands of Ethiopia. The overall goal of this study is to analyze the impact of SWC interventions on the runoff response by integrating field measurement with a hydrological CN model which gives a quantitative analysis future thought. Firstly, a paired-watershed approach was employed to quantify the relative difference in runoff response for the Kasiry (treated) and Akusty (untreated) watersheds. Secondly, a calibrated curve number hydrological modeling was applied to investigate the effect of various SWC management scenarios for the Kasiry watershed alone. The paired-watershed approach showed a distinct runoff response between the two watersheds however the effect of SWC measures was not clearly discerned being masked by other factors. On the other hand, the model predicts that, under the current SWC coverage at Kasiry, the seasonal runoff yield is being reduced by 5.2%. However, runoff yields from Kasiry watershed could be decreased by as much as 34% if soil bunds were installed on cultivated land and trenches were installed on grazing and plantation lands. In contrast, implementation of SWC measures on bush land and natural forest would have little effect on reducing runoff. The results on the magnitude of runoff reduction under optimal combinations of SWC measures and land use will support decision-makers in selection and promotion of valid management practices that are suited to particular biophysical niches in the tropical humid highlands of Ethiopia.

  13. Surface runoff and tile drainage transport of phosphorus in the midwestern United States. (United States)

    Smith, Douglas R; King, Kevin W; Johnson, Laura; Francesconi, Wendy; Richards, Pete; Baker, Dave; Sharpley, Andrew N


    The midwestern United States offers some of the most productive agricultural soils in the world. Given the cool humid climate, much of the region would not be able to support agriculture without subsurface (tile) drainage because high water tables may damage crops and prevent machinery usage in fields at critical times. Although drainage is designed to remove excess soil water as quickly as possible, it can also rapidly transport agrochemicals, including phosphorus (P). This paper illustrates the potential importance of tile drainage for P transport throughout the midwestern United States. Surface runoff and tile drainage from fields in the St. Joseph River Watershed in northeastern Indiana have been monitored since 2008. Although the traditional concept of tile drainage has been that it slowly removes soil matrix flow, peak tile discharge occurred at the same time as peak surface runoff, which demonstrates a strong surface connection through macropore flow. On our research fields, 49% of soluble P and 48% of total P losses occurred via tile discharge. Edge-of-field soluble P and total P areal loads often exceeded watershed-scale areal loadings from the Maumee River, the primary source of nutrients to the western basin of Lake Erie, where algal blooms have been a pervasive problem for the last 10 yr. As farmers, researchers, and policymakers search for treatments to reduce P loading to surface waters, the present work demonstrates that treating only surface runoff may not be sufficient to reach the goal of 41% reduction in P loading for the Lake Erie Basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of southeastern Arizona

    Directory of Open Access Journals (Sweden)

    Y. Zhang


    Full Text Available This study presents unique data on the effects of antecedent soil moisture on runoff generation in a semi-arid environment, with implications for process-based modeling of runoff. The data were collected from four small watersheds measured continuously from 2002 through 2010 in an environment where evapo-transpiration approaches 100% of the infiltrated water on the hillslopes. Storm events were generally intense and of short duration, and antecedent volumetric moisture conditions were dry, with an average in the upper 5 cm soil layer over the nine year period of 8% and a standard deviation of 3%. Sensitivity analysis of the model showed an average of 0.05 mm change in runoff for each 1% change in soil moisture, indicating an approximate 0.15 mm average variation in runoff accounted for by the 3% standard deviation of measured antecedent soil moisture. This compared to a standard deviation of 4.7 mm in the runoff depths for the measured events. Thus the low variability of soil moisture in this environment accounts for a relative lack of importance of storm antecedent soil moisture for modeling the runoff. Runoff characteristics simulated with a nine year average of antecedent soil moisture were statistically identical to those simulated with measured antecedent soil moisture, indicating that long term average antecedent soil moisture could be used as a substitute for measured antecedent soil moisture for runoff modeling of these watersheds. We also found no significant correlations between measured runoff ratio and antecedent soil moisture in any of the four watersheds.

  15. Effect of Rock Fragment Cover on Hydraulics Properties of Surface Flows and Rill Initiation with Simulating Runoff under Natural Conditions

    Directory of Open Access Journals (Sweden)

    sara kalbali


    Full Text Available Introduction: Rock fragments on soil surfaces can also have several contrasting effects on the hydraulics of overland flow and soil erosion processes. Many investigators have found that a cover of rock fragments on a soil surface can decrease its erosion potential compared to bare soil surface (1, 12 and 18. This has mainly been attributed to the protection of the soil surface by rock fragments against the beating action of rain. This leads to a decrease in the intensity of surface sealing, an increase in the infiltration rate, a decrease in the runoff volume and rate, and, hence, a decrease in sediment generation and production for soils covered by rock fragments. Parameters that have been reported to be important for explaining the degree of runoff or soil loss from soils containing rock fragments include the position and size (15, geometry (18, and percentage cover (11 and 12 of rock fragments and the structure of fine earth (16. Surface rock fragment cover is a more important factor for hydroulic properties of surface flows such as flow depth, flow velocity, Manning’s roughness coefficient (n parameter and flow shear stress and geometrics properties of formed rill such as time, location, number, length, width and depth of rill. Surface rock fragment cover is directly affected soil erosion processes in dry area specially in areas that plant can not grow because of sever dryness and salinity. Also, Surface rock fragment prevent the contact of rain drops to aggregates, decreasing physical degradation by decreasing flow velocity. The objective of this study was to investigate the effect of different surface rock fragment cover on hydraulic properties of surface flows and geometrics properties of formed rill. Materials and Methods: For this purpose, 36 field plots of 20 meter length and 0.5 meter width with 3% slope were established in research field of agricultural faculty, Shahrekord University. Before each erosion event, topsoil was tilled

  16. Runoff, nitrogen (N) and phosphorus (P) losses from purple slope cropland soil under rating fertilization in Three Gorges Region. (United States)

    Bouraima, Abdel-Kabirou; He, Binghui; Tian, Taiqiang


    Soil erosion along with soil particles and nutrients losses is detrimental to crop production. We carried out a 5-year (2010 to 2014) study to characterize the soil erosion and nitrogen and phosphorus losses caused by rainfall under different fertilizer application levels in order to provide a theoretical evidence for the agricultural production and coordinate land management to improve ecological environment. The experiment took place under rotation cropping, winter wheat-summer maize, on a 15° slope purple soil in Chongqing (China) within the Three Gorges Region (TGR). Four treatments, control (CK) without fertilizer, combined manure with chemical fertilizer (T1), chemical fertilization (T2), and chemical fertilizer with increasing fertilization (T3), were designed on experimental runoff plots for a long-term observation aiming to study their effects on soil erosion and nutrients losses. The results showed that fertilization reduced surface runoff and nutrient losses as compared to CK. T1, T2, and T3, compared to CK, reduced runoff volume by 35.7, 29.6, and 16.8 %, respectively and sediment yield by 40.5, 20.9, and 49.6 %, respectively. Regression analysis results indicated that there were significant relationships between soil loss and runoff volume in all treatments. The combined manure with chemical fertilizer (T1) treatment highly reduced total nitrogen and total phosphorus losses by 41.2 and 33.33 %, respectively as compared with CK. Through this 5-year experiment, we can conclude that, on the sloping purple soil, the combined application of manure with fertilizer is beneficial for controlling runoff sediments losses and preventing soil erosion.

  17. Runoff and Sediment Production under the Similar Rainfall Events in Different Aggregate Sizes of an Agricultural Soil

    Directory of Open Access Journals (Sweden)

    S. F. Eslami


    soil loss (sediment. Ten same rainfall events with 60 mm h-1 in intensity for 30 min were applied using a designed rainfall simulator in the lab. The rainfall simulator had a rainfall plate with a dimension of 100 cm × 120 cm which has been fixed on a metal frame with 3m height from the ground surface. Runoff and sediment samples were collected using a plastic container placed the out-let of the flumes. Runoff generation of each flume was determined based on multiplying total content volume of the tank by volume proportion of water in the sample. Soil loss for each event was determined using multiply the container volume and sediment concentration of the uniform sample. Initial soil moisture was measured in the aggregate samples before each rainfall event in order to investigate its effect on the runoff and sediment variations in the event scales. Runoff, soil loss and initial soil moisture data were evaluated for normality before any statistical analysis using SPSS version 18 software. Differences of runoff and soil loss among different rainfall events were analyzed using the Duncan's test. Results and Discussion: Based on the results, the soil was calcareous having 16% equivalent calcium carbonate. Low amount of organic matter (0.6%. The measured aggregate stability showed to be very low, indicating high susceptibility of the aggregates to water erosion processes. Significant differences were found among the rainfall events in runoff (p< 0.05, sediment (p< 0.001 and sediment concentration (p< 0.001 which were associated with aggregate breakdown by raindrop impacts in the rainfall events. Runoff and sediment were strongly increased from each event to other event. Significant relationship was found between sediment and runoff in the events (R2= 0.89, p< 0.001. However, sediment showed to have higher increasing trend as compared to runoff variation pattern in the event scale. Sediment value was very low in the first rainfall event due to high portions of the water

  18. The Interplay Between Transpiration and Runoff Formulations in Land Surface Schemes Used with Atmospheric Models (United States)

    Koster, Rindal D.; Milly, P. C. D.


    The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) has shown that different land surface models (LSMS) driven by the same meteorological forcing can produce markedly different surface energy and water budgets, even when certain critical aspects of the LSMs (vegetation cover, albedo, turbulent drag coefficient, and snow cover) are carefully controlled. To help explain these differences, the authors devised a monthly water balance model that successfully reproduces the annual and seasonal water balances of the different PILPS schemes. Analysis of this model leads to the identification of two quantities that characterize an LSM's formulation of soil water balance dynamics: (1) the efficiency of the soil's evaporation sink integrated over the active soil moisture range, and (2) the fraction of this range over which runoff is generated. Regardless of the LSM's complexity, the combination of these two derived parameters with rates of interception loss, potential evaporation, and precipitation provides a reasonable estimate for the LSM's simulated annual water balance. The two derived parameters shed light on how evaporation and runoff formulations interact in an LSM, and the analysis as a whole underscores the need for compatibility in these formulations.

  19. Broiler Litter × Industrial By-Products Reduce Nutrients and Microbial Losses in Surface Runoff When Applied to Forages. (United States)

    Adeli, Ardeshir; Read, John J; Brooks, John P; Miles, Dana; Feng, Gary; Jenkins, Johnie N


    The inability to incorporate broiler litter (BL) into permanent hayfields and pastures leads to nutrient accumulation near the soil surface and increases the potential transport of nutrients in runoff. This study was conducted on Marietta silt loam soil to determine the effect of flue gas desulfurization (FGD) gypsum and lignite on P, N, C, and microbial concentrations in runoff. Treatments were (i) control (unfertilized) and (ii) BL at 13.4 Mg ha alone or (iii) treated with either FGD gypsum or lignite applied at 20% (w/w) (2.68 Mg ha). Rainfall simulators were used to produce a 5.6 cm h storm event sufficient in duration to cause 15 min of continuous runoff. Repeated rains were applied at 3-d intervals to determine how long FGD gypsum and lignite are effective in reducing loss of litter-derived N, P, and C from soil. Application of BL increased N, P, and C concentrations in runoff as compared to the control. Addition of FGD gypsum reduced ( 20%. Thus, BL treated with FGD and lignite can be considered as cost-effective management practices in the mitigation of P, N, and C and possibly microbial concentration in runoff. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. A simple model for farmland nitrogen loss to surface runoff with raindrop driven process (United States)

    Tong, J.; Li, J.


    It has been widely recognized that surface runoff from the agricultural fields is an important source of non-point source pollution (NPSP). Moreover, as the agricultural country with the largest nitrogen fertilizer production, import and consumption in the world, our nation should pay greater attention to the over-application and inefficient use of nitrogen (N) fertilizer, which may cause severe pollution both in surface water and groundwater. To figure out the transfer mechanism between the soil solution and surface runoff, lots of laboratory test were conducted and related models were established in this study. But little of them was carried out in field scale since a part of variables are hard to control and some uncontrollable natural factors including rainfall intensity, temperature, wind speeds, soil spatial heterogeneity etc., may affect the field experimental results. Despite that, field tests can better reflect the mechanism of soil chemical loss to surface runoff than laboratory experiments, and the latter tend to oversimplify the environmental conditions. Therefore, a physically based, nitrogen transport model was developed and tested with so called semi-field experiments (i.e., artificial rainfall instead of natural rainfall was applied in the test). Our model integrated both raindrop driven process and diffusion effect along with the simplified nitrogen chain reactions. The established model was solved numerically through the modified Hydrus-1d source code, and the model simulations closely agree with the experimental data. Furthermore, our model indicates that the depth of the exchange layer and raindrop induced water transfer rate are two important parameters, and they have different impacts on the simulation results. The study results can provide references for preventing and controlling agricultural NPSP.

  1. Influence of storm characteristics on soil erosion and storm runoff (United States)

    Johnny M. III Grace


    Unpaved forest roads can be major sources of sediment from forested watersheds. Storm runoff from forest roads are a concern due to their potential delivery of sediments and nutrients to stream systems resulting in degraded water quality. The volume and sediment concentrations of stormwater runoff emanating from forest roads can be greatly influenced by storm...

  2. Assessment of heavy metals (Cd and Pb) and micronutrients (Cu, Mn, and Zn) of paddy (Oryza sativa L.) field surface soil and water in a predominantly paddy-cultivated area at Puducherry (Pondicherry, India), and effects of the agricultural runoff on the elemental concentrations of a receiving rivulet. (United States)

    Reddy, M Vikram; Satpathy, Deepmala; Dhiviya, K Shyamala


    The concentrations of toxic heavy metals-Cd and Pb and micronutrients-Cu, Mn, and Zn were assessed in the surface soil and water of three different stages of paddy (Oryza sativa L.) fields, the stage I-the first stage in the field soon after transplantation of the paddy seedlings, holding adequate amount of water on soil surface, stage II-the middle stage with paddy plants of stem of about 40 cm length, with sufficient amount of water on the soil surface, and stage III-the final stage with fully grown rice plants and very little amount of water in the field at Bahour, a predominantly paddy cultivating area in Puducherry located on the southeast Coast of India. Comparison of the heavy metal and micronutrient concentrations of the soil and water across the three stages of paddy field showed their concentrations were significantly higher in soil compared with that of water (p  Mn > Zn > Cu > Pb indicating concentration of Cd was maximum and Pb was minimum. The elemental concentrations in both soil and water across the three stages showed a ranking order of stage II > stage III > stage I. The runoff from the paddy fields has affected the elemental concentrations of the water and sediment of an adjacent receiving rivulet.

  3. Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil water pressures, rainfall and runoff. (United States)

    L.R. Ahuja; S. A. El-Swaify


    Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...

  4. The influence of grazing and browsing on soil and runoff in revegetated erosion-areas (United States)

    Markart, G.; Kohl, B.; Starnberger, R.; Gallmetzer, W.


    Intensive land use by grazing over centuries led to severe erosion at the steep slopes of the Tanaser Berg, in the community of Eyrs (South Tyrol - Italy). At the end of the 1970ies grazing was abandoned in the clearly eroded parts of the catchment above the actual timberline and an intensive program for revegetation of the slopes was started by the Department of Hydraulic Engineering, from the Autonomous Province of Bolzano, and the area covered by greening measures divided form the surrounding pastures by a solid fence. In 1999 partial opening for agricultural use by cattle for short term grazing (14 days a year) was planned in the interest of the land owners. Consequentially impact by cattle on the greened areas and alpine lawns still under long term grazing was investigated by use of a transportable spray irrigation for large plots (50 m² size) supplemented by additional investigations (documentation of soil physical properties, characterization of vegetation, changes in plant biomass, etc.). Each plot was irrigated twice: One time before opening the fenced site for short time grazing by cattle again at the End of June and the beginning of July 1999 and a second time five years later, after restart of short time grazing at the beginning of August 2004. In total seven plots were irrigated. 5 plots within the revegetated area, four of them greened, the fifth a carex sempervirens stand, formerly not eroded. 2 of the greened plots were fenced and kept free from grazing over the next five years. In addition 2 carex sempervirens stands with calluna outside which had been grazed at leat for several decades, one of them partially eroded, were investigated as reference plots. The four revegetated plots did not show significant changes in surface runoff development. High content of skeleton (stones and blocs) reduced runoff and erosion potential. In addition high slope-inclination made these plots unloved by cattle. On the contrary the natural carex sempervirens

  5. Available content, surface runoff and leaching of phosphorus forms in a typic hapludalf treated with organic and mineral nutrient sources

    Directory of Open Access Journals (Sweden)

    Cledimar Rogério Lourenzi


    Full Text Available The application of animal manure to soil can increase phosphorus availability to plants and enhance transfer of the nutrient solution drained from the soil surface or leached into the soil profile. The aim of this study was to evaluate the effect of successive applications of organic and mineral nutrient sources on the available content, surface runoff and leaching of P forms in a Typic Hapludalf in no-tillage systems. Experiment 1 was set up in 2004 in the experimental area of UFSM, in Santa Maria (RS, Brazil. The treatments consisted of: control (without nutrient application and application of pig slurry (PS, pig deep-litter (PL, cattle slurry (CS, and mineral fertilizers (NPK. The rates were determined to meet the N crop requirements of no-tillage black oat and maize, grown in the 2010/2011 growing season. The soil solution was collected after each event (rain + runoff or leaching and the soluble, particulate and total P contents were measured. In November 2008, soil was collected in 2 cm intervals to a depth of 20 cm, in 5 cm intervals to a depth of 40 cm, and in 10 cm intervals to a depth of 70 cm. The soil was dried and ground, and P determined after extraction by anion exchange resin (AER. In experiment 2, samples collected from the Typic Hapludalf near experiment 1 were incubated for 20, 35, 58, 73 and 123 days after applying the following treatments: soil, soil + PS, soil + PL, soil + CS and soil + NPK. Thereafter, the soil was sampled and P was analyzed by AER. The applications of nutrient sources over the years led to an increase in available P and its migration in the soil profile. This led to P transfer via surface runoff and leaching, with the largest transfer being observed in PS and PL treatments, in which most P was applied. The soil available P and P transfer via surface runoff were correlated with the amounts applied, regardless of the P source. However, P transfer by leaching was not correlated with the applied nutrient

  6. Retrospective Analysis of Recent Flood Events With Persistent High Surface Runoff From Hydrological Modelling (United States)

    Joshi, S.; Hakeem, K. Abdul; Raju, P. V.; Rao, V. V.; Yadav, A.; Diwakar, P. G.; Dadhwal, V. K.


    Floods are one of the most common and widespread disasters in India, with an estimated 40Mha of land prone to this natural disaster (National Flood Commission, India). Significant loss of property, infrastructure, livestock, public utilities resulting in large economic losses due to floods are recurrent every year in many parts of India. Flood forecasting and early warning is widely recognized and adopted as non-structural measure to lower the damages caused by the flood events. Estimating the rainfall excess that results into excessive river flow is preliminary effort in riverine flood estimation. Flood forecasting models are in general, are event based and do not fully account for successive and persistent excessive surface runoff conditions. Successive high rainfall events result in saturated soil moisture conditions, favourable for high surface runoff conditions. The present study is to explore the usefulness of hydrological model derived surface runoff, running on continuous times-step, to relate to the occurrence of flood inundation due to persistent and successive high surface runoff conditions. Variable Infiltration Capacity (VIC), a macro-scale hydrological model, was used to simulate daily runoff at systematic grid level incorporating daily meteorological data and land cover data. VIC is a physically based, semi-distributed macroscale hydrological model that represents surface and subsurface hydrologic process on spatially distributed grid cell. It explicitly represents sub-grid heterogeneity in land cover classes, taking their phenological changes into account. In this study, the model was setup for entire India using geo-spatial data available from multiple sources (NRSC, NBSS&LUP, NOAA, and IMD) and was calibrated with river discharge data from CWC at selected river basins. Using the grid-wise surface runoff estimates from the model, an algorithm was developed through a set of thresholds of successive high runoff values in order to identify grids

  7. Characteristics of PAHs in farmland soil and rainfall runoff in Tianjin, China. (United States)

    Shi, Rongguang; Xu, Mengmeng; Liu, Aifeng; Tian, Yong; Zhao, Zongshan


    Rainfall runoff can remove certain amounts of pollutants from contaminated farmland soil and result in a decline in water quality. However, the leaching behaviors of polycyclic aromatic hydrocarbons (PAHs) with rainfall have been rarely reported due to wide variations in the soil compositions, rainfall conditions, and sources of soil PAHs in complex farmland ecosystems. In this paper, the levels, spatial distributions, and composition profiles of PAHs in 30 farmland soil samples and 49 rainfall-runoff samples from the Tianjin region in 2012 were studied to investigate their leaching behaviors caused by rainfall runoff. The contents of the Σ 16 PAHs ranged from 58.53 to 3137.90 μg/kg in the soil and 146.58 to 3636.59 μg/L in the runoff. In total, most of the soil sampling sites (23 of 30) were contaminated, and biomass and petroleum combustion were proposed as the main sources of the soil PAHs. Both the spatial distributions of the soil and the runoff PAHs show a decreasing trend moving away from the downtown, which suggested that the leaching behaviors of PAHs in a larger region during rainfall may be mainly affected by the compounds themselves. In addition, 4- and 5-ring PAHs are the dominant components in farmland soil and 3- and 4-ring PAHs dominate the runoff. Comparisons of the PAH pairs and enrichment ratios showed that acenaphthylene, acenaphthene, benzo[a]anthracene, chrysene, and fluoranthene were more easily transferred into water systems from soil than benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, and indeno[123-cd]pyrene, which indicated that PAHs with low molecular weight are preferentially dissolved due to their higher solubility compared to those with high molecular weight.

  8. Soil management effects on infiltration and runoff at field scale in a hillslope vineyard (United States)

    Biddoccu, Marcella; Ferraris, Stefano; Pitacco, Andrea; Cavallo, Eugenio


    The soil management which is adopted in the vineyard's inter-rows has a great influence on soil hydraulic properties, and, consequently, on runoff and soil erosion processes at field scale. The cultivation of soil in the vineyard's inter-rows with tillage, as well as the tractor traffic, is known to expose the soil to degradation and compaction, reducing water infiltration and holding capacity and favouring runoff. On the other side, the use of grass cover in the inter-row is one of the most common and effective soil management practices adopted in order to reduce runoff and soil erosion in vineyards. The effects of inter-rows' soil management on soil hydrological properties was evaluated in two vineyard field-scale plots. The experiment was conducted from October, 2012 to November, 2014, in the Alto Monferrato vine-growing area (Piedmont, NW Italy). A total of 80 infiltration tests were carried out in two vineyards plots, which inter-rows were managed with conventional tillage and grass cover, respectively. Furthermore, a dataset of 29 rainfall-runoff events covering a wide range of topsoil characteristics was collected in the two plots, along with soil water content monitoring, measurements and sampling of runoff in order to determine the sediment yield. For 3 events 1-min rainfall intensity data has been obtained from an optical disdrometer installed near the plots. The datasets were analysed in order to identify correlations between rainfall characteristics, soil properties and field-scale response in terms of runoff and soil erosion, at event temporal scale. The study shows that the soil tillage increased the hydraulic conductivity only for a short period after its execution. However, in summer, just a month after tillage execution, the topsoil was compacted and showed very low hydraulic conductivity, thus summer storms with 10-min intensities greater than 20 mm h-1 were able to cause hortonian runoff and high soil losses, up to 5.7 Mg ha-1 for a single event

  9. Atrazine, deethylatrazine, and deisopropylatrazine in surface runoff from conservation tilled watersheds. (United States)

    Shipitalo, Martin J; Owens, Lloyd B


    Atrazine and two of its metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), are frequently detected in surface runoff. Although their health and environmental effects may be similar to that of atrazine and ratios of their concentrations are useful in delineating sources of contamination, there have been few long-term studies of the factors affecting their losses in runoff. Therefore, losses of atrazine, DEA, and DIA were monitored for six years in runoff from seven small (0.45-0.79 ha) watersheds under three tillage practices. Weather year and the timing of runoff-producing rainfall had a greater effect on atrazine, DEA, and DIA concentrations and losses than did tillage practice. DEA was the most frequently detected metabolite with an average concentration in the year of atrazine application, of 2.5 microg L(-1) compared to 0.7 microg L(-1) for DIA. Atrazine exceeded its 3 /g L(-1) maximum contaminant level (MCL) up to 100 days after application. DEA and DIA exceeded the atrazine MCL up to 50 days after atrazine application; thus, failure to monitor their presence may result in underestimation of the environmental impact of atrazine usage. The molar concentration ratio of DEA to atrazine (DAR) was affected by tillage treatment, weather year, and possibly soil type. These factors may need to be taken into account when DAR is used as an index of atrazine movement. The ratio of DIA to DEA (D2R) was fairly constant and should be useful in determining the parent compounds contributing DIA to surface waters.

  10. Effects of rainfall patterns on runoff and soil erosion in field plots

    Directory of Open Access Journals (Sweden)

    Mohamad Ayob Mohamadi


    Full Text Available Soil erosion processes during a storm are strongly affected by intra-storm variations in rainfall characteristics. Four storm patterns, each with a different rainfall intensity variation were separated. The storm patterns were: (1 increasing rainfall intensity (2 increasing then decreasing intensity (3 decreasing intensity (4 decreasing then increasing intensity. After each erosive rainfall (12 events, Runoff and suspended sediment samples were collected in each plot׳s tank which is located on hillslopes of the basin of Khamsan. Main storm characteristics and soil losses were plotted and equation of the line of best fit were selected. Analysis of variance (ANOVA was used to determine response of runoff and soil erosion to storm patterns. Results showed that in lower rainfall intensities a linear function fits the relationship between soil loss and rainfall intensity whereas this function tends to be non-linear at higher intensities. Also a strong non-linear relationship was found between different quartiles of storm and soil loss. Statistical analysis revealed significant differences in total runoff, soil loss and sediment concentration across four storm patterns (P<0.001 but no differences in the runoff coefficient. In particular, storms with increasing rainfall intensity yielded highest quantities of eroded sediments, total runoff and highest sediment concentrations followed by increasing then decreasing, decreasing then increasing and decreasing intensity, respectively.

  11. Response of runoff and soil loss to reforestation and rainfall type in red soil region of southern China. (United States)

    Huang, Zhigang; Ouyang, Zhiyun; Li, Fengrui; Zheng, Hua; Wang, Xiaoke


    To evaluate the long-term effects of reforestation types on soil erosion on degraded land, vegetation and soil properties under conventional sloping farmland (CSF) and three different reforestation types including a Pinus massoniana secondary forest (PSF), an Eucommia ulmoides artificial economic forest (EEF) and a natural succession type forest (NST), were investigated at runoff plot scale over a six-year period in a red soil region of southern China. One hundred and thirty erosive rainfall events generating runoff in plots were grouped into four rainfall types by means of K-mean clustering method. Erosive rainfall type I is the dominant rainfall type. The amount of runoff and the soil loss under erosive rainfall type III were the most, followed by rain-fall type II, IV and I. Compared with CSF treatment, reforestation treatments decreased the average annual runoff depth and the soil loss by 25.5%-61.8% and 93.9%-96.2% during the study period respectively. Meanwhile, runoff depth at PSF and EEF treatments was significantly lower than that in NST treatment, but no significant difference existed in soil erosion modulus among the three reforestation treatments. This is mainly due to the improved vegetation properties (i.e., vegetation coverage, biomass of above- and below-ground and litter-fall mass) and soil properties (i.e., bulk density, total porosity, infiltration rate and organic carbon content) in the three reforestation treatments compared to CSF treatment. The PSF and EEF are recommended as the preferred reforestation types to control runoff and soil erosion in the red soil region of southern China, with the NST potentially being used as an important supplement.

  12. Combined effects of rainfall regime and plot length on runoff and soil loss in the Loess Plateau of China (United States)

    Liu, J.; Gao, G.; Wang, S.; Fu, B.


    The purpose of this paper was to study the interaction effects of rainfall regime and slope length on runoff and soil loss under different land uses. Event runoff and soil loss of forest, shrub and grass were measured in plots with length of 5, 9, or 13 m in the Loess Plateau from 2008 to 2016. Fifty-nine erosive rainfall events were recorded and classified into three rainfall regimes. The results firstly showed that the runoff coefficient was grass > shrub > forest, and soil loss was grass > forest > shrub, but the differences between forest and shrub in runoff and between grass and forest in soil loss didn't reach significant level. Secondly, rainfall regimes had important effect on runoff and soil loss of different land uses. The lowest runoff coefficients and the highest soil loss in regime 2 were found in shrub and forest land, respectively, which differed from that of regime 1. In total, rainfall regime 1 had the highest runoff coefficient of 0.84-2.06%, followed by regime 3 with 0.33-0.88%, and regime 2 with 0.04-0.06%. Soil loss in forest and grass land had a different order of regime 3 > regime 1 > regime 2. Thirdly, both the runoff coefficient and soil loss decreased with increasing plot length, while the effect of slope length on runoff/soil loss were influenced by land use type and rainfall regimes.

  13. Estimating Runoff and Soil Moisture Deficit in Guinea Savannah Region of Nigeria using Water Balance Method

    Directory of Open Access Journals (Sweden)

    A. R. Adesiji


    Full Text Available The estimation of runoff and soil moisture deficit in Guinea Savannah region using semi arid model based on soil water balance technique (SAMBA was carried out. The input to the SAMBA model are daily rainfall, daily evapotranspiration, type and date of planting of crop, and soil parameters. The estimated runoff was validated with field measurement taken in a 67.23 ha catchment in the study area. The annual rainfall for the year under study (2009 is 1356.2 mm, the estimated annual evapotranspiration. runoff and recharge are 638mm, 132.93mm, and 447.8mm respectively. Recharge was experienced 23 days after a significant depth of rainfall was recorded. For the crop growth in the catchment, the soil was cropped with a pepper and the growth monitored from the planting to the harvesting. The crop enjoyed so much moisture throughout the growing period as Total Available Water in the soil is greater than Soil Moisture Deficit (TAW>SMD. The model results show that the larger percentage of the total annual rainfall was lost to evaporation and recharge during the growing season. The low runoff and high recharge are attributed to soil characteristics of the area and moderate terrain of the study area.

  14. Runoff and soil erosion from two rangeland sites (United States)

    Historically over 50 years of rainfall/runoff research using rainfall simulators has been conducted at various rangeland sites in the West, however these sites rarely have consecutive yearly measurements. This limits the understanding of dynamic annual conditions and the interactions of grazing, pla...

  15. Effects of rates and time of zeolite application on controlling runoff generation and soil loss from a soil subjected to a freeze-thaw cycle

    Directory of Open Access Journals (Sweden)

    Morteza Behzadfar


    Full Text Available Many factors such as freeze-thaw (FT cycle influence soil behavior. Application of soil amendments can play an important role on runoff time commencement (RT, volume (RV and soil loss (SL on soils subjected to FT cycles. However, limited studies have been documented on this subject. The present study was therefore carried out under rainfall simulation circumstances to investigate the effect of different rates of zeolite application to control the effects of FT on basic hydrological variables such as runoff production and soil loss. Towards this attempt, the effect of application of different rates of 250, 500 and 750 g m−2 of zeolite applied before, during and after the occurrence of FT cycle on RT, RV and SL was assessed in a completely randomized design. Treatments were set up in two categories viz. control (without zeolite application, and three rates and times of zeolite application in small 0.25 m2-experimental plots in three replications. The results showed that application of zeolite had significant effects on hydrological behavior of soil induced by FT cycles. Application rate of 750 g m−2 prior to FT cycle increased RT and reduced RV and SL at rates of 644%, 68% and 91%, respectively. The results also verified that zeolite could successfully mitigate the impacts of FT cycle on the main soil hydrological variables of soil profile induced by FT cycle. It is accordingly recommended to employ zeolite as an effective amendment to control soil erosion in steep and degraded rangelands where surface soil is exposed to rainfall and runoff.

  16. Integrated assessment of climate change impact on surface runoff contamination by pesticides. (United States)

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald


    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC. © Her Majesty the

  17. Reducing dissolved inorganic nitrogen in surface runoff water from sugarcane production systems. (United States)

    Webster, A J; Bartley, R; Armour, J D; Brodie, J E; Thorburn, P J


    Nitrogen (N) lost from farms, especially as the highly bioavailable dissolved inorganic form, may be damaging Australia's Great Barrier Reef (GBR). As sugarcane is the dominant cropping system in GBR catchments, its N management practises are coming under increasing scrutiny. This study measured dissolved inorganic N lost in surface runoff water and sugarcane productivity over 3 years. The experiment compared the conventional fertiliser N application rate to sugarcane (average 180kg N/ha/year) and a rate based on replacing N exported in the previous crop (average 94kg N/ha/year). Dissolved inorganic N losses in surface water were 72%, 48% and 66% lower in the three monitored years in the reduced N fertiliser treatment. There was no significant difference in sugarcane yield between the two fertiliser N treatments, nor any treatment difference in soil mineral N - both of these results are indicators of the sustainability of the lower fertiliser N applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption

    Energy Technology Data Exchange (ETDEWEB)

    Awad, John [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Leeuwen, John van, E-mail: [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); State Key Laboratory for Environmental Aquatic Chemistry, CAS, Beijing (China); Barbara Hardy Institute, University of South Australia, South Australia 5095 (Australia); Abate, Dawit [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Pichler, Markus; Bestland, Erick [School of the Environment, Flinders University, Bedford Park, South Australia 5042 (Australia); Chittleborough, David J. [School of Physical Sciences, University of Adelaide, North Terrace, South Australia 5005 (Australia); Fleming, Nigel [South Australian Research and Development Institute, P.O. Box 397, Adelaide, SA 5000 (Australia); Cohen, Jonathan; Liffner, Joel [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Drikas, Mary [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, South Australia 5000 (Australia); State Key Laboratory for Environmental Aquatic Chemistry, CAS, Beijing (China)


    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~ 30 cm and ~ 60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV–visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on

  19. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption

    International Nuclear Information System (INIS)

    Awad, John; Leeuwen, John van; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J.; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary


    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~ 30 cm and ~ 60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV–visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on

  20. An empirical method for determining average soil infiltration rates and runoff, Powder River structural basin, Wyoming (United States)

    Rankl, James G.


    This report describes a method to estimate infiltration rates of soils for use in estimating runoff from small basins. Average rainfall intensity is plotted against storm duration on log-log paper. All rainfall events are designated as having either runoff or nonrunoff. A power-decay-type curve is visually fitted to separate the two types of rainfall events. This separation curve is an incipient-ponding curve and its equation describes infiltration parameters for a soil. For basins with more than one soil complex, only the incipient-ponding curve for the soil complex with the lowest infiltration rate can be defined using the separation technique. Incipient-ponding curves for soils with infiltration rates greater than the lowest curve are defined by ranking the soils according to their relative permeabilities and optimizing the curve position. A comparison of results for six basins produced computed total runoff for all events used ranging from 16.6 percent less to 2.3 percent more than measured total runoff. (USGS)

  1. Effectiveness Of Miraba an Indigenous Soil and Water Conservation Measures On Reducing Runoff And Soil Loss In Arable Land Of Western Usambara Mountains (United States)

    Msita, H. B.; Kimaro, D. N.; Mtakwa, P. W.; Msanya, B. M.; Dondyene, S.; Poesen, J.; Deckers, J.


    Soil erosion by water is rampant mainly in mountainous areas of Tanzania leading to environmental hazards, low land productivity, low income and increased poverty. Despite the severity of the soil erosion problem, there is not much quantitative data on the erosion effects and effectiveness of indigenous soil and water conservation (SWC) measures. The consequence is that indigenous knowledge in SWC planning is ignored. The on-farm field experiment was conducted for three years in Migambo village, Lushoto district in Tanzania, to determine the effectiveness of improved Miraba (IM) an indigenous soil erosion control measure on reducing runoff and soil loss. Management practices were tested viz: control that is without any soil conservation measure (C), Miraba alone (M), Miraba with farmyard manure and mulching (MFM) replicated three times in CRD setting. Maize (Zea mays) and beans (Phaseolus vulgaris) were used as test crops, due to their importance as food crops and the high erosion rates on fields with these crops. The crops were planted in rotation, maize and beans in short and long rains respectively. Gerlach troughs and runoff plots were used to evaluate the physical effectiveness. Results show significant effects of IM against control on crop yields, soil loss, surface runoff and moisture retention. MFM is the most effective measure in reducing soil and water losses followed by MF and M. The results further showed that these management practices can be implemented to reduce soil erosion and nutrient losses in the study area and areas with similar ecological setting. To facilitate adoption of these practices further research works is recommended for identifying economically feasible indigenous SWC measures under different biophysical and socio-economic conditions.

  2. WEPP and ANN models for simulating soil loss and runoff in a semi-arid Mediterranean region. (United States)

    Albaradeyia, Issa; Hani, Azzedine; Shahrour, Isam


    This paper presents the use of both the Water Erosion Prediction Project (WEPP) and the artificial neural network (ANN) for the prediction of runoff and soil loss in the central highland mountainous of the Palestinian territories. Analyses show that the soil erosion is highly dependent on both the rainfall depth and the rainfall event duration rather than on the rainfall intensity as mostly mentioned in the literature. The results obtained from the WEPP model for the soil loss and runoff disagree with the field data. The WEPP underestimates both the runoff and soil loss. Analyses conducted with the ANN agree well with the observation. In addition, the global network models developed using the data of all the land use type show a relatively unbiased estimation for both runoff and soil loss. The study showed that the ANN model could be used as a management tool for predicting runoff and soil loss.

  3. Weather Radar Adjustment Using Runoff from Urban Surfaces

    DEFF Research Database (Denmark)

    Ahm, Malte; Rasmussen, Michael Robdrup


    Weather radar data used for urban drainage applications are traditionally adjusted to point ground references, e.g., rain gauges. However, the available rain gauge density for the adjustment is often low, which may lead to significant representativeness errors. Yet, in many urban catchments......, rainfall is often measured indirectly through runoff sensors. This paper presents a method for weather radar adjustment on the basis of runoff observations (Z-Q adjustment) as an alternative to the traditional Z-R adjustment on the basis of rain gauges. Data from a new monitoring station in Aalborg......, Denmark, were used to evaluate the flow-based weather radar adjustment method against the traditional rain-gauge adjustment. The evaluation was performed by comparing radar-modeled runoff to observed runoff. The methodology was both tested on an events basis and multiple events combined. The results...

  4. Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes. (United States)

    Babcsányi, Izabella; Chabaux, François; Granet, Mathieu; Meite, Fatima; Payraudeau, Sylvain; Duplay, Joëlle; Imfeld, Gwenaël


    Understanding the fate of copper (Cu) fungicides in vineyard soils and catchments is a prerequisite to limit the off-site impact of Cu. Using Cu stable isotopes, Cu retention in soils and runoff transport was investigated in relation to the use of Cu fungicides and the hydrological conditions in a vineyard catchment (Rouffach, Haut-Rhin, France; mean slope: 15%). The δ(65)Cu values of the bulk vineyard soil varied moderately through the depth of the soil profiles (-0.12 to 0.24‰±0.08‰). The values were in the range of those of the fungicides (-0.21 to 0.11‰) and included the geogenic δ(65)Cu value of the untreated soil (0.08‰). However, δ(65)Cu values significantly differed between particle-size soil fractions (-0.37±0.10‰ in fine clays and 0.23±0.07‰ in silt). Together with the soil mineralogy, the results suggested Cu isotope fractionation primarily associated with the clay and fine clay fractions that include both SOM and mineral phases. The vegetation did not affect the Cu isotope patterns in the vineyard soils. Cu export by runoff from the catchment accounted for 1% of the applied Cu mass from 11th May to 20(th) July 2011, covering most of the Cu use period. 84% of the exported Cu mass was Cu bound to suspended particulate matter (SPM). The runoff displayed δ(65)Cu values from 0.52 to 1.35‰ in the dissolved phase (stable isotopes may allow identifying the Cu distribution in the soil fractions and their contribution to Cu export in runoff from Cu-contaminated catchments. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Soil loss and run-off measurements form natural veld with a rainfall ...

    African Journals Online (AJOL)

    off from natural veld in different successional stages and different slopes. Run-off as much as 94,34% of the applied volume of water and soil loss of 5,74t/ha were recorded from a pioneer grass cover with a 2,42% slope. Of all the variables ...

  6. Runoff and Erosion Effects after Prescribed Fire and Wildfire on Volcanic Ash-Cap Soils (United States)

    P. R. Robichaud; F. B. Pierson; R. E. Brown


    After prescribed burns at three locations and one wildfire, rainfall simulations studies were completed to compare postfire runoff rates and sediment yields on ash-cap soil in conifer forest regions of northern Idaho and western Montana. The measured fire effects were differentiated by burn severity (unburned, low, moderate, and high). Results...

  7. Activated soil filters for removal of biocides from contaminated run-off and waste-waters

    DEFF Research Database (Denmark)

    Bester, Kai; Banzhaf, Stefan; Burkhardt, Michael


    Building facades can be equipped with biocides to prevent formation of algal, fungal and bacterial films. Thus run-off waters may contain these highly active compounds. In this study, the removal of several groups of biocides from contaminated waters by means of an activated soil filter was studied...

  8. Soil Structure - A Neglected Component of Land-Surface Models (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.


    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  9. Modelling Climate change influence on runoff and soil losses in a rainfed catchment with Mediterranean climate (United States)

    Concepción Ramos, Maria; Martínez-Casasnovas, José A.


    The magnitude of erosion processes, widespread throughout the Mediterranean areas, may be enhanced due to changes in seasonal precipitation regimes and an increase of extreme events. The present research shows the results of possible effects of climate change on runoff and soil loss in a rainfed catchment located in the Barcelona province (NE Spain).In the study area, vines are the main land use, cultivated under the Penedès designation of origin. The present research shows the results of runoff and soil loss simulated using SWAT for a small basin with vines as main land use. Input data included detailed soil and land use maps, and daily climate data of the period 1998-2012. The analysis compared simulated results for years with different climatic conditions during that period and the average with predictions for the scenario 2020, 2050 and 2080 based on the HadCM3 GCM under A2 scenario and the trends observed in the area related to maximum rainfall intensity. The model was calibrated and validated using data recorded at different subbasins, using soil water and runoff samples. Taking into account the predicted changes in temperature and precipitation, the model simulated a decrease in soil loss associated with a decrease in runoff, mainly driven by an increase in evapotranspiration. However, the trend in soil losses varied when the changes in precipitation could balance the increase of evapotranspiration and also due to the increase of rainfall intensity. An increase in maximum rainfall intensity in spring and autumn (main rainy seasons) produced significant increases in soil loss: by up to 12% for the 2020 scenario and up to 57% for the 2050 scenario, although high differences may exists depending on rainfall characteristics. The research confirmed the difficulty of predicting future soil loss in this region, which has a very high climate inter-annual variability.

  10. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado. (United States)

    Anache, Jamil A A; Flanagan, Dennis C; Srivastava, Anurag; Wendland, Edson C


    Land use and climate change can influence runoff and soil erosion, threatening soil and water conservation in the Cerrado biome in Brazil. The adoption of a process-based model was necessary due to the lack of long-term observed data. Our goals were to calibrate the WEPP (Water Erosion Prediction Project) model for different land uses under subtropical conditions in the Cerrado biome; predict runoff and soil erosion for these different land uses; and simulate runoff and soil erosion considering climate change. We performed the model calibration using a 5-year dataset (2012-2016) of observed runoff and soil loss in four different land uses (wooded Cerrado, tilled fallow without plant cover, pasture, and sugarcane) in experimental plots. Selected soil and management parameters were optimized for each land use during the WEPP model calibration with the existing field data. The simulations were conducted using the calibrated WEPP model components with a 100-year climate dataset created with CLIGEN (weather generator) based on regional climate statistics. We obtained downscaled General Circulation Model (GCM) projections, and runoff and soil loss were predicted with WEPP using future climate scenarios for 2030, 2060, and 2090 considering different Representative Concentration Pathways (RCPs). The WEPP model had an acceptable performance for the subtropical conditions. Land use can influence runoff and soil loss rates in a significant way. Potential climate changes, which indicate the increase of rainfall intensities and depths, may increase the variability and rates of runoff and soil erosion. However, projected climate changes did not significantly affect the runoff and soil erosion for the four analyzed land uses at our location. Finally, the runoff behavior was distinct for each land use, but for soil loss we found similarities between pasture and wooded Cerrado, suggesting that the soil may attain a sustainable level when the land management follows conservation

  11. Runoff of pyrethroid insecticides from concrete surfaces following simulated and natural rainfalls. (United States)

    Jiang, Weiying; Haver, Darren; Rust, Michael; Gan, Jay


    Intensive residential use of insecticides has resulted in their ubiquitous presence as contaminants in urban surface streams. For pest eradication, urban hard surfaces such as concrete are often directly treated with pesticides, and wind/water can also carry pesticides onto hard surfaces from surrounding areas. This study expanded on previous bench-scale studies by considering pesticide runoff caused by irrigation under dry weather conditions and rain during the wet season, and evaluated the effects of pesticide residence time on concrete, single versus recurring precipitations, precipitation intensity, and concrete surface conditions, on pesticide transferability to runoff water. Runoff from concrete 1 d after pesticide treatment contained high levels of bifenthrin (82 μg/L) and permethrin (5143 μg/L for cis and 5518 μg/L for trans), indicating the importance of preventing water contact on concrete after pesticide treatments. Although the runoff transferability quickly decreased as the pesticide residence time on concrete increased, detectable residues were still found in runoff water after 3 months (89 d) exposure to hot and dry summer conditions. ANOVA analysis showed that precipitation intensities and concrete surface conditions (i.e., acid wash, silicone seal, stamping, and addition of microsilica) did not significantly affect the pesticide transferability to runoff. For concrete slabs subjected to natural rainfalls during the winter wet season, pesticide levels in the runoff decreased as the time interval between pesticide application and the rain event increased. However, bifenthrin and permethrin were still detected at 0.15-0.17 and 0.75-1.15 μg/L in the rain runoff after 7 months (221 d) from the initial treatment. In addition, pesticide concentrations showed no decrease between the two rainfall events, suggesting that concrete surfaces contaminated by pesticides may act as a reservoir for pesticide residues, leading to sustained urban runoff

  12. Feedbacks Between Shallow Groundwater Dynamics and Surface Topography on Runoff Generation in Flat Fields (United States)

    Appels, Willemijn M.; Bogaart, Patrick W.; van der Zee, Sjoerd E. A. T. M.


    In winter, saturation excess (SE) ponding is observed regularly in temperate lowland regions. Surface runoff dynamics are controlled by small topographical features that are unaccounted for in hydrological models. To better understand storage and routing effects of small-scale topography and their interaction with shallow groundwater under SE conditions, we developed a model of reduced complexity to investigate SE runoff generation, emphasizing feedbacks between shallow groundwater dynamics and mesotopography. The dynamic specific yield affected unsaturated zone water storage, causing rapid switches between negative and positive head and a flatter groundwater mound than predicted by analytical agrohydrological models. Accordingly, saturated areas were larger and local groundwater fluxes smaller than predicted, leading to surface runoff generation. Mesotopographic features routed water over larger distances, providing a feedback mechanism that amplified changes to the shape of the groundwater mound. This in turn enhanced runoff generation, but whether it also resulted in runoff events depended on the geometry and location of the depressions. Whereas conditions favorable to runoff generation may abound during winter, these feedbacks profoundly reduce the predictability of SE runoff: statistically identical rainfall series may result in completely different runoff generation. The model results indicate that waterlogged areas in any given rainfall event are larger than those predicted by current analytical groundwater models used for drainage design. This change in the groundwater mound extent has implications for crop growth and damage assessments.

  13. Effects of cropping systems on water runoff, soil erosion and nutrient loss in the Moldavian Plateau, Romania

    International Nuclear Information System (INIS)

    Ailincai, C.; Jitareanu, G.; Bucur, D.; Ailincai, D.; Raus, L.; Filipov, F.


    The experiments carried out at the Podu-lloaiei Agricultural Research Sation, during 1986-2008, had the following objectives: the study of water runoff and soil losses, by erosion, in different crops; the annual rate of erosion process under the influence of anti-erosion protection of different crops; the influence of water runoff and soil erosion on losses of organic matter and mineral elements from soil. (Author) 7 refs.

  14. Improving runoff prediction through the assimilation of the ASCAT soil moisture product (United States)

    Brocca, L.; Melone, F.; Moramarco, T.; Wagner, W.; Naeimi, V.; Bartalis, Z.; Hasenauer, S.


    The role and the importance of soil moisture for meteorological, agricultural and hydrological applications is widely known. Remote sensing offers the unique capability to monitor soil moisture over large areas (catchment scale) with, nowadays, a temporal resolution suitable for hydrological purposes. However, the accuracy of the remotely sensed soil moisture estimates has to be carefully checked. The validation of these estimates with in-situ measurements is not straightforward due the well-known problems related to the spatial mismatch and the measurement accuracy. The analysis of the effects deriving from assimilating remotely sensed soil moisture data into hydrological or meteorological models could represent a more valuable method to test their reliability. In particular, the assimilation of satellite-derived soil moisture estimates into rainfall-runoff models at different scales and over different regions represents an important scientific and operational issue. In this study, the soil wetness index (SWI) product derived from the Advanced SCATterometer (ASCAT) sensor onboard of the Metop satellite was tested. The SWI was firstly compared with the soil moisture temporal pattern derived from a continuous rainfall-runoff model (MISDc) to assess its relationship with modeled data. Then, by using a simple data assimilation technique, the linearly rescaled SWI that matches the range of variability of modelled data (denoted as SWI*) was assimilated into MISDc and the model performance on flood estimation was analyzed. Moreover, three synthetic experiments considering errors on rainfall, model parameters and initial soil wetness conditions were carried out. These experiments allowed to further investigate the SWI potential when uncertain conditions take place. The most significant flood events, which occurred in the period 2000-2009 on five subcatchments of the Upper Tiber River in central Italy, ranging in extension between 100 and 650 km2, were used as case studies

  15. Modeling detailed hydro-meteorological surfaces and runoff response in large diverse watersheds

    International Nuclear Information System (INIS)

    Byrne, J.; Kienzle, S.W.; MacDonald, R.J.


    An understanding of local variability in climatic conditions over complex terrain is imperative to making accurate assessments of impacts from climate change on fresh water ecosystems (Daly, 2006). The derivation of representative spatial data in diverse environments poses a significant challenge to the modelling community. This presentation describes the current status of a long term ongoing hydro-climate model development program. We are developing a gridded hydroclimate dataset for diverse watersheds using SimGrid (Larson, 2008; Lapp et al., 2005; Sheppard, 1996), a model that applies the Mountain Climate Model (MTCLIM; Hungerford et al., 1989) to simulate hydro-climatic conditions over diverse terrain. The model uses GIS based terrain categories (TC) classified by slope, aspect, elevation, and soil water storage. SimGrid provides daily estimates of solar radiation, air temperature, relative humidity, precipitation, snowpack and soil water storage over space. Earlier versions of the model have been applied in the St. Mary (Larson, 2008) and upper Oldman basins (Lapp et al., 2005), giving realistic estimates of hydro-climatic variables. The current study demonstrates improvements to the estimation of temperature, precipitation, snowpack, soil water storage and runoff from the basin. Soil water storage data for the upper drainage were derived with GIS and included in SimGrid to estimate soil water flux over the time period. These changes help improve the estimation of spatial climatic variability over the basin while accounting for topographical influence. In further work we will apply spatial hydro-climatic surfaces from the SimGrid model to assess the hydrologic response to environmental change for watersheds in Canada and beyond. (author)

  16. Evaluating the Hydrologic Sensitivities of Three Land Surface Models to Bound Uncertainties in Runoff Projections (United States)

    Chiao, T.; Nijssen, B.; Stickel, L.; Lettenmaier, D. P.


    Hydrologic modeling is often used to assess the potential impacts of climate change on water availability and quality. A common approach in these studies is to calibrate the selected model(s) to reproduce historic stream flows prior to the application of future climate projections. This approach relies on the implicit assumptions that the sensitivities of these models to meteorological fluctuations will remain relatively constant under climate change and that these sensitivities are similar among models if all models are calibrated to the same historic record. However, even if the models are able to capture the historic variability in hydrological variables, differences in model structure and parameter estimation contribute to the uncertainties in projected runoff, which confounds the incorporation of these results into water resource management decision-making. A better understanding of the variability in hydrologic sensitivities between different models can aid in bounding this uncertainty. In this research, we characterized the hydrologic sensitivities of three watershed-scale land surface models through a case study of the Bull Run watershed in Northern Oregon. The Distributed Hydrology Soil Vegetation Model (DHSVM), Precipitation-Runoff Modeling System (PRMS), and Variable Infiltration Capacity model (VIC) were implemented and calibrated individually to historic streamflow using a common set of long-term, gridded forcings. In addition to analyzing model performances for a historic period, we quantified the temperature sensitivity (defined as change in runoff in response to change in temperature) and precipitation elasticity (defined as change in runoff in response to change in precipitation) of these three models via perturbation of the historic climate record using synthetic experiments. By comparing how these three models respond to changes in climate forcings, this research aims to test the assumption of constant and similar hydrologic sensitivities. Our

  17. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution (United States)

    Ding, Wenfeng; Huang, Chihua


    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address this issue, a rainfall-simulation experiment was conducted with treatments that included two different initial soil surface roughnesses and two rainfall intensities. Soil surface roughness was determined by using photogrammetric method. For each simulated event, runoff and sediment samples were collected at different experimental times. The effective (undispersed) PSD of each sediment sample and the ultimate (after dispersion) PSD were used to investigate the detachment and transport mechanisms involved in sediment movement. The results show that soil surface roughness significantly delayed runoff initiation, but had no significant effect on the steady runoff rate. However, a significant difference in the soil loss rate was observed between the smooth and rough soil surfaces. Sediments from smooth soil surfaces were more depleted in clay-size particles, but more enriched in sand-size particles than those from rough soil surfaces, suggesting that erosion was less selective on smooth than on rough soil surfaces. The ratio of different sizes of transported sediment to the soil matrix indicates that most of the clay was eroded in the form of aggregates, silt-size particles were transported mainly as primary particles, and sand-size particles were predominantly aggregates of finer particles. Soil surface roughness has a crucial effect on the sediment size distribution and erosion processes. Significant differences of the enrichment ratios for the effective PSD and the ultimate PSD were observed under the two soil surface roughness treatments. These findings demonstrate that we should consider each particle size separately rather than use only the total sediment discharge in

  18. Importance of fine particles in pesticide runoff from concrete surfaces and its prediction. (United States)

    Jiang, Weiying; Gan, Jay


    Pesticides such as pyrethroids have been frequently found in runoff water from urban areas and the offsite movement is a significant cause for aquatic toxicities in urban streams and estuaries. To better understand the origination of pesticide residues in urban runoff, we investigated the association of pyrethroid residues with loose particles in runoff water from concrete surfaces after treatment with commercial products of bifenthrin and permethrin. In runoff water generated from simulated precipitations after 1 to 89 d exposure under dry outdoor conditions, over 80% of the pesticides was found on particles >0.7 μm for most treatments. The solid-water partitioning coefficient (K(d)) on day 1 was estimated to be 2.4 × 10(3) to 1.1 × 10(5) L/kg for permethrin and bifenthrin on these solids. Except for solid formulations, the pesticide-laden particles likely originated from dust particles preexisting on the concrete before treatment and the disintegration of the surficial concrete matter through weathering. We consequently tested a simple sponge-wipe method to collect and analyze the loose particles on concrete. Concurrent analyses (n = 30) showed an excellent linear correlation between the amount of pesticides transferrable to runoff water and that on the wipe (R(2) = 0.78, slope = 1.13 ± 0.11, P contaminating runoff water before runoff actually occurs. The importance of loose particles should be considered when developing practices to mitigate pesticide runoff contamination from urban residential areas.

  19. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. (United States)

    Rodrigo Comino, J; Iserloh, T; Lassu, T; Cerdà, A; Keestra, S D; Prosdocimi, M; Brings, C; Marzen, M; Ramos, M C; Senciales, J M; Ruiz Sinoga, J D; Seeger, M; Ries, J B


    The aim of this study was to enable a quantitative comparison of initial soil erosion processes in European vineyards using the same methodology and equipment. The study was conducted in four viticultural areas with different characteristics (Valencia and Málaga in Spain, Ruwer-Mosel valley and Saar-Mosel valley in Germany). Old and young vineyards, with conventional and ecological planting and management systems were compared. The same portable rainfall simulator with identical rainfall intensity (40mmh(-1)) and sampling intervals (30min of test duration, collecting the samples at 5-min-intervals) was used over a circular test plot with 0.28m(2). The results of 83 simulations have been analysed and correlation coefficients were calculated for each study area to identify the relationship between environmental plot characteristics, soil texture, soil erosion, runoff and infiltration. The results allow for identification of the main factors related to soil properties, topography and management, which control soil erosion processes in vineyards. The most important factors influencing soil erosion and runoff were the vegetation cover for the ecological German vineyards (with 97.6±8% infiltration coefficients) and stone cover, soil moisture and slope steepness for the conventional land uses. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Numerical simulation and experimental study on farmland nitrogen loss to surface runoff in a raindrop driven process (United States)

    Li, Jiayun; Tong, Juxiu; Xia, Chuanan; Hu, Bill X.; Zhu, Hao; Yang, Rui; Wei, Wenshuo


    It has been widely recognized that surface runoff from agricultural field is an important non-point pollution source, which however, the chemical transfer amount in the process is very difficult to be quantified in field since some variables and natural factors are hard to control, such as rainfall intensity, temperature, wind speeds and soil spatial heterogeneity, which may significantly affect the field experimental results. Therefore, a physically based nitrogen transport model was developed and tested with the so called semi-field experiments (i.e., artificial rainfall was used instead of natural rainfall, but other conditions were natural) in this paper. Our model integrated the raindrop driven process and diffusion effect with the simplified nitrogen chain reactions. In this model, chemicals in the soil surface layer, or the 'exchange layer', were transformed into the surface runoff layer due to raindrop impact. The raindrops also have a significant role on the diffusion process between the exchange layer and the underlying soil. The established mathematical model was solved numerically through the modified Hydrus-1d source code, and the model simulations agreed well with the experimental data. The modeling results indicate that the depth of the exchange layer and raindrop induced water transfer rate are two important parameters for the simulation results. Variation of the water transfer rate, er, can strongly influence the peak values of the NO-3-N and NH+4-N concentration breakthrough curves. The concentration of NO-3-N is more sensitive to the exchange layer depth, de, than NH+4-N. In general, the developed model well describes the nitrogen loss into surface runoff in a raindrop driven process. Since the raindrop splash erosion process may aggravate the loss of chemical fertilizer, choosing an appropriate fertilization time and application method is very important to prevent the pollution.

  1. Efficiency assessment of runoff harvesting techniques using a 3D coupled surface-subsurface hydrological model

    International Nuclear Information System (INIS)

    Verbist, K.; Cronelis, W. M.; McLaren, R.; Gabriels, D.; Soto, G.


    In arid and semi-arid zones runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Both in literature and in the field, a large variety of runoff collecting systems are found, as well as large variations in design and dimensions. Therefore, detailed measurements were performed on a semi-arid slope in central Chile to allow identification of the effect of a simple water harvesting technique on soil water availability. For this purpose, twenty two TDR-probes were installed and were monitored continuously during and after a simulated rainfall event. These data were used to calibrate the 3D distributed flow model HydroGeoSphere, to assess the runoff components and soil water retention as influenced by the water harvesting technique, both under simulated and natural rainfall conditions. (Author) 6 refs.

  2. Direct measurements of meltwater runoff on the Greenland ice sheet surface (United States)

    Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H.; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Willis, Michael J.; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.


    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.

  3. Runoff of the herbicides triclopyr and glufosinate ammonium from oil palm plantation soil. (United States)

    Tayeb, M A; Ismail, B S; Khairiatul-Mardiana, J


    This study focused on the residue detection of the herbicides triclopyr and glufosinate ammonium in the runoff losses from the Tasik Chini oil palm plantation area and the Tasik Chini Lake under natural rainfall conditions in the Malaysian tropical environment. Triclopyr and glufosinate ammonium are post-emergence herbicides. Both herbicides were foliar-sprayed on 0.5 ha of oil palm plantation plots, which were individualized by an uneven slope of 10-15%. Samples were collected at 1, 3, 7, 15, 30, 45, 60, 90, and 120 days after treatment. The concentrations of both herbicides quickly diminished from those in the analyzed sample by the time of collection. The highest residue levels found in the field surface leachate were 0.031 (single dosage, triclopyr), 0.041 (single dosage, glufosinate ammonium), 0.017 (double dosage, triclopyr), and 0.037 μg/kg (double dosage, glufosinate ammonium). The chromatographic peaks were observed at "0" day treatment (2 h after herbicide application). From the applied active ingredients, the triclopyr and glufosinate losses were 0.025 and 0.055%, respectively. The experimental results showed that both herbicides are less potent than other herbicides in polluting water systems because of their short persistence and strong adsorption onto soil clay particles.

  4. Granulometric characterization of sediments transported by surface runoff generated by moving storms

    Directory of Open Access Journals (Sweden)

    J. L. M. P. de Lima


    Full Text Available Due to the combined effect of wind and rain, the importance of storm movement to surface flow has long been recognized, at scales ranging from headwater scales to large basins. This study presents the results of laboratory experiments designed to investigate the influence of moving rainfall storms on the dynamics of sediment transport by surface runoff. Experiments were carried out, using a rain simulator and a soil flume. The movement of rainfall was generated by moving the rain simulator at a constant speed in the upstream and downstream directions along the flume. The main objective of the study was to characterize, in laboratory conditions, the distribution of sediment grain-size transported by rainfall-induced overland flow and its temporal evolution. Grain-size distribution of the eroded material is governed by the capacity of flow that transports sediments. Granulometric curves were constructed using conventional hand sieving and a laser diffraction particle size analyser (material below 0.250 mm for overland flow and sediment deliveries collected at the flume outlet. Surface slope was set at 2%, 7% and 14%. Rainstorms were moved with a constant speed, upslope and downslope, along the flume or were kept static. The results of laboratory experiments show that storm movement, affecting the spatial and temporal distribution of rainfall, has a marked influence on the grain-size characteristics of sediments transported by overland flow. The downstream-moving rainfall storms have higher stream power than do other storm types.

  5. Capturing the Initiation and Spatial Variability of Runoff on Soils Affected by Wildfire (United States)

    Martin, D. A.; Wickert, A. D.; Moody, J. A.


    Rainfall after wildfire often leads to intense runoff and erosion, since fire removes ground cover that impedes overland flow and water is unable to efficiently infiltrate into the fire-affected soils. In order to understand the relation between rainfall, infiltration, and runoff, we modified a camera to be triggered by a rain gage to take time-lapse photographs of the ground surface every 10 seconds until the rain stops. This camera allows us to observe directly the patterns of ground surface ponding, the initiation of overland flow, and erosion/deposition during single rainfall events. The camera was deployed on a hillslope (average slope = 23 degrees) that was severely burned by the 2010 Fourmile Canyon Fire near Boulder, Colorado. The camera's field of view is approximately 3 m2. We integrate the photographs with rainfall and overland flow measurements to determine thresholds for the initiation of overland flow and erosion. We have recorded the spatial variability of wetted patches of ground and the connection of these patches together to initiate overland flow. To date we have recorded images for rain storms with 30-minute maximum intensities ranging from 5 mm/h (our threshold to trigger continuous photographs) to 32 mm/h. In the near future we will update the camera's control system to 1) include a clock to enable time-lapse photographs at a lower frequency in addition to the event-triggered images, and 2) to add a radio to allow the camera to be triggered remotely. Radio communication will provide a means of starting the camera in response to non-local events, allowing us to capture images or video of flash flood surge fronts and debris flows, and to synchronize the operations of multiple cameras in the field. Schematics and instructions to build this camera station, which can be used to take either photos or video, are open-source licensed and are available online at It is our hope that this tool can be used by

  6. Effect of grasses on herbicide fate in the soil column: infiltration of runoff, movement, and degradation. (United States)

    Belden, Jason B; Coats, Joel R


    The objective of the present study was to evaluate if the presence of grass or the type of grass influences the environmental fate of herbicides within a soil column. Intact soil columns were planted with either smooth brome, big bluestem, tall fescue, switchgrass, or a mixture of prairie grasses or were left unvegetated. Artificial runoff containing atrazine, metolachlor, and pendimethalin was applied to the columns and allowed to infiltrate, and the resulting leachate was collected at the bottom of the soil column. This process was repeated on day 7 with herbicide-fortified runoff and on days 14 and 21 with water only. Following the leaching experiments, soil from the columns was fortified with either [14C]atrazine or [14C]metolachlor to measure pesticide degradation potential. The mean time necessary for infiltration of the artificial runoff decreased from 7.5 h for unvegetated to 3.4 h for grassed soil columns, and the type of grass did not have a significant effect. Neither the type of grass nor the presence of grass caused a significant change in the total amount of herbicide that leached through the columns. However, the presence of some grasses did decrease the amount of herbicide that leached in the final two events (i.e., additions not fortified with herbicide). Fescue was the least effective, reducing the amount of leached atrazine and metolachlor by 13% and 33% respectively, and mixed prairie grass was most effective, with reductions of 43% and 44%, respectively. In addition, atrazine and metolachlor degraded more rapidly in soil vegetated by some grasses. Mixed prairie grass had the greatest effect, increasing atrazine mineralization by 260% and formation of metolachlor-bound residue by 760%.

  7. Close range photogrammetry in soil erosion monitoring: Mass loss comparison between runoff plots and high resolution DEMs (United States)

    Ahner, Mario; Seitz, Steffen; Scholten, Thomas; Song, Zhengshan; Schmidt, Karsten


    Soil erosion is a major environmental problem and can lead to severe negative impacts on terrestrial ecosystems. When raindrops hit a bare soil surface, the applied kinetic energy successively detaches soil particles. This rainsplash effect marks the initial stage of soil erosion, which can result in serious sediment losses with beginning surface runoff. Mini-runoff plots are often used to monitor soil erosion rates in comparative field experiments. However, this method is time-consuming, the sampling of detached soil is difficult and the accuracy heavily depends on thorough maintenance and control of the measurement setup. To optimize the acquisition of soil erosion data from splash and interrill processes, a digital method using close range photogrammetry was tested in 2015. Therefore, a photogrammetric workflow was applied to process high resolution digital elevation models (DEMs) from overlapping stereo-images. By calculating the differences between multi-temporal DEMs with a sub-millimetre resolution, the volume of detached sediment was assessed. We performed rainfall simulations with a single nozzle rainfall simulator and a light weight tent. Micro-scale runoff plots (ROPs, 0.4 m x 0.4 m) were used with two different treatments, namely a Hortic Anthrosol and sand (grain size 0.10-0.45 mm). Five repetitions of rainfall-exposure with an intensity of 60 mm h-1 were performed and each repetition divided into three intervals (0-15 min, 15-30 min and 30-60 min). Before the first and every following interval, a block of 25 stereo-images was acquired with a single lens reflex camera system and processed in Agisoft PhotoScan for DEM-generation. After every interval, the discharged sediment was dried and weighed in order to derive the ground-truth validation data for comparison. Results show that ROPs with the sand treatment generally showed a larger volume of detached sediment than the garden soil treatment. As sediment discharge increased, the modelled and measured

  8. Soil carbon cycling and sequestration in a seasonally saturated wetland receiving agricultural runoff

    Directory of Open Access Journals (Sweden)

    J. J. Maynard


    Full Text Available The fate of organic carbon (C lost by erosion is not well understood in agricultural settings. Recent models suggest that wetlands and other small water bodies may serve as important long-term sinks of eroded C, receiving ~30 % of all eroded material in the US. To better understand the role of seasonally-saturated wetlands in sequestering eroded C, we examined the spatial and temporal dynamics of C and sediment accumulation in a 13-year-old constructed wetland used to treat agricultural runoff. The fate of C sequestered within deposited sediment was modeled using point-sampling, remote sensing, and geostatistics. Using a spatially-explicit sampling design, annual net rates of sedimentation and above-ground biomass were measured during two contrasting years (vegetated (2004 vs. non-vegetated (2005, followed by collection of sediment cores to the antecedent soil layer, representing 13 years of sediment and C accumulation. We documented high annual variation in the relative contribution of endogenous and exogenous C sources, as well as absolute rates of sediment and C deposition. This annual variation, however, was muted in the long-term (13 yr sediment record, which showed consistent vertical patterns of uniform C distribution (~14 g kg–1 and δ13C signatures in high depositional environments. This was in contrast to low depositional environments which had high levels of surface C enrichment (20–35 g kg–1 underlain by C depleted (5–10 g kg–1 sediments and an increasing δ13C signature with depth indicating increased decomposition. These results highlight the importance of sedimentation in physically protecting soil organic carbon and its role in controlling the long-term C concentration of seasonally-saturated wetland soils. While significant enrichment of surface sediments with endogenous C occurred in newly deposited sediment (i.e., 125 kg m2 in 2004, fluctuating cycles

  9. Runoff and soil erosion of field plots in a subtropical mountainous region of China (United States)

    Fang, N. F.; Wang, L.; Shi, Z. H.


    Anthropogenic pressure coupled with strong precipitation events and a mountainous landscape have led to serious soil erosion and associated problems in the subtropical climate zone of China. This study analyzes 1576 rainfall-runoff-soil loss events at 36 experimental plots (a total of 148 plot-years of data) under a wide range of conditions in subtropical mountainous areas of China where slope farming is commonly practiced. The plots, which have standardized dimensions, represent five common types of land use and have four different slopes. Event-based analyses show that almost half of the total rainfall caused soil erosion in the study area. The dominant factor controlling the runoff coefficient is the slope gradient rather than the land use type. The maximum soil lossfor crop plots under steep tillage (35°) is 5004 t km-2 for a single event. Among the common local crops, the average soil loss values increase in the following order: buckwheat soil loss increase in the following order: red clover soil loss is caused by a small number of extreme events. The annual average soil loss of the 44 plots ranges from 19 to 4090 t km-2 year-1. The annual soil loss of plots of different land use types decrease in the following order: bare land (1533 t km-2 year-1) > cropland (1179 t km-2 year-1) > terraced cropland (1083 t km-2 year-1) > orchard land (1020 t km-2 year-1) > grassland (762 t km-2 year-1) > terraced orchard land (297 t km-2 year-1) > forest and grassland (281 t km-2 year-1).

  10. Temporal variations in runoff and soil loss in relation to soil conservation practices in catchments in Shiwaliks of lower Himalayas

    Directory of Open Access Journals (Sweden)

    S.S. Kukal


    Full Text Available The soil conservation strategies adopted in the catchments of Shiwaliks, the most fragile region in the Himalayan ecosystem, failed to serve their purpose after a few years of their execution. A study was carried out in four differentially-treated catchments to monitor the variation in runoff and soil loss. The treatments imposed during 1988 included fencing,planting native vegetation and engineering structures in catchment I ; planting native vegetation and fencing in catchment II ; fencing alone in catchment III in addition to an untreated catchment IV. The soil loss during the initial years (1989 – 1995 of imposition of the treatments was lowest (25. 2 t ha-1 in catchment I, treated to the maximum extent and highest (43. 3 t ha -1 in untreated catchment IV. During the later period (1996 – 2006 the trends reversed, i. e., catchment IV recorded the lowest (14. 1 t ha-1 soil loss whereas catchment I recorded the highest (23. 4 t ha-1 soil loss despite the fact that there was no change in the status of soil conservation or the characteristics of the catchments. The runoff was 71 % higher in untreated catchment than in treated catchments initially and this difference decreased to 27% during the later period.

  11. Subgrid Parameterization of the Soil Moisture Storage Capacity for a Distributed Rainfall-Runoff Model

    Directory of Open Access Journals (Sweden)

    Weijian Guo


    Full Text Available Spatial variability plays an important role in nonlinear hydrologic processes. Due to the limitation of computational efficiency and data resolution, subgrid variability is usually assumed to be uniform for most grid-based rainfall-runoff models, which leads to the scale-dependence of model performances. In this paper, the scale effect on the Grid-Xinanjiang model was examined. The bias of the estimation of precipitation, runoff, evapotranspiration and soil moisture at the different grid scales, along with the scale-dependence of the effective parameters, highlights the importance of well representing the subgrid variability. This paper presents a subgrid parameterization method to incorporate the subgrid variability of the soil storage capacity, which is a key variable that controls runoff generation and partitioning in the Grid-Xinanjiang model. In light of the similar spatial pattern and physical basis, the soil storage capacity is correlated with the topographic index, whose spatial distribution can more readily be measured. A beta distribution is introduced to represent the spatial distribution of the soil storage capacity within the grid. The results derived from the Yanduhe Basin show that the proposed subgrid parameterization method can effectively correct the watershed soil storage capacity curve. Compared to the original Grid-Xinanjiang model, the model performances are quite consistent at the different grid scales when the subgrid variability is incorporated. This subgrid parameterization method reduces the recalibration necessity when the Digital Elevation Model (DEM resolution is changed. Moreover, it improves the potential for the application of the distributed model in the ungauged basin.

  12. Simulation of torrential rain as a means for assessment of surface runoff coefficients and calculation of recurrent design events in alpine catchments (United States)

    Markart, Gerhard; Kohl, Bernhard; Sotier, Bernadette; Klebinder, Klaus; Schauer, Thomas; Bunza, Günther


    Simulation of heavy rain is an established method for studying infiltration characteristics, runoff and erosion behaviour in alpine catchments. Accordingly for characterization and differentiation of various runoff producing areas in alpine catchments transportable spray irrigation installations for large plots have been developed at the BFW, Department of Natural Hazards and Alpine Timberline, in Innsbruck, Austria. One installation has been designed for assessment of surface runoff coefficients under convective torrential rain with applicable precipitation intensities between 30 and 120 mm*h-1 and a plot size between 50 and 100 m2. The second device is used for simulation of persistent rain events (rain intensity about 10 mm*h-1, plot size: 400-1200 m2). Very reasonable results have been achieved during the comparison with spray irrigations from other institutions (e.g. Bavarian Environmental Agency in Munich) in the field. Rain simulations at BFW are mostly combined with comprehensive additional investigations on land-use, vegetation cover, soil physical characteristics, soil humidity, hydrogeology and other features of the test-sites. This allows proper interpretation of the achieved runoff data. At the moment results from more than 280 rain simulations are available from about 25 catchments / regions of the Eastern Alps at the BFW. Results show that the surface runoff coefficient, when runoff is constant at the test site (φconst) increases only slightly between rain intensities from 30 to 120 mm*h-1 (increment is 6%). Therefore φconst shall be used for assessment of runoff behaviour of runoff contributing areas, because it is less dependent form system conditions than φtot. BFW-data have been consolidated with results of the LfU (Bavarian Environmental Agency in Munich) in a data base and formed the basis for the development of a simple code of practice for assessment of surface runoff coefficients in torrential rain. The manual is freely available under

  13. Glacier surface mass balance and freshwater runoff modeling for the entire Andes Cordillera (United States)

    Mernild, Sebastian H.; Liston, Glen E.; Yde, Jacob C.


    Glacier surface mass balance (SMB) observations for the Andes Cordillera are limited and, therefore, estimates of the SMB contribution from South America to sea-level rise are highly uncertain. Here, we simulate meteorological, snow, glacier surface, and hydrological runoff conditions and trends for the Andes Cordillera (1979/80-2013/14), covering the tropical latitudes in the north down to the sub-polar latitudes in the far south, including the Northern Patagonia Ice Field (NPI) and Southern Patagonia Ice Field (SPI). SnowModel - a fully integrated energy balance, blowing-snow distribution, multi-layer snowpack, and runoff routing model - was used to simulate glacier SMBs for the Andes Cordillera. The Randolph Glacier Inventory and NASA Modern-Era Retrospective Analysis for Research and Applications products, downscaled in SnowModel, allowed us to conduct relatively high-resolution simulations. The simulated glacier SMBs were verified against independent directly-observed and satellite gravimetry and altimetry-derived SMB, indicating a good statistical agreement. For glaciers in the Andes Cordillera, the 35-year mean annual SMB was found to be -1.13 m water equivalent. For both NPI and SPI, the mean SMB was positive (where calving is the likely reason for explaining why geodetic estimates are negative). Further, the spatio-temporal freshwater river runoff patterns from individual basins, including their runoff magnitude and change, were simulated. For the Andes Cordillera rivers draining to the Pacific Ocean, 86% of the simulated runoff originated from rain, 12% from snowmelt, and 2% from ice melt, whereas, for example, for Chile, the water-source distribution was 69, 24, and 7%, respectively. Along the Andes Cordillera, the 35-year mean basin outlet-specific runoff (L s-1 km-2) showed a characteristic regional hourglass shape pattern with highest runoff in both Colombia and Ecuador and in Patagonia, and lowest runoff in the Atacama Desert area.

  14. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions. (United States)

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger


    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  15. Control with anionic polyacrylamide of runoff and erosion induced by irrigation on Alentejo soils: surface and sprinkler irrigation (center pivot Controlo do escorrimento e da erosão em solos do Alentejo com poliacrilamidas aniónicas: rega de superfície e por aspersão (rampas rotativas

    Directory of Open Access Journals (Sweden)

    F. L. Santos


    Full Text Available Most of the Mediterranean soils in Southern Portugal, now being converted to irrigation, were under rain-fed agriculture, in areas of sensitive soils, eroded or with high potential for erosion. The particular characteristic of these soils is its rapidly permeable A-horizon overlaying a B-horizon of very low permeability. Such fact leads to low infiltration of the applied irrigation water and, consequently high limitations to irrigation. Therefore for these soils to be under irrigation it is important to adopt soil and water conservation practices and correctly manage the irrigation systems, hoping that these practices will favour agriculture yields and preserve the environment by reducing runoff, preventing soil loss and enhancing the infiltration of applied water. One of the strategies that can be used to achieve such goals and also help to improve the soil physical properties is the use of soil conditioners, particularly the anionic polyacrylamide (PAM. Encouraging results have been obtained in the irrigated soils of Southern Portugal with their use being able to stabilize soil surface structure and curb irrigation-induced erosion in surface irrigation as well as in sprinkler irrigated fields. Since 1997, studies of anionic polyacrylamide (PAM application have been conducted on field experiments, under surface irrigation and on contour and slopping furrows, and also with pressurized irrigation (center pivot and sprinkler simulators, as well as in more controlled laboratory studies, to test the PAM usefulness in controlling erosion and enhancing infiltration of irrigated soils. Several methodologies of applying PAM have been tested (direct application to the soil surface, in water suspension and later applied to furrows and pressurized systems through the irrigation water, and in multiple and/or single applications as well as several application rates and timing. The results have been conclusive and in most of the studied soils PAM application

  16. Improving runoff prediction through the assimilation of the ASCAT soil moisture product

    Directory of Open Access Journals (Sweden)

    L. Brocca


    Full Text Available The role and the importance of soil moisture for meteorological, agricultural and hydrological applications is widely known. Remote sensing offers the unique capability to monitor soil moisture over large areas (catchment scale with, nowadays, a temporal resolution suitable for hydrological purposes. However, the accuracy of the remotely sensed soil moisture estimates has to be carefully checked. The validation of these estimates with in-situ measurements is not straightforward due the well-known problems related to the spatial mismatch and the measurement accuracy. The analysis of the effects deriving from assimilating remotely sensed soil moisture data into hydrological or meteorological models could represent a more valuable method to test their reliability. In particular, the assimilation of satellite-derived soil moisture estimates into rainfall-runoff models at different scales and over different regions represents an important scientific and operational issue.

    In this study, the soil wetness index (SWI product derived from the Advanced SCATterometer (ASCAT sensor onboard of the Metop satellite was tested. The SWI was firstly compared with the soil moisture temporal pattern derived from a continuous rainfall-runoff model (MISDc to assess its relationship with modeled data. Then, by using a simple data assimilation technique, the linearly rescaled SWI that matches the range of variability of modelled data (denoted as SWI* was assimilated into MISDc and the model performance on flood estimation was analyzed. Moreover, three synthetic experiments considering errors on rainfall, model parameters and initial soil wetness conditions were carried out. These experiments allowed to further investigate the SWI potential when uncertain conditions take place. The most significant flood events, which occurred in the period 2000–2009 on five subcatchments of the Upper Tiber River in central Italy, ranging in extension between 100 and 650 km

  17. Soil surface roughness decay in contrasting climates, tillage types and management systems (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge


    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  18. Impact of slurry application method on phosphorus loss in runoff from grassland soils during periods of high soil moisture content

    Directory of Open Access Journals (Sweden)

    McConnell D.A.


    Full Text Available Previous studies have reported that the trailing shoe application technique reduces phosphorus (P in the runoff postslurry application when compared to the traditional splash-plate application technique. However, the effectiveness of the trailing-shoe technique as a means of reducing P losses has not been evaluated when slurry is applied during periods of high soil moisture levels and lower herbage covers. To address this issue, three treatments were examined in a 3 × 4 factorial design split-plot experiment, with treatments comprising three slurry treatments: control (no slurry, splashplate and trailing-shoe, and four slurry application dates: 7 December, 18 January, 1 March and 10 April. Dairy cow slurry was applied at a rate of 20 m3/ha, while simulated runoff was generated 2, 9 and 16 days later and analysed for a range of P fractions. Dissolved reactive P concentrations in runoff at day two was 41% lower when slurry was applied using the trailing-shoe technique, compared to the splash-plate technique (P < 0.05. In addition, P concentrations in runoff were higher (P < 0.05 from slurry applied in December and March compared to slurry applied in January or April, coinciding with periods of higher soil moisture contents. While the latter highlights that ‘calendar’-based non-spreading periods might not always achieve the desired consequences, the study demonstrated that further field-scale investigations into the trailing shoe as a mitigation measure to reduced P loss from agricultural soils is warranted.

  19. Impact of vetch cover crop on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia (United States)

    Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt


    Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P plant, above ground biomass and grain yield of chick pea. However, there was no statistically significant difference (P > 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the

  20. The Cannona Data Base: long-term field data for studies on soil management impact on runoff and erosion processes. (United States)

    Biddoccu, Marcella; Ferraris, Stefano; Opsi, Francesca; Cavallo, Eugenio


    Long-term data have been collected by IMAMOTER-CNR from field-scale vineyard plots within the Tenuta Cannona Vine and Wine Experimental Centre of Regione Piemonte, which is located in a valuable vine production area in north-western Italy. Since 2000, runoff and soil erosion monitoring has been carried out under natural rainfall conditions on three parallel field plots (75 m long and 16,5 m wide, slope gradient about 15%) that are conducted with different inter-rows soil management techniques (conventional tillage, reduced tillage, controlled grass cover). Experimental plots are part of a 16-hectars experimental vineyard, managed in according to conventional farming for wine production. Recurrent surveys have been carried out in the runoff plots to investigate spatial and temporal variability of the soil bulk density, soil moisture and penetration resistance. The primary intent of the program was to evaluate the effects of agricultural management practices and tractor traffic on the hydrologic, soil erosion and soil compaction processes in vineyard. The Cannona Data Base (CDB) represents a data collection which is unique in Italy, showing the response of soil to rainfall in terms of runoff and soil erosion over more than a decade. It includes data for more than 200 runoff events and over 70 soil loss events; moreover, periodic measurements for soil physical characteristics are included for the three plots. The CDB can now be accessed via a website supported by the CNR, that is addressed to water and land management researchers and professionals. The CDB is currently used to calibrate a model for runoff and soil erosion prediction in vineyard environment. The CDB website includes a descriptive and informative section, which contains results of over than 10 years of experimental activity, reports and presentations, addressed to enhance the awareness of citizens and stakeholders about land degradation processes and about impacts of different soil management practices

  1. Urban Land: Study of Surface Run-off Composition and Its Dynamics (United States)

    Palagin, E. D.; Gridneva, M. A.; Bykova, P. G.


    The qualitative composition of urban land surface run-off is liable to significant variations. To study surface run-off dynamics, to examine its behaviour and to discover reasons of these variations, it is relevant to use the mathematical apparatus technique of time series analysis. A seasonal decomposition procedure was applied to a temporary series of monthly dynamics with the annual frequency of seasonal variations in connection with a multiplicative model. The results of the quantitative chemical analysis of surface wastewater of the 22nd Partsjezd outlet in Samara for the period of 2004-2016 were used as basic data. As a result of the analysis, a seasonal pattern of variations in the composition of surface run-off in Samara was identified. Seasonal indices upon 15 waste-water quality indicators were defined. BOD (full), suspended materials, mineralization, chlorides, sulphates, ammonium-ion, nitrite-anion, nitrate-anion, phosphates (phosphorus), iron general, copper, zinc, aluminium, petroleum products, synthetic surfactants (anion-active). Based on the seasonal decomposition of the time series data, the contribution of trends, seasonal and accidental components of the variability of the surface run-off indicators was estimated.

  2. Heavy metal contamination in surface runoff sediments of the urban area of Vilnius, Lithuania

    Directory of Open Access Journals (Sweden)

    Gytautas Ignatavičius


    Full Text Available Surface runoff from urbanized territories carries a wide range of pollutants. Sediments in untreated runoff from direct discharge stormwater systems significantly contribute to urban waterway pollution. In this study, heavy metal (Pb, Zn, Cu, Cr, Ba, As and Fe contamination in surface runoff sediments of the urban area of the city of Vilnius was investigated. The surface runoff sediment samples were collected from seven dischargers with the highest volume rate of water flow and concentrations of suspended solids. The geospatial analysis of the distribution of heavy metals shows that there are several active pollution sources supplying the dischargers with contaminated sediments. Most of these areas are located in the central part of the city and in old town with intense traffic. Principal components analysis and t-test results clearly depicted the significantly different chemical compositions of winter and autumn surface sediment samples. The sampling approach and assessment of results provide a useful tool to examine the contamination that is generated in urban areas, distinguish pollution sources and give a better understanding of the importance of permeable surfaces and green areas.

  3. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrad (United States)

    Changes in land use and climate can influence runoff and soil erosion, threatening soil and water conservation in the Cerrado biome in Brazil. The adoption of a process-based model was necessary due to the lack of long-term observed data. Our goals were to calibrate the WEPP (Water Erosion Predictio...


    Energy Technology Data Exchange (ETDEWEB)



    This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

  5. Tank Farm Interim Surface Barrier Materials And Runoff Alternatives Study

    International Nuclear Information System (INIS)

    Holm, M.J.


    This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

  6. Water quality of surface runoff and lint yield in cotton under furrow irrigation in Northeast Arkansas (United States)

    Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US. Problems with these systems arise when nutrients are transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of tillage...

  7. Subsurface and terrain controls on runoff generation in deep soil landscapes (United States)

    Mallard, John; McGlynn, Brian; Richter, Daniel


    Our understanding of runoff generation in regions characterized by deep, highly weathered soils is incomplete despite the prevalence of this setting worldwide. To address this, we instrumented a first-order watershed in the Piedmont of South Carolina, USA. The Piedmont region of the United States extends east of the Appalachians from Maryland to Alabama, and is home to some of the most rapid population growth in the country. Regional and local relief is modest, although the landscape is highly dissected and local slope can be quite variable. The region's soils are ancient, deeply weathered, and characterized by sharp changes in hydrologic properties due to concentration of clay in the Bt horizon. Despite a mild climate and consistent precipitation, seasonally variable energy availability and deciduous tree cover create a strong evapotranspiration mediated seasonal hydrologic dynamic: while moist soils and extended stream networks are typical of the late fall through spring, relatively dry soils and contracting stream networks emerge in the summer and early fall. To elucidate the control of the complex vertical and planform structure of this region, as well as the strongly seasonal subsurface hydrology, on runoff generation, we installed a network of nested, shallow groundwater wells across an ephemeral to first-order watershed to continuously measure internal water levels. We also recorded local precipitation and discharge at the outlet of this watershed, a similar adjacent watershed, and in the second to third order downstream watershed. Subsurface water dynamics varied spatially, vertically, and seasonally. Shallow depths and landscape positions with minimal contributing area exhibited flashier dynamics comparable to the stream hydrographs while positions with more contributing area exhibited relatively muted dynamics. Most well positions showed minimal response to precipitation throughout the summer, and even occasionally observed response rarely co

  8. Effect of Agri-SC as a soil conditioner on runoff, soil loss and crust ...

    African Journals Online (AJOL)



    Oct 10, 2011 ... Takuma K, Inosako K, Kobayashi K, Muramoto H (2003). Erosion control effect of red soil such as Kunigamimaji soil by the addition of soil conditioner. Bulletin of the Fac. Agric. Tottori Univ. 56: 7-11. Taysun A., Saatçı F, Uysal H (1984). A pre study on effect of polyvinylalcohol (PVA) application to soils on ...

  9. Effect of Agri-SC as a soil conditioner on runoff, soil loss and crust ...

    African Journals Online (AJOL)



    Oct 10, 2011 ... Figure 1. The relationships between Agri-SC application doses to runoff in the experiment. Table 3. Correlation coefficients of experimental results. Parameter. Dose. R1. SL1. CS. R2. SL2. Doses Pearson correlation. 1.000. Sig. (2-tailed). N. 15. R1. Pearson correlation. -0.905**. 1.000. Sig. (2-tailed). 0.000.

  10. Assessment of the relation between atmospheric precipitation and rainwater runoff for various urban surfaces

    Directory of Open Access Journals (Sweden)

    Romaniak Alicja


    Full Text Available The relation between the diurnal sum of atmospheric precipitation and the diurnal volume of rainwater runoff from four experimental hardened surfaces was the subject of a pilot study conducted within the area of the Departmental Agro- and Hydrometeorology Observatory in Wrocław. The selection and the structure of the experimental surfaces were preceded with an inventory-taking of the coverage of hardened surfaces within a Wrocław housing estate with high-rise multifamily buildings. That estate was the second location, next to the area of the Observatory, at which the study presented here was conducted. The surfaces included in the experiment were roof surfaces P1 and P2 covered with heat-sealable roll roofing, surface APB made of gravel-filled openwork concrete plates, and tarmac surface AS. The pilot study was conducted during the period from April to November, 2014. During that period, depending on the type of experimental surface, from 81 to 87 days with atmospheric precipitation were analysed. The mean values of the rainwater runoff coefficients for the eightmonth period were 0.77, 0.77, 0.33 and 0.67 for surfaces P1, P2, APB and AS, respectively. The range of variability of mean values of the coefficients of rainwater runoff from the experimental surfaces in a month is presented by the following relation: APB > P1 > AS > P2. The study did not reveal any direct effect of the number of rainfall days in a month on the value of the coefficient of determination describing the correlation between the diurnal sums of precipitation and the diurnal volumes of rainwater runoff.

  11. How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? (United States)

    Maetens, W.; Poesen, J.; Vanmaercke, M.


    The effects of soil and water conservation techniques (SWCTs) on annual runoff (Ra), runoff coefficients (RCa) and annual soil loss (SLa) at the plot scale have been extensively tested on field runoff plots in Europe and the Mediterranean. Nevertheless, a comprehensive overview of these effects and the factors controlling the effectiveness of SWCTs is lacking. Especially the effectiveness of SWCT in reducing Ra is poorly understood. Therefore, an extensive literature review is presented that compiles the results of 101 earlier studies. In each of these studies, Ra and SLa was measured on field runoff plots where various SWCTs were tested. In total, 353 runoff plots (corresponding to 2093 plot-years of data) for 103 plot-measuring stations throughout Europe and the Mediterranean were considered. SWCTs include (1) crop and vegetation management (i.e. cover crops, mulching, grass buffer strips, strip cropping and exclosure), (2) soil management (i.e. no-tillage, reduced tillage, contour tillage, deep tillage, drainage and soil amendment) and (3) mechanical methods (i.e. terraces, contour bunds and geotextiles). Comparison of the frequency distributions of SLa rates on cropland without and with the application of SWCTs shows that the exceedance probability of tolerable SLa rates is ca. 20% lower when SWCT are applied. However, no notable effect of SWCTs on the frequency distribution of RCa is observed. For 224 runoff plots (corresponding to 1567 plot-year data), SWCT effectiveness in reducing Ra and/or SLa could be directly calculated by comparing measured Ra and/or SLa with values measured on a reference plot with conventional management. Crop and vegetation management techniques (i.e. buffer strips, mulching and cover crops) and mechanical techniques (i.e. geotextiles, contour bunds and terraces) are generally more effective than soil management techniques (i.e. no-tillage, reduced tillage and contour tillage). Despite being generally less effective, no

  12. Inorganic constituents in surface runoff from urbanised areas in winter: the case study of the city of Brest, Belarus

    Directory of Open Access Journals (Sweden)

    Ina Bulskaya


    Full Text Available The aim of this paper was to study the inorganic constituents of snow and snowmelt surface runoff in a case study of the city of Brest and to indicate components that could pose a threat to the environment. Samples of snow and snowmelt runoff were analysed for the following parameters: total suspended solids, pH, the contents of nitrate, phosphate and ammonium ions, and of heavy metals. The concentrations of most of these pollutants were higher in the snowmelt runoff than in snow. The concentrations of pollutants in the snowmelt surface runoff exceeded the levels established by national regulations (maximum permissible concentrations.

  13. Short- term effects of post-fire logging on runoff and soil erosion at two spatial scales (United States)

    Malvar, Maruxa; Silva, Flavio; Prats, Sergio; Vieira, Diana; Keizer, Jacob


    Logging is the most common management practice after wildfires in forested areas in Portugal. Clearcutting is undertaken to recover burnt timber resources, to control resprouting, notably in the case of eucalypt plantations, and to reduce the risks of possible insect plagues, notably in the case of maritime pine because of the nematode plague. Still, relatively little is known about the combined effect of wildfire and post-fire logging on erosion processes. In the framework of the EU-FP7 project RECARE (, the ESP team of the University of Aveiro set up an experiment to quantify the hydrological and erosion impacts of post-fire logging, at the scale of both 0.25 m2 micro-plots and 16 m2 plots. A eucalypt slope burnt in August 2015 by a moderate intensity fire and logged in September 2015 was selected for this study. The burned trees were harvested with a chainsaw, while the logs were piled with a rubber wheeled forwarder tractor. Following logging, two distinct sub-areas were identified within the logged slope based on soil disturbance: an area where the forwarder wheels had left marked trails ("trail"), and an area where such trails were absent ("control"). Three micro-plots and three plots were installed in the control area, while three micro-plots and six plots were installed in the trail area. Generally, the trail area showed greater soil compaction and larger soil surface roughness than the control area. Between October 2015 and September 2016, mean runoff was 500 mm in the control micro-plots and 50% higher in the trail micro-plots. At the plot scale, however, no differences in runoff generation were observed between the two subareas. Sediment production over the same period, however, was twice as high in the trail area than the control area, at both plot scales. In the control area, mean sediment production was 8 Mg ha-1 yr-1 at the micro-plot scale and 6 Mg ha-1 yr-1at the plot scale; in the trail area, these figures were 21 Mg ha-1 yr

  14. The measurement of dry deposition and surface runoff to quantify urban road pollution in Taipei, Taiwan. (United States)

    Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang


    Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01-5.14 g/m(2) · day and 78-87% of these solids are in the 75-300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads.

  15. Introduction of inclined open channels for the control of surface runoff of slopes in road structures

    Directory of Open Access Journals (Sweden)

    Hniad O.


    Full Text Available The phenomenon of water erosion induced by runoff speeds at the surface of the embankments causes their instability. Particularly in road environments, gullying on the slope's surface due to runoffs causes landslides, which in turn cause considerable damage and consequent disorders to the road network. The aim of this research is to put in place a new technology for superficial water drainage on slope surfaces. Our study has developed a methodology involving the change of the geometric configuration of the water flow, aiming at velocity control of the flows by choosing slanting waterways with small slopes coupled to vertical drains. A modelling of the proposed solution will evaluate its effectiveness as to prevent the erosive factor and to identify other factors that are responsible for slope disorders.

  16. Contamination by urban superficial runoff: accumulated heavy metals on a road surface

    Directory of Open Access Journals (Sweden)

    Carlos Alfonso Zafra Mejía


    Full Text Available Studying the behaviour of accumulated contamination on urban surfaces is important in designing control methods minimising the impacts of surface runoff on the environment. This paper presents data regarding the sediment collected on the surface of an urban road in the city of Torrelavega in northern Spain during a period of 65 days during which 132 samples were collected. Two types of sediment collection samples were obtained: vacuumed dry samples (free load and those swept up following vacuuming (fixed load. The results showed that heavy metal concentration in the collected sediment (Pb, Zn, Cu and Cd was inversely proportional to particle diameter. High heavy metal concentrations were found in the smaller fraction (63 pm. Regression equations were calculated for heavy metal concentration regarding particle diameter. Large heavy metal loads were found in the larger fraction (125 pm. The results provide information for analysing runoff water quality in urban areas and designing treatment strategies.

  17. Soil erosion measurements under organic and conventional land use treatments and different tillage systems using micro-scale runoff plots and a portable rainfall simulator (United States)

    Seitz, Steffen; Goebes, Philipp; Song, Zhengshan; Wittwer, Raphaël; van der Heijden, Marcel; Scholten, Thomas


    Soil erosion is a major environmental problem of our time and negatively affects soil organic matter (SOM), aggregate stability or nutrient availability for instance. It is well known that agricultural practices have a severe influence on soil erosion by water. Several long-term field trials show that the use of low input strategies (e.g. organic farming) instead of conventional high-input farming systems leads to considerable changes of soil characteristics. Organic farming relies on crop rotation, absence of agrochemicals, green manure and weed control without herbicides. As a consequence, SOM content in the top soil layer is usually higher than on arable land under conventional use. Furthermore, the soil surface is better protected against particle detachment and overland flow due to a continuous vegetation cover and a well-developed root system increases soil stability. Likewise, tillage itself can cause soil erosion on arable land. In this respect, conservation and reduced tillage systems like No-Till or Ridge-Till provide a protecting cover from the previous year's residue and reduce soil disturbance. Many studies have been carried out on the effect of farming practices on soil erosion, but with contrasting results. To our knowledge, most of those studies rely on soil erosion models to calculate soil erosion rates and replicated experimental field measurement designs are rarely used. In this study, we performed direct field assessment on a farming system trial in Rümlang, Switzerland (FAST: Farming System and Tillage experiment Agroscope) to investigate the effect of organic farming practises and tillage systems on soil erosion. A portable single nozzle rainfall simulator and a light weight tent have been used with micro-scale runoff plots (0.4 m x 0.4 m). Four treatments (Conventional/Tillage, Conventional/No-Tillage, Organic/Tillage, Organic/Reduced-tillage) have been sampled with 8 replications each for a total of 32 runoff plots. All plots have been

  18. Effects of Rainfall Intensity and Slope Gradient on Runoff and Soil Moisture Content on Different Growing Stages of Spring Maize

    Directory of Open Access Journals (Sweden)

    Wenbin Mu


    Full Text Available The rainfall-runoff process (RRP is an important part of hydrologic process. There is an effective measure to study RRP through artificial rainfall simulation. This paper describes a study on three growing stages (jointing stage, tasseling stage, and mature stage of spring maize in which simulated rainfall events were used to study the effects of various factors (rainfall intensity and slope gradient on the RRP. The RRP was tested with three different rainfall intensities (0.67, 1.00, and 1.67 mm/min and subjected to three different slopes (5°, 15°, and 20° so as to study RRP characteristics in semiarid regions. Regression analysis was used to study the results of this test. The following key results were obtained: (1 With the increase in rainfall intensity and slope, the increasing relationship with rainfall duration, overland flow, and cumulative runoff, respectively, complied with logarithmic and quadratic functions before reaching stable runoff in each growing stage of spring maize; (2 The runoff coefficient increased with the increase in rainfall intensity and slope in each growing stages of spring maize. The relationship between runoff coefficient, slope, rainfall intensity, rainfall duration, antecedent soil moisture, and vegetation coverage was multivariate and nonlinear; (3 The runoff lag time decreased with the increase in rainfall intensity and slope within the same growing stage. In addition, the relationship between runoff lag time, slope, rainfall intensity, antecedent soil moisture, and vegetation coverage could also be expressed by a multivariate nonlinear equation; (4 The descent rate of soil infiltration rate curve increased with the increased rainfall intensity and slope in the same growing stage. Furthermore, by comparing the Kostiakov, Horton, and Philip models, it was found that the Horton infiltration model was the best for estimating soil infiltration rate and cumulative infiltration under the condition of test.


    Olivier, C; Goffart, J P; Baets, D; Xanthoulis, D; Fonder, N; Lognay, G; Barthélemy, J P; Lebrun, P


    The use of micro-dams in potato furrows is an interesting technology to reduce erosion and runoff in hilly areas. These phenomena are major sources of surface water contamination by nutrients and plant protection products (Gillijns et al., 2005). In 2011 Bayer CropScience set up a trial in collaboration with the Walloon Agricultural Research Centre (CRA-W) and ULg-Gembloux Agro-Bio Tech in Huldenberg (Belgium) to demonstrate this technique in potatoes. Micro-dams create barriers between furrows in order to encourage rainwater to infiltrate in the soil rather than to run off. The results from the trial over this year confirm that the application of micro-dams is effective in reducing erosion and runoff significantly. The total loss of plant protection products (PPP) to surface water is dramatically reduced and also strongly depends on the physic-chemical characteristics of the active ingredients. In addition, the technique tends to produce a higher yield of potato tubers as an effect of an optimised utilisation of the available rainwater and nutrients.


    African Journals Online (AJOL)

    hydrological parameters and consequently the estimation of soil moisture deficit, runoff, and evapotranspiration. This model is a single layer soil water balance model that incorporates the physical processes, such as: rainfall, surface runoff, soil evaporation, crop transpiration, root growth, and soil water distribution following ...

  1. [Pollution Characteristics of Surface Runoff of Typical Town in Chongqing City]. (United States)

    Wang, Long-tao; Duan, Bing-zheng; Zhao, Jian-wei; Hua, Yu-mei; Zhu, Duan-wei


    Six kinds of impermeable underlying surface, cement tile roof, asbestos roof, cement flat roof, residential concrete pavement, asphalt pavement of restaurants, asphalt pavement of oil depot, and a combined sewer overflow canal in the Jiansheng town of Dadukou district in Chongqing city were chosen as sample plots to study the characteristics of nutritional pollutants and heavy metals in town runoff. The research showed that the average mass concentrations of TSS, COD, TN, TP in road runoff were (1681.2 +/- 677.2), (1154.7 +/- 415.5), (12.07 +/- 2.72), (3.32 +/- 1.15) mgL(-1), respectively. These pollutants were higher than those in roof runoff which were (13.3 +/- 6.5), (100.4 +/- 24.8), (3.58 +/- 0.70), (0.10 +/- 0.02) mg x L(-1), respectively. TDN accounted for 62.60% +/- 34.38% of TN, and TDP accounted for 42.22% +/- 33.94% of TP in the runoff of impermeable underlying surface. Compared with the central urban runoff, town runoff in our study had higher mass concentrations of these pollutants. The mass concentrations of TSS, COD, TDN, TN, TDP and TP in the combined sewer overflow were (281.57 +/- 308.38), (231.21 +/- 42.95), (8.16 +/- 2.78), (10.60 +/- 3.94), (0.38 +/- 0.23) and (1.51 +/- 0.75) mg x L(-1), respectively. The average levels of heavy metals in this kind of runoff did not exceed the class VI level of the surface water environmental quality standard. Most pollutants in the combined sewer overflow had first flush. However, this phenomenon was very rare for TSS. There was a significant positive correlation between TSS and COD, TP in the combined sewer overflow. And this correlation was significant between NH4+ -N and TP, TDP, TN, TDP. However, a negative correlation existed between NO3- -N and all other indicators.

  2. Runoff sensitivity over Asia: Role of climate variables and initial soil conditions (United States)

    Liu, Di; Mishra, Ashok K.; Zhang, Ke


    We applied statistical and numerical modeling approach to evaluate the sensitivity of runoff (ROF) to climate variables using Global Land Data Assimilation System (GLDAS) data and regional climate model (RegCM4). It was observed that ROF is more sensitive to precipitation (P) compared to other analyzed hydroclimatic variables (potential evapotranspiration (PET), 2 m air temperature (T2m), solar radiation (Rn), specific humidity (SSH), and wind speed (U), especially over India, Indochina, and south-north-northeast China semihumid-humid climate transition zones based on the higher correlation coefficient (>0.7) and elasticity (>2). The abnormal positive T2m-ROF observed over Tibetan Plateau region (TP) may be due to its high topography and cold weather regime, while positive PET-ROF over India and north China-southeast Mongolia regions can be attributed to the stronger influence of local land-atmosphere interactions. Soil moisture (SM) reflects high correlation with runoff, especially over the climate transition zones (i.e., India and Indochina-southeast China). The initial wet (dry) soil moisture (SM) anomalies lead to an increase (decrease) of ROF in each season with the hot spots mainly located in middle to high latitudes (spring), TP and northeast (summer and autumn), and Indochina (autumn) regions. Such influence can persist almost 4 months in spring while only about 1 month in autumn during dry and wet conditions. The wet condition has stronger influence at beginning but dissipates quickly, while the dry condition can last longer within the same season. The impact of initial soil temperature anomalies on ROF is weaker than SM, with the only obvious ROF changes located over south China (spring and summer) and north India (autumn).

  3. The effect of different surface materials on runoff quality in permeable pavement systems. (United States)

    Li, Haiyan; Li, Zhifei; Zhang, Xiaoran; Li, Zhuorong; Liu, Dongqing; Li, Tanghu; Zhang, Ziyang


    To investigate the effect of different permeable pavement surface materials on the removal of pollutants from urban storm-runoff, six commonly surface materials (porous asphalt, porous concrete, cement brick, ceramic brick, sand base brick, and shale brick) were selected in this study and the research was carried out by column experiments. Except the concentrations of total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (NH 4 -N), nitrate nitrogen (NO 3 -N), total nitrogen (TN), and total phosphorus (TP) in the influent and effluent that were measured, the removal mechanism of pollutants was discussed further. The results indicate that the surface materials influence the removal efficiency of pollutants greatly and have different effects on certain pollutant. Furthermore, the physical interception and adsorption would be the main mechanism for the removal of pollutants from runoff. For example, for all surface materials, the average removal efficiency of TSS is nearly about 90.0% because of physical interception. Due to the amount of iron oxide, the removal efficiency of COD, NO 3 -N, and TN of shale brick was 88.2, 35.1, and 17.5%, respectively. NH 4 -N and TN can be easily removed by porous asphalt due to the high content of organic matter. By lacking of useful adsorption sites, all the surface materials had little effect on the removal of TP from runoff. This research could offer useful guidelines for the better design of permeable pavement system and promote the insight into the removal mechanism of pollutants in permeable pavement system. Graphical abstract Different types of materials for the different types of pollutants in the runoff purification capacity were significantly different, overall, shale brick and porous asphalt Shale bricks and porous asphalt have a better purification effect according to the six kinds of materials.

  4. Prescribed fires effects on physico-chemical properties and quantity of runoff and soil erosion in a Mediterranean forest (United States)

    Esteban Lucas-Borja, Manuel; Plaza Alvaréz, Pedro Antonio; Sagra, Javier; Alfaro Sánchez, Raquel; Moya, Daniel; Ferrandiz Gotor, Pablo; De las Heras Ibañez, Jorge


    Wildfires have an important influence in forest ecosystems. Contrary to high severity fire, which may have negative impacts on the ecosystems, low severity induce small changes on soil properties. Thus and in order to reduce fire risk, low-severity prescribed fires have been widely used as a fuel reduction tool and silvicultural treatment in Mediterranean forest ecosystems. However, fire may alter microsite conditions and little is known about the impact of prescribed burning on the physico-chemical properties of runoff. In this study, we compared the effects of prescribed burning on physico-chemical properties and quantity of runoff and soil erosion during twelve months after a low severity prescribed fire applied in twelve 16 m2 plot (6 burned plots and 6 control plots used for comparison) set up in the Lezuza forest (Albacete, central-eastern Spain). Physico-chemical properties and quantity of runoff and soil losses were monitored after each rainfall event (five rainfall events in total). Also, different forest stand characteristics (slope, tree density, basal area and shrub/herbal cover) affecting each plot were measured. Results showed that forest stand characteristics were very similar in all used plots. Also, physico-chemical runoff properties were highly modified after the prescribed fire, increasing water pH, carbonates, bicarbonates, total dissolved solids and organic matter content dissolved in water. Electrical conductivity, calcium, sodium, chloride and magnesium were not affected by prescribed fire. Soil losses were highly related to precipitation intensity and tree interception. Tree intercepted the rainfall and significantly reduced soil losses and also runoff quantity. In conclusion and after the first six-month experiment, the influence of prescribed fires on physico-chemical runoff properties should be taken into account for developing proper prescribed burnings guidelines.

  5. Importance of moisture determination in studies of infiltration and surface runoff for long periods

    Directory of Open Access Journals (Sweden)

    Fabian Fulginiti


    Full Text Available The determination of the natural soil moisture is essential to solve problems related to irrigation water requirements, environmental considerations, and determination of surplus water. For the determination of runoff one can adopt models that consider exclusively the infiltration as a loss or one could use computational models of infiltration to model the infiltrated water. Models based on the infiltration calculation consider well the interaction between infiltration - runoff processes and provide additional information on the phenomenon of infiltration which establishes the existing conditions of moisture in the soil before the occurrence of a new event (simulation for long periods. These models require solving Richards’s equation and for this purpose it is necessary to determine the relation between the soil moisture - suction and hydraulic conductivity - suction which require the determination of the hydraulic properties that can be obtained by measuring the water content by moisture profiles. The aim of this study was the verification of these moisture curves in loessic soils in the south of the city of Cordoba, Argentina. To do this, measurements were done and compared with results of infiltration models based on the determined hydraulic functions. The measurements were done using three probes installed at different depths. The results showed that the values obtained with NETRAIN adequately represent the behavior of wetting and drying conditions of the studied soil.The determination of these curves provided a basis for future studies that include the advancement of agricultural chemicals in the soil and its potential capacity to pollute groundwater, fundamental issue to define environmental management policies.

  6. Soil moisture-runoff relation at the catchment scale as observed with coarse resolution microwave remote sensing

    Directory of Open Access Journals (Sweden)

    K. Scipal


    Full Text Available Microwave remote sensing offers emerging capabilities to monitor global hydrological processes. Instruments like the two dedicated soil moisture missions SMOS and HYDROS or the Advanced Scatterometer onboard METOP will provide a flow of coarse resolution microwave data, suited for macro-scale applications. Only recently, the scatterometer onboard of the European Remote Sensing Satellite, which is the precursor instrument of the Advanced Scatterometer, has been used successfully to derive soil moisture information at global scale with a spatial resolution of 50 km. Concepts of how to integrate macro-scale soil moisture data in hydrologic models are however still vague. In fact, the coarse resolution of the data provided by microwave radiometers and scatterometers is often considered to impede hydrological applications. Nevertheless, even if most hydrologic models are run at much finer scales, radiometers and scatterometers allow monitoring of atmosphere-induced changes in regional soil moisture patterns. This may prove to be valuable information for modelling hydrological processes in large river basins (>10 000 km2. In this paper, ERS scatterometer derived soil moisture products are compared to measured runoff of the Zambezi River in south-eastern Africa for several years (1992–2000. This comparison serves as one of the first demonstrations that there is hydrologic relevant information in coarse resolution satellite data. The observed high correlations between basin-averaged soil moisture and runoff time series (R2>0.85 demonstrate that the seasonal change from low runoff during the dry season to high runoff during the wet season is well captured by the ERS scatterometer. It can be expected that the high correlations are to a certain degree predetermined by the pronounced inter-annual cycle observed in the discharge behaviour of the Zambezi. To quantify this effect, time series of anomalies have been compared. This analysis showed that

  7. Patterns and signatures characterizing the partitioning of precipitation into evapotranspiration and runoff in land surface parameterizations (United States)

    Yang, Z. L.; Zheng, H.; Lin, P.; Wei, J.; Li, L.; Wu, W. Y.; Zhao, L.; Wang, S.


    Quantifying how climate and land surface processes drive the partitioning of precipitation into evapotranspiration (ET) and runoff (R) is important for improving our predictive capability of climate-land interactions. To this end, this study focuses on quantifying the sensitivity of parameterizations for runoff, β-factor, turbulence, and stomatal conductance by employing the North American Land Data Assimilation System (NLDAS) and a 48-member ensemble from the Noah LSM with multi-parameterization (Noah-MP). All 48 Noah-MP simulations systematically overestimate ET and underestimate R in Florida, eastern Texas, and Nebraska, which precisely coincide with the sand distribution from NLDAS, suggesting a need to augment Noah-MP's sand parameters. The impacts of the selected parameterizations on the precipitation partitioning are climate-dependent. The stomatal conductance parameterizations are dominant in humid regions, while the runoff parameterizations are dominant in arid and semi-arid regions. Under snow conditions, incorporating a groundwater module significantly damps the modeled runoff peak and delays the timing. These parameterizations have a direct and seasonal influence on ET, but their influences on R are indirect and cross-seasonal.

  8. Mid-term and scaling effects of forest residue mulching on post-fire runoff and soil erosion. (United States)

    Prats, Sergio Alegre; Wagenbrenner, Joseph W; Martins, Martinho António Santos; Malvar, Maruxa Cortizo; Keizer, Jan Jacob


    Mulching is an effective post-fire soil erosion mitigation treatment. Experiments with forest residue mulch have demonstrated that it increased ground cover to 70% and reduced runoff and soil loss at small spatial scales and for short post-fire periods. However, no studies have systematically assessed the joint effects of scale, time since burning, and mulching on runoff, soil loss, and organic matter loss. The objective of this study was to evaluate the effects of scale and forest residue mulch using 0.25m 2 micro-plots and 100m 2 slope-scale plots in a burnt eucalypt plantation in central Portugal. We assessed the underlying processes involved in the post-fire hydrologic and erosive responses, particularly the effects of soil moisture and soil water repellency. Runoff amount in the micro-plots was more than ten-fold the runoff in the larger slope-scale plots in the first year and decreased to eight-fold in the third post-fire year. Soil losses in the micro-plots were initially about twice the values in the slope-scale plots and this ratio increased over time. The mulch greatly reduced the cumulative soil loss measured in the untreated slope-scale plots (616gm -2 ) by 91% during the five post-fire years. The implications are that applying forest residue mulch immediately after a wildfire can reduce soil losses at spatial scales of interest to land managers throughout the expected post-fire window of disturbance, and that mulching resulted in a substantial relative gain in soil organic matter. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Atmospheric deposition and storm induced runoff of heavy metals from different impermeable urban surfaces. (United States)

    Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D


    Contaminants deposited on impermeable surfaces migrate to stormwater following rainfall events, but accurately quantifying their spatial and temporal yields useful for mitigation purposes is challenging. To overcome limitations in current sampling methods, a system was developed for rapid quantification of contaminant build-up and wash-off dynamics from different impervious surfaces. Thin boards constructed of concrete and two types of asphalt were deployed at different locations of a large carpark to capture spatially distributed contaminants from dry atmospheric deposition over specified periods of time. Following experimental exposure time, the boards were then placed under a rainfall simulator in the laboratory to generate contaminant runoff under controlled conditions. Single parameter effects including surface roughness and material composition, number of antecedent dry days, rain intensity, and water quality on contaminant build-up and wash-off yields could be investigated. The method was applied to quantify spatial differences in deposition rates of contaminants (TSS, zinc, copper and lead) at two locations varying in their distance to vehicle traffic. Results showed that boards exposed at an unused part of the carpark >50 m from vehicular traffic captured similar amounts of contaminants compared with boards that were exposed directly adjacent to the access route, indicating substantial atmospheric contaminant transport. Furthermore, differences in contaminant accumulation as a function of surface composition were observed. Runoff from asphalt boards yielded higher zinc loads compared with concrete surfaces, whereas runoff from concrete surfaces resulted in higher TSS concentrations attributed to its smoother surfaces. The application of this method enables relationships between individual contaminant behaviour and specific catchment characteristics to be investigated and provides a technique to derive site-specific build-up and wash-off functions required

  10. Potential Groundwater Recharge from the Infiltration of Surface Runoff in Cold and Dry Creeks, Phase 2

    International Nuclear Information System (INIS)

    Waichler, Scott R.


    Runoff from Cold and Dry Creeks may provide an important source of groundwater recharge on the Hanford Site. This report presents estimates of total volume and distribution of such recharge from extreme precipitation events. Estimates were derived using a simple approach that combined the Soil Conservation Service curve number runoff method and an exponential-decay channel infiltration model. Fifteen-minute streamflow data from four gaging stations, and hourly precipitation data from one climate station, were used to compute curve numbers and calibrate the infiltration model. All data were from several storms occurring during January 1995. Design storm precipitation depths ranging from 1.6 to 2.7 inches were applied with computed curve numbers to produce total runoff/recharge of 7,700 to 15,900 ac-ft, or approximately 10 times the average annual rate from this recharge source as determined in a previous study. Approximately two-thirds of the simulated recharge occurred in the lower stream reaches contained in the broad alluvial valley that parallels State Highway 240 near the Hanford 200 Area

  11. Potential Groundwater Recharge from the Infiltration of Surface Runoff in Cold and Dry Creeks, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.


    Runoff from Cold and Dry Creeks may provide an important source of groundwater recharge on the Hanford Site. This report presents estimates of total volume and distribution of such recharge from extreme precipitation events. Estimates were derived using a simple approach that combined the Soil Conservation Service curve number runoff method and an exponential-decay channel infiltration model. Fifteen-minute streamflow data from four gaging stations, and hourly precipitation data from one climate station, were used to compute curve numbers and calibrate the infiltration model. All data were from several storms occurring during January 1995. Design storm precipitation depths ranging from 1.6 to 2.7 inches were applied with computed curve numbers to produce total runoff/recharge of 7,700 to 15,900 ac-ft, or approximately 10 times the average annual rate from this recharge source as determined in a previous study. Approximately two-thirds of the simulated recharge occurred in the lower stream reaches contained in the broad alluvial valley that parallels State Highway 240 near the Hanford 200 Area.

  12. The effect of GCM biases on global runoff simulations of a land surface model (United States)

    Papadimitriou, Lamprini V.; Koutroulis, Aristeidis G.; Grillakis, Manolis G.; Tsanis, Ioannis K.


    Global climate model (GCM) outputs feature systematic biases that render them unsuitable for direct use by impact models, especially for hydrological studies. To deal with this issue, many bias correction techniques have been developed to adjust the modelled variables against observations, focusing mainly on precipitation and temperature. However, most state-of-the-art hydrological models require more forcing variables, in addition to precipitation and temperature, such as radiation, humidity, air pressure, and wind speed. The biases in these additional variables can hinder hydrological simulations, but the effect of the bias of each variable is unexplored. Here we examine the effect of GCM biases on historical runoff simulations for each forcing variable individually, using the JULES land surface model set up at the global scale. Based on the quantified effect, we assess which variables should be included in bias correction procedures. To this end, a partial correction bias assessment experiment is conducted, to test the effect of the biases of six climate variables from a set of three GCMs. The effect of the bias of each climate variable individually is quantified by comparing the changes in simulated runoff that correspond to the bias of each tested variable. A methodology for the classification of the effect of biases in four effect categories (ECs), based on the magnitude and sensitivity of runoff changes, is developed and applied. Our results show that, while globally the largest changes in modelled runoff are caused by precipitation and temperature biases, there are regions where runoff is substantially affected by and/or more sensitive to radiation and humidity. Global maps of bias ECs reveal the regions mostly affected by the bias of each variable. Based on our findings, for global-scale applications, bias correction of radiation and humidity, in addition to that of precipitation and temperature, is advised. Finer spatial-scale information is also provided

  13. Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience (United States)

    Research to measure soil erosion rates in the United States from natural rainfall runoff plots began in the early 1900’s. In Brazil, the first experimental study at the plot-scale was conducted in the 1940’s; however, the monitoring process and the creation of new experimental field plots have not c...

  14. An approximate analytical solution for describing surface runoff and sediment transport over hillslope (United States)

    Tao, Wanghai; Wang, Quanjiu; Lin, Henry


    Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.


    Directory of Open Access Journals (Sweden)

    Donald Gabriels


    Full Text Available Steeplands, when cleared from forests, are susceptible to erosion by rainfall and are prone toland degradation and desertification processes.The dominant factors affecting those erosion processes and hence the resulting runoff and soillosses are the aggressiveness of the rainfall during the successive plant growth stages, the soilcover-management, but also the topography (slope length and slope steepness. Depending onthe type of (agro climatological zone, the runoff water should either be limited and controlled(excess of water or should be enhanced and collected from the slope on the downslopecropping area if water is short (negative soil water balance.Examples are given of practical applications in Ecuador where alternative soil conservationscenarios are proposed in maize cultivation in small fields on steep slopes. Adding peas andbarley in the rotation of maize and beans resulted only in a slight decrease of the soil losses.Subdividing the fields into smaller parcels proved to give the best reduction in soil loss.Because the average slope steepness is high, erosion control measures such as contourploughing and strip cropping have only small effects.Erosion and its effect on productivity of a sorghum -livestock farming system are assessed onfour different areas in Venezuela with different levels of erosion. A Productivity Index (PIand an Erosion Risk Index (ERI were used to classify the lands for soil conservationpriorities and for alternative land uses. Intensive agriculture can be applied on slightly erodedsoil, whereas severely eroded soil can be used with special crops or agro-forestry. Semiintensiveagriculture is possible on moderately eroded soil.Reforestation of drylands in Chili requires understanding of the infiltration/runoff process inorder to determine dimensions of water harvesting systems. Infiltration processes in semi-aridregions of Chile were evaluated, using rainfall experiments and constant-head infiltrationmeasurements

  16. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski


    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  17. Analysing surface runoff and erosion responses to different land uses from the NE of Iberian Peninsula through rainfall simulation (United States)

    Regüés, David; Arnáez, José; Badía, David; Cerdà, Artemi; Echeverría, María Teresa; Gispert, María; Lana-Renault, Noemí; Lasanta, Teodoro; León, Javier; Nadal-Romero, Estela; Pardini, Giovanni


    Rainfall simulation experiments are being used by soil scientists, geomorphologists, and hydrologist to study runoff generation and erosion processes. The use of different apparatus with different rainfall intensities and size of the wetted area contribute to determine the most vulnerable soils and land uses (Cerdá, 1998; Cerdà et al., 2009; Nadal-Romero et al., 2011; Martínez-Murillo et al., 2013; León et al., 2014). This research aims to determine the land uses that yield more sediments and water and to know the factors that control the differences. The information from 152 experiments of rainfall simulation was jointly analysed. Experiments were done in 17 land uses (natural forest, tree plantation, burned forest, scrub, meadows, crops and badlands), with contrasted exposition (north-south), and vegetation cover variety and/or density. These situations were selected from four geographic contexts (NE of Catalonia, high and medium lands from the Ebro valley and Southern range of central Pyrenees) with significant altitude variations, between 90 and 1000 meters above sea level, which represent the heterogeneity of the Mediterranean climate. The use of similar rainfall simulation apparatus, with the same spray nozzle, spraying components and plot size, favours the comparison of the results. A wide spectrum of precipitation intensities was applied, in order to reach surface runoff generation in all cases. Results showed significant differences in runoff amounts and erosion rates, which were mainly associated with land uses, even more than precipitation differences. Runoff coefficient shows an inversed exponential relationship with rainfall intensity, which is the opposite what could be previously expected (Ziadat and Taimeh, 2013). This may be only justified by land use characteristics because a direct effect between runoff generation intensity and soil degradation conditions, with respect vegetation covers features and density, was observed. In fact, even though

  18. Transfer of spatio-temporal multifractal properties of rainfall to simulated surface runoff (United States)

    Gires, Auguste; Giangola-Murzyn, Agathe; Richard, Julien; Abbes, Jean-Baptiste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Willinger, Bernard; Cardinal, Hervé; Thouvenot, Thomas


    In this paper we suggest to use scaling laws and more specifically Universal Multifractals (UM) to analyse in a spatio-temporal framework both the radar rainfall and the simulated surface runoff. Such tools have been extensively used to analyse and simulate geophysical fields extremely variable over wide range of spatio-temporal scales such as rainfall, but have not often if ever been applied to surface runoff. Such novel combined analysis helps to improve the understanding of the rainfall-runoff relationship. Two catchments of the chair "Hydrology for resilient cities" sponsored by Véolia, and of the European Interreg IV RainGain project are used. They are both located in the Paris area: a 144 ha flat urban area in the Seine-Saint-Denis County, and a 250 ha urban area with a significant portion of forest located on a steep hillside of the Bièvre River. A fully distributed urban hydrological model currently under development called Multi-Hydro is implemented to represent the catchments response. It consists in an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. The fully distributed model is tested with pixels of size 5, 10 and 20 m. In a first step the model is validated for three rainfall events that occurred in 2010 and 2011, for which the Météo-France radar mosaic with a resolution of 1 km in space and 5 min in time is available. These events generated significant surface runoff and some local flooding. The sensitivity of the model to the rainfall resolution is briefly checked by stochastically generating an ensemble of realistic downscaled rainfall fields (obtained by continuing the underlying cascade process which is observed on the available range of scales) and inputting them into the model. The impact is significant on both the simulated sewer flow and surface runoff. Then rainfall fields are generated with the help of discrete multifractal cascades and inputted in the

  19. The Measurement of Dry Deposition and Surface Runoff to Quantify Urban Road Pollution in Taipei, Taiwan

    Directory of Open Access Journals (Sweden)

    Jen-Yang Lin


    Full Text Available Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01–5.14 g/m2·day and 78–87% of these solids are in the 75–300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS, chemical oxygen demand (COD, oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads.

  20. Runoff and soil loss characteristics on loess slopes covered with aeolian sand layers of different thicknesses under simulated rainfall (United States)

    Zhang, F. B.; Bai, Y. J.; Xie, L. Y.; Yang, M. Y.; Li, Z. B.; Wu, X. R.


    In the Wind-Water Erosion Crisscross Region of the northern Loess Plateau, parts of loess slopes have been covered by layers of aeolian sand of different thicknesses. Knowledge of soil erosion processes and magnitudes on these slopes is essential to understanding the coupled water-wind erosion processes and to address the resulting downstream coarse sediment problems in the Yellow River. Simulated rainfall (intensity 90 mm h-1) was performed to explore the effects of sand layer thickness on runoff and soil loss from loess slopes covered with different sand layer thicknesses (0, 0.5, 2, 5, 10, 15, 20, and 25 cm). Initial runoff time increased with increasing sand layer thickness, with greater changes occurring for the increases in the thinner (0-5 cm) than for the thicker layers (5-25 cm). Total runoff yield from the sand-covered loess slopes was 18%-55% lower than from the uncovered loess slope and decreased with increasing sand layer thickness. In contrast, total sediment yield was up to 14 times greater from the sand-covered loess slopes than from the uncovered loess slope and rapidly increased with increasing sand layer thickness. During the rainstorm, runoff and soil loss rates exhibited unimodal distributions, and they were related by a positive linear function, both before and after the maximum soil loss rate, that had a high determination coefficient (R2 > 0.8, p soil loss rates tended to occur simultaneously and increased abruptly with increasing sand layer thickness. During the rainstorms, some runoff rates on the loess slopes with thicker sand layers were higher than the rainfall intensity due to rainwater combining with water emerging from the saturated sand, which could never occur on the uncovered loess slope. The critical sand layer thickness, which produced a qualitative change in runoff and sediment production modes, appeared to be in the range of 5-10 cm. These results indicated that the thickness of the sand layer on the loess slope significantly

  1. Future Changes in Surface Runoff over Korea Projected by a Regional Climate Model under A1B Scenario

    Directory of Open Access Journals (Sweden)

    Ji-Woo Lee


    Full Text Available This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM, namely, the Global/Regional Integrated Model System (GRIMs, Regional Model Program (RMP. The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4. The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070 simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.

  2. Effects of Intra-Storm Soil Moisture and Runoff Characteristics on Ephemeral Gully Development: Evidence from a No-Till Field Study

    Directory of Open Access Journals (Sweden)

    Vladimir R. Karimov


    Full Text Available Ephemeral gully erosion, prevalent on agricultural landscapes of the Great Plains, is recognized as a large source of soil loss and a substantial contributor to the sedimentation of small ponds and large reservoirs. Multi-seasonal field studies can provide needed information on ephemeral gully development and its relationship to physical factors associated with field characteristics, rainfall patterns, runoff hydrograph, and management practices. In this study, an ephemeral gully on a no-till cultivated crop field in central Kansas, U.S., was monitored in 2013 and 2014. Data collection included continuous sub-hourly precipitation, soil moisture, soil temperature, and 15 field surveys of cross-sectional profiles in the headcut and channelized parts of the gully. Rainfall excess from a contributing catchment was calculated with the Water Erosion Prediction Project (WEPP model for all storm events and validated on channel flow measurements. Twelve significant runoff events with hydraulic shear stresses higher than the critical value were identified to potentially cause soil erosion in three out of fourteen survey periods. Analysis of shear stress imposed by peak channel flow on soil surface, antecedent soil moisture condition, and channel shape at individual events provided the basis on which to extend the definition of the critical shear stress function by incorporating the intra-storm changes in soil moisture content. One potential form of this function was suggested and tested with collected data. Similar field studies in other agriculturally-dominated areas and laboratory experiments can develop datasets for a better understanding of the physical mechanisms associated with ephemeral gully progression.

  3. Activated soil filters for removal of biocides from contaminated run-off and waste-waters. (United States)

    Bester, Kai; Banzhaf, Stefan; Burkhardt, Michael; Janzen, Niklas; Niederstrasser, Bernd; Scheytt, Traugott


    Building facades can be equipped with biocides to prevent formation of algal, fungal and bacterial films. Thus run-off waters may contain these highly active compounds. In this study, the removal of several groups of biocides from contaminated waters by means of an activated soil filter was studied. A technical scale activated vertical soil filter (biofilter) with different layers (peat, sand and gravel), was planted with reed (Phragmites australis) and used to study the removal rates and fate of hydrophilic to moderate hydrophobic (log K(ow) 1.8-4.4) biocides and biocide metabolites such as: Terbutryn, Cybutryn (Irgarol® 1051), Descyclopropyl-Cybutryn (Cybutryn and Terbutryn metabolite), Isoproturon, Diuron, and its metabolite Diuron-desmonomethyl, Benzo-isothiazolinone, n-Octyl-isothiazolinone, Dichloro-n-octylisothiazolinone and Iodocarbamate (Iodocarb). Three experiments were performed: the first one (36 d) under low flow conditions (61 L m(-2) d(-1)) reached removal rates between 82% and 100%. The second one was performed to study high flow conditions: During this experiment, water was added as a pulse to the filter system with a hydraulic load of 255 L m(-2) within 5 min (retention time waters or infiltration into soil without appropriate removal. In the last experiment the removal efficiencies of the different layers were studied. Though the peat layer was responsible for most of the removal, the sand and gravel layers also contributed significantly for some compounds. All compounds are rather removed by degradation than by sorption. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Surface freshwater from Bay of Bengal runoff and Indonesian throughflow in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sengupta, D.; Raj, B.; Shenoi, S.S.C.

    haloclines in the BoB. If a shallow halocline resists diapycnal mixing, BoB surface water should continue to stay relatively fresh as it travels to remote regions of the tropical IO. Thus it is likely that most present day models underestimate the true reach...]), to examine BoB freshwater balance. 2. Bay of Bengal Freshwater In addition to several major rivers, numerous smaller streams discharge into the Bay of Bengal. The total an- nual continental runoff into the Bay is 2950 km3, obtained by integrating the Dai...

  5. Observations of flow path interactions with surface structures during initial soil development stage using irrigation experiments (United States)

    Bartl, Steffen; Biemelt, Detlef; Badorreck, Annika; Gerke, Horst H.


    Structures and processes are dynamically linked especially during initial stages of soil and ecosystem development. Here we assume that soil pore structures and micro topography determine the flow paths and water fluxes as well as further structure changes. Reports about flow path developments at the soil surface are still limited because of an insufficient knowledge of the changing micro topography at the surface. The objective of this presentation is to evaluate methods for parameterisation of surface micro topography for analysing interactions between infiltration and surface runoff. Complex irrigation experiments were carried out at an experimental site in the neighbourhood of the artificially created water catchment "Chicken Creek". The irrigation rates between 160 mm/h and 250 mm/h were held constant over a time period of 20 minutes. The incoming intensities were measured as well as the raindrop-velocity and -size distributions. The surface runoff was continuously registered, soil samples were taken, and soil water potential heads were monitored using tensiometers. Surface and subsurface flow paths were identified using different tracers. The soil surface structures were recorded using a high resolution digital camera before, during, and after irrigation. Micro topography was surveyed using close-range photogrammetry. With this experimental design both, flow paths on the surface and in the soil as well as structure and texture changes could be observed simultaneously. In 2D vertical cross-sections, the effect of initial sediment deposition structure on infiltration and runoff was observed. Image analysis of surface pictures allowed identifying structural and soil textural changes during the runoff process. Similar structural changes related to surface flow paths were found with the photogrammetric surface analysis. We found evidence for the importance of the initial structures on the flow paths as well as a significant influence of the system development

  6. Effects of a fire on runoff and erosion on mediterranean forest soils in SE Spain

    Directory of Open Access Journals (Sweden)

    Mangas, V. J.


    Full Text Available From 1985 to 1990, precipitation, runoff and soil erosion have been studied on experimental plots in a locality of Alicante (SE Spain. A prescribed burning was carried out in September of 1989, (maximum temperature was moderate. In order to know soil evolution, soil was sampled three times: before fire, one day after fire and six months later. One day after fire, a significant increase in organic matter content, total nitrogen, available phosphorus and the cations: K+, Mg2+ and N+, was found. On the other hand, Ca2+ and C.E.C. showed an opposite pattern. The modified values after fire tended to go bacic to the initial levels in the case of organic matter, phosphorus, Na+, Ca2+ and C.E.C. Annual runoff after fire is significantly lower than in the year before fire, whilst average runoff in the year after fire is only significantly different when the most erosive year (October 1987-September 1988 is not considered. The runoff decrease will be related with a lower average precipitation after fire. There are no significant differences in the sediment yield between the year before and after the fire. The nutrient outputs and runoff decrease is greater than the nutrient inputs and precipitation decrease after fire. Nutrient output in runoff after fire ranges between 8 to 35 % of the previous year, whilst volume of runoff is only 3 %, implying a greater concentration.

    [es] Se han estudiado los flujos de escorrentía y remoción de suelo, así como su composición química durante cinco años (1985-1990 en unas parcelas de erosión en una localidad de la provincia de Alicante (SE-España. En septiembre de 1989 se incendió la vegetación de las parcelas registrándose temperaturas moderadas. Se ha realizado un seguimiento de la química del suelo mediante tres muestreos: previo al fuego, al día siguiente y 180 días después. Al día siguiente del incendio se ha producido en

  7. County-Level Climate Uncertainty for Risk Assessments: Volume 14 Appendix M - Historical Surface Runoff.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.


    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  8. County-Level Climate Uncertainty for Risk Assessments: Volume 15 Appendix N - Forecast Surface Runoff.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Shannon M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  9. Metamodeling as a tool to size vegetative filter strips for surface runoff pollution control in European watersheds. (United States)

    Lauvernet, Claire; Muñoz-Carpena, Rafael; Carluer, Nadia


    In Europe, a significant presence of contaminants is found in surface water, partly due to pesticide applications. Vegetative filter strips or buffer zones (VFS), often located along rivers, are a common best management practice (BMP) to reduce non point source pollution of water by reducing surface runoff. However, they need to be adapted to the agro-ecological and climatic conditions, both in terms of position and size, in order to be efficient. The TOPPS-PROWADIS project involves European experts and stakeholders to develop and recommend BMPs to reduce pesticide transfer by drift or runoff in several European countries. In this context, IRSTEA developed a guide accompanying the use of different tools, which allows designing site-specific VFS by simulating their efficiency to limit transfers using the mechanistic model VFSMOD. This method which is very complete assumes that the user provides detailed field knowledge and data, which are not always easily available. The aim of this study is to assist the buffer sizing by using a unique tool with a reduced set of parameters, adapted to the available information from the end-users. In order to fill in the lack of real data in many practical applications, a set of virtual scenarios was selected to encompass a large range of agro-pedo-climatic conditions in Europe, considering both the upslope agricultural field and the VFS characteristics. As a first step first, in this work we present scenarios based on North-West of France climate consisting of different rainfall intensities and durations, hillslope lengths and slopes, humidity conditions, a large set of field rainfall/runoff characteristics for the contributing area, and several shallow water table depths and soil types for the VFS. The sizing method based on the mechanistic model VFSMOD was applied for all these scenarios, and a global sensitivity analysis (GSA) of the VFS optimal length was performed for all the input parameters in order to understand their

  10. Atmospheric deposition of nitrogen, runoff of organic nitrogen, and critical loads for soils and waters

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Richard F.; Raastad, Inger Aandahl; Kaste, Oeyvind


    This report tests the hypothesis that increased deposition of inorganic nitrogen compounds leads to increased leaching and runoff of organic nitrogen and thus a higher critical load. The authors use mainly Norwegian data from input-output fluxes at small catchments, national lake surveys, and large-scale experiments with nitrogen deposition to whole catchments. Concentrations of organic nitrogen are not significantly related to nitrogen deposition. Much of the variance in organic nitrogen levels are explained by total organic carbon concentrations. For the small catchments, there is a significant relationship between the carbon/nitrogen (C/N) ratio in dissolved organic matter and the nitrogen deposition. The sites with high nitrogen deposition have low C/N ratio. Chronically high nitrogen deposition and long-term accumulation of nitrogen in soils and biomass may have led to organic matter more enriched in nitrogen relative to pristine sites. Time trend data from manipulated catchments do not show changes in organic-N leaching over 4 to 10 years. Although organic-N levels may have increased as a result of nitrogen deposition, the resultant effect on estimate of critical load for nitrogen for freshwater is minor. For practical purposes, organic nitrogen outputs can be neglected in estimating and mapping critical loads for nitrogen in Norway. 23 refs., 11 figs., 4 tabs.

  11. Regulating urban surface runoff through nature-based solutions - An assessment at the micro-scale. (United States)

    Zölch, Teresa; Henze, Lisa; Keilholz, Patrick; Pauleit, Stephan


    Urban development leads to changes of surface cover that disrupt the hydrological cycle in cities. In particular, impermeable surfaces and the removal of vegetation reduce the ability to intercept, store and infiltrate rainwater. Consequently, the volume of stormwater runoff and the risk of local flooding rises. This is further amplified by the anticipated effects of climate change leading to an increased frequency and intensity of heavy rain events. Hence, urban adaptation strategies are required to mitigate those impacts. A nature-based solution, more and more promoted in politics and academia, is urban green infrastructure as it contributes to the resilience of urban ecosystems by providing services to maintain or restore hydrological functions. However, this poses a challenge to urban planners in deciding upon effective adaptation measures as they often lack information on the performance of green infrastructure to moderate surface runoff. It remains unclear what type of green infrastructure (e.g. trees, green roofs), offers the highest potential to reduce discharge volumes and to what extent. Against this background, this study provides an approach to gather quantitative evidence on green infrastructure's regulation potential. We use a micro-scale scenario modelling approach of different variations of green cover under current and future climatic conditions. The scenarios are modelled with MIKE SHE, an integrated hydrological simulation tool, and applied to a high density residential area of perimeter blocks in Munich, Germany. The results reveal that both trees and green roofs increase water storage capacities and hence reduce surface runoff, although the main contribution of trees lies in increasing interception and evapotranspiration, whereas green roofs allow for more retention through water storage in their substrate. With increasing precipitation intensities as projected under climate change their regulating potential decreases due to limited water

  12. Surface runoff water quality in a managed three zone riparian buffer. (United States)

    Lowrance, Richard; Sheridan, Joseph M


    Managed riparian forest buffers are an important conservation practice but there are little data on the water quality effects of buffer management. We measured surface runoff volumes and nutrient concentrations and loads in a riparian buffer system consisting of (moving down slope from the field) a grass strip, a managed forest, and an unmanaged forest. The managed forest consisted of sections of clear-cut, thinned, and mature forest. The mature forest had significantly lower flow-weighted concentrations of nitrate, ammonium, total Kjeldahl N (TKN), sediment TKN, total N (nitrate + TKN), dissolved molybdate reactive P (DMRP), total P, and chloride. The average buffer represented the conditions along a stream reach with a buffer system in different stages of growth. Compared with the field output, flow-weighted concentrations of nitrate, ammonium, DMRP, and total P decreased significantly within the buffer and flow-weighted concentrations of TKN, total N, and chloride increased significantly within the buffer. All loads decreased significantly from the field to the middle of the buffer, but most loads increased from the middle of the buffer to the sampling point nearest the stream because surface runoff volume increased near the stream. The largest percentage reduction of the incoming nutrient load (at least 65% for all nutrient forms) took place in the grass buffer zone because of the large decrease (68%) in flow. The average buffer reduced loadings for all nutrient species, from 27% for TKN to 63% for sediment P. The managed forest and grass buffer combined was an effective buffer system.

  13. A characterization of Greenland Ice Sheet surface melt and runoff in contemporary reanalyses and a regional climate model (United States)

    Cullather, Richard; Nowicki, Sophie; Zhao, Bin; Koenig, Lora


    For the Greenland Ice Sheet (GrIS), large-scale melt area has increased in recent years and is detectable via remote sensing, but its relation to runoff is not known. Historical, modeled melt area and runoff from Modern-Era Retrospective Analysis for Research and Applications (MERRA-Replay), the Interim Re-Analysis of the European Centre for Medium Range Weather Forecasts (ERA-I), the Climate Forecast System Reanalysis (CFSR), the Modèle Atmosphérique Régional (MAR), and the Arctic System Reanalysis (ASR) are examined. These sources compare favorably with satellite-derived estimates of surface melt area for the period 2000-2012. Spatially, the models markedly disagree on the number of melt days in the interior of the southern part of the ice sheet, and on the extent of persistent melt areas in the northeastern GrIS. Temporally, the models agree on the mean seasonality of daily surface melt and on the timing of large-scale melt events in 2012. In contrast, the models disagree on the amount, seasonality, spatial distribution, and temporal variability of runoff. As compared to global reanalyses, time series from MAR indicate a lower correlation between runoff and melt area (r2 = 0.805). Runoff in MAR is much larger in the second half of the melt season for all drainage basins, while the ASR indicates larger runoff in the first half of the year. This difference in seasonality for the MAR and to an extent for the ASR provide a hysteresis in the relation between runoff and melt area, which is not found in the other models. The comparison points to a need for reliable observations of surface runoff.

  14. Quantifying the Impact of Seasonal and Short-term Manure Application Decisions on Phosphorus Loss in Surface Runoff. (United States)

    Vadas, Peter A; Good, Laura W; Jokela, William E; Karthikeyan, K G; Arriaga, Francisco J; Stock, Melanie


    Agricultural phosphorus (P) management is a research and policy issue due to P loss from fields and water quality degradation. Better information is needed on the risk of P loss from dairy manure applied in winter or when runoff is imminent. We used the SurPhos computer model and 108 site-years of weather and runoff data to assess the impact of these two practices on dissolved P loss. Model results showed that winter manure application can increase P loss by 2.5 to 3.6 times compared with non-winter applications, with the amount increasing as the average runoff from a field increases. Increased P loss is true for manure applied any time from late November through early March, with a maximum P loss from application in late January and early February. Shifting manure application to fields with less runoff can reduce P loss by 3.4 to 7.5 times. Delaying manure application when runoff is imminent can reduce P loss any time of the year, and sometimes quite significantly, but the number of times that application delays will reduce P loss is limited to only 3 to 9% of possible spreading days, and average P loss may be reduced by only 15% for winter-applied manure and 6% for non-winter-applied manure. Overall, long-term strategies of shifting manure applications to low runoff seasons and fields can potentially reduce dissolved P loss in runoff much more compared with near-term, tactical application decisions of avoiding manure application when runoff is imminent. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Impact of conservation practices on runoff and soil loss in the sub-humid Ethiopian Highlands: The Debre Mawi watershed

    Directory of Open Access Journals (Sweden)

    Dagnew Dessalegn C.


    Full Text Available In response to the continually increasing sediment concentrations in rivers and lakes, the Ethiopian government is leading an effort where farmers are installing soil and water conservation measures to increase infiltration and reduce erosion. This paper reports on findings from a four year study in the 95 ha Debre Mawi watershed where under the government led conservation works, mainly terraces with infiltration furrows were installed halfway in the period of observation. The results show that runoff volume decreased significantly after installation of the soil and water conservation practices but sediment concentration decreased only marginally. Sediment loads were reduced mainly because of the reduced runoff. Infiltration furrows were effective on the hillsides where rain water could infiltrate, but on the flat bottom lands that become saturated with the progress of the monsoon rain, infiltration was restricted and conservation practices became conduits for carrying excess rainfall. This caused the initiation of gullies in several occasions in the saturated bottomlands. Sediment concentration at the outlet barely decreased due to entrainment of loose soil from unstable banks of gullies in the periodically saturated bottom areas. Since most uphill drainage were already half filled up with sediments after two years, long term benefits of reducing runoff can only be sustained with continuous maintenance of uphill infiltration furrows.

  16. Community-Based Soil Quality Assessment As a Tool for Designing an Urban Green Infrastructure Network to Manage Runoff. (United States)

    Klimas, C.; Montgomery, J.


    Green infrastructure (GI) may be the most practical approach for reducing contaminated runoff, providing ecosystem services, mitigating food deserts and creating community open spaces in urban areas. This project was funded by the USEPA's People-Prosperity-Planet (P3) program and was a partnership between a team of DePaul University undergraduates (the P3 team) and high school interns (Green Teens) and staff from the Gary Comer Youth Center (GCYC). GCYC is located in a low-income African-American community on Chicago's south side characterized by high crime, abandoned buildings, lack of green space and a food desert. The overaching project goal was to develop a network of Green Teens qualified to conduct soil quality assessment using USDA-NRCS protocols in order to let them develop GI plans to minimize storm water runoff and contaminant loadings, improve community and environmental health, and provide more equitable access to green space. Working with a USDA-ARS soil scientist from Washington State University, the P3 team conducted soil quality assessment on 116 soil samples collected among four abandoned residential lots owned by GCYC. Analytes included infiltration, bulk density, texture, pH, conductivity, aggregate stability, available nutrients, and total and bioavailable (PBET) lead. Soil pH on all lots is greater than 8.0, are low in organic matter, have little microbial respiration activity, are enriched in available phosphorus, and have average total lead values ranging from 24-2,700 mg/kg. PBET lead was less than 40% on most lots. Regardless, these soils will need to be remediated by adding carbon-rich materials such as biosolids prior to GI installation. Students enrolled in a landscape design course at DePaul developed 3-D models representing potential GI designs for one of the vacant lots that include strategies for immobilizing heavy metals, reducing runoff, and which are tied into an educational module for neighborhood school children.

  17. Properties of anthropogenic soils in ancient run-off capturing agricultural terraces in the Central Negev desert (Israel) and related effects of biochar and ash on crop growth

    NARCIS (Netherlands)

    Asperen, van H.L.; Bor, A.M.C.; Sonneveld, M.P.W.; Bruins, H.J.; Lazarovitch, N.


    In the Central Negev hills (Israel) many ancient terraced wadis exist, which captured run-off and caused gradual soil aggradation, which enabled agricultural practices. In these terraces, dark colored soil horizons were observed, containing charcoal, as can be found in Terra Preta soils, suggesting

  18. Effects of land clearing techniques and tillage systems on runoff and soil erosion in a tropical rain forest in Nigeria. (United States)

    Ehigiator, O A; Anyata, B U


    This work reports runoff and soil loss from each of 14 sub-watersheds in a secondary rain forest in south-western Nigeria. The impact of methods of land clearing and post-clearing management on runoff and soil erosion under the secondary forest is evaluated. These data were acquired eighteen years after the deforestation of primary vegetation during the ' West bank' project of the International Institute for Tropical Agriculture (IITA). These data are presented separately for each season; however, statistical analyses for replicates were not conducted due to differences in their past management. Soil erosion was affected by land clearing and tillage methods. The maximum soil erosion was observed on sub-watersheds that were mechanically cleared with tree-pusher/root-rake attachments and tilled conventionally. A high rate of erosion was observed even when graded-channel terraces were constructed to minimize soil erosion. In general there was much less soil erosion on manually cleared than on mechanically cleared sub-watersheds (2.5 t ha(-1) yr(-1) versus 13.8 t ha(-1) yr(-1)) and from the application of no-tillage methods than from conventionally plowed areas (6.5 t ha(-1) yr(-1) versus 12.1 t ha(-1) yr(-1)). The data indicate that tillage methods and appropriate management of soils and crops play an important role in soil and water conservation and in decreasing the rate of decline of soil quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. International approaches to the hydraulic control of surface water runoff in mitigating flood and environmental risks

    Directory of Open Access Journals (Sweden)

    Ballard Bridget Woods


    Full Text Available This paper compares and contrasts a number of international approaches to the hydraulic control of surface water runoff from new development and redevelopment, known as sustainable drainage systems (SuDS or low impact development (LID. The paper provides a commentary on the progress and current status of national standards for SuDS in the UK to control the frequency, flow rate and volume of runoff from both frequent and extreme rainfall events, and the best practice design criteria presented in the revised UK CIRIA SuDS Manual, published in November 2015. The paper then compares these design criteria and standards with those developed and applied in China, USA, France and Germany and also looks at the drivers behind their development. The benefits of these different approaches are assessed in the context of flood risk mitigation, climate resilience and wider environmental protection objectives, including water quality, morphology and ecology. The paper also reviews the design approaches promoted by the new SuDS Manual and internationally for delivering additional benefits for urban spaces (such as recreation, visual character, education and economic growth through multi-functional urban design.

  20. Design and Season Influence Nitrogen Dynamics in Two Surface Flow Constructed Wetlands Treating Nursery Irrigation Runoff

    Directory of Open Access Journals (Sweden)

    Sarah A. White


    Full Text Available Constructed wetlands (CWs are used to remediate runoff from a variety of agricultural, industrial, and urban sources. CW remediation performance is often evaluated at the laboratory scale over durations less than one year. The purpose of this study was to characterize the effect of CW design (cell depth and residence time on nitrogen (N speciation and fate across season and years in two free water surface wetlands receiving runoff from irrigated plant production areas at an ornamental plant nursery. Water quality (mg·L−1 of nitrate, nitrite, and ammonium, dissolved oxygen and oxidation reduction potential was monitored at five sites within each of two CWs each month over four years. Nitrate-N was the dominant form of ionic N present in both CWs. Within CW1, a deep cell to shallow cell design, nitrate comprised 86% of ionic N in effluent. Within CW2, designed with three sequential deep cells, nitrate comprised only 66% of total N and ammonium comprised 27% of total N in CW2 effluent. Differences in ionic N removal efficacies and shifts in N speciation in CW1 and CW2 were controlled by constructed wetland design (depth and hydraulic retention time, the concentration of nutrients entering the CW, and plant species richness.

  1. The variability of runoff and soil erosion in the Brazilian Cerrado biome due to the potential land use and climate changes (United States)

    Alexandre Ayach Anache, Jamil; Wendland, Edson; Malacarne Pinheiro Rosalem, Lívia; Srivastava, Anurag; Flanagan, Dennis


    Changes in land use and climate can influence runoff and soil loss, threatening soil and water conservation in the Cerrado biome in Brazil. Due to the lack of long term observed data for runoff and soil erosion in Brazil, the adoption of a process-based model was necessary, representing the variability of both variables in a continuous simulation approach. Thus, we aimed to calibrate WEPP (Water Erosion Prediction Project) model for different land uses (undisturbed Cerrado, fallow, pasture, and sugarcane) under subtropical conditions inside the Cerrado biome; predict runoff and soil erosion for these different land uses; and simulate runoff and soil erosion considering climate change scenarios. We performed the model calibration using a 4-year dataset of observed runoff and soil loss in four different land uses (undisturbed Cerrado, fallow, pasture, and sugarcane). The WEPP model components (climate, topography, soil, and management) were calibrated according to field data. However, soil and management were optimized according to each land use using a parameter estimation tool. The observations were conducted between 2012 and 2015 in experimental plots (5 m width, 20 m length, 9% slope gradient, 3 replicates per treatment). The simulations were done using the calibrated WEPP model components, but changing the 4-year observed climate file by a 100-year dataset created with CLIGEN (weather generator) based on regional climate statistics. Afterwards, using MarkSim DSSAT Weather File Generator, runoff and soil loss were simulated using future climate scenarios for 2030, 2060, and 2090. To analyze the data, we used non-parametric statistics as data do not follow normal distribution. The results show that WEPP model had an acceptable performance for the considered conditions. In addition, both land use and climate can influence on runoff and soil loss rates. Potential climate changes which consider the increase of rainfall intensities and depths in the studied region may

  2. High spatial-temporal resolution and integrated surface and subsurface precipitation-runoff modelling for a small stormwater catchment (United States)

    Hailegeorgis, Teklu T.; Alfredsen, Knut


    Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is

  3. Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field. (United States)

    Chrétien, François; Giroux, Isabelle; Thériault, Georges; Gagnon, Patrick; Corriveau, Julie


    With their application as seed coatings, the use of neonicotinoid insecticides increased dramatically during the last decade. They are now frequently detected in aquatic ecosystems at concentrations susceptible to harm aquatic invertebrates at individual and population levels. This study intent was to document surface runoff and subsurface tile drain losses of two common neonicotinoids (thiamethoxam and clothianidin) compared to those of companion herbicides (atrazine, glyphosate, S-metolachlor and mesotrione) at the edge of a 22.5-ha field under a corn-soybean rotation. A total of 14 surface runoff and tile drain discharge events were sampled over two years. Events and annual unit mass losses were computed using flow-weighted concentrations and total surface runoff and tile drain flow volumes. Detection frequencies close to 100% in edge-of-field surface runoff and tile drain water samples were observed for thiamethoxam and clothianidin even though only thiamethoxam had been applied in the first year. In 2014, thiamethoxam median concentrations in surface runoff and tile drain samples were respectively 0.46 and 0.16 μg/L, while respective maximum concentrations of 2.20 and 0.44 μg/L were measured in surface runoff and tile drain samples during the first post-seeding storm event. For clothianidin, median concentrations in surface runoff and tile drain samples were 0.02 and 0.01, μg/L, and respective maximum concentrations were 0.07 μg/L and 0.05 μg/L. Surface runoff and tile drain discharge were key transport mechanisms with similar contributions of 53 and 47% of measured mass losses, respectively. Even if thiamethoxam was applied at a relatively low rate and had a low mass exportation value (0.3%), the relative toxicity was one to two orders of magnitude higher than those of the other chemicals applied in 2014 and 2015. Companion herbicides, except glyphosate in tile drains, exceeded their water quality guideline during one sampling campaign after

  4. Using Historical Precipitation, Temperature, and Runoff Observations to Evaluate Evaporation Formulations in Land Surface Models (United States)

    Koster, Randal D.; Mahanama, P. P.


    Key to translating soil moisture memory into subseasonal precipitation and air temperature forecast skill is a realistic treatment of evaporation in the forecast system used - in particular, a realistic treatment of how evaporation responds to variations in soil moisture. The inherent soil moisture-evaporation relationships used in today's land surface models (LSMs), however, arguably reflect little more than guesswork given the lack of evaporation and soil moisture data at the spatial scales represented by regional and global models. Here we present a new approach for evaluating this critical aspect of LSMs. Seasonally averaged precipitation is used as a proxy for seasonally-averaged soil moisture, and seasonally-averaged air temperature is used as a proxy for seasonally-averaged evaporation (e.g., more evaporative cooling leads to cooler temperatures) the relationship between historical precipitation and temperature measurements accordingly mimics in certain important ways nature's relationship between soil moisture and evaporation. Additional information on the relationship is gleaned from joint analysis of precipitation and streamflow measurements. An experimental framework that utilizes these ideas to guide the development of an improved soil moisture-evaporation relationship is described and demonstrated.

  5. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia (United States)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.


    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes

  6. Groundwater Recharge Rates and Surface Runoff Response to Land Use and Land Cover Changes in Semi-arid Environments (United States)

    Owuor, Steven; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana; Pelster, David; Díaz-Pinés, Eugenio; Breuer, Lutz; Merbold, Lutz


    Conclusive evidence and understanding of the effects of land use and land cover (LULC) on both groundwater recharge and surface runoff is critical for effective management of water resources in semi-arid region as those heavily depend on groundwater resources. However, there is limited quantitative evidence on how changes to LULC in semi-arid tropical and subtropical regions affect the subsurface components of the hydrologic cycle, particularly groundwater recharge. In this study, we reviewed a total of 27 studies (2 modelling and 25 experimental), which reported on pre- and post-land use change groundwater recharge or surface runoff magnitude, and thus allowed to quantify the response of groundwater recharge rates and runoff to LULC. Restoration of bare land induces a decrease in groundwater recharge from 42 % of precipitation to between 6 and 12 % depending on the final LULC. If forests are cleared for rangelands, groundwater recharge increases by 7.8 ± 12.6 %, while conversion to cropland or grassland results in increases of 3.4 ± 2.5 and 4.4 ± 3.3 %, respectively. Rehabilitation of bare land to cropland results in surface runoff reductions of between 5.2 and 7.3 %. The conversion of forest vegetation to managed LULC shows an increase in surface runoff from 1 to 14.1 % depending on the final LULC. Surface runoff is reduced from 2.5 to 1.1 % when grassland is converted to forest vegetation. While there is general consistency in the results from the selected case studies, we conclude that there are few experimental studies that have been conducted in tropical and subtropical semi-arid regions, despite that many people rely heavily on groundwater for their livelihoods. Therefore, there is an urgent need to increase the body of quantitative evidence given the pressure of growing human population and climate change on water resources in the region.

  7. Modelling the response of soil and runoff chemistry to forest harvesting in a low deposition area (Kangasvaara, eastern Finland

    Directory of Open Access Journals (Sweden)

    J. Kämäri


    Full Text Available A simple dynamic soil model developed to analyse the effects of atmospheric deposition and nutrient cycling on terrestrial ecosystems, SMART 2, was applied to the Kangasvaara catchment in eastern Finland. Given the historical deposition and forest growth patterns and reasonable values for the input parameters, SMART 2 was calibrated successfully to reproduce present-day soil and Kangasvaara catchment on the soil and runoff water chemistry under a future deposition scenario (GRP scenario. These impacts were also compared to the effects of further reducing the deposition of sulphur and nitrate under the maximum feasible reduction (MFR scenario. The model demonstrates the consequences of breaking the nutrient cycle, and predicts that final cutting results in increased leaching of inorganic nitrogen and base cations from the cut part of the catchment for about 10 years. The resulting concentrations in the stream will depend on the ability of the buffer zones surrounding the stream to capture and utilize these nutrients.

  8. Influence of the Precision of LIDAR Data in Surface Water Runoff Estimation for Road Maintenance (United States)

    González-Jorge, H.; Díaz-Vilariño, L.; Lagüela, S.; Martínez-Sánchez, J.; Arias, P.


    Roads affect the natural surface and subsurface drainage pattern of a hill or a watershed. Road drainage systems are designed with the objective of reducing the energy generated by the flowing water and the presence of excess water or moisture within the road. A poorly designed drainage may affect to road maintenance causing cut or fill failures, road surface erosion and degrading the engineering properties of the materials with which it was constructed. Surface drainage pattern can be evaluated from Digital Elevation Models typically calculated from point clouds acquired with aerial LiDAR platforms. However, these systems provide low resolution point clouds especially in cases where slopes with steep grades exist. In this work, Mobile LiDAR systems (aerial and terrestrial) are combined for surveying roads and their surroundings in order to provide complete point cloud. As the precision of the point clouds obtained from these mobile systems is influenced by GNSS outages, Gaussian noise with different standard deviation values is introduced in the point cloud in order to determine its influence in the evaluation of water runoff direction. Results depict an increase in the differences of flow direction with the decrease of cell size of the raster dataset and with the increase of Gaussian noise. The last relation fits to a second-order polynomial Differences in flow direction up to 42º are achieved for a cell size of 0.5 m with a standard deviation of 0.15 m.


    Directory of Open Access Journals (Sweden)

    H. González-Jorge


    Full Text Available Roads affect the natural surface and subsurface drainage pattern of a hill or a watershed. Road drainage systems are designed with the objective of reducing the energy generated by the flowing water and the presence of excess water or moisture within the road. A poorly designed drainage may affect to road maintenance causing cut or fill failures, road surface erosion and degrading the engineering properties of the materials with which it was constructed. Surface drainage pattern can be evaluated from Digital Elevation Models typically calculated from point clouds acquired with aerial LiDAR platforms. However, these systems provide low resolution point clouds especially in cases where slopes with steep grades exist. In this work, Mobile LiDAR systems (aerial and terrestrial are combined for surveying roads and their surroundings in order to provide complete point cloud. As the precision of the point clouds obtained from these mobile systems is influenced by GNSS outages, Gaussian noise with different standard deviation values is introduced in the point cloud in order to determine its influence in the evaluation of water runoff direction. Results depict an increase in the differences of flow direction with the decrease of cell size of the raster dataset and with the increase of Gaussian noise. The last relation fits to a second-order polynomial Differences in flow direction up to 42º are achieved for a cell size of 0.5 m with a standard deviation of 0.15 m.

  10. Effect of heavy metals on soil mineral surfaces and bioretention pond performance (United States)

    Zhang, H.; Olson, M. S.


    Haibo Zhang and Mira S. Olson Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 As urban stormwater runoff flows across impervious surfaces, it collects and accumulates pollutants that are detrimental to the quality of local receiving water bodies. Heavy metal pollution, such as copper, lead and zinc, has been a concern in urban stormwater runoff. In addition, the presence of bacteria in stormwater has been frequently reported. The co-existence of both heavy metals and bacteria in stormwater and their complex interactions determine their transport and removal through bioretention pond. Stormwater runoff was sampled from a bioretention pond in Philadelphia, PA. The concentration of copper, lead and zinc were measured as 0.086ppm, 0.083ppm and 0.365ppm, respectively. Batch experiments were conducted with solutions of pure copper, lead and zinc, and with a synthetic stormwater solution amended with copper, lead and zinc. The solution was buffered to pH 7, within the range of the observed stormwater pH. In pure heavy metal solutions, the sorption of copper, lead and zinc onto soil are 96%, 99% and 85%, respectively. In synthetic stormwater containing nutrients and all three metals, the sorption of lead is 97%, while copper and zinc decrease to 29% and 71%, respectively. Mineralogy of a soil sample taken from the bioretention pond was analyzed using a scanning electron microscope (SEM) and compared before and after sorption experiments. Sorption and complexation of heavy metals is likely to change the mineralogy of soil particle surfaces, which will affect the attachment of bacteria and therefore its transport through soil. This study will benefit long-term predictions of the performance of bioretention ponds for urban stormwater runoff treatment. Keyword: Heavy metal pollution, sorption, surface complexation, urban stormwater runoff, bioretention pond

  11. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects on soil, leaf and fruit element concentrations of organic (compost, straw mulch and hand weeding) and integrated (inorganic fertilisers and herbicide usage; IP) soil surface management practices in the tree rows, in combination with weed covers, cover crops and straw mulch in the work rows, were investigated in a ...

  12. Assessing climate change impacts on runoff from karstic watersheds: NASA/GISS land-surface model improvement (United States)

    Blake, Reginald Alexander

    The off-line version of the Goddard Institute for Space Studies (GISS) land-surface hydrological model over- predicted run-off from the karstic Rio Cobre watershed in Jamaica. To assess possible climate change impacts on runoff from the watershed, the model's simulation of observed runoff was improved by adding to it a karst component that has pipe flow features. The improved model was tested on two other karstic watersheds (Yangtze - China and Rio Grande - USA) and the results were encouraging. The impacts that possible climate change may have on the three karstic watersheds were then assessed. The assessment indicates that in a doubled carbon dioxide climate, the Rio Cobre and the Rio Grande may experience decreases in runoff, especially in low flow periods. The Yangtze, on the other hand, may not experience decreases in total runoff, but its peak flow which now occurs in July may be attenuated and shifted to September. The results of the study also show that climate feedbacks convolute climate change assessments and that different results can be obtained from the same climate change scenario depending on the choice of the modeling methodology-that is, on whether the models are coupled or uncoupled.

  13. Effects of earthworms on slopewash, surface runoff, and fine-litter transport on a humid-tropical forested hillslope in eastern Puerto Rico: Chapter G in Water quality and landscape processes of four watersheds in eastern Puerto Rico (United States)

    Larsen, Matthew C.; Liu, Zhigang Liu; Zou, Xiaoming; Murphy, Sheila F.; Stallard, Robert F.


    Rainfall, slopewash (the erosion of soil particles), surface runoff, and fine-litter transport were measured in tropical wet forest on a hillslope in the Luquillo Experimental Forest, Puerto Rico, from February 1998 until April 2000. Slopewash data were collected using Gerlach troughs at eight plots, each 2 square meters in area. Earthworms were excluded by electroshocking from four randomly selected plots. The other four (control) plots were undisturbed. During the experiment, earthworm population in the electroshocked plots was reduced by 91 percent. At the end of the experiment, the electroshocked plots had 13 percent of earthworms by count and 6 percent by biomass as compared with the control plots. Rainfall during the sampling period (793 days) was 9,143 millimeters. Mean and maximum rainfall by sampling period (mean of 16 days) were 189 and 563 millimeters, respectively. Surface runoff averaged 0.6 millimeters and 1.2 millimeters by sampling period for the control and experimental plots, equal to 0.25 and 0.48 percent of mean rainfall, respectively. Disturbance of the soil environment by removal of earthworms doubled runoff and increased the transport (erosion) of soil and organic material by a factor of 4.4. When earthworms were removed, the erosion of mineral soil (soil mass left after ashing) and the transport of fine litter were increased by a factor of 5.3 and 3.4, respectively. It is assumed that increased runoff is a function of reduced soil porosity, resulting from decreased burrowing and reworking of the soil in the absence of earthworms. The background, or undisturbed, downslope transport of soil, as determined from the control plots, was 51 kilograms per hectare and the "disturbance" rate, determined from the experimental plots, was 261 kilograms per hectare. The background rate for downslope transport of fine litter was 71 kilograms per hectare and the disturbance rate was 246 kilograms per hectare. Data from this study indicate that the reduction

  14. Role of soil health in maintaining environmental sustainability of surface coal mining. (United States)

    Acton, Peter M; Fox, James F; Campbell, J Elliott; Jones, Alice L; Rowe, Harold; Martin, Darren; Bryson, Sebastian


    Mountaintop coal mining (MCM) in the Southern Appalachian forest region greatly impacts both soil and aquatic ecosystems. Policy and practice currently in place emphasize water quality and soil stability but do not consider upland soil health. Here we report soil organic carbon (SOC) measurements and other soil quality indicators for reclaimed soils in the Southern Appalachian forest region to quantify the health of the soil ecosystem. The SOC sequestration rate of the MCM soils was 1.3 MgC ha(-1) yr(-1) and stocks ranged from 1.3 ± 0.9 to 20.9 ± 5.9 Mg ha(-1) and contained only 11% of the SOC of surrounding forest soils. Comparable reclaimed mining soils reported in the literature that are supportive of soil ecosystem health had SOC stocks 2.5-5 times greater than the MCM soils and sequestration rates were also 1.6-3 times greater. The high compaction associated with reclamation in this region greatly reduces both the vegetative rooting depth and infiltration of the soil and increases surface runoff, thus bypassing the ability of soil to naturally filter groundwater. In the context of environmental sustainability of MCM, it is proposed that the entire watershed ecosystem be assessed and that a revision of current policy be conducted to reflect the health of both water and soil.

  15. Sustainable Stormwater Management: Examining the Role of Local Planning Capacity in Mitigating Peak Surface Runoff

    Directory of Open Access Journals (Sweden)

    Hyun Woo Kim


    Full Text Available The Chesapeake Bay, the largest estuary in the United States, is rich in natural resources. Its watershed has been impacted by excessive and degraded stormwater runoff from rapid urbanization. We used an empirical approach to investigate how local planning capacity in the Chesapeake Bay watershed affected stream flow. A multiple regression analysis was employed to examine to what extent that the planning factors and other contextual variables were associated with peak runoff. Counterintuitively, we found that sub-basins included in the sample jurisdictions with a relatively high plan quality score tend to generate higher volumes of peak runoff. Results further indicate that specific geographical, basin characteristic, and biophysical factors affected mean annual peak runoff significantly. Overall, our findings highlight the importance of local planning capacity and sustainable stormwater management concepts in mitigating excessive runoff.

  16. Soil particle tracing using RFID tags for elucidating the behavior of radiocesium on bare soil surfaces in Fukushima (United States)

    Manome, Ryo; Onda, Yuichi; Patin, Jeremy; Stefani, Chiara; Yoshimura, Kazuya; Parsons, Tony; Cooper, James


    Radioactive materials are generally associated with soil particles in terrestrial environment and therefore the better understanding soil erosion processes is expected to improve the mitigation of radioactive risks. Spatial variability in soil erosion has been one of critical issues for soil erosion management. This study attempts to track soil particle movement on soil surfaces by employing Radio Frequency Identification (RFID) tags for the better understanding radiocesium behavior. A RFID tag contains a specific electronically identifier and it permits tracing its movement by reading the identifier. In this study, we made artificial soil particles by coating the RFID tags with cement material. The particle diameters of the artificial soil particles approximately ranged from 3 to 5 mm. The artificial soil particles were distributed in a reticular pattern on a soil erosion plot (bare soil surface, 22.13 m length × 5 m width, 4.4° slope) in Kawamata town where radiocesium deposited because of the Fukushima Dai-ichi power plant accident. After their distribution on October 2012, we had read the identifiers of RFID tags and recorded their locations on the plot for 14 times by September 2013. Moving distance (MD) was calculated based on the difference of the location for each sampling date. The topographical changes on the plot were also monitored with a laser scanner to describe interrill erosion and rill erosion area on 11occasions. Median MD is 10.8cm for all the observations. Median MD on interrill and rill erosion areas were 9.8 cm and 20.7 cm, respectively. Seasonal variation in MD was observed; an extremely large MD was found in May 2013, at the first reading after the winter season. This large MD after winter suggests that snowmelt runoff was the dominant process which transported the soil particles. Comparing the MD with the observed amounts of rainfall, sediment and runoff on the plot, significant positive correlation were found if the data of May, 2013

  17. Effect of some surface and subsurface attributes on soil water erosion (United States)

    Bertol, Ildegardis; César Ramos, Júlio; Vidal Vázquez, Eva; Mirás Avalos, José Manuel


    Soil erosion is a complex phenomenon depending on climate, topography, soil intrinsic characteristics, crop and residue cover, and management and conservation practices that may be accelerated by man activities. Within the above mentioned factors, soil cover and soil management most influence soil erosion. Soil management includes mechanical mobilization and in soil conservationist systems soil residues are mobilized for increasing soil surface roughness. Even if soil roughness is ephemeral, it increases soil water storage and sediment retention in surface microdepressions, which contributes to decrease water erosion. Conservationist soil management systems also maintain the soil surface covered by crop residues, which are more persistent than roughness and contribute to dissipate kinetic energy from raindrops and partly also from runoff. Crop residues are more efficient than soil roughness in controlling water erosion because of its ability to retain detached soil particles. The objective of this study was to assess the efficiency of both soil cover by crop residues and soil surface roughness in controlling water erosion. A field experiments was performed on an Inceptisol in South Brazil under simulated rainfall conditions during 2012. The following treatments were evaluated: 1) residues of Italian ryegrass (Lolium multiflorum), 2) residues of common vetch (Vicia sativa), 3) scarification after cultivation of Italian ryegrass, 4) scarification after cultivation of common vetch, 5) scarified bare soil with high roughness as a control. Treatments #1 and 2 involved no-tilled soil with a rather smooth soil surface, where roots and crop residues of the previous crop were maintained. Treatments # 3 and 4 involved a rather high roughness, absence of previous crop residues and maintenance of antecedent roots. Experimental plots were 11 m long and 3.5 m wide with an area of 38.5 m2. Six successive simulated rainfall tests were applied using a rotating-boom rain simulator

  18. Zebrafish and clean water technology: assessing soil bioretention as a protective treatment for toxic urban runoff. (United States)

    McIntyre, J K; Davis, J W; Incardona, J P; Stark, J D; Anulacion, B F; Scholz, N L


    Urban stormwater contains a complex mixture of contaminants that can be acutely toxic to aquatic biota. Green stormwater infrastructure (GSI) is a set of evolving technologies intended to reduce impacts on natural systems by slowing and filtering runoff. The extent to which GSI methods work as intended is usually assessed in terms of water quantity (hydrology) and quality (chemistry). Biological indicators of GSI effectiveness have received less attention, despite an overarching goal of protecting the health of aquatic species. Here we use the zebrafish (Danio rerio) experimental model to evaluate bioinfiltration as a relatively inexpensive technology for treating runoff from an urban highway with dense motor vehicle traffic. Zebrafish embryos exposed to untreated runoff (48-96h; six storm events) displayed an array of developmental abnormalities, including delayed hatching, reduced growth, pericardial edema, microphthalmia (small eyes), and reduced swim bladder inflation. Three of the six storms were acutely lethal, and sublethal toxicity was evident across all storms, even when stormwater was diluted by as much as 95% in clean water. As anticipated from exposure to cardiotoxic polycyclic aromatic hydrocarbons (PAHs), untreated runoff also caused heart failure, as indicated by circulatory stasis, pericardial edema, and looping defects. Bioretention treatment dramatically improved stormwater quality and reversed nearly all forms of developmental toxicity. The zebrafish model therefore provides a versatile experimental platform for rapidly assessing GSI effectiveness. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Genetic algorithm optimized rainfall-runoff fuzzy inference system for row crop watersheds with claypan soils (United States)

    The fuzzy logic algorithm has the ability to describe knowledge in a descriptive human-like manner in the form of simple rules using linguistic variables, and provides a new way of modeling uncertain or naturally fuzzy hydrological processes like non-linear rainfall-runoff relationships. Fuzzy infe...

  20. Relation of runoff and soil erosion to weather types in the Mediterranean basin (United States)

    Nadal-Romero, Estela; Peña-Angulo, Dhais


    ; Nadal-Romero et al., 2015). In this study, we present a preliminary analysis of WTs and runoff and soil erosion data from 50 study areas in the Mediterranean basin including different land uses. To do so,we have collected and jointed different research groups cross the Mediterranean Basin, and combined different databases (plots and small representative catchments) with the WT classification calculated using the NCEP/NCAR 40-Year Reanalysis Project. This pioneer research will be a valuable tool in understanding the relationships between weather types, precipitation and soil erosion dynamics. Acknowledgments Estela Nadal-Romero was the beneficiary of a "Ramón y Cajal" postdoctoral contract (Spanish Ministry of Economy and Competitiveness). José Andrés López-Tarazón is in receipt of a Marie Curie Intra-European Fellowship (Project ''Floodhazards'', PIEF-GA-2013-622468, Seventh EU Framework Programme). References Cortesi, N., González-Hidalgo, J.C., Trigo, R.M., Ramos, A.M., 2014. Weather types and spatial variability of precipitation in the Iberian Peninsula. International Journal of Climatology 34(8), 2661-2677. García-Ruiz, J.M., Nadal-Romero, E., Lana-Renault, N., Beguería, S., 2013. Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology 198, 20-36. Nadal-Romero, E., González-Hidalgo, J.C., Cortesi, N., Desir, G., Gómez, J.A., et al., 2015. Relationship of runoff, erosion and sediment yield to weather types in the Iberian Peninsula. Geomorphology 228, 372-381.

  1. Physical basis and potential estimation techniques for soil erosion parameters in the Precipitation-Runoff Modeling System (PRMS) (United States)

    Carey, W.P.; Simon, Andrew


    Simulation of upland-soil erosion by the Precipitation-Runoff Modeling System currently requires the user to estimate two rainfall detachment parameters and three hydraulic detachmment paramenters. One rainfall detachment parameter can be estimated from rainfall simulator tests. A reformulation of the rainfall detachment equation allows the second parameter to be computed directly. The three hydraulic detachment parameters consist of one exponent and two coefficients. The initial value of the exponent is generally set equal to 1.5. The two coefficients are functions of the soil 's resistance to erosion and one of the two also accounts for sediment delivery processes not simulated in the model. Initial estimates of these parameters can be derived from other modeling studies or from published empirical relations. (USGS)

  2. The role of olive trees in rainfall erosivity and runoff and sediment yield in the soil beneath

    Directory of Open Access Journals (Sweden)

    E. de Luna


    Full Text Available The modification of raindrops by the canopy of olive trees increases the kinetic energy of the rain per unit area. The kinetic energy computed from the measured drop size distribution under the tree canopy in simulated rainfall experiments is greater than that received in the open, 17.1 J mm-1, as against 15.7 J mm-1 . This causes higher soil detachment and loss than that observed outside the canopy. Tillage treatments of the soil modify its erodibility, accelerate soil detachment and reduce, simultaneously, the velocity of runoff. Both effects reduce the amount of sediment compared to that observed in the non-tilled soil. The average values of soil lost per unit of rain depth and unit area were 5.81 g mm-1 m-2 (conventional tillage and 4.02 g mm-1 m-2 (zero tillage under the canopy compared to 0.89 g mm-1 m-2 (conventional tillage and 0.95 g mm-1 m-2 (zero tillage in the open.

  3. Physically plausible prescription of land surface model soil moisture (United States)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia


    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  4. Impact of rainfall spatial distribution on rainfall-runoff modelling efficiency and initial soil moisture conditions estimation

    Directory of Open Access Journals (Sweden)

    Y. Tramblay


    Full Text Available A good knowledge of rainfall is essential for hydrological operational purposes such as flood forecasting. The objective of this paper was to analyze, on a relatively large sample of flood events, how rainfall-runoff modeling using an event-based model can be sensitive to the use of spatial rainfall compared to mean areal rainfall over the watershed. This comparison was based not only on the model's efficiency in reproducing the flood events but also through the estimation of the initial conditions by the model, using different rainfall inputs. The initial conditions of soil moisture are indeed a key factor for flood modeling in the Mediterranean region. In order to provide a soil moisture index that could be related to the initial condition of the model, the soil moisture output of the Safran-Isba-Modcou (SIM model developed by Météo-France was used. This study was done in the Gardon catchment (545 km2 in South France, using uniform or spatial rainfall data derived from rain gauge and radar for 16 flood events. The event-based model considered combines the SCS runoff production model and the Lag and Route routing model. Results show that spatial rainfall increases the efficiency of the model. The advantage of using spatial rainfall is marked for some of the largest flood events. In addition, the relationship between the model's initial condition and the external predictor of soil moisture provided by the SIM model is better when using spatial rainfall, in particular when using spatial radar data with R2 values increasing from 0.61 to 0.72.

  5. Runoff generation in a Mediterranean semi-arid landscape: Thresholds, scale, rainfall and catchment characteristics (United States)

    Ries, Fabian; Schmidt, Sebastian; Sauter, Martin; Lange, Jens


    Surface runoff acts as an integrated response of catchment characteristics and hydrological processes. In the Eastern Mediterranean region, a lack of runoff data has hindered a better understanding of runoff generation processes on the catchment scale, despite the importance of surface runoff as a water resource or flood hazard. Our main aim was to identify and explain differences in catchment runoff reactions across a variety of scales. Over a period of five years, we observed runoff in ephemeral streams of seven watersheds with sizes between 3 and 129 km2. Landuse and surface cover types (share of vegetation, bare soil and rock outcrops) were derived from aerial images by objective classification techniques. Using data from a dense rainfall network we analysed the effects of scale, catchment properties and aridity on runoff generation. Thereby we extracted rainfall and corresponding runoff events from our time-series to calculate event based rainfall characteristics and catchment runoff coefficients. Soil moisture observations provided additional information on antecedent moisture conditions, infiltration characteristics and the evolution of saturated areas. In contrast to the prevailing opinion that the proportion of Hortonian overland flow increases with aridity, we found that in our area the largest share (> 95 %) of runoff is generated by saturation excess overland flow in response to long lasting, rainfall events of high amount. This was supported by a strong correlation between event runoff and precipitation totals. Similar rainfall thresholds (50 mm) for runoff generation were observed in all investigated catchments. No scale effects on runoff coefficients were found; instead we identified up to three-fold runoff coefficients in catchments with larger extension of arid areas, higher percentage of rock outcrops and urbanization. Comparing two headwater catchments with noticeable differences in extent of olive orchards, no difference in runoff generation was

  6. Prediction of hydrological reduction factor and initial loss in urban surface runoff from small ungauged catchments

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, K.; Harremoës, P.


    An advanced runoff model is compared to a simple one employing only a runoff coefficient and a regression parameter allowing for initial loss. The present study shows that the more detailed description of the runoff processes cannot be justified due to the uncertainty from using only one gauge...... in a catchment for the description of the rain input. A significant variation of the two parameters from one catchment to another has been found and the uncertainty of the two variables are evaluated. The uncertainty of the hydrological reduction factor and the initial loss should be taken into account...

  7. What Causes Runoff and Sediment Yields to Increase After Wildfires? (United States)

    Larsen, I. J.; MacDonald, L. H.; Brown, E.; Rough, D.; Welsh, M. J.; Pietraszek, J. H.; Libohova, Z.; Schaffrath, K.


    Runoff and sediment yields can increase by several orders or magnitude after high severity wildfires. These increases have been attributed to soil water repellency, loss of surface cover, and soil sealing by either mineral or ash particles, but the relative effects of these factors have rarely been isolated. The objectives of this study were hillslopes burned in high-severity wildfires, 13-34 unburned hillslopes, and 3 hillslopes where the surface cover was removed by raking; and 2) use rainfall simulations to determine whether surface sealing is more prevalent on bare soils or soils covered with varying amounts of ash. The field measurements were made over a five-year period in ponderosa pine forests in the Colorado Front Range. The burned hillslopes generally had stronger soil water repellency than the unburned hillslopes only for the first summer after burning, but the mean cumulative sediment yield from the burned hillslopes was 31 Mg ha-1 as compared to minimal sediment yields from the unburned hillslopes. The raked hillslopes had very similar sediment yields to the burned hillslopes when they had comparable surface cover, rainfall erosivity, and soil water repellency. The rainfall simulations on bare soil generated much more runoff and sediment than the simulations on ash-covered soil, and both bare soils developed a thin, structural soil seal. Runoff and sediment yields decreased as ash thickness increased, but successive simulations quickly eroded the ash cover and increased runoff rates to the levels observed for bare soil. The results indicate that: 1) post-fire sediment yields are primarily due to the loss of percent cover rather than fire-enhanced soil water repellency; 2) surface cover is important because it controls the extent of soil sealing; and 3) ash temporarily prevents soil sealing and reduces post-fire runoff and sediment yields. The results have important implications for forest management and mitigating post-fire erosion.

  8. SMEX02 Land Surface Information: Soils Database (United States)

    National Aeronautics and Space Administration — The Soil Moisture Experiment 2002 (SMEX02) took place in Ames, Iowa USA between 25 June and 12 July 2002. The NASA Land Surface Hydrology Data Archive maintains an...

  9. Testing of a conceptualisation of catchment scale surface soil moisture in a hydrologic model (United States)

    Komma, J.; Parajka, J.; Naeimi, V.; Blöschl, G.; Wagner, W.


    In this study the simulated surface soil moisture of a dual layer conceptual hydrologic model is tested against ERS scatterometer top soil moisture observations. The study catchment at the Kamp river with a size of 1550 km² is located in north-eastern Austria. The hydrologic simulations in this study are based on a well calibrated hydrologic model. The model consists of a spatially distributed soil moisture accounting scheme and a flood routing component. The spatial and temporal resolutions of the model are 1 x 1 km² and 15 minutes. The soil moisture accounting scheme simulates the mean moisture state over the entire vertical soil column. To get additional information about moisture states in a thin surface soil layer from the continuous rainfall-runoff model, the soil moisture accounting scheme is extended by a thin skin soil storage sitting at the top of the main soil reservoir. The skin soil storage is filled by rain and snow melt. The skin soil reservoir and the main soil reservoir are connected by a bidirectional moisture flux which is assumed to be a linear function of the vertical soil moisture gradient. The calibration of the additional dual layer component is based on hydrologic reasoning and the incorporation of measured soil water contents close to the study catchment. The comparison of the simulated surface soil moisture with the ERS scatterometer top soil moisture observations is performed in the period 1993-2005. On average, about 3 scatterometer images per month with a mean spatial coverage of about 82% are available at the Kamp catchment. The correlation between the catchment mean values of the two top soil moisture estimates changes with the season. The differences tend to be smaller due the summer month from July to October. The results indicate a good agreement between the modelled and remote sensed spatial moisture patterns in the study area.

  10. The effect of some soil characteristics on soil radon concentration and radon exhalation from soil surface

    International Nuclear Information System (INIS)

    Sun, Kainan; Cheng, Jianping; Guo, Qiuju


    To find out the impacts of soil characters on radon concentration in soil and radon exhalation from soil, field measurements on soil radon concentrations (60 cm under the soil surface) and radon exhalation rate from soil surface were carried out in totally 31 points with different types of soil in three cities in both South and North China. Soil radium contents, water contents, soil porosity and grain size were concretely analyzed in our laboratory. The linear simulation was used to analyze the above data. The results showed that radon exhalation rate from soil and radon concentrations in soil have direct proportion to soil radium contents. Rather high radium content and radon exhalation rate were measured in Guiyang area, 67±28Bq/Kg and 40±59 mBq/m 2 ·s, however no high soil radon concentration was found due to the difficulties in the measurements on clay soils with high saturation. Compared with soil radium contents, radon exhalation rate from soil and soil radon concentrations are more easily impacted by soil characters and change in a rather large range. (author)

  11. Acoustic techniques for studying soil-surface seals and crusts (United States)

    The impact of raindrops on a soil surface during a rainstorm may cause soil-surface sealing and upon drying, soil crusting. Soil-surface sealing is a result of the clogging of interaggregate pores by smaller suspended particles in the water and by structural deformation of the soil fabric, which red...

  12. Surface Runoff Threshold Responses to Rainfall Intensity, Scale, and Land Use Type, Change and Disturbance (United States)

    Bhaskar, A.; Kampf, S. K.; Green, T. R.; Wilson, C.; Wagenbrenner, J.; Erksine, R. H.


    The dominance of infiltration-excess (Hortonian) overland flow can be determined by how well a rainfall intensity threshold predicts streamflow response. Areas in which we would expect infiltration-excess overland flow to dominate include urban, bedrock, desert pavement, and lands disturbed by vegetation removal (e.g., after a fire burn or fallow agricultural lands). Using a transferable method of identifying the existence of thresholds, we compare the following sites to investigate their hydrologic responses to 60-minute rainfall intensities: desert pavement sites in Arizona (Walnut Gulch and Yuma Proving Ground), post-fire sites in a forested, mountainous burn area in north-central Colorado (High Park Fire), an area of northeastern Colorado Plains that has transitioned from dryland agriculture to conservation reserve (Drake Farm), and watersheds in suburban Baltimore, Maryland which range from less than 5% to over 50% impervious surface cover. We observed that at desert sites, the necessary threshold of rainfall intensity to produce flow increased with watershed size. In burned watersheds, watershed size did not have a clear effect on rainfall thresholds, but thresholds increased with time after burning, with streamflow no longer exhibiting clear threshold responses after the third year post-fire. At the agricultural site, the frequency of runoff events decreased during the transition from cultivated crops to mixed perennial native grasses. In an area where the natural land cover (forested) would be not dominated by infiltration-excess overland flow, urbanization greatly lowered the rainfall thresholds needed for hydrologic response. This work contributes to building a predictive framework for identifying what naturally-occurring landscapes are dominated by infiltration-excess overland flow, and how land use change could shift the dominance of infiltration-excess overland flow. Characterizing the driving mechanism for streamflow generation will allow better

  13. Sensitivity Analysis of the Surface Runoff Coefficient of HiPIMS in Simulating Flood Processes in a Large Basin

    Directory of Open Access Journals (Sweden)

    Yueling Wang


    Full Text Available To simulate flood processes at the basin level, the GPU-based High-Performance Integrated Hydrodynamic Modelling System (HiPIMS is gaining interest as computational capability increases. However, the difficulty of coping with rainfall input to HiPIMS reduces the possibility of acquiring a satisfactory simulation accuracy. The objective of this study is to test the sensitivity of the surface runoff coefficient in the HiPIMS source term in the Misai basin with an area of 797 km2 in south China. To achieve this, the basin was divided into 909,824 grid cells, to each of which a Manning coefficient was assigned based on its land use type interpreted from remote sensing data. A sensitivity analysis was conducted for three typical flood processes under four types of surface runoff coefficients, assumed a priori, upon three error functions. The results demonstrate the crucial role of the surface runoff coefficient in achieving better simulation accuracy and reveal that this coefficient varies with flood scale and is unevenly distributed over the basin.

  14. Field experiments of Controlled Drainage of agricultural clay soils show positive effects on water quantity (retention, runoff) and water quality (nitrate leaching). (United States)

    schipper, peter; stuyt, lodewijk; straat, van der, andre; schans, van der, martin


    Despite best management practices, agriculture is still facing major challenges to reduce nutrients leaching to the aquatic environment. In deltas, most of total nutrient losses from artificially drained agricultural soils are discharged via drains. Controlled drainage is a promising measure to prevent drainage of valuable nutrients, improve water quality and agricultural yield and adapt to climate change (reduce peak runoff, manage water scarcity and drought). In The Netherlands, this technique has attracted much attention by water managers and farmers alike, yet field studies to determine the expected (positive) effects for Dutch conditions were scarce. Recently, a field experiment was set up on clay soils. Research questions were: how does controlled, subsurface drainage perform on clay soils? Will deeper tile drains function just as well? What are the effects on drain water quality (especially with respect to nitrogen and salt) and crop yield? An agricultural field on clay soils was used to test different tile drainage configurations. Four types of tile drainage systems were installed, all in duplicate: eight plots in total. Each plot has its own outlet to a control box, where equipment was installed to control drain discharge and to measure the flow, concentrations of macro-ions, pH, nitrogen, N-isotopes and heavy metals. In each plot, groundwater observation wells and suction cups are installed in the saturated and vadose zones, at different depths, and crop yield is determined. Four plots discharge into a hydrologic isolated ditch, enabling the determination of water- and nutrient balances. Automatic drain water samplers and innovative nitrate sensors were installed in four plots. These enable identification and unravelling so-called first flush effects (changes in concentrations after a storm event). Water-, chloride- and nitrogen balances have been set up, and the interaction between groundwater and surface water has been quantified. The hydrological

  15. Use of isotopically labeled fertilizer to trace nitrogen fertilizer contributions to surface, soil, and ground water (United States)

    Wilkison, D.H.; Blevins, D.W.; Silva, S.R.


    The fate and transport of a single N fertilizer application through plants, soil, runoff, and the unsaturated and saturated zones was determined for four years at a field site under continuous corn (Zea mays L.) management. Claypan soils, which underlie the site, were hypothesized to restrict the movement of agrichemicals from the soil surface to ground water. However, N fertilizer moved rapidly through preferential flow paths in the soil and into the underlying glacial till aquifer. Most N transport occurred during the fall and winter when crops were not available to use excess N. Forty months after application, 33 percent of the fertilizer had been removed by grain harvests, 30 percent had been transpired to the atmosphere, and 33 percent had migrated to ground water. Although runoff volumes were 50 percent greater than infiltration, less than 2 percent of the fertilizer was lost to runoff. Small measured denitrification rates and large measured dissolved oxygen concentrations in ground water favor the long-term stability of NO3-1 in ground water. Successive fertilizer applications, in areas that lack the ability to moderate N concentrations through consumptive N reactions, risk the potential of N-saturated ecosystems.

  16. Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains

    Directory of Open Access Journals (Sweden)

    E. Zehe


    Full Text Available This study presents an application of an innovative sampling strategy to assess soil moisture dynamics in a headwater of the Weißeritz in the German eastern Ore Mountains. A grassland site and a forested site were instrumented with two Spatial TDR clusters (STDR that consist of 39 and 32 coated TDR probes of 60 cm length. Distributed time series of vertically averaged soil moisture data from both sites/ensembles were analyzed by statistical and geostatistical methods. Spatial variability and the spatial mean at the forested site were larger than at the grassland site. Furthermore, clustering of TDR probes in combination with long-term monitoring allowed identification of average spatial covariance structures at the small field scale for different wetness states. The correlation length of soil water content as well as the sill to nugget ratio at the grassland site increased with increasing average wetness and but, in contrast, were constant at the forested site. As soil properties at both the forested and grassland sites are extremely variable, this suggests that the correlation structure at the forested site is dominated by the pattern of throughfall and interception. We also found a very strong correlation between antecedent soil moisture at the forested site and runoff coefficients of rainfall-runoff events observed at gauge Rehefeld. Antecedent soil moisture at the forest site explains 92% of the variability in the runoff coefficients. By combining these results with a recession analysis we derived a first conceptual model of the dominant runoff mechanisms operating in this catchment. Finally, we employed a physically based hydrological model to shed light on the controls of soil- and plant morphological parameters on soil average soil moisture at the forested site and the grassland site, respectively. A homogeneous soil setup allowed, after fine tuning of plant morphological parameters, most of the time unbiased predictions of the observed

  17. Infiltration and runoff losses under fallowing and conservation ...

    African Journals Online (AJOL)


    Feb 16, 2011 ... erosion was not checked immediately by a dynamic policy based on reliable technical information, then ..... infiltration dynamics or changes in infiltration as affected by soil properties like aggregation, .... pores, surface sealing, reduced infiltration rates and increased runoff and soil erosion (Sumner, 1992).

  18. Overcoming soil compaction in surface mine reclamation

    International Nuclear Information System (INIS)

    Sweigard, R.J.


    Rubber-tyred soil reconstruction equipment causes compaction of soil and means surface mine operators cannot satisfy crop yield standards defined by the Surface Mining Control and Reclamation Act. Soil compaction can be overcome by either modifying the reconstruction process or alleviating the problem, for example by deep tillage, once it occurs. The Dept. of Mining Engineering at the Institute of Mining and Minerals Research is conducting a laboratory investigation into a method of injecting low density porous organic material into a bin containing soil at the same time as the soil is ripped. This should prevent voids collapsing when subjected to forces from farm equipment and natural sources. Soil analyses are performed before and after the injection. Ripping and injection with ground pecan shells had a residual effect on nuclear bulk density compared to the initially compacted case and also showed an improvement in hydraulic conductivity. Work is in progress on modifying the system to handle other injection material and should lead on to field tests on a prototype involving both soil analysis and crop yield determination. 1 fig

  19. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects of integrated production (IP) and organic-acceptable soil surface management practices were investigated in a 'Cripps Pink'/M7 apple orchard in the Elgin area, South Africa. Work row treatments included cover crops, weeds and straw mulch. In the IP tree rows, weeds were controlled with herbicide and nitrogen (N) ...

  20. Quantification of turfgrass buffer performance in reducing transport of pesticides in surface runoff (United States)

    Pesticides are used to control pests in managed biological system such as agricultural crops and golf course turf. Off-site transport of pesticides with runoff and their potential to adversely affect non-target aquatic organisms has inspired the evaluation of management practices to minimize pestic...

  1. Trend and concentrations of legacy lead (Pb) in highway runoff

    International Nuclear Information System (INIS)

    Kayhanian, Masoud


    This study presents the results of lead (Pb) concentrations from both highway runoff and contaminated soil along 32 and 23 highway sites, respectively. In general, the Pb concentration on topsoil (0–15 cm) along highways was much higher than the Pb concentration in subsurface soil (15–60 cm). The Pb deposited on soil appears to be anthropogenic and a strong correlation was found between the Pb concentration in surface soil and highway runoff in urban areas. The concentration of Pb measured during 1980s from highways runoff throughout the world was up to 11 times higher than the measured values in mid 1990s and 2000s. The current Pb deposited on soil near highways appears to be a mixture of paint, tire weight balance and old leaded gasoline combustion. Overall, the Pb phase-out regulation reduced the Pb deposits in the environment and consequently lowered Pb loading into receiving waters. - Highlights: ► Pb concentrations in highway runoff ranged from 0.5 to 752 mg/L. ► 78% of total lead concentration in highway runoff was in particulate form. ► Pb deposited on highway sites was mostly within 0 to 15 cm of soil column. ► Pb concentration in highway runoff and top soil was strongly correlated. ► Current Pb concentration in highway runoff is up to 11 times lower than late 1980s. - Most Pb deposited on soil near highways is within the top 15 cm. This Pb is the major sources of Pb concentration in highway runoff that has substantially been reduced since lead phase-out era.

  2. Comparison of the soil losses from 7Be measurements and the monitoring data by erosion pins and runoff plots in the Three Gorges Reservoir region, China

    International Nuclear Information System (INIS)

    Shi Zhonglin; Wen Anbang; Zhang Xinbao; Yan Dongchun


    The potential for using 7 Be measurements to document soil redistribution associated with a heavy rainfall was estimated using 7 Be method on a bare purple soil plot in the Three Gorges Reservoir region of China. The results were compared with direct measurement from traditional approaches of erosion pins and runoff plots. The study shows that estimation of soil losses from 7 Be are comparable with the monitoring results provided by erosion pins and runoff plots, and are also in agreement with the existing knowledge provided by 137 Cs measurements. The results obtained from this study demonstrated the potential for using 7 Be technique to quantify short-term erosion rates in these areas. - Highlights: → The soil redistribution associated with a heavy rainfall was estimated using 7 Be measurements. → Estimation of soil losses from 7 Be are comparable with the monitoring data provided by erosion pins and runoff plots. → The potential for using 7 Be measurements to quantify short-term erosion rates in purple soil areas was demonstrated.

  3. Estimating effectiveness of crop management for reduction of soil erosion and runoff (United States)

    Hlavcova, K.; Studvova, Z.; Kohnova, S.; Szolgay, J.


    The paper focuses on erosion processes in the Svacenický Creek catchment which is a small sub-catchment of the Myjava River basin. To simulate soil loss and sediment transport the USLE/SDR and WaTEM/SEDEM models were applied. The models were validated by comparing the simulated results with the actual bathymetry of a polder at the catchment outlet. Methods of crop management based on rotation and strip cropping were applied for the reduction of soil loss and sediment transport. The comparison shows that the greatest intensities of soil loss were achieved by the bare soil without vegetation and from the planting of maize for corn. The lowest values were achieved from the planting of winter wheat. At the end the effectiveness of row crops and strip cropping for decreasing design floods from the catchment was estimated.

  4. Acid-base status of soils in groundwater discharge zones — relation to surface water acidification (United States)

    Norrström, Ann Catrine


    Critical load calculations have suggested that groundwater at depth of 2 m in Sweden is very sensitive to acid load. As environmental isotope studies have shown that most of the runoff in streams has passed through the soil, there is a risk in the near future of accelerated acidification of surface waters. To assess the importance of the last soil horizon of contact before discharge, the upper 0-0.2m of soils in seven discharge zones were analysed for pools of base cations, acidity and base saturation. The sites were about 3-4 m 2 in size and selected from two catchments exposed to different levels of acid deposition. The soils in the seven sites had high concentrations of exchangeable base cations and consequently high base saturation. The high correlation ( r2 = 0.74) between base saturation in the soils of the discharge zones and mean pH of the runoff waters suggested that the discharge zone is important for surface water acidification. The high pool of exchangeable base cations will buffer initially against the acid load. As the cation exchange capacity (meq dm -3) and base saturation were lower in the sites from the catchment receiving lower deposition, these streams may be more vulnerable to acidification in the near future. The high concentration of base cations in non-exchangeable fractions may also buffer against acidification as it is likely that some of these pools will become exchangeable with time.

  5. Upscaling Surface and Subsurface Runoff Process Using a Travel Time Matching Strategy: Application to the Ohio River Basin (United States)

    Zhao, Y.; Beighley, E.


    While hydrologic understanding gained from model assessment and sensitivity analyses continues to grow, computational efficiency is still a challenge for the hydrologic and hydraulic modeling community, especially at continental and global scales. This research presents a runoff flowpath travel-time matching method to upscale hydrologic response characteristics of surface and subsurface runoff from fine to coarse model resolutions. Five model resolutions are investigated in this study: 10, 32, 100, 320, 1000 km2, where model resolution represents the threshold areas used to define the underlying river network and catchment boundaries. Here, the 1 km2 mode resolution is set as the reference model. A case study in the Ohio River Basin (roughly 500,000 km2) is presented using a synthetic SCS 2-year flood event. The velocities of surface and subsurface runoff from Hillslope River Routing (HRR) model operating at 1 km2 resolution is determined on a high-performance computing cluster. Using these simulated velocities and 90-m Digital Elevation Model (DEM), pixel level velocities are determined separately for hillslopes (surface and subsurface) and channels. Cumulative Probability Distributions (CDFs) for surface and subsurface travel times based on the gridded 90-m velocities and conceptualized model units representing individual catchments in the HRR model are matched by adjusting surface roughness and subsurface hydraulic conductivity along HRR hillslopes in the courser model resolutions. The beta distribution is applied to approximate the CDF travel time to reduce pixel-level processing time for large model units. Simulated hydrographs at the outlet of the Ohio River Basin for the five coarser model resolutions are shown to have nearly identical peak discharge and time-to-peak discharge values as compared to the reference model. The proposed upscaling method can reduce the computation time by transferring the hydrologic characteristics captured at fine scales to

  6. Scale effects on runoff and soil erosion in rangelands: observations and estimations with predictors of different availability (United States)

    Runoff and erosion estimates are needed for rangeland management decisions and evaluation of ecosystem services derived from rangeland conservation practices. The information on the effect of scale on the runoff and erosion, and on the choice of runoff and erosion predictors, remains scarce. The obj...

  7. Modeling effect of cover condition and soil type on rotavirus transport in surface flow. (United States)

    Bhattarai, Rabin; Davidson, Paul C; Kalita, Prasanta K; Kuhlenschmidt, Mark S


    Runoff from animal production facilities contains various microbial pathogens which pose a health hazard to both humans and animals. Rotavirus is a frequently detected pathogen in agricultural runoff and the leading cause of death among children around the world. Diarrheal infection caused by rotavirus causes more than two million hospitalizations and death of more than 500,000 children every year. Very little information is available on the environmental factors governing rotavirus transport in surface runoff. The objective of this study is to model rotavirus transport in overland flow and to compare the model results with experimental observations. A physically based model, which incorporates the transport of infective rotavirus particles in both liquid (suspension or free-floating) and solid phase (adsorbed to soil particles), has been used in this study. Comparison of the model results with experimental results showed that the model could reproduce the recovery kinetics satisfactorily but under-predicted the virus recovery in a few cases when multiple peaks were observed during experiments. Similarly, the calibrated model had a good agreement between observed and modeled total virus recovery. The model may prove to be a promising tool for developing effective management practices for controlling microbial pathogens in surface runoff.

  8. Sediment Enrichment Ratio and Nutrient Leached by Runoff and Soil Erosion on Cacao Plantation

    Directory of Open Access Journals (Sweden)

    Oteng Haridjaja


    Full Text Available Soil consevation management system is an activity for diminishing sediment enrichment ratio and nutrient leachedsby water run off and soil erosion processes. The research was aimed to study sediment enrichment ratio and nutrientleached by run off and soil erosion on cacao plantations. Arachis pintoi with strips parallel contour and multiplestrip cropping of upland rice or soybean (Glycine max were planted to improve soil physical characterictic oncacao plantation as a main plant. The expriment were conducted with treatments as 10-15% and 40-45% slopes, 5-7months and 25-27 months cacao ages (as main plants. As sub plots are T1 as a monoculture which to be cleaningunder the plant canopy, T2 as a multiple strip cropping of upland rice or soybean, T3 as a combination of T2 and A.Pintoi strip. The results showed that total N, P2O5, and K2O and organic-C contents in water run off and soilsediments indicated that T3 >T2 >T1 treatment, with the contents of each nutrient: T3 (total N 0.18%; 24.87 mg 100g-1 P2O5: K2O 15.16 mg 100 g-1, T1 (total N 0.16%, 22.39 mg 100g-1 P2O5, K2O 11.50 mg 100g-1. The total N, P2O5, K2Oand organic-C soil contents 1.

  9. Modeling the Impacts of Spatial Heterogeneity in the Castor Watershed on Runoff, Sediment, and Phosphorus Loss Using SWAT: I. Impacts of Spatial Variability of Soil Properties. (United States)

    Boluwade, Alaba; Madramootoo, Chandra


    Spatial accuracy of hydrologic modeling inputs influences the output from hydrologic models. A pertinent question is to know the optimal level of soil sampling or how many soil samples are needed for model input, in order to improve model predictions. In this study, measured soil properties were clustered into five different configurations as inputs to the Soil and Water Assessment Tool (SWAT) simulation of the Castor River watershed (11-km 2 area) in southern Quebec, Canada. SWAT is a process-based model that predicts the impacts of climate and land use management on water yield, sediment, and nutrient fluxes. SWAT requires geographical information system inputs such as the digital elevation model as well as soil and land use maps. Mean values of soil properties are used in soil polygons (soil series); thus, the spatial variability of these properties is neglected. The primary objective of this study was to quantify the impacts of spatial variability of soil properties on the prediction of runoff, sediment, and total phosphorus using SWAT. The spatial clustering of the measured soil properties was undertaken using the regionalized with dynamically constrained agglomerative clustering and partitioning method. Measured soil data were clustered into 5, 10, 15, 20, and 24 heterogeneous regions. Soil data from the Castor watershed which have been used in previous studies was also set up and termed "Reference". Overall, there was no significant difference in runoff simulation across the five configurations including the reference. This may be attributable to SWAT's use of the soil conservation service curve number method in flow simulation. Therefore having high spatial resolution inputs for soil data may not necessarily improve predictions when they are used in hydrologic modeling.

  10. The study of contamination of discharged runoff from surface water disposal channels of Bushehr city in 2012-2013

    Directory of Open Access Journals (Sweden)

    Vaheid Noroozi-Karbasdehi


    Full Text Available Background: In coastal cities, wastewater discharge into the sea is one of the options for sewage disposal that in case of non-compliance with health standards  in wastewater disposal will be led to the spread of infection and disease. On the other hand, water resources preservation and using them efficiently are the principles of sustainable development of each country. This study was aimed to investigate the contamination of discharged runoff from the surface water disposal channels of Bushehr city in 2012 - 13. Materials and Methods: In this study, Sampling was conducted by composite sampling method from output of the five main surface water disposal channels leading to the Persian Gulf located in the coastal region of Bushehr city during two seasons including wet (winter and dry (summer in 2012- 13. Then, experimental tests of BOD5, total coliform and fecal coliform were done on any of the 96 samples according to the standard method. Results: Analysis of the data showed that the BOD5, total coliform and fecal coliform of effluent runoff of the channels were more than the national standard output of disposal wastewaters into the surface waters, and the highest and lowest amount of BOD5 which obtained were 160 mg/L and 28 mg/L, respectively. Conclusion: considering the fact that discharged runoff from surface water disposal channels link from shoreline to sea in close distance and they often are as natural swimming sites and even fishing sites of Bushehr city, and also according to high level of organic and bacterial load of these channels, it is urgently required to be considered by the authorities.

  11. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China (United States)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei


    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  12. Influence of amendments on soil structure and soil loss under ...

    African Journals Online (AJOL)



    Sep 13, 2010 ... and improve water infiltration, delay runoff engenderation and decrease runnoff velocity and soil erosion yield. Finally, this study also ascertained optimal application quantities and the most effective sort in three amendments, which PPA is most effective at lowering surface runoff, reducing soil loss.

  13. Prediction of sediment yield in runoff from agricultural land in the ...

    African Journals Online (AJOL)

    Records on 111 natural rainfall events covering 2 years (2001 and 2003) were used to estimate the sediment yield in runoff from a bare surface Alfisol, and a similar soil under straw mulch and natural grass in the southern Guinea savanna zone of Nigeria. Measurements of runoff amount and sediment load were made for ...

  14. Assessment of stormwater runoff management practices and BMPs under soil sealing: A study case in a peri-urban watershed of the metropolitan area of Rome (Italy). (United States)

    Recanatesi, Fabio; Petroselli, Andrea; Ripa, Maria Nicolina; Leone, Antonio


    By 2006, almost 100,000 km 2 of EU soil (2.3% of the whole territory) had been sealed, with a per capita quota of 200 m 2 of sealed surface for each EU citizen. Italy, in 2016, recorded a soil sealing rate of 2.8% of the entire territory. In this context, the urban expansion which occurred in past decades is considered one of the main causes of the increase in flood frequency and intensity in small catchments, causing both social and financial damage. In the present paper, the positive impact of introducing Best Management Practices (BMPs) at urban scale is assessed, with particular regard to the decreasing of flood prone areas. A suburban watershed of the metropolitan area of Rome has been selected for a study case, as its soil sealing rate can be considered paradigmatic at this scale. Starting from the analysis of rainfall events occurring between 2008 and 2011 which caused millions of euros worth of damage, and using a high resolution data set in a GIS environment, two scenarios, with and without BMP introduction, are evaluated applying a rainfall-runoff model and a bidimensional hydraulic model. From a comparison of the flood maps with and without the introduction of BMPs, it was determined that in 90% of the circumstances the employment of the BMPs would completely remove the hydraulic risk, while in the remaining 10% the BMP would at least reduce the areas subjected to flooding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Transport mechanisms of Silver Nanoparticles by runoff - A Flume Experiment (United States)

    Mahdi Mahdi, Karrar NM; Commelin, Meindert; Peters, Ruud J. B.; Baartman, Jantiene E. M.; Ritsema, Coen; Geissen, Violette


    Silver Nanoparticles (AgNPs) are being used in many products as it has unique antimicrobial-biocidal properties. Through leaching, these particles will reach the soil environment which may affect soil organisms and disrupt plants. This work aims to study the potential transport of AgNPs with water and sediment over the soil surface due to soil erosion by water. This was done in a laboratory setting, using a rainfall simulator and flume. Low AgNPs concentration (50 μ was applied to two soil-flumes with slopes of 20% and 10%. The rainfall was applied in four events of 15 min each with the total amount of rainfall was 15mm in each event. After applying the rainfall, different samples were collected; soil clusters, background (BS) and surface sediments (Sf), from the flume surface, and, Runoff sediments (RS) and water (RW) was collected from the outlet. The results showed that AgNPs were detected in all samples collected, however, AgNPs concentration varied according samples type (soil or water), time of collection (for runoff water and sediment) and the slope of the soil flume. Further, the higher AgNPs concentrations were detected in the background soil (BS); as the BS samples have more finer parts (silt and clay). The AgNPs concentration in the runoff sediments increased with subsequent applied rain events. In addition to that, increasing the slope of the flume from 10% to 20% increased the total AgNPs transported with the runoff sediments by a factor 1.5. The study confirms that AgNPs can be transported over the soil surface by both runoff water and sediments due to erosion.

  16. Near-saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada (United States)

    Bodhinayake, Waduwawatte; Si, Bing Cheng


    Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near-saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double-ring and tension infiltrometers at -0.3, -0.7, -1.5 and -2.2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field-saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at -0.3 kPa pressure head, inverse capillary length scale () and water-conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p 1.36 × 10-4 m in diameter in the three land uses. Land use modified near-saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage.

  17. Soil Surface Sealing Reverse or Promote Desertification? (United States)

    Assouline, S.; Thompson, S. E.; Chen, L.; Svoray, T.; Sela, S.; Katul, G. G.


    Vegetation cover in dry regions is a key variable determining desertification. Bare soils exposed to rainfall by desertification can form physical crusts that reduce infiltration, exacerbating water stress on the remaining vegetation. Paradoxically, field studies show that crust removal is associated with plant mortality in desert systems, while artificial biological crusts can improve plant regeneration. Here, it is shown how physical crusts can act as either drivers of, or buffers against desertification depending on their environmental context. The behavior of crusts is first explored using a simplified theory for water movement on a uniform, partly vegetated slope subject to stationary hydrologic conditions. Numerical model runs supplemented with field data from a semiarid Long-Term Ecological Research (LTER) site are then applied to represent more realistic environmental conditions. When vegetation cover is significant, crusts can drive desertification, but this process is potentially self-limiting. For low vegetation cover, crusts mitigate against desertification by providing water subsidy to plant communities through a runoff-runon mechanism.

  18. Soil surface protection by Biocrusts: effects of functional groups on textural properties (United States)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián


    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  19. Influence of Forest Cutting and Mountain Farming on some Vegetation, Surface Soil and Surface Runoff Characteristics (United States)

    Robert E. Dils


    With the increasing demands made on our water supplies within the past few decades has come the realization that fundamental research concerning this basic natural resource is woefully lacking. Because the water resource is so closely linked with climate, it was the consensus of opinion for many centuries that man could alter it no more than he could the weather. This...

  20. Modeling spatial and seasonal soil moisture in a semi arid hillslope: The impact of integrating soil surface seal parameters (United States)

    Sela, Shai; Svoray, Tal; Assouline, Shmuel


    Modeling hillslope hydrology and the complex and coupled reaction of runoff processes to rainfall, lies in the focus of a growing number of research studies. The ability to characterize and understand the mechanisms underlying the complex hillslope soil moisture patterns, which trigger spatially variable non linear runoff initiation, still remains a current hydrological challenge especially in ungauged catchments. In humid climates, connectivity of transient moisture patches was suggested as a unifying concept for studying thresholds for subsurface flow and redistribution of soil moisture at the hillslope scale. In semiarid areas, however, transient moisture patches control also the differentiation between evaporation and surface runoff and the ability to identify a unifying concept controlling the large variability of soil moisture at the hillslope scale remains an open research gap. At the LTER Lehavim site in the center of Israel (31020' N, 34045' E) a typical hillslope (0.115 km2) was chosen offering different aspects and a classic geomorphologic banding. The annual rainfall is 290 mm, the soils are brown lithosols and arid brown loess and the dominant rock formations are Eocenean limestone and chalk with patches of calcrete. The vegetation is characterised by scattered dwarf shrubs (dominant species Sarcopoterium spinosum) and patches of herbaceous vegetation, mostly annuals, are spread between rocks and dwarf shrubs. An extensive spatial database of soil hydraulic and environmental parameters (e.g. slope, radiation, bulk density) was measured in the field and interpolated to continuous maps using geostatistical techniques and physically based modelling. To explore the effect of soil surface sealing, Mualem and Assouline (1989) equations describing the change in hydraulic parameters resulting from soil seal formation were applied. Two simple indices were developed to describe local evaporation values and contribution of water from rock outcrops to the soil

  1. Surface Mining: Soil, Coal, and Society (United States)

    Singer, S. Fred

    Soil is a resource that is for all practical purposes nonrenewable. Natural soils have been formed over periods of thousands of years, although with intensive management and with inputs of nutrients and conditioners this time could be reduced.Coal is another precious resource, of critical importance as an interim fuel for perhaps the next hundred years or so, until renewable energy resources based on nuclear fusion or solar energy can become economic and widespread. Surface mining is the most efficient method for obtaining coal at lowest cost. But it disturbs the soil and takes it out of agricultural production for many years or decades, and sometimes forever, unless the land is properly restored at considerable cost.

  2. Simulation of filter strips influence on runoff and soil and nutrient losses under different rainfall patterns in a small vineyard catchment (United States)

    Ramos, Maria C.; Benito, Carolina


    This work presents the analysis of the influence of filter strips on soil and water losses in a small catchment, whose main land use is grape vines. The watershed was located in the municipality of Piera (Barcelona, Spain). Other crops like olive trees, winter barley and alfalfa were also found, as well as some residential areas. Soil and water losses were simulated using the Soil and Water Assessment Tool (SWAT). The model was calibrated and validated using soil water and runoff data collected in the field during the period May 2010- May 2012. Then, the model was run for the period 2000-2011, which included years with different rainfall amounts and characteristics. Soil losses with and without that soil conservation measure was compared. The annual rainfall recorded during the analysed years ranged from 329.8 to 785 mm with different rainfall distributions within the year. Runoff rates ranged from 17 to 141 mm, which represented respectively 4.7 and 21% of total precipitation. Both extreme situations were recorded in the driest years of the series, with precipitation below the average. Soil losses ranged between 0.31 Mg/ha in the driest year and 13.9 Mg/ha, in the wettest. The simulation of soil losses with the introduction of filter strips 3m width in the vineyards resulted in a reduction of soil losses up to 68% in relation to the situation without that soil conservation measure. This soil loss decrease represented an additional nutrient loss reduction (up to 66% for N_organic, up to 64% of P_organic and between 6.5 and 40% of N_nitrate, depending on rainfall characteristics).

  3. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway (United States)

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode


    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  4. Synergistic use of ENVISAT ASAR Global Mode Soil Moisture Products in the Okavango Delta: Runoff & Wetland Monitoring (United States)

    Bartsch, A.; Doubkova, M.; Pathe, C.; Sabel, D.; Wagner, W.


    The Okavango Delta of northern Botswana is a fast-changing system of canals and floodplains which serves as an important wetland habitat. The area of the wetland is highly dependent on local source of precipitation as well as on external inflow from the upper Okavango River. The Advanced Synthetic Aperture Radar (ASAR) is an active remote sensing instrument onboard ENVISAT platform operating at C-band. The data from the ASAR Global ScanSAR Mode (GM) have amply demonstrated the ability for inland wetland monitoring as well as for near surface soil moisture derivation. The processing chain for ENVISAT derived soil moisture was setup within the ESA Tiger DUE Innovator project SHARE for hydrometeorological applications in the Southern African Development Community (SADC). The ASAR GM provides up to weekly samples of the Okavango delta with 1 km spatial resolution. The extent of the Okavango Delta wetlands is derived from the ENVISAT ASAR GM data applying threshold of absolute backscatter values. The relations of the wetland size, river discharge, and the relative mean soil moisture in the upper Okavango catchment are studied. Correlation above 0.9 can be observed between the relative mean soil moisture and river discharge. High dependence of the wetland extent on the relative mean soil moisture in the upper Okavango is also clearly evident. With this work we demonstrate that the relative soil moisture derived from the ENVISAT ASAR GM data can be clearly related to the river discharge measurements in subtropic environments. Additionally, we show the ability of ENVISAT ASAR Global Mode to monitor dynamics of wetland areas as a response to the relative soil moisture in the upper Okavango catchment. This allows for prediction of the wetland extent up to six months in advance. An incorporation of spatially improved soil moisture and wetland products may improve prediction models for the wetland region.

  5. Fill and spill drives runoff connectivity over frozen ground (United States)

    Coles, A. E.; McDonnell, J. J.


    Snowmelt-runoff processes on frozen ground are poorly understood at the hillslope scale. This is especially true for hillslopes on the northern Great Plains of North America where long periods of snow-covered frozen ground with very shallow slopes mask any spatial patterns and process controls on connectivity and hillslope runoff generation. This study examines a 4.66 ha (46,600 m2) hillslope on the northern Great Plains during the 2014 spring snowmelt season to explore hillslope runoff processes. Specifically, we explore the spatial patterns of runoff production source areas and examine how surface topography and patterns of snow cover, snow water equivalent, soil water content, and thawed layer depth - which we measured on a 10 m grid across our 46,600 m2 hillslope - affect melt water partitioning and runoff connectivity. A key question was whether or not the controls on connectivity are consistent with the fill and spill mechanism found in rain-dominated and unfrozen soil domains. The contrast between the slow infiltration rates into frozen soil and the relatively fast rates of snowmelt delivery to the soil surface resulted in water accumulation in small depressions under the snowpack. Consequently, infiltration was minimal over the 12 day melt period. Instead, nested filling of micro- and meso-depressions was followed by macro-scale, whole-slope spilling. This spilling occurred when large patches of ponded water exceeded the storage capacity behind downslope micro barriers in the surface topography, and flows from them coalesced to drive a rapid increase in runoff at the hillslope outlet. These observations of ponded water and flowpaths followed mapable fill and spill locations based on 2 m resolution digital topographic analysis. Interestingly, while surface topography is relatively unimportant under unfrozen conditions at our site because of low relief and high infiltrability, surface topography shows episodically critical importance for connectivity and

  6. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface ...... of soil surface temperature are often more important to plants and animals than the average ... shrub, and a long light shadow is obvious on the lee side. At 14:00, shadow is much ...

  7. Measuring evaporation from soil surfaces for environmental and ...

    African Journals Online (AJOL)

    There are many reasons for the need to assess rates and quantities of evaporation or evapotranspiration from natural soil surfaces, the surfaces of deposits of mine or industrial waste, or soil-covered waste surfaces. These include assessing water balances for nearsurface soil strata, landfills, tailings dams and waste dumps ...

  8. Estimation of bare soil surface temperature from air temperature and ...

    African Journals Online (AJOL)

    Soil surface temperature has critical influence on climate, agricultural and hydrological activities since it serves as a good indicator of the energy budget of the earth's surface. Two empirical models for estimating soil surface temperature from air temperature and soil depth temperature were developed. The coefficient of ...

  9. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China. (United States)

    Wei, Wei; Yu, Yun; Chen, Liding


    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.

  10. Prevention of soiling of heliostat surfaces (United States)

    Baum, B.; Binette, M.


    Methods for preventing or minimizing soiling of the surface of the glass mirrored heliostat and the plastic dome over the aluminized Mylar mirror were developed. The substrates used were float glass, Kynar, and Petra A polyester. The two general classes of compounds which were being investigated were antistatic and antisoiling agents. The categories of antistatic agents used were amine derivatives, quaternary ammonium salts, phosphate esters, and polyethylene glycol esters. The soil release agents were either hydrophilic ionic or hydrophilic nonionic in character. These compounds were attached to the substrate surface by silane or titanate coupling agents or as a mixture with a hard, weather resistant coating. The silanol groups on the surface of glass provided suitable attachment sites; whereas, the plastic substrates required activation by various procedures. Another route to these objectives lay in direct reaction of an organic compound with a functional group in the glass surface. Evaluation of the various coatings on the three substrates was accomplished by a sequential screening procedure.

  11. Quantitative parameterization of soil surface structure with increasing rainfall volumes


    Edison Aparecido Mome Filho


    The study of soil structure allows inferences on soil behavior. Quantitative parameters are oftentimes required to describe soil structure and the multifractal ones are still underused in soil science. Some studies have shown relations between the multifractal spectrum and both soil surface roughness decay by rainfall and porous system heterogeneity, however, a particular multifractal response to a specific soil behavior is not established yet. Therefore, the objectives of this research were:...

  12. Land surface model evaluation using a new soil moisture dataset from Kamennaya Steppe, Russia (United States)

    Atkins, T.; Robock, A.; Speranskaya, N.


    The land surface affects the atmosphere through the transfer of energy and moisture and serves as the lower boundary in numerical weather prediction and climate models. To obtain good forecasts, these models must therefore accurately portray the land surface. Actual in situ measurements are vital for testing and developing these models. It is with this in mind that we have obtained a dataset of soil moisture, soil temperature and meteorological measurements from Kamennaya Steppe, Russia. The meteorological dataset spans the time period 1965-1991, while the soil moisture dataset runs from 1956-1991. The soil moisture dataset contains gravimetric volumetric total soil moisture measurements for 10 layers taken from forest, agricultural and grassland soils. The meteorological dataset contains 3-hourly measurements of precipitation, temperature, wind speed, pressure and relative humidity. We obtained longwave and shortwave radiation data from standard formulae. The data will be made available to the public via the Rutgers University Center for Environmental Prediction Global Soil Moisture Data Bank. Soil temperature is important in determining the timing, duration and intensity of runoff and snowmelt, particularly at the beginning and end of the winter when the ground is only partially frozen. Soil temperature can in turn be affected by the vertical distribution of roots. The soil temperature data are for 1969-1991. The data are daily averaged for every 20 cm to 1.2 meters in depth. These data are used to investigate the natural sensitivity of soil temperature to vegetation type and root distribution. We also use the temperature data, as well as water balance and snowfall data to test the sensitivity of the Noah land surface model (LSM) soil temperature to vertical root distribution, and what effect that has on the hydrology of the site. In addition to soil temperature data, we also have soil moisture data for several vegetation types. We compare the soil moisture time

  13. Impact of surface coal mining on soil hydraulic properties (United States)

    X. Liu; J. Q. Wu; P. W. Conrad; S. Dun; C. S. Todd; R. L. McNearny; William Elliot; H. Rhee; P. Clark


    Soil erosion is strongly related to soil hydraulic properties. Understanding how surface coal mining affects these properties is therefore important in developing effective management practices to control erosion during reclamation. To determine the impact of mining activities on soil hydraulic properties, soils from undisturbed areas, areas of roughly graded mine...

  14. Variability of soil moisture and its relationship with surface albedo ...

    Indian Academy of Sciences (India)

    30 N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed. We have investigated relationships of soil moisture with sur- face albedo and soil thermal diffusivity. The diurnal variation of surface albedo appears as a.

  15. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, ...

  16. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    the effects of shrub (Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy ... Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was ...... dunes and interdunes in southern New Mexico: A study of soil properties ...

  17. Cadmium removal from urban stormwater runoff via bioretention technology and effluent risk assessment for discharge to surface water (United States)

    Wang, Jianlong; Zhang, Pingping; Yang, Liqiong; Huang, Tao


    Bioretention technology, a low-impact development stormwater management measure, was evaluated for its ability to remove heavy metals (specifically cadmium, Cd) from urban stormwater runoff. Fine sand, zeolite, sand and quartz sand were selected as composite bioretention media. The effects of these materials on the removal efficiency, chemical forms, and accumulation and migration characteristics of Cd were examined in laboratory scale bioretention columns. Heretofore, few studies have examined the removal of Cd by bioretention. A five-step sequential extraction method, a single-contamination index method, and an empirical migration equation were used in the experiments. The average Cd removal efficiency of quartz sand approached 99%, and removal by the other media all exceeded 90%. The media types markedly affected the forms of Cd found in the columns as well as its vertical migration rate. The Cd accumulated in the four media was mainly in residual form; moreover, accumulation of Cd occurred mainly in the surface layer of the bioretention column. The migration depth of Cd in the four media increased with elapsed time, in the following sequence: zeolite > quartz sand > fine sand > sand. In contrast, the migration rate decreased with elapsed time, and the migration rate of Cd was lowest in sand (0.015 m per annum over the first ten years). The comprehensive risk index analysis indicated that the risk arising from Cd discharge to surface water was "intermediate", and that the degree of risk was lowest in sand, then quartz sand, zeolite, and fine sand in sequence. These results indicate that the adsorption and accumulation of Cd in the four media are more significant than the migration of Cd. In addition, the results of Cd risk assessment for the effluent indicate that each of the four media can serve as long-term adsorption material in a bioretention facility for purifying stormwater runoff.

  18. Cadmium removal from urban stormwater runoff via bioretention technology and effluent risk assessment for discharge to surface water. (United States)

    Wang, Jianlong; Zhang, Pingping; Yang, Liqiong; Huang, Tao


    Bioretention technology, a low-impact development stormwater management measure, was evaluated for its ability to remove heavy metals (specifically cadmium, Cd) from urban stormwater runoff. Fine sand, zeolite, sand and quartz sand were selected as composite bioretention media. The effects of these materials on the removal efficiency, chemical forms, and accumulation and migration characteristics of Cd were examined in laboratory scale bioretention columns. Heretofore, few studies have examined the removal of Cd by bioretention. A five-step sequential extraction method, a single-contamination index method, and an empirical migration equation were used in the experiments. The average Cd removal efficiency of quartz sand approached 99%, and removal by the other media all exceeded 90%. The media types markedly affected the forms of Cd found in the columns as well as its vertical migration rate. The Cd accumulated in the four media was mainly in residual form; moreover, accumulation of Cd occurred mainly in the surface layer of the bioretention column. The migration depth of Cd in the four media increased with elapsed time, in the following sequence: zeolite>quartz sand>fine sand>sand. In contrast, the migration rate decreased with elapsed time, and the migration rate of Cd was lowest in sand (0.015 m per annum over the first ten years). The comprehensive risk index analysis indicated that the risk arising from Cd discharge to surface water was "intermediate", and that the degree of risk was lowest in sand, then quartz sand, zeolite, and fine sand in sequence. These results indicate that the adsorption and accumulation of Cd in the four media are more significant than the migration of Cd. In addition, the results of Cd risk assessment for the effluent indicate that each of the four media can serve as long-term adsorption material in a bioretention facility for purifying stormwater runoff. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Analyzing runoff processes through conceptual hydrological modeling in the Upper Blue Nile Basin, Ethiopia (United States)

    Dessie, M.; Verhoest, N. E. C.; Pauwels, V. R. N.; Admasu, T.; Poesen, J.; Adgo, E.; Deckers, J.; Nyssen, J.


    Understanding runoff processes in a basin is of paramount importance for the effective planning and management of water resources, in particular in data-scarce regions such as the Upper Blue Nile. Hydrological models representing the underlying hydrological processes can predict river discharges from ungauged catchments and allow for an understanding of the rainfall-runoff processes in those catchments. In this paper, such a conceptual process-based hydrological model is developed and applied to the upper Gumara and Gilgel Abay catchments (both located within the Upper Blue Nile Basin, the Lake Tana sub-basin) to study the runoff mechanisms and rainfall-runoff processes in the basin. Topography is considered as a proxy for the variability of most of the catchment characteristics. We divided the catchments into different runoff production areas using topographic criteria. Impermeable surfaces (rock outcrops and hard soil pans, common in the Upper Blue Nile Basin) were considered separately in the conceptual model. Based on model results, it can be inferred that about 65% of the runoff appears in the form of interflow in the Gumara study catchment, and baseflow constitutes the larger proportion of runoff (44-48%) in the Gilgel Abay catchment. Direct runoff represents a smaller fraction of the runoff in both catchments (18-19% for the Gumara, and 20% for the Gilgel Abay) and most of this direct runoff is generated through infiltration excess runoff mechanism from the impermeable rocks or hard soil pans. The study reveals that the hillslopes are recharge areas (sources of interflow and deep percolation) and direct runoff as saturated excess flow prevails from the flat slope areas. Overall, the model study suggests that identifying the catchments into different runoff production areas based on topography and including the impermeable rocky areas separately in the modeling process mimics the rainfall-runoff process in the Upper Blue Nile Basin well and yields a useful

  20. Analyzing runoff processes through conceptual hydrological modelling in the Upper Blue Nile basin, Ethiopia (United States)

    Dessie, M.; Verhoest, N. E. C.; Pauwels, V. R. N.; Admasu, T.; Poesen, J.; Adgo, E.; Deckers, J.; Nyssen, J.


    Understanding runoff processes in a basin is of paramount importance for the effective planning and management of water resources, in particular in data scarce regions of the Upper Blue Nile. Hydrological models representing the underlying hydrological processes can predict river discharges from ungauged catchments and allow for an understanding of the rainfall-runoff processes in those catchments. In this paper, such a conceptual process-based hydrological model is developed and applied to the upper Gumara and Gilgel Abay catchments (both located within the Upper Blue Nile basin, the Lake Tana sub-basin) to study the runoff mechanisms and rainfall-runoff processes in the basin. Topography is considered as a proxy for the variability of most of the catchment characteristics. We divided the catchments into different runoff production areas using topographic criteria. Impermeable surfaces (rock outcrops and hard soil pans, common in the Upper Blue Nile basin) were considered separately in the conceptual model. Based on model results, it can be inferred that about 65% of the runoff appears in the form of interflow in the Gumara study catchment, and baseflow constitutes the larger proportion of runoff (44-48%) in the Gilgel Abay catchment. Direct runoff represents a smaller fraction of the runoff in both catchments (18-19% for the Gumara, and 20% for the Gilgel Abay) and most of this direct runoff is generated through infiltration excess runoff mechanism from the impermeable rocks or hard soil pans. The study reveals that the hillslopes are recharge areas (sources of interflow and deep percolation) and direct runoff as saturated excess flow prevails from the flat slope areas. Overall, the model study suggests that identifying the catchments into different runoff production areas based on topography and including the impermeable rocky areas separately in the modeling process mimics well the rainfall-runoff process in the Upper Blue Nile basin and brings a useful result

  1. Spatiotemporal Interaction of Near-Surface Soil Moisture Content and Frost Table Depth in a Discontinuous Permafrost Environment (United States)

    Guan, X.; Spence, C.; Westbrook, C. J.


    The ubiquitous presence of frozen ground in cold regions creates a unique dynamic boundary issue for subsurface water movement and storage. We examined the relationship between ground thaw and spatiotemporal soil moisture patterns at three sites (peatland, wetland and valley) near Yellowknife NT. Thaw depth and near-surface soil moisture were measured along a systematic grid at each site. Energy and water budgets were computed for each site to explain the soil moisture patterns. At the peatland, overall soil moisture decreased through the summer and became more spatially homogeneous with deepened thaw, increased subsurface storage capacity, and drying from evapotranspiration. In the peatland and wetland, accumulated water in depressions maintained soils at higher soil moistures for a longer duration than the hummock tops. The depressions had deeper frost tables than the drier hummock tops because the organic mats covering the hummocks insulated the ground and retarded ground thaw. The wettest soils were often locations of deepest thaw depth due to surface ponding and the transfer of latent heat accompanying surface runoff from upslopes. For example, the 3.3 ha wetland received 3.08x105 m3 of surface inflow from a lake with 2.32 kJm-2 of convective heat available to be transferred into the frozen ground over the study period. Soil moisture patterns also revealed preferential surface and subsurface flow routes. The findings indicate that the presence of frozen ground and differential thawing have a diverse and dynamic relationship with near-surface soil moisture content. When the impermeable boundary is dynamic, and controlled by water and energy fluxes, thicker soil layers are associated with higher moisture. This contrasts findings from temperate regions with a fixed impermeable boundary which show that surface soil moisture content can be lower in areas with thick soil.

  2. Environmental Radionuclides in Surface Soils of Vietnam

    International Nuclear Information System (INIS)

    Hien, P.D.; Hiep, H.T.; Quang, N.H.; Luyen, T.V.; Binh, T.V.; Ngo, N.T.; Long, N.Q.; Bac, V.T.


    A database on 238 U, 232 Th, 40 K and 137 Cs in surface soils was established to provide inputs for the assessment of the collective dose to the population of Vietnam and to support soil erosion studies using 137 Cs as a tracer. A total of 292 soil samples were taken from undisturbed sites across the territory and the concentrations of radionuclides were determined by gamma spectrometry method. The multiple regression of 137 Cs inventories against characteristics of sampling locations allowed us to establish the distribution of 137 Cs deposition density and its relationship with latitude and annual rainfall. The 137 Cs deposition density increases northward and varies from 178 Bq m -2 to 1,920 Bq m -2 . High rainfall areas in the northern and central parts of the country have received considerable 137 Cs inputs exceeding 600 Bq m -2 , which is the maximum value that can be expected for Vietnam from the UNSCEAR global pattern. The mean activity concentrations of naturally occurring radionuclides 238 U, 232 Th and 40 K are 45, 59 and 401 Bq kg- 1 , respectively, which entail an average absorbed dose rate in air of 62 nGy h -1 , which is about 7% higher than the world average. (author)

  3. Application of GIS in Modeling Zilberchai Basin Runoff (United States)

    Malekani, L.; Khaleghi, S.; Mahmoodi, M.


    Runoff is one of most important hydrological variables that are used in many civil works, planning for optimal use of reservoirs, organizing rivers and warning flood. The runoff curve number (CN) is a key factor in determining runoff in the SCS (Soil Conservation Service) based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS) are now being used in combination with the SCS-CN method. This work uses a methodology of determining surface runoff by Geographic Information System model and applying SCS-CN method that needs the necessary parameters such as land use map, hydrologic soil groups, rainfall data, DEM, physiographic characteristic of the basin. The model is built by implementing some well known hydrologic methods in GIS like as ArcHydro, ArcCN-Runoff for modeling of Zilberchai basin runoff. The results show that the high average weighted of curve number indicate that permeability of the basin is low and therefore likelihood of flooding is high. So the fundamental works is essential in order to increase water infiltration in Zilberchai basin and to avoid wasting surface water resources. Also comparing the results of the computed and observed runoff value show that use of GIS tools in addition to accelerate the calculation of the runoff also increase the accuracy of the results. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in large basins.

  4. Assimilating high resolution remotely sensed soil moisture into a distributed hydrologic model to improve runoff prediction: a case study. (United States)

    Mason, David; Garcia-Pintado, Javier; Cloke, Hannah; Dance, Sarah


    The susceptibility of a catchment to flooding during an extreme rainfall event is affected by its soil moisture condition prior to the event. This paper describes a study attempting to improve a distributed hydrological model by assimilating remotely sensed soil moisture in order to keep the model flow rate predictions on track in readiness for an intense rainfall event. The work is being funded within the SINATRA project of the UK NERC Flooding from Intense Rainfall (FFIR) programme. The recent launch of Sentinel-1 has stimulated interest in measuring soil moisture at high resolution suitable for hydrological studies using active SARs. One advantage of high resolution data may be that, when used in conjunction with land cover data, soil moisture values may be obtained over pixels of low vegetation cover (e.g. grassland). This may reduce the component of the backscattered signal due to vegetation, which for dense vegetation types may be a significant proportion of the whole. Additionally, backscatter contamination problems caused by mixed pixels containing unknown amounts of more than one land cover type within their coverage can be avoided. Sentinel-1 has been launched only recently, and has yet to build up a substantive sequence of flood event data suitable for analysis. As a result, ASAR WS data were used for this study. ASAR is C-band like Sentinel-1, and has a long data record. The hydrologic model HSPF was made fully spatially distributed to make it able to properly ingest the high resolution satellite surface soil moisture information, and to conduct assimilation analyses. A 1 km grid cell size was used. The study area covered the catchments of the Severn, Avon and Teme rivers (plus a further 4 sub-catchments) in the South West UK. The results of assimilating ASAR soil moisture readings over this area were compared with those of assimilating low resolution ASCAT readings. For the ASAR data, in each 1 km model grid cell, the 75 m surface soil moisture values

  5. The time variability of evapotranspiration and soil water storage in long series of rainfall-runoff process

    Czech Academy of Sciences Publication Activity Database

    Buchtele, Josef; Tesař, Miroslav


    Roč. 64, č. 3 (2009), s. 575-579 ISSN 0006-3088 R&D Projects: GA MŽP(CZ) SP/1A6/151/07 Institutional research plan: CEZ:AV0Z20600510 Keywords : evapotranspiration components * evapotranspiration demand * land use * natural affection of runoff * rainfall- runoff simulation * vegetation change Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.617, year: 2009

  6. Surface water ponding on clayey soils managed by conventional and conservation tillage in boreal conditions

    Directory of Open Access Journals (Sweden)



    Full Text Available Surface water ponding and crop hampering due to soil wetness was monitored in order to evaluate the effects of conservation tillage practices and perennial grass cover on soil infiltrability for five years in situ in gently sloping clayey fields. Thirteen experimental areas, each having three experimental fields, were established in southern Finland. The fields belonged to: autumn mouldboard ploughing (AP, conservation tillage (CT and perennial grass in the crop rotation (PG. In the third year, direct drilled (DD fields were established in five areas. Excluding PG, mainly spring cereals were grown in the fields. Location and surface area of ponded water (in the spring and autumn as well as hampered crop growth (during June-July were determined in each field by using GPS devices and GIS programs. Surface water ponding or crop hampering occurred when the amount of rainfall was clearly greater than the long-term average. The mean of the relative area of the ponded surface water, indicating the risk of surface runoff, and hampered crop growth was larger in the CT fields than in the AP fields. The differences between means were, however, not statistically significant. Complementary soil physical measurements are required to investigate the reasons for the repeated surface water ponding.;

  7. SMEX03 Surface and Soil Temperature Measurements: Alabama (United States)

    National Aeronautics and Space Administration — This data set contains land surface temperature and soil temperature data at depths of 1 cm, 5 cm, and 10 cm collected during the Soil Moisture Experiment 2003...

  8. Urban Runoff and Nutrients Loading Control from Sustainable BMPs (Invited) (United States)

    Xiao, Q.


    construction of runoff retention basins and treatment facilities to meet TMDL (Total Maximum Daily Load) regulations are not cost-effective or practical. An alternative approach is to control runoff and nutrients on-site through installation of decentralized BMPs that detain and infiltrate runoff before it reaches storm drains. Recent developed green-infrastructure which integrating engineered soil and trees to reduce runoff and nutrients loading is a self-sustained best management practice (BMP). This BMP has been testing and used in urban runoff control. In Davis, CA this type of BMPs were installed in a parking lot and a residential property to evaluate the system’s effectiveness on reducing storm runoff and pollutant loading from the parking lot and irrigated landscape. Storm runoff and pollutant loading were measured and monitored during February 2007 thru May 2009 from the parking lot. The BMP reduced surface runoff and nutrients by 88.8% and 95.3%, respectively. In the residential irrigated landscape, the dry-weather runoff was monitored during 2007 irrigation season, the BMP captured almost all dry weather runoff. The performance of these BMPs demonstrated their potential use for reducing runoff and nutrients loading. Control urban runoff from these 23% landscape (i.e., parking lot and irrigated turf grass) could largely alter the runoff and nutrients transport and their dynamic in our water system.

  9. Relationship between Mineral Soil Surface Area and the Biological Degradation of Biosolids Added to Soil

    Directory of Open Access Journals (Sweden)

    Dongqi Wen


    Full Text Available Geochemical and biological processes that operate in the soil matrix and on the soil surface are important to the degradation of biosolids in soil. Due to the large surface area of soils it is assumed that the microbial ecology is associated with mineral soil surface area. The total mineral surface areas were determined for soils from eight different fields selected from a long term study (1972–2006 of annual biosolids application to 41 fields in central Illinois varying in size from 3.6 to 66 ha. The surface areas for the soils varied from 1 to 9 m2/g of soil. The biological degradation rates for the eight soils were determined using a biological degradation rate model (DRM and varied from 0.02 to 0.20/year−1. Regression analysis revealed that the degradation rate was positively associated with mineral soil surface area (1 m2/g produces 0.018 year−1 increase in the degradation rate. The annual soil sequestration rate was calculated to increase from 1% to 6% when the soil total surface area increased from 1 to 9 m2/g of soil. Therefore, land application of biosolids is an effective way to enhance carbon sequestration in soils and reduce greenhouse gas emissions.

  10. Computer modeling of pesticide fate at the hillslope scale. Influence of vegetated filter strips on surface runoff pesticides transfer and partitioning between surface and subsurface fluxes (United States)

    Djabelkhir, K.; Carluer, N.; Lauvernet, C.


    In France, agriculture uses large quantities of fertilizer and pesticides. Water contamination by pesticides is highlighted by monitoring networks, at local and national levels. Control and reduction of contamination are major issues, for the protection of drinking water resources and aquatic ecosystems. Thus, understanding and quantifying the mechanisms involved in mobilization, transfer and dissipation of these substances can help to perform risk of water contamination diagnosis, and to estimate the effectiveness of corrective solutions. In this context, landscape elements, like buffer zones, can be an effective way to reduce diffuse contamination of pesticides carried by surface runoff. They protect the water ressources of the drift of the products applied to crops and contribute to the reduction of the transfer of pesticides in surface runoff from the plots to the river. We are interested in our study to the vegetative filter strips. The main objective of this thesis is to develop a model simulating the processes governing the transfer and dissipation of pesticides from plots to surface water, on surface and subsurface, along a slope. This will be done by taking into account the influence of vegetative filter strips between plots and rivers on the transfer, by changing the flow paths and retention time of these products via several mechanisms (infiltration, filtration of runoff -sedimentation of MES-, adsorption and degradation of products on the surface of the vegetative filter strips or infiltrated). Several models describing the mechanisms of transfer of water and solutes (sometimes) at a hillslope scale exist, in particular : POLA (Pinheiro and al., 1995), Openfluid (LISAH), J2000-JAMS (Krause and al., 2006), CatFlow (Zehe and al., 2000), tRIBS (Ivanov and al., 2004), Cathy 3D (Bixio and al., 2000) and CMF (Kraft and al., 2011). It was decided to choose a spatially distributed and object-oriented model, allowing to couple hydrological processes occuring

  11. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 95. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Childs, M.; Conrad, R.


    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory (LANL) during FY 95 to characterize possible radionuclide movement out of Area G through surface water and entrained sediment runoff. Soil samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. The single-stage water samples were analyzed for tritium and plutonium isotopes. All radiochemical data was compared with analogous samples collected during FY 93 and 94 and reported in LA-12986 and LA-13165-PR. Six surface soils were also submitted for metal analyses. These data were included with similar data generated for soil samples collected during FY 94 and compared with metals in background samples collected at the Area G expansion area.

  12. Sewage sludge application on cultivated soils: effects on runoff and trace metal load Aplicação de lodo de esgoto em solos agrícolas: efeitos na enxurrada e no carreamento de metais

    Directory of Open Access Journals (Sweden)

    Marcelo Valadares Galdos


    Full Text Available The use of sewage sludge in agricultural soils as a macro and micronutrient source and as a soil conditioner has been one of the alternatives for its disposal. However, sewage sludge contains trace metals, which are potential sources of pollution. The goal of this study was to evaluate the effect of sewage sludge application on surface water contamination through runoff when it was applied in a soil cultivated with corn. The effect of sludge application on the concentration and load of copper, nickel and zinc and the volume of runoff water and sediment were evaluated. The experiment was set up in plots used to study erosion losses in Campinas, Sao Paulo State, Brazil. The soil is a clayey Rhodic Hapludox. Three treatments were studied: no sewage sludge, sewage sludge to supply the N required by the crop and twice that amount, with four replications. The water and sediment lost by runoff were measured after each rainfall, and sampled for chemical analysis. The volumes of water and sediment lost by runoff decreased after sewage sludge application. The waste application increased trace metal concentration in the runoff water and sediment, especially zinc, which was present in high concentration in the sewage sludge used. Nevertheless, the load of trace metals transported from the plot was mostly dependent on the total runoff volume. Most of the Cu, Zn and Ni losses were via sediment, and occurred in a few highly erosive rainfall events in the period studied.O uso de lodo de esgoto em solos agrícolas como fonte de macro e micronutrientes e como condicionador de solos tem sido uma das alternativas para sua disposição final. O lodo de esgoto, entretanto, contém metais que são potencialmente fonte de poluição. Estudou-se o efeito da aplicação de lodo de esgoto na contaminação de águas superficiais por meio da enxurrada proveniente de solo agrícola cultivado com milho. O efeito da aplicação do lodo na concentração e no carreamento de

  13. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution. (United States)

    Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R


    When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Variability of soil moisture and its relationship with surface albedo ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 4. Variability of soil moisture and its relationship with surface albedo and soil thermal ... The diurnal variation of surface albedo appears as a U-shaped curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends ...

  15. Divergent surface and total soil moisture projections under global warming (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.


    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  16. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.


    The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  17. Modelling runoff and soil water content with the DR2-2013© SAGA v1.1 model at catchment scale under Mediterranean conditions (NE Spain) (United States)

    López-Vicente, Manuel, , Dr.; Palazón, M. Sc. Leticia; Quijano, M. Sc. Laura; Gaspar, Leticia, , Dr.; Navas, Ana, , Dr.


    Hydrological and soil erosion models allow mapping and quantifying spatially distributed rates of runoff depth and soil redistribution for different land uses, management and tillage practices and climatic scenarios. The different temporal and spatial [very small (1000 km2)] scales of numerical simulations make model selection specific to each range of scales. Additionally, the spatial resolution of the inputs is in agreement with the size of the study area. In this study, we run the GIS-based water balance DR2-2013© SAGA v1.1 model (freely downloaded as executable file at, in the Vandunchil stream catchment (23 km2; Ebro river basin, NE Spain). All input maps are generated at 5 x 5 m of cell size (924,573 pixels per map) allowing sound parameterization. Simulation is run at monthly scale with average climatic values. This catchment is an open hydrological system and it has a long history of human occupation, agricultural practices and water management. Numerous manmade infrastructures or landscape linear elements (LLEs: paved and unpaved trails, rock mounds in non-cultivated areas, disperse and small settlements, shallow and long drainage ditches, stone walls, small rock dams, fences and vegetation strips) appear throughout the hillslopes and streams and modify the natural runoff pathways and thus the hydrological and sediment connectivity. Rain-fed cereal fields occupy one third of the catchment area, 1% corresponds to sealed soils, and the remaining area is covered with Mediterranean forest, scrubland, pine afforestation and meadow. The parent material corresponds to Miocene sandstones and lutites and Holocene colluvial and alluvial deposits. The climate is continental Mediterranean with two humid periods, one in spring and a second in autumn that summarizes 63% of the total annual precipitation. We created a synthetic weather station (WS) from the Caseda and Uncastillo WS. The effective rainfall that reaches the soils

  18. Surface runoff stimation for basins without discharge measured data in Corrientes, Argentina

    Directory of Open Access Journals (Sweden)

    Vanesa Y. Bohn


    Full Text Available The oscillation of the water balance influence was evidenced on the superficial fluxes hydrologic regime. However, the correspondence between the precipitation and the volume was determined by the basin physic conditions and the rain properties. For this reason, the correlation analysis between both variables was utilized for its relation type establishment. The aim is to analyze the behaviour of some hydrological variables of the Santa Lucia river basin and to analyze the relation between the water excess and the flow. The Thornthwaite & Mather methodology was used. All the water balance of the Santa Lucía river basin indicated water excess in the soil. In some cases, the 600 mm annual were surpassed. Finally, the correlation between the precipitation values and the volume was found.

  19. Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land. (United States)

    Arif, Muhammad Saleem; Riaz, Muhammad; Shahzad, Sher Muhammad; Yasmeen, Tahira; Ashraf, Muhammad; Siddique, Muhammad; Mubarik, Muhammad Salman; Bragazza, Luca; Buttler, Alexandre


    A field study was conducted to test the potential of 5-year consecutive application of fresh industrial sludge (FIS) and composted industrial sludge (CIS) to restore soil functions at surface (0-15cm) and subsurface (15-30cm) of the degraded agricultural land. Sludge amendments increased soil fertility parameters including total organic carbon (TOC), soil available nitrogen (SAN), soil available phosphorus (SAP) and soil available potassium (SAK) at 0-15cm depth. Soil enzyme activities i.e. dehydrogenase (DHA), β-glucosidase (BGA) and alkaline phosphatase (ALp) were significantly enhanced by FIS and CIS amendments in surface soil. However, urease activity (UA) and acid phosphatase (ACp) were significantly reduced compared to control soil. The results showed that sludge amendments significantly increased microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) at both soil depth, and soil microbial biomass carbon (MBC) only at 0-15cm depth. Significant changes were also observed in the population of soil culturable microflora (bacteria, fungi and actinomycetes) with CIS amendment in surface soil suggesting persistence of microbial activity owing to the addition of organic matter source. Sludge amendments significantly reduced soil heavy metal concentrations at 0-15cm depth, and the effect was more pronounced with CIS compared to unamended control soil. Sludge amendments generally had no significant impact on soil heavy metal concentrations in subsoil. Agronomic viability test involving maize was performed to evaluate phytotoxicity of soil solution extract at surface and sub-surface soil. Maize seeds grown in solution extract (0-15cm) from sludge treated soil showed a significant increase of relative seed germination (RSG), relative root growth (RRG) and germination index (GI). These results suggested that both sludge amendments significantly improved soil properties, however, the CIS amendment was relatively more effective in restoring soil functions

  20. Soil water content, runoff and soil loss prediction in a small ungauged agricultural basin in the Mediterranean region using the Soil and Water Assessment Tool


    Ramos Martín, Ma. C. (Ma. Concepción); Martínez Casasnovas, José Antonio


    The aim of the present work was to evaluate the possibilities of using sub-basin data for calibration of the Soil and Water Assessment Tool (SWAT) model in a small (46 ha) ungauged basin (i.e. where the water flow is not systematically measured) and its response. This small basin was located in the viticultural Anoia-Penedès region (North-east Spain), which suffers severe soil erosion. The data sources were: daily weather data from an observatory located close to the basin; a detailed soil ma...

  1. Frozen soil and snow cover with respect to the hydrological land-surface behaviour; Gefrorener Boden und Schneebedeckung unter besonderer Beruecksichtigung des hydrologischen Verhaltens der Landoberflaeche

    Energy Technology Data Exchange (ETDEWEB)

    Warrach, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik


    Investigations of the water and energy cycle in the climate system using atmospheric circulation models require a proper representation of the land surface. The land-surface model SEWAB calculates the vertical exchange of water and energy between the atmosphere and the land-surface. This includes the calculation of runoff from the land-surface into the rivers and of the vertical heat and water fluxes within the soil. The inclusion of soil freezing and thawing and the accumulation and ablation of a snow cover in SEWAB is introduced. Additionally changes in the runoff calculation such as the inclusion of the TOPMODEL-approach to consider orographic effects are made. Applications carried out for various regions of North America show good agreement between model results and measurements. (orig.)

  2. Ephemeral and intermittent runoff generation processes in a low relief, highly weathered catchment (United States)

    Zimmer, Margaret A.; McGlynn, Brian L.


    Most field-based approaches that address runoff generation questions have been conducted in steep landscapes with shallow soils. Runoff generation processes in low relief landscapes with deep soils remain less understood. We addressed this by characterizing dominant runoff generating flow paths by monitoring the timing and magnitude of precipitation, runoff, shallow soil moisture, and shallow and deep groundwater dynamics in a 3.3 ha ephemeral-to-intermittent drainage network in the Piedmont region of North Carolina, USA. This Piedmont region is gently sloped with highly weathered soils characterized by shallow impeding layers due to decreases in saturated hydraulic conductivity with depth. Our results indicated two dominant catchment storage states driven by seasonal evapotranspiration. Within these states, distinct flow paths were activated, resulting in divergent hydrograph recessions. Groundwater dynamics during precipitation events with different input characteristics and contrasting storage states showed distinct shallow and deep groundwater flow path behavior could produce similar runoff magnitudes. During an event with low antecedent storage, activation of a shallow, perched, transient water table dominated runoff production. During an event with high antecedent storage, the deeper water table activated shallow flow paths by rising into the shallow transmissive soil horizons. Despite these differing processes, the relationship between active surface drainage length (ASDL) and runoff was consistent. Hysteretic behavior between ASDL and runoff suggested that while seasonal ASDLs can be predicted based on runoff, the mechanisms and source areas producing flow can be highly variable and not easily estimated from runoff alone. These processes and flow paths have significant implications for stream chemistry across seasons and storage states.

  3. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface. (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong


    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  4. Area G Perimeter Surface-Soil Sampling Environmental Surveillance for Fiscal Year 1998 Hazardous and Solid Waste Group (ESH-19)

    Energy Technology Data Exchange (ETDEWEB)

    Marquis Childs


    Material Disposal Area G (Area G) is at Technical Area 54 at Los Alamos National Laboratory (LANL). Area G has been the principal facility for the disposal of low-level, solid-mixed, and transuranic waste since 1957. It is currently LANL's primary facility for radioactive solid waste burial and storage. As part of the annual environmental surveillance effort at Area G, surface soil samples are collected around the facility's perimeter to characterize possible radionuclide movement off the site through surface water runoff During 1998, 39 soil samples were collected and analyzed for percent moisture, tritium, plutonium-238 and 239, cesium-137 and americium-241. To assess radionuclide concentrations, the results from these samples are compared with baseline or background soil samples collected in an undisturbed area west of the active portion Area G. The 1998 results are also compared to the results from analogous samples collected during 1996 and 1997 to assess changes over this time in radionuclide activity concentrations in surface soils around the perimeter of Area G. The results indicate elevated levels of all the radionuclides assessed (except cesium-137) exist in Area G perimeter surface soils vs the baseline soils. The comparison of 1998 soil data to previous years (1996 and 1997) indicates no significant increase or decrease in radionuclide concentrations; an upward or downward trend in concentrations is not detectable at this time. These results are consistent with data comparisons done in previous years. Continued annual soil sampling will be necessary to realize a trend if one exists. The radionuclide levels found in the perimeter surface soils are above background but still considered relatively low. This perimeter surface soil data will be used for planning purposes at Area G, techniques to prevent sediment tm.nsport off-site are implemented in the areas where the highest radionuclide concentrations are indicated.

  5. Surface mass balance and runoff modeling using HIRHAM4 RCM at Kangerlussuaq (Søndre Strømfjord), West Greenland, 1950-2080

    DEFF Research Database (Denmark)

    Mernild, Sebastian H.; Liston, Glen E.; Hiemstra, Christopher A.


    Greenland's Kangerlussuaq drainage. Projected changes in the Greenland Ice Sheet (GrIS) surface mass balance (SMB) and runoff are relevant for potential hydropower production and prediction of ecosystem changes in sensitive Kangerlussuaq Fjord systems. Mean annual surface air temperatures and precipitation...... in the Kangerlussuaq area were simulated to increase by 3.4°C and 95 mm water equivalent (w.eq.), respectively, between 1950 and 2080. The local Kangerlussuaq warming was less than the average warming of 4.8°C simulated for the entire GrIS. The Kangerlussuaq SMB loss increased by an average of 0.3 km3 because of a 0.......4 km3 rise in precipitation, 0.1 km3 rise in evaporation and sublimation, and 0.6 km3 gain in runoff (1950-2080). By 2080, the spring runoff season begins approximately three weeks earlier. The average modeled SMB and runoff is approximately -0.1 and 1.2 km3 yr-1, respectively, indicating that ~10...

  6. Hydro engineering Feasibility Study of Surface Runoff Water Harvesting in Al-Ajeej Basin, North West Iraq

    Directory of Open Access Journals (Sweden)

    Thair M. Al-Taiee


    Full Text Available The hydro engineering  characteristics of Al-Ajeej basin which was located within south Sinjar plain north west Iraq was analyzed to predict the possibility of surface runoff harvesting during rainfall season in the upstream sites in this basin using watershed modeling system (WMS. The hydrological feasibility of constructing small dam on Al-Ajeej valley with some preliminary design calculations were presented. The best optimum dam site was selected to be located (3.95 km downstream the confluence of Al-Badee branch with Al-Ajeej valley (35° 46¢ 6² Latitude and Longitude 41° 36¢ 11² having a catchment's area of (3043km2. The proposed dam  height was (12.5 meter with a dam length of (1277m, while the normal storage volume of the reservoir is (38.8 million m3. Construction a dams in such sites characterized by water shortage during all  around the year will give an aid in the sustainable development of such area by increasing  the cultivation lands, the agricultural products and also modify the income of the villagers living  in this area leading to prevent them leaving their lands to other places

  7. Organic pollutants and heavy metals in rainwater runoff and their fate in the unsaturated soil zone. Final report

    International Nuclear Information System (INIS)

    Grotehusmann, D.; Rohlfing, R.; Weyer, G.; Dittrich, D.; Gowik, P.; Pernak, P.


    This bibliographic study is part of the BMFT intergrated project ''Possibilitiis and limits of [ drainage in consederation of the soil and groundwater protection''. Subjects: Environmental relevance and general distribution of organic pollutants; organic pollutants in rain water, soil, and groundwater; fate of organic pollutants in soil; environmental relevance of heavy metals in soil, rain water, and runof; fate of heavy metals in the unsaturated soil rare. (orig./BBR) [de

  8. Use of microwave remote sensing data to monitor spatio temporal characteristics of surface soil moisture at local and regional scales

    Directory of Open Access Journals (Sweden)

    A. Löw


    Full Text Available Hydrologic processes, such as runoff production or evapotranspiration, largely depend on the variation of soil moisture and its spatial pattern. The interaction of electromagnetic waves with the land surface can be dependant on the water content of the uppermost soil layer. Especially in the microwave domain of the electromagnetic spectrum, this is the case. New sensors as e.g. ENVISAT ASAR, allow for frequent, synoptically and homogeneous image acquisitions over larger areas. Parameter inversion models are therefore developed to derive bio- and geophysical parameters from the image products. The paper presents a soil moisture inversion model for ENVISAT ASAR data for local and regional scale applications. The model is validated against in situ soil moisture measurements. The various sources of uncertainties, being related to the inversion process are assessed and quantified.

  9. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the nearsurface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the ...

  10. Seasonal surface layer dynamics and sensitivity to runoff in a high Arctic fjord (Young Sound/Tyrolerfjord, 74°N) (United States)

    Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren


    Runoff from the Greenland Ice Sheet, local glaciers, and snowmelt along the northeastern Greenland coastline has a significant impact on coastal water masses flowing south toward Denmark Strait. Very few direct measurements of runoff currently exist in this large area, and the water masses near the coast are also difficult to measure due to the presence of icebergs and sea ice. Measurements from the Zackenberg Research station, located in Young Sound/Tyrolerfjord in northeast Greenland (74°N), provide some of the few observations of hydrographic, hydrologic, and atmospheric parameters from this remote area. Here we analyze measurements from the fjord and also measurements in the ambient water masses, which are found in the outer fjord and between the fjord and the East Greenland Current and validate and apply a numerical model of the fjord. A model sensitivity study allows us to constrain runoff estimates for the area. We also show that a total runoff between 0.9 and 1.4 km3 in 2006 is in accordance with observed surface salinities and calculated freshwater content in the fjord. This indicates that earlier reported runoff to the area is significantly underestimated and that melt from glaciers and the Greenland Ice Sheet in this region may be up to 50% larger than the current estimate. Model simulations indicate the presence of a cold low-saline coastal water mass formed by runoff from fjords north of the Young Sound/Tyrolerfjord system. Simulations of passive and age tracers show that residence time of river water during the summer period is about 1 month in the inner part of the fjord. This article was corrected on 10 OCT 2014. See the end of the full text for details.

  11. Phosphorus loss by surface runoff in no-till system under mineral and organic fertilization Perda de fósforo via escoamento superficial no sistema plantio direto sob adubação mineral e orgânica

    Directory of Open Access Journals (Sweden)

    Oromar João Bertol


    Full Text Available The no-till system has been intensively used in the state of Paraná, Brazil, and it has increased the nutrients level at the soil surface. This has contributed for nutrient losses via runoff and consequently, off-site water pollution. The objective of this study was to evaluate phosphorus loss in surface runoff by simulated rainfall on an Oxisol, under no-till system following application of mineral fertilizer and liquid swine manure. Nitrogen, soil and water losses from the same study are reported in a separated paper. The application of liquid swine manure, compared with mineral fertilization, increased runoff concentration of total P, particulate P and dissolved reactive P by 193%, 111% and 506%, respectively, averaged for all rainfall intensities. Independently on the fertilizer source, the highest rainfall intensity provided the greatest concentration and loads of P in runoff.O sistema plantio direto tem sito intensivamente utilizado no Estado do Paraná Brasil o qual tem aumentado os níveis de nutrientes na superfície do solo. Isto tem contribuído para a perda de nutrientes via escoamento superficial e consequentemente com a poluição não pontual das águas. Avaliou-se a perda de fósforo via escoamento superficial ocasionado por chuva simulada sobre um Latossolo originário de basalto, em sistema plantio direto submetido à aplicação de fertilizante mineral e dejeto líquido de suíno. As perdas de nitrogênio, solo e água deste mesmo estudo foram publicadas em outro artigo. A aplicação de dejeto líquido suíno, comparado com o fertilizante mineral, aumentou a concentração de P total, P particulado e P dissolvido reativo em 193%, 111% e 506%, respectivamente, na média das chuvas. Independentemente da fonte de fertilizante, a chuva de maior intensidade proporcionou maior concentração e quantidade perdida de P no escoamento superficial.

  12. Modelling field scale spatial variation in water run-off, soil moisture, N2O emissions and herbage biomass of a grazed pasture using the SPACSYS model. (United States)

    Liu, Yi; Li, Yuefen; Harris, Paul; Cardenas, Laura M; Dunn, Robert M; Sint, Hadewij; Murray, Phil J; Lee, Michael R F; Wu, Lianhai


    In this study, we evaluated the ability of the SPACSYS model to simulate water run-off, soil moisture, N 2 O fluxes and grass growth using data generated from a field of the North Wyke Farm Platform. The field-scale model is adapted via a linked and grid-based approach (grid-to-grid) to account for not only temporal dynamics but also the within-field spatial variation in these key ecosystem indicators. Spatial variability in nutrient and water presence at the field-scale is a key source of uncertainty when quantifying nutrient cycling and water movement in an agricultural system. Results demonstrated that the new spatially distributed version of SPACSYS provided a worthy improvement in accuracy over the standard (single-point) version for biomass productivity. No difference in model prediction performance was observed for water run-off, reflecting the closed-system nature of this variable. Similarly, no difference in model prediction performance was found for N 2 O fluxes, but here the N 2 O predictions were noticeably poor in both cases. Further developmental work, informed by this study's findings, is proposed to improve model predictions for N 2 O. Soil moisture results with the spatially distributed version appeared promising but this promise could not be objectively verified.

  13. Multivariate assimilation of coarse scale soil moisture, cosmic-ray soil moisture, land surface temperature and leaf area index in CLM4.5 (United States)

    Han, Xujun; Hendricks Franssen, Harrie-Jan; Schalge, Bernd; Baroni, Gabriele; Rihani, Jehan; Kollet, Stefan; Vereecken, Harry; Simmer, Clemens


    The land surface plays a central role in the atmosphere - land surface - subsurface continuum. Surface soil moisture for instance impacts the partitioning of absorbed radiation in heating ground and atmosphere and thus impacts resulting evapotranspiration. The land surface also drives partitioning of rainfall between infiltration which ends up as groundwater recharge and surface runoff contributing to stream discharge. It is therefore expected that the use of observations for characterizing and predicting the land surface state also leads to improved state estimations and predictions in all the other sub-compartments of the system we consider: groundwater, stream discharge and atmosphere. To test this hypothesis requires efficient data assimilation schemes that are capable to take up specific requirements of different compartments, such as different time windows of observations. In this study we will derive such data assimilation methods and quantify the improvement of predictions in the different compartments due to assimilation of multiple observations, and evaluate to what extent assimilation of land surface observations will also improve predictions of land surface states and fluxes for atmosphere and groundwater. We argue that improvements can be achieved by implementing a data assimilation methodology that is capable of simultaneous assimilation of many data sources (remote sensing soil moisture, cosmic-ray measurement for soil moisture, land surface temperature and leaf area index) at different spatial scales ranging from 102 m to 104 m. The multivariate data assimilation system for the land-surface component will be developed and extended to assimilate the coarse scale remote sensing soil moisture, cosmic-ray soil moisture, land surface temperature and leaf area index, and their different combinations using the local ensemble transform Kalman filter. The multivariate data assimilation will be evaluated using a synthetic study which mimics the Neckar

  14. Effectiveness of the GAEC cross-compliance standard Short-term measures for runoff water control on sloping land (temporary ditches and grass strips in controlling soil erosion

    Directory of Open Access Journals (Sweden)

    Paolo Bazzoffi


    Full Text Available The agronomic measures made obligatory by the cross-compliance Standard Temporary measures for runoff water control on sloping land included in the Ministry of Agricultural, Food and Forestry Policies (MiPAAF decree on cross compliance until 2008, and by Standard 1.1 Creation of temporary ditches for the prevention of soil erosion in the 2009 decree, certainly appear to be useful for the control of soil erosion and runoff. The efficacy of temporary drainage ditches and of grass strips in controlling runoff and erosion has been demonstrated in trials conducted in field test plots in Italy. When level temporary drainage ditches are correctly built, namely with an inclination of not more than 2.5% in relation to the maximum hillslope gradient, they allow the suspended sediment eroded upstream to settle in the ditches, retaining the material carried away on the slope and, as a result, reducing the quantity of sediment delivered to the hydrographic network. In particular, among all the results, the erosion and runoff data in a trial conducted in Guiglia (Modena showed that in corn plots, temporary drainage ditches reduced soil erosion by 94%, from 14.4 Mg ha-1 year-1 (above the limit established by the NRCS-USDA of 11.2 Mg ha-1 year-1 to 0.8 Mg ha-1 year-1 (within the NRCS limit and also within the more restrictive limit established by the OECD of 6.0 Mg ha-1 year-1. With respect to the grass buffer strips the most significant research was carried out in Volterra. This research demonstrated their efficacy in reducing erosion from 8.15 Mg ha-1 to 1.6 Mg ha-1, which is approximately 5 times less than the erosion observed on bare soil. The effectiveness of temporary drainage ditches was also assessed through the application of the Revised Universal Soil Loss Equation (RUSLE erosion model to 60 areas under the control of the Agency for Agricultural Payments (AGEA in 2009, comparing the risk of erosion in these sample areas by simulating the presence and

  15. Using IR-measured soil surface temperatures to estimate hydraulic properties of the top soil layer (United States)

    Steenpass, Christian; Vanderborght, Jan; Herbst, Michael; Simunek, Jirka; Vereecken, Harry


    The temporal and spatial development of soil surface temperatures (SST) depends on water availability in the near-surface soil layer. Since the soil loses latent heat during evaporation and water available for evaporation depends on soil hydraulic properties (SHP), the temporal variability of SST should contain information about the near-surface SHP. This study was conducted to investigate the information content of soil surface temperatures for estimation of soil hydraulic properties and their uncertainties, and to determine the effect of soil tillage on near-surface SHP. A hydrological model (HYDRUS-1D) coupled with a global optimizer (DREAM) was used to inversely estimate the van Genuchten-Mualem parameters of SHP from infra-red measured SST and TDR-measured water contents. The general applicability of this approach was tested using synthetic data. The same approach was then applied to a real data set, which was collected during September 2008 in Selhausen, Germany. The synthetic data set was generated using HYDRUS-1D for the same initial and boundary conditions and measurement protocol as the real data set. Using synthetic and real data it was found that although estimated SHP are sensitive to SST, their estimates are relatively uncertain when only information about SST is used. These uncertainties can be reduced by additionally considering also measured soil water contents. A comparison of SHP determined in the laboratory on undisturbed soil samples with those estimated from SST and TDR data measured in a harrowed soil showed similar results for the deeper undisturbed soil and large differences for the harrowed part of the soil profile. This shows the important effect of soil tillage on soil hydraulic properties. Application of the method in the field to characterize the hydraulic properties of the upper soil layer may reduce the amount of needed in-soil measurements and therefore allows larger scale observations.

  16. Influence of soil moisture content on surface albedo and soil thermal ...

    Indian Academy of Sciences (India)

    atively longer memory of soil moisture in com- parison with the variation of controlling parame- ters often leads to climatic ... and vegetation cover changes the soil colour and thus varies the surface albedo (Todd and Hoffer. 1998). .... The colour of the soil at the experimental site varied from dark brown to dark reddish brown.

  17. Unraveling the size distributions of surface properties for purple soil and yellow soil. (United States)

    Tang, Ying; Li, Hang; Liu, Xinmin; Zhu, Hualing; Tian, Rui


    Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of this study was to elucidate the surface properties of particles within targeted size ranges (i.e. >10, 1-10, 0.5-1, 0.2-0.5 and soil (Entisol) and a yellow soil (Ultisol) using the combined determination method. The mineralogy of corresponding particle-size fractions was determined by X-ray diffraction. We found that up to 80% of the specific surface area and 85% of the surface charge of the entire soil came from colloidal-sized particles (soil had a larger specific surface area, stronger electrostatic field, and higher surface charge than the yellow soil due to differences in mineralogy. Likewise, the differences in surface properties among the various particle-size fractions can also be ascribed to mineralogy. Our results indicated that soil surface properties were essentially determined by the colloidal-sized particles, and the soil properties. The composition of clay minerals within the diverse particle-size fractions could fully explain the size distributions of surface properties. Copyright © 2015. Published by Elsevier B.V.

  18. Estimativa do escoamento superficial em uma bacia hidrográfica com base em modelagem dinâmica e distribuída Surface runoff in a watershed estimated by dynamic and distributed modeling

    Directory of Open Access Journals (Sweden)

    Samuel Beskow


    escoamento superficial, visto que propicia estruturação de rotinas computacionais considerando os problemas associados à variabilidade espacial dos dados de entrada dos modelos.Knowledge on the surface runoff in watersheds is very important for a good conservation of natural resources. However, surface runoff is a complex and dynamic process, especially in the context of spatial variability. An application of the Geographical Information System (GIS tools in small grid cells is therefore adequate. This way, it is possible to consider the spatial behavior of variables associated to the origin of surface runoff. This study aimed to program the Hydrological Models SCS-CN (SCS-Curve Number and CN - MMS (CN - Modified based on the PC Raster Programming Language and a reduced dataset, in distributed and dynamic approaches, to estimate the direct surface runoff in a watershed of Oxissols, in the county of Nazareno, region of Campos das Vertentes, Minas Gerais State. SCS-CN model was applied structuring a CN-map linked to the soil infiltration capacity in the PCRaster GIS format. For the CN - MMS model, we used other maps: saturated volumetric soil moisture content, initial volumetric soil moisture content and soil depth. For the simulation and evaluation of both models, 18 rainfall events that produced surface runoff in the hydrologic year 2004-2005 were used, and their respective surface runoff depths observed. The model performance was evaluated by sensitivity analyses, based on the mean error and Root Square Error. Based on these accuracy statistics, the calibration of the CN - MMS model was better than in the original SCS-CN model, since the initial soil moisture was taken into account. Nevertheless, the adjustment of the models in the SIG PCRaster allowed the development of an effective and useful computer tool to simulate surface runoff, due to the possibility of establishing computer routines considering the problems elated to the spatial variability of data entries of

  19. The effect of polyacrylamide (PAM) applications on infiltration, runoff ...

    African Journals Online (AJOL)

    . Anionic polyacrylamide (PAM) application to soils is an effective soil conservation practice for reducing runoff and soil losses caused by erosion. It also increases the infiltration rate of soils. The objective of this study was conducted to ...

  20. Evaluation of soil physical quality of Dutch subsoils in two databases with some threshold values

    NARCIS (Netherlands)

    Akker, van den J.J.H.


    Soil deformation strongly affects pore continuity. The reduced infiltration triggers surface runoff and erosion. Two Dutch soil databases were analyzed in a preliminary study to the existence of subsoil compaction in The Netherlands

  1. Mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Pinder, J.E. III; McLeod, K.W.


    Radionuclide-bearing soil particles on plant surfaces can be ingested and contribute to human dose, but evaluating the potential dose is limited by the relatively few data available on the masses of soil particles present on plant surfaces. This report summarizes mass loading data (i.e., mass of soil per unit of vegetation) for crops in the southeastern United States and compares these data to (1) those from other regions and (2) the mass loadings used in radionuclide transfer models to predict soil contamination of plant surfaces. Mass loadings were estimated using the 238Pu content of crops as an indicator of soil on plant surfaces. Crops were grown in two soils: a sandy clay loam soil and a loamy sand soil. Concentrations of soil on southeastern crops (i.e., mg soil g-1 plant) differed by more than a factor of 100 due to differences in crop growth form and biomass. Mean concentrations ranged from 1.7 mg g-1 for corn to 260 mg g-1 for lettuce. Differences in mass loadings between soils were less than those among crops. Concentrations differed by less than a factor of two between the two soil types. Because of (1) the differences among crops and (2) the limited data available from other systems, it is difficult to draw conclusions regarding regional or climatic variation in mass loadings. There is, however, little evidence to suggest large differences among regions. The mass loadings used to predict soil contamination in current radionuclide transfer models appear to be less than those observed for most crops

  2. The power of runoff (United States)

    Wörman, A.; Lindström, G.; Riml, J.


    Although the potential energy of surface water is a small part of Earth's energy budget, this highly variable physical property is a key component in the terrestrial hydrologic cycle empowering geomorphological and hydrological processes throughout the hydrosphere. By downscaling of the daily hydrometeorological data acquired in Sweden over the last half-century this study quantifies the spatial and temporal distribution of the dominating energy components in terrestrial hydrology, including the frictional resistance in surface water and groundwater as well as hydropower. The energy consumed in groundwater circulation was found to be 34.6 TWh/y or a heat production of approximately 13% of the geothermal heat flux. Significant climate driven, periodic fluctuations in the power of runoff, stream flows and groundwater circulation were revealed that have not previously been documented. We found that the runoff power ranged from 173 to 260 TWh/y even when averaged over the entire surface of Sweden in a five-year moving window. We separated short-term fluctuations in runoff due to precipitation filtered through the watershed from longer-term seasonal and climate driven modes. Strong climate driven correlations between the power of runoff and climate indices, wind and solar intensity were found over periods of 3.6 and 8 years. The high covariance that we found between the potential energy of surface water and wind energy implies significant challenges for the combination of these renewable energy sources.

  3. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters. (United States)

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John


    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved

  4. Location of Bare Soil Surface and Soil Line on the RED-NIR Spectral Plane (United States)

    Koroleva, P. V.; Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Kulyanitsa, A. L.; Trubnikov, A. V.; Kalinina, N. V.; Simakova, M. S.


    Soil as a separate natural body occupies certain area with its own set of spectral characteristics within the RED-NIR spectral space. This is an ellipse-shaped area, and its semi-major axis is the soil line for a satellite image. The spectral area for a bare soil surface is neighboring to the areas of black carbon, straw, vegetating plants, and missing RED-NIR values. A reliable separation of the bare soil surface within the spectral space is possible with the technology of spectral neighborhood of soil line. The accuracy of this method is 90%. The determination of the bare soil surface using vegetation indices, both relative (NDVI), and perpendicular (PVI), is incorrect; the accuracy of these methods does not exceed 65%, and for most of the survey seasons it may be lower than 50%. The flat part of the "tasseled cap" described as the soil line, is not a synonym for the area of the bare soil surface. The bare soil surface on the RED-NIR plots occupies significantly smaller areas than the area of soil line according to Kauth and Thomas.

  5. Mobility and bioavailability of Cd, Co, Cr, Cu, Mn and Zn in surface runoff sediments in the urban catchment area of Guwahati, India (United States)

    Devi, Upama; Bhattacharyya, Krishna G.


    The sediments in stormwater runoff are recognised as the major sink of the heavy metals and affect the soil quality in the catchment. The runoff sediments are also important in the management of contaminant transport to receiving water bodies. In the present work, stormwater during several major rain events was collected from nine principal locations of Guwahati, India. The solid phase was separated from the liquid phase and was investigated for the total contents of Cd, Co, Cr, Cu, Mn and Zn as well as their distribution among the prominent chemical phases. Sequential extraction procedure was used for the chemical fractionation of the metals that contains five steps. The total metal concentration showed the trend, Cd mobile and high-risk fractions. Co with medium mobility was also found to be in the high-risk category. On the other hand, the mobilities of Cu and Zn were relatively low and these were, therefore, the least bioavailable metals in the runoff sediments falling in medium-risk category.

  6. Optimization of Land Use Pattern Reduces Surface Runoff and Sediment Loss in a Hilly-Gully Watershed at the Loess Plateau, China

    Directory of Open Access Journals (Sweden)

    Han Yini


    Full Text Available Aim of study: The aim is to find a way increasing gain yield and lessen area of farmland, and then increasing vegetation cover, improving environment and alleviating soil erosion.Area of study: The Hilly-Gully region at the loess plateau of China.Material and methods: In this study, an adjusted and optimized land use pattern was developed in Luoyugou watershed in the Yellow River valley based on the gradient distribution of land use types, and its effect on water and sediment transport was simulated using the SWAT model and GIS, with remote sensing images, land use maps and hydrologic data.Main results: The results indicate: average simulated runoff and sediment for the period 1986-2000 under conditions of the three land use pattern (2011, 2008 and optimized land use reduced by 0.002-0.013 m3/s (2.7-17.6% and 0.66 million tons, respectively. The runoff and sediment data obtained were compared with observed data from 2008, which showed that runoff and sediment production would be reduced by 467625 m3 and 22754 tons, respectively.Research highlights: The adjustment of the land use pattern in comprehensive consideration of vegetation and geography have a positive effect on water and sediment transport which will be important for decision making and water resources management, and provides a reference for future environmental management and ecological construction in the loess plateau Hilly-Gully region. 

  7. Optimization of Land Use Pattern Reduces Surface Runoff and Sediment Loss in a Hilly-Gully Watershed at the Loess Plateau, China

    Energy Technology Data Exchange (ETDEWEB)

    Yini, H.; Jianzhi, N.; Zhongbao, X.; Wei, Z.; Tielin, Z.; Xilin, W.; Yousong, Z.


    Aim of study: The aim is to find a way increasing gain yield and lessen area of farmland, and then increasing vegetation cover, improving environment and alleviating soil erosion. Area of study: The Hilly-Gully region at the loess plateau of China. Material and methods: In this study, an adjusted and optimized land use pattern was developed in Luoyugou watershed in the Yellow River valley based on the gradient distribution of land use types, and its effect on water and sediment transport was simulated using the SWAT model and GIS, with remote sensing images, land use maps and hydrologic data. Main results: The results indicate: average simulated runoff and sediment for the period 1986-2000 under conditions of the three land use pattern (2011, 2008 and optimized land use) reduced by 0.002-0.013 m3/s (2.7-17.6%) and 0.66 million tons, respectively. The runoff and sediment data obtained were compared with observed data from 2008, which showed that runoff and sediment production would be reduced by 467625 m3 and 22754 tons, respectively. Research highlights: The adjustment of the land use pattern in comprehensive consideration of vegetation and geography have a positive effect on water and sediment transport which will be important for decision making and water resources management, and provides a reference for future environmental management and ecological construction in the loess plateau Hilly-Gully region. (Author)

  8. Impact of runoff infiltration on contaminant accumulation and transport in the soil/filter media of Sustainable Urban Drainage Systems: A literature review. (United States)

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Kovacs, Yves; Gromaire, Marie-Christine


    The increasing use of Sustainable Urban Drainage Systems (SUDS) for stormwater management raises some concerns about the fate of ubiquitous runoff micropollutants in soils and their potential threat to groundwater. This question may be addressed either experimentally, by sampling and analyzing SUDS soil after a given operating time, or with a modeling approach to simulate the fate and transport of contaminants. After briefly reminding the processes responsible for the retention, degradation, or leaching of several urban-sourced contaminants in soils, this paper presents the state of the art about both experimental and modeling assessments. In spite of noteworthy differences in the sampling protocols, the soil parameters chosen as explanatory variables, and the methods used to evaluate the site-specific initial concentrations, most investigations undoubtedly evidenced a significant accumulation of metals and/or hydrocarbons in SUDS soils, which in the majority of the cases appears to be restricted to the upper 10 to 30cm. These results may suggest that SUDS exhibit an interesting potential for pollution control, but antinomic observations have also been made in several specific cases, and the inter-site concentration variability is still difficult to appraise. There seems to be no consensus regarding the level of complexity to be used in models. However, the available data deriving from experimental studies is generally limited to the contamination profiles and a few parameters of the soil, as a result of which "complex" models (including colloid-facilitated transport for example) appear to be difficult to validate before using them for predictive evaluations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Integrated Landsat Image Analysis and Hydrologic Modeling to Detect Impacts of 25-Year Land-Cover Change on Surface Runoff in a Philippine Watershed

    Directory of Open Access Journals (Sweden)

    Enrico Paringit


    Full Text Available Landsat MSS and ETM+ images were analyzed to detect 25-year land-cover change (1976–2001 in the critical Taguibo Watershed in Mindanao Island, Southern Philippines. This watershed has experienced historical modifications of its land-cover due to the presence of logging industries in the 1950s, and continuous deforestation due to illegal logging and slash-and-burn agriculture in the present time. To estimate the impacts of land-cover change on watershed runoff, land-cover information derived from the Landsat images was utilized to parameterize a GIS-based hydrologic model. The model was then calibrated with field-measured discharge data and used to simulate the responses of the watershed in its year 2001 and year 1976 land-cover conditions. The availability of land-cover information on the most recent state of the watershed from the Landsat ETM+ image made it possible to locate areas for rehabilitation such as barren and logged-over areas. We then created a “rehabilitated” land-cover condition map of the watershed (re-forestation of logged-over areas and agro-forestation of barren areas and used it to parameterize the model and predict the runoff responses of the watershed. Model results showed that changes in land-cover from 1976 to 2001 were directly related to the significant increase in surface runoff. Runoff predictions showed that a full rehabilitation of the watershed, especially in barren and logged-over areas, will be likely to reduce the generation of a huge volume of runoff during rainfall events. The results of this study have demonstrated the usefulness of multi-temporal Landsat images in detecting land-cover change, in identifying areas for rehabilitation, and in evaluating rehabilitation strategies for management of tropical watersheds through its use in hydrologic modeling.

  10. Runoff generation and routing on artificial slopes in a Mediterranean-continental environment: the Teruel coalfield, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Nicolau, J.M. [Universidad de Alcala de Henares, Alcala de Henares (Spain)


    The aim of the study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean-continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable - at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities explain runoff at the inter-rill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors.

  11. A Future Estimation of the Surface Runoff in the Greek Region: A Case Study of one of the Main Catchments Areas (Aravissos - Central Macedonia) (United States)

    Anagnostopoulou, C.; Tolika, K.; Vafiadis, M.


    According to the IPCC latest report (IPCC, 2007) many semi-arid and arid areas, as the Mediterranean basin, are particularly exposed to the impacts of climate change and may suffer a decrease of water resources in the future. By the middle of the 21st century it is estimated that the annual average river runoff and water availability will decrease over these dry regions at mid-latitudes. So, it is of great importance the study of the future changes in the hydrological cycle, due to the increasing freshwater demands. The main scope of the present study is to estimate the future changes of the surface runoff in the Aravissos area (central Macedonia - Greece) due to the enhanced greenhouse effect until the end of the 21st century. The selection of Aravissos was based to the fact that the water needs of the second largest in population city in Greece (Thessaloniki) are covered mainly by the selected catchments area. Daily precipitation, temperature, relative humidity, wind speed and sunlight duration data derived from updated regional climate models, are used for selected grid points covering the domain of study. The main two climatological parameters (precipitation -temperature) are on a first step evaluated in comparison to re-analysis data (E-Obs -Ensembles project) for the same grid points. On a second step, utilizing several different evapotranspiration methods we calculated the surface runoff for two different time periods: the first in the middle and the second at the end of the 21st century. The first results of the study showed that the surface runoff depends on the methodology used for the calculation of the evapotranspiration but also from the regional model. Acknowledgements: This study has been supported by the CC-WaterS project (Contract number SEE/A/022/2.1/X)

  12. Radar Mapping of Surface Soil Moisture (United States)

    Ulaby, F. T.; Dubois, P. C.; van Zyl, J.


    Intended as an overview aimed at potential users of remotely sensed spatial distributions and temporal variations of soil moisture, this paper begins with an introductory section on the fundamentals of radar imaging and associated attributes.

  13. Effects of artificial soil surface management on changes of ...

    African Journals Online (AJOL)

    Studies of size distribution, stability of the aggregates, and other soil properties are very important due to their influence on tilth, water infiltration, and nutrient dynamics and more importantly on accelerated erosion but are affected by soil surface management. Both chemical e.g. pH, organic carbon, (OC), exchangeable ...

  14. The influences of changing weather patterns and land management on runoff biogeochemistry in a snowmelt dominated agricultural region (United States)

    Wilson, H. F.; Elliott, J. A.; Glenn, A. J.


    Runoff generation and the associated export of nitrogen, phosphorus, and organic carbon on the Northern Great Plains have historically been dominated by snowmelt runoff. In this region the transport of elements primarily occurs in dissolved rather than particulate forms, so cropland management practices designed to reduce particulate losses tend to be ineffective in reducing nutrient runoff. Over the last decade a higher frequency of high volume and intensity rainfall has been observed, leading to rainfall runoff and downstream flooding. To evaluate interactions between tillage, crop residue management, fertilization practices, weather, and runoff biogeochemistry a network of 18 single field scale watersheds (2-6 ha.) has been established in Manitoba, Canada over a range of fertilization (no input to high input) and tillage (zero tillage to frequent tillage). Soils in this network are typical of cropland in the region with clay or clay loam textures, but soil phosphorus differs greatly depending on input practices (3 to 25 mg kg-1 sodium bicarbonate extractable P). Monitoring of runoff chemistry and hydrology at these sites was initiated in 2013 and over the course of 5 years high volume snowmelt runoff from deep snowpack (125mm snow water equivalent), low volume snowmelt from shallow snowpack (25mm snow water equivalent) and extreme rainfall runoff events in spring have all been observed. Event based analyses of the drivers of runoff chemistry indicate that spring fertilization practices (depth, amount, and timing) influence concentrations of N and P in runoff during large rainfall runoff events, but for snowmelt runoff the near surface soil chemistry, tillage, and crop residue management are of greater importance. Management recommendations that might be suggested to reduce nutrient export and downstream eutrophication in the region differ for snowmelt and rainfall, but are not mutually exclusive.

  15. Predicting the concentration range of unmonitored chemicals in wastewater-dominated streams and in run-off from biosolids-amended soils (United States)

    Chari, Bipin P.; Halden, Rolf U.


    Organic compounds such as sterols and hormones have been detected in surface waters at ecologically relevant concentrations with sources including effluent discharged from publicly owned treatment works (POTWs) as well as leachate and runoff from land amended with municipal sludge (biosolids). Greater than 20% of regulated effluents discharged into U.S. surface waters experience in-stream dilution of <10 fold and potential impacts are particularly likely in receiving waters dominated by POTW effluents. The increasing use of biosolids on agricultural land exerts additional stress, thereby necessitating environmental monitoring for ecological and human health. Alternatively or in addition to monitoring efforts, screening for potentially hazardous chemicals can be performed using empirical models that are scalable and can deliver results rapidly. The present study makes use of data from U.S. EPA's Targeted National Sewage Sludge Survey (TNSSS) to predict the aqueous-phase concentrations and removal efficiencies of 10 sterols (campesterol, β-sitosterol, stigmasterol, β-stigmastanol, cholesterol, desmosterol, cholestanol, coprostanol, epicoprostanol, ergosterol) as well as the putative toxicity posed by four specific hormones based on their reported biosolids concentrations using published empirical models. Model predictions indicated that removal efficiencies for sterols are uniformly high (∼sim;99%) and closely match removal rates calculated from chemical monitoring at POTWs (paired t-test; p = 0.01). Results from toxicity modeling indicated that the hormones estrone, estradiol and estriol had the highest leaching potentials amongst the compounds considered here and that 17 β-ethinylestradiol was found to pose a potentially significant threat to fathead minnows (P. promelas) via run-off or leaching from biosolids-amended fields. This study exemplifies the use of in silico analysis to (i) identify potentially problematic organic compounds in biosolids, (ii

  16. Surface biosolids application: effects on infiltration, erosion, and soil organic carbon in Chihuahuan Desert grasslands and shrublands. (United States)

    Moffet, C A; Zartman, R E; Wester, D B; Sosebee, R E


    Land application of biosolids is a beneficial-use practice whose ecological effects depend in part on hydrological effects. Biosolids were surface-applied to square 0.5-m2 plots at four rates (0, 7, 34, and 90 dry Mg ha(-1)) on each of three soil-cover combinations in Chihuahuan Desert grassland and shrubland. Infiltration and erosion were measured during two seasons for three biosolids post-application ages. Infiltration was measured during eight periods of a 30-min simulated rain. Biosolids application affected infiltration rate, cumulative infiltration, and erosion. Infiltration increased with increasing biosolids application rate. Application of biosolids at 90 dry Mg ha(-1) increased steady-state infiltration rate by 1.9 to 7.9 cm h(-1). Most of the measured differences in runoff among biosolids application rates were too large to be the result of interception losses and/or increased hydraulic gradient due to increased roughness. Soil erosion was reduced by the application of biosolids; however, the extent of reduction in erosion depended on the initial erodibility of the site. Typically, the greatest marginal reductions in erosion were achieved at the lower biosolids application rates (7 and 34 dry Mg ha(-1)); the difference in erosion between 34 and 90 dry Mg ha(-1) biosolids application rates was not significant. Surface application of biosolids has important hydrological consequences on runoff and soil erosion in desert grasslands that depend on the rate of biosolids applied, and the site and biosolids characteristics.

  17. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng


    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  18. Organizing groundwater regimes and response thresholds by soils: A framework for understanding runoff generation in a headwater catchment (United States)

    John P. Gannon; Scott W. Bailey; Kevin J. McGuire


    A network of shallow groundwater wells in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire, U.S. was used to investigate the hydrologic behavior of five distinct soil morphological units. The soil morphological units were hypothesized to be indicative of distinct water table regimes. Water table fluctuations in the wells were...

  19. Calibration of Rainfall-Runoff Parameters in Peatlands (United States)

    Walle Menberu, Meseret; Torabi Haghighi, Ali; Kløve, Bjørn


    Finland is a country where its possession of peatlands compared to the total surface area of the country puts in the leading categories globally in peatland possession having 33.5% of its total land area covered with peatlands. Recent interest has grown in using peatlands as temporary flood control barriers by taking advantage of the high water holding capacity of peat soils. Water holding capacity of peat soils enables to reduce high rate of runoff and peak flow which might endanger downstream of the flow and in the process of doing that, the rest of the water leaving the peatland areas is less polluted due to the wetlands' potential in purifying polluted water. Therefore, in order to understand how capable enough peatlands are in holding water by reducing the peak flow or slowing down the rate of runoff, this paper analyses the rainfall-runoff phenomena in peatland catchments through important runoff parameters. Among the most important runoff parameters; the initial abstraction, the curve number and lag time are selected for this paper due to their highest impact on rainfall-runoff process. For this study, two peatland catchments of drained and pristine are selected. Managing to explain the initial abstraction and curve number behaviour in the catchments will able to clearly understand and as well predict the rainfall-runoff process in the catchments. In the selected study sites, observed rainfall and runoff data are collected. The study sites are modelled with the help of Arc-GIS and Hec-GeoHMS and from that are exported to HEC-HMS (Hydrologic modelling software) for rainfall-runoff analysis. The two important parameters; the initial abstraction and curve number are used to calibrate the model. And finally, the parameters that have given the best fit between the modelled and observed rainfall-runoff process are suggested for the study sites. Having these parameters estimated eases to understand rainfall-runoff process in the catchments for whatsoever purpose


    Directory of Open Access Journals (Sweden)

    A. Cilek


    Full Text Available The development and the application of rainfall-runoff models have been a corner-stone of hydrological research for many decades. The amount of rainfall and its intensity and variability control the generation of runoff and the erosional processes operating at different scales. These interactions can be greatly variable in Mediterranean catchments with marked hydrological fluctuations. The aim of the study was to evaluate the performance of rainfall-runoff model, for rainfall-runoff simulation in a Mediterranean subcatchment. The Pan-European Soil Erosion Risk Assessment (PESERA, a simplified hydrological process-based approach, was used in this study to combine hydrological surface runoff factors. In total 128 input layers derived from data set includes; climate, topography, land use, crop type, planting date, and soil characteristics, are required to run the model. Initial ground cover was estimated from the Landsat ETM data provided by ESA. This hydrological model was evaluated in terms of their performance in Goksu River Watershed, Turkey. It is located at the Central Eastern Mediterranean Basin of Turkey. The area is approximately 2000 km2. The landscape is dominated by bare ground, agricultural and forests. The average annual rainfall is 636.4mm. This study has a significant importance to evaluate different model performances in a complex Mediterranean basin. The results provided comprehensive insight including advantages and limitations of modelling approaches in the Mediterranean environment.

  1. A point-infiltration model for estimating runoff from rainfall on small basins in semiarid areas of Wyoming (United States)

    Rankl, James G.


    A physically based point-infiltration model was developed for computing infiltration of rainfall into soils and the resulting runoff from small basins in Wyoming. The user describes a 'design storm' in terms of average rainfall intensity and storm duration. Information required to compute runoff for the design storm by using the model include (1) soil type and description, and (2) two infiltration parameters and a surface-retention storage parameter. Parameter values are tabulated in the report. Rainfall and runoff data for three ephemeral-stream basins that contain only one type of soil were used to develop the model. Two assumptions were necessary: antecedent soil moisture is some long-term average, and storm rainfall is uniform in both time and space. The infiltration and surface-retention storage parameters were determined for the soil of each basin. Observed rainstorm and runoff data were used to develop a separation curve, or incipient-runoff curve, which distinguishes between runoff and nonrunoff rainfall data. The position of this curve defines the infiltration and surface-retention storage parameters. A procedure for applying the model to basins that contain more than one type of soil was developed using data from 7 of the 10 study basins. For these multiple-soil basins, the incipient-runoff curve defines the infiltration and retention-storage parameters for the soil having the highest runoff potential. Parameters were defined by ranking the soils according to their relative permeabilities and optimizing the position of the incipient-runoff curve by using measured runoff as a control for the fit. Analyses of runoff from multiple-soil basins indicate that the effective contributing area of runoff is less than the drainage area of the basin. In this study, the effective drainage area ranged from 41.6 to 71.1 percent of the total drainage area. Information on effective drainage area is useful in evaluating drainage area as an independent variable in

  2. Effects of native perennial vegetation buffer strips on dissolved organic carbon in surface runoff from an agricultural landscape (United States)

    Tomorra E. Smith; Randall K. Kolka; Xiaobo Zhou; Matthew J. Helmers; Richard M. Cruse; Mark D. Tomer


    Dissolved organic carbon (DOC) constitutes a small yet important part of a watershed's carbon budget because it is mobile and biologically active. Agricultural conservation practices such as native perennial vegetation (NPV) strips will influence carbon cycling of an upland agroecosystem, and could affect how much DOC enters streams in runoff, potentially...

  3. Antisoiling technology: Theories of surface soiling and performance of antisoiling surface coatings (United States)

    Cuddihy, E. F.; Willis, P. B.


    Physical examination of surfaces undergoing natural outdoor soiling suggests that soil matter accumulates in up to three distinct layers. The first layer involves strong chemical attachment or strong chemisorption of soil matter on the primary surface. The second layer is physical, consisting of a highly organized arrangement of soil creating a gradation in surface energy from a high associated with the energetic first layer to the lowest possible state on the outer surfce of the second layer. The lowest possible energy state is dictated by the physical nature of the regional atmospheric soiling materials. These first two layers are resistant to removal by rain. The third layer constitutes a settling of loose soil matter, accumulating in dry periods and being removed during rainy periods. Theories and evidence suggest that surfaces that should be naturally resistant to the formation of the first two-resistant layers should be hard, smooth, hydrophobic, free of first-period elements, and have the lowest possible surface energy. These characteristics, evolving as requirements for low-soiling surfaces, suggest that surfaces or surface coatings should be of fluorocarbon chemistry. Evidence for the three-soil-layer concept, and data on the positive performance of candidate fluorocarbon coatings on glass and transparent plastic films after 28 months of outdoor exposure, are presented.

  4. Soil macropores: Control on infiltration, hillslope and surface hydrology on a reclaimed surface-mined watershed

    International Nuclear Information System (INIS)

    Guebert, M.D.; Gardner, T.W.


    The hydrologic response of a surface-mined watershed in central Pennsylvania is controlled by rapid macropore flow within the unsaturated man-made topsoil. Newly reclaimed surface-mined watersheds in central Pennsylvania exhibit low steady-state infiltration rates (1--2 cm/hr) and produce runoff dominated by infiltration-excess overland flow. However, within four years after reclamation, infiltration rates on some mine surfaces approach premined rates (8 cm/hr). As infiltration rate increases, the volume of infiltrated water increases, but the total porosity of minesoil matrix remains constant. There is little change in the surface discharge volume, indicating that infiltrated water continues to contribute to the basin surface discharge by the processes of throughflow and return flow. Throughflow in the topsoil horizon occurs in rapid response to rainfall input, producing large volumes of water with throughflow rates closely related to rainfall rates and with throughflow peaks following rainfall peaks by only minutes. Increased return flow alters the shape of the surface runoff hydrograph by slightly lagging behind infiltration excess overland flow. These changes in the shape of the surface runoff hydrograph reduce the potential for severe gully erosion on the reclaimed site. In addition, throughflow water remains predominantly in the topsoil horizon, and therefore has limited contact with potentially acid-producing backfill. Better understanding of macropore flow processes in reclaimed minesoils will help investigators evaluate past strategies and develop new reclamation techniques that will minimize the short-term surface erosional effects of mining and reclamation, while optimizing the long-term effluent and groundwater quality

  5. Spatiotemporal evolution of water content at the rainfall-event scale under soil surface sealing conditions (United States)

    Sela, S.; Svoray, T.; Assouline, S.


    Surface water content dynamics rules the partitioning between infiltration, runoff, and evaporation fluxes. Extending the knowledge on factors controlling top-soil water content temporal stability (TS) is needed to calibrate and validate various remote sensing technologies. Spatiotemporal evolution of water content is highly non-linear, being affected by various factors at different spatial and temporal scales. In semi-arid climates, this evolution is significantly affected by the formation of surface seals, shown in previous studies to significantly reduce both infiltration and evaporation fluxes from the soil. The drying regime in a natural sealed soil system exerts a sharp contrast in the soil profile - a very dry seal is superimposed on top of a wetter soil layer. One question is thus, whether seal layers contribute to or destroy temporal stability of top soil water content at the hillslope scale. To address this question, a typical hillslope (0.115 km2) was chosen at the LTER Lehavim site in the south of Israel (31020' N, 34045' E) offering different aspects and a classic geomorphologic banding. The annual rainfall is 297 mm, the soils are brown lithosols and arid brown loess and the dominant rock formations are Eocenean limestone and chalk with patches of calcrete. The vegetation is characterised by scattered dwarf shrubs (dominant species Sarcopoterium spinosum) and patches of herbaceous vegetation, mostly annuals, are spread between rocks and dwarf shrubs. An extensive spatial database of soil hydraulic and environmental parameters (e.g. slope, radiation, bulk density) was measured in the field and interpolated to continuous maps using geostatistical techniques and physically based modelling. To explore the effect of soil surface sealing, Mualem and Assouline [1989] model describing the change in hydraulic parameters resulting from soil seal formation were applied. This spatio-temporal database was used to characterise 8240 spatial cells (3X3m2) serving as

  6. Effect of Management Practices on Soil Microstructure and Surface Microrelief

    Directory of Open Access Journals (Sweden)

    R. Garcia Moreno


    Full Text Available Soil surface roughness (SSR and porosity were evaluated from soils located in two farms belonging to the Plant Breeding Institute of the University of Sidney. The sites differ in their soil management practices; the first site (PBI was strip-tilled during early fall (May 2010, and the second site (JBP was under power harrowed tillage at the end of July 2010. Both sites were sampled in mid-August. At each location, SSR was measured for three 1 m2 subplots using shadow analysis. To evaluate porosity and aggregation, soil samples were scanned using X-ray computed tomography with 5 μm resolution. The results show a strong negative correlation between SSR and porosity, 20.13% SSR and 41.38% porosity at PBI versus 42.00% SSR and 18.35% porosity at JBP. However, soil images show that when soil surface roughness is higher due to conservation and soil management practices, the processes of macroaggregation and structural porosity are enhanced. Further research must be conducted on SSR and porosity in different types of soils, as they provide complementary information on the evaluation of soil erosion susceptibility.

  7. A new field method to characterise the runoff generation potential of burned hillslopes (United States)

    Sheridan, Gary; Lane, Patrick; Langhans, Christoph


    The prediction of post fire runoff generation is critical for the estimation of post fire erosion processes and rates. Typical field measures for determining infiltration model parameters include ring infiltrometers, tension infiltrometers, rainfall simulators and natural runoff plots. However predicting the runoff generating potential of post-fire hillslopes is difficult due to the high spatial variability of soil properties relative to the size of the measurement method, the poorly understood relationship between water repellence and runoff generation, known scaling issues with all the above hydraulic measurements, and logistical limitations for measurements in remote environments. In this study we tested a new field method for characterizing surface runoff generation potential that overcomes these limitations and is quick, simple and cheap to apply in the field. The new field method involves the manual application of a 40mm depth of Brilliant Blue FCF food dye along a 10cm wide and 5m long transect along the contour under slightly-ponded conditions. After 24 hours the transect is excavated to a depth of 10cm and the percentage dyed area within the soil profile recorded manually. The dyed area is an index of infiltration potential of the soil during intense rainfall events, and captures both spatial variability and water repellence effects. The dye measurements were made adjacent to long term instrumented post fire rainfall-runoff plots on 7 contrasting soil types over a 6 month period, and the results show surprisingly strong correlations (r2 = 0.9) between the runoff-ratio from the plots and the dyed area. The results are used to develop an initial conceptual model that links the dye index with an infiltration model and parameters suited to burnt hillslopes. The capacity of this method to provide a simple, and reliable indicator of post fire runoff potential from different fire severities, soil types and treatments is explored in this presentation.

  8. Mapping surface soil moisture with L-band radiometric measurements (United States)

    Wang, James R.; Shiue, James C.; Schmugge, Thomas J.; Engman, Edwin T.


    A NASA C-130 airborne remote sensing aircraft was used to obtain four-beam pushbroom microwave radiometric measurements over two small Kansas tall-grass prairie region watersheds, during a dry-down period after heavy rainfall in May and June, 1987. While one of the watersheds had been burned 2 months before these measurements, the other had not been burned for over a year. Surface soil-moisture data were collected at the time of the aircraft measurements and correlated with the corresponding radiometric measurements, establishing a relationship for surface soil-moisture mapping. Radiometric sensitivity to soil moisture variation is higher in the burned than in the unburned watershed; surface soil moisture loss is also faster in the burned watershed.

  9. Soil erosion risk as a measure of the effects of land pattern changes on runoff processes in the landscape – case studies from Lower Austria and Central Bohemia (United States)

    Devátý, Jan; Strauss, Peter; Hoesl, Rosemarie; Dostal, Tomas; Krása, Josef


    Changes in land use, landscape structure and agricultural technologies affect number of soil characteristics as well as rainfall-runoff processes in the landscape. Soil erosion and sediment transport can be easily used for documentation and quantification of the impacts of land use development in time. Extent and structure of arable land within a landscape is driven by technological, social and political, factors and differs between countries. However land structure development is more or less natural process and is driven under normal conditions mainly by climatic and economic forces, the effects of political development is very well documented on different sides of the former iron curtain. There is unique chance to compare the trends in historical development during different historical periods given by both of economic and political forces and to search for optimum land structure, using rainfall-runoff processes as a measure. Land structure analysis and soil erosion risk assessment was carried out for two areas of interest and series of historical periods: • Lower Austrian municipality of Kleinweikersdorf (580 ha) - 1822, 1945, 1966, 1990, 2008 • part of Botic river watershed in Central Bohemia (810 ha) - 1841, 1953, 1971, 1989, 2003, 2013 Land use delimitation and field plots spatial definition was digitized from available data sources (Historical Cadastral maps and aerial photographs). Changes in crop properties and management practices were also taken into account based on historical information. Comparison between time periods shows that political actions can cause substantial impact on field plot sizes. At the Austrian area of interest the number of arable field plot continually decreases from 1203 (in 1822) to 371 (in 2008) whereas at the Czech area of interest the initial number of 469 parcels (in 1841) decreases to 32 (in 1989) and then rises again in the last two time periods. While the trend of rising average parcel size in Austria is continuous

  10. Sound absorption at the soil surface

    NARCIS (Netherlands)

    Janse, A.R.P.


    The properties of a soil structure may be examined in various manners. As well as a study of the stability, a knowledge of the geometry of the volume of air filled pores is often needed. The most common measurements, like those of porosity and flow resistance to gases do not permit a detailed

  11. Parâmetros relacionados com a erosão hídrica sob taxa constante da enxurrada, em diferentes métodos de preparo do solo Water-erosion related parameters under steady runoff-rate for different soil tillage methods

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol


    ção e o tamanho dos sedimentos, bem como a taxa de perda de solo, aumentaram com a diminuição da rugosidade e da cobertura superficiais do solo, enquanto a taxa de infiltração da água da chuva diminuiu. A taxa de descarga e o coeficiente de enxurrada - parâmetro C da Fórmula Racional -, aumentaram com a diminuição da rugosidade e da cobertura superficiais do solo.Tillage influences both surface and subsurface soil physical conditions, and consequently the values of the factors related to the rainfall-water erosion process. A field experiment using simulated rainfall was conducted from October, 1999 to May, 2000, in the Planalto Sul Catarinense region, Lages, Santa Catarina State, Brazil, in order to evaluate some of the factors related to the rainfall-water erosion process under steady runoff-rate, with three different soil tillage methods. The soil used in the study was a clayey Typic Hapludox with 0.14 m m-1 slope at the experimental site. The evaluated treatments consisted of: (a reduced tillage (chiseling + disking, (b typical conventional tillage (plowing + double-disking, and (c modified conventional tillage (plowing + double-disking + double hand-harrowing. The first two treatments were applied in continuously cultivated soil and the last one in continuously uncultivated-soil (control treatment. Both the soil surface random-roughness and soil surface residue cover were characterized in the treatments through measurements immediately before and after tillage, on the day before simulated rainfall application. The rainfall test was applied by the time of soybean planting, at a constant intensity of 64 mm h-1 and varying durations (until completing 30-min of constant runoff in each treatment. Soil tillage increased the random-surface roughness and decreased surface cover to different degrees, depending on the type of equipment. Reduced tillage was the most effective treatment in terms of both increasing random surface roughness and maintaining the soil

  12. Spectral reflectance of surface soils: Relationships with some soil properties (United States)

    Kiesewetter, C. H.


    Using a published atlas of reflectance curves and physicochemical properties of soils, a statistical analysis was carried out. Reflectance bands which correspond to five of the wavebands used by NASA's Thematic Mapper were examined for relationships to specific soil properties. The properties considered in this study include: Sand Content, Silt Content, Clay Content, Organic Matter Content, Cation Exchange Capacity, Iron Oxide Content and Moisture Content. Regression of these seven properties on the mean values of five TM bands produced results that indicate that the predictability of the properties can be increased by stratifying the data. The data was stratified by parent material, taxonomic order, temperature zone, moisture zone and climate (combined temperature and moisture). The best results were obtained when the sample was examined by climatic classes. The middle Infra-red bands, 5 and 7, as well as the visible bands, 2 and 3, are significant in the model. The near Infra-red band, band 4, is almost as useful and should be included in any studies. General linear modeling procedures examined relationships of the seven properties with certain wavebands in the stratified samples.

  13. Simulação do deflúvio e vazão de pico em microbacia hidrográfica com escoamento efêmero Surface runoff and peak discharge simulation in ephemeral watershed

    Directory of Open Access Journals (Sweden)

    Carlos R. Mello


    Full Text Available A predição da resposta hidrológica em microbacias hidrográficas a partir de diferentes usos do solo é de fundamental importância para nortear ações de manejo ambiental, razão por que se objetivou, neste trabalho, desenvolver, em primeira mão, uma modelagem hidrológica para predizer o deflúvio total e a vazão de pico em uma microbacia hidrográfica experimental, de escoamento efêmero, ocupada por eucalipto e pastagem, e após esta etapa, aplicá-la a diferentes cenários de ocupação da microbacia por ambas as coberturas vegetais, estimando-se as respostas hidrológicas das situações simuladas. O monitoramento hidrológico foi realizado entre novembro/02 e abril/03, por meio de estação meteorológica e calha Parshall, conjugada a linígrafo automático. A umidade do solo foi monitorada a cada 2 dias, em 3 profundidades (20, 50 e 80 cm, em 8 pontos na área ocupada por pastagem e 4 na área com eucalipto. A modelagem mostrou-se precisa e eficaz aos objetivos propostos de predição em diferentes cenários de uso e ocupação do solo. Verificou-se que, se a microbacia for ocupada por 80% de eucalipto, haverá redução do deflúvio em 29%, constatando-se ainda, redução substancial da vazão de pico; verificou-se também que a umidade do solo é fundamental no processo, especialmente para pequenas vazões, no início e no final do período chuvoso e após veranicos e que, para vazões mais elevadas, as características da precipitação são determinantes.The prediction of hydrological responses in a microbasin from different soil uses is of fundamental importance to develop actions to minimize environmental impacts. This work aimed to develop and to apply hydrological modeling for predicting surface runoff and peak discharge in experimental tropical ephemeral watershed occupied by eucalyptus and grasses, creating different soil use scenarios. Hydrological monitoring was performed between November/2002 and April/2003, using

  14. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape. (United States)

    Zhu, T X


    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of 20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km(2) in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km(2) in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km(2) on the cultivated slopeland, in comparison to 27.7 t/km(2) on the woodland plot, 213 t/km(2) on the grassland plot, 467 t/km(2) on the alfalfa plot, 236 t/km(2) on the terraceland plot, and 642 t/km(2) on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  15. Simultaneous analysis of free and conjugated estrogens, sulfonamides, and tetracyclines in runoff water and soils using solid-phase extraction and liquid chromatography-tandem mass spectrometry. (United States)

    Tso, Jerry; Dutta, Sudarshan; Inamdar, Shreeram; Aga, Diana S


    The ability to monitor multiple analytes from various classes of compounds in a single analysis can increase throughput and reduce cost when compared to traditional methods of analyses. This method for analyzing free (parent estrogen) and conjugated estrogens (metabolites) along with sulfonamides and tetracyclines utilizes a high pH (10.4) mobile phase with an ammonium hydroxide buffer for both positive- and negative-mode electrospray ionization. A single-step sample preparation by solid-phase extraction (SPE) was used to isolate and concentrate all analytes simultaneously. The analytical method was developed and validated for recoveries at 3 concentration levels for water and soil and produced recoveries of 42-123% and 21-105% respectively. Method detection limits ranged from 0.3 to 1.0 ng/L for water samples and 0.01 to 0.1 ng/g for soils. The method quantification limit ranged from 0.9 to 3.3 ng/L for water samples and 0.06 to 0.7 ng/g for soils. The single-point standard addition calibration procedure was validated across a linear range of MQL to 100 ng/L with ≥82% accuracy against a matrix matched standard curve. Furthermore, sorption of tetracyclines onto glassware was investigated and minimized by 10% using nitric acid-rinsed glassware, while separation parameters were further optimized based on retention time and signal responses. This method has been used for the quantification of estrogens, tetracyclines, and sulfonamides in soil and runoff waters with multiple compounds detected simultaneously in a single analysis.

  16. Runoff of pesticides from rice fields in the Ile de Camargue (Rhone river delta, France): Field study and modeling

    International Nuclear Information System (INIS)

    Comoretto, Laetitia; Arfib, Bruno; Talva, Romain; Chauvelon, Philippe; Pichaud, Marc; Chiron, Serge; Hoehener, Patrick


    A field study on the runoff of pesticides was conducted during the cultivation period in 2004 on a hydraulically isolated rice farm of 120 ha surface with one central water outlet. Four pesticides were studied: Alphamethrin, MCPA, Oxadiazon, and Pretilachlor. Alphamethrin concentrations in runoff never exceeded 0.001 μg L -1 . The three other pesticides were found in concentrations between 5.2 and 28.2 μg L -1 in the runoff water shortly after the application and decreased thereafter. The data for MCPA compared reasonably well with predictions by an analytical runoff model, accounting for volatilization, degradation, leaching to groundwater, and sorption to soil. The runoff model estimated that runoff accounted for as much as 18-42% of mass loss for MCPA. Less runoff is observed and predicted for Oxadiazon and Pretilachlor. It was concluded that runoff from rice paddies carries important loads of dissolved pesticides to the wetlands in the Ile de Camargue, and that the model can be used to predict this runoff. - Runoff of dissolved pesticides was measured on a rice farm in the Camargue (France) and modeled with an analytical model

  17. [Runoff loss ways of nutrients in non-irrigated farmland in Hefei outskirts]. (United States)

    Zhou, J; Zhu, J


    Taking non-irrigated flatlands in Hefei outskirts as experiment observation areas, yellow brown soil as selected soil type, and runoff development, runoff quantities, and silt carrying capacity under different rainfall intensity were observed on the non-irrigated farmlands with different kinds of crops such as grain, oil, cotton and vegetables, and with different coverage for continuous 3 years. Based on the observation, water and soil samples were collected and analyzed. The results showed that the loss way of the surface soil and nutrients in non-irrigated flatlands was obviously different from that on the sloping fields and on the upland. Over 98% of available N, P, and K nutrient loss were run off by chemical erosion. Physical erosion was the main way of the surface soil and organic matter loss, and 96.14% of total organic loss was caused by physical erosion.

  18. Influence of soil moisture content on surface albedo and soil thermal ...

    Indian Academy of Sciences (India)

    The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also ...

  19. Spatial and temporal variability of soil temperature, moisture and surface soil properties (United States)

    Hajek, B. F.; Dane, J. H.


    The overall objectives of this research were to: (l) Relate in-situ measured soil-water content and temperature profiles to remotely sensed surface soil-water and temperature conditions; to model simultaneous heat and water movement for spatially and temporally changing soil conditions; (2) Determine the spatial and temporal variability of surface soil properties affecting emissivity, reflectance, and material and energy flux across the soil surface. This will include physical, chemical, and mineralogical characteristics of primary soil components and aggregate systems; and (3) Develop surface soil classes of naturally occurring and distributed soil property assemblages and group classes to be tested with respect to water content, emissivity and reflectivity. This document is a report of studies conducted during the period funded by NASA grants. The project was designed to be conducted over a five year period. Since funding was discontinued after three years, some of the research started was not completed. Additional publications are planned whenever funding can be obtained to finalize data analysis for both the arid and humid locations.

  20. Performance of Two Bioswales on Urban Runoff Management

    Directory of Open Access Journals (Sweden)

    Qingfu Xiao


    Full Text Available This study evaluated the effectiveness of two bioswales eight years after construction in Davis, California. The treatment bioswale measured 9 m × 1 m × 1 m (L × W × D. Engineered soil mix (75% native lava rock and 25% loam soil replaced the native loam soil. Four Red Tip Photinia (Photinia × fraseri Dress trees and two Blueberry Muffin Hawthorn (Rhaphiolepis umbellata (Thunb. Makino shrubs were planted in the bioswale. Runoff flowed into the bioswale from an adjacent 171 m2 panel of turf grass. An identically sized control bioswale consisting of non-disturbed native soil was located adjacent to the treatment bioswale. Surface runoff quantity and quality were measured during three experiments with different pollutant loads. When compared to the control, the treatment bioswale reduced surface runoff by 99.4%, and reduced nitrogen, phosphate, and total organic carbon loading by 99.1%, 99.5%, and 99.4%, respectively. After eight years, tree growth characteristics were similar across both sites.

  1. The Influence of Surface Coal Mining on Runoff Processes and Stream Chemistry in the Elk Valley, British Colubmbia, Canada (United States)

    Carey, S. K.; Wellen, C. C.; Shatilla, N. J.


    Surface mining is a common method of accessing coal. In high-elevation environments, vegetation and soils are typically removed prior to the blasting of overburden rock, thereby allowing access to mineable ore. Following this, the removed overburden rock is deposited in adjacent valleys as waste rock spoils. Previous research has identified that areas downstream of surface coal mining have impaired water quality, yet there is limited information about the interaction of hydrology and geochemistry across a range of mining conditions, particularly at the headwater scale. Here, we provide an analysis of an extensive long-term data set of geochemistry and flows across a gradient of coal mining in the Elk Valley, British Columbia, Canada. This work is part of a broader R&D program examining the influence of surface coal mining on hydrological and water quality responses in the Elk Valley aimed at informing effective management responses. Results indicate that water from waste rock piles has an ionic profile distinct from unimpacted catchments. While the concentration of geochemicals increased with the degree of mine impact, the control of hydrological transport capacity over geochemical export did not vary with degree of mine impact. Geochemical export in mine-influenced catchments was limited more strongly by transport capacity than supply, implying that more water moving through the waste rock mobilized more geochemicals. Placement of waste rock within the catchment (headwaters or outlet) did not affect chemical concentrations but did alter the timing with which chemically distinct water mixed. This work advances on results reported earlier using empirical models of selenium loading and further highlights the importance of limiting water inputs into waste rock piles.

  2. Effects of Fertilization on Surface Runoff Loss of Nitrogen and Phosphorus from Mulberry in the Northern Zhejiang Plain, China

    Directory of Open Access Journals (Sweden)

    SHI Yan-ping


    Full Text Available In 2012 and 2013, the situ experimental plots in mulberry under two different kinds of treatment(control fertilization and farmer's conventional fertilization were conducted, and the runoff water in each plot were collected and tested in a period of two years to investigate the law of runoff, the regular pattern and the influential factors of nitrogen and phosphorus losses, and to study the coefficient of fertilizer losses from mulberry in northern Zhejiang plain. The results showed that the annual rainfall runoff coefficient was about 0.253 in mulberry field in northern Zhejiang plain. In those two years, TN and TP cumulative loss load in the conventional fertilization area reached 36.13 kg·hm-2 and 3.49 kg·hm-2, of which the N, P nutrient losses of fertilizer reached 6.415 kg·hm-2 and 1.090 kg·hm-2, respectively. N, P loss coefficients of fertilizer (the difference of nitrogen or phosphorus loss in the conventional fertilization area and the control area was divided by the total amount of fertilizer application were 0.744% and 3.047%. Nitrogen loss were mainly in soluble form, in which the NO3-N and NH4-N, accounting for about 38.3% and 14.4% respectively; while the phosphorus loss were in particulate form, accounting for about 68.9%. The larger amount of nitrogen and phosphorus nutrient loss, were within the first year of the fertilization period, and the P loss was more serious than N. Within a period of fertilization, the cumulative loss of nitrogen and phosphorus caused by rainfall and the occurrence times of runoff increased with power function(R2>0.95.

  3. Runoff of particle bound pollutants from urban impervious surfaces studied by analysis of sediments from stormwater traps

    International Nuclear Information System (INIS)

    Jartun, Morten; Ottesen, Rolf Tore; Steinnes, Eiliv; Volden, Tore


    Runoff sediments from 68 small stormwater traps around the harbor of urban Bergen, Norway, were sampled and the concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), heavy metals, and total organic carbon (TOC) were determined in addition to grain size. Our study provides empirical data from a large area in the interface between the urban and marine environment, studying the active transport of pollutants from land-based sources. The results of the analyses clearly demonstrate the importance of the urban environment representing a variety of contamination sources, and that stormwater runoff is an important dispersion mechanism of toxic pollutants. The concentrations of different pollutants in urban runoff sediments show that there are several active pollution sources supplying the sewage systems with PCBs, PAHs and heavy metals such as lead (Pb), zinc (Zn) and cadmium (Cd). The concentration of PCB 7 in the urban runoff sediments ranged between 16 , the concentration range was < 0.2-80 mg/kg, whereas the concentration ranges of Pb, Zn and Cd were 9-675, 51.3-4670 and 0.02-11.1 mg/kg respectively. Grain size distribution in 21 selected samples varied from a median particle diameter of 13 to 646 μm. However, several samples had very fine-grained particles even up to the 90 percentile of the samples, making them available for stormwater dispersion in suspended form. The sampling approach proposed in this paper will provide environmental authorities with a useful tool to examine ongoing urban contamination of harbors and similar recipients

  4. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions (United States)

    Van Pelt, R. S.; Zhang, G.


    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  5. Metal redistribution by surface casting of four earthworm species in sandy and loamy clay soils.

    NARCIS (Netherlands)

    Zorn, M.I.; van Gestel, C.A.M.; Eijsackers, H.J.P.


    Bioturbation of metal contaminated soils contributes considerably to redistribution and surfacing of contaminated soil from deeper layers. To experimentally measure the contribution of Allolobophora chlorotica, Aporrectodea caliginosa, Lumbricus rubellus and L. terrestris to soil surface casting, a

  6. Correlative assessment of two predictive soil hydrology models with measured surface soil geochemistry (United States)

    Filley, T. R.; Li, M.; Le, P. V.; Kumar, P.; Yan, Q.; Papanicolaou, T.; Hou, T.; Wang, J.


    Spatial variability of surface soil organic matter on the hill slope scale is strongly influenced by topographic variation, especially in sloping terrains, where the coupled effects of soil moisture and texture are principle drivers for stabilization and decomposition. Topographic wetness index (TWI) calculations have shown reasonable correlations with soil organic carbon (SOC) content at broad spatial scales. However, due to inherent limitations of the "depression filling" approach, traditional TWI methods are generally ineffectual at capturing how small-scale micro-topographic ( 1m2) variation controls water dynamics and, subsequently, poorly correlate to surface soil biogeochmical measures. For TWI models to capture biogeochmical controls at the scales made possible by LiDAR data they need to incoportate the dynamic connection between soil moisture, local climate, edaphic properties, and micro-topographic variability. We present the results of a study correlating surface soil geochemical data across field sites in the Upper Sangamon River Basin (USRB) in Central Illinois, USA with a range of land use types to SAGA TWI and a newly developed Dynamic Topographic Wetness Index (DTWI). The DTWI for all field sites were obtained from the probability distribution of long-term stochastically modeled soil moisture in between wilting point (WP) and field capacity (FC) using Dhara modeling framework. Whereas the SAGA TWI showed no correlation with soil geochemistry measures across the site-specific data, the DTWI, within a site, was strongly, positively correlated with soil nitrogen, organic carbon, and δ15N at three of the six sites and revealed controls potentially related to connectivity to local drainage paths. Overall, this study indicates that soil moisture derived by DTWI may offer a significant improvement in generating estimates in long-term soil moisture, and subsequently, soil biogeochemistry dynamics at a crucial landscape scale.

  7. Nitrogen isotope ratios in surface and sub-surface soil horizons

    International Nuclear Information System (INIS)

    Rennie, D.A.; Paul, E.A.


    Nitrogen isotope analysis of surface soils and soil-derived nitrate for selected chernozemic and luvisolic soils showed mean delta 15 N values of 11.7 and 11.3, respectively. Isotope enrichment of the total N reached a maximum in the lower B horizon. Sub-soil parent material samples from the one deep profile included in the study indicated a delta 15 N value (NO 3 -N) of 1/3 that of the Ap horizon, at a depth of 180 cm. The delta 15 N of sub-surface soil horizons containing residual fertilizer N were low (-2.2) compared to the surface horizon (9.9). The data reported from this preliminary survey suggest that the natural variations in 15 N abundance between different soils and horizons of the same soil reflect the cumulative effects of soil genesis and soil management. More detailed knowledge and understanding of biological and other processes which control N isotope concentrations in these soils must be obtained before the data reported can be interpreted. (author)

  8. Spatial Variability of Soil Properties and its Impact on Simulated Surface Soil Moisture Patterns (United States)

    Korres, W.; Bothe, T.; Reichenau, T. G.; Schneider, K.


    The spatial variability of soil properties (particle size distribution, PSD, and bulk density, BD) has large effects on the spatial variability of soil moisture and therefore on plant growth and surface exchange processes. In model studies, soil properties from soil maps are considered homogeneous over mapping units, which neglects the small scale variability of soil properties and leads to underestimated small scale variability of simulated soil moisture. This study focuses on the validation of spatial variability of simulated surface soil moisture (SSM) in a winter wheat field in Western Germany using the eco-hydrological simulation system DANUBIA. SSM measurements were conducted at 20 different sampling points and nine different dates in 2008. Frequency distributions of BD and PSD were derived from an independent dataset (n = 486) of soil physical properties from Germany and the USA. In the simulations, BD and PSD were parameterized according to these frequency distributions. Mean values, coefficients of variation and frequency distributions of simulated SSM were compared to the field measurements. Using the heterogeneous model parameterization, up to 76 % of the frequency distribution of the measured SSM can be explained. Furthermore, the results show that BD has a larger impact on the variability of SSM than PSD. The introduced approach can be used for simulating mean SSM and SSM variability more accurately and can form the basis for a spatially heterogeneous parameterization of soil properties in mesoscale models.

  9. Forest Management Effects on Surface Soil Carbon and Nitrogen (United States)

    Jennifer D. Knoepp; Wayne T. Swank


    Changes in surface soil C and N can result from forest management practices and may provide an index of impacts on long-term site productivity. Soil C and N were measured over time for five water- sheds in the southern Appalachians: two aggrading hardwood forests, one south- and one north-facing, undisturbed since the 1920s;a white pine (PinussfrobusL.) plantation...

  10. Use of a stochastic approach for description of water balance and runoff production dynamics (United States)

    Gioia, A.; Manfreda, S.; Iacobellis, V.; Fiorentino, M.


    The present study exploits an analytical model (Manfreda, NHESS [2008]) for the description of the probability density function of soil water balance and runoff generation over a set of river basins belonging to Southern Italy. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance; the watershed heterogeneity is described exploiting the conceptual lumped watershed Xinanjiang model (widely used in China) that uses a parabolic curve for the distribution of the soil water storage capacity (Zhao et al. [1980]). The model, characterized by parameters that depend on soil, vegetation and basin morphology, allowed to derive the probability density function of the relative saturation and the surface runoff of a basin accounting for the spatial heterogeneity in soil water storage. Its application on some river basins belonging to regions of Southern Italy, gives interesting insights for the investigation of the role played by the dynamical interaction between climate, soil, and vegetation in soil moisture and runoff production dynamics. Manfreda, S., Runoff Generation Dynamics within a Humid River Basin, Natural Hazard and Earth System Sciences, 8, 1349-1357, 2008. Zhao, R. -J., Zhang, Y. L., and Fang, L. R.: The Xinanjiang model, Hydrological Forecasting Proceedings Oxford Symposium, IAHS Pub. 129, 351-356, 1980.

  11. Quantifying the changes of soil surface microroughness due to rainfall impact on a smooth surface

    Directory of Open Access Journals (Sweden)

    B. K. B. Abban


    Full Text Available This study examines the rainfall-induced change in soil microroughness of a bare smooth soil surface in an agricultural field. The majority of soil microroughness studies have focused on surface roughness on the order of ∼ 5–50 mm and have reported a decay of soil surface roughness with rainfall. However, there is quantitative evidence from a few studies suggesting that surfaces with microroughness less than 5 mm may undergo an increase in roughness when subject to rainfall action. The focus herein is on initial microroughness length scales on the order of 2 mm, a low roughness condition observed seasonally in some landscapes under bare conditions and chosen to systematically examine the increasing roughness phenomenon. Three rainfall intensities of 30, 60, and 75 mm h−1 are applied to a smoothened bed surface in a field plot via a rainfall simulator. Soil surface microroughness is recorded via a surface-profile laser scanner. Several indices are utilized to quantify the soil surface microroughness, namely the random roughness (RR index, the crossover length, the variance scale from the Markov–Gaussian model, and the limiting difference. Findings show a consistent increase in roughness under the action of rainfall, with an overall agreement between all indices in terms of trend and magnitude. Although this study is limited to a narrow range of rainfall and soil conditions, the results suggest that the outcome of the interaction between rainfall and a soil surface can be different for smooth and rough surfaces and thus warrant the need for a better understanding of this interaction.

  12. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood


    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  13. Assessment of evapotranspiration and soil water content in the Kysuca River basin (Slovakia) using a rainfall-runoff model

    Czech Academy of Sciences Publication Activity Database

    Košková, Romana; Němečková, Soňa; Sitková, Z.


    Roč. 4, č. 1 (2008), s. 012002 ISSN 1755-1315. [Conference of the Danubian Countries /24./. Bled, 02.06.2008-04.06.2008] R&D Projects: GA AV ČR(CZ) KJB300600602 Institutional research plan: CEZ:AV0Z20600510 Keywords : hydrological modelling * soil water content * evapotranspiration * SWIM model Subject RIV: DA - Hydrology ; Limnology

  14. Measured and simulated effects of sophisticated drainage techniques on groundwater level and runoff hydrochemistry in areas of boreal acid sulphate soils

    Directory of Open Access Journals (Sweden)



    Full Text Available To abate the environmental problems caused by the severe acidity and high metal concentrations in rivers draining acid sulphate (AS soils of Western Finland, control drainage (CD and lime filter drainage (LFD, and their combination, were investigated. The effectiveness of these best management practices (BMP’s on drainage water quality was studied on plot scale in two locations. In Ilmajoki, where the sulphidic materials are more than 2 m below the soil surface, CD efficiently reduced the concentrations of sulphate, aluminium, manganese and iron concentrations and to some extent also increased the pH of the drainage waters. LFD, in contrast, effectively reduced the drainage water acidity and raised the pH level. Decrease of the groundwater level owing to strong evapotranspiration in summer could, however, not be properly prevented by CD. In Mustasaari where sulphidic materials were as shallow as 1 m below soil surface, the positive effects of LFD recognised in Ilmajoki were hardly seen. This shows, that the tested BMP’s work properly, and can thus be recommended, for intensively artificially drained AS soils like in Ilmajoki where most of the acidity has already been transported to watercourses. LFD can, however, not be recommended for as yet poorly leached and thus particularly problematic AS soils like in Mustasaari. This is, of course, a drawback of the tested BMP, as it is not effective for the soils which would need it most. The field data were tentatively utilised to test the performance of the HAPSU (Ionic Flow Model for Acid Sulphate Soils simulation model developed to estimate the loads of harmful substances from AS soils.;

  15. Long-range alpha detection applied to soil surface monitoring

    International Nuclear Information System (INIS)

    Caress, R.W.; Allander, K.S.; Bounds, J.A.; Catlett, M.M.; MacArthur, D.W.; Rutherford, D.A.


    The long-range alpha detection (LRAD) technique depends on the detection of ion pairs generated by alpha particles losing energy in air rather than on detection of the alpha particles themselves. Typical alpha particles generated by uranium will travel less than 3 cm in air. In contrast, the ions have been successfully detected many inches or feet away from the contamination. Since LRAD detection systems are sensitive to all ions simultaneously, large LRAD soil surface monitors (SSMS) can be used to collect all of the ions from a large sample. The LRAD SSMs are designed around the fan-less LRAD detector. In this case a five-sided box with an open bottom is placed on the soil surface. Ions generated by alpha decays on the soil surface are collected on a charged copper plate within the box. These ions create a small current from the plate to ground which is monitored with a sensitive electrometer. The current measured is proportional to the number of ions in the box, which is, in turn, proportional to the amount of alpha contamination on the surface of the soil. This report includes the design and construction of a 1-m by 1-m SSM as well as the results of a study at Fernald, OH, as part of the Uranium in Soils Integrated Demonstration

  16. Formas de perdas de cobre e fósforo em água de escoamento superficial e percolação em solo sob aplicações sucessivas de dejeto líquido de suínos Forms of losses of copper and phosphorus in water of runoff and percolation in soil with successive pig slurry application

    Directory of Open Access Journals (Sweden)

    Eduardo Girotto


    Full Text Available As aplicações sucessivas de dejeto líquido de suínos podem aumentar os teores de cobre e fósforo na camada superficial do solo, aumentando as perdas de suas formas por escoamento superficial e percolação. O trabalho teve por objetivo avaliar as perdas e as formas de cobre e de fósforo na solução escoada, na superfície e percolada em solo submetido a aplicações sucessivas de dejeto líquido de suínos, em sistema plantio direto. O experimento utilizado neste estudo foi instalado no ano de 2000, sobre um solo Argissolo Vermelho distrófico arênico. Os tratamentos foram aplicações sucessivas de 0, 40 e 80m³ ha-1 de dejeto líquido de suínos a lanço e na superfície do solo, em sistema plantio direto. Para este trabalho, foram coletadas soluções escoadas e percoladas, durante o ciclo da aveia preta (Avena strigosa, no inverno de 2006, quando o solo apresentava um histórico de 16 aplicações de dejeto. Nas soluções, foi quantificado o sedimento e determinados os teores de Cu, P, cátions e ânions, pH, carbono orgânico dissolvido (COD e condutividade elétrica (CE. Usando o programa Visual MINTEQ, versão 2.15, se realizou a especiação iônica de Cu e P nas soluções. As maiores perdas de cobre e fósforo do solo ocorrem por escoamento superficial, em áreas submetidas a aplicações sucessivas de dejeto líquido de suínos em sistema plantio direto. O potencial contaminante desses elementos ficou evidenciado pela presença do cobre na forma predominante orgânica (CuCOD e do fósforo nas formas livres (HPO4(2- e H2PO4-, na solução escoada.Successive pig slurry application can increase the copper and phosphorus levels in the soil and the losses of these elements by surface runoff and percolation. The objective of this study is to evaluate the losses and the forms of both copper and phosphorus in the surface runoff and also in/on the percolation solution, on soils with successive pig slurry application under no tillage

  17. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils. (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi


    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Validation of soil moisture ocean salinity (SMOS) satellite soil moisture products (United States)

    The surface soil moisture state controls the partitioning of precipitation into infiltration and runoff. High-resolution observations of soil moisture will lead to improved flood forecasts, especially for intermediate to large watersheds where most flood damage occurs. Soil moisture is also key in d...

  19. Modelo hidrológico para estimativa do escoamento superficial em áreas agrícolas A hydrologic model to estimate the surface runoff in agricultural lands

    Directory of Open Access Journals (Sweden)

    Fernando F. Pruski


    Full Text Available Desenvolveu-se um modelo hidrológico para estimar o escoamento superficial em áreas sob condições agrícolas. O modelo é baseado na análise dos diversos processos associados ao balanço hídrico e nele se usa a equação de intensidade, duração e freqüência da precipitação para estimar a intensidade de precipitação e a equação de Green-Ampt modificada por Mein-Larson, para estimar a velocidade de infiltração permitindo, também, a consideração da interceptação pela cobertura vegetal e do armazenamento de água sobre a superfície do solo por meio de diferentes metodologias. O escoamento superficial começa após a capacidade de armazenamento sobre a superfície do solo ter sido preenchida, e é calculado subtraindo-se a velocidade de infiltração da água no solo da intensidade de precipitação durante o intervalo de tempo em que a intensidade da chuva é maior que a velocidade de infiltração. Resultados de um experimento de validação do modelo e duas aplicações práticas são apresentados, sendo que os resultados obtidos com o modelo foram muito próximos daqueles observados no campo.A hydrologic model was developed to estimate the surface runoff under agricultural conditions. The model is process-based and uses the intensity-duration-frequency equation to calculate the rainfall intensity and the Green-Ampt-Mein-Larson equation to estimate the infiltration rate. The runoff begins after the maximum surface storage on the soil surface has been reached. It is calculated by subtracting the infiltration rate from the rainfall intensity during the interval of time that the rainfall intensity is greater than the infiltration rate. The model also allows the calculation of the deep percolation and the actual soil-water content. Results from a validation experiment and two practical applications of the model are also presented. The results obtained with the model were approximately the same as those observed in the field.

  20. Formation of runoff at the hillslope scale during intense precipitation

    Directory of Open Access Journals (Sweden)

    S. Scherrer


    Full Text Available On 60 m2 hillslope plots, at 18 mainly grassland locations in Switzerland rain was applied at rates of 50–100 mm/h for between 3 and 6 h. The generated flows were measured, including overland flow, near surface and subsurface flow 0.5–1.3 m below the surface. At some locations less than 2% of the rain flowed down the slope either on or below the surface, whereas at some others more than 90% of the rain ran off. At the majority of sites most runoff was overland flow, though at a few sites subsurface flow, usually via macropores was dominant. Data collected during each of 48 high intensity sprinkling experiments were used to distinguish, which processes were dominant in each experiment. Which dominant and subsidiary processes occurred depended on interactions between infiltration rate, change in soil water storage and drainage of the soil water. These attributes were often not directly linked to parameters usually considered important like vegetation, slope, soil clay content and antecedent soil moisture. Considering the structure of the soil in combination with these attributes, process determination was in many cases fairly straightforward, indicating the possibility of reliably predicting runoff processes at a site. However, at some sites, effects occurred that were not easily recognizable and led to surprising results.

  1. Change detection of runoff-urban growth relationship in urbanised watershed (United States)

    Azizah Abas, Aisya; Hashim, Mazlan


    Urban growth has negative environmental impacts that create water-based disasters such as flash floods and storm runoff causing billions of dollars worth of damage each year. Due to serious flash floods in urbanised areas of Malaysia, water resource management is a vital issue. This paper reports on a study that has been carried out using remote sensing techniques and hydrological modelling for examining the spatial patterns changes of urban areas and its impacts on surface runoff. The estimation of surface runoff based on the Soil Conservation Service Curve Number (SCS CN) method was performed by integrating both remote sensing and Geographic Information System (GIS) techniques. Remote sensing is a data sources for monitoring urban growth by quantifying the changes of urban area and its environmental impact are then analysed by using a GIS-based hydrological model. By linking the integrated approach of remote sensing and GIS, the relationship of runoff with urban expansion are further examined. Hence, the changes in runoff due to urbanisation are analysed. This methodology is applied to the central region of Malaysia in Kuala Lumpur, where rapid urban growth has occurred over the last decade. The results showed that there was a significant between spatial patterns of urban growth and estimated runoff depth. The increase in runoff from year 2000, 2006 and 2010 are estimated about five percent.

  2. Change detection of runoff-urban growth relationship in urbanised watershed

    International Nuclear Information System (INIS)

    Abas, Aisya Azizah; Hashim, Mazlan


    Urban growth has negative environmental impacts that create water-based disasters such as flash floods and storm runoff causing billions of dollars worth of damage each year. Due to serious flash floods in urbanised areas of Malaysia, water resource management is a vital issue. This paper reports on a study that has been carried out using remote sensing techniques and hydrological modelling for examining the spatial patterns changes of urban areas and its impacts on surface runoff. The estimation of surface runoff based on the Soil Conservation Service Curve Number (SCS CN) method was performed by integrating both remote sensing and Geographic Information System (GIS) techniques. Remote sensing is a data sources for monitoring urban growth by quantifying the changes of urban area and its environmental impact are then analysed by using a GIS-based hydrological model. By linking the integrated approach of remote sensing and GIS, the relationship of runoff with urban expansion are further examined. Hence, the changes in runoff due to urbanisation are analysed. This methodology is applied to the central region of Malaysia in Kuala Lumpur, where rapid urban growth has occurred over the last decade. The results showed that there was a significant between spatial patterns of urban growth and estimated runoff depth. The increase in runoff from year 2000, 2006 and 2010 are estimated about five percent

  3. Impact of groundwater capillary rises as lower boundary conditions for soil moisture in a land surface model (United States)

    Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence


    Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.

  4. Visualization of soil structure and pore structure modifications by pioneering ground beetles (Cicindelidae) in surface sediments of an artificial catchment (United States)

    Badorreck, Annika; Gerke, Horst H.; Weller, Ulrich; Vontobel, Peter


    high abiotic and biotic dynamics of soil pore structure in the soil surface even during the very early development stages. The structure formation has potentially great effects on changing runoff and infiltration by forming sealing layers or preferential flow paths.

  5. Dew formation on the surface of biological soil crusts in central European sand ecosystems

    Directory of Open Access Journals (Sweden)

    T. Fischer


    Full Text Available Dew formation was investigated in three developmental stages of biological soil crusts (BSC, which were collected along a catena of an inland dune and in the initial substrate. The Penman equation, which was developed for saturated surfaces, was modified for unsaturated surfaces and used for prediction of dewfall rates. The levels of surface saturation required for this approach were predicted using the water retention functions and the thicknesses of the BSCs. During a first field campaign (2–3 August 2011, dewfall increased from 0.042 kg m−2 for the initial sandy substrate to 0.058, 0.143 and 0.178 kg m−2 for crusts 1 to 3, respectively. During a second field campaign (17–18 August 2011, where dew formation was recorded in 1.5 to 2.75-h intervals after installation at 21:30 CEST, dewfall increased from 0.011 kg m−2 for the initial sandy substrate to 0.013, 0.028 and 0.055 kg m−2 for crusts 1 to 3, respectively. Dewfall rates remained on low levels for the substrate and for crust 1, and decreased overnight for crusts 2 and 3 (with crust 3 > crust 2 > crust 1 throughout the campaign. Dew formation was well reflected by the model response. The suggested mechanism of dew formation involves a delay in water saturation in near-surface soil pores and extracellular polymeric substances (EPS where the crusts were thicker and where the water capacity was high, resulting in elevated vapor flux towards the surface. The results also indicate that the amount of dewfall was too low to saturate the BSCs and to observe water flow into deeper soil. Analysis of the soil water retention curves revealed that, despite the sandy mineral matrix, moist crusts clogged by swollen EPS pores exhibited a clay-like behavior. It is hypothesized that BSCs gain double benefit from suppressing their competitors by runoff generation and from improving their water supply by dew collection. Despite higher amounts of dew, the

  6. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  7. Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses (United States)

    Reynolds, R.; Phillips, S.; Duniway, M.; Belnap, J.


    Sources of desert soil fertility include parent material weathering, aeolian deposition, and on-site C and N biotic fixation. While parent materials provide many soil nutrients, aeolian deposition can provide up to 75% of plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. Soil surface biota are often sticky, and help retain wind-deposited nutrients, as well as providing much of the N inputs. Carbon inputs are from both plants and soil surface biota. Most desert soils are protected by cyanobacterial-lichen-moss soil crusts, chemical crusts and/or desert pavement. Experimental disturbances applied in US deserts show disruption of soil surfaces result in decreased N and C inputs from soil biota by up to 100%. The ability to glue aeolian deposits in place is compromised, and underlying soils are exposed to erosion. The ability to withstand wind increases with biological and physical soil crust development. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produce up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Soil fines and flora are often concentrated in the top 3 mm of the soil surface. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, disturbances of desert soil surfaces can both reduce fertility inputs and accelerate fertility losses.

  8. Photodegradation of pesticides on plant and soil surfaces. (United States)

    Katagi, Toshiyuki


    importance of an emission spectrum of the light source near its surface was clarified. Most photochemical information comes from photolysis in organic solvents or on glass surfaces and/or plant metabolism studies. Epicuticular waxes may be approximated by long-chain hydrocarbons as a very viscous liquid or solid, but the existing form of pesticide molecules in waxes is still obscure. Either coexistence of formulation agents or steric constraint in the rigid medium would cause a change of molecular excitation, deactivation, and photodegradation mechanisms, which should be further investigated to understand the dissipation profiles of a pesticide in or on crops in the field. A thin-layer system with a coat of epicuticular waxes extracted from leaves or isolated cuticles has been utilized as a model, but its application has been very limited. There appear to be gaps in our knowledge about the surface chemistry and photochemistry of pesticides in both rigid media and plant metabolism. Photodegradation studies, for example, by using these models to eliminate contribution from metabolic conversion as much as possible, should be extensively conducted in conjunction with wax chemistry, with the controlling factors being clarified. As with soil surfaces, the effects of atmospheric oxidants should also be investigated. Based on this knowledge, new methods of kinetic analysis or a device simulating the fate of pesticides on these surfaces could be more rationally developed. Concerning soil photolysis, detailed mechanistic analysis of the mobility and fate of pesticides together with volatilization from soil surfaces has been initiated and its spatial distribution with time has been simulated with reasonable precision on a laboratory scale. Although mechanistic analyses have been conducted on penetration of pesticides through cuticular waxes, its combination with photodegradation to simulate the real environment is awaiting further investigation.

  9. Soil surface decontamination and revegetation progress

    International Nuclear Information System (INIS)

    Graves, A.W.


    A review is given of work by Rockwell Hanford Operations related to large-area decontamination efforts. Rockwell has a Program Office which manages the decontamination and decommissioning (D and D) efforts. Part of the program is involved with large-surface area cleanup in conjunction with surveillance and maintenance of retired sites and facilities. The other part is the decontamination and decommissioning of structures. There are 322 surplus contaminated sites and facilities for which Rockwell has responsibility on the Hanford Site. A Program Office was established for a disciplined approach to cleanup of these retired sites. There are three major projects: the first is surveillance and maintenance of the sites prior to D and D, the project under which the radiation area cleanup is contained. Another project is for contaminated-equipment volume reduction; size reduction with arc saw cut-up and volume reduction with a vacuum furnace meltdown are being used. The third major project is structural D and D

  10. Predictions of rainfall-runoff response and soil moisture dynamics in a microscale catchment using the CREW model

    Directory of Open Access Journals (Sweden)

    H. Lee


    pressure-saturation (i.e., water retention curve and hydraulic conductivity-saturation relationships for the unsaturated zone. Closure relations for concentrated overland flow and saturated overland flow were derived using both theoretical arguments and simpler process models. In addition to these, to complete the specification of the REW scale balance equations, a relationship for the saturated area fraction as a function of saturated zone depth was derived for an assumed topography on the basis of TOPMODEL assumptions. These relationships were used to complete the specification of all of the REW-scale governing equations (mass and momentum balance equations, closure and geometric relations for the Weiherbach catchment, which are then employed for constructing a numerical watershed model, named the Cooperative Community Catchment model based on the Representative Elementary Watershed approach (CREW. CREW is then used to carry out sensitivity analyses with respect to various combinations of climate, soil, vegetation and topographies, in order to test the reasonableness of the derived closure relations in the context of the complete catchment response, including interacting processes. These sensitivity analyses demonstrated that the adopted closure relations do indeed produce mostly reasonable results, and can therefore be a good basis for more careful and rigorous search for appropriate closure relations in the future. Three tests are designed to assess CREW as a large scale model for Weiherbach catchment. The first test compares CREW with distributed model CATFLOW by looking at predicted soil moisture dynamics for artificially designed initial and boundary conditions. The second test is designed to see the applicabilities of the parameter values extracted from the upscaling procedures in terms of their ability to reproduce observed hydrographs within the CREW modeling framework. The final test compares simulated soil moisture time series predicted by CREW with observed

  11. Estimating the tritium input to groundwater from wine samples: Groundwater and direct run-off contribution to Central European surface waters

    International Nuclear Information System (INIS)

    Roether, W.


    A model is derived which allows a quantitative evaluation of wine tritium data. It is shown that the tritium content of a wine sample is not determined exclusively by water taken up by the roots, but is also influenced to a large extent by direct exchange with atmospheric moisture. The soil-water fraction amounts normally to not more than 40%. Thus, wine is a sample partly of atmospheric moisture at ground level, partly of soil moisture, integrated over a period around three weeks before vintage. The tritium content of two sets of wine samples originating from two selected sites in the Federal Republic of Germany and dating back to 1949 is reported. For the period since records of the tritium content of rain in Europe have become available comparisons of wine tritium with reported tritium activities of rain are in favour of the model outlined. The first distinguishable influence of bomb tritium shows up in the 1953 wine, whilst no detectable response to Castle tritium is found in 1954. By comparison with recorded rain activities at Ottawa, Canada, it is concluded that Castle influenced the tritium fall-out in Central Europe much less than it did at Ottawa. For the period before 1955 the tritium activity of the annual groundwater recharge, including pre-thermonuclear recharge in Central Europe, is estimated from the wine data. An estimation of the total assimilation of pre-thermonuclear tritium into the ocean at 50 degrees N is also given, which points to a value of 1-1.5 atoms/cm 2 s. It is shown that in further uses of pre-thermonuclear wines the possibility that samples have been contaminated by penetration of thermonuclear tritium through the bottle seals must be considered. The estimates of the tritium activities of groundwater recharge are based on the fact that in our climate the main contribution to groundwater is made up by autumn and winter precipitation. Because of this correlation with season the groundwater recharge is much lower in tritium than the

  12. A quantitative microbial risk assessment model for total coliforms and E. coli in surface runoff following application of biosolids to grassland. (United States)

    Clarke, Rachel; Peyton, Dara; Healy, Mark G; Fenton, Owen; Cummins, Enda


    In Ireland, the land application of biosolids is the preferred option of disposing of municipal sewage waste. Biosolids provide nutrients in the form of nitrogen, phosphorus, potassium and increases organic matter. It is also an economic way for a country to dispose of its municipal waste. However, biosolids may potentially contain a wide range of pathogens, and following rainfall events, may be transported in surface runoff and pose a potential risk to human health. Thus, a quantitative risk assessment model was developed to estimate potential pathogens in surface water and the environmental fate of the pathogens following dilution, residence time in a stream, die-off rate, drinking water treatment and human exposure. Surface runoff water quality data was provided by project partners. Three types of biosolids, anaerobically digested (AD), lime stabilised (LS), and thermally dried (TD)) were applied on micro plots. Rainfall was simulated at three time intervals (24, 48 and 360 h) following land application. It was assumed that this water entered a nearby stream and was directly abstracted for drinking water. Consumption data for drinking water and body weight was obtained from an Irish study and assigned distributions. Two dose response models for probability of illness were considered for total and faecal coliform exposure incorporating two different exposure scenarios (healthy populations and immuno-compromised populations). The simulated annual risk of illness for healthy populations was below the US EPA and World Health Organisation tolerable level of risk (10 -4 and 10 -6 , respectively). However, immuno-compromised populations may still be at risk as levels were greater than the tolerable level of risk for that subpopulation. The sensitivity analysis highlighted the importance of residence time in a stream on the bacterial die-off rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Prediction of Estrogen Runoff and Transport Driven by Rainfalls from Swine Spray Fields (United States)

    Lee, B.; Reckhow, K. H.; Kullman, S. W.


    Animal waste-borne steroidal hormones, which are referred to as natural steroidal estrogens, are recognized pollutants to surface water systems. Steroidal estrogens exhibit strong potency, even at very low concentrations, as endocrine disrupting chemicals on aquatic organisms. In North Carolina, the swine concentrated animal feeding operations (CAFOs) have been a major source for the release of estrogens to watersheds. Release is a direct result of the land application of the generated waste as an organic fertilizer. However, data regarding the estrogen loss and transport through the surface runoff and soil erosion to the water bodies after the spray-fields application has been up till now very limited. We have developed a decision support tool that can help predict and ultimately manage the potential mobilization and transport of estrogens from CAFOs, through the processes of surface runoff transport and sediment loss, into adjacent water bodies. Our decision support tool was built using a dynamic Bayesian Network (DBN) framework. The developed DBN model integrates the processes of a sediment loss and a surface runoff by using the modified universal soil loss equation (MUSLE) and the SCS-CN curve runoff models. Estrogen mobility is assessed as a function of rainfall intensity and land use management with consideration to the temporal distribution of both. The DBN is used to model the estrogen concentration in the runoff process, to determine the degree of off-site movement of estrogens, and to verify the potential environmental significance of the estrogen inputs into the stream. We believe that our modeling framework is particularly useful for use in field situations where estrogen runoff data are not available or are scarce. The DBN model also provides a means to handle the uncertainties of mathematical sediment and runoff models as a dynamic probability model.