WorldWideScience

Sample records for surface rheological properties

  1. Role of interfacial rheological properties in oil field chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos-Szabo, J.; Lakatos, I.; Kosztin, B.

    1996-12-31

    Interfacial rheological properties of different Hungarian crude oil/water systems were determined in wide temperature and shear rate range and in presence of inorganic electrolytes, tensides, alkaline materials and polymers. The detailed laboratory study definitely proved that the interfacial rheological properties are extremely sensitive parameters towards the chemical composition of inmiscible formation liquids. Comparison and interpretation of the interfacial rheological properties may contribute significantly to extension of the weaponry of the reservoir characterization, better understanding of the displacement mechanism, development of the more profitable EOR/IOR methods, intensification of the surface technologies, optimization of the pipeline transportation and improvement of the refinery operations. It was evidenced that the interfacial rheology is an efficient and powerful detection technique, which may enhance the knowledge on formation, structure, properties and behaviour of interfacial layers. 17 refs., 18 figs., 2 tabs.

  2. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  3. Surface rheological properties of liquid-liquid interfaces stabilized by protein fibrillar aggregates and protein-polysaccharide complexes

    NARCIS (Netherlands)

    Humblet-Hua, K.N.P.; Linden, van der E.; Sagis, L.M.C.

    2013-01-01

    In this study we have investigated the surface rheological properties of oil-water interfaces stabilized by fibrils from lysozyme (long and semi-flexible and short and rigid ones), fibrils from ovalbumin (short and semi-flexible), lysozyme-pectin complexes, or ovalbumin-pectin complexes. We have

  4. Surface rheology and interface stability.

    Energy Technology Data Exchange (ETDEWEB)

    Yaklin, Melissa A.; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Walker, Lynn; Koehler, Timothy P.; Reichert, Matthew D. (Carnegie Mellon University, Pittsburgh, PA); Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-11-01

    We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk

  5. Factors That Influence the Extensional Rheological Property of Saliva.

    Directory of Open Access Journals (Sweden)

    Amrita Vijay

    Full Text Available The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva.

  6. Rheological properties of a nematic cell oriented in a planar manner

    International Nuclear Information System (INIS)

    Barbero, G.; Meyer, C.; Lelidis, I.

    2010-01-01

    We propose a simple model to investigate the rheological properties of a nematic cell oriented in a planar manner. The storage and loss modulus are evaluated in the case of strong and weak anchoring conditions. The contribution of the surface viscosity to the rheological parameters is also considered.

  7. Rheology of Prepreg and Properties of Silica/bismaleimide Matrix Copper Clad Laminate

    Directory of Open Access Journals (Sweden)

    DAI Shankai

    2017-08-01

    Full Text Available The effects of the silica surface treated by coupling agents KH550, KH560 and KH570 on the rheological properties of bismaleimide (BMI resin system were investigated. The rigidity, coefficient of thermal expansion (CTE and thermal stability of the copper clad laminate (CCL were studied by DMA, TMA and TGA. The resin system containing silica surface treated by KH-560, comparing to KH550, KH570 and without surface treatment resin system has better rheological properties and low melt viscosity. The comprehensive properties of the copper clad laminate can be effectively improved by the introduction of silica in the resin system, exhibiting higher storage modulus and lower CTE compare to no silica in the CCL. When the silica mass fraction is 50%, the storage modulus is increased by 83% at 50℃, and the CTE below the glass transition temperature is decreased by 153%.

  8. d-α-tocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity

    Directory of Open Access Journals (Sweden)

    M.C. Teixeira

    2017-02-01

    Full Text Available The aim of this study was the assessment of the physicochemical stability of d-α-tocopherol formulated in medium chain triglyceride nanoemulsions, stabilized with Tween®80 and Lipoid®S75 as surfactant and co-surfactant, respectively. d-α-tocopherol was selected as active ingredient because of its well-recognized interesting anti-oxidant properties (such as radical scavenger for food and pharmaceutical industries. A series of nanoemulsions of mean droplet size below 90 nm (polydispersity index < 0.15 have been produced by high-pressure homogenization, and their surface electrical charge (zeta potential, pH, surface tension, osmolarity, and rheological behavior, were characterized as a function of the d-α-tocopherol loading. In vitro studies in Caco-2 cell lines confirmed the safety profile of the developed nanoemulsions with percentage of cell viability above 90% for all formulations.

  9. Vascular-Rheological Properties of Blood in Hemorrhagic Vasculitis Occurring in Childhood and Adulthood

    Directory of Open Access Journals (Sweden)

    V.V. Gerasymenko

    2016-11-01

    Full Text Available Background. As a result of the immune-inflammatory necrotic changes in the walls of arterioles and capillaries in patients with hemorrhagic vasculitis (HV Henoch — Schönlein endothelial dysfunction of vessels occurs, contributing to violations of blood rheological properties and microcirculation. These processes depend on the age of patients, and in cases of onset of the disease in childhood and adulthood are unknown. Objective: to study vascular and rheological properties of blood serum in HV and to compare the indices with different age of the debut of the pathological process in the groups of patients. Material and methods. The study included 174 patients with HV (83 % men and 17 % women. In 92 patients, the disease made its debut in childhood (on average in 12 years old, and in 82 — in the adult (on average in 25 years old. I, II and III degree of activity of pathological process are set at a ratio of 1 : 2 : 2. Indicators of vascular endothelial function were investigated by immune-enzyme analysis and the adsorption-rheological pro­perties of blood were assessed by computer tensiometry. Results. HV is accompanied by severe disorders of the blood vascular and rheological properties which are involved in the pathogenesis of lesions of skin (endothelin-1, surface tension, joints (only surface activity, kidney (prostacyclin, cyclic guanosine monophosphate and heart (endothelin-1, viscoelastic modulus. At that the integrated indicators of vascular endothelial function, viscoelastic, surface-active and relaxation characteristics of serum depend on the age of the patients in the beginning of the disease, the degree of activity of the pathological process, the clinical form of the disease course, necrotic-ulcerative and polymorphic variants of cutaneous vasculitis, and HV, transforming from juvenile, occurs with lower blood levels of endothelin-1, but with a higher concentration of thromboxane A2, cyclic guanosine monophosphate and

  10. Comprehensive study of rheological and surface properties of the selected slag system in the context of its internal structure

    Directory of Open Access Journals (Sweden)

    L. Řeháčková

    2016-10-01

    Full Text Available Rheological (dynamic viscosity, flow curves and surface properties (surface tension of real slag system were experimentally investigated. Measurements of dynamic viscosity were performed with use of the high-temperature viscometer Anton Paar FRS 1 600. The method of sessile drop was used for measurement of surface tension. Surface tension and dynamic viscosity were measured in the temperature interval from 1 200 to 1 600 °C. The structural characteristics of the selected samples were determined by X-ray diffraction (XRD. The samples for given analysis were prepared by quench cooling. Experimentally determined values of dynamic viscosity and surface tension were compared with the results of X-ray diffraction phase analysis.

  11. Rheological properties of defense waste slurries

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design

  12. Clay-cement suspensions - rheological and functional properties

    Science.gov (United States)

    Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.

    2017-01-01

    The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.

  13. Rheological Properties of Quasi-2D Fluids in Microgravity

    Science.gov (United States)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  14. Effect of smectite clays storage in their rheological properties

    International Nuclear Information System (INIS)

    Silva, I.A. da; Sousa, F.K.A. de; Neves, G. de A.; Ferreira, H.C.; Ferreira, H.S.; Ferreira, H.S.

    2017-01-01

    This work investigates the storage influence of natural and industrial smectite clays in their rheological properties, since the salt metathesis reaction that occurs following treatment of polycationic clays with Na_2 CO_3 is reversible. The phenomena involved in this reaction are not yet fully known and previous studies show improvement in some properties. The rheological properties were determined in sodium-clays in 1995 and polycationic clays added with sodium carbonate (Na_2 CO_3 ) in 2015. Physical, chemical and mineralogical characterizations of the samples were performed using the following techniques: particle size analysis by laser diffraction, chemical composition by X-ray fluorescence, X-ray diffraction and thermal analysis (DTA and TGA). The rheology of dispersions was determined by the apparent viscosity, plastic viscosity and filtrate volume, which were later considered the oil industry standards only as a benchmark. The results showed that the storage conditions, humidity and particle size of the samples resulted in improvements in their rheological properties over the years, indicating the non-reversibility of the reaction of cation exchange, which is important in their validity after manufacturing. (author)

  15. Rheological properties of disintegrated sewage sludge

    Science.gov (United States)

    Wolski, Paweł

    2017-11-01

    The rheology of the sludge provides information about the capacity and the flow, which in the case of project tasks for the hydraulic conveying installation is an important control parameter. Accurate knowledge of the rheological properties of sludge requires the designation of rheological models. Models single and multiparameter (Ostwald, Bingham, Herschel-Bulkley'a, and others) allow an approximation of flow curves, and the determination of the boundaries of the flow of modified sludge allows you to control the process compaction or are dewatered sludge undergoing flow. The aim of the study was to determine the rheological parameters and rheological models of sludge conditioned by physical methods before and after the process of anaerobic digestion. So far, studies have shown that the application of conditioning in the preparation of sewage sludge increases shear stress, viscosity as well as the limits of flow in relation to the untreated sludge. Offset yield point by the application of a conditioning agent is associated with decreased flowability tested sludge, which has also been observed by analyzing the structure of the prepared samples. Lowering the yield point, and thus the shear stress was recorded as a result of the fermentation test of disintegrated sludge.

  16. Relation between rheological and structural properties of suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Barcal, M; Sebor, G; Volsicky, Z

    1982-01-01

    The paper discusses results of investigations into separation processes for coal and kaolin suspensions. Effects of potassium chlorides and methanol additives on electrostatic potential of solid particles and on sedimentation rate are analyzed. Investigation results are shown in 5 diagrams. The relation between rheological and structural properties of coal and clay suspensions is investigated. Investigations show that the non-Newtonian behavior of suspensions cannot be attributed exclusively to the electrostatic and mechanical action of the solid phase particles. It is also caused by structure of the liquid phase, particularly on the surface of the solid particles, which depends mostly on hydrogen bonds. The internal structure of the liquid phase influences differential viscosity much more than the electrical surface properties of the solid phase. Bonds between the molecules of water and methanol are much stronger than bonds between water molecules alone. (9 refs.)

  17. The effects of cryopreservation on red blood cell rheologic properties

    NARCIS (Netherlands)

    Henkelman, Sandra; Lagerberg, Johan W. M.; Graaff, Reindert; Rakhorst, Gerhard; van Oeveren, Willem

    2010-01-01

    BACKGROUND: In transfusion medicine, frozen red blood cells (RBCs) are an alternative for liquid-stored RBCs. Little is known about the rheologic properties (i.e., aggregability and deformability) of thawed RBCs. In this study the rheologic properties of high-glycerol frozen RBCs and postthaw stored

  18. A statistical investigation of the rheological properties of magnesium phosphate cement

    OpenAIRE

    Yue, Y.; Bai, Y.; Hu, W.; You, C.; Qian, J.; McCague, C.; Jin, F.; Al-Tabbaa, A.; Mo, L.; Deng, M.

    2016-01-01

    Magnesium phosphate cement (MPC) is a promising material applied for rapid patch repairing in civil engineering and waste immobilisation in nuclear industry. However, the rheological properties of this new binder material which highly affects its engineering application, is to be explored. The current work aims at investigating the rheological properties of MPC along 98 with determining the optimum conditions to obtain MPC materials with desirable rheological performances. ...

  19. Rheological properties of kaolin and chemically simulated waste

    International Nuclear Information System (INIS)

    Selby, C.L.

    1981-12-01

    The Savannah River Laboratory is conducting tests to determine the best operating conditions of pumps used to transfer insoluble radioactive sludges from old to new waste tanks. Because it is not feasible to conduct these tests with real or chemically simulated sludges, kaolin clay is being used as a stand-in for the solid waste. The rheology tests described herein were conducted to determine whether the properties of kaolin were sufficiently similar to those of real sludge to permit meaningful pump tests. The rheology study showed that kaolin can be substituted for real waste to accurately determine pump performance. Once adequately sheared, kaolin properties were found to remain constant. Test results determined that kaolin should not be allowed to settle more than two weeks between pump tests. Water or supernate from the waste tanks can be used to dilute sludge on an equal volume basis because they identically affect the rheological properties of sludge. It was further found that the fluid properties of kaolin and waste are insensitive to temperature

  20. The Rheological Properties of Lipid Monolayers Modulate the Incorporation of l-Ascorbic Acid Alkyl Esters.

    Science.gov (United States)

    Díaz, Yenisleidy de Las Mercedes Zulueta; Mottola, Milagro; Vico, Raquel V; Wilke, Natalia; Fanani, María Laura

    2016-01-19

    In this work, we tested the hypothesis that the incorporation of amphiphilic drugs into lipid membranes may be regulated by their rheological properties. For this purpose, two members of the l-ascorbic acid alkyl esters family (ASCn) were selected, ASC16 and ASC14, which have different rheological properties when organized at the air/water interface. They are lipophilic forms of vitamin C used in topical pharmacological preparations. The effect of the phase state of the host lipid membranes on ASCn incorporation was explored using Langmuir monolayers. Films of pure lipids with known phase states have been selected, showing liquid-expanded, liquid-condensed, and solid phases as well as pure cholesterol films in liquid-ordered state. We also tested ternary and quaternary mixed films that mimic the properties of cholesterol containing membranes and of the stratum corneum. The compressibility and shear properties of those monolayers were assessed in order to define its phase character. We found that the length of the acyl chain of the ASCn compounds induces differential changes in the rheological properties of the host membrane and subtly regulates the kinetics and extent of the penetration process. The capacity for ASCn uptake was found to depend on the phase state of the host film. The increase in surface pressure resultant after amphiphile incorporation appears to be a function of the capacity of the host membrane to incorporate such amphiphile as well as the rheological response of the film. Hence, monolayers that show a solid phase state responded with a larger surface pressure increase to the incorporation of a comparable amount of amphiphile than liquid-expanded ones. The cholesterol-containing films, including the mixture that mimics stratum corneum, allowed a very scarce ASCn uptake independently of the membrane diffusional properties. This suggests an important contribution of Cho on the maintenance of the barrier function of stratum corneum.

  1. Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes.

    Science.gov (United States)

    García-Cruz, E E; Rodríguez-Ramírez, J; Méndez Lagunas, L L; Medina-Torres, L

    2013-01-02

    This study examines the rheological behavior of reconstituted spray-dried mucilage isolated from the cladodes of pitahaya (Hylocereus undatus), the effects of concentration and its relationship with physical properties were analyzed in reconstituted solutions. Drying process optimization was carried out through the surface response method, utilizing a factorial 2(3) design with three central points, in order to evaluate yield and rheological properties. The reconstituted mucilage exhibited non-Newtonian shear-thinning behavior, which adequately fit the Cross model (R(2)>0.95). This dynamic response suggests a random coil configuration. The steady-shear viscosity and dynamic response are suitably correlated through the Cox-Merz rule, confirming the mucilage's stability of flow. Analysis of the physical properties of the mucilage (Tg, DTP, and particle morphology) explains the shear-thinning behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Rheological and sensory properties of hydrophilic skin protection gels based on polyacrylates.

    Science.gov (United States)

    Kulawik-Pióro, Agnieszka; Kurpiewska, Joanna; Kułaszka, Agnieszka

    2018-03-01

    With the current increases in occupational skin diseases, literature data attesting the decreasing efficiency of barrier creams with respect to the manufacturer's declarations and legal regulations granting skin protection gels for employees, research is required to analyse and evaluate the recipes used for hydrophilic skin protection gels based on polyacrylates. This study investigated the rheological properties, pH and sensory perception of hydrophilic barrier gels based on polyacrylates. The acrylic acid derivatives used were good thickeners, and helped to form transparent gels of adequate durability. They could be used to create hydrophilic films on the surface of the skin to protect it against hydrophobic substances. A correlation was shown between the results of the rheological properties and the barrier properties of the gels. This confirms the possibility of monitoring the quality of the gels at the stage of recipe development. Polyacrylates are viable for use in industry to produce hydrophilic barrier creams suitable for skin protection.

  3. Textural Properties of Agarose Gels described by FT-Rheology

    NARCIS (Netherlands)

    Klein, C.O.; Venema, P.; Sagis, L.M.C.; Linden, van der E.

    2008-01-01

    Large Amplitude Oscillatory Shear was used to determine the non-linear rheological properties of agarose gels. The analysis was performed with the characteristic functions method based on FT-Rheology, that gives access to a physical interpretation of the non-linear regime. This analysis was then

  4. Rheological, Colour and Processing Properties of Polypropylene Masterbatches for Nanocomposite Fibre Preparation

    Directory of Open Access Journals (Sweden)

    Štefan Krivoš

    2017-12-01

    Full Text Available Asia’s current dominance of the global production of standard types of chemical fibres requires the sophistication of European fibre and textile products. Modifying the mass or surface of materials using nanotechnologies is one of the most promising ways to ensure the special, mono- and multi-functionally modified fibre properties of clothing and technical textiles. The permanent antimicrobial treatment of fibre mass represents one the most desired functional modifi cations of chemical fibres. It involves the use of an antimicrobial additive masterbatch with the appropriate rheological, colour and processing properties required for the preparation of antimicrobial modified fibres. This article presents the results of our study of the effect of two types of nanoadditives (nanosilica and nanocalcium carbonate as potential carriers of an AMB active ingredient, and the effect of stearic acid, polyethylene glycol and propylene oxide as various dispersing systems on the rheological, colour and processing properties of polypropylene nanoadditive masterbatches. The obtained experimental results are evaluated in terms of the suitability of the properties of prepared nanoadditive masterbatches for the preparation of nanocomposite polypropylene fibres.

  5. The characterizations of rheological, electrokinetical and structural properties of ODTABr/MMT and HDTABr/MMT organoclays

    International Nuclear Information System (INIS)

    Isci, S.; Uslu, Y.O.; Ece, O.I.

    2009-01-01

    In the present paper, we have investigated as a function of surfactant concentration the rheological (yield value, plastic viscosity) and electrokinetic (mobility, zeta potential) properties of montmorillonite (MMT) dispersions. The influence of surfactants (Octadeccyltrimethylammonium bromide, ODTABr and Hexadecyltrimethylammonium bromide, HDTABr) on dispersions of Na-activated bentonite was evaluated by rheological and electrokinetic measurements, and X-ray diffraction (XRD) studies. The interactions between clay minerals and surfactants in water-based Na-activated MMT dispersions (2 wt.%) were examined in detail using rheologic parameters, such as viscosity, yield point, apparent and plastic viscosity, hysteresis area, and electrokinetic parameters of mobility and zeta potentials, and XRD also analyses helped to determine swelling properties of d-spacings. MMT and organoclay dispersions showed Bingham Plastic flow behavior. The zeta potential measurements displayed that the surfactant molecules hold on the clay particle surfaces and the XRD analyses displayed that they get into the basal layers

  6. Polyethylene/synthetic boehmite alumina nanocomposites: Structure, thermal and rheological properties

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Synthetic boehmite alumina (BA has been incorporated up to 8 wt% in low density polyethylene (LDPE and high density polyethylene (HDPE, respectively, by melt compounding. The primary nominal particle size of these two BA grades was 40 and 60 nm, respectively. The dispersion of the BA in polyethylene (PE matrices was investigated by scanning and transmission electron microscopy techniques (SEM and TEM. The thermal (melting and crystallization, thermooxidative (oxidation induction temperature and time, and rheological behaviors of the nanocomposites were determined. It was found that BA is nanoscale dispersed in both LDPE and HDPE without any surface treatment and additional polymeric compatibilizer. BA practically did not influence the thermal (melting and crystallization and rheological properties of the parent PEs. On the other hand, BA worked as a powerful thermooxidative stabilizer for LDPE, and especially for HDPE nanocomposites.

  7. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.

    Science.gov (United States)

    Llamas, Sara; Mendoza, Alma J; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G

    2013-06-15

    Lithium cations are known to form complexes with the oxygen atoms of poly(oxyethylene) chains. The effect of Li(+) on the surface properties of three block-copolymers containing poly(oxyethylene) (PEO) have been studied. Two types of copolymers have been studied, a water soluble one of the pluronic family, PEO-b-PPO-b-PEO, PPO being poly(propyleneoxyde), and two water insoluble ones: PEO-b-PS and PEO-b-PS-b-PEO, PS being polystyrene. In the case of the pluronic the adsorption kinetics, the equilibrium surface tension isotherm and the aqueous/air surface rheology have been measured, while for the two insoluble copolymers only the surface pressure and the surface rheology have been studied. In all the cases two different Li(+) concentrations have been used. As in the absence of lithium ions, the adsorption kinetics of pluronic solutions shows two processes, and becomes faster as [Li(+)] increases. The kinetics is not diffusion controlled. For a given pluronic concentration the equilibrium surface pressure increases with [Li(+)], and the isotherms show two surface phase transitions, though less marked than for [Li(+)]=0. A similar behavior was found for the equilibrium isotherms of PEO-b-PS and PEO-b-PS-b-PEO. The surface elasticity of these two copolymers was found to increase with [Li(+)] over the whole surface concentration and frequency ranges studied. A smaller effect was found in the case of the pluronic solutions. The results of the pluronic solutions were modeled using a recent theory that takes into account that the molecules can be adsorbed at the surface in two different states. The theory gives a good fit for the adsorption kinetics and a reasonably good prediction of the equilibrium isotherms for low and intermediate concentrations of pluronic. However, the theory is not able to reproduce the isotherm for [Li(+)]=0. Only a semi-quantitative prediction of the surface elasticity is obtained for [pluronic]≤1×10(-3) mM. Copyright © 2013 Elsevier Inc. All

  8. Rheological properties of crumb rubber modified bitumen containing antioxidant

    International Nuclear Information System (INIS)

    Mohamed, A. A; Omar, Husaini; Hamzah, M.O; Ismail, H.

    2009-01-01

    Rheology has become a useful tool in the characterization of the bitumen performance on the pavement. Visco-elastic properties of crumb rubber modified bitumen with antioxidants (CR30) were determined by the means of rheological measurement. This measurement led to a better knowledge of bitumen behavior that occurs when subjected to different thermal and mechanical conditions, as seen during road construction and services in the field. Dynamic Shear Rheometer (DSR) was used to characterize the rheology of the binders before and after oven aging. The binders were aged for 3 and 9 days. Results of a compatibility test showed that the addition of CR30 modified bitumen is compatible with the base bitumen. The results of unaged samples indicated that the addition of 1% CR30 and 5% CR30 modified binders caused an increase in G value as a result of the rheological changes. Results showed that aging has significant influence on bitumen rheology, by increasing complex modulus and decreasing phase angle. (author)

  9. The Relation between the Rheological Properties of Gels and the Mechanical Properties of Their Corresponding Aerogels

    Directory of Open Access Journals (Sweden)

    Mingze Sun

    2018-04-01

    Full Text Available A series of low density, highly porous clay/poly(vinyl alcohol composite aerogels, incorporating ammonium alginate, were fabricated via a convenient and eco-friendly freeze drying method. It is significant to understand rheological properties of precursor gels because they directly affect the form of aerogels and their processing behaviors. The introduction of ammonium alginate impacted the rheological properties of colloidal gels and improved the mechanical performance of the subject aerogels. The specific compositions and processing conditions applied to those colloidal gel systems brought about different aerogel morphologies, which in turn translated into the observed mechanical properties. The bridge between gel rheologies and aerogel structures are established in the present work.

  10. Comparison of Rheological Properties of Hopped Wort and Malt Wort

    Directory of Open Access Journals (Sweden)

    Petr Trávníček

    2015-01-01

    Full Text Available The aim of this work is determination rheological properties of hopped wort and malt wort and their comparison. In the paper following rheological properties has been described: the dependence of viscosity on a temperature of a sample and hysteresis loop test. The time dependence test was performed for a confirmation thixotropic behaviour. Based on measured values Arrhenius mathematical model has been applied. The activation energy was determined by using of this model. Tests have been carried out in the temperature range from 5 °C to 40 °C. Rheological tests proved that malt wort behaves as Newtonian fluid in all temperatures and hopped wort behaves as non-Newtonian fluid at low temperatures. Thixotropic behaviour is caused by the content of the rests of hops heads or malt scraps.

  11. Rheology of organoclay suspension

    CSIR Research Space (South Africa)

    Hato, MJ

    2011-05-01

    Full Text Available The authors have studied the rheological properties of clay suspensions in silicone oil, where clay surfaces were modified with three different types of surfactants. Dynamic oscillation measurements showed a plateau-like behavior for all...

  12. Rheological properties of potassium barium borate glasses

    NARCIS (Netherlands)

    Szwejda, K.A.; Vogel, D.L.; Stevels, J.M.

    1973-01-01

    Several series of potassium barium borate glasses have been investigated as to their rheological properties. It has been found, that all these glasses show deviations from ‘Newtonian’ behaviour below temperatures corresponding to viscosities of 1010 poises. The activation energies of viscous flow

  13. Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites

    Energy Technology Data Exchange (ETDEWEB)

    Nobile, Maria Rossella, E-mail: mrnobile@unisa.it; Somma, Elvira; Valentino, Olga; Neitzert, Heinz-Christoph [Department of Industrial Engineering – DIIn - Università di Salerno Via Giovanni Paolo II, 132 - 84084 Fisciano (Italy); Simon, George [Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia)

    2016-05-18

    Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of the surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.

  14. Effect of hydrocolloids on the physico-chemical and rheological properties of reconstituted sweetened yoghurt powder.

    Science.gov (United States)

    Seth, Dibyakanta; Mishra, Hari Niwas; Deka, Sankar Chandra

    2018-03-01

    The consistency of sweetened yoghurt (misti dahi) is a desired characteristic which is attributed to the casein protein network formation during fermentation. Unfortunately, this property is lost in reconstituted sweetened yoghurt (RSY) due to the irreversible nature of protein denaturation during spray drying. Therefore, this study aimed to increase the consistency of RSY using different hydrocolloids. The effects addition of guar gum, pectin, κ-carrageenan and gelatin (0.1%w/v each) on the physico-chemical, microbial, rheological and sensory properties of RSY were investigated. RSY with 40% total solids demonstrated the rheological properties which are very similar to those of fresh sweetened yoghurt. RSY containing different hydrocolloids further increased the rheological properties. The dynamic rheological study revealed that the magnitude of storage modulus (G'), loss modulus (G″), and loss tangent (tan δ) were significantly influenced by the addition of hydrocolloids and gelatin exhibited highest dynamic moduli in RSY. However, κ-carrageenan added RSY was preferred sensorially as the rheological properties were very close to gelatin added RSY. Addition of hydrocolloids significantly increased the starter bacteria count and pH and reduced water expulsion rate (P < 0.05). Addition of hydrocolloids can improve the rheological properties of reconstituted yoghurt. The study concluded that the addition of κ-carrageenan showed better results in terms of rheological and sensory properties of RSY. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. The effect of sweeteners and milk type on the rheological properties ...

    African Journals Online (AJOL)

    Administrator

    The aim of the study was, to determine effects of sweeteners and milk type on the rheological and sensorial properties of reduced ... Key words: Rheology, artifical sweeteners, low-calorie, power-law model, salep drink. INTRODUCTION ... to several adverse health effects including cardiovascular diseases, diabetes and ...

  16. Estimation of Rheological Properties of Viscous Debris Flow Using a Belt Conveyor

    Science.gov (United States)

    Hübl, J.; Steinwendtner, H.

    2000-09-01

    Rheological parameters of viscous debris flows are influenced by a great amount of factors and are therefore extremely difficult to estimate. Because of this uncertainties a belt conveyor (conveyor channel) was constructed to measure flow behaviour and rheological properties of natural debris flow material. The upward movement of the smooth rubberised belt between fixed lateral plastic walls causes a stationary wave relative to these bends. This special experimental design enables to study behaviour of viscous ebris flow material with maximum grain diameters up to 20 mm within several minutes and to hold measuring equipment very simple. The conveyor channel was calibrated first with Xanthan, a natural polysaccharide used as thickener in food technology, whose rheological properties are similar to viscous debris flow material. In a second step natural debris flow material was investigated. Velocities and rheological parameters were measured with varying solid concentration and slope of the channel. In cases where concentration of coarse particles exceed around 15% by volume the conveyor channel obtains an alternative to expensive commercial viscometers for determination of rheological parameters of viscous debris flows.

  17. Rheological Principles for Food Analysis

    Science.gov (United States)

    Daubert, Christopher R.; Foegeding, E. Allen

    Food scientists are routinely confronted with the need to measure physical properties related to sensory texture and processing needs. These properties are determined by rheological methods, where rheology is a science devoted to the deformation and flow of all materials. Rheological properties should be considered a subset of the textural properties of foods, because the sensory detection of texture encompasses factors beyond rheological properties. Specifically, rheological methods accurately measure "force," "deformation," and "flow," and food scientists and engineers must determine how best to apply this information. For example, the flow of salad dressing from a bottle, the snapping of a candy bar, or the pumping of cream through a homogenizer are each related to the rheological properties of these materials. In this chapter, we describe fundamental concepts pertinent to the understanding of the subject and discuss typical examples of rheological tests for common foods. A glossary is included as Sect. 30.6 to clarify and summarize rheological definitions throughout the chapter.

  18. Rheological properties of cupuassu and cocoa fats

    Directory of Open Access Journals (Sweden)

    Gioielli, L. A.

    2004-06-01

    Full Text Available Cocoa butter is an important ingredient in chocolate formulation as it dictates the main properties (texture, sensation in the mouth, and gloss. In the food industry, the texture of fat-containing products strongly depends on the macroscopic properties of the fat network formed within the finished product. Cupuassu ( Theobroma grandiflorum , Sterculiaceae is an Amazonian native fruit and the seeds can be used to derive a cocoa butter like product. In general, these fats are similar to those of cocoa, although they are different in some physical properties. The objective of this study was to analyze several properties of the cupuassu fat and cocoa butter (crystal formation at 25 ° C, rheological properties, and fatty acid composition and mixtures between the two fats (rheological properties, in order to understand the behavior of these fats for their use in chocolate products. Fat flow was described using common rheological models ( Newton , Power Law, Casson and Bingham plastic.La manteca de cacao es un ingrediente muy importante en la formulación de chocolates y es responsable de la mayor parte de sus propiedades (textura, palatibilidad y brillo. En la industria de alimentos, la textura de productos que contienen grasa depende enormemente de las propiedades macroscópicas de la red cristalina de la grasa en el producto final. El cupuaçu es una fruta nativa de la región amazónica y sus semillas pueden ser usadas para obtener una grasa semejante a la manteca de cacao. En general, esta grasa es similar a la manteca de cacao, pero difiere en algunas de sus propiedades fisicas . El objetivo de este estudio fue analizar algunas propiedades de la grasa de cupuaçu y de la manteca de cacao (formación de cristales a 25 °C, propiedades reológicas y composición en ácidos grasos y de algunas mezclas entre las dos grasas (propiedades reológicas, a fin de conocer el comportamiento de estas grasas para ser usadas en productos de la industria

  19. The rheological and fracture properties of Gouda cheese

    NARCIS (Netherlands)

    Luyten, H.

    1988-01-01

    The rheological and fracture behaviour of Gouda cheese was studied. Methods for determining these properties of visco-elastic materials are described. Application of the theory of fracture mechanics, after modification and expansion, to visco-elastic materials with a

  20. Comparison of Anti-Reflective Coated and Uncoated Surfaces Figured by Pitch-Polishing and Magneto-Rheological Processes

    International Nuclear Information System (INIS)

    Chow, R.; Thomas, M.D.; Bickel, R.; Taylor, J.R.

    2002-01-01

    When completed, the National Ignition Facility (NIF) will provide laser energies in the Mega-joule range. Successful pulse amplification to these extremely high levels requires that all small optics, found earlier in the beamline, have stringent surface and laser fluence requirements. In addition, they must operate reliably for 30 years constituting hundreds of thousands of shots. As part of the first four beamlines, spherical and aspherical lenses were required for the beam relaying telescopes. The magneto-rheological technique allows for faster and more accurate finishing of aspheres. The spherical and aspherical lenses were final figured using both conventional-pitch polishing processes for high quality laser optics and the magneto-rheological finishing process. The purpose of this paper is to compare the surface properties between these two finishing processes. Some lenses were set aside from production for evaluation. The surface roughness in the mid-frequency range was measured and the scatter was studied. Laser damage testing at 1064 nm (3-ns pulse width) was performed on surfaces in both the uncoated and coated condition.

  1. Pasting and rheological properties of quinoa-oat composites

    Science.gov (United States)

    Quinoa (Chenopodium, quinoa) flour, known for its essential amino acids, was composited with oat products containing ß-glucan known for lowering blood cholesterol and preventing heart disease. Quinoa-oat composites were developed and evaluated for their pasting and rheological properties by a Rapid ...

  2. Effect of pulsed electric field on the rheological and colour properties of soy milk.

    Science.gov (United States)

    Xiang, Bob Y; Simpson, Marian V; Ngadi, Michael O; Simpson, Benjamin K

    2011-12-01

    The effects of pulsed electric field (PEF) treatments on rheological and colour properties of soy milk were evaluated. Flow behaviour, viscosity and rheological parameters of PEF-treated soy milk were monitored using a controlled stress rheometer. For PEF treatments, electric field intensity of 18, 20 and 22 kV cm(-1) and number of pulses of 25, 50, 75 and 100 were used. For the measurements of rheological properties of soy milk shear rates between 0 and 200 s(-1) was used. The rheological behaviour of control and the PEF-treated soy milk were described using a power law model. The PEF treatments affected the rheological properties of soy milk. Apparent viscosity of soy milk increased from 6.62 to 7.46 (10(-3) Pa s) with increase in electric field intensity from 18 to 22 kV cm(-1) and increase in the number of pulses from 0 to 100. The consistency index (K) of soy milk also changed with PEF treatments. Lightness (L*), red/greenness (a*) and yellowness/blueness (b*) of soy milk were affected by PEF treatments.

  3. Effect of ?-cyclodextrin on Rheological Properties of some Viscosity Modifiers

    OpenAIRE

    Rao, G. Chandra Sekhara; Ramadevi, K.; Sirisha, K.

    2014-01-01

    Cyclodextrins are a group of novel excipients, extensively used in the present pharmaceutical industry. Sometimes they show significant interactions with other conventional additives used in the formulation of dosage forms. The effect of β-cyclodextrin on the rheological properties of aqueous solutions of some selected viscosity modifiers was studied in the present work. β-cyclodextrin showed two different types of effects on the rheology of the selected polymers. In case of natural polymers ...

  4. Correlation between structure and rheological properties of suspension of nanosized powders

    Energy Technology Data Exchange (ETDEWEB)

    Tabellion, J.; Clasen, R. [Saarland Univ., Saarbruecken (Germany). Dept. of Powder Technology; Reinshagen, J.; Oberacker, R.; Hoffmann, M.J. [Karlsruhe Univ. (Germany). Inst. for Ceramics in Mechanical Engineering

    2002-07-01

    Since the properties of a ceramic green body and compact produced thereof are strongly influenced by the properties of the suspension used, controlling structure and properties of a suspension is a very important issue in ceramic manufacturing. Macroscopically, the rheological properties of a suspension are the key parameters that influence the behaviour during the shaping process. The rheological behaviour of aqueous suspensions of nanosized fumed silica (DEGUSSA, Aerosil OX50) with different amounts of OX50 (10 to 50 wt.%) was measured over a pH-range from 1 to 13 by means of rotational viscosimetry. A distinct maximum of the viscosity was observed for a pH of about 7 to 8, independent of the solid content of the suspensions. Since the rheological behaviour of the suspensions could not be explained by the {zeta}-Potential measured for OX50, the suspensions were investigated by means of so-called cryo-SEM characterization. A droplet of the suspension is quench-frozen in subcooled nitrogen (-210 C), prepared and the water is sublimed at -90 C. Thus it was possible to visualize the agglomerate structure of the primary OX50-particles within the suspensions. (orig.)

  5. Impact of lithospheric rheology on surface topography

    Science.gov (United States)

    Liao, K.; Becker, T. W.

    2017-12-01

    The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.

  6. Rheological properties of sodium smectite clay

    International Nuclear Information System (INIS)

    Boergesson, L.; Hoekmark, H.; Karnland, O.

    1988-12-01

    The rheological properties of Na-smectite Mx-80 have been investigated by various laboratory tests. The investigations include determination of the hydraulic conductivity, the undrained stress-strain-strength properties, the creep properties, the compression and swelling properties in drained and undrained conditions and the undrained thermomechanical properties. Measurements have been made at different densities, clay/sand mixtures and pore water compositions. The influence of temperature, rate of strain and testing technique has also been considered. The investigation has led to a supply of basic data for the material models which will be used at performance calculations. The results have also increased the general understanding of the function of smectitic clay as buffer material. The microstructural behaviour has been considered at the validation of the different test results and the validity of the effective stress theory has been discussed. Comparisons with the properties of Ca-smectite have also been made. (orig.)

  7. Rheological properties of soybean protein isolate gels containing emulsion droplets

    NARCIS (Netherlands)

    Kim, K.H.; Renkema, J.M.S.; Vliet, van T.

    2001-01-01

    Rheological properties of soybean protein gels containing various volume fractions oil droplets have been studied at small and large deformations. Dynamic viscoelastic properties of soybean protein isolate gels were determined as a function of the volume fraction of oil droplets stabilised by the

  8. Hanford Waste Physical and Rheological Properties: Data and Gaps - 12078

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Wells, B.E.; Huckaby, J.L.; Mahoney, L.A.; Daniel, R.C.; Burns, C.A.; Tingey, J.M.; Cooley, S.K. [Pacific Northwest National Laboratory PO Box 999, Richland WA 99352 (United States)

    2012-07-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant (WTP). These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed. (authors)

  9. Selected Rheological Properties of RS3/4 Type Resistant Starch

    Directory of Open Access Journals (Sweden)

    Kapelko-Żeberska Małgorzata

    2017-12-01

    Full Text Available This study was aimed at determining the effect of acetylation degree and crosslinking of retrograded starch with adipic acid on selected rheological properties of prepared pastes and gels. The esterification of retrograded starch allowed obtaining preparations with various degrees of substitution with residues of acetic (0.7–11.2 g/100 g and adipic acids (0.1–0.3 g/100 g. Acetylation and crosslinking caused a decrease in amylose content of the preparations (3–21 g/100 g. Solubility of the preparations in water, in a wide range of variability, was increasing along with an increasing degree of acetylation and with a decreasing degree of crosslinking (19–100 g/100 g. Values of most of the rheological coefficients determined based on the flow curves of the prepared pastes and mechanical spectra of gels (3.5rheological properties upon the effect of double modification were not the sum of changes proceeding as a result of single modifications. Instead, interaction of both factors was observed. The conducted modifications enable modelling the properties of produced preparations.

  10. Influence of polymer fibers on rheological properties of cement mortars

    Directory of Open Access Journals (Sweden)

    Malaszkiewicz Dorota

    2017-10-01

    Full Text Available The reinforcing effect of fibers in cement composites often results in the improvement of the brittle nature of cementitious materials. But the decrease in the workability of fresh concrete is often the disadvantage of fibers addition. Conventional single-point workability tests cannot characterize workability of concrete in terms of fundamental rheological parameters. To this end, this paper describes an investigation of the influence of synthetic fiber additions (fiber length in the range 12–50 mm and volume fraction in the range 0–4% on the rheological properties of fiber reinforced fresh mortar (FRFM and development of these properties over time. The rheometer Viskomat XL was used in this study. Within the limitations of the instrument and testing procedure it is shown that FRFMs conform to the Bingham model. Natural postglacial sand 0/4 mm was used as a fine aggregate and cement CEMI 42.5 R was used as a binder. Three commercial synthetic fibers were selected for these examinations. Rheological properties were expressed in terms of Bingham model parameters g (yield value and h (plastic viscosity. Based on the test results it was found out that the fiber type and volume fraction affected both the yield stress and plastic viscosity.

  11. Influence of polymer fibers on rheological properties of cement mortars

    Science.gov (United States)

    Malaszkiewicz, Dorota

    2017-10-01

    The reinforcing effect of fibers in cement composites often results in the improvement of the brittle nature of cementitious materials. But the decrease in the workability of fresh concrete is often the disadvantage of fibers addition. Conventional single-point workability tests cannot characterize workability of concrete in terms of fundamental rheological parameters. To this end, this paper describes an investigation of the influence of synthetic fiber additions (fiber length in the range 12-50 mm and volume fraction in the range 0-4%) on the rheological properties of fiber reinforced fresh mortar (FRFM) and development of these properties over time. The rheometer Viskomat XL was used in this study. Within the limitations of the instrument and testing procedure it is shown that FRFMs conform to the Bingham model. Natural postglacial sand 0/4 mm was used as a fine aggregate and cement CEMI 42.5 R was used as a binder. Three commercial synthetic fibers were selected for these examinations. Rheological properties were expressed in terms of Bingham model parameters g (yield value ) and h (plastic viscosity). Based on the test results it was found out that the fiber type and volume fraction affected both the yield stress and plastic viscosity.

  12. From Fibril Formation to Fibril Properties and Rheology of Food Materials

    NARCIS (Netherlands)

    Linden, van der E.; Venema, P.

    2013-01-01

    For control and design of food properties it is important to understand how molecules and their interactions give rise to formation of microstructures and resulting rheological properties. This will be illustrated by discussing the formation and properties of fibrils in aqueous and non-aqueous

  13. Analysis of rheological properties of bone cements.

    Science.gov (United States)

    Nicholas, M K D; Waters, M G J; Holford, K M; Adusei, G

    2007-07-01

    The rheological properties of three commercially available bone cements, CMW 1, Palacos R and Cemex ISOPLASTIC, were investigated. Testing was undertaken at both 25 and 37 degrees C using an oscillating parallel plate rheometer. Results showed that the three high viscosity cements exhibited distinct differences in curing rate, with CMW 1 curing in 8.7 min, Palacos R and Cemex ISOPLASTIC in 13 min at 25 degrees C. Furthermore it was found that these curing rates were strongly temperature dependent, with curing rates being halved at 37 degrees C. By monitoring the change of viscosity with time over the entire curing process, the results showed that these cements had differing viscosity profiles and hence exhibit very different handling characteristics. However, all the cements reached the same maximum viscosity of 75 x 10(3) Pa s. Also, the change in elastic/viscous moduli and tan delta with time, show the cements changing from a viscous material to an elastic solid with a clear peak in the viscous modulus during the latter stages of curing. These results give valuable information about the changes in rheological properties for each commercial bone cement, especially during the final curing process.

  14. AN EXPERIMENTAL STUDY ON THE RHEOLOGICAL PROPERTIES OF CONDITIONED MUNICIPAL ACTIVATED SLUDGE

    Directory of Open Access Journals (Sweden)

    SALAM K. AL-DAWERY

    2017-01-01

    Full Text Available This research work was focused on the rheological characteristics of conditioned fresh activated sludge using TA rheometer HR-2. The effect of cationic polyelectrolyte conditioner has been investigated for floc size, surface properties and yield stress at different pH values in a comparative fashion. Our approach was to reveal the effect of polymer on the municipal activated sludge with high organic contents up to 80%. The results indicated an improvement of 50% in settling properties by addition polyelectrolyte up to 4 mg/g solid/l. Rheological data analysis showed that responses of shear stress - shear rate were found to be closest to Bingham model and gave almost similar and smaller k values of average 6.2×10-3. The results of shear creep indicated that all sludge samples have less rigid structures with no reconstruction behavior. The optical analyses of the samples indicated that the floc sizes were increased with successive addition of polyelectrolyte. The increase of floc sizes caused large stresses especially for solution with pH=9. As the flocculation accorded despite the negative zeta potential, this phenomenon can be referred to that interparticles hydrogen bridging was governing flocculation rather than charge neutralization. Also, during the experiment, bacterial growth showed an adaption despite the conditioning with polyelectrolyte.

  15. Probing the micro-rheological properties of aerosol particles using optical tweezers

    International Nuclear Information System (INIS)

    Power, Rory M; Reid, Jonathan P

    2014-01-01

    The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >10 12

  16. Probing the micro-rheological properties of aerosol particles using optical tweezers

    Science.gov (United States)

    Power, Rory M.; Reid, Jonathan P.

    2014-07-01

    The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >1012 Pa s, whilst

  17. Rheological Properties of Extreme Pressure Greases Measured Using a Process Control Rheometer

    DEFF Research Database (Denmark)

    Glasscock, Julie; Smith, Robin S.

    2012-01-01

    A new process control rheometer (PCR) designed for use in industrial process flows has been used to measure the rheological properties of three extreme-pressure greases. The rheometer is a robust yet sensitive instrument designed to operate in an industrial processing environment in either in......-line or on-line configurations. The PCR was able to measure the rheological properties including the elastic modulus, viscous modulus, and complex viscosity of the greases which in an industrial flow application could be used as variables in a feedback system to control the process and the quality...

  18. Alveoconsistograph evaluation of rheological properties of rye doughs

    Energy Technology Data Exchange (ETDEWEB)

    Callejo, M. J.; Bujeda, C.; Rodriguez, G.; Chaya, C.

    2009-07-01

    The aim of this work is to study the effect of rye flour on the rheological properties of doughs. Rye meals of two different extraction rate (65% and 85%) were blended in different proportions with wheat flours. The viscoelastic behaviour of the sample blends was determined by a Chopin alveograph. The effect of rye flour on dough rheology during mixing was determined by a Chopin consistograph. It was found that Chopin Consistograph methodology was not suitable for determining water absorption capacity in blends with rye. It has been confirmed that adjustment of dough hydration in baked products incorporating rye flour must be taken into account, depending not only on the wheat-to-rye ratio but also on the rye meals extraction rate. (Author) 35 refs.

  19. Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO{sub 3} with different polar surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jun [Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Mechanics Engineering, Nanjing Institute of Industry Technology, Nanjing, 210023 (China); Zhang, Jun, E-mail: zhangjun@njtech.edu.cn [Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China)

    2016-12-01

    Graphical abstract: - Highlights: • The non-polar and short vinyl groups can greatly reduce G′ of HDPE composites. • Long chains on BaTiO{sub 3} surface enhance the interaction of BaTiO{sub 3} with HDPE. • Polar amino groups on BaTiO{sub 3} surface raise the interaction of BaTiO{sub 3} with HDPE. • Polar amino groups can boost the dielectric constant of HDPE composites. • The potential use in electronic equipment of the KH550 composites is obtained. - Abstract: In this work, three types of coupling agents: isopropyl trioleic titanate (NDZ105), vinyltriethoxysilane (SG-Si151), 3-aminopropyltriethoxysilane (KH550) were applied to modify the surface tension of Barium titanate (BaTiO{sub 3}) particles. The Fourier transform infrared (FT-IR) spectra confirm the chemical adherence of coupling agents to the particle surface. The long hydrocarbon chains in NDZ105 can cover the particle surface and reduce the polar surface tension of BaTiO{sub 3} from 37.53 mJ/m{sup 2} to 7.51 mJ/m{sup 2}, turning it from hydrophilic to oleophilic properties. The short and non-polar vinyl groups in SG-Si151 does not influence the surface tension of BaTiO{sub 3}, but make BaTiO{sub 3} have both hydrophilic and oleophilic properties. The polar amino in KH550 can keep BaTiO{sub 3} still with hydrophilic properties. It is found that SG-Si151 modified BaTiO{sub 3} has the lowest interaction with HDPE matrix, lowering the storage modulus of HDPE composites to the greatest extent. As for mechanical properties, the polar amino groups in KH550 on BaTiO{sub 3} surface can improve the adhesion of BaTiO{sub 3} with HDPE matrix, which increases the elongation at break of HDPE composites to the greatest extent. In terms of electrical properties, the polar amino groups on surface of BaTiO{sub 3} can boost the dielectric properties of HDPE/BaTiO{sub 3} composites and decrease the volume resistivity of HDPE/BaTiO{sub 3} composites. The aim of this study is to investigate how functional groups

  20. Rheological and mechanical properties of recycled polyethylene films contaminated by biopolymer.

    Science.gov (United States)

    Gere, D; Czigany, T

    2018-06-01

    Nowadays, with the increasing amount of biopolymers used, it can be expected that biodegradable polymers (e.g. PLA, PBAT) may appear in the petrol-based polymer waste stream. However, their impact on the recycling processes is not known yet; moreover, the properties of the products made from contaminated polymer blends are not easily predictable. Therefore, our goal was to investigate the rheological and mechanical properties of synthetic and biopolymer compounds. We made different compounds from regranulates of mixed polyethylene film waste and original polylactic acid (PLA) by extruison, and injection molded specimens from the compounds. We investigated the rheological properties of the regranulates, and the mechanical properties of the samples. When PLA was added, the viscosity and specific volume of all the blends decreased, and mechanical properties (tensile strength, modulus, and impact strength) changed significantly. Young's modulus increased, while elongation at break and impact strength decreased with the increase of the weight fraction of PLA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Researches on thermal and rheological properties of cream- and vegetable spread

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2016-01-01

    Full Text Available Researches of thermal and rheological properties of cream- and vegetable spread are necessary for the scientific substantiation of their obtaining process, namely mixing and crystallization processes. As the object of research, we chose a cream- and vegetable spread, with the following composition: peanut butter 10%; wheat germ oil 10%; linseed oil 20%; butter 59.8%; emulsifier 0.2%. With the data obtained in the course of research of the rheological properties of cream- and vegetable spread, one can subsequently generate recommendations for optimization of technological modes of production. In particular, one can solve problems of intensification of hydro-mechanical and thermal processes by carrying them out at such a temperature and speed when the maximum preservation of the produced product structure will be achieved. Determination of thermal characteristics was carried out in the apparatus for the study of thermal and rheological properties of viscoelastic liquids Coesfeld RT-1394H. Rheological researches of cream- and vegetable spread were carried out on a series of viscometers SV-10 and PB-8m. The graphs of spread dynamic viscosity dependence on the temperature, and the dependence of the effective viscosity of the spread and vegetable oils on the shear rate were built according to experimental data. The data obtained is rational to choose the equipment for processing and production of cream- and vegetable spread, to simulate processes taking place in the production process, to solve problems of intensification of thermal and hydro-mechanical processes reasonably, by conducting the production process at temperatures that do not cause the destruction of the product structure.

  2. Effects of graphite on rheological and conventional properties of bituminous binders

    Directory of Open Access Journals (Sweden)

    Yunus Erkuş

    2017-07-01

    Full Text Available In this study, the effects of graphite used for developing the rheological and conventional properties of bitumen were investigated using various bituminous binder tests. Penetration, softening point, rotational viscosity (RV, dynamic shear rheometer (DSR and bending beam rheometer (BBR tests were applied to bituminous binders modified with four different proportions of graphite by bitumen weight. The penetration values declined while softening point values increased with rising graphite content. While graphite induced 8 °C increases in mixing-compacting temperature by increasing the viscosity values, it also increased the rutting parameter. According to the BBR test, the deformation and stiffness values changed significantly with increasing graphite content, but the m-values did not change significantly. These results showed that graphite generally used for improving the thermal properties can improve to high temperature performance of mixtures. Keywords: Graphite, Bitumen, Conventional properties, Rheological properties

  3. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova

    2015-07-01

    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  4. Rheological properties of salep powder-milk mixture.

    Science.gov (United States)

    Develi Işıklı, Nursel; Dönmez, Mehmet Necmi; Kozan, Nejat; Karababa, Erşan

    2015-10-01

    Rheological properties of salep-milk mixture as hot drink were evaluated using a rotational viscometer at different temperature (45, 50, 55, 60, and 65 °C) and salep concentration (0.75, 1.00, and 1.25 w/v, %). All salep-milk mixtures exhibited non-Newtonian behavior. The shear rate /shear stress data obtained from forward and backward directions were examined by common rheological models such as power law, Herschel-Bulkey, Casson and Bingham plastic models. Among the common models, the power-law model fitted the shear rate and shear stress data for 1.00 and 1.25 % salep concentration at all temperature. The Bingham plastic model described well the flow behavior of the salep-milk mixtures in 0.75 % salep concentration at all temperature. Flow behavior index (n), according to the power law and Herschel-Bulkey models decreased with an increase in salep concentration and a decrease of temperature. The consistency coefficient decreased with temperature and increased with salep concentration.

  5. Gamma radiation effects on the rheological properties of high and low density polyethylenes

    International Nuclear Information System (INIS)

    Rangel-Nafaile, C.; Garcia-Rejon, A.; Garcia Leon, A.

    1986-01-01

    High energy radiation of polymeric materials is a topic of considerable interest from commercial and scientific points of view. Within an inert atmosphere, irradiation of polyethylene yields a crosslinking effect with a consequent improvement in its mechanical properties in comparison to the virgin materials. Additionally, if irradiated specimens are melted and recrystallized, the radiation-induced crosslinking hinders their crystalline growth altering dramatically their flow properties such as the elasticity. This work portrays the effects of the gamma radiation on the rheological properties of high and low density polyethylenes manufactured by PEMEX and analyzes the implications of theoretical results derived from the Acierno's model when it is implemented with the rheological properties of high energy irradiated polyethylenes. (author)

  6. Nanoparticles in Polymers: Assembly, Rheology and Properties

    Science.gov (United States)

    Rao, Yuanqiao

    Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.

  7. Rheological properties of PHPA polymer support fluids

    OpenAIRE

    Lam, Carlos; Martin, P J; Jefferis, S A

    2015-01-01

    Synthetic polymer fluids are becoming a popular replacement for bentonite slurries to support excavations for deep foundation elements. However, the rheological properties of the polymer fluids used in excavation support have not been studied in detail, and there is currently confusion about the choice of mathematical models for this type of fluid. To advance the current state of knowledge, a laboratory study has been performed to investigate the steady-shear viscosity and transient viscoelas...

  8. Evaluation of antioxidant, rheological, physical and sensorial properties of wheat flour dough and cake containing turmeric powder.

    Science.gov (United States)

    Park, S H; Lim, H S; Hwang, S Y

    2012-10-01

    The effects of addition of turmeric powder (0%, 2%, 4%, 6% and 8%) were examined in order to obtain an antioxidant-enriched cake with good physico-chemical and sensorial properties. The rheological properties of doughs were evaluated using dynamic rheological measurements. Physical properties, curcumin content, radical scavenging activity (RSA-DPPH assay) and sensory analysis (hedonic test) of the supplemented cake were determined. Addition of turmeric powder up to 8% caused significant changes on dough characteristics and on cake rheological properties. The highest curcumin (203 mg/kg) and RSA-DPPH activity (45%) were achieved in the cake having the highest percentage of turmeric powder (8%); however, this sample showed the worst results regarding the rheological properties. Moreover, by sensory evaluation this cake sample was not acceptable. A 6% substitution of wheat flour with turmeric powder showed acceptable sensory scores which were comparable to those of 0-4% turmeric cakes. This indicated that up to 6% level of turmeric powder might be included in cake formulation.

  9. Analogy between dynamics of thermo-rheological and piezo-rheological pendulums

    International Nuclear Information System (INIS)

    Hedrih, K

    2008-01-01

    The constitutive stress-strain relations of the standard thermo-rheological and piezo-rheological hereditary element in differential form as well as in two different integro-differential forms are defined. The considered problem of a thermo-rheological hereditary discrete system nonlinear dynamics in the form of thermo-rheological double pendulum system with coupled pendulums gets the significance of two constrained bodies in plane motion problem, as a problem important for studying a sensor dynamics or actuator dynamics in active structure dynamics. System of the averaged equations in the first approximation for amplitudes and phases are derived and qualitatively analyzed. Analogy between nonlinear dynamics of the double pendulum systems with thermo-rheological and piezo-rheological properties between pendulums is pointed out

  10. Shear rheological properties of fresh human faeces with different ...

    African Journals Online (AJOL)

    2014-03-11

    Mar 11, 2014 ... Short communication. Shear rheological properties of fresh human faeces with different moisture content. SM Woolley1, RS Cottingham1, J Pocock1 and CA Buckley1*. 1Pollution Research Group, School of Engineering, University of KwaZulu-Natal, King George V Avenue, Berea 4041, South Africa.

  11. The rheological properties of shear thickening fluid reinforced with SiC nanowires

    Directory of Open Access Journals (Sweden)

    Jianhao Ge

    Full Text Available The rheological properties of shear thickening fluid (STF reinforced with SiC nanowires were investigated in this paper. Pure STF consists of 56 vol% silica nano-particles and polyethylene glycol 400 (PEG 400 solvent was fabricated; and a specific amount of SiC nanowires were dispersed into this pure STF, and then the volume fraction of PEG400 was adjusted to maintain the volume fraction of solid phase in the STF at a constant of 56%. The results showed there was almost 30% increase in the initial and shear thickening viscosity of the STF reinforced with SiC nanowires compared to the pure STF. Combining with the hydrodynamic cluster theory, the effect of the mechanism of SiC nanowire on the viscosity of STF was discussed, and based on the experimental results, an analytical model of viscosity was used to describe the rheological properties of STF, which agreed with the experimental results. Keywords: Shear thickening fluid (STF, Nanowire, Rheology, Viscosity, Analytical model

  12. Effects of advera® warm mix additive on the rheological properties ...

    African Journals Online (AJOL)

    The performance of asphalt pavement is mainly governed by the properties of the binder. Many asphalt pavement distress are pronounced to be related to the rheological properties of asphalt binder. The oxidation changes the structure and composition of asphalt binder resulting stiffer and brittle of asphalt. This paper ...

  13. Rheology of oil sands slurries

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.; Zhou, J. [Alberta Research Council, Edmonton, AB (Canada). Mineral Oil Sands Unit; Wallace, D. [Dean Wallace Consulting Inc., Beaumont, AB (Canada)

    2006-07-01

    This study focused on integrating rheology and colloid science to improve recovery of bitumen in surface mined oil sands. Factors that influence recovery, such as conditions of particle interaction, solids concentration and shear rate, were reviewed. In an effort to understand the rheological behaviour of clay-in-water suspensions, an elaborate procedure was developed to separate an inter-bedded clay layer from a site at Albian Sands Energy Inc. The variables were water chemistry, solids concentration, and shear rate. The research study was conducted at the Alberta Research Council with the support of the CONRAD Extraction Group. A controlled stress rheometer was used to provide the quantitative evaluations of the clay slurry properties. The research results indicate that the viscoelastic properties of the slurry are highly influenced by the shear history of the slurry, solids content, calcium concentration, and sample aging. Shear thinning behaviour was observed in all slurry samples, but the slurry viscosity increased with test time for a given shear rate. In order to classify the slurries, a method was developed to distinguish the gel strength. The slurries were then classified into 3 distinct patterns, including no gel, weak gel and strong gel. The evolution of the experimental protocols were described along with the current stability maps that correlate the domains of the gel strength according to the solids concentration, calcium ion content, and shear rate. It was concluded that the rheological properties of oil sands slurries influence bitumen recovery in commercial surface-mined oil sands operations. tabs., figs.

  14. Studying The Rheological Properties of Xanthan Cellulose Gum-Dioxide Titanium Nano-Composites

    Directory of Open Access Journals (Sweden)

    Abdulazeez O. Mousa Al-Ogaili

    2017-02-01

    Full Text Available In this paper, we investigated the rheological properties of xanthan cellulose gum(Xn dissolves in distilled water for different concentrations (0.1 , 0.2, …, 0.8% g/mL before and after adding (0.25 g of (TiO2 for each concentration. The rheological properties such as shear viscosity have been practically measured, but relative viscosity, specific viscosity, reduced viscosity and viscosity average molecular weight have been calculated, all the viscosities depend on density and concentration. The results show that adding (TiO2 led to increase the values of all types of viscosities before and after adding(TiO2.

  15. Rheology of Biopolymer Solutions and Gels

    Directory of Open Access Journals (Sweden)

    David R. Picout

    2003-01-01

    Full Text Available Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biopolymers: polysaccharides and proteins. An overview of both their solution properties (dilute to semi-dilute and gel properties is described.

  16. Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites

    International Nuclear Information System (INIS)

    Bahlouli, Nadia; Pessey, Daniel; Raveyre, Claude; Guillet, Jacques; Ahzi, Said; Dahoun, Abdessalam; Hiver, Jean Marie

    2012-01-01

    Highlights: → Recycling effect on high impact PP with or without talc for automotive industries. → Rheological/mechanical tests, effect of molecular weight, deformation and damage. → Embrittlement of the amorphous matrix by chain scissions and growth of cavitation. → Better stability for talc filled HiPP, but decreased failure stress. → Interfaces talc/PP matrix and EPDM droplets/PP matrix are degraded. -- Abstract: As recycled materials are increasingly used in design of structural components, it is necessary to understand the effect of recycling on the properties and durability of these materials. In this work, the recycling effects on two high impact polypropylenes (HiPP) are studied. The recycling process was simulated by performing several extrusion runs with the same material in order to get a better understanding of the multi recycling effects. These effects were identified not only on the molecular weight and the rheological properties but also on the mechanical properties and the deformation mechanisms. The volume strain has been also measured as a damage indicator in the studied polymers. For both materials, the analysis of the different results showed that the rheological and the mechanical properties were affected by the thermomechanical recycling process. In particular, this process led to the decrease of the molecular weight, the decrease of the failure stress and the decrease of the impact energy. Moreover, Scanning Electronic Micoscopy (SEM) pictures showed a modification of the deformation process due to the embrittlement of the amorphous matrix by the chain scission and by cavitation. Moreover, a better stability for talc filled HiPP was observed but a decrease of the failure stress was obtained because the interfaces talc/polypropylene (PP) matrix and ethylene propylene diene monomer (EPDM) droplets/PP matrix were degraded. Indeed, the knowledge of the molecular characteristics as well as the rheological and mechanical properties of

  17. Effect of Bulk and Interfacial Rheological Properties on Bubble Dissolution

    NARCIS (Netherlands)

    Kloek, W.; Vliet, van T.; Meinders, M.

    2001-01-01

    This paper describes theoretical calculations of the combined effect of bulk and interracial rheological properties on dissolution behavior of a bubble in an infinite medium at saturated conditions. Either bulk or interracial elasticity can stop the bubble dissolution process, and stability criteria

  18. Influence of hydroxypropylmethyl cellulose-sodium laurylsulfate interaction on rheological properties of the solution

    Directory of Open Access Journals (Sweden)

    Šaletić Jelena V.

    2004-01-01

    Full Text Available Interactions between the polymers and surfactants in solution have widely been investigated because of their scientific and technological importance. These interactions can be utilized to modify the physicochemical properties of system in many food products, pharmaceutical formulations, personal care products, paints, pesticides, etc. Interaction between nonionic polymer - hydroxypropylmethyl cellulose (HPMC and anionic surfactant - sodium laurylsulfate (SDS in solution has been investigated in this paper by rheological measurements. Rheological measurements are performed by rotational viscometer at 20°C and changes of rheological characteristics of HPMC solutions (0.5-1.5% with increasing SDS concentrations (0-4.0% were determined. The results of these investigations showed that viscosity of the solution is dependant on HPMC-SDS interaction. At particular SDS concentration viscosity increases, reach maximum and after that decreases until reach constant value. From the viscosity changes the characteristic concentrations of SDS, critical aggregation concentration (cac and polymer saturation point (psp, were determined. These concentrations are in linear relationships with HPMC concentrations. Rheological properties of the solution are strong influenced by HPMC-SDS interaction and exhibits more or less pronounced pseudoplastic behavior, which changes to Newtonian one after the psp has been reached.

  19. Comparative Effects of MMT Clay Modified with Two Different Cationic Surfactants on the Thermal and Rheological Properties of Polypropylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Meshal Al-Samhan

    2017-01-01

    Full Text Available Polypropylene montmorillonite (MMT nanocomposites were prepared by melt blending using two different organoclays modified with imidazolium and alkylammonium surfactants. The imidazolium and ammonium modified organoclays were characterized by the FTIR and SEM analysis. The effect of organic clay (MMT on the physical properties of polypropylene was evaluated, thermal and rheological properties with different filler weight percentage. Differential scanning calorimetric results showed that imidazolium modified clay (IMMT exhibits low melting temperature compared to the ammonium modified clay (AMMT. The crystallinity analysis showed that crystallization improved in all nanocomposites irrespective of surface modification; the thermogravimetric analysis showed that the imidazolium modified polymer composites are more thermally stable than conventional ammonium modified composites. The Transmission Electron Microscopy (TEM analyses indicated that the PP-IMMT composites displayed exfoliated morphologies compared with the intercalated structure in PP-AMMT, and the rheological analysis at 180°C showed an enhancement in the viscoelastic properties as the clay concentration increases. The melt viscosity, crossover modulus, and relaxation times were comparable for both the surface modified composites with two different cations. The imidazolium based surfactant was found to be an effective organic modification for MMT to prepare thermally stable PP/MMT nanocomposites.

  20. Is electrical percolation in carbon-filled polymers reflected by rheological properties?

    Czech Academy of Sciences Publication Activity Database

    Münstedt, H.; Starý, Zdeněk

    2016-01-01

    Roč. 98, 19 August (2016), s. 51-60 ISSN 0032-3861 Institutional support: RVO:61389013 Keywords : electrical conductivity * rheological properties * composites Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.684, year: 2016

  1. Modifying the rheological properties of melter feed for the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Blair, H.T.; McMakin, A.H.

    1986-03-01

    Selected high-level nuclear wastes from the Hanford Site may be vitrified in the future Hanford Waste Vitrification Plant (HWVP) by Rockwell Hanford Company, the contractor responsible for reprocessing and waste management at the Hanford Site. The Pacific Northwest Laboratory (PNL), is responsible for providing technical support for the HWVP. In this capacity, PNL performed rheological evaluations of simulated HWVP feed in order to determine which processing factors could be modified to best optimize the vitrification process. To accomplish this goal, a simulated HWVP feed was first created and characterized. Researchers then evaluated how the chemical and physical form of the glass-forming additives affected the rheological properties and melting behavior of melter feed prepared with the simulated HWVP feed. The effects of adding formic acid to the waste were also evaluated. Finally, the maximum melter feed concentration with acceptable rheological properties was determined

  2. Effects of selected factors on rheological and textural properties of probiotic yoghurt

    Directory of Open Access Journals (Sweden)

    Jovana Glušac

    2011-03-01

    Full Text Available The aim of this work was to study the influence of inulin (1 %, combination of inulin (1 % and acacia honey (4 %, heat treatment of milk, and storage time on the rheological and textural properties of probiotic yoghurt. Rheological properties were assessed trough viscosity, syneresis and texture (firmness, consistency, cohesiveness and index of viscosity. Yoghurt was prepared from milk (1,5 % fat with added inulin (1% before heat treatment at 85 °C for 20 min or 95 °C for 10 min. After cooling to 55 °C honey (4 % was added. Samples were inoculated using probiotic starter culture (70 % w/w Streptococcus thermophilus, 10 % w/w Lactobacillus bulgaricus, 10 % w/w Lactobacillus acidophilus, 10 % w/w Bifidobacterium ssp.. Yoghurt samples were held on +5 °C during 21 days. Measurements of pH value, lactic acid, viscosity, syneresis, and textural properties were done after 1, 7, 14 and 21 days of storage. The results of this study show that honey addition significantly decreased fermentation time compared to fermentation time of control samples or samples containing inulin. Furthermore, addition of honey and inulin to milk caused significant lower syneresis (p<0,05 during storage time, while there was no significant influence on viscosity and texture of final product. The applied heat treatment of milk had no significant influence on rheological properties of probiotic yoghurt.

  3. Measurement of the Rheological Properties of High Performance Concrete: State of the Art Report

    Science.gov (United States)

    Ferraris, Chiara F.

    1999-01-01

    The rheological or flow properties of concrete in general and of high performance concrete (HPC) in particular, are important because many factors such as ease of placement, consolidation, durability, and strength depend on the flow properties. Concrete that is not properly consolidated may have defects, such as honeycombs, air voids, and aggregate segregation. Such an important performance attribute has triggered the design of numerous test methods. Generally, the flow behavior of concrete approximates that of a Bingham fluid. Therefore, at least two parameters, yield stress and viscosity, are necessary to characterize the flow. Nevertheless, most methods measure only one parameter. Predictions of the flow properties of concrete from its composition or from the properties of its components are not easy. No general model exists, although some attempts have been made. This paper gives an overview of the flow properties of a fluid or a suspension, followed by a critical review of the most commonly used concrete rheology tests. Particular attention is given to tests that could be used for HPC. Tentative definitions of terms such as workability, consistency, and rheological parameters are provided. An overview of the most promising tests and models for cement paste is given.

  4. Investigation of the rheological properties of human semen

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, P.F. (Purdue Univ., West Lafayette, IN); Picologlou, B.F.

    1977-01-01

    The results of an investigation of the previously undetermined rheological properties of human semen using a modified, multiple-point capillary viscometer are presented. The design of a viscometer, specifically constructed to give accurate, instantaneous pressure gradient and material flow rate records of biological viscoelastic fluids whose rheological properties are possibly changing with time is given. Using this device, measurements are made on human semen immediately following ejaculation. An analytical scheme for the data reduction, suitable for non-linear viscoelastic fluids of the Maxwell-type, is offered. An expression is developed for a non-linear Maxwell-type viscoelastic fluid flow in a circular tube, relating the material's elastic properties to the distance of recoil and the pressure gradient. In the case of a power-law elastic behavior this relation couples the wall shear stress with the recoil distance through an apparent shear modulus. Previously established procedures for the viscous response analysis are utilized and an approximate non-dimensional parameter is introduced allowing one to ascertain the relative contributions of the elastic and viscous components to the rate of flow. Results show the elastic and viscous properties of human semen to be functions of time following ejaculation and frequency of ejaculation. The elastic component is found to have a linear response over the shear stress range investigated, whereas the viscous component is found to exhibit a power-law behavior. The final equilibrium state is characterized by Newtonian behavior, with mean absolute viscosity of 3.37 centipoise. Finally, similarity among all cases examined is found for each material property through consideration of a non-dimensional time, t*, determined from semen liquefaction time and time post ejaculation.

  5. PLA/Bio-PE blends: effect of the Bio-PE content on the crystallinity rheological properties

    International Nuclear Information System (INIS)

    Araujo, Aylanna P.M. de; Agrawal, Pankaj; Cavalcanti, Shirley N.; Alves, Amanda M.; Melo, Tomas J.A. de; Brito, Gustavo F.

    2014-01-01

    The aim of this work is to evaluate the effect of the Bio-PE content on the crystallinity and rheological properties of PLA/Bio-PE blend. The blends containing 05 and 15% of Bio-PE were prepared by extrusion followed by injection molding and characterized by X-Ray Diffraction (XRD) and rheological properties at low and high shear rates. XRD results indicated that the PLA present low crystallinity and this behavior was not changed with the addition of Bio-PE, regardless of Bio-PE content. Rheological properties results indicated that at low shear rates the viscosity of the PLA/Bio-PE increased with the increase in the Bio-PE content while at high shear rates the viscosities where almost similar, which may be ascribed to the orientation of Bio-PE particles in the flow direction or by the viscous dissipation. (author)

  6. Phase Behavior, Thermal Stability and Rheological Properties of PPEK/PC Blends

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phase behavior, thermal stability and rheological properties of the blends of poly(phthalazinone ether ketone) (PPEK)with bisphenol-A polycarbonate (PC) prepared by solution coprecipitation were studied using differential scanning calorimetry (DSC), Frourier-Transform IR spectroscopy (FT-IR), thermogravimetric analysis (TGA) and capillary rheometer. The DSC results indicated that PPEK/PC blends are almost immiscible in full compositions. FT-IR investigation showed that there were no apparent specific interactions between the constituent polymers. The blends keep excellent thermal stability and the addition of PC degrades the thermal stability of blends to some degree. The thermal degradation processes of the blends are much similar to that of PC. The studies on rheological properties of blends show that blending PPEK with PC is beneficial to reducing the melt viscosity and improving the appearance of PPEK.

  7. THE EFFECT OF TRANSGLUTAMINASE ON THE RHEOLOGICAL PROPERTIES OF YOGURT

    Directory of Open Access Journals (Sweden)

    Iuliana Aprodu

    2011-05-01

    Full Text Available The aim of this study was to investigate the rheological characteristics of yogurts obtained from milk treated with transglutaminase prior to fermentation with Streptococus theromophilus and Lactobacillus delbrueckii subsp. Bulgaricus. A set of 36 experiments were carried out to test the influence of various enzyme concentrations ranging from 0 to 0.04%, different setting temperatures (35, 40 and 45 oC, and setting time (60, 90 and 120 min. The cross-linking of milk proteins influenced the post-acidification process as well as the stability of the yogurt samples. The enzymatic treatment of milk allowed avoiding the syneresis phenomena during yogurt storage at 4 oC; the water holding capacity during centrifugation was also improved. Concerning the rheological properties, the apparent viscosity of yogurt increased by increasing the enzyme concentration and the setting time for the entire tested domain of shear rates. The results indicate that transglutaminase catalyzed cross-linking is an effective tool for improving functional properties of yogurt.

  8. Rheological properties of erythrocytes in patients infected with Clostridium difficile.

    Science.gov (United States)

    Czepiel, Jacek; Jurczyszyn, Artur; Biesiada, Grażyna; Sobczyk-Krupiarz, Iwona; Jałowiecka, Izabela; Świstek, Magdalena; Perucki, William; Teległów, Aneta; Marchewka, Jakub; Dąbrowski, Zbigniew; Mach, Tomasz; Garlicki, Aleksander

    2014-12-04

    Clostridium difficile infection (CDI) is a bacterial infection of the digestive tract. Acute infections are accompanied by increased risk for venous thromboembolism (VTE). To date, there have been no studies of the rheological properties of blood during the course of digestive tract infections. The aim of our study was to examine the effects of CDI on red blood cell (RBC) rheology, specifically RBC deformability, RBC aggregation, and plasma viscosity. In addition, the activity of glucose 6 phosphate dehydrogenase (G6PD) and acetylcholinesterase (AChE) in RBC was studied. Our study group included 20 patients with CDI, 20 healthy persons comprised the control group. We examined the effects of CDI on the rheology of RBCs, their deformability and aggregation, using a Laser-assisted Optical Rotational Cell Analyzer (LORCA). Plasma viscosity was determined using a capillary tube plasma viscosymeter. Moreover, we estimated the activity of AChE and G6PD in RBC using spectrophotometric method. A statistically significant increase was found in the aggregation index, viscosity and activity of G6PD whereas the amount of time to reach half of maximum aggregation (t½) and the amplitude of aggregation (AMP) both showed statistically significantly decreases among patients with CDI compared to the control group. We also observed that the Elongation Index (EI) was decreased when shear stress values were low, between 0.3 Pa and 0.58 Pa, whereas EI was increased for shear stress in the range of 1.13-59.97 Pa. These observations were statistically significant. We report for the first time that acute infection of the gastrointestinal tract with Clostridium difficile is associated with abnormalities in rheological properties of blood, increased serum viscosity as well as increased aggregation of RBCs, which correlated with severity of inflammation. These abnormalities may be an additional mechanism causing increased incidence of VTE in CDI.

  9. Rheological properties of erythrocytes in patients infected with Clostridium difficile

    Directory of Open Access Journals (Sweden)

    Jacek Czepiel

    2014-12-01

    Full Text Available Clostridium difficile infection (CDI is a bacterial infection of the digestive tract. Acute infections are accompanied by increased risk for venous thromboembolism (VTE. To date, there have been no studies of the rheological properties of blood during the course of digestive tract infections. The aim of our study was to examine the effects of CDI on red blood cell (RBC rheology, specifically RBC deformability, RBC aggregation, and plasma viscosity. In addition, the activity of glucose 6 phosphate dehydrogenase (G6PD and acetylcholinesterase (AChE in RBC was studied. Our study group included 20 patients with CDI, 20 healthy persons comprised the control group. We examined the effects of CDI on the rheology of RBCs, their deformability and aggregation, using a Laser–assisted Optical Rotational Cell Analyzer (LORCA. Plasma viscosity was determined using a capillary tube plasma viscosymeter. Moreover, we estimated the activity of AChE and G6PD in RBC using spectrophotometric method. A statistically significant increase was found in the aggregation index, viscosity and activity of G6PD whereas the amount of time to reach half of maximum aggregation (t½ and the amplitude of aggregation (AMP both showed statistically significantly decreases among patients with CDI compared to the control group. We also observed that the Elongation Index (EI was decreased when shear stress values were low, between 0.3 Pa and 0.58 Pa, whereas EI was increased for shear stress in the range of 1.13 - 59.97 Pa. These observations were statistically significant. We report for the first time that acute infection of the gastrointestinal tract with Clostridium difficile is associated with abnormalities in rheological properties of blood, increased serum viscosity as well as increased aggregation of RBCs, which correlated with severity of inflammation. These abnormalities may be an additional mechanism causing increased incidence of VTE in CDI.

  10. Effect of gamma irradiation on rheological properties of polysaccharides exuded by A. fluccosus and A. gossypinus.

    Science.gov (United States)

    Alijani, Samira; Balaghi, Sima; Mohammadifar, Mohammad Amin

    2011-11-01

    In this study, Iranian gum tragacanth (GT) exudates from Astragalus fluccosus (AFG) and Astragalus gossypinus (AGG) were irradiated at 3, 7, 10 and 15 kGy. Fourier transform infrared spectroscopy (FTIR) data showed that irradiation did not induce changes in the chemical structure of either type of gum. Although particle size distribution and both steady shear and dynamic rheological properties were considerably affected by the irradiation process, the magnitude of the effect of irradiation on each of the rheological and size variables was different for the hydrocolloids. For instance, for AGG, increasing the irradiation dose from 3 to 10 kGy, the d(0.5) and D[3,2] values were reduced by one-sixth to one-eighth fold. Colour measurement revealed that the radiation process led to an increase in the yellow index and b* values for both types of GT in powder form, but it was more pronounced for AGG samples. Irradiation led to an approximate 13-fold increase in redness in AFG. Surface and shape changes of the gum crystals were studied by scanning electron microscope (SEM) and a smoother surface for irradiated samples was detected. The notable changes in functional properties of each variety of irradiated gum should be taken into consideration before using the radiation technology as a commercial tool for sterilisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Complex rheological properties of a water-soluble extract from the fronds of the black tree fern, Cyathea medullaris.

    Science.gov (United States)

    Goh, Kelvin K T; Matia-Merino, Lara; Hall, Christopher E; Moughan, Paul J; Singh, Harjinder

    2007-11-01

    A water-soluble extract was obtained from the fronds of a New Zealand native black tree fern (Cyathea medullaris or Mamaku in Māori). The extract exhibited complex rheological behavior. Newtonian, shear-thinning, shear-thickening, thixotropic, antithixotropic, and viscoelastic behaviors were observed depending on polymer concentration, shear rate, and shear history. The extract also displayed rod-climbing and self-siphoning properties typical of viscoelastic fluids. Such complex rheological properties have been reported in synthetic or chemically modified polymers but are less frequent in unmodified biopolymers. Although Mamaku extract obtained from the pith of the fern has been traditionally used by the Māori in New Zealand for treating wounds and diarrhea among other ailments, this material has never been characterized before. This study reports on the chemical composition of the extract and on its viscoelastic properties through rotational and oscillatory rheological measurements. Explanations of the mechanism behind the rheological properties were based on transient network models for associating polymers.

  12. Concentration state dependence of the rheological and structural properties of reconstituted silk.

    Science.gov (United States)

    Mo, Chunli; Holland, Chris; Porter, David; Shao, Zhengzhong; Vollrath, Fritz

    2009-10-12

    The ability to control the processing of artificial silk is key to the successful application of this important and high performance biopolymer. Understanding where our current reconstitution process can be improved will not only aid us in the creation of better materials, but will also provide insight into the natural material along the way. This study aims to understand what proportion of reconstituted silk contributes to its rheological properties and what conformational state the silk proteins are in. It shows, for the first time, that a change in rheological properties can be related to a change in silk structures present in solution and reveals a low concentration gel state for silk that may have important implications for future successful artificial processing of silk.

  13. Rheology of waxy oils

    Energy Technology Data Exchange (ETDEWEB)

    Alicke, Alexandra A.; Marchesini, Flavio H.; Mendes, Paulo R. de Souza [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)], e-mails: fhmo@puc-rio.br, pmendes@puc-rio.br; Ziglio, Claudio [Petrobras Research Center, Rio de Janeiro, RJ (Brazil)], e-mail: ziglio@petrobras.com.br

    2010-07-01

    It is well known that below the crystallization temperature the rheology of waxy oils changes from Newtonian to an extremely complex non-Newtonian behavior, which is shear-rate and temperature-history dependent. Along the last decades a lot of effort has been put into obtaining reliable rheological measurements from different oils so as to understand the yielding of waxy oils as well as the effects of shear and temperature histories on rheological properties, such as viscosity, yield stress, storage and loss moduli. In this paper we examine in detail the related literature, discussing the main reasons for some disagreements concerning the history effects on the flow properties of waxy oils. In addition, we performed temperature ramps and stress-amplitude-sweep tests and compared the results obtained with the main trends observed, highlighting the effects of cooling and shear on the microstructure and consequently on the rheological properties of these oils. (author)

  14. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties

    Science.gov (United States)

    Chevrel, Magdalena Oryaëlle; Labroquère, Jérémie; Harris, Andrew J. L.; Rowland, Scott K.

    2018-02-01

    Lava flow advance can be modeled through tracking the evolution of the thermo-rheological properties of a control volume of lava as it cools and crystallizes. An example of such a model was conceived by Harris and Rowland (2001) who developed a 1-D model, FLOWGO, in which the velocity of a control volume flowing down a channel depends on rheological properties computed following the thermal path estimated via a heat balance box model. We provide here an updated version of FLOWGO written in Python that is an open-source, modern and flexible language. Our software, named PyFLOWGO, allows selection of heat fluxes and rheological models of the user's choice to simulate the thermo-rheological evolution of the lava control volume. We describe its architecture which offers more flexibility while reducing the risk of making error when changing models in comparison to the previous FLOWGO version. Three cases are tested using actual data from channel-fed lava flow systems and results are discussed in terms of model validation and convergence. PyFLOWGO is open-source and packaged in a Python library to be imported and reused in any Python program (https://github.com/pyflowgo/pyflowgo)

  15. Influence of superplasticizer on the rheology of fresh cement asphalt paste

    Directory of Open Access Journals (Sweden)

    Jianwei Peng

    2015-12-01

    Full Text Available Cement asphalt (CA paste is an organic–inorganic composite material of cement and asphalt emulsion. Its complicated rheological behavior affects its site application in high speed railway. Superplasticizers (SPs are usually used to improve the construction properties of fresh CA mortar. However, the principle of SPs acting on the rheology of CA paste is seldom studied. In this paper, the effects of polycarboxylate (PCA and naphthalenesulfonate (PNS on the rheological properties of CA pastes, asphalt emulsions (both anionic and cationic and cement pastes were studied, respectively from the viewpoint of adsorption and zeta potential. Centrifugation method was used to determine the adsorption of asphalt onto cement particle, electroacoustic method was employed to study the zeta potential of cement particles of concentrated paste, and optical microscopy was used to observe the dispersion of particles. The results suggest that both PCA and PNS can decrease the yield stress and apparent viscosity of CA pastes. The effect of SPs on the rheology of CA paste can be explained by two reasons. First, PNS can adsorb on both asphalt and cement surface, change the zeta potential and then decrease their yield stress and viscosity, while PCA only adsorb on cement surface. Second, the competitive adsorption of SPs and asphalt prevents asphalt from adsorbing on cement surface and then more asphalt droplets are released into aqueous solution, thereby enhancing the particle dispersion.

  16. Rheological properties of concentrated alumina slurries: influence of ph and dispersant agent

    International Nuclear Information System (INIS)

    Ewais, E.M.M.

    2004-01-01

    The relationship between the ph, the electrolyte concentrations and the rheological properties of high concentrated alumina slurries in aqueous medium is of great importance because it is considered to be the key to control the stability of the slurries from flocculation. Zeta potential of alumina slurries with and without Duramax C (dispersant agent) as a function of ph was studied. Two ph around the zero point of charge of alumina slurries were selected for the investigation of rheological properties. The rheological properties of aqueous alumina slurries with respect to different parameters, e.g.: viscosity, elastic modulus (storage modulus G) and viscous modulus (loss modulus G), were investigated. Viscosity measurements of the slurries as a function of Duramax C content at both ph 8.4 and 9.4) were used to determine the state of slurries. Three states of slurries, termed flocculated, partially de flocculated and fully de flocculated, were selected for further investigation. The viscosity of the three slurries at both ph as a function of shear rate was determined. Fully de flocculated slurry shows Newtonian behavior at all shear rates at both tested ph compared by the partial de flocculated and flocculated system. Results of investigation of G and G at ph of 9.4 as a function of applied stress explored the critical stress

  17. Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)

    Science.gov (United States)

    Ergin, M. Fatih; Aydin, Ismail

    2013-12-01

    Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.

  18. Sugar Profile, Mineral Content, and Rheological and Thermal Properties of an Isomerized Sweet Potato Starch Syrup

    OpenAIRE

    Dominque, Brunson; Gichuhi, Peter N.; Rangari, Vijay; Bovell-Benjamin, Adelia C.

    2013-01-01

    Currently, corn is used to produce more than 85% of the world's high fructose syrup (HFS). There is a search for alternative HFS substrates because of increased food demand and shrinking economies, especially in the developing world. The sweet potato is a feasible, alternative raw material. This study isomerized a high glucose sweet potato starch syrup (SPSS) and determined its sugar profile, mineral content, and rheological and thermal properties. Rheological and thermal properties were meas...

  19. Effect of various supplementary cementitious materials on rheological properties of self-consolidating concrete

    OpenAIRE

    Saleh Ahari, Reza; Erdem, Tahir Kemal; Ramyar, Kambiz

    2015-01-01

    In design of self-consolidating concrete (SCC) for a given application, the mixture's rheological parameters should be adjusted to achieve a given profile of yield stress and plastic viscosity. Supplementary cementitious materials (SCM) can be useful for this adjustment in addition to their other advantages. In this study, the rheological properties of 57 SCC mixtures with various SCM were investigated for a constant slump flow value. For this aim, various amounts of silica fume (SF), metakao...

  20. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  1. Rheological and structural properties of sea cucumber Stichopus japonicus during heat treatment

    Science.gov (United States)

    Gao, Xin; Xue, Dongmei; Zhang, Zhaohui; Xu, Jiachao; Xue, Changhu

    2005-07-01

    Changes in tissue structure, rheological properties and water content of raw and heated sea cucumber meat were studied. Sea cucumber Stichopus japonicus was heated at 25°C , 70°C and 100°C water for 5 min. The structural changes were observed using a light microscope and the rheological parameters (rupture strength, adhesive strength and deformation) determined using a texture meter. Microscopic photograph revealed that the structural change of heated meat was greater than that of raw meat. The rupture strength, adhesive strength and deformation of raw meat were smaller than those of the heated meat. Meanwhile, rheological parameters showed positive correlation with heating temperature. These changes are mainly caused by thermal denaturation and gelatinization of collagen during heating. These changes were also evidenced in observations using a light microscope and differential scanning calorimetry.

  2. Effect of carboxymethylcellulose on the rheological and filtration properties of bentonite clay samples determined by experimental planning and statistical analysis

    Directory of Open Access Journals (Sweden)

    B. M. A. Brito

    Full Text Available Abstract Over the past few years, considerable research has been conducted using the techniques of mixture delineation and statistical modeling. Through this methodology, applications in various technological fields have been found/optimized, especially in clay technology, leading to greater efficiency and reliability. This work studied the influence of carboxymethylcellulose on the rheological and filtration properties of bentonite dispersions to be applied in water-based drilling fluids using experimental planning and statistical analysis for clay mixtures. The dispersions were prepared according to Petrobras standard EP-1EP-00011-A, which deals with the testing of water-based drilling fluid viscosifiers for oil prospecting. The clay mixtures were transformed into sodic compounds, and carboxymethylcellulose additives of high and low molar mass were added, in order to improve their rheology and filtrate volume. Experimental planning and statistical analysis were used to verify the effect. The regression models were calculated for the relation between the compositions and the following rheological properties: apparent viscosity, plastic viscosity, and filtrate volume. The significance and validity of the models were confirmed. The results showed that the 3D response surfaces of the compositions with high molecular weight carboxymethylcellulose added were the ones that most contributed to the rise in apparent viscosity and plastic viscosity, and that those with low molecular weight were the ones that most helped in the reduction of the filtrate volume. Another important observation is that the experimental planning and statistical analysis can be used as an important auxiliary tool to optimize the rheological properties and filtrate volume of bentonite clay dispersions for use in drilling fluids when carboxymethylcellulose is added.

  3. Rheological properties of dispersions of enzymatically cross-linked apo-α-lactalbumin

    NARCIS (Netherlands)

    Saricay, Yunus; Wierenga, Peter A.; Vries, de Renko

    2016-01-01

    The enzymatic cross-linking of apo-α-lactalbumin (α-LA) with horseradish peroxidase (HRP) leads to the formation of hydrophilic protein aggregates with controlled size and architecture. We explore the rheological properties of dispersions of these HRP-cross-linked α-LA aggregates with a

  4. Rheological properties of poly(vinyl alcohol) (PVA) derived composite membranes for fuel cells

    Science.gov (United States)

    Remiš, T.

    2017-01-01

    Rheological properties of new anhydrous proton conducting membrane based on PVA, tetraethyl orthosilicate (TEOS),sulfosuccinic acid (SSA), titanium dioxide (TiO2)was examined at various stoichiometric ratios. SSA was used as sulfonating agents to form a crosslinked structure and as proton source, whereas TEO Sand TiO2were utilized to improve the thermal and mechanical properties of the membrane. In order to verify that all the substances were immobilized into the matrix, the membranes were analysed by means of FT-IR. The rheological, mechanical and thermal properties of the membranes were investigated using rheometer ARES G2 and thermogravimetic analyser (TGA).The analysis of mixed PVA solutions exhibited a unique behaviour of viscosity with increased crosslink density. The dynamic storage modulus G´ of dried composite membranes shows better mechanical resistance and increased tolerance to pressure applied during membrane electrode assembly (MEA).

  5. Effects of iron supply on the rheological properties and sensory ...

    African Journals Online (AJOL)

    The most basic is the world wheat crops. In Iran Bread is a staple food staple Food and because, as a bearer of good food to enrich bread with iron has been considered. The effect of flour fortification star with iron, folic acid, the chemical properties (dry gluten, wet gluten, gluten-free number, protein and Ddzlny) Rheological ...

  6. Rheological properties of alumina injection feedstocks

    Directory of Open Access Journals (Sweden)

    Vivian Alexandra Krauss

    2005-06-01

    Full Text Available The rheological behavior of alumina molding feedstocks containing polyethylene glycol (PEG, polyvinylbutyral (PVB and stearic acid (SA and having different powder loads were analyzed using a capillary rheometer. Some of the feedstocks showed a pseudoplastic behavior of n < 0, which can lead to the appearance of weld lines on molded parts. Their viscosity also displayed a strong dependence on the shear rate. The slip phenomenon, which can cause an unsteady front flow, was also observed. The results indicate that the feedstock containing a lower powder load displayed the best rheological behavior. The 55 vol. % powder loaded feedstock presented the best rheological behavior, thus appearing to be more suitable than the formulation containing a vol. 59% powder load, which attained viscosities exceeding 10³ Pa.s at low shear rates, indicating its unsuitability for injection molding.

  7. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  8. INFLUENCE OF STORING AND TEMPERATURE ON RHEOLOGIC AND THERMOPHYSICAL PROPERTIES OF WHISKY SAMPLES

    Directory of Open Access Journals (Sweden)

    Peter Hlavac

    2013-09-01

    Full Text Available Temperature and storing time can be included between the most significant parameters that influence physical properties of food. This article deals with selected rheologic and thermophysical properties of alcohol drink whisky. Our research was oriented on measuring of rheologic and thermophysical characteristics of whisky. There were measured two types of whisky Grant s and Jim Beam from two different producers, both samples had 40 percent of alcohol content. During the experiments were analyzed rheologic parameters as dynamic viscosity, kinematic viscosity and fluidity and thermophysical parameters as thermal conductivity, thermal diffusivity and volume specific heat. Selected parameters were measured in temperature range 5 to 27 C. Measurements were done on whisky samples in different days during the storage. Measuring of dynamic viscosity was performed by digital rotational viscometer Anton Paar. Principle of measuring is based on dependency of sample resistance against the probe rotation. Density of whisky samples was determined by pycnometric method. Average density at given temperature along with dynamic viscosity value was used at calculation of kinematic viscosity and fluidity was also determined. Measuring of thermophysical parameters was performed by instrument Isomet 2104 Measurement by Isomet is based on analysis of the temperature response of the measured sample to heat flow impulses. Relations of rheologic and thermophysical parameters to the temperature were made and influence of storing time was discussed. From obtained results is clear that dynamic and kinematic viscosity is decreasing exponentially with temperature and fluidity has increasing exponential progress. We found out that both whisky samples had at the beginning and after one week of storage very similar values of rheologic parameters. Very small difference in rheologic parameters of whisky samples was found after two weeks of storing. Values of dynamic and kinematic

  9. Effect of Gipan addition on the rheologic properties of cement slurries

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, L N; Solovev, E M

    1966-08-01

    The objective of this study was to determine the effectiveness of Gipan in controlling cement rheology. The chemical nature of Gipan is not disclosed in the article; however it is said to be a plasticizer (perhaps an acrylic polymer). The consistency and rheological properties of Gipan-cement mixtures were studied at 20$C. It was shown that as the concentration of Gipan increased from 0.1 to 1%, cement gel strength decreased, while viscosity increased. Calculations indicated that on adding 1% Gipan to cement, the amount of hydraulic power required to produce turbulent flow in a well is one-half that required for cement without the additive. The Gipan also reduces cement water-loss tremendously.

  10. Rheological and thermal properties of suspensions of microcapsules containing phase change materials.

    Science.gov (United States)

    Cao, Vinh Duy; Salas-Bringas, Carlos; Schüller, Reidar Barfod; Szczotok, Anna M; Hiorth, Marianne; Carmona, Manuel; Rodriguez, Juan F; Kjøniksen, Anna-Lena

    2018-01-01

    The thermal and rheological properties of suspensions of microencapsulated phase change materials (MPCM) in glycerol were investigated. When the microcapsule concentration is raised, the heat storage capacity of the suspensions becomes higher and a slight decline in the thermal conductivity of the suspensions is observed. The temperature-dependent shear-thinning behaviour of the suspensions was found to be strongly affected by non-encapsulated phase change materials (PCM). Accordingly, the rheological properties of the MPCM suspensions could be described by the Cross model below the PCM melting point while a power law model best described the data above the PCM melting point. The MPCM suspensions are interesting for energy storage and heat transfer applications. However, the non-encapsulated PCM contributes to the agglomeration of the microcapsules, which can lead to higher pumping consumption and clogging of piping systems.

  11. Optimization of the Formulation of Prebiotic Milk Chocolate Based on Rheological Properties

    Directory of Open Access Journals (Sweden)

    Hannaneh Farzanmehr

    2009-01-01

    Full Text Available Rheological properties are very important parameters in the production of products with high-quality and desirable texture. So far, many attempts to produce low-calorie milk chocolate have not succeeded. Therefore, the present study aims to evaluate the effects of sugar substitutes on rheological characteristics of prebiotic milk chocolate using Simplex-lattice mixture design. For doing this, a prebiotic compound (inulin with two bulking agents (polydextrose and maltodextrin at different levels (0–100 % along with sucralose were used. Fifteen formulations covering the entire range of a triangular simplex were examined in order to find the optimum levels. All chocolates showed thixotropic and shear thinning behaviour and among the evaluated mathematical models, Casson model showed the best fitting for predicting rheological properties. According to our findings, chocolate formulations containing high levels of sugar substitutes (where a single component predominated had higher moisture content, Casson viscosity and yield stress than others, including the control. In contrast, the lowest moisture content, Casson viscosity and yield stress were observed at medium levels. Therefore, the optimum values for substitution of sucrose and production of a low-calorie prebiotic milk chocolate are 8–28 % and 67–86 % for inulin, 0–19 % and 31–69 % for polydextrose and 0–47 % for maltodextrin, respectively.

  12. Electrical resistivity and rheological properties of sensing bentonite drilling muds modified with lightweight polymer

    Directory of Open Access Journals (Sweden)

    Ahmed S. Mohammed

    2018-03-01

    Full Text Available In this study, the electrical resistivity and rheological properties of a water-based bentonite clay drilling mud modified with the lightweight polymer (guar gum under various temperature were investigated. Based on the experimental and analytical study, the electrical resistivity was identified as the sensing property of the bentonite drilling mud so that the changes in the properties can be monitored in real-time during the construction. The bentonite contents in the drilling muds were varied up to 8% by the weight of water and temperature was varied from 25 °C to 85 °C. The guar gum content (GG% was varied between 0% and 1% by the weight of the drilling mud to modify the rheological properties and enhance the sensing electrical resistivity of the drilling mud. The guar gum and bentonite clay were characterized using thermal gravimetric analysis (TGA. The total weight loss at 800 °C for the bentonite decreased from 12.96% to 0.7%, about 95% reduction, when the bentonite was mixed with 1% of guar gum. The results also showed that 1% guar gum decreased the electrical resistivity of the drilling mud from 50% to 90% based on the bentonite content and the temperature of the drilling mud. The guar gum modification increased the yield point (YP and plastic viscosity (PV by 58% to 230% and 44% to 77% respectively based on the bentonite content and temperature of the drilling mud. The rheological properties of the drilling muds have been correlated to the electrical resistivity of the drilling mud using nonlinear power and hyperbolic relationships. The model predictions agreed well with the experimental results. Hence the performance of the bentonite drilling muds with and without guar gum can be characterized based on the electrical resistivity which can be monitored real-time in the field. Keywords: Bentonite, Polymer (Guar gum, Electrical resistivity, Rheological properties, Temperature, Modeling

  13. Rheological properties of poly(vinyl alcohol) (PVA) derived composite membranes for fuel cells

    International Nuclear Information System (INIS)

    Remiš, T

    2017-01-01

    Rheological properties of new anhydrous proton conducting membrane based on PVA, tetraethyl orthosilicate (TEOS),sulfosuccinic acid (SSA), titanium dioxide (TiO 2 )was examined at various stoichiometric ratios. SSA was used as sulfonating agents to form a crosslinked structure and as proton source, whereas TEO Sand TiO 2 were utilized to improve the thermal and mechanical properties of the membrane. In order to verify that all the substances were immobilized into the matrix, the membranes were analysed by means of FT-IR. The rheological, mechanical and thermal properties of the membranes were investigated using rheometer ARES G2 and thermogravimetic analyser (TGA).The analysis of mixed PVA solutions exhibited a unique behaviour of viscosity with increased crosslink density. The dynamic storage modulus G´ of dried composite membranes shows better mechanical resistance and increased tolerance to pressure applied during membrane electrode assembly (MEA). (paper)

  14. Physical, rheological, functional and film properties of a novel emulsifier: Frost grape polysaccharide (FGP) from Vitis riparia Michx

    Science.gov (United States)

    A novel emulsifier, Frost grape polysaccharide (FGP), isolated from natural exudate of the species Vitis riparia Michx, was physically and rheologically characterized. The determination of the physical, structural, thermodynamic, emulsification, film, and rheological properties of FGP provide essent...

  15. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtr...... rheological measurements. Moreover, the rheological models are not very trustworthy and remain very “black box”. More insight in the physical background needs 30 to be gained. A model-based approach with dedicated experimental data collection is the key to address this.......Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling......, leading to varying results and conclusions. In this paper, a vast amount of papers are critically reviewed with respect to this and important flaws are highlighted with respect to rheometer choice, rheometer settings and measurement protocol. The obtained rheograms from experimental efforts have...

  16. Thermal, emulsifying and rheological properties of polysaccharides sequentially extracted from Vaccinium bracteatum Thunb leaves.

    Science.gov (United States)

    Xu, Qi-Xin; Shi, Jun-Jun; Zhang, Jian-Guo; Li, Ling; Jiang, Li; Wei, Zhao-Jun

    2016-12-01

    Plant polysaccharides are widely used in food industry as thickening and gelling agents and these attributes largely depend on their thermal, emulsifying and rheological properties. As known, the extraction methods always bring about the diversification of property and functions of polysaccharides. Thus, the Vaccinium bracteatum Thunb leaves polysaccharides (VBTLP) were sequentially extracted using hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS) and concentrated alkaline (CASS). The thermal, emulsifying and rheological properties of VBTLP were investigated in the present study. Within the range of 20-225°C, CHSS showed the highest peak temperature, whereas HBSS displayed the highest endothermic enthalpy and highest emulsifying activity, while, CASS showed the longest emulsifying stability. The VBTLP solutions exhibited non-Newtonian shear-thinning behavior within the concentrations of 0.6-2.5%. The apparent viscosity of VBTLP solution decreased under following conditions: acidic pH (4.0), alkaline pH (10.0), in the presence of Ca 2+ and at high temperature, while it increased in the presence of Na + and at freezing conditions. The modulus G' and G″ of VBTLP solutions were increased with increasing oscillation frequency, and the crossover frequency shifted to lower values when the polysaccharide content increased. The above results of thermal, emulsifying and rheological properties of VBTLPs supplied the basis for V. bracteatum leaves in potential industrial applications of foods. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Melt compounding of different grades of polystyrene with organoclay. Part 2: Rheological properties

    DEFF Research Database (Denmark)

    Tanoue, Shuichi; Utracki, Leszek A.; Garcia-Rejon, Andrés

    2004-01-01

    . The rheological properties of PNC were determined under dynamic and steady state shear as well as under extensional flow conditions. At the higher clay content, dynamic strain sweep demonstrated that the storage and loss moduli decrease continuously with an increase of strain. To characterize this nonlinear...... viscoelastic behavior, the Fourier-transform rheology, was applied. The low strain frequency sweep showed that the storage and loss moduli increase with organoclay content. The extracted zero-shear viscosity data were used to calculate the intrinsic viscosity and then the aspect ratio of dispersions. In spite...

  18. The influence of roller compaction processing variables on the rheological properties of granules

    Directory of Open Access Journals (Sweden)

    Tim Freeman

    2016-08-01

    The results demonstrate several rheological properties of the granulate, which have been shown to be closely correlated with variance in die filling and tablet strength, and are predictably influenced by the processing parameters.

  19. Effect of Surface Forces on the Rheology of Particle-Liquid Systems and the Consolidation of Ceramic Powders

    Science.gov (United States)

    1994-01-31

    isxeduced by the addition of citric acid, a potential determining ion. The addition of potassium nitrate, an indifferent ion, did not affect the yield...Leong, T.W. Healy, D.V. Boger, "Surface Chemistry and Rheology of ZrO2 Suspensions Containing Polyacrylate : Effects of Molecular Weight and ZrO2...REPORT DOCUMENTATION PAGE Fr 1 940131 ANNUAL REPORT 2/l/93-1/31/94 "EFFECT OF SURFACE FORCES ON THE RHEOLOGY OF PARTICLE-I LIQUID SYSTEMS AND THE

  20. Functional and rheological properties of amaranth albumins extracted from two Mexican varieties.

    Science.gov (United States)

    Silva-Sánchez, C; González-Castañeda, J; de León-Rodríguez, A; Barba de la Rosa, A P

    2004-01-01

    The functional and rheological properties of amaranth albumins isolates extracted from two new Mexican varieties were determined. Functional properties tested were protein solubility, foaming, water and oil absorption capacities, emulsifying activity, and emulsion stability. The maximum solubility values for both amaranth albumins were found above pH 6 and values were compared to the solubility of egg albumins. Albumins from amaranth showed excellent foaming capacity and foaming stability at pH 5, suggesting that this protein could be used as whipping agents as egg albumins, also the water and oil absorption capacities reached their maximum values at acidic pH, suggesting that amaranth albumins could be appropriate in preparation of acidic foods. The rheological test based on farinograms and alveograms showed that wheat flour supplemented with 1% amaranth albumins improves the dough properties due to higher mixing stability and the bread had better crumb characteristics. In addition of the known high nutritional values of amaranth albumins, our results indicate the high potential for use of these proteins as an ingredient in food preparations.

  1. Study of polyacrylamide-surfactant system on the water–oil interface properties and rheological properties for EOR

    Directory of Open Access Journals (Sweden)

    S.Z. Mahdavi

    2017-12-01

    Full Text Available Nowadays, due to the remarkable oil reduction in oil fields, enhanced oil recovery (EOR techniques have been considered by a large number of scientists and company. Situ oil extraction is normally done by these techniques with high efficiency. In this particular study, five different surface active agents (surfactant, two kinds of oil with various API, two kinds of sulfonated polyacrylamide, two different electrolyte solutions with various TDS and two distinctive alcohols were tested and evaluated. An optimal formulation in terms of the properties and quantity of materials has to be used in order to enhance oil recovery, achieved by investigation of surface tension and the phase behavior of mentioned substances. Rheological behavior of polymer flooding and surfactant was studied. Employing this formulation, the maximum micro emulsion of oil in water occurred. Due to the synergy between surfactant and alcohol (as a co-surfactant, relatively lower amounts of surfactants were used which led to the dip in the cost of operation, and ultimately the efficiency of operation improved.

  2. Rheological Characteristics of Cement Grout and its Effect on Mechanical Properties of a Rock Fracture

    Science.gov (United States)

    Liu, Quansheng; Lei, Guangfeng; Peng, Xingxin; Lu, Chaobo; Wei, Lai

    2018-02-01

    Grouting reinforcement, which has an obvious strengthening effect on fractured rock mass, has been widely used in various fields in geotechnical engineering. The rheological properties of grout will greatly affect its diffusion radius in rock fractures, and the water-cement ratio is an important factor in determining the grouting flow patterns. The relationship between shear stress and shear rate which could reflect the grout rheological properties, the effects of water-cement ratio, and temperature on the rheological properties of grouting was studied in the laboratory. Besides, a new method for producing fractured rock specimens was proposed and solved the problem of producing natural fractured rock specimens. To investigate the influences of grouting on mechanical properties of a rock fracture, the fractured rock specimens made using the new method were reinforced by grouting on the independent designed grouting platform, and then normal and tangential mechanical tests were carried out on fractured rock specimens. The results showed that the mechanical properties of fractured rock mass are significantly improved by grouting, the peak shear strength and residual strength of rock fractures are greatly improved, and the resistance to deformation is enhanced after grouting. Normal forces affect the tangential behavior of the rock fracture, and the tangential stress strength increases with normal forces. The strength and stability of fractured rock mass are increased by grouting reinforcement.

  3. Rheological behavior of mammalian cells.

    Science.gov (United States)

    Stamenović, D

    2008-11-01

    Rheological properties of living cells determine how cells interact with their mechanical microenvironment and influence their physiological functions. Numerous experimental studies have show that mechanical contractile stress borne by the cytoskeleton and weak power-law viscoelasticity are governing principles of cell rheology, and that the controlling physics is at the level of integrative cytoskeletal lattice properties. Based on these observations, two concepts have emerged as leading models of cytoskeletal mechanics. One is the tensegrity model, which explains the role of the contractile stress in cytoskeletal mechanics, and the other is the soft glass rheology model, which explains the weak power-law viscoelasticity of cells. While these two models are conceptually disparate, the phenomena that they describe are often closely associated in living cells for reasons that are largely unknown. In this review, we discuss current understanding of cell rheology by emphasizing the underlying biophysical mechanism and critically evaluating the existing rheological models.

  4. Rheological and electrical properties of hybrid nanocomposites of epoxy resins filled with graphite nanoplatelets and carbon black.

    Science.gov (United States)

    Truong, Quang-Trung; Lee, Seon-Suk; Lee, Dai-Soo

    2011-02-01

    Graphite nanoplatelets (GNP) were prepared by microwave irradiation of natural graphites intercalated with ferric chloride in nitromethane (GIC). Intercalated structure of GIC was confirmed by X-ray diffraction patterns. SEM images of GIC after microwave irradiation showed the exfoliation of GIC, the formation of GNPs. Hybrid nanocomposites of bisphenol-A type epoxy resins filled with GNP and a conductive carbon black (CB) were prepared and rheological and electrical properties of the nanocomposites were investigated. Viscosity and electrical surface resistivity of the nanocomposites showed minima at certain mixtures of GNP and CB in the epoxy resins.

  5. High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism.

    Science.gov (United States)

    Han, Jingquan; Lei, Tingzhou; Wu, Qinglin

    2014-02-15

    Cellulose nanoparticle (CNP) reinforced polyvinyl alcohol-borax (PB) hydrogels were produced via a facile approach in an aqueous system. The effects of particle size, aspect ratio, crystal structure, and surface charge of CNPs on the rheological properties of the composite hydrogels were investigated. The rheological measurements confirmed the incorporation of well-dispersed CNPs to PB system significantly enhanced the viscoelasticity and stiffness of hydrogels. The obtained free-standing, high elasticity and mouldable hydrogels exhibited self-recovery under continuous step strain and thermo-reversibility under temperature sweep. With the addition of cellulose I nanofibers, a 19-fold increase in the high-frequency plateau of storage modulus was obtained compared with that of the pure PB. CNPs acted as multifunctional crosslinking agents and nanofillers to physically and chemically bridge the 3D network hydrogel. The plausible mechanism for the multi-complexation between CNPs, polyvinyl alcohol and borax was proposed to understand the relationship between the 3D network and hydrogel properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The effect of sweeteners and milk type on the rheological properties ...

    African Journals Online (AJOL)

    The aim of the study was, to determine effects of sweeteners and milk type on the rheological and sensorial properties of reduced calorie salep drink. In addition to sugar, three different sweeteners; aspartame, saccharine and cyclamate as well as three different milk types; full-fat, low-fat and non-fat; were used for sample ...

  7. Examination of the rheological properties of stirred joghurt during the long-term storage by using dynamic oscillation method

    Directory of Open Access Journals (Sweden)

    Milica Vilušić

    2003-07-01

    Full Text Available In this work the rheological properties of stirred yoghurt during the longterm storage at 4 and 8°C were investigated. The optimal quantity of additives, in order to increase dry matter content (whole milk powder and whey protein-lactalbumin, was preliminary determined and the fermentation was performed. During 42 days, i.e., 1st, 7th, 14th, 21st, 28th, 35th and 42nd day of storage of stirred yoghurt, in refrigerator at 4 and 8°C, the changes of pH value, acidity and rheological properties by using of dynamic oscillation method were observed. Results of this work indicated that an addition of whole milk powder and whey protein have an influence on rheological properties of stirred yoghurt. The long-term storage of stirred yoghurt and the results of dynamic oscilations showed permanently higher G’storage (elasticity modulus, where elastic properties of viscoelastic products dominate, in comparison with the G” loss (viscosity modulus. Increased moduls of elasticy and viscosity, as function of time, permanently occurs at pH value 4.00 and lower, as an indication of alteration of long casein chains in the coagulum structure. Different temperatures of storage had no influence on changes of rheological properties of examinated types of stirred yoghur. The relation of above mentioned moduls of elasticy and viscosity kept the same increasing tendency.

  8. Effect of smectite clays storage in their rheological properties; Efeito do armazenamento de argilas esmectiticas nas suas propriedades reologicas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, I.A. da; Sousa, F.K.A. de; Neves, G. de A.; Ferreira, H.C., E-mail: isabelle_albuquerquecg@hotmail.com, E-mail: kegalves@gmail.com, E-mail: gelmires.neves@ufcg.edu.br, E-mail: heber.ferreira@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Ferreira, H.S., E-mail: hsivini@terra.com.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Educacao; Ferreira, H.S., E-mail: heber@ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa (Brazil). Departamento de Engenharia de Materiais

    2017-01-15

    This work investigates the storage influence of natural and industrial smectite clays in their rheological properties, since the salt metathesis reaction that occurs following treatment of polycationic clays with Na{sub 2} CO{sub 3} is reversible. The phenomena involved in this reaction are not yet fully known and previous studies show improvement in some properties. The rheological properties were determined in sodium-clays in 1995 and polycationic clays added with sodium carbonate (Na{sub 2} CO{sub 3} ) in 2015. Physical, chemical and mineralogical characterizations of the samples were performed using the following techniques: particle size analysis by laser diffraction, chemical composition by X-ray fluorescence, X-ray diffraction and thermal analysis (DTA and TGA). The rheology of dispersions was determined by the apparent viscosity, plastic viscosity and filtrate volume, which were later considered the oil industry standards only as a benchmark. The results showed that the storage conditions, humidity and particle size of the samples resulted in improvements in their rheological properties over the years, indicating the non-reversibility of the reaction of cation exchange, which is important in their validity after manufacturing. (author)

  9. Effect of oxidative enzymes on bulk rheological properties of wheat flour doughs

    NARCIS (Netherlands)

    Dunnewind, B.; Vliet, T. van; Orsel, R.

    2002-01-01

    The use of enzymes such as peroxidases or glucose oxidase instead of chemical oxidants is a very interesting option for improving breadmaking performance of doughs. In this study the effect of such enzymes on bulk rheological properties of dough was quantified and their influence on the polymer

  10. Effect of Oxidative Enzymes on Bulk Rheological Properties of Wheat Flour Doughs

    NARCIS (Netherlands)

    Dunnewind, B.; Vliet, van T.; Orsel, R.

    2002-01-01

    The use of enzymes such as peroxidases or glucose oxidase instead of chemical oxidants is a very interesting option for improving breadmaking performance of doughs. In this study the effect of such enzymes on bulk rheological properties of dough was quantified and their influence on the polymer

  11. Investigation of rheological properties of winter wheat varieties during storage

    Directory of Open Access Journals (Sweden)

    Móré M.

    2015-01-01

    Full Text Available The paper shows the results of some experimental researches on the rheological characteristics of the dough obtained from the flour of three winter wheat varieties. We used valorigraph test to determine the rheological properties of wheat flour dough, because it determines the quality of the end-products. Winter wheat varieties (Lupus, Mv Toldi and GK Csillag were produced and their samples were collected on Látókép Research Farm of the University of Debrecen in the crop year of 2011/2012. We have carried out a short-term storage experiment (from July to August, 2012. We analysed the changes in water absorption capacity, dough stability time and valorigraph quality number for 3 times (24.07.2012, 31.07.2012, 21.08.2012 during short-term storage. Our results showed that the baking quality of Lupus, Mv Toldi and GK Csillag improved during the storage period.

  12. Study of irradiation effect of wheat flour on microbiological properties and on rheology of obtained dough

    International Nuclear Information System (INIS)

    Salem, Senda

    2008-01-01

    The purpose of this work is to study the effect of the irradiation by gamma rays in 1, 2, and 3 kGy on the microbiological and physico-chemical properties of the wheat flour, and on dough rheology. The rheological properties, studied by a compression-relaxation test in greased conditions are estimated by an analysis of variance approach and repeatability studies. Results show that irradiation has no effect on relaxation properties of dough. On the other hand we registered an increase of the falling number. Bread making essay shows that a dose lower than 2 kGy increased the bread volume. Reduction of the microbial load according to the dose of irradiation is also observed. (Author)

  13. The influence of winter swimming on the rheological properties of blood.

    Science.gov (United States)

    Teległów, Aneta; Dąbrowski, Zbigniew; Marchewka, Anna; Tyka, Aleksander; Krawczyk, Marcin; Głodzik, Jacek; Szyguła, Zbigniew; Mleczko, Edward; Bilski, Jan; Tyka, Anna; Tabarowski, Zbigniew; Czepiel, Jacek; Filar-Mierzwa, Katarzyna

    2014-01-01

    The aim of this study was to analyze the changes in blood rheology resulting from regular winter swimming. The study was carried out on 12 male winter swimmers. Venous blood for morphological, biochemical and rheological analysis was sampled twice from each winter swimmer - at the beginning of the season and after its completion. There were no significant changes detected in the median values of most blood morphological parameters. The only exception pertained to MCHC which was significantly lower after the season. Winter swimming entailed significant decrease in median elongation index values at shear stress levels of 0.30 Pa and 0.58 Pa, and significant increase in median values of this parameter at shear stress levels ≥1.13 Pa. No significant changes were observed in winter swimmers' median values of aggregation indices and plasma viscosity. The median level of glucose was lower post winter swimming in comparison to the pre-seasonal values. In contrast, one season of winter swimming did not influence swimmers' median value of fibrinogen concentration. In summary, this study revealed positive effects of winter swimming on the rheological properties of blood, manifested by an increase in erythrocyte deformability without accompanying changes in erythrocyte aggregation.

  14. Evaluation of Rheological Properties of Apple Mass Based Desserts

    OpenAIRE

    Sigita Boca; Ruta Galoburda; Inta Krasnova; Dalija Seglina; Aivars Aboltins; Imants Skrupskis

    2013-01-01

    The aim of the study was to evaluate the effect of texturizers on the rheological properties of the apple mass and desserts made from various raw materials. The apple varieties - ‘Antonovka’, ‘Baltais Dzidrais’, and ‘Zarja Alatau’ harvested in Latvia, were used for the experiment. The apples were processed in a blender unpeeled for obtaining a homogenous mass. The apple mass was analyzed fresh and after storage at –18ºC. Both fresh and thawed apple mass samples with added...

  15. Effect of Maltodextrins on the Rheological Properties of Potato Starch Pastes and Gels

    Directory of Open Access Journals (Sweden)

    Lesław Juszczak

    2013-01-01

    Full Text Available The study examines the effects of maltodextrins saccharified to various degrees on some rheological properties of potato starch dispersions. Pasting characteristics, flow curves, and mechanical spectra were determined for native potato starch and for its blends with potato maltodextrins having dextrose equivalents (DE of 10.5, 18.4, and 26.5. The results showed that medium-saccharified maltodextrin (DE = 18.4 gave the strongest effect, manifesting itself as a considerable reduction in the viscosity at pasting, a decrease in apparent viscosity during flow, and a decrease in the storage and loss moduli. Addition of high-(DE = 26.5 or low-(DE = 10.5 saccharified maltodextrins had a markedly smaller effect on the rheological properties of starch. The differences in the effects produced by the maltodextrins are closely connected to the degree of polymerisation of the maltooligosaccharides in the systems.

  16. Chocolate rheology

    Directory of Open Access Journals (Sweden)

    Estela Vidal Gonçalves

    2010-12-01

    Full Text Available Rheology is the science that studies the deformation and flow of solids and fluids under the influence of mechanical forces. The rheological measures of a product in the stage of manufacture can be useful in quality control. The microstructure of a product can also be correlated with its rheological behavior allowing for the development of new materials. Rheometry permits attainment of rheological equations applied in process engineering, particularly unit operations that involve heat and mass transfer. Consumer demands make it possible to obtain a product that complies with these requirements. Chocolate industries work with products in a liquid phase in conching, tempering, and also during pumping operations. A good design of each type of equipment is essential for optimum processing. In the design of every process, it is necessary to know the physical characteristics of the product. The rheological behavior of chocolate can help to know the characteristics of application of the product and its consumers. Foods are generally in a metastable state. Their texture depends on the structural changes that occur during processing. Molten chocolate is a suspension with properties that are strongly affected by particle characteristics including not only the dispersed particles but also the fat crystals formed during chocolate cooling and solidification. Chocolate rheology is extensively studied, and it is known that chocolate texture and stability is strongly affected by the presence of specific crystals

  17. Examination of rheological properties of aqueous solutions of sodium caseinate

    OpenAIRE

    Jolanta Gawałek; Piotr Wesołowski

    2012-01-01

    Application of sodium caseinate as a functional additive in manufacturing processes requires production of its concentrated aqueous solutions which, in industrial conditions, presents a number of difficulties. In order to develop an effective and optimal industrial process of mixing – manufacturing a concentrated solution of sodium caseinate, it is essential to know rheological properties in a definite range of concentrations changing in the course of the dissolving process. The materia...

  18. Rheological and microstructural properties of Irradiated starch

    International Nuclear Information System (INIS)

    Atrous Turki, Hager

    2011-01-01

    Gamma irradiation ia s fast and efficient method to improve the functional properties of straches. Wheat and potato starches were submitted, in the present study, at 3,5,10 and 20 kGy radiation dose. The changes induced by irradiation on the rheological properties of these starches showed a decrease in the viscosity with increasing radiation dose. Chemicals bond's hydrolysis has been induced by free radicals that have been identified by EPR. Wheat starch presents five EPR signals after irradiation, whiles potato starch has a weak EPR signal. On the other hand, irradiation caused decrease in amylose content. This decrease is more pronounced in potato starch. Dry irradiated starch's MEB revealed no change in the shape, size and distribution of the granules. While, the observation of wheat starch allowed the complete disappearance of the granular structure and the dissolution of its macromolecules after irradiation which justifies the significant decrease in wheat starch's viscosity irradiated at 20 kGy.

  19. Rheological properties of polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Camila F. de P.; Demarquette, Nicole R.

    2009-01-01

    In this work, composites of polypropylene with a master batch to obtain clay containing nano composites were obtained. The materials were characterized by X ray diffraction, small angle X-ray scattering and by rheological analysis. (author)

  20. Some Qualitative and Rheological Properties of Virgin Olive Oil- Apple Vinegar Salad Dressing Stabilized With Xanthan Gum

    Directory of Open Access Journals (Sweden)

    Solmaz Abedinzadeh

    2016-12-01

    Full Text Available Purpose: Lipid oxidation and rheological properties are the main qualitative parameters determined in food emulsions. Salad dressings are food emulsions important in our daily diet, but conventional salad dressings have high amounts of cholesterol and saturated fatty acids because of egg yolk in their formulations. There are many studies on the modification of salad dressing formulations to replace egg yolk and saturated fats. The present study describes new formulation of salad dressing with olive oil and apple vinegar to produce a functional food product. Methods: This study investigated the qualitative properties, oxidative stability, rheological behavior and microstructure of the salad dressing without egg yolk. Oil-in-water emulsions were prepared with virgin olive oil and apple vinegar stabilized with various percentages of xanthan (T1: 0.25%, T2: 0.5%. T3: 0.75%. Samples were stored at refrigerator for 90 days and experiments were performed at production day and during storage. Results: The obtained results showed that peroxide value was increased for all samples during storage, but it was at an acceptable level. Fatty acid changes were not significant during storage. Droplet size was reduced by increasing xanthan gum. T2 had the best rheological properties during storage. Generally, T2 and T3 had higher scores and were more acceptable in organoleptic assay. Conclusion: Obtained results showed that T2 had suitable qualitative and rheological properties and can be a proper egg yolk free salad dressing to introduce to the market.

  1. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    Science.gov (United States)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  2. Microstructural and rheological analysis of fillers and asphalt mastics

    International Nuclear Information System (INIS)

    Geber, R; Simon, A; Kocserha, I; Buzimov, A

    2017-01-01

    Pavements are made of different grades of mineral aggregates and organic binder. The aggregates are sorted in different sizes and different amount which are mixed together with bitumen. The finest mineral fraction (d<0.063 mm) is called filler. This component has an important role in asphalt mixture - it fills the gaps between the aggregates and if mixed with bitumen (which is called asphalt mastics) it sticks the larger particles together. Particle size, microstructure and surface properties of fillers highly affect the cohesion with bitumen, therefore the aim of our research was to investigate the microstructure of mineral fillers (limestone, dolomite) which are used in Hungarian road constructions with the use of different techniques (particle size distribution, scanning electronmicroscopy tests, mercury intrusion porosimetry, BET specific surface tests, determination of hydrophobicity). After the tests of fillers, asphalt mastics were prepared and rheological examinations were obtained. These examinations served to observe the interaction and the effect of fillers. The stiffening effect of fillers and the causes of rutting were also investigated. Based on our results, it can be stated that particle size, hydrophobic properties and the amount of fillers highly affect the rheological properties of mastics. (paper)

  3. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Infuence of gamma radiation on the rheological and functional properties of bread wheats

    International Nuclear Information System (INIS)

    Paredes-Lopez, O.; Covarrubias-Alvarez, M.M.

    1984-01-01

    The effects of gamma irradiation on some biochemical, rheological and functional properties of bread wheats were studied. Two wheat cultivars were selected to represent medium-strong and weak dough mixing strengths. Falling number values were severely depressed at doses of 500 and 1000 krad. Rheological dough properties, as assessed with the mixograph and farinograph, were also investigated. Radiation at medium doses produced an increase in the farinograph water absorption for both wheats. Radiation decreased the amount of bound water as compared to the control sample. For the medium-strong wheat low levels of radiation produced bread with volumes and overall bread quality equal to or slightly better than those of the control flour, whereas for the weak wheat an improvement of the baking performance was obtained at all the low doses of radiation. However, the overall bread quality of both wheats was highly reduced at medium doses of radiation. (author)

  5. Effect of β-cyclodextrin on Rheological Properties of some Viscosity Modifiers.

    Science.gov (United States)

    Rao, G Chandra Sekhara; Ramadevi, K; Sirisha, K

    2014-01-01

    Cyclodextrins are a group of novel excipients, extensively used in the present pharmaceutical industry. Sometimes they show significant interactions with other conventional additives used in the formulation of dosage forms. The effect of β-cyclodextrin on the rheological properties of aqueous solutions of some selected viscosity modifiers was studied in the present work. β-cyclodextrin showed two different types of effects on the rheology of the selected polymers. In case of natural polymers like xanthan gum and guar gum, enhanced apparent viscosity was found and in case of semi-synthetic polymers like sodium carboxymethyl cellulose and methyl cellulose, reduction in apparent viscosity was found. β-cyclodextrin was included at 0.5, 1 and 2% w/v concentrations into the polymeric solutions. These findings are useful in the adjustment of concentrations of viscosity modifiers during the formulation of physically stable disperse systems.

  6. Rheological, thermo-mechanical, and baking properties of wheat-millet flour blends.

    Science.gov (United States)

    Aprodu, Iuliana; Banu, Iuliana

    2015-07-01

    Millet has long been known as a good source of fiber and antioxidants, but only lately started to be exploited by food scientists and food industry as a consequence of increased consumer awareness. In this study, doughs and breads were produced using millet flour in different ratios (10, 20, 30, 40, and 50%) to white, dark, and whole wheat flour. The flour blends were evaluated in terms of rheological and thermo-mechanical properties. Fundamental rheological measurements revealed that the viscosity of the flour formulations increases with wheat flour-extraction rate and decreases with the addition of millet flour. Doughs behavior during mixing, overmixing, pasting, and gelling was established using the Mixolab device. The results of this bread-making process simulation indicate that dough properties become critical for the flour blends with millet levels higher than 30%. The breads were evaluated for volume, texture, and crumb-grain characteristics. The baking test and sensory evaluation results indicated that substitution levels of up to 30% millet flour could be used in composite bread flour. High levels of millet flour (40 and 50%) negatively influenced the loaf volume, crumb texture, and taste. © The Author(s) 2014.

  7. Rheological and electrical properties used to investigate the coagulation process during sludge treatment.

    Science.gov (United States)

    Mortadi, A; El Melouky, A; Chahid, E; Nasrellah, H; Bakasse, M; Zradba, A; Cherkaoui, O; El Moznine, R

    2018-01-01

    Analyses of rheological properties and electrical conductivity (σ dc ) at direct current have been employed in order to investigate the effects of calcium oxide on the coagulation process during sludge treatment in the textile industry. In this context, rheological and electrical measurements were performed on five samples - one that contained raw sludge and the other four that were prepared from the raw sludge and different amounts of calcium oxide: 2, 3, 4, 5% (w/w). Rheological behavior of these samples was analyzed using the Herschel-Bulkley modified model. The influence of calcium oxide content on the rheological parameters such as infinite viscosity, the yield stress, the consistency coefficient, and the consistency index, are presented and discussed. The impact of the calcium oxide content on pH and conductivity were also examined. Similar behaviors have been seen in the evolution of conductivity and infinite viscosity as a function of the calcium oxide content. These latter characteristics were modeled by an equation using two power laws. This equation was able to fit very well the evolution of electrical conductivity and also the viscosity versus the percentage of calcium oxide to predict the optimal amount of calcium oxide (3%) to achieve the coagulation step during sludge treatment.

  8. Rheologic properties of fresh cement mixes for repository sealing applications: effects of superplasticizers, mixing procedures, and time

    International Nuclear Information System (INIS)

    Roy, D.M.; Asaga, K.

    1982-09-01

    As part of the design of optimally durable, hardened cementitious plugging materials for repository borheole plugging, shaft and tunnel sealing, detailed studies of rheological properties have been made. The effects of mixing procedures upon measured rheological properties of fresh cement mixes with and without superplasticizing admixtures condensates of sulfonated naphthalene- and melamine-formaldehyde have been investigated. Coaxial cylindrical viscometer measurements were made, recording shear stress-shear rate relationships and defining yield stress and plastic viscosity. In the absence of admixture, yield stress and plastic viscosity decreased substantially with increasing intensity of mixing, which caused a breakdown of particulate aggregates. However, with admixture present, the rheological properties of already well-dispersed mixes did not change significantly with increasingly intense mixing. The changes of the viscometric functions with time were investigated, and were related to admixture type and concentration, cement type, and volume concentration of cement. The mechanisms of action of the superplasticizers and their use in generating reliable workable low water/cement ratio mixes are discussed. 36 figures, 3 tables

  9. Bronchial Mucus as a Complex Fluid: Molecular Interactions and Influence of Nanostructured Particles on Rheological and Transport Properties

    Directory of Open Access Journals (Sweden)

    Odziomek Marcin

    2017-06-01

    Full Text Available Transport properties of bronchial mucus are investigated by two-stage experimental approach focused on: (a rheological properties and (b mass transfer rate through the stagnant layer of solutions of mucus components (mucine, DNA, proteins and simulated multi-component mucus. Studies were done using thermostated horizontal diffusion cells with sodium cromoglycate and carminic acid as transferred solutes. Rheological properties of tested liquids was studied by a rotational viscometer and a cone-plate rheometer (dynamic method. First part of the studies demonstrated that inter-molecular interactions in these complex liquids influence both rheological and permeability characteristics. Transfer rate is governed not only by mucus composition and concentration but also by hydrophobic/hydrophilic properties of transported molecules. Second part was focused on the properties of such a layer in presence of selected nanostructured particles (different nanoclays and graphene oxide which may be present in lungs after inhalation. It was shown that most of such particles increase visco-elasticity of the mucus and reduce the rate of mass transfer of model drugs. Measured effects may have adverse impact on health, since they will reduce mucociliary clearance in vivo and slow down drug penetration to the bronchial epithelium during inhalation therapy.

  10. Effect of gluten, egg and soy proteins on the rheological and thermo-mechanical properties of wholegrain rice flour.

    Science.gov (United States)

    Pătraşcu, Livia; Banu, Iuliana; Vasilean, Ina; Aprodu, Iuliana

    2017-03-01

    The effect of protein addition on the rheological, thermo-mechanical and baking properties of wholegrain rice flour was investigated. Gluten, powdered eggs and soy protein concentrate were first analyzed in terms of rheological properties, alone and in admixture with rice flour. The temperature ramp tests showed clear differences in the rheological behavior of the batters supplemented with different proteins. The highest thermal stability was observed in case of soy protein samples. Frequency sweep tests indicated significant improvements of the rheological properties of rice flour supplemented with 15% gluten or soy proteins. The thermo-mechanical tests showed that, due to the high fat contents and low level of free water, the dough samples containing powdered eggs exhibited the highest stability. Addition of gluten resulted in a significant decrease of the dough development time, whereas samples with powdered eggs and soy proteins were more difficult to hydrate. The incorporation of proteins into the rice flour-based dough formulations significantly affected starch behavior by decreasing the peak consistency values. Concerning the quality of the rice flour-based breads, soy protein addition resulted in lighter crumb color and increased texture attributes, samples with gluten had better resilience and adhesiveness, whereas breads with egg protein were less brittle.

  11. Silk Electrogel Rheology

    Science.gov (United States)

    Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.

    2014-03-01

    We present experimental results on the rheology on electrogels derived from aqueous solutions of reconstituted Bombyx Mori silk fibroin protein. Through electrochemistry, the silk protein solution develops local pH changes resulting in the assembly of protein into a weak gel. We determine the physical properties of the electrogels by performing rheology and observe that they exhibit the characteristics of a crosslinked biopolymer network. Interestingly, we find that these silk gels exhibit linear elasticity over a range of up to two orders of magnitude larger than most crosslinked biopolymer networks. Moreover, the nonlinear rheology exhibits a strain-stiffening behavior that is fundamentally different than the strain-stiffening observed in crosslinked biopolymers. Through rheological techniques we aim to understand this distinctive material that cannot be explained by current polymeric models. This work is supported by a grant from the AFOSR FA9550-07-1-0130.

  12. Effects of Waste Plastic on the Physical and Rheological Properties of Bitumen

    Science.gov (United States)

    Ezree Abdullah, Mohd; Asyiqin Ahmad, Nurul; Putra Jaya, Ramadhansyah; Hassan, Norhidayah Abdul; Yaacob, Haryati; Rosli Hainin, Mohd

    2017-05-01

    Plastic disposal is one of the major problems for developing countries like Malaysia, at the same time Malaysia needs a large network of roads for its smooth economic and social development. The limited source of bitumen needs a deep thinking to ensure fast road construction. Therefore, the use of plastic waste in road construction not only can help to protect environment but also able to help the road construction industry. The aims of this research are to study the effects of waste plastic on rheological properties of bitumen. Modified bitumen was prepared by using blending techniques. Bitumen was heated and plastic waste was slowly added. Rheological properties of bitumen were performance by penetration, softening point, viscosity and direct shear rheometer test. The results showed that when content of plastic waste increase, the penetration value, softening point and viscosity of bitumen also increase. Generally, plastic waste improves the performance of bitumen when it was added into bitumen. It can be said that the usage helps to improve the performance of the road pavement which also reduces the rutting effect.

  13. Rheological Properties and Foaming Behavior of Poly(Ethylene Terephthalates) Modified with Pyromellitic Dianhydride

    Science.gov (United States)

    Yang, Zhao-Ping; Xin, Chun-Ling; Guo, Ya-Feng; Luo, Yi-Wei; He, Ya-Dong

    2016-05-01

    Improving the melt viscoelasticity of poly(ethylene terephthalate) (PET) is a well-known method to obtain foamable PET. The aim of this study is to prepare high melt strength PET and evaluate the influence of rheological properties of PET on the foaming behavior. For this purpose, pyromelliticdianhydride was used as the chain extender to modify a linear PET through melt reactive processing. The rheological properties of the unmodified and modified PETs were measured by a dynamic rheometer. Results showed that the modified PET had higher complex viscosity than the unmodified one. Furthermore, the batch foaming by using supercritical CO2 as a blowing agent was carried to evaluate the foamability of modified PETs. It was found that an enlarged foaming temperature window was obtained for modified PETs compared to unmodified PET. Moreover, the modified PETs foams exhibited higher expansion ratio, smaller cell size and higher cell density at high temperatures than the neat PET.

  14. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures

    OpenAIRE

    Majidi, Behzad; Taghavi, Seyed Mohammad; Fafard, Mario; Ziegler, Donald P.; Alamdari, Houshang

    2016-01-01

    Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger’s model is developed using the discrete element method (DEM) on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR) is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then use...

  15. Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology

    NARCIS (Netherlands)

    Sadasivuni, K.K.; Ponnamma, D.; Kumar, B.; Strankowski, M.; Cardinaels, R.M.; Moldenaers, P.; Thomas, S.; Grohens, Y.

    2014-01-01

    This study aims at investigating the dynamic mechanical, dielectric and rheological properties of reinforced polyurethane (PU) nanocomposites containing hydrophilic graphene oxide (GO) and/or hydrophobic modified graphene oxide (mGO) sheets. The organic modification of GO was performed with

  16. Comparison of the rheological properties of four root canal sealers

    Institute of Scientific and Technical Information of China (English)

    Seok Woo Chang; Kwang Shik Bae; Young-Kyu Lee; Qiang Zhu; Won Jun Shon; Woo Cheol Lee; Kee Yeon Kum; Seung Ho Baek; In Bog Lee; Bum-Soon Lim

    2015-01-01

    The flowability of a root canal sealer is clinically important because it improves the penetration of the sealer into the complex root canal system. The purpose of this study was to compare the flowabilities of four root canal sealers, measured using the simple press method (ISO 6876), and their viscosities, measured using a strain-controlled rheometer. A newly developed, calcium phosphate-based root canal sealer (Capseal) and three commercial root canal sealers (AH Plus, Sealapex and Pulp Canal Sealer EWT) were used in this study. The flowabilities of the four root canal sealers were measured using the simple press method (n55) and their viscosities were measured using a strain-controlled rheometer (n55). The correlation between these two values was statistically analysed using Spearman’s correlation test. The flow diameters and the viscosities of the root canal sealers were strongly negatively correlated (r520.8618). The viscosity of Pulp Canal Sealer EWT was the lowest and increased in the following order:AH Plus,Sealapex,Capseal (P,0.05). All of the tested root canal sealers showed characteristic time-and temperature-dependent changes in their rheological properties. The viscosities measured using the strain-controlled rheometer were more precise than the flowabilities measured using the simple press method, suggesting that the rheometer can accurately measure the rheological properties of root canal sealers.

  17. Rheological and interfacial properties at the equilibrium of almond gum tree exudate (Prunus dulcis) in comparison with gum arabic.

    Science.gov (United States)

    Mahfoudhi, Nesrine; Sessa, Mariarenata; Ferrari, Giovanna; Hamdi, Salem; Donsi, Francesco

    2016-06-01

    Almond gum contains an arabinogalactan-type polysaccharide, which plays an important role in defining its interfacial and rheological properties. In this study, rheological and interfacial properties of almond gum and gum arabic aqueous dispersions were comparatively investigated. The interfacial tension of almond gum and gum arabic aqueous dispersions was measured using the pendant drop method in hexadecane. The asymptotic interfacial tension values for almond gum were significantly lower than the corresponding values measured for gum arabic, especially at high concentration. Rheological properties were characterized by steady and oscillatory tests using a coaxial geometry. Almond gum flow curves exhibited a shear thinning non-Newtonian behavior with a tendency to a Newtonian plateau at low shear rate, while gum arabic flow curves exhibited such behavior only at high shear rate. The influence of temperature (5-50  ℃) on the flow curves was studied at 4% (m/m) gum concentration and the Newtonian viscosities at infinite and at zero shear rate, for gum arabic and almond gum, respectively, were accurately fitted by an Arrhenius-type equation. The dynamic properties of the two gum dispersions were also studied. Both gum dispersions exhibited viscoelastic properties, with the viscous component being predominant in a wider range of concentrations for almond gum, while for gum arabic the elastic component being higher than the elastic one especially at higher concentrations.The rheological and interfacial tension properties of almond gum suggest that it may represent a possible substitute of gum arabic in different food applications. © The Author(s) 2015.

  18. Relations between rheological properties, saliva-induced structure breakdown and sensory texture attributes of custards

    NARCIS (Netherlands)

    Janssen, A.M.; Terpstra, M.E.J.; Wijk, R.A.de; Prinz, J.F.

    2007-01-01

    The relevance of initial rheological properties and mechanical and enzymatic structure breakdown in determining selected sensory texture attributes of custards was studied. The so-called structure breakdown cell was used to characterize saliva-induced breakdown, i.e., by monitoring digestion of

  19. Cytokine profile in psoriatic arthritis: search for relationships with inflammation and blood rheological properties

    Directory of Open Access Journals (Sweden)

    Tat'yana Viktorovna Korotaeva

    2011-01-01

    Conclusion. The enhanced clinical and laboratory activity of PSA is attended by the systemic activation of immunological mediators of inflammation and neoangiogenesis and by impaired blood rheological properties, which supports the interaction of these factors in the immunopathogenesis of the diseases.

  20. Study of the rheological properties of a fermentation broth of the fungus Beauveria bassiana in a bioreactor under different hydrodynamic conditions.

    Science.gov (United States)

    Núñez-Ramírez, Diola Marina; Medina-Torres, Luis; Valencia-López, José Javier; Calderas, Fausto; López Miranda, Javier; Medrano-Roldán, Hiram; Solís-Soto, Aquiles

    2012-11-01

    Fermentation with filamentous fungi in a bioreactor is a complex dynamic process that is affected by flow conditions and the evolution of the rheological properties of the medium. These properties are mainly affected by the biomass concentration and the morphology of the fungus. In this work, the rheological properties of a fermentation with the fungus Beauveria bassiana under different hydrodynamic conditions were studied and the rheological behavior of this broth was simulated through a mixture of carboxymethyl cellulose sodium and cellulose fibers (CMCNa-SF). The bioreactor was a 10 L CSTR tank operated at different stir velocities. Rheological results were similar at 100 and 300 rpm for both systems. However, there was a significant increase in the viscosity accompanied by a change in the consistence index, calculated according to the power law model, for both systems at 800 rpm. The systems exhibited shear-thinning behavior at all stir velocities, which was determined with the power law model. The mixing time was observed to increase as the cellulose content in the system increased and, consequently, the efficiency of mixing diminished. These results are thought to be due to the rheological and morphological similarities of the two fungal systems. These results will help in the optimization of scale-up production of these fungi.

  1. Effect of in situ exopolysaccharide production on physicochemical, rheological, sensory, and microstructural properties of the yogurt drink ayran: an optimization study based on fermentation kinetics.

    Science.gov (United States)

    Yilmaz, M T; Dertli, E; Toker, O S; Tatlisu, N B; Sagdic, O; Arici, M

    2015-03-01

    Exopolysaccharide (EPS)-producing starter cultures are preferred for the manufacture of fermented milk products to improve rheological and technological properties. However, no clear correlation exists between EPS production and the rheological and technological properties of fermented milk products such as the yogurt drink ayran. In this study, 4 different strain conditions (EPS- and EPS+ Streptococcus thermophilus strains) were tested as a function of incubation temperature (32, 37, or 42°C) and time (2, 3, or 4 h) to determine the effect of culture type and in situ EPS production on physicochemical, rheological, sensory, and microstructural properties of ayran. Furthermore, we assessed the effect of fermentation conditions on amounts of EPS production by different EPS-producing strains during ayran production. A multifactorial design of response surface methodology was used to model linear, interaction, and quadratic effects of these variables on steady shear rheological properties of ayran samples and in situ EPS production levels. The physicochemical and microbiological characteristics of ayran samples altered depending on incubation conditions and strain selection. Steady shear tests showed that ayran samples inoculated with EPS+ strains exhibited pseudoplastic flow behavior. Production of ayran with EPS- strain (control sample) resulted in the lowest apparent viscosity values (η50), whereas those produced with the combination of 2 EPS+ strains yielded ayran with notably increased η50 values. We concluded that incubation time was the variable with the greatest effect on η50, consistency coefficient (K), and flow behavior index (n) values. In situ EPS production was also affected by these conditions during ayran fermentation in which strain-specific metabolism conditions were found to be the most important factor for EPS production. In addition, these findings correlated the amount of in situ EPS produced with the rheological properties of ayran. Scanning

  2. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert; Hamer, Rob; Loos, Katja

    2015-01-01

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis.

  3. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Hamer, R.J.; Loos, K.

    2015-01-01

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis.

  4. A comparative study of the effects of cone-plate and parallel-plate geometries on rheological properties under oscillatory shear flow

    CSIR Research Space (South Africa)

    Yong Song, H

    2017-11-01

    Full Text Available -1 Korea-Australia Rheology Journal A comparative study of the effects of cone-plate and parallel- plate geometries on rheological properties under oscillatory shear flow Hyeong Yong Song1, Reza Salehiyan2, Xiaolei Li1, Seung Hak Lee1 and Kyu Hyun1...

  5. Implications of recovery procedures on structural and rheological properties of schizophyllan produced from date syrup.

    Science.gov (United States)

    Jamshidian, Hajar; Shojaosadati, Seyed Abbas; Mohammad Mousavi, Seyed; Reza Soudi, Mohammad; Vilaplana, Francisco

    2017-12-01

    This study investigates the effects of different recovery procedures on high molar mass schizophyllan produced by Schizophyllum commune using low value agricultural residues. Recovered extracellular polysaccharides (EPSs) were compared in terms of purity, sugar composition, degree of branching, molecular weight, and rheological properties. Performing different recovery methods, such as re-dissolving in water and re-precipitation with ethanol on produced EPS, provided schizophyllan with purity similar to the commercial grade. Besides, Freeze-thawing cycles allowed the fractionation of schizophyllan based on branching degree and solubility. The EPSs with higher purity and lower degree of branching (less conformational flexibility) showed higher viscosity. This study evidences the possibility of producing EPSs with excellent rheological properties using low value agricultural side products. Furthermore, our results demonstrate the importance of recovery methods for tailoring the purity, molecular structure and macroscopic properties of the produced polysaccharides for specific applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of ripening on rheological properties of avocado pulp (Persea americana mill. Cv. Hass)

    Science.gov (United States)

    Osorio, F.; Roman, A.; Ortiz, J.

    2015-04-01

    Avocado (Persea americana Mill) Hass variety is the most planted in Chile with a greater trade prospect. The aim of this study was to investigate the effect of maturity on rheological properties of Chilean Avocado Hass pulp. Fresh unripe avocados were washed and peeled, cut and stored at 3 different times; a portion was treated at 5°C and the other was treated at 20°C until it reached 2 lb puncture pressure. During maturation changes would develop due to temperature and time, with internal cellular structure changes. Preliminary results of the rheological characteristics of avocado puree show a Bingham plastic behavior.

  7. Influence of binder system and temperature on rheological properties of water atomized 316L powder injection moulding feedstocks

    Directory of Open Access Journals (Sweden)

    Uğur GÖKMEN

    2016-02-01

    Full Text Available In order to obtain a proper powder injection molding the rheological behavior of feedstocks should be known. To determine the binder effect on the rheological behavior of 316L stainless steel powders feedstock two different feedstock were prepared. In the current experiments water atomized 316L stainless steel powders (-20 µm were used. Two types of binders, one of which is mainly paraffin wax can be dissolved in heptane and the other Polietilenglikol (PEG based and can be dissolved in water, were used. Polypropylene was used as binder and steric acid was used as lubricant for both binder systems as skeleton binder. Dry binder system were mixed for 30 min in a three dimensional Turbola. Capillary rheometer was used to characterize the rheological properties of feed stocks at 150-200 °C and a pressures of 0.165-2.069 MPa. Powder loading capacity of PEG and PW based feed stocks were found to be %55 and %61 respectively. The lowest viscosity of PEG and PW based feed stocks were found to be 304.707 Pa.s and 48.857 Pa.s respectively.Keywords: PIM, Binder, Rheological properties

  8. Dispersions of silica nanoparticles in ionic liquids investigated with advanced rheology

    International Nuclear Information System (INIS)

    Wittmar, Alexandra; Ruiz-Abad, David; Ulbricht, Mathias

    2012-01-01

    The colloidal stabilities of dispersions of unmodified and surface-functionalized SiO 2 nanoparticles in hydrophobic and hydrophilic imidazolium-based ionic liquids were studied with advanced rheology at three temperatures (25, 100, and 200 °C). The rheological behavior of the dispersions was strongly affected by the ionic liquids hydrophilicity, by the nanoparticles surface, by the concentration of the nanoparticles in the dispersion as well as by the temperature. The unmodified hydrophilic nanoparticles showed a better compatibility with the hydrophilic ionic liquid. The SiO 2 surface functionalization with hydrophobic groups clearly improved the colloidal stability of the dispersions in the hydrophobic ionic liquid. The temperature increase was found to lead to a destabilization in all studied systems, especially at higher concentrations. The results of this study imply that ionic liquids with tailored properties could be used in absorbers directly after reactors for gas-phase synthesis of nanoparticles or/and as solvents for their further surface functionalization without agglomeration or aggregation.

  9. RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS

    Directory of Open Access Journals (Sweden)

    S. Chaoui

    2015-07-01

    Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (f/fg-1n, where fg captures the strength of particle interaction and n the microstructure. The scaling variable (fp/fpc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (f/fg-1 these gels are rheologically identical.

  10. RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS

    Directory of Open Access Journals (Sweden)

    S. CHAOUI

    2012-12-01

    Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (/g-1n, where g captures the strength of particle interaction and n the microstructure.The scaling variable (p/pc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (/g-1 these gels are rheologically identical.

  11. Influence of transglutaminase treatment on the physicochemical, rheological, and melting properties of ice cream prepared from goat milk

    Directory of Open Access Journals (Sweden)

    Hatice Şanlidere Aloğlu

    2018-01-01

    Full Text Available This study was conducted to evaluate the effects of the transglutaminase enzyme on the physicochemical characteristics, overrun, melting resistance, rheological and sensorial properties of ice cream made from goat’s milk. Different enzyme units (0.5, 1, 2, and 4 U/g milk protein and treatment times (20 min and 60 min were applied to determine the optimum process conditions. Treatment of the transglutaminase in the ice cream mix significantly affected the rheological and melting properties of the ice cream samples. The samples prepared with higher enzyme units and enzyme-treatment times showed higher melting resistance, consistency index, and viscoelastic modulus (G’ than the ice cream mix. The correlation coefficient between melting resistance and viscoelastic modulus was found to be high (0.76. The apparent viscosity of all samples decreased with increasing the shear rate, indicating that all samples exhibited non-Newtonian shear thinning flow behavior. The sensory, overrun, and physicochemical properties of samples were not affected by the enzyme treatment. This study showed that treatment times and enzyme units are essential factors in the processing of the transglutaminase enzyme for improving the rheological and melting properties of ice cream mixes. Another significant result was that desired melting resistance could be achieved for ice cream with lower stabilizer and fat content.

  12. Structural Features of Alkaline Extracted Polysaccharide from the Seeds of Plantago asiatica L. and Its Rheological Properties

    Directory of Open Access Journals (Sweden)

    Jun-Yi Yin

    2016-09-01

    Full Text Available Polysaccharide from the seeds of Plantago asiatica L. has many bioactivities, but few papers report on the structural and rheological characteristics of the alkaline extract. The alkaline extracted polysaccharide was prepared from seeds of P. asiatica L. and named herein as alkaline extracted polysaccharide from seeds of P. asiatica L. (PLAP. Its structural and rheological properties were characterized by monosaccharide composition, methylation, GC-MS and rheometry. PLAP, as an acidic arabinoxylan, was mainly composed of 1,2,4-linked Xylp and 1,3,4-linked Xylp residues. PLAP solution showed pseudoplastic behavior, and weak gelling properties at high concentration. Sodium and especially calcium ions played a significant role in increasing the apparent viscosity and gel strength.

  13. Some rheological properties of sodium caseinate-starch gels.

    Science.gov (United States)

    Bertolini, Andrea C; Creamer, Lawrence K; Eppink, Mieke; Boland, Mike

    2005-03-23

    The influence of sodium caseinate on the thermal and rheological properties of starch gels at different concentrations and from different botanical sources was evaluated. In sodium caseinate-starch gels, for all starches with the exception of potato starch, the sodium caseinate promoted an increase in the storage modulus and in the viscosity of the composite gel when compared with starch gels. The addition of sodium caseinate resulted in an increase in the onset temperature, the gelatinization temperature, and the end temperature, and there was a significant interaction between starch and sodium caseinate for the onset temperature, the peak temperature, and the end temperature. Microscopy results suggested that sodium caseinate promoted an increase in the homogeneity in the matrix of cereal starch gels.

  14. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties

    Science.gov (United States)

    Natural waxes (candelilla wax, carnauba wax, and beeswax) were utilized as canola oil structurants to produce oleogels and their physicochemical properties were evaluated from rheological, thermal, and oxidative points of view. The oleogels with candelilla wax exhibited the highest hardness, followe...

  15. Structural analysis of gluten-free doughs by fractional rheological model

    Science.gov (United States)

    Orczykowska, Magdalena; Dziubiński, Marek; Owczarz, Piotr

    2015-02-01

    This study examines the effects of various components of tested gluten-free doughs, such as corn starch, amaranth flour, pea protein isolate, and cellulose in the form of plantain fibers on rheological properties of such doughs. The rheological properties of gluten-free doughs were assessed by using the rheological fractional standard linear solid model (FSLSM). Parameter analysis of the Maxwell-Wiechert fractional derivative rheological model allows to state that gluten-free doughs present a typical behavior of viscoelastic quasi-solid bodies. We obtained the contribution dependence of each component used in preparations of gluten-free doughs (either hard-gel or soft-gel structure). The complicate analysis of the mechanical structure of gluten-free dough was done by applying the FSLSM to explain quite precisely the effects of individual ingredients of the dough on its rheological properties.

  16. Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes.

    Science.gov (United States)

    Akuzum, Bilen; Maleski, Kathleen; Anasori, Babak; Lelyukh, Pavel; Alvarez, Nicolas Javier; Kumbur, E Caglan; Gogotsi, Yury

    2018-03-27

    Understanding the rheological properties of two-dimensional (2D) materials in suspension is critical for the development of various solution processing and manufacturing techniques. 2D carbides and nitrides (MXenes) constitute one of the largest families of 2D materials with >20 synthesized compositions and applications already ranging from energy storage to medicine to optoelectronics. However, in spite of a report on clay-like behavior, not much is known about their rheological response. In this study, rheological behavior of single- and multilayer Ti 3 C 2 T x in aqueous dispersions was investigated. Viscous and viscoelastic properties of MXene dispersions were studied over a variety of concentrations from colloidal dispersions to high loading slurries, showing that a multilayer MXene suspension with up to 70 wt % can exhibit flowability. Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties. Surprisingly, high viscosity was observed at very low concentrations for solutions of single-layer MXene flakes. Single-layer colloidal solutions were found to exhibit partial elasticity even at the lowest tested concentrations (<0.20 mg/mL) due to the presence of strong surface charge and excellent hydrophilicity of MXene, making them amenable to fabrication at dilute concentrations. Overall, the findings of this study provide fundamental insights into the rheological response of this quickly growing 2D family of materials in aqueous environments as well as offer guidelines for processing of MXenes.

  17. Effect of ultrafiltration process on physico-chemical, rheological, microstructure and thermal properties of syrups from male and female date palm saps.

    Science.gov (United States)

    Makhlouf-Gafsi, Ines; Baklouti, Samia; Mokni, Abir; Danthine, Sabine; Attia, Hamadi; Blecker, Christophe; Besbes, Souhail; Masmoudi, Manel

    2016-07-15

    This study investigates the effect of the ultrafiltration process on physicochemical, rheological, microstructure and thermal properties of syrups from male and female date palm sap. All the studied syrups switched from pseudoplastic rheological behaviour (n=0.783) to Newtonian behaviour (n∼1) from 10 to 50 °C respectively and present similar thermal profiles. Results revealed that the ultrafiltration process significantly affects the rheological behaviour of the male and female syrups. These differences on rheological properties are attributed to the variation of chemical composition between sap and sap permeate syrups. Furthermore, the effect of temperature on viscosity of the syrups was investigated during heating and cooling processes at the same shear rate (50s(-1)). This study provides idea of the stability of the syrup by evaluating the area between heating and cooling curves. Actually, the syrup prepared from male sap permeate is the most stable between the four studied syrups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Evolution of rheological properties of nuclear bituminized waste products, towards an ageing/viscosity law

    International Nuclear Information System (INIS)

    Mouazen, M.

    2011-01-01

    This work is a contribution to the understanding of rheological properties of bitumen and their evolution under gamma irradiation. The prediction of swelling ratio is necessary to evaluate the state of the containers, particularly during the reversibility phase of the storage. The objective of this work is thus to establish the rheological data its evolution under irradiation in order to predict the container swelling with time. After the rheological and thermal characterization of pure bitumen, a series of extrusion trials has been carried out. The state of dispersion essentially depends on the ratio N/Q (screw speed to feed rate). Extreme values of N/Q show the highest yield stress, indicating an improved dispersion state. The industrial bitumen compound exhibits the highest viscosity compared to model compounds, which limits bubble migration. Finally, the effect of gamma irradiation on pure bitumen and compounds behaviour has been studied. External and structural modifications have been evidenced. A theoretical model based on Krieger-Dougherty equation has been developed and shows a good agreement with experimental data. (author)

  19. A comparative study of the rheological and sensory properties of a petroleum-free and a petroleum-based cosmetic cream.

    Science.gov (United States)

    Wang, Fan C; Marangoni, Alejandro G

    A petroleum-free skin cream was developed using food-grade ingredients. The rheological and sensorial properties of this petroleum-free skin cream were compared to a commercially available petroleum-based skin cream. Specifically, large-amplitude oscillatory shear (LAOS) characterization of the two skin creams was performed. The petroleum-free skin cream showed similar linear and nonlinear viscoelastic rheological properties, comparable skin hydration functions, and consumer acceptance as the commercially available skin cream. A schematic diagram aiming to correlate the physical and sensorial properties of skin cream was also proposed at the end of the work. Results of this work could provide the cosmetic industry necessary information for the development of alternatives for petroleum-based skin creams.

  20. Rheological and thermophysical properties of model compounds for ice-cream with reduced fat and sugar

    Directory of Open Access Journals (Sweden)

    Drago Šubarić

    2010-06-01

    Full Text Available The aim of this research was to investigate the effect of hydrocolloid carrageenan, native tapioca starch and powdered whey on viscosity and thermophysical properties of model ice-cream mixtures with reduced content of sugar and fat. Measurements were performed immediately after mixture preparation and after two months of storage at -18 °C. Results showed that rheological properties of model ice-cream mixtures with reduced content of sugar and fat can be improved by addition of starch and whey, particularly at low temperatures (0 and -5 °C. Improvement of properties at low temperatures is particularly important for before mentioned group of products, as well as the fact that raw materials used in the recipes are cost effective and have high nutritive value. Two-month storage at -18 °C resulted in increase of rheological parameters of all investigated samples. Freeze and thaw temperatures of model mixtures were not changed significantly after two months of storage. On the other hand, enthalpies of freezing and thawing have after storage in the most cases decreased.

  1. Effect of storage time and temperature on the rheological and microstructural properties of gluten

    NARCIS (Netherlands)

    Nicolas, Y.; Smit, R.J.M.; van Aalst, H.; Esselink, F.J.; Weegels, P.L.; Agterof, W.G.M.

    2003-01-01

    To investigate the effects of frozen storage on the rheological and microstructural properties of gluten, two model systems were investigated: System A, gluten and water; System B, gluten, water, and NaCl. The storage time was varied from 1 to 16 weeks and the storage temperature was varied from -5

  2. Solid state polymerization: its action on thermal and rheological properties of PET/PC reactive blends

    Directory of Open Access Journals (Sweden)

    Luis C. Mendes

    2013-01-01

    Full Text Available The solid state polymerization (SSP of PET/PC reactive extrusion blends - with and without cobalt catalyst - at different polymer ratios was studied. Thermal and rheological evaluations were performed. DSC results showed changes in the PET's Tg, Tch, Tm and Xc.. The melt flow rate (MFR decreased for PET and the blends. The intrinsic viscosity increased. The variation in calorimetric and rheological properties might be attributed to the PET's chain extension reactions - esterification and transesterification. These reactions led to an increase in the PET's molar mass, consequently shifting the PET's Tg to lower temperature and PET's crystallization, besides reducing the blend miscibility and flowability.

  3. Free Surface Flows and Extensional Rheology of Polymer Solutions

    Science.gov (United States)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

  4. Rheology and hydrodynamic properties of Tolypocladium inflatum fermentation broth and its simulation.

    Science.gov (United States)

    Benchapattarapong, N; Anderson, W A; Bai, F; Moo-Young, M

    2005-07-01

    A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.

  5. Mechanical and electro-rheological properties of electrospun poly(vinyl alcohol) nanofibre mats filled with carbon black nanoparticles

    International Nuclear Information System (INIS)

    Chuangchote, Surawut; Sirivat, Anuvat; Supaphol, Pitt

    2007-01-01

    The present contribution reports, for the first time, the mechanical and electro-rheological properties of electrospun poly(vinyl alcohol) (PVA) nanofibre mats with or without the incorporation of carbon black (CB) nanoparticles. The effects of sonication and the addition of CB on morphological appearance, average diameter of the as-spun fibre mats, and that of the individual fibres, were thoroughly investigated. Incorporation of CB (1-10% based on the weight of PVA) in 10% w/v PVA solution did not affect the morphology and average diameter of the obtained fibres (∼160 nm), but it affected both the mechanical and the electro-rheological properties of the as-spun PVA/CB fibre mats, in which the mats became more rigid with the addition and increasing amount of CB

  6. Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles.

    Science.gov (United States)

    Sarkar, Anwesha; Kanti, Farah; Gulotta, Alessandro; Murray, Brent S; Zhang, Shuying

    2017-12-26

    Aqueous lubrication has emerged as an active research area in recent years due to its prevalence in nature in biotribological contacts and its enormous technological soft-matter applications. In this study, we designed aqueous dispersions of biocompatible whey-protein microgel particles (WPM) (10-80 vol %) cross-linked via disulfide bonding and focused on understanding their rheological, structural and biotribological properties (smooth polydimethylsiloxane (PDMS) contacts, R a ball bearings", the latter supported by negligible change in size and microstructure of the WPM particles after tribology. An ultralow boundary friction coefficient, μ ≤ 0.03 was achieved using WPM between O 2 plasma-treated hydrophilic PDMS contacts coated with bovine submaxillary mucin (water contact angle 47°), and electron micrographs revealed that the WPM particles spread effectively as a layer of particles even at low ϕ∼ 10%, forming a lubricating load-bearing film that prevented the two surfaces from true adhesive contact. However, above an optimum volume fraction, μ increased in HL+BSM surfaces due to the interpenetration of particles that possibly impeded effective rolling, explaining the slight increase in friction. These effects are reflected in the highly shear thinning nature of the WPM dispersions themselves plus the tendency for the apparent viscosity to fall as dispersions are forced to very high volume fractions. The present work demonstrates a novel approach for providing ultralow friction in soft polymeric surfaces using proteinaceous microgel particles that satisfy both load bearing and kinematic requirements. These findings hold great potential for designing biocompatible particles for aqueous lubrication in numerous soft matter applications.

  7. Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites

    Science.gov (United States)

    Anju Gupta; William Simmons; Gregory T. Schueneman; Donald Hylton; Eric A. Mintz

    2017-01-01

    Improving the processability and physical properties of sustainable biobased polymers and biobased fillers is essential to preserve its biodegradability and make them suitable for different end user applications. Herein, we report the use of spray-dried lignin-coated cellulose nanocrystals (L-CNCs), a biobased filler, to modify the rheological and thermos-mechanical...

  8. Novel formulations of ballistic gelatin. 1. Rheological properties.

    Science.gov (United States)

    Zecheru, Teodora; Său, Ciprian; Lăzăroaie, Claudiu; Zaharia, Cătălin; Rotariu, Traian; Stănescu, Paul-Octavian

    2016-06-01

    Ballistic gelatin is the simulant of the human body during field tests in forensics and other related fields, due to its physical and mechanical similarities to human trunk and organs. Since the ballistic gelatin used in present has important issues to overcome, an alternative approach is the use of gelatin-polymer composites, where a key factor is the insertion of biocompatible materials, which replicate accurately the human tissues. In order to be able to obtain an improved material in terms of mechanical performances by an easy industrial-scale technology, before the verification of the ballistic parameters by shooting in agreement with military standards, one of the best and cheapest solutions is to perform a thorough check of their rheological properties, in standard conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Physical, morphological and rheological alterations of properties by the calcination of aluminium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Pandolfelli, V C; Varela, J A; Longo, E

    1987-03-01

    Evolution of physical, morphological and rheological characteristics resulted from several thermal treatments on national aluminium hydroxide, are evaluated and discussed after mercury porosimetry analysis, scanning electron microscopy, surface area and pressure curve compaction. The results may consider about the Kinetics of the reaction during the aglomerate calcination and to verify the better processing conditions to get products with superior performance. (Autor).

  10. Equilibrium paths analysis of materials with rheological properties by using the chaos theory

    Science.gov (United States)

    Bednarek, Paweł; Rządkowski, Jan

    2018-01-01

    The numerical equilibrium path analysis of the material with random rheological properties by using standard procedures and specialist computer programs was not successful. The proper solution for the analysed heuristic model of the material was obtained on the base of chaos theory elements and neural networks. The paper deals with mathematical reasons of used computer programs and also are elaborated the properties of the attractor used in analysis. There are presented results of conducted numerical analysis both in a numerical and in graphical form for the used procedures.

  11. Effect of Hydrothermal Treatment on the Physicochemical, Rheological, and Oil-Resistant Properties of Rice Flour

    Science.gov (United States)

    Rice flour was thermo-mechanically modified by steam jet-cooking and the physico-chemical and rheological properties of the resulting product were characterized. Then, its performance in frying batters was evaluated as an oil barrier. Compared to native rice flour, the steam jet-cooked rice flour ...

  12. EFFECTS OF PROPERTIES POLYMERIC ADDITIVES IN RHEOLOGIC AND DRILLING FLUIDS

    Directory of Open Access Journals (Sweden)

    Danielly Vieira de Lucena

    2014-03-01

    Full Text Available The influence of carboxymethylcellulose, CMC (filtrate reducer and xanthan gum (viscosifier in plastic and apparent viscosity at yield strength and the volume of filtrate in the composition of drilling fluids based on water was investigated based on statistical design. Five formulations consist of a range of concentrations used commercially were utilized in the design of the experiment. The formulations were prepared in accordance with company standards Petrobras. Regression models were calculated and correlated with the properties of the compositions. The relevance and validation of the models were confirmed by statistical analysis. The design can be applied to statistically optimize the mud properties considering the addition of CMC and xanthan gum, and to provide a better understanding of the influence of additives on the properties of polymer-based fluid system water. From the study it was observed that the values of the rheological properties vary with the concentration of additives, increasing with increasing concentration of the same, and that the concentration of the additives caused a decline of parameter values filtration.

  13. Rheological Properties of Natural Subduction Zone Interface: Insights from "Digital" Griggs Experiments

    Science.gov (United States)

    Ioannidi, P. I.; Le Pourhiet, L.; Moreno, M.; Agard, P.; Oncken, O.; Angiboust, S.

    2017-12-01

    The physical nature of plate locking and its relation to surface deformation patterns at different time scales (e.g. GPS displacements during the seismic cycle) can be better understood by determining the rheological parameters of the subduction interface. However, since direct rheological measurements are not possible, finite element modelling helps to determine the effective rheological parameters of the subduction interface. We used the open source finite element code pTatin to create 2D models, starting with a homogeneous medium representing shearing at the subduction interface. We tested several boundary conditions that mimic simple shear and opted for the one that best describes the Grigg's type simple shear experiments. After examining different parameters, such as shearing velocity, temperature and viscosity, we added complexity to the geometry by including a second phase. This arises from field observations, where shear zone outcrops are often composites of multiple phases: stronger crustal blocks embedded within a sedimentary and/or serpentinized matrix have been reported for several exhumed subduction zones. We implemented a simplified model to simulate simple shearing of a two-phase medium in order to quantify the effect of heterogeneous rheology on stress and strain localization. Preliminary results show different strength in the models depending on the block-to-matrix ratio. We applied our method to outcrop scale block-in-matrix geometries and by sampling at different depths along exhumed former subduction interfaces, we expect to be able to provide effective friction and viscosity of a natural interface. In a next step, these effective parameters will be used as input into seismic cycle deformation models in an attempt to assess the possible signature of field geometries on the slip behaviour of the plate interface.

  14. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites.

    Science.gov (United States)

    Kamal, Musa R; Khoshkava, Vahid

    2015-06-05

    In earlier work, we reported that spray freeze drying of cellulose nanocrystals (CNC) yields porous agglomerate structures. On the other hand, the conventional spray dried CNC (CNCSD) and the freeze dried CNC (CNCFD) produce compact solid structures with very low porosity. As it is rather difficult to obtain direct microscopic evidence of the quality of dispersion of CNC in polymer nanocomposites, it was shown that supporting evidence of the quality and influence of dispersion in a polypropylene (PP)/CNC nanocomposite could be obtained by studying the rheological behavior, mechanical properties and crystallization characteristics of PP/CNC nanocomposites. In an effort to produce a sustainable, fully biosourced, biodegradable nanocomposite, this manuscript presents the results of a study of the rheological, mechanical and crystallization behavior of PLA/CNCSFD nanocomposites obtained by melt processing. The results are analyzed to determine CNC network formation, rheological percolation threshold concentrations, mechanical properties in the rubbery and glassy states, and the effect of CNCSFD on crystalline nucleation and crystallization rates of PLA. These results suggest that the porosity and network structure of CNCSFD agglomerates contribute significantly to good dispersion of CNC in the PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Dynamic surface properties of poly(methylalkyldiallylammonium chloride) solutions

    Czech Academy of Sciences Publication Activity Database

    Novikova, A. A.; Vlasov, P. S.; Lin, S.-Y.; Sedláková, Zdeňka; Noskov, B. A.

    2017-01-01

    Roč. 80, November (2017), s. 122-127 ISSN 1876-1070 Institutional support: RVO:61389013 Keywords : polymer solutions * dynamic surface tension * dilational surface rheology Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.217, year: 2016

  16. Review Of Rheology Models For Hanford Waste Blending

    International Nuclear Information System (INIS)

    Koopman, D. C.; Stone, M.

    2013-01-01

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations

  17. Cookbook for rheological models - asphalt binders : final report.

    Science.gov (United States)

    2016-05-01

    Rheology is defined as the science of the deformation and flow of matter (Hackley and Ferraris, : 2001). The measurement of rheological properties of matter has become very important in various : fields, especially the construction industry, where pr...

  18. Interfacial rheological properties and conformational aspects of soy glycinin at the air/water interface

    NARCIS (Netherlands)

    Martin, A.H.; Bos, M.A.; Vliet, van T.

    2002-01-01

    Interfacial (rheological) properties of soy glycinin were studied at different pH. At acidic and high alkaline pH glycinin (11S form, Mw~350 kDa) dissociates into smaller subunits, the so called 3S form (Mw~44 kDa) and 7S form (Mw~175 kDa). This dissociation behaviour is expected to affect the

  19. Incorporation mode effect of Nano-silica on the rheological and mechanical properties of cementitious pastes and cement mortars

    Science.gov (United States)

    Safi, B.; Aknouche, H.; Mechakra, H.; Aboutaleb, D.; Bouali, K.

    2018-04-01

    Previous research indicates that the inclusion of nanosilica (NS) modifies the properties of the fresh and hardened state, compared to the traditional mineral additions. NS decreases the setting times of the cement mortar compared to silica fume (SF) and reduce of required water while improving the cohesion of the mixtures in the fresh state. Some authors estimate that the appropriate percentage of Nano-silica should be small (1 to 5% by weight) because of difficulties caused by agglomeration to particles during mixing, while others indicate that 10% by weight, if adjustments are made to the formulation to avoid an excess of self-drying and micro cracks that could impede strength. For this purpose, the present work aim to see the effect of the introduction mode of the nanosilica on the rheological and physic mechanical properties of cement mortars. In this study, NS was used either powdered with cement or in solution with the superplasticizer (Superplasticizer doped in nanosilica). Results show that the use of nanosilica powder (replacing cement on the one hand) has a negative influence on the rheological parameters and the rheological behavior of cementitious pastes. However, the introduction of nanosilica in solution in the superplasticizer (SP) was significantly improved the rheological parameters and the rheological behavior of cementitious pastes. Indeed, more the dosage of NS-doped SP increases more the shear stress and viscosities of the cementitious pastes become more fluid and manageable. A significant reduction of shear stress and plastic viscosity were observed that due to the increase in superplasticizer. A dosage of 1.5% NS-doped SP gave adequate fluidity and the shear rate was lower.

  20. Potential contribution of microbial communities in technical ceramics for the improvement of rheological properties

    Science.gov (United States)

    Moreira, Bernardino; Miller, Ana Z.; Santos, Ricardo; Monteiro, Sílvia; Dias, Diamantino; Neves, Orquídia; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2014-05-01

    Several bacterial and fungal species naturally occurring in ceramic raw materials used in construction, such as Aspergillus, Penicillium and Aureobasidium, are known to produce exopolysaccharides (EPS). These polymers excreted by the cells are of widespread occurrence and may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation, during ceramic manufacturing. In this study, the microbial communities present in clay raw materials were identified by both cultural methods and DNA-based molecular techniques in order to appraise their potential contribution to enhance the performance of technical ceramics through the use of EPS. Mineralogical identification by X- Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy of the clay raw materials, as well as characterization of rheological properties of ceramic slips were also performed. Microbial EPS production and its introduction into ceramic slips will be then carried out in order to evaluate their effects on the rheological properties of the ceramic slips, powders and conformed bodies. Some positive aspects related to the use of EPS are: reduction of the environmental impact caused by synthetic organic additives, reduction of production costs, as well as the costs related with operator protection systems, gaseous effluent treatments, complex landfill, among others.

  1. Differential Rheology Among ABO Blood Group System In Nigerians

    African Journals Online (AJOL)

    Research Article. Differential Rheology ... alterations in membrane and cytoskeletal properties that could affect the rheology of blood. This study was ... depending on the concentration of plasma proteins especially ... Laboratory Analysis:.

  2. Influence of Chemical Extraction on Rheological Behavior, Viscoelastic Properties and Functional Characteristics of Natural Heteropolysaccharide/Protein Polymer from Durio zibethinus Seed

    Directory of Open Access Journals (Sweden)

    Hamed Mirhosseini

    2012-11-01

    Full Text Available In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05 effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05 effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like behavior compared to the viscous (liquid like behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed.

  3. Chemical, Sensorial and Rheological Properties of a New Organic Rice Bran Beverage

    OpenAIRE

    Gerson Luis FACCIN; Letícia Adélia MIOTTO; Leila do Nascimento VIEIRA; Pedro Luiz Manique BARRETO; Edna Regina AMANTE

    2009-01-01

    Rice bran is a solid residue from rice polishing that is used in animal nutrition and rice oil production. Cultivation conditions with agro-toxics, lipids instability, and tendency for mycotoxin contamination restrict its application in human nutrition. Therefore, organic agriculture is an alternative to use the properties of rice bran. Rice bran beverage is a new cereal product from organic rice. This work presents the preliminary results of the chemical and rheological studies of a bath pas...

  4. Nanoscale Properties of Rocks and Subduction Zone Rheology: Inferences for the Mechanisms of Deep Earthquakes

    Science.gov (United States)

    Riedel, M. R.

    2007-12-01

    Grain boundaries are the key for the understanding of mineral reaction kinetics. More generally, nanometer scale processes involved in breaking and establishing bonds at reaction sites determine how and at which rate bulk rock properties change in response to external tectonic forcing and possibly feed back into various geodynamic processes. A particular problem is the effects of grain-boundary energy on the kinetics of the olivine-spinel phase transformation in subducting slabs. Slab rheology is affected in many ways by this (metastable) mineral phase change. Sluggish kinetics due to metastable hindrance is likely to cause particular difficulties, because of possible strong non-linear feedback loops between strain-rate and change of creep properties during transformation. In order to get these nanoscale properties included into thermo-mechanical models, reliable kinetic data is required. The measurement of grain-boundary energies is, however, a rather difficult problem. Conventional methods of grain boundary surface tension measurement include (a) equilibrium angles at triple junction (b) rotating ball method (c) thermal groove method, and others (Gottstein & Shvindlerman, 1999). Here I suggest a new method that allows for the derivation of grain-boundary energies for an isochemical phase transformation based on experimental (in-situ) kinetic data in combination with a corresponding dynamic scaling law (Riedel and Karato, 1997). The application of this method to the olivine-spinel phase transformation in subducting slabs provides a solution to the extrapolation problem of measured kinetic data: Any kinetic phase boundary measured at the laboratory time scale can be "scaled" to the correct critical isotherm at subduction zones, under experimentelly "forbidden" conditions (Liou et al., 2000). Consequences for the metastability hypothesis that relates deep seismicity with olivine metastability are derived and discussed. References: Gottstein G, Shvindlerman LS (1999

  5. Differences in the microstructure and rheological properties of low-fat yoghurts from goat, sheep and cow milk.

    Science.gov (United States)

    Nguyen, Hanh T H; Afsar, Saeedeh; Day, Li

    2018-06-01

    Goat and sheep milks have long been used to produce a range of dairy products due to their nutritional value and health benefits. Information about the microstructure and rheology of goat and sheep yoghurts, however, is scarce. In this study, the microstructure, texture and rheological properties of cow, goat and sheep yoghurts were investigated and compared. The results show that a longer fermentation and gelation time was required for goat yoghurt with a lower storage modulus compared to cow and sheep yoghurts. Cooling resulted in an increase in the storage modulus at different magnitudes for cow, goat and sheep yoghurts. Goat yoghurt had a smaller particle size and a softer gel, which is linked with a more porous microstructure. The results obtained here demonstrate the effect of different milk types on the properties of yoghurts and provide a better understanding into the link between the microstructure and physical properties of the product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Mechanical and rheological properties of the bionanocomposites of biope/organoclay vermiculite

    International Nuclear Information System (INIS)

    Hanken, R.B.L.; Agrawal, P.; Oliveira, A.D.B.; Melo, T. J. A.

    2014-01-01

    Bionanocomposites of green polyethylene with organic vermiculite were prepared by melt intercalation method. Rheological and mechanical properties of these bionanocomposites were studied. The clay was treated with a quaternary ammonium salt, characterized by infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results showed the incorporation of salt in clay. The bionanocomposites were then prepared by extrusion followed by injection, in amounts of 0.5 to 5 phr of clay in the final compound. Subsequently, the samples were characterized by: capillary rheometer and mechanical tests (tensile and impact). Capillary rheometer results showed that the presence of organic vermiculite in the green polyethylene decreased viscosity of the systems. The mechanical properties of bionanocomposites showed an increased elastic modulus and reduced impact resistance. (author)

  7. Rheological measurements on cement grouts

    International Nuclear Information System (INIS)

    Dalton, M.J.

    1986-06-01

    This report describes the techniques which have been developed at Winfrith for assessing the rheological properties of cement grouts. A discussion of the theory of rheology and its application to cement is given and the methodology for calibrating a special paddle measuring system for a commercial viscometer is described. The use of the system for determining flow curves, equilibrium viscosity, viscosity as a function of shearing time and structure changes is also discussed. (author)

  8. Mechanical, Rheological and Thermal Properties of Polystyrene/1-Octadecanol Modified Carbon Nanotubes Nanocomposites

    KAUST Repository

    Amr, Issam Thaher

    2014-09-04

    The results of the studies on the functionalization of multi-walled carbon nanotubes (MWCNT) with 1-octadecanol and its usage as reinforcing filler in the bulk polymerization of styrene are reported in this article. Both unmodified and modified CNTs were utilized in different loadings, however, without any initiator. The resulting composites were characterized by using mechanical testing, differential scanning calorimetry, thermogravimetric analysis and melt rheology. The tensile tests show the addition of 0.5wt% of CNT-C18 results in 19.5% increment of Young\\'s modulus. The DSC study shows a decrease in T-g values of prepared PS/CNT nanocomposite. The rheological study was conducted at 190 degrees C and shows that addition of pure CNT increased the viscoelastic behavior of the PS matrices, while the CNT-C18 act as plasticizer. Thermogravimetric analysis shows that the incorporation of CNT into PS enhanced the thermal properties significantly.

  9. Influence of the dosing process on the rheological and microstructural properties of a bakery product

    NARCIS (Netherlands)

    Baixauli, R.; Sanz, T.; Salvador, A.; Fisman, S.M.

    2007-01-01

    This study examined the effect of the use of an automatic dosing unit on the rheological, microstructural, and textural properties of an aerated batter for preparing a bakery product. Two cases were studied: in one the batter was dosed manually into the paper cups and in the other the batter was

  10. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    International Nuclear Information System (INIS)

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-01-01

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy's Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  11. Rheological Characterization of Unusual DWPF Slurry Samples

    International Nuclear Information System (INIS)

    Koopman, D. C.

    2005-01-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  12. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets

    Science.gov (United States)

    2014-01-01

    In the present study, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water. The concentrations of nanofluids were maintained at 0.025, 0.05, 0.075, and 0.1 wt.% for three different specific surface areas of 300, 500, and 750 m2/g. Transmission electron microscopy image shows that the suspensions are homogeneous and most of the materials have been well dispersed. The stability of nanofluid was investigated using a UV-visible spectrophotometer in a time span of 600 h, and zeta potential after dispersion had been investigated to elucidate its role on dispersion characteristics. The rheological properties of GNP nanofluids approach Newtonian and non-Newtonian behaviors where viscosity decreases linearly with the rise of temperature. The thermal conductivity results show that the dispersed nanoparticles can always enhance the thermal conductivity of the base fluid, and the highest enhancement was obtained to be 27.64% in the concentration of 0.1 wt.% of GNPs with a specific surface area of 750 m2/g. Electrical conductivity of the GNP nanofluids shows a significant enhancement by dispersion of GNPs in distilled water. This novel type of nanofluids shows outstanding potential for replacements as advanced heat transfer fluids in medium temperature applications including solar collectors and heat exchanger systems. PMID:24410867

  13. Physical and rheological properties of Titanium Dioxide modified asphalt

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Chong, Ai Ling; Haini, Rosli; Khatijah Abu Bakar, Siti

    2018-03-01

    Titanium Dioxide (TiO2) has been known as a useful photocatalytic material that is attributed to the several characteristics includes high photocatalytic activity compared with other metal oxide photocatalysts, compatible with traditional construction materials without changing any original performance. This study investigates the physical and rheological properties of modified asphalt with TiO2. Five samples of asphalt with different concentration of TiO2 were studied, namely asphalt 2%, 4%, 6% 8% and 10% TiO2. The tests includes are penetration, softening point, ductility, rotational viscosity and dynamic shear rheometer (DSR) test. From the results of this study, it is noted that addition of TiO2 has significant effect on the physical properties of asphalt. The viscosity tests revealed that asphalt 10% TiO2 has good workability among with reducing approximately 15°C compared to base asphalt. Based on the results from DSR measurements, asphalt 10% TiO2 has reduced temperature susceptibility and increase stiffness and elastic behaviour in comparison to base asphalt. As a result, TiO2 can be considered to be an additive to modify the properties of asphalt.

  14. Melt rheology and its applications in the plastics industry

    CERN Document Server

    Dealy, John M

    2013-01-01

    This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that wil...

  15. Effects of Pressure, Temperature, Treatment Time, and Storage on Rheological, Textural, and Structural Properties of Heat-Induced Chickpea Gels

    Directory of Open Access Journals (Sweden)

    María Dolores Alvarez

    2015-04-01

    Full Text Available Pressure-induced gelatinization of chickpea flour (CF was studied in combination with subsequent temperature-induced gelatinization. CF slurries (with 1:5 flour-to-water ratio and CF in powder form were treated with high hydrostatic pressure (HHP, temperature (T, and treatment time (t at three levels (200, 400, 600 MPa; 10, 25, 50 °C; 5, 15, 25 min. In order to investigate the effect of storage (S, half of the HHP-treated CF slurries were immediately analyzed for changes in oscillatory rheological properties under isothermal heating at 75 °C for 15 min followed by cooling to 25 °C. The other half of the HHP-treated CF slurries were refrigerated (at 4 °C for one week and subsequently analyzed for changes in oscillatory properties under the same heating conditions as the unrefrigerated samples. HHP-treated CF in powder form was analyzed for changes in textural properties of heat-induced CF gels under isothermal heating at 90 °C for 5 min and subsequent cooling to 25 °C. Structural changes during gelatinization were investigated using microscopy. Pressure had a more significant effect on rheological and textural properties, followed by T and treatment t (in that order. Gel aging in HHP-treated CF slurries during storage was supported by rheological measurements.

  16. Performances of screen-printing silver thick films: Rheology, morphology, mechanical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jung-Shiun; Liang, Jau-En; Yi, Han-Liou [Department of Chemical Engineering, National Chung Cheng University, Chia Yi 621, Taiwan, ROC (China); Chen, Shu-Hua [China Steel Corporation, Kaohsiung City 806, Taiwan, ROC (China); Hua, Chi-Chung, E-mail: chmcch@ccu.edu.tw [Department of Chemical Engineering, National Chung Cheng University, Chia Yi 621, Taiwan, ROC (China)

    2016-06-15

    Numerous recent applications with inorganic solar cells and energy storage electrodes make use of silver pastes through processes like screen-printing to fabricate fine conductive lines for electron conducting purpose. To date, however, there have been few studies that systematically revealed the properties of the silver paste in relation to the mechanical and electronic performances of screen-printing thick films. In this work, the rheological properties of a series of model silver pastes made of silver powders of varying size (0.9, 1.3, and 1.5 μm) and shape (irregular and spherical) were explored, and the results were systematically correlated with the morphological feature (scanning electron microscopy, SEM) and mechanical (peeling test) and electronic (transmission line method, TLM) performances of screen-printing dried or sintered thick films. We provided evidence of generally intimate correlations between the powder dispersion state in silver pastes—which is shown to be well captured by the rheological protocols employed herein—and the performances of screen-printing thick films. Overall, this study suggests the powder dispersion state and the associated phase behavior of a paste sample can significantly impact not only the morphological and electronic but also mechanical performances of screen-printing thick films, and, in future perspectives, a proper combination of silver powders of different sizes and even shapes could help reconcile quality and stability of an optimum silver paste. - Highlights: • Powder dispersion correlates well with screen-printing thick film performances. • Rheological fingerprints can be utilized to fathom the powder dispersion state. • Good polymer-powder interactions in the paste ensure good powder dispersion. • Time-dependent gel-like viscoelastic features are found with optimum silver pastes. • The size and shape of functional powder affect the dispersion and film performances.

  17. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    Science.gov (United States)

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.

  18. Rheological and mechanical properties of polyamide 6 modified by electron-beam initiated mediation process

    International Nuclear Information System (INIS)

    Shin, Boo Young; Kim, Jae Hong

    2015-01-01

    Polyamide (PA6) has been modified by electron-beam initiated mediator process to improve drawbacks of PA6. Glycidyl methacrylate (GMA) was chosen as a reactive mediator for modification process of PA6. The mixture of the PA6 and GMA was prepared by using a twin-screw extruder, and then the mixture was exposed to electron-beam irradiation at various doses at room temperature. The modified PA6 were characterized by observing rheological and mechanical properties and compared virgin PA6. Thermal properties, water absorption, and gel fraction were also investigated. Tight gel was not found even when PA6 was irradiated at 200 kGy. Complex viscosity and storage modulus of PA6 were remarkably increased by electron-beam irradiation with medium of GMA. Maximum increase in complex viscosity was 75 times higher than virgin PA6 at 0.1 rad/s when it was irradiated at 200 kGy with the GMA. Mechanical properties were also improved without scarifying of processability. The reaction mechanisms for the mediation process with the reactive mediator of GMA were estimated to elucidate the cause of significantly enhanced rheological and mechanical properties without loss of thermoplasticity. - Highlights: • PA6 was modified by the electron-beam initiated mediation process. • Maximum increase in complex viscosity of modified PA6 was 75 times higher than virgin PA6 at 0.1 rad/s. • Mechanical properties were improved without scarifying of processability. • The GMA as a mediator played a key role in the electron-beam initiated mediation process

  19. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni.

    Science.gov (United States)

    Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha

    2016-02-01

    Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity. © 2016 Institute of Food Technologists®

  20. Effect of Some Biopolymers on the Rheological Behavior of Surimi Gel

    Directory of Open Access Journals (Sweden)

    Takahiro Noda

    2012-05-01

    Full Text Available The objective of this study was to investigate the effect of selected biopolymers on the rheological properties of surimi. In our paper, we highlight the functional properties and rheological aspects of some starch mixtures used in surimi. However, the influence of some other ingredients, such as cryoprotectants, mannans, and hydroxylpropylmethylcellulose (HPMC, on the rheological properties of surimi is also described. The outcome reveals that storage modulus increased with the addition of higher levels of starch. Moreover, the increasing starch level increased the breaking force, deformation, and gel strength of surimi as a result of the absorption of water by starch granules in the mixture to make the surimi more rigid. On the other hand, the addition of cryoprotectants, mannans, and HPMC improved the rheological properties of surimi. The data obtained in this paper could be beneficial particularly to the scientists who deal with food processing field.

  1. Properties of starch-polyglutamic acid (PGA) graft copolymer prepared by microwave irradiation - Fourier transform infrared spectroscopy (FTIR) and rheology studies

    Science.gov (United States)

    The rheological properties of waxy starch-'-polygutamic acid (PGA) graft copolymers were investigated. Grafting was confirmed by FTIR spectroscopy. The starch-PGA copolymers absorbed water and formed gels, which exhibited concentration-dependent viscoelastic solid properties. Higher starch-PGA conce...

  2. Rheological, pasting, thermal and retrogradation properties of octenyl succinic anhydride modified potato starch

    Directory of Open Access Journals (Sweden)

    Chuin WON

    Full Text Available Abstract The objective of the present study was to investigate the rheological, pasting, and thermal properties of octenyl succinic anhydrate (OSA-modified potato starch. Potato starch was modified using different concentrations of OSA (0, 1, 3, and 5%, v/v. The degree of substitution (DS for the OSA-modified starch ranged from 0.0012 to 0.0055. The amylose leaching values of native and OSA-modified potato starch with different DS levels were in the range of 47.09-87.32%. The gel strength values of the OSA-modified starch were lower than those of native potato starch. Rapid Visco Analyzer data showed that peak, hot pasting, final and setback viscosities of the native starch decreased after OSA modification. Dynamic shear rheological tests, conducted at 4 °C, indicated that OSA-modified potato starch had weak gel-like behavior with the storage moduli (G' higher than the loss moduli (G” over most of the frequency ranges (0.63-63.8 rad·s-1.

  3. Nutritional, functional and rheological properties of processed sorghum and ragi grains

    Directory of Open Access Journals (Sweden)

    Himadri Mahajan

    2015-12-01

    Full Text Available This study was undertaken to determine the effect of different treatments such as roasting, puffing and germination of white sorghum, red sorghum and ragi grains on physicochemical, antioxidant, protein, amylose, bulk density, colour index and rheological properties of respective flour. In case of ragi, after roasting treatment, total phenolic content (TPC content for flour was increased from 0.331 ± 0.001 to 0.373 ± 0.004 mg of gallic acid equivalents per gram of dry sample. However, total flavonoids content was also increased slightly after different processing treatments. The rheological properties of respective flour were studied using Chopin Mixolab, where wheat flour dough profile acts as a reference to study the effect of different treatments. Dough elasticity which is expressed by the values of amplitude (Nm was found to be low in case of untreated flour as compared to wheat flour dough. Elasticity values of untreated flour such as white sorghum, red sorghum and ragi were 0.02, 0.00 and 0.06 Nm, respectively. Whereas, after processing treatments, values of elasticity for roasted flour dough of white sorghum, puffed flour dough of red sorghum and roasted flour dough of ragi increased to 0.36, 0.11 and 0.15 Nm, respectively, as compared to wheat flour dough of 0.10 Nm. The results found that roasted ragi flour had higher rate of starch gelatinization, lower starch retrogradation, high antioxidant and amylose contents which were found to be prospective ingredients in whole wheat flour in various baked and fermented food applications.

  4. Effects of the incorporation of cantaloupe pulp in yogurt: Physicochemical, phytochemical and rheological properties.

    Science.gov (United States)

    Kermiche, F; Boulekbache-Makhlouf, L; Félix, M; Harkat-Madouri, L; Remini, H; Madani, K; Romero, A

    2018-01-01

    The therapeutic effects of cantaloupe are of great interest for the development of functional foods such as yogurt. In this study a new dairy product has been formulated by enriching natural yogurt with fruit cantaloupe (yogurt with cantaloupe puree, yogurt with dry cantaloupe and yogurt with dry cantaloupe and cantaloupe puree). Thus, composition (moisture, ash, lipids, proteins), including amino acid contents, lactic flora as well as rheological (viscoelasticity, viscosity) property of cantaloupe yogurt and natural yogurt is assessed. In addition, pH value, water holding capacity and antioxidant activity (reducing power) are measured over refrigerated storage time. There are significant differences between natural yogurt and cantaloupe yogurt in almost all parameters. The results show that the pH decreases during the storage period and the antioxidant activity as well as the water holding capacity are more remarkable in the yogurt with dry cantaloupe at the 14th and the 28th day of storage, respectively. The addition of cantaloupe in natural yogurt ameliorates the load of lactic flora and modifies the rheological property of the new products. The results of the current study show that the addition of cantaloupe to yogurt significantly improved its quality.

  5. Review Of Rheology Models For Hanford Waste Blending

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Stone, M.

    2013-09-26

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to

  6. Effect of addition of different hydrocolloids on pasting, thermal, and rheological properties of cassava starch

    Directory of Open Access Journals (Sweden)

    Tatiana Dias Leite

    2012-09-01

    Full Text Available Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG, sodium carboxymethyl cellulose (SCMC, and carrageenan (CAR at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP and the scanning electron microscopy (SEM of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G", respectively modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G", respectively modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.

  7. Effect of pulsed electric field and pasteurisation treatments on the rheological properties of mango nectar (Mangifera indica

    Directory of Open Access Journals (Sweden)

    S. S. Manjunatha

    2015-01-01

    Full Text Available The rheological behaviour of pulsed electric field (PEF processed and thermally pasteurised mango nectar (Mangifera indica was evaluated using controlled stress rheometer. The mango nectar was subjected to pulsed electric field (PEF as well as thermal processing. The rheological parameter shear stress was measured up to the shear rate of 750 s-1 using co-axial cylinder attachment at wide range of temperatures from 10 to 70 °C. The investigation showed that pulsed electric field (PEF processed and thermally pasteurised mango nectar behaved like a pseudo plastic (shear thinning fluid and obeyed Herschel-Bulkley model (0.9780 0.893, p < 0.05 and flow activation energy (Ea was significantly (p < 0.05 affected by processing conditions. The results indicated that the pulsed electric field (PEF and thermal processing condition has affected the rheological properties of mango nectar. The combined equation relating to shear stress (τ with temperature and shear rate of mango nectar was established.

  8. Evaluation of rheological and thermic properties of neat and modified asphalt with a waste of LDPE

    Directory of Open Access Journals (Sweden)

    William Andrés Castro López

    2016-01-01

    Full Text Available Context: The asphalt technology and modified asphalt mixtures has been widely used and studied, worldwide. Adding polymers to asphalt modifies mechanical, chemical and rheological properties, trying to improve behavior of the mixtures subjected to different environmental and load conditions. The paper report results from rheological and thermal characterization on conventional 60-70 asphalt cement and 60-70 asphalt cement modified by introducing a waste of low density polyethylene (LDPE. Method: Modification of the asphalt was performed by wet way in a proportion of LDPE/CA=5% with respect to the mass. Rheological (using DSR, Thermogravimetry (TGA and Differential Scanning Calorimetry (DSC techniques were performed. Results and Conclusions: The modified asphalt develops a remarkable increase in stiffness and improvement of the performance grade at high temperatures of service. Additionally, the modified asphalt is more resistant to oxidation and aging processes due to heat. However, the asphalt modified showed a decrease in crack resistance at low and intermediate temperatures of service.

  9. Rheological properties of purified illite clays in glycerol/water suspensions

    Science.gov (United States)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  10. Influence of Graphene Nanosheets on Rheology, Microstructure, Strength Development and Self-Sensing Properties of Cement Based Composites

    Directory of Open Access Journals (Sweden)

    Sardar Kashif Ur Rehman

    2018-03-01

    Full Text Available In this research, Graphene oxide (GO, prepared by modified hammer method, is characterized using X-ray Diffraction (XRD, Fourier Transform Infrared (FT-IR Spectrometry and Raman spectra. The dispersion efficiency of GO in aqueous solution is examined by Ultraviolet–visible spectroscopy and it is found that GO sheets are well dispersed. Thereafter, rheological properties, flow diameter, hardened density, compressive strength and electrical properties of GO based cement composite are investigated by incorporating 0.03% GO in cement matrix. The reasons for improvement in strength are also discussed. Rheological results confirm that GO influenced the flow behavior and enhanced the viscosity of the cement based system. From XRD and Thermogravimetric Analysis (TGA results, it is found that more hydration occurred when GO was incorporated in cement based composite. The GO based cement composite improves the compressive strength and density of mortar by 27% and 1.43%, respectively. Electrical properties results showed that GO–cement based composite possesses self-sensing characteristics. Hence, GO is a potential nano-reinforcement candidate and can be used as self-sensing sustainable construction material.

  11. Steady-shear rheological properties of graphene-reinforced epoxy resin for manufacturing of aerospace composite films

    Science.gov (United States)

    Clausi, Marialaura; Santonicola, M. Gabriella; Laurenzi, Susanna

    2016-05-01

    The aim of this work is to analyze the steady-shear rheological behavior and the absolute viscosity of epoxy matrix reinforced with graphene nanoplatelets (xGnP) before cure. Three different grades of xGnP (grades C, M and H) were dispersed homogenously at different weight percentages (wt%) into the epoxy matrix, ranging from 0.5 to 5 wt%. It is found that nanocomposite fluids with xGnP-C exhibit a Newtonian behavior at shear rate in the range 0.1-100 s-1, conversely, nanocomposite fluids with xGnP of grade M and H exhibit a shear-thinning behavior with the increase of nanoplatelet loading. Results from this analysis indicate how the steady shear rheological properties of the nano-reinforced polymer fluids depend on the geometrical characteristics of the graphene nanoplatelets.

  12. Initial rheological description of high performance concretes

    Directory of Open Access Journals (Sweden)

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  13. Rheological and microstructural properties of beef sausage batter formulated with fish fillet mince.

    Science.gov (United States)

    Hashemi, Ala; Jafarpour, Ali

    2016-01-01

    Rheological properties and microstructure of beef meat sausage batter, incorporated with different percentages of fish fillet mince (5 %, 20 %, 35 % and 50 %), were investigated and compared to the control (0 % fish). By increasing the proportion of fish fillet mince to the sausage formula up to 35 % and 50 %, hardness was increased by 40 % and 16 %, respectively, (P  0.05). In terms of temperature sweep test, storage modulus (G') of control sample faced a substantial slop from 10 °C to 58 °C, corresponding to the lowest magnitude of G' at its gelling point (~58°), but completed at around 70 °C, as same as the other treatments. Whereas the gelling point of batter sample with 50 % fish mince remained at nearly 42 °C, which was remarkably lowest among all treatments, indicating the better gel formation process. SEM micrographs revealed a previous orderly set gel before heating in all treatments whereas after heating up to 90 °C gel matrices became denser with more obvious granular pattern and aggregated structure, specifically in sample with 50 % fish mince. In conclusion, addition of fish mince up to 50 % into beef sausage formula, positively interacted in gel formation process, without diminishing its rheological properties.

  14. What About the Rheological Properties of PRP/Microfat Mixtures in Fat Grafting Procedure?

    Science.gov (United States)

    Ghazouane, R; Bertrand, B; Philandrianos, C; Veran, J; Abellan, M; Francois, P; Velier, M; Orneto, C; Piccerelle, P; Magalon, J

    2017-10-01

    Fat grafting has emerged as a reference procedure in daily plastic surgery practice. Unpredictable fat resorption is the main clinical problem. For this purpose, the addition of PRP to enhance fat revascularization is now an easy and popular procedure. However, no consensus exists regarding the respective volume of fat and PRP used to obtain the ideal mixture. This study investigated the rheological properties of microfat mixed with different proportions of PRP. Results obtained were compared with commercialized hyaluronic acid fillers. Microfat and PRP preparations were performed using standardized techniques. Lipoaspirate residue and blood were obtained from six patients undergoing aesthetic facial microlipofilling. Elastic modulus G' and tan δ (proportion of elasticity versus fluidity) were obtained for the following conditions: microfat alone and microfat mixed with 10, 30 or 50% of PRP. An expected decrease in elastic modulus was observed by adding increase volumes of PRP. Two groups of products with different rheological properties were considered based on statistical differences highlighted regarding the value of G'. Mean tan δ varied from 0.20 ± 0.04 (microfat alone) to 0.28 ± 0.08 (50% microfat/50% PRP). Microfat mixed with 10% of PRP presents consistency comparable to stiffer fillers, whereas microfat mixed with 30 or 50% corresponds to softer fillers. Rheological differences were highlighted given the proportion of PRP added to the microfat. Further studies assessing the impact of increased doses of platelets in microfat/PRP mixtures on clinical outcomes should also be investigated. Our findings will help clinicians to choose a mixture that meets their specific needs for a given indication. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  15. Biodegradable compounds: Rheological, mechanical and thermal properties

    Science.gov (United States)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  16. Oxidizing gel formulation for nuclear decontamination: rheological and acidic properties of the organic matrix and its ozonolysis

    International Nuclear Information System (INIS)

    Rouy, E.

    2003-10-01

    An acidic and oxidizing gel was formulated with a purely organic matrix, xanthan gum, at low concentrations (1 to 2 wt %). This polymer gel was investigated in various media (aqueous, acidic and ceric) by means of rheology: shear thinning behaviour, thixotropy, yield stress... Evidences of unexpected rheological properties in highly concentrated media show that xanthan is quite convenient for industrial projection of this type of gel on metallic walls in nuclear plants, notwithstanding its time-limited resistance to oxidation (about a few hours). Complexation mechanisms between ceric species and polar sites of the polymer led us to characterise acidic properties of our xanthan sample by potentiometric titration and 1 H NMR techniques. The matrix was finally treated by ozonolysis to suppress organic residues, as required to handle nuclear wastes. In acidic medium, ozonolysis of the gel was achieved successfully while in acidic and ceric medium this process showed limited efficiency, needing further investigation to be clarified. (author)

  17. Effect of Extrusion on the Mechanical and Rheological Properties of a Reinforced Poly(Lactic Acid): Reprocessing and Recycling of Biobased Materials.

    Science.gov (United States)

    Peinado, Víctor; Castell, Pere; García, Lidia; Fernández, Ángel

    2015-10-19

    The aim of this research paper is to study the behaviour of a common used biopolymer (Poly(Lactic Acid) (PLA)) after several reprocesses and how two different types of additives (a melt strength enhancer and a nanoadditive) affect its mechanical and rheological properties. Systematic extraction of extrudate samples from a twin-screw compounder was done in order to study the effect in the properties of the reprocessed material. Detailed rheological tests on a capillary rheometer as well as mechanical studies on a universal tensile machine after preparation of injected specimens were carried out. Results evidenced that PLA and reinforced PLA materials can be reprocessed and recycled without a remarkable loss in their mechanical properties. Several processing restrictions and specific phenomena were identified and are explained in the present manuscript.

  18. Effect of modified cassava starch on the rheological and quality properties of a dairy beverage prepared with sweet whey

    Directory of Open Access Journals (Sweden)

    Paola Catalina IMBACHÍ-NARVÁEZ

    2018-03-01

    Full Text Available Abstract The effect of sweet whey and octenyl succinic anhydride (OSA-modified cassava starch on the quality and rheological properties of fermented dairy beverages was evaluated. Sweet whey (45-65% and OSA-modified cassava starch (0.8-1.2% were added to determine an optimal fermented dairy beverage with the highest viscosity and the lowest syneresis possible. The optimal fermented dairy beverage corresponded to the addition of 40.9% sweet whey and 1.13% OSA-modified cassava starch with respect to the milk and sweet whey mixture. Moreover, the rheological and quality properties of the optimal fermented dairy beverage were compared to a commercial beverage (control during 22 days of storage. No significant differences were found in soluble solids, acidity, pH and consistency index during the time evaluated, while the syneresis of both products showed an increase during storage. OSA-modified cassava starch can be used as a stabiliser in sweet whey fermented dairy beverages because it helps improve its quality properties.

  19. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  20. Effect of the addition of hydrocolloids on the rheological and baking properties of the products with added spelt flour (Triticum spelta L.

    Directory of Open Access Journals (Sweden)

    Tatiana Bojňanská

    2016-01-01

    Full Text Available The paper presents the results of the evaluation of the effect of additives on the rheological properties of composite flour made of wheat flour in the amount of 70% and spelt flour at 30%. As additives guar gum (0.5% by weight of flour and xanthan gum (0.16% by weight of flour were used. Properties of produced control dough and doughs with hydrocolloids were evaluated by means of rheological appliances by Farinograph, Extenzograph, Amylograph and Rheofermentometer. Based on the observed results it can be concluded that the addition of xanthan gum has a positive effect on increasing of farinographic water absorption capacity, extension of dough development time and dough stability and generally positively affected farinographic properties. The addition of guar gum has improved especially extensographic properties as extensographic energy and extensographic resistance. Based on amylographic evaluation of control doughs and doughs with additives it can be stated that in the dough with guar gum the amylographic maximum has slightly increased. Hydrocolloid guar gum contributed to an increased retention capacity of dough observed. Based on our measurements we can indicate that addition of guar and xanthan gum contributed to an increased rheological quality of doughs prepared with addition of flour from spelt wheat. With reference to the baking experiment it was found that the use of hydrocolloids has a positive effect on the improvement of the baking properties, in particular larger volume, specific volume, and the volume yield of the dough with the addition of guar and xanthan gum compared to the control. Our results showed that aditives significantly influenced rheological qualities of dough and a baking quality of products. These findings thus allow optimizing the recipe in order to increase the technological quality of leavened bakery products.

  1. Nonlocal rheological properties of granular flows near a jamming limit.

    Science.gov (United States)

    Aranson, Igor S; Tsimring, Lev S; Malloggi, Florent; Clément, Eric

    2008-09-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  2. Rheological and technological properties of zirconium suspensions stabilized with various amounts of calcium oxide

    International Nuclear Information System (INIS)

    Shulik, I.G.; Usatikov, I.F.; Alekseenko, A.S.

    1987-01-01

    A complex research of properties of zirconium dioxide-based suspensions with various amounts of calcium oxide up to calcium zirconate is carried out. Aqueous suspensions are used when preparing a complex form of ZrO 2 -based ceramics by the method of slip casting. Phase composition effect on the nature of rheologic curves ie found. The role of organic alcohol additions in the improvement of suspension flowability and reduction of casting porosity is noted

  3. The effect of measuring procedure on the apparent rheological properties of self-compacting concrete

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Bradl, M.; Thrane, L.N.

    2002-01-01

    Torque versus time during testing of the rheological properties of fresh concrete has been investigated. The testing was performed in a BML viscometer and on a self-compacting concrete (w/c = 0.45, 70% rapid hardening Portland cement, 3% silica fume, 27% fly ash, third generation superplasticizer......, lack of steady state may explain the apparent shear-thickening behaviour of self-compacting concrete reported elsewhere. (C) 2002 Elsevier Science Ltd. All rights reserved....

  4. Extraction, chemical composition, rheological behavior, antioxidant activity and functional properties of Cordia myxa mucilage.

    Science.gov (United States)

    Dokht, Shaghayegh Keshani; Djomeh, Zahra Emam; Yarmand, Mohammad Saeid; Fathi, Morteza

    2018-06-14

    This paper aims to investigate chemical composition, rheological behavior, antioxidant activity and functional properties of Cordia myxa mucilage (CMM). Response surface methodology (RSM) demonstrated that optimum conditions for CMM extraction were as follow: ultrasound power of 99.37 W, extraction temperature of 88.05 °C and solid to water ratio of 16.25 w/w. CMM had, on average, 77.51% carbohydrate, 5.86% total ash, 8.90% protein, 6.90% moisture, and 1.00% fat. Due to a high level of nutrients, CMM can be suggested as a value added by-product in food and pharmaceutical systems. CMM is a low molecular weight polysaccharide containing three fractions with various molecular weights. FT-IR spectrum illustrated that this polymer had all typical bands and peaks characteristics of polysaccharides. Based on steady shear measurements, CMM can be introduced as a new source of hydrocolloid with high-temperature stability. CMM had the desirable antiradical capacity, water solubility and water/oil holding capacity. Copyright © 2017. Published by Elsevier B.V.

  5. Surface Properties of Squalene/Meibum Films and NMR Confirmation of Squalene in Tears

    Directory of Open Access Journals (Sweden)

    Slavyana Ivanova

    2015-09-01

    Full Text Available Squalene (SQ possesses a wide range of pharmacological activities (antioxidant, drug carrier, detoxifier, hydrating, emollient that can be of benefit to the ocular surface. It can come in contact with human meibum (hMGS; the most abundant component of the tear film lipid layer as an endogenous tear lipid or from exogenous sources as eyelid sebum or pharmaceuticals. The aims of this study were to determine (i if SQ is in tear lipids and (ii its influence on the surface properties of hMGS films. Heteronuclear single quantum correlation NMR confirmed 7 mol % SQ in Schirmer’s strips extracts. The properties of SQ/hMGS pseudo-binary films at the air/water interface were studied with Langmuir surface balance, stress-relaxation dilatational rheology and Brewster angle microscopy. SQ does not possess surfactant properties. When mixed with hMGS squalene (i localized over the layers’ thinner regions and (ii did not affect the film pressure at high compression. Therefore, tear SQ is unlikely to instigate dry eye, and SQ can be used as a safe and “inert” ingredient in formulations to protect against dry eye. The layering of SQ over the thinner film regions in addition to its pharmacological properties could contribute to the protection of the ocular surface.

  6. Effect of sucrose and pectin addition on physical, chemical, thermal and rheological properties of frozen/thawed pineapple pulps

    Science.gov (United States)

    Conceição, Márcia Cavalcante; Fernandes, Tatiana Nunes; Prado, Mônica Elisabeth Torres; de Resende, Jaime Vilela

    2012-09-01

    Pectin (0-1.0 g/100 mL) and sucrose (0-20 g/100 mL) were added to pineapple pulp to improve their rheological properties, thermal properties and stability after freezing and thawing processes. The properties of the mixes were characterized before and after freezing and thawing. Samples were frozen at -20°C, and the freeze concentration was evaluated every 60 min. The thawing rate was evaluated at 19°C and quantified by photographic editing and image analysis software. The thawing rates and values for the freeze concentration were leveled out at pectin concentrations above 0.5 g/100 mL pectin, which indicated that pectin functions to maintain structural homogeneity during freezing. In the thawed samples, the plastic viscosity values were leveled out from pectin concentrations (0.25-0.75 g/100 mL) as the sucrose concentration increased when compared to unfrozen samples. The differences between the rheological parameters of the unfrozen and frozen/thawed pulps, the higher yield stress values after thawing were attributed to the size of suspended particles in the pulp. Applications can specify formulations of frozen products containing pectin, where these properties can be handled after thawing the product.

  7. Influence of Specific Surface of Lignite Fluidal Ashes on Rheological Properties of Sealing Slurries / Wpływ Powierzchni Właściwej Popiołów Fluidalnych z Węgla Brunatnego na Właściwości Reologiczne Zaczynów Uszczelniających

    Science.gov (United States)

    Stryczek, Stanisław; Wiśniowski, Rafał; Gonet, Andrzej; Złotkowski, Albert

    2012-11-01

    New generation fly ashes come from the combustion of coal in fluid-bed furnaces with simultaneous sulphur-removal from gases at ca. 850°C. Accordingly, all produced ashes basically differ in their physicochemical properties from the traditional silica ones. The aim of the laboratory analyses was determining the influence of specific surface and granular composition of fluidal ash on rheological properties of slurries used for sealing up the ground and rock mass media with hole injection methods, geoengineering works and cementing casing pipes in deep boreholes. Fluidal ash from the combustion of lignite contain active Puzzolan appearing in the form of dehydrated clayey minerals and active components activating the process of hydration ashes, i.e. CaO, anhydrite II and CaCO3. The ashes have a weak point, i.e. their high water diment, which the desired rheological properties related with the range of their propagation in the rock mass cannot not be acquired for injection works in the traditional sealing slurries technology. Increasing the water-to-mixture ratio should eliminate this feature of fluidal ashes. Laboratory analyses were performed for slurries based on metallurgical cement CEM III/A 32,5 having water-to-mixture ratios: 0.5; 0.6 ; 0.7 and 0.8; the fluidal ash concentration in the slurries was 30 wt.% (with respect to the mass of dry cement). Basing on the obtained results there were determined optimum recipes of sealing slurries in view of their rheological parameters which could be applied both in drilling technologies (cementing casing pipes, closing of boreholes, plugging) and in geoengineering works related with sealing up and reinforcing ground and rock mass media.

  8. Nonlinear Viscoelastic Rheology and the Occurrence of Aftershocks

    Science.gov (United States)

    Shcherbakov, R.; Zhang, X.

    2017-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. There are compelling evidences that the lower continental crust and upper mantle are governed by various solid state creep mechanisms. Among those mechanisms a power-law viscous flow was suggested to explain the postseismic surface deformation after large earthquakes. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle controls the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and mantle, which were estimated

  9. Rheological Properties, Water-Holding and Oil-Binding Capacities of Particulate β-Glucans Isolated from Spent Brewer’s Yeast by Three Different Procedures

    Directory of Open Access Journals (Sweden)

    Vlatka Petravić-Tominac

    2011-01-01

    Full Text Available Particulate β-glucans were isolated from brewer’s yeast using three different procedures – alkaline (A, alkaline-acidic (AA and alkaline-acidic with mannoprotein removal (AAM and dried using three different methods – air drying (AD, lyophilization (L and spray drying (SD. In this work, the obtained β-glucan preparations were tested for their microstructure, rheological properties, swelling, water-holding and oil-binding capacities. According to their rheological properties, suspensions containing 1 and 2 % (by mass of spray-dried samples belong to the category of dilatant fluids. Among the spray-dried samples, rheological behaviour and water-holding capacity of the preparation AA-SD differed from those obtained by other two procedures (A-SD and AAM-SD. Concerning different drying methods applied, swelling was the lowest in the lyophilized samples and the most pronounced in the air-dried ones. Oil-binding capacity was the highest in the lyophilized preparations and increased proportionally to the number of processing steps applied in the isolation procedure.

  10. Rheological behaviour and physical properties of controlled-release gluten-based bioplastics.

    Science.gov (United States)

    Gómez-Martínez, D; Partal, P; Martínez, I; Gallegos, C

    2009-03-01

    Bioplastics based on glycerol, water and wheat gluten have been manufactured in order to determine the effect that mechanical processing and further thermal treatments exert on different thermo-mechanical properties of the biomaterials obtained. An "active agent", KCl was incorporated in these matrices to develop controlled-release formulations. Oscillatory shear, dynamic mechanical thermal analysis (DMTA), diffusion and water absorption tests were carried out in order to study the influence of the above-mentioned treatments on the physico-chemical characteristics and rheological behaviour of these bioplastic samples. Wheat gluten protein-based bioplastics studied in this work present a high ability for thermosetting modification, due to protein denaturation, which may favour the development of a wide variety of biomaterials. Bioplastic hygroscopic properties depend on plasticizer nature and processing procedure, and may be a key factor for industrial applications where water absorption is required. On the other hand, high water absorption and slow KCl release from bioplastic samples (both of them suitable properties in agricultural applications) may be obtained by adding citric acid to a given formulation, at selected processing conditions.

  11. Assessing the microstructural and rheological changes induced by food additives on potato puree.

    Science.gov (United States)

    Dankar, Iman; Haddarah, Amira; El Omar, Fawaz; Sepulcre, Francesc; Pujolà, Montserrat

    2018-02-01

    The effects of agar, alginate, lecithin and glycerol on the rheological properties of commercial potato puree were investigated and interpreted in terms of starch microstructural changes, and the applicability of the Cox-Merz rule was evaluated. Each additive was applied separately at two concentrations (0.5 and 1%). Microscopic observations revealed more swollen starch aggregations in lecithin and glycerol compared with those of potato puree and agar, consequently affecting the rheological properties of potato puree. All samples exhibited shear thinning non-Newtonian behaviour. Rheological measurements were strongly concentration dependent. At 0.5% concentration, additives exerted decreases in all the rheological properties of potato puree in the order of glycerol>alginate>lecithin>agar, while at 1% concentration, the order changed to glycerol>lecithin>alginate, whereas 1% agar behaved differently, increasing all rheological values. This study also showed that agar and alginate in addition to potato puree could be valuable and advantageous for further technological processes, such as 3D printing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of cellulase, xylanase and α-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran.

    Science.gov (United States)

    Liu, Wenjun; Brennan, Margaret Anne; Serventi, Luca; Brennan, Charles Stephen

    2017-11-01

    The present study investigates the effects of α-amylase (6 and 10ppm), xylanase (70 and 120ppm) and cellulase (35 and 60ppm) on the rheological properties of bread dough. The mixing property of dough was measured by using a DoughLAB. The extension and stickiness of dough were analysed using the Texture Analyzer. The results illustrate that the addition of single enzyme and enzyme combinations can increase the extensibility, softening, mixing tolerance index (MTI) and stickiness, whereas decrease the resistance to extension. For water absorption, the addition of single enzyme had no significant effect, while the combination enzyme significantly (pcellulase had a synergetic effect on the dough rheology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of high hydrostatic pressure on rheological and thermophysical properties of murtilla (Ugni molinae Turcz) berries.

    Science.gov (United States)

    Lemus-Mondaca, Roberto; Ah-Hen, Kong; Vega-Gálvez, Antonio; Zura-Bravo, Liliana

    2016-06-01

    Effects of high hydrostatic pressure (HHP) on rheological and thermophysical properties of murtilla berries were evaluated after pressure treatments for 5 min between 100 and 500 MPa. Differential scanning calorimetry was employed to measure specific heat capacity. HHP caused a significant decrease in specific heat and density, while thermal diffusivity did not changed significantly. Thermal conductivity showed a slight increase upon HHP treatment. Apparent viscosity increased significantly above 200 MPa HHP treatment. Apparent viscosity of treated samples between 200 and 400 MPa did not differ significantly and the increase was significant at 500 MPa. Herschel-Bulkley, Bingham and Ostwald de Waele models were used to describe the rheological behaviour of murtilla purée, and Ostwald de Waele model gave the best fit for the experimental data.

  14. Physicochemical, rheological, thermal, and bread making properties of flour obtained from irradiated wheat

    International Nuclear Information System (INIS)

    Singer, Carolina Sobral

    2006-01-01

    Most of the methods that are nowadays used for food preservation derive from old times. Besides these methods, new non-thermal methods have been developed in order to improve food quality during its processing. Irradiation technology has a great contribution potential to improve preservation, storage and distribution of foods. Several studies from international literature have reported the efficiency of irradiation process on microbiological control of grains and their products. Due to the low technological quality of national wheat, Brazil depends on its import. Wheat is the main ingredient of bread which is one of the most important products of Brazilian people's diet. The objective of this work was to study the effect of ionizing radiation on wheat on physicochemical, rheological, and thermal properties of flour produced from this wheat, and consequently, its performance on bread making. All experiments were conducted on laboratory scale. Wheat was submitted to irradiation on different doses (0.0; 0.5; 1.0 and 2.0 kGy) and flour produced underwent physicochemical, rheological, thermal and microbiological analyses. Flour bread making performance was measured through quality of bread. None of the physicochemical, rheological or thermal parameters was influenced by irradiation, with the exception of Falling Number, which decreased significantly with the increase of irradiation dose, indicating the effect of irradiation on wheat starch, and consequently on dough's gelatinization. Bread quality parameters did also not show significant differences, and sensory analysis showed that bread produced from irradiated and non irradiated wheat did not present perceivable flavor. (author)

  15. Analysis and Testing of Chain Characteristics and Rheological Properties for Magnetorheological Fluid

    Directory of Open Access Journals (Sweden)

    Song Chen

    2013-01-01

    Full Text Available Digital holographic microscopy is presented in this study, which can measure the magnetorheological (MR fluid in different volume fractions of particles and different magnetic field strengths. Based on the chain structure of magnetic particle under applied magnetic field, the relationships between shear yield stress, magnetic field, size, and volume fraction of MR fluid in two parallel discs are established. In this experiment, we choose three MR fluid samples to check the rheological properties of MR fluid and to obtain the material parameters with the test equipment of MR fluid; the conclusion is effective.

  16. Rheological evaluation of pretreated cladding removal waste

    International Nuclear Information System (INIS)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid

  17. Rheological properties of traditional balsamic vinegar: New insights and markers for objective and perceived quality

    Directory of Open Access Journals (Sweden)

    Pasquale M. Falcone

    2017-04-01

    Full Text Available The molecular structure of Traditional Balsamic Vinegar (TBV undergoes shear-induced and time-dependent jamming transitions due to the high solute concentration and self-assembling phenomena of high molecular size melanoidins with very-long relaxation times (12 years at least or more than 25. The purpose of this work was to perform a descriptive and quantitativeevaluation of relationships between rheological properties, vinegar composition, and perceptual assessment of sensory properties according to the official sensory procedure. With this aim, vinegars having quality traits matching legal requirements for the PDO designation were analyzed for their reducing sugars (glucose and fructose, volatile acidity, fixed acidity, pH, Brix degree, and density as well as for their flow behaviour and dynamic viscosity over a wide range of shear rates. Results showed that flow behaviour of TBV was affected by jamming properties over wide-scale ranges of shear rate producing flow instability below a shear rate of 60s-1. Homogeneous, continuous flow was found at medium-high shear rates with thickening and/or thinning traits. A common onset for the structure scaling was mathematically estimated to occur close to when the density was 1.32 gmL-1. Comparative analysis of rheological, compositional and sensory properties suggested that the colloidal jamming of the vinegar melanoidins dominated the total olfactive and gustative stimuli, and determined the classification of the vinegars that had a higher dynamic viscosity but more homogeneous flow as being of the highest commercial quality category. A robust statistical model was proposed encoding for the top-down decision-making process for quality assignment according to the official sensory procedure, using composition and flow properties as predictor variables. 

  18. Effects of high hydrostatic pressure on the functional and rheological properties of the protein fraction extracted from pine nuts.

    Science.gov (United States)

    Cao, Baiying; Fang, Li; Liu, Chunlei; Min, Weihong; Liu, Jingsheng

    2018-01-01

    High hydrostatic pressure treatments could increase the protein solubility (200 MPa), water holding capacity (400 MPa), and oil holding capacity (400 MPa) of pine nuts protein fractions, respectively. The exposed sufhydryl content for albumin was highest at 100 MPa while for other fractions it was 400 MPa, contrary for total sufhydryl content-generally it was at 100 MPa, except glutelin (400 MPa). Pine nuts protein fractions demonstrated the typical behavior of weak gels (G' > G″). After the treatments of high hydrostatic pressure the specific surface area of pine nuts protein particle was increased upon pressure, and the surface of protein became rough which increased the particle size. The functional groups of protein were found to be unchanged, but the characteristic peaks of pine nuts protein moved to a low-band displacement and the value of peaks was amplified accordingly to the pressure. The high hydrostatic pressure treatments were found to improve the functional properties of pine nuts protein isolates by enhancing the heat-induced gel strength of pine nuts protein isolates which make proteins more stretchable. These results suggest that high hydrostatic pressure treatments can increase the functional properties and alter the rheological properties of pine nuts protein fractions which will broaden its applications in food industry.

  19. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    Supramolecular polymers are a broad class of materials that include all polymerscapable of associating via secondary interactions. These materials represent an emerging class of systems with superior versatility compared to classical polymers with applications in food stuff, coatings, cost...... efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening...

  20. Rheology for chemists an introduction

    CERN Document Server

    Goodwin, J W

    2008-01-01

    Rheology is primarily concerned with materials: scientific, engineering and everyday products whose mechanical behaviour cannot be described using classical theories. From biological to geological systems, the key to understanding the viscous and elastic behaviour firmly rests in the relationship between the interactions between atoms and molecules and how this controls the structure, and ultimately the physical and mechanical properties. Rheology for Chemists An Introduction takes the reader through the range of rheological ideas without the use of the complex mathematics. The book gives particular emphasis on the temporal behaviour and microstructural aspects of materials, and is detailed in scope of reference. An excellent introduction to the newer scientific areas of soft matter and complex fluid research, the second edition also refers to system dimension and the maturing of the instrumentation market. This book is a valuable resource for practitioners working in the field, and offers a comprehensive int...

  1. Effect of Cationic Surface Modification on the Rheological Behavior and Microstructure of Nanocrystalline Cellulose

    Directory of Open Access Journals (Sweden)

    Yanjun Tang

    2018-03-01

    Full Text Available In the present work, the microstructure and rheological behavior of nanocrystalline cellulose (NCC and cationically modified NCC (CNCC were comparatively studied. The resultant CNCC generally showed improved dispersion and higher thermal stability in comparison to the un-modified NCC. The rheological behavior demonstrated that the viscosity of the NCC suspension substantially decreased with the increasing shear rate (0.01–100 s−1, showing the typical characteristics of a pseudoplastic fluid. In contrast, the CNCC suspensions displayed a typical three-region behavior, regardless of changes in pH, temperature, and concentration. Moreover, the CNCC suspensions exhibited higher shear stress and viscosity at a given shear rate (0.01–100 s−1 than the NCC suspension. Meanwhile, the dynamic viscoelasticity measurements revealed that the CNCC suspensions possessed a higher elastic (G′ and loss modulus (G″ than NCC suspensions over the whole frequency range (0.1–500 rad·s−1, providing evidence that the surface cationization of NCC makes it prone to behave as a gel-like structure.

  2. Rheology of dilute acid hydrolyzed corn stover at high solids concentration.

    Science.gov (United States)

    Ehrhardt, M R; Monz, T O; Root, T W; Connelly, R K; Scott, C T; Klingenberg, D J

    2010-02-01

    The rheological properties of acid hydrolyzed corn stover at high solids concentration (20-35 wt.%) were investigated using torque rheometry. These materials are yield stress fluids whose rheological properties can be well represented by the Bingham model. Yield stresses increase with increasing solids concentration and decrease with increasing hydrolysis reaction temperature, acid concentration, and rheometer temperature. Plastic viscosities increase with increasing solids concentration and tend to decrease with increasing reaction temperature and acid concentration. The solids concentration dependence of the yield stress is consistent with that reported for other fibrous systems. The changes in yield stress with reaction conditions are consistent with observed changes in particle size. This study illustrates that torque rheometry can be used effectively to measure rheological properties of concentrated biomass.

  3. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  4. PREFACE: 1st International Conference on Rheology and Modeling of Materials

    Science.gov (United States)

    Gömze, László A.

    2015-04-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive knowledge, materials, equipment and technology processes. The idea to organize in Hungary the 1st International Conference on Rheology and Modeling of Materials we have received from prospective scientists, physicists, chemists, mathematicians and engineers from Asia, Europe, North and South America including India, Korea, Russia, Turkey, Estonia, France, Italy, United Kingdom, Chile, Mexico and USA. The goals of ic-rmm1 the 1st International Conference on Rheology and Modeling of Materials are the following: • Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications. • Change information between the theoretical and applied sciences as well as technical and technological implantations. • Promote the communication between the scientists of different disciplines, nations, countries and continents. The international conference ic-rmm1 provides a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among the major fields of interest are the influences of material structures, mechanical stresses temperature and deformation speeds on rheological and physical properties, phase transformation of

  5. Rheological study of chitosan in solution

    International Nuclear Information System (INIS)

    Silva, Italo Guimaraes Medeiros da; Alves, Keila dos Santos; Balaban, Rosangela de Carvalho

    2009-01-01

    Chitosan is an abundant biopolymer with remarkable physicochemical and biological properties, usually employed in a wide range of applications. It acts as a cationic polyelectrolyte in aqueous acid solutions, leading to unique characteristics. In this work, chitosan was characterized by 1 H NMR and its rheological behavior were studied as function of chitosan sample, shear rate, polymer concentration, ionic strength, time and temperature. In order to calculate rheological parameters and to understand the macromolecular dynamic in solution, the Otswald-de Waele model was fitted. (author)

  6. Evaluation of Rheological Properties and Swelling Behaviour of Sonicated Scleroglucan Samples

    Directory of Open Access Journals (Sweden)

    Siddique Akber Ansari

    2012-02-01

    Full Text Available Scleroglucan is a natural polysaccharide that has been proposed for various applications. However there is no investigation on its property variations when the molecular weight of this polymer is reduced. Scleroglucan was sonicated at two different polymer concentrations for different periods of time and the effect of sonication was investigated with respect to molecular weight variations and rheological properties. Molar mass, estimated by viscometric measurements, was drastically reduced already after a sonication for a few min. Sonicated samples were used for the preparation of gels in the presence of borate ions. The effect of borax on the new samples was investigated by recording the mechanical spectra and the flow curves. A comparison with the system prepared with the dialysed polymer was also carried out. The anisotropic elongation, observed with tablets of scleroglucan and borax, was remarkably reduced when the sonicated samples were used for the preparation of the gels.

  7. Influence of enzymes and ascorbic acid on dough rheology and ...

    African Journals Online (AJOL)

    Influence of enzymes and ascorbic acid on dough rheology and wheat bread quality. ... Journal Home > Vol 15, No 3 (2016) >. Log in or ... Seven bread formulations containing different concentrations of these ... The rheological properties of each dough formulation were determined by moisture, gluten and farinograph tests.

  8. The effect of long-term oxidation on the rheological properties of polymer modified asphalts

    Energy Technology Data Exchange (ETDEWEB)

    Yonghong Ruan; Richard R. Davison; Charles J. Glover [Texas A & M University, College Station, TX (United States). Department of Chemical Engineering

    2003-10-01

    The effect of long-term aging on rheological properties of polymer modified asphalt binders was studied. Modifiers included diblock poly(styrene-b-butadiene) rubber, triblock poly(styrene-b-butadiene-b-styrene), and tire rubber. Asphalt aging was carried out either at 60{sup o}C in a controlled environmental room or at 100{sup o}C in a pressure aging vessel (AASHTO Provisional Standards, 1993). Both dynamic shear properties and extensional properties were investigated. Polymer modification resulted in increased asphalt complex modulus at high temperatures, decreased asphalt complex modulus at low temperatures, broadened relaxation spectra, and improved ductility. Oxidative aging decreased asphalt temperature susceptibility, damaged the polymer network in binders, further broadened the relaxation spectrum, and diminished polymer effectiveness in improving asphalt ductility. 27 refs., 8 figs., 3 tabs.

  9. Static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation.

    Science.gov (United States)

    Liu, Jun; Zhang, Liqun; Cao, Dapeng; Wang, Wenchuan

    2009-12-28

    Polymer nanocomposites (PNCs) often exhibit excellent mechanical, thermal, electrical and optical properties, because they combine the performances of both polymers and inorganic or organic nanoparticles. Recently, computer modeling and simulation are playing an important role in exploring the reinforcement mechanism of the PNCs and even the design of functional PNCs. This report provides an overview of the progress made in past decades in the investigation of the static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation. Emphases are placed on exploring the mechanisms at the molecular level for the dispersion of nanoparticles in nanocomposites, the effects of nanoparticles on chain conformation and glass transition temperature (T(g)), as well as viscoelastic and mechanical properties. Finally, some future challenges and opportunities in computer modeling and simulation of PNCs are addressed.

  10. Sugar Profile, Mineral Content, and Rheological and Thermal Properties of an Isomerized Sweet Potato Starch Syrup.

    Science.gov (United States)

    Dominque, Brunson; Gichuhi, Peter N; Rangari, Vijay; Bovell-Benjamin, Adelia C

    2013-01-01

    Currently, corn is used to produce more than 85% of the world's high fructose syrup (HFS). There is a search for alternative HFS substrates because of increased food demand and shrinking economies, especially in the developing world. The sweet potato is a feasible, alternative raw material. This study isomerized a high glucose sweet potato starch syrup (SPSS) and determined its sugar profile, mineral content, and rheological and thermal properties. Rheological and thermal properties were measured using a rheometer and DSC, respectively. Sweet potato starch was hydrolyzed to syrup with a mean fructose content of 7.6 ± 0.4%. The SPSS had significantly higher (P syrups. During 70 days of storage, the SPSS acted as a non-Newtonian, shear-thinning liquid in which the viscosity decreased as shear stress increased. Water loss temperature of the SPSS continually decreased during storage, while pancake and ginger syrups' peak water loss temperature decreased initially and then increased. Further and more detailed studies should be designed to further enhance the fructose content of the syrup and observe its stability beyond 70 days. The SPSS has the potential to be used in human food systems in space and on Earth.

  11. Effects of Momordica charantia L. on the Blood Rheological Properties in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Eduardo Luzía França

    2014-01-01

    Full Text Available An evaluation of the rheological properties and the effects of Momordica. charantia L. (M. charantia nanoparticles and polyethylene glycol (PEG microspheres adsorbed with M. charantia nanoparticles on the blood of hyperglycemic patients is presented. Blood samples were collected according to glycemic status: normoglycemic (N=56 and hyperglycemic (N=26. General and hematological characteristics were determined. Blood rheological parameters were determined at room temperature and under a temperature scan. We determined the effects on whole blood viscosity of treatment with an extract of M. charantia, PEG, or PEG microspheres adsorbed with plant extract. The viscosity of the blood of hyperglycemic patients is greater than that of normoglycemic patients. Nanoparticles of M. charantia extracts lowered blood viscosity at equivalent rates in normo- and hyperglycemic individuals. PEG microspheres did not reduce blood viscosity in hyperglycemic individuals. However, PEG microspheres adsorbed with nanofraction extracts of M. charantia reduced blood viscosity. These data suggest that the effects of diabetes on the viscosity of the blood should be considered. The use of a nanoparticles extract of M. charantia and its adsorption on PEG microspheres may represent an alternative for the control and treatment of blood disorders in diabetic patients.

  12. Effects of Momordica charantia L. on the blood rheological properties in diabetic patients.

    Science.gov (United States)

    França, Eduardo Luzía; Ribeiro, Elton Brito; Scherer, Edson Fredulin; Cantarini, Déborah Giovanna; Pessôa, Rafael Souza; França, Fernando Luzía; Honorio-França, Adenilda Cristina

    2014-01-01

    An evaluation of the rheological properties and the effects of Momordica. charantia L. (M. charantia) nanoparticles and polyethylene glycol (PEG) microspheres adsorbed with M. charantia nanoparticles on the blood of hyperglycemic patients is presented. Blood samples were collected according to glycemic status: normoglycemic (N = 56) and hyperglycemic (N = 26). General and hematological characteristics were determined. Blood rheological parameters were determined at room temperature and under a temperature scan. We determined the effects on whole blood viscosity of treatment with an extract of M. charantia, PEG, or PEG microspheres adsorbed with plant extract. The viscosity of the blood of hyperglycemic patients is greater than that of normoglycemic patients. Nanoparticles of M. charantia extracts lowered blood viscosity at equivalent rates in normo- and hyperglycemic individuals. PEG microspheres did not reduce blood viscosity in hyperglycemic individuals. However, PEG microspheres adsorbed with nanofraction extracts of M. charantia reduced blood viscosity. These data suggest that the effects of diabetes on the viscosity of the blood should be considered. The use of a nanoparticles extract of M. charantia and its adsorption on PEG microspheres may represent an alternative for the control and treatment of blood disorders in diabetic patients.

  13. Reversible pH-Sensitive Chitosan-Based Hydrogels. Influence of Dispersion Composition on Rheological Properties and Sustained Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nieves Iglesias

    2018-04-01

    Full Text Available The present work deals with the synthesis of micro-structured biomaterials based on chitosan (CTS for their applications as biocompatible carriers of drugs and bioactive compounds. Twelve dispersions were prepared by means of functional cross-linking with tricarballylic acid (TCA; they were characterized by Fourier transform infrared spectroscopy (FT-IR, modulated temperature differential scanning calorimetry (MTDSC and scanning electron microscopy (SEM, and their rheological properties were studied. To the best of the authors’ knowledge, no study has been carried out on the influence of CTS concentration, degree of cross-linking and drug loading on chitosan hydrogels for drug delivery systems (DDS and is investigated herein for the first time. The influence of dispersion composition (polymer concentration and degree of cross-linking revealed to exert a marked impact on its rheological properties, going from liquid-like to viscoelastic gels. The release profiles of a model drug, diclofenac sodium (DCNa, as well as their relationships with polymer concentration, drug loading and degree of cross-linking were evaluated. Similar to the findings on rheological properties, a wide range of release profiles was encountered. These formulations were found to display a well-controlled drug release strongly dependent on the formulation composition. Cumulative drug release under physiological conditions for 96 h ranged from 8% to 67%. For comparative purpose, Voltaren emulgel® from Novartis Pharmaceuticals was also investigated and the latter was the formulation with the highest cumulative drug release (85%. Some formulations showed similar spreadability values to the commercial hydrogel. The comparative study of three batches confirmed the reproducibility of the method, leading to systems particularly suitable for their use as drug carriers.

  14. Surface rheology of saponin adsorption layers.

    Science.gov (United States)

    Stanimirova, R; Marinova, K; Tcholakova, S; Denkov, N D; Stoyanov, S; Pelan, E

    2011-10-18

    Extracts of the Quillaja saponaria tree contain natural surfactant molecules called saponins that very efficiently stabilize foams and emulsions. Therefore, such extracts are widely used in several technologies. In addition, saponins have demonstrated nontrivial bioactivity and are currently used as essential ingredients in vaccines, food supplements, and other health products. Previous preliminary studies showed that saponins have some peculiar surface properties, such as a very high surface modulus, that may have an important impact on the mechanisms of foam and emulsion stabilization. Here we present a detailed characterization of the main surface properties of highly purified aqueous extracts of Quillaja saponins. Surface tension isotherms showed that the purified Quillaja saponins behave as nonionic surfactants with a relatively high cmc (0.025 wt %). The saponin adsorption isotherm is described well by the Volmer equation, with an area per molecule of close to 1 nm(2). By comparing this area to the molecular dimensions, we deduce that the hydrophobic triterpenoid rings of the saponin molecules lie parallel to the air-water interface, with the hydrophilic glucoside tails protruding into the aqueous phase. Upon small deformation, the saponin adsorption layers exhibit a very high surface dilatational elasticity (280 ± 30 mN/m), a much lower shear elasticity (26 ± 15 mN/m), and a negligible true dilatational surface viscosity. The measured dilatational elasticity is in very good agreement with the theoretical predictions of the Volmer adsorption model (260 mN/m). The measured characteristic adsorption time of the saponin molecules is 4 to 5 orders of magnitude longer than that predicted theoretically for diffusion-controlled adsorption, which means that the saponin adsorption is barrier-controlled around and above the cmc. The perturbed saponin layers relax toward equilibrium in a complex manner, with several relaxation times, the longest of them being around 3

  15. The ability of retention, drug release and rheological properties of nanogel bioadhesives based on cellulose derivatives.

    Science.gov (United States)

    Keshavarz, M; Kaffashi, B

    2014-12-01

    The rheological and drug release behavior of biopolymer nanocomposite gels based on the cellulose derivatives, formulated as the bioadhesive drug delivery platforms, were investigated. The bioadhesive gel is composed of the microcrystalline cellulose, sodium carboxymethyl cellulose and phosphate buffered saline (pH = 7.4 at 20 °C) as the dissolution and release medium. The reinforcing nanofillers such as MMT-clay, fumed porous silica and porous starch were used as additives in the nanogel bioadhesive. The constant steady state viscosities of this nanogels upon incorporation of various nanofillers into the systems is the sign of structural stability. Hence, this system is suitable for use in the controlled drug delivery systems in contact with the biological tissues. Based on the rheological measurements, the shear flow properties (i.e. zero shear viscosity and yield stress) were influenced by the concentration of polymers and nanoparticles. The results indicate that the nonlinear rheological data are fitted properly by the Giesekus model. Furthermore, the results showed that the nonlinear viscoelastic parameters (λ and α) are highly affected by the biogel and nanoparticles concentrations. Finally, the drug release was measured, and the results indicated that the biopolymer-clay nanocomposites have appropriate release pattern as the release is better controlled compared to the other nanogel formulations.

  16. The effect of epoxidized soybean oil on mechanical and rheological properties of poly(butylene succinate)/lignin via vane extruder

    Science.gov (United States)

    Liu, Huanyu; Huang, Zhaoxia; Qu, Jinping; Meng, Cong

    2016-03-01

    Epoxidized Soybean Oil (ESO) have been used as the compatilizer in the Poly (butylene succinate)/lignin (PBS/lignin) composites. Compatibilized composites were fabricated by a novel vane extruder (VE) which can generate global and dynamic elongational flow. The effects of ESO on the mechanical, rheological properties and morphology of PBS/lignin were studied. The results indicated that the use of ESO had plasticizing effect on the matrix PBS while the addition reduced tensile strength. From SEM micrographs it could be clearly observed that there was a better interfacial adhesion between lignin and matrix. Meanwhile, rheological tests showed the incorporation of ESO improved its Newtonian behavior and can enhance PBS's flexibility.

  17. Relation between ultrasonic properties, rheology and baking quality for bread doughs of widely differing formulation.

    Science.gov (United States)

    Peressini, Donatella; Braunstein, Dobrila; Page, John H; Strybulevych, Anatoliy; Lagazio, Corrado; Scanlon, Martin G

    2017-06-01

    The objective was to evaluate whether an ultrasonic reflectance technique has predictive capacity for breadmaking performance of doughs made under a wide range of formulation conditions. Two flours of contrasting dough strength augmented with different levels of ingredients (inulin, oil, emulsifier or salt) were used to produce different bread doughs with a wide range of properties. Breadmaking performance was evaluated by conventional large-strain rheological tests on the dough and by assessment of loaf quality. The ultrasound tests were performed with a broadband reflectance technique in the frequency range of 0.3-6 MHz. Principal component analysis showed that ultrasonic attenuation and phase velocity at frequencies between 0.3 and 3 MHz are good predictors for rheological and bread scoring characteristics. Ultrasonic parameters had predictive capacity for breadmaking performance for a wide range of dough formulations. Lower frequency attenuation coefficients correlated well with conventional quality indices of both the dough and the bread. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Effect of pre-emulsified sesame oil on physical-chemical and rheological properties of pork batters

    Directory of Open Access Journals (Sweden)

    Zhuang Li KANG

    Full Text Available Abstract Physical-chemical and rheological properties of pork batters as affected by replacing pork back-fat with pre-emulsified sesame oil were investigated. Replacement of pork back-fat with pre-emulsified sesame oil, improved L* value, moisture and protein content, hardness, cohesiveness, and chewiness, declined a* value, fat content and energy, but not affect cooking yield. When used pre-emulsified sesame oil to replace pork back-fat 50%, the sample had the highest L* value and texture. According to the results of dynamic rheological, replaced pork back-fat by pre-emulsified sesame oil increased the storage modulus (G' values at 80 °C, and formed firm gel. The result of Low-field nuclear magnetic resonance (LF-NMR shown that the batters with pre-emulsified sesame oil had higher water holding capacity than the control. Overall, the batters with pre-emulsified sesame oil enabled lowering of fat and energy contents, making the pork batter had better texture.

  19. Rheology for chemists an introduction

    CERN Document Server

    Goodwin, J W

    2000-01-01

    Rheology is an integral part of life, from decorative paint and movement of volcanic lava to the flow of blood in our veins. This book describes, without the use of complex mathematics, how atoms and molecules interact to control the handling properties of materials ranging from simple ionic crystals through polymers to colloidal dispersions.Beginning with an introduction to essential terminology, Rheology for Chemists goes on to discuss limiting behaviour, temporal behaviour and non-linear behaviour. Throughout, examples of everyday experiments are provided to illustrate the theory, which increases in complexity with each discrete chapter. Ideas are developed in a systematic fashion so that the mechanisms responsible for the elastic, viscous or viscoelastic behaviour of systems are understood. The text thus progresses in a manner that makes it an ideal introduction to rheology for any scientist who needs to use the ideas to modify systems.Comprehensive and unique in approach, this book will provide the neces...

  20. The effects of temperature, organic matter and time-dependency on rheological properties of dry anaerobic digested swine manure.

    Science.gov (United States)

    Liu, Gang-Jin; Liu, Yi; Wang, Zhi-Yong; Lei, Yun-Hui; Chen, Zi-Ai; Deng, Liang-Wei

    2015-04-01

    An efficient way to avoid the pollution of swine wastewater is the application of dry anaerobic digestion, which needs rheological parameter for stirring and pipe designing. The rheological properties of this kind of sludge have been studied for many decades, yet their effects only solid concentration has been investigated widely. In this paper, the influences of temperature, organic and time-dependency on the efficiency of anaerobic digested swine manure were studied. The viscosity decreased with temperature arranged from 10 to 60 °C which caused increase in protein from 7.18 to 8.49 g/kg. 60 °C can make the digested swine manure with TS from 16.6% to 21.5% reach to the same rheology state. The added peptone decreased the viscosity because of its function of water-reducing admixture and air entraining mixture. Time-dependent experiment showed the decrease of shear stress over time. The first and the second yield stress of dry anaerobic digested swine manure were evaluated through time-dependent model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Rheological, mechanical and membrane penetration properties of novel dual drug systems for percutaneous delivery.

    Science.gov (United States)

    Woolfson, A D; Malcolm, R K; Campbell, K; Jones, D S; Russell, J A

    2000-07-03

    In this study it has been demonstrated that mixtures of two solid drugs, ibuprofen and methyl nicotinate, with different but complementary pharmacological activities and which exist as a single liquid phase over a wide composition range at skin temperature, can be formulated as o/w emulsions without the use of an additional hydrophobic carrier. These novel dual drug systems provided significantly enhanced in vitro penetration rates through a model lipophilic barrier membrane compared to conventional individual formulations of each active. Thus, for ibuprofen, drug penetration flux enhancements of three- and 10-fold were observed when compared to an aqueous ibuprofen suspension and a commercial alcohol-based ibuprofen formulation, respectively. Methyl nicotinate penetration rates were shown to be similar for aqueous gels and emulsified systems. Mechanisms explaining these observations are proposed. Novel dual drug formulations of ibuprofen and methyl nicotinate, formulated within the liquid range at skin temperature, were investigated by oscillatory rheology and texture profile analysis, demonstrating the effects of drug and viscosity enhancer concentrations, and disperse phase type upon the rheological, mechanical and drug penetration properties of these systems.

  2. Effect of green coffee extract on rheological, physico-sensory and antioxidant properties of bread.

    Science.gov (United States)

    Mukkundur Vasudevaiah, A; Chaturvedi, A; Kulathooran, R; Dasappa, I

    2017-06-01

    Green coffee extract, GCE ( Coffee canephora ) was used at 1.0, 1.5 and 2.0% levels for making bioactive rich bread. The processed GCE from the green coffee beans had 21.42% gallic acid equivalents (GAE) total polyphenols (TPP), 37.28% chlorogenic acid (CGA) and 92.73% radical scavenging activity (RSA), at 100 ppm concentration of GCE and caffeine content (1.75%). Rheological, physico-sensory and antioxidant properties of GCE incorporated breads were analysed and compared with control bread. The results revealed not much significant change in the rheological characteristics of dough up to 1.5% level; an increase in bread volume; greenness of bread crumb and mostly unchanged textural characteristics of the bread with increased addition of GCE from 0 to 2.0%. Sensory evaluation showed that maximum level of incorporation of GCE without adverse effect on the overall quality of bread (especially taste) was at 1.5% level. The contents of TPP, RSA and CGA increased by 12, 6 and 42 times when compared to control bread and had the highest amount of 4-5 caffeoylquinic acid.

  3. Rheology modification in mixed shape colloidal dispersions. Part I: pure components

    NARCIS (Netherlands)

    ten Brinke, A.J.W.; Bailey, L.; Lekkerkerker, H.N.W.; Matiland, G.C.

    2007-01-01

    The flow behaviour and rheology of colloidal dispersions are of considerable interest in many applications, for example colloidal clay particles find applications in oilfield and constructiondrilling fluids. The rheological properties of such fluids can be enhanced significantly by adding colloidal

  4. RHEOLOGIC BEHAVIOR OF PASTRY CREAMS

    Directory of Open Access Journals (Sweden)

    Camelia Vizireanu

    2012-03-01

    Full Text Available The increased social and economic importance of ready–made food production, together with the complexity of production technology, processing, handling and acceptance of these fragile and perishable products requires extensive knowledge of their physical properties. Viscoelastic properties play an important role in the handling and quality attributes of creams.Our study was to investigate the rheological properties of different confectionary creams, by scanning the field of shear rates at constant temperature and frequency, angular frequency scanning at small deformations and quantification of rheological changes during application of deformation voltages. The creams tested were made in the laboratory using specific concentrates as fine powders, marketed by the company “Dr. Oetker” compared with similar creams based on traditional recipes and techniques. Following the researches conducted we could conclude that both traditional creams and the instant ones are semi fluid food products with pseudoplastic and thixotropic shear flow behavior, with structural viscosity. Instant and traditional creams behaved as physical gels with links susceptible to destruction, when subjected to deformation forces.

  5. Effect of modification with 1,4-α-glucan branching enzyme on the rheological properties of cassava starch.

    Science.gov (United States)

    Li, Yadi; Li, Caiming; Gu, Zhengbiao; Hong, Yan; Cheng, Li; Li, Zhaofeng

    2017-10-01

    Steady and dynamic shear measurements were used to investigate the rheological properties of cassava starches modified using the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. GBE treatment lowered the hysteresis loop areas, the activation energy (E a ) values and the parameters in rheological models of cassava starch pastes. Moreover, GBE treatment increased its storage (G') and loss (G″) moduli, and decreased their tan δ (ratio of G″/G') values and frequency-dependencies. Scanning electron microscopic studies showed the selective and particular attack of GBE on starch granules, and X-ray diffraction analyses showed that GBE treatment produces significant structural changes in amylose and amylopectin. These changes demonstrate that GBE modification produces cassava starch with a more structured network and improved stability towards mechanical processing. Differential scanning calorimetric analysis and temperature sweeps indicated greater resistance to granule rupture, higher gel rigidity, and a large decrease in the rate of initial conformational ordering with increasing GBE treatment time. Pronounced changes in rheological parameters revealed that GBE modification enhances the stability of cassava starch and its applicability in the food processing industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of selected Hofmeister salts on textural and rheological properties of nonfat cheese.

    Science.gov (United States)

    Stankey, J A; Johnson, M E; Lucey, J A

    2011-09-01

    Three Hofmeister salts (HS; sodium sulfate, sodium thiocyanate, and sodium chloride) were evaluated for their effect on the textural and rheological properties of nonfat cheese. Nonfat cheese, made by direct acidification, were sliced into discs (diameter=50 mm, thickness=2 mm) and incubated with agitation (6 h at 22°C) in 50 mL of a synthetic Cheddar cheese aqueous phase buffer (pH 5.4). The 3 HS were added at 5 concentrations (0.1, 0.25, 0.5, 0.75, and 1.0 M) to the buffer. Post-incubation, cheese slices were air dried and equilibrated in air-tight bags for 18 h at 5°C before analysis. Small amplitude oscillatory rheology properties, including the dynamic moduli and loss tangent, were measured during heating from 5 to 85°C. Hardness was determined by texture profile analysis. Acid-base buffering was performed to observe changes in the indigenous insoluble (colloidal) calcium phosphate (CCP). Moisture content decreased with increasing HS concentration. Cheeses incubated in high concentrations of SCN(-) softened earlier (i.e., loss tangent=1) compared with other HS treatments. Higher melting temperature values were observed for cheeses incubated in high concentrations of SO(4)(2-). Hardness decreased in cheeses incubated in buffers with high concentrations of SCN(-). The indigenous CCP profile of nonfat cheese was not greatly affected by incubation in Cl(-) or SCN(-), whereas buffers with high concentrations of SO(4)(2-) reduced the acid-base buffering contributed by CCP. The use of high concentrations (1.0M) of SCN(-) for incubation of cheeses resulted in a softer protein matrix at high temperatures due to the chaotropic effect of SCN(-), which weakened hydrophobic interactions between CN. Cheese samples incubated in 1.0M SO(4)(2-) buffers exhibited a stiffer protein matrix at high temperatures due to the kosmotropic effect of SO(4)(2-), which helped to strengthen hydrophobic interactions in the proteins during the heating step. This study showed that HS

  7. Rheological properties of biscuit dough from different cultivars, and relationship to baking characteristics

    DEFF Research Database (Denmark)

    Pedersen, L.; Kaack, K.; Bergsøe, M.N.

    2004-01-01

    differences in structural properties with genetic control. Multivariate regression of flour physiochemical, dough theological, and biscuit baking characteristics showed that a decrease in biscuit length was correlated under several theological parameters, including phase angle delta, Farinograph and creep......Rheological properties of semi-sweet biscuit doughs from eight wheat cultivars were studied, and related to the dimensional changes of biscuits after cutting and baking. The tested cultivars were selected in order to represent a wide diversity in biscuit baking performance, and were grown with low...... recovery parameters. Sedimentation value was the only physiochernical flour characteristic with considerable influence on the model. Validation of the partial least squares-model including all samples from the 3 years gave only a weak correlation (r = 0.58), whereas when each single year was evaluated...

  8. A model study on color and related structural properties of cured porcine batters

    NARCIS (Netherlands)

    Palombo, R.

    1990-01-01

    Color, determined by tristimulus colorimeters, and related structural properties, i.e., microstructure, surface rheology, and bulk rheology, of cured porcine meat batters were studied.

    Effects of various processing factors (such as, temperature, air pressure during chopping, and

  9. Capillary levelling as a probe of rheology in polymer thin films

    Science.gov (United States)

    McGraw, Joshua D.; Jago, Nick M.; Dalnoki-Veress, Kari

    2011-03-01

    While measuring the rheology of bulk polymer systems is routine, when the size of a system becomes comparable to the molecular size, flow properties are poorly understood and hard to measure. Here, we present the results of experiments that are easily performed and can probe the rheological properties of polymer films that are mere tens of nanometres in thickness. We prepare glassy bilayer polymer films with height profiles well approximated by a step function. Upon annealing above the glass transition, broadening of the height profiles due to gradients in the Laplace pressure is observed. By validating the technique as a probe of the rheology with a range of molecular weights, we will show that this robust technique can be used to investigate the effects of confinement and interfaces on the rheology of ultrathin polymer films. Financial support from NSERC of Canada is gratefully acknowledged.

  10. Rheology of Cementitious Materials: Alkali-Activated Materials or Geopolymers

    Directory of Open Access Journals (Sweden)

    Puertas F.

    2018-01-01

    Understanding and controlling the rheology of the AAMs systems will ultimately determine whether they can be implemented in the market, and will open up greater competitive possibilities in a crisis-affected sector. A systematic study of the factors that affect the rheological properties of AAMs (pastes, mortars and concretes is therefore necessary in order to ultimately develop more resistant and durable materials.

  11. Rheology essentials of cosmetic and food emulsions

    CERN Document Server

    Brummer, Rüdiger

    2006-01-01

    Cosmetic emulsions exist today in many forms for a wide variety of applications, including face and hand creams for normal, dry or oily skin, body milks and lotions, as well as sun-block products. Keeping track of them and their properties is not always easy despite informative product names or partial names (e.g. hand or face cream) that clearly indicate their use and properties. This practical manual provides a detailed overview that describes the key properties and explains how to measure them using modern techniques. Written by an expert in flows and flow properties, it focuses on the application of rheological (flow) measurements to cosmetic and food emulsions and the correlation of these results with findings from other tests. Beginning with a brief history of rheology and some fundamental principles, the manual describes in detail the use of modern viscometers and rheometers, including concise explanations of the different available instruments. But the focus remains on practical everyday lab procedure...

  12. To Study Capping or Lamination Tendency of Tablets Through Evaluation of Powder Rheological Properties and Tablet Mechanical Properties of Directly Compressible Blends.

    Science.gov (United States)

    Dudhat, Siddhi M; Kettler, Charles N; Dave, Rutesh H

    2017-05-01

    Air entrapment efficiency of the powders is one of the main factors leading to occurrence of capping or lamination tendency of tablets manufactured from the directly compressible powder blends. The purpose of the current research was to study this underlying cause leading to occurrence of capping or lamination of tablets through evaluation of powder rheological properties. Powder blends were prepared by addition of 0% w/w to 100% w/w of individual active pharmaceutical ingredient (API) [two model API: acetaminophen (APAP) and ibuprofen (IBU)] with microcrystalline cellulose without and with 0.5% w/w Magnesium Stearate as lubricant. Powder rheological properties were analyzed using FT4 Powder Rheometer for dynamic, bulk, and shear properties. Tablet mechanical properties of the respective blends were studied by determining the ability of the material to form tablet of specific strength under applied compaction pressure through tabletability profile. The results showed that powder rheometer distinguished the powder blends based on their ability to relieve entrapped air along with the distinctive flow characteristics. Powder blend prepared with increasing addition of APAP displayed low powder permeability as compared to IBU blends with better powder permeability, compressibility and flow characteristics. Also, lubrication of the APAP blends did not ease their ability to relieve air. Tabletability profiles revealed the potential occurrence of capping or lamination in tablets prepared from the powder blends with high APAP content. This study can help scientist to understand tableting performance at the early-developmental stages and can avoid occurrence capping and lamination of tablets.

  13. Role of pluronics on rheological, drying and crack initiation of 'suckable' gels of decontamination

    International Nuclear Information System (INIS)

    Bousquet, C.

    2007-12-01

    The aim of this work was to understand the role of an addition of pluronics on the rheological behaviour, the drying and the fracturing of 'suckable' gels used for nuclear decontamination. The system studied was an aqueous suspension of silica (100 g/L of Aerosil 380) in a strong acidic medium (HNO 3 /H 3 PO 4 1.5 mol/L/1.5 mol/L) in presence of pluronics. Pluronics are amphiphilic tri-blocks copolymers composed of ethylene poly-oxide blocks and of propylene poly-oxide. The first part of this study deals with the characterization of the rheological properties of the gels. From viscosity retaking measurements, flow rheo-grams analysis and the viscoelastic properties of the gels, have been determined an improvement of the rheological properties of the gels significant from the addition of 5 g/L of copolymer. In a second part, the determination of adsorption isotherms coupled to small angles neutrons diffusion measurements has revealed that copolymers are adsorbed flat on silica in bridging the aggregates between them and that the improvement of the rheological behaviour of the gels is due to the increase of the bonds density of the gelled lattice. Moreover, beyond 10 g/L, the adsorption saturation of copolymers at the surface of the silica prevents the bridging of the aggregates which induces the gel destabilization. The last part of this work deals with the characterization of characteristic values of drying and of crack initiation of gels. Then is revealed a relation between the drying kinetics and the formation of cracks in the gel layer. Moreover, the study of the evolution of stresses in the gel layer during time allows to reveal that the addition of pluronics to the formulation of gels allows to improve the gel resistance to the crack initiation and to the delamination. (O.M.)

  14. Rheological study of chitosan and its blends: An overview

    Directory of Open Access Journals (Sweden)

    Esam A. El-hefian

    2010-06-01

    Full Text Available Chitosan, a modified natural carbohydrate polymer derived from carapaces of crabs and shrimps, has received a great deal of attention for its applications in diverse fields owing to its biodegradability, biocompatibility, non-toxicity and anti-bacterial property. The wide-ranging applications involve a broad spectrum of characterisation techniques and rheology represents one technique of growing importance in this field. This paper is an attempt to review the latest development in the rheology of chitosan, either on its own or associated with other materials, including the parameters that strongly influence its rheological behaviour such as concentration, pH and temperature.

  15. Features of the rheological properties of dough with sunflower and cedar flour

    Directory of Open Access Journals (Sweden)

    V. A. Gaysina

    2016-01-01

    Full Text Available Promising directions of development of assortment of flour confectionery products are currently creating new combinations, more extraordinary and interesting, the reduction in calories, increase the nutritional value, development of formulations of functional products. As enriching additives in the manufacture of pastry products can be used flour sunflower flour and cedar. Sunflower meal – one of the possible sources of increase of food value. The only raw material component of this product are sunflower seeds that have passed the purification from impurities and shell of the particles, with the subsequent removal of oil from them and grinding. In this torment, to the maximum extent maintained all the valuable biological active substances and vitamins. Sunflower flour is a complex product: it is good recommendation system of proteins, fats, carbohydrates, including fiber, vitamins, phospholipids and mineral substances. Cedar flour is characterized by high protein content (up to 48 % is well balanced in amino acids resultant composition contains b vitamins, food fibers, micro - and macroelements, necessary for life of the human body. Cedar flour has a good functional and technological properties In this paper we study the effect of cedar flour and sunflower meal on the rheological characteristics of dough. Effect of formulation components on the rheological properties of the test is evaluated in terms of water absorption of the flour, the duration of doughing, degree of its dilution and stability when mixing. It was found that the addition of 17% sunflower meal increases the viscosity of the dough and has a strengthening effect on the structure of the dough. Adding cedar flour in the amount of 20% caused the decrease in viscosity and getting more flexible dough.

  16. Synthesis and characterization of magneto-rheological (MR fluids for MR brake application

    Directory of Open Access Journals (Sweden)

    Bhau K. Kumbhar

    2015-09-01

    Full Text Available Magneto rheological (MR fluid technology has been proven for many industrial applications like shock absorbers, actuators, etc. MR fluid is a smart material whose rheological characteristics change rapidly and can be controlled easily in presence of an applied magnetic field. MR brake is a device to transmit torque by the shear stress of MR fluid. However, MR fluids exhibit yield stress of 50–90 kPa. In this research, an effort has been made to synthesize MR fluid sample/s which will typically meet the requirements of MR brake applications. In this study, various electrolytic and carbonyl iron powder based MR fluids have been synthesized by mixing grease as a stabilizer, oleic acid as an antifriction additive and gaur gum powder as a surface coating to reduce agglomeration of the MR fluid. MR fluid samples based on sunflower oil, which is bio-degradable, environmentally friendly and abundantly available have also been synthesized. These MR fluid samples are characterized for determination of magnetic, morphological and rheological properties. This study helps identify most suitable localized MR fluid meant for MR brake application.

  17. Micro-rheology and interparticle interactions in aerosols probed with optical tweezers

    Science.gov (United States)

    Reid, Jonathan P.; Power, Rory M.; Cai, Chen; Simpson, Stephen H.

    2014-09-01

    Using optical tweezers for micro-rheological investigations of a surrounding fluid has been routinely demonstrated. In this work, we will demonstrate that rheological measurements of the bulk and surface properties of aerosol particles can be made directly using optical tweezers, providing important insights into the phase behavior of materials in confined environments and the rate of molecular diffusion in viscous phases. The use of holographic optical tweezers to manipulate aerosol particles has become standard practice in recent years, providing an invaluable tool to investigate particle dynamics, including evaporation/ condensation kinetics, chemical aging and phase transformation. When combined with non-linear Raman spectroscopy, the size and refractive index of a particle can be determined with unprecedented accuracy viscosity and surface tension of particles can be measured directly in the under-damped regime at low viscosity. In the over-damped regime, we will show that viscosity measurements can extend close to the glass transition, allowing measurements over an impressive dynamic range of 12 orders of magnitude in relaxation timescale and viscosity. Indeed, prior to the coalescence event, we will show how the Brownian trajectories of trapped particles can yield important and unique insights into the interactions of aerosol particles.

  18. Effect of Rheological Properties on Liquid Curtain Coating

    Science.gov (United States)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Griffith, William; Pujari, Saswati; Carvalho, Marcio; Francis, Lorraine; Dow Chemical Company Collaboration; PUC-Rio Collaboration

    2017-11-01

    Curtain coating is one of the preferred methods for high-speed precision application of single-layer and multi-layer coatings in technology. However, uniform coatings are only obtained in a certain range of operating parameters, called coating window. The two main physical mechanisms that limit successful curtain coating are liquid curtain breakup and air entrainment. The rheological properties of the liquid play an important role on these mechanisms, but the fundamental understanding of these relations is still not complete. The effect of rate-dependent shear and extensional viscosities on the stability of viscoelastic and shear thinning liquid curtains were explored by high-speed visualization. Aqueous solutions of polyethylene oxide (PEO) and polyethylene glycol (PEG) were used as viscoelastic liquids. Xanthan Gum in water and glycerol solutions with a range of compositions were used as shear thinning liquids. The critical condition was determined by examining flow rate below which curtain broke. In this work, we also analyze relative importance of rate-dependent shear and extensional viscosity on both curtain breakup and air entrainment. We would like to acknowledge the financial support from the Dow Chemical Company.

  19. Influence of high power ultrasound on rheological and foaming properties of model ice-cream mixtures

    Directory of Open Access Journals (Sweden)

    Verica Batur

    2010-03-01

    Full Text Available This paper presents research of the high power ultrasound effect on rheological and foaming properties of ice cream model mixtures. Ice cream model mixtures are prepared according to specific recipes, and afterward undergone through different homogenization techniques: mechanical mixing, ultrasound treatment and combination of mechanical and ultrasound treatment. Specific diameter (12.7 mm of ultrasound probe tip has been used for ultrasound treatment that lasted 5 minutes at 100 percent amplitude. Rheological parameters have been determined using rotational rheometer and expressed as flow index, consistency coefficient and apparent viscosity. From the results it can be concluded that all model mixtures have non-newtonian, dilatant type behavior. The highest viscosities have been observed for model mixtures that were homogenizes with mechanical mixing, and significantly lower values of viscosity have been observed for ultrasound treated ones. Foaming properties are expressed as percentage of increase in foam volume, foam stability index and minimal viscosity. It has been determined that ice cream model mixtures treated only with ultrasound had minimal increase in foam volume, while the highest increase in foam volume has been observed for ice cream mixture that has been treated in combination with mechanical and ultrasound treatment. Also, ice cream mixtures having higher amount of proteins in composition had shown higher foam stability. It has been determined that optimal treatment time is 10 minutes.

  20. Stability and dynamic rheological characterization of spread developed based on pistachio oil.

    Science.gov (United States)

    Mousazadeh, Morad; Mousavi, Seyed Mohammad; Emam-Djomeh, Zahra; HadiNezhad, Mehri; Rahmati, Naghmeh

    2013-05-01

    This study investigated the influence of formulation variables (pistachio oil (PO, 7.5 and 15%, w/w), Cocoa butter (CB, 7.5 and 15%, w/w), xanthan gum (XG, 0 and 0.3%, w/w), and distillated monoglyceride (DMG, 0.5 and 1%, w/w)) on the rheological properties and emulsion stability of spreads. Power law and Herschel-Bulkley models were used for modeling shear-thinning behavior of samples. The power law model was found to describe the flow behavior of spreads better than Herschel-Bulkley model. All the rheological properties were increased by adding XG to the spreads whereas increasing PO content caused to decrease them. The DMG had positive effect on apparent viscosity and elastic behavior but had negative effect on viscose behavior. Apparent viscosity was increased by adding CB while rheological modules were not significantly (p DMG improved stability of emulsion. The best spread formulation with optimum rheological properties was 15% PO, 7.5% CB, 0.3% XG and 1% DMG. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Sugar Profile, Mineral Content, and Rheological and Thermal Properties of an Isomerized Sweet Potato Starch Syrup

    Directory of Open Access Journals (Sweden)

    Brunson Dominque

    2013-01-01

    Full Text Available Currently, corn is used to produce more than 85% of the world’s high fructose syrup (HFS. There is a search for alternative HFS substrates because of increased food demand and shrinking economies, especially in the developing world. The sweet potato is a feasible, alternative raw material. This study isomerized a high glucose sweet potato starch syrup (SPSS and determined its sugar profile, mineral content, and rheological and thermal properties. Rheological and thermal properties were measured using a rheometer and DSC, respectively. Sweet potato starch was hydrolyzed to syrup with a mean fructose content of 7.6±0.4%. The SPSS had significantly higher (P<0.05 mineral content when compared to commercial ginger and pancake syrups. During 70 days of storage, the SPSS acted as a non-Newtonian, shear-thinning liquid in which the viscosity decreased as shear stress increased. Water loss temperature of the SPSS continually decreased during storage, while pancake and ginger syrups’ peak water loss temperature decreased initially and then increased. Further and more detailed studies should be designed to further enhance the fructose content of the syrup and observe its stability beyond 70 days. The SPSS has the potential to be used in human food systems in space and on Earth.

  2. Evaluation of different polyolefins as rheology modifier additives in lubricating grease formulations

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Alfonso, J.E.; Valencia, C.; Sanchez, M.C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Franco, J.M., E-mail: franco@uhu.es [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Gallegos, C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain)

    2011-08-15

    Highlights: {yields} Evaluation of different polyolefins as modifiers of the rheological properties and mechanical stability of lithium lubricating greases. {yields} The type of polymer, molecular weight, cristallinity degree and vinyl acetate content influences the rheological and thermal response of lubricating greases. {yields} The crystallinity degree, mainly dependent on the nature of the polymer, is the most highly influencing parameter on the rheology of lubricating greases. {yields} The rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. - Abstract: The purpose of the present work is to evaluate the effect that different polyolefins, used as additives in small proportions, exert on the rheological properties of standard lithium lubricating greases. Grease formulations containing several polyolefins, differing in nature and molecular weight, were manufactured and rheologically characterized. The influence of the type of polymer, molecular weight, crystallinity degree and vinyl acetate content has been analyzed. Small-amplitude oscillatory shear (SAOS) and viscous flow measurements, as well as calorimetric (DSC) and thermogravimetric (TGA) analysis, were carried out. In general, the addition of polymers such as HDPE, LDPE, LLDPE and PP to lithium lubricating greases significantly increases the values of the rheological parameters analyzed, consistency and mechanical stability. However, the use of polyolefins as rheology modifiers does not significantly affect the friction coefficient determined in a tribological contact. The crystallinity degree, mainly dependent on the nature of the polymer, has been found the most highly influencing parameter on the rheology of the lubricating greases studied. However, the rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. Thus, a negative effect in both apparent viscosity and linear viscoelastic functions of greases was obtained when

  3. RHEOLOGICAL PROPERTIES AND THE ENERGETIC VALUE OF WHEAT FLOUR SUBSTITUTED BY DIFFERENT SHARES OF WHITE AND BROWN RICE FLOUR

    Directory of Open Access Journals (Sweden)

    Nada Nikolić

    2011-09-01

    Full Text Available In order to produce dough with a lower gluten content, more enriched with rice components and satisfactory rheological properties, the rheological properties, energetic value and cake baking properties of wheat and white or brown rice flour in shares from 3 to 30% (w/w were investigated in this paper. The water absorption in wheat-rice flour mixtures was lower and decreased to 53.5% and 54.0% along with the increase of the white and the brown rice flour share, respectively, than in wheat flour, where it was 58.8%. In the dough made from rice flour, a gluten network had thinner filaments, about 2 and 1 μm in width for white and brown rice flour, respectively, compared to those in the dough from wheat flour only, where it was about 7 μm. The dough from rice flour had almost twice higher gelatinization maximum than the gelatinization maximum of the wheat flour only. The energetic values of the dough from rice flour were smaller than the energetic value of the wheat flour, for only 1.32%. Based on Cluster analysis, the white or brown rice flour share of 20% was pointed out.

  4. Biodegradable blends of poly (lactic acid) (PLA) / polyhydroxybutrate (PHB) copolymer and its effects on rheological, thermal and mechanical properties

    Science.gov (United States)

    Sood, Nitin K.

    Poly (Lactic acid) is the most important plastic derived from the renewable resources. PLA based products have extensively been used in the medical industry. However, PLA has a few disadvantages such as inherent brittleness and low toughness despite a high modulus. A focus of this experiment was to study the improvement in toughness of PLA and to study the changes in thermal and rheological properties by blending PLA with a PHB copolymer. Where, PLA and PHB copolymer were melt blended using a twin screw Brabender extruder in the ratios of 100/0, 70/30, 50/50, 30/70, 0/100. Further, the blends were injection molded into tensile bar and impact bars for mechanical testing. Rheological properties were studied using a Galaxy capillary rheometer for melt viscosities and temperature dependence indicated a shear-thinning behavior along with power law model and consistency index. Blends were characterized to study the phase model using a differential scanning calorimetric (DSC), showed two separate phases. Mechanical properties were analyzed using a Tensile and Izod impact test indicating decrease in elastic modulus with increase in toughness and elongation as the PHB copolymer content was increased in the blend.

  5. Mechanical and rheological properties of nanocomposites of polyamide 6 with national organoclay

    International Nuclear Information System (INIS)

    Paz, Rene Anisio da; Leite, Amanda Melissa Damiao; Araujo, Edcleide Maria; Melo, Tomas Jeferson Alves de; Pessan, Luiz Antonio; Passador, Fabio Roberto

    2013-01-01

    Nanocomposites of polyamide 6 with organoclay were prepared by melt intercalation and their rheological and mechanical properties were studied. The clay was treated with the quaternary ammonium salt (Cetremide) and characterized by Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD). The results showed the incorporation of salt in the clay and its organophilization. A master was prepared with PA6/clay (1:1) by weight and this was added to the pure polyamide 6 to reach the nominal proportion of 3% of clay, using a co-rotational twin screw extruder. The samples were molded by injection and characterized by: capillary rheometry, XRD, TEM and mechanical testing (tensile and impact). The results of capillary rheometry showed that the presence of organoclay in the PA6 increased the viscosity of the systems. With XRD and TEM, it was verified that all systems presented predominantly exfoliated structure. The tensile properties of the nanocomposites were better than those of pure polyamide 6. (author)

  6. Influence of innovative technologies on rheological and thermophysical properties of whey proteins and guar gum model systems

    Directory of Open Access Journals (Sweden)

    Greta Krešić

    2011-03-01

    Full Text Available The aim of this study was to examine the effect of high-power ultrasound (US and highpressure processing (HP on model systems composed of whey protein concentrate (WPC and whey protein isolate (WPI with or without guar gum addition. This kind of systems can be found in food production industry so the aim was to use novel food processing technologies to be utilized as a method for products development. Aqueous suspensions (10 g kg-1 of powdered whey proteins were treated with either ultrasound or high pressure. The treatment conditions were as follows: US: frequency of 30 kHz, for 5 and 10 min; HP: pressure intensity 300-600 MPa, for 5 and 10 min. Rheological and thermophysical properties were analyzed after guar gum addition (0.5 g kg-1. Ultrasound treatment showed a significant influence on all examined properties through protein denaturation caused by cavitation and microstreaming effects. High pressure caused significant increase in viscosity and consistency coefficients of model systems with and without guar addition. Significant decrease of initial freezing and initial thawing temperature was observed in all samples. With this research the direct influence of ultrasound and high-pressure treatment on the rheological and thermophysical properties of whey protein isolate and concentrate model systems with or without guar gum was demonstrated.

  7. Rheological properties of lactose-free dairy desserts.

    Science.gov (United States)

    Sahin, Serpil; Hamamci, Haluk; Garayev, Sultan

    2016-10-01

    People suffering from lactose intolerance cannot digest milk or lactose-containing foods. Lactose-free diet is essential for them since they do not have the ability to produce lactase to breakdown milk sugar. Physical properties of lactose-free dairy desserts will most probably be different than that of lactose containing ones because of lactose hydrolysis. In this study, it was aimed to analyze the rheological and textural behaviors of different lactose-free dessert formulations containing different gum types and different waxy maize starch and sucrose concentrations. Waxy maize starch was used at concentrations of 0.032 g·mL -1 , 0.040 g·mL -1 , and 0.048 g·mL -1 In addition to waxy maize starch, guar gum, gum arabic, or κ-carrageenan at two different concentrations (1.0% w/w and 0.5% w/w) was added. Sucrose was added at concentrations of 0.14 g·mL -1 and 0.10 g·mL -1 in lactose-free desserts. Power law model was found to be suitable to explain the flow behavior of desserts. The storage and loss modulus of lactose-free desserts were higher than that of lactose-containing desserts. The κ-Carrageenan was found to be the most effective gum for structure build-up. © The Author(s) 2016.

  8. Chemical, morphological, rheological and thermal properties of Solanum lycocarpum phosphorylated starches

    Directory of Open Access Journals (Sweden)

    Diego Palmiro Ramirez Ascheri

    2014-08-01

    Full Text Available The increasing need for starches with specific characteristics makes it important to study unconventional starches and their modifications in order to meet consumer demands. The aim of this work was to study physicochemical characteristics of native starch and phosphate starch of S. lycocarpum. Native starch was phosphated with sodium tripolyphosphate (5-11% added with stirring. Chemical composition, morphology, density, binding ability to cold water, swelling power and solubility index, turbidity and syneresis, rheological and calorimetric properties were determined. Phosphorus was not detected in the native sample, but the phosphating process produced modified starches with phosphorus contents of 0.015, 0.092 and 0.397%, with the capacity of absorbing more water, either cold or hot. Rheological data showed the strong influence of phosphorus content on viscosity of phosphate starch, with lower pasting temperature and peak viscosity higher than those of native starch. Enthalpy was negatively correlated with the phosphorus content, requiring 9.7; 8.5; 8.1 and 6.4 kJ g-1 of energy for the transition from the amorphous to the crystalline state for the starch granules with phosphorus contents of 0; 0.015; 0.092 and 0.397%, respectively. Cluster analysis and principal component analysis showed that starches with 0.015 and 0.092% phosphorus have similar characteristics and are different from the others. Our results show that the characteristics of phosphate modified S. lycocarpum starch have optimal conditions to meet the demands of raw materials, which require greater consistency in stickiness, combined with low rates of retrogradation and syneresis.

  9. Rheological evaluation of simulated neutralized current acid waste

    International Nuclear Information System (INIS)

    Fow, C.L.; McCarthy, D.; Thornton, G.T.

    1986-06-01

    A byproduct of the Purex process is an aqueous waste stream that contains fission products. This waste stream, called current acid waste, is chemically neutralized and stored in double shell tanks on the Hanford Site. This neutralized current acid waste (NCAW) will be transported by pipe to B-Plant, a processing plant on the Hanford Site. Rheological and transport properties of NCAW slurry were evaluated. First, researchers conducted lab rheological evaluations of simulated NCAW. The results of these evaluations were then correlated with classical rheological models and scaled up to predict the performance that is likely to occur in the full-scale system. The NCAW in the tank will either be retrieved as is, i.e., no change in the concentration presently in the tank, or will be slightly concentrated before retrieval. Sluicing may be required to retrieve the solids. Three concentrations of simulated NCAW were evaluated that would simulate the different retrieval options: NCAW in the concentration that is presently in the tank; a slightly concentrated NCAW, called NCAW5.5; and equal parts of NCAW settled solids and water (simulating the sluicing stage), called NCAW1:1. The physical and rheological properties of three samples of each concentration at 25 and 100 0 C were evaluated in the laboratory. The properties displayed by NCAW and NCAW5.5 at 25 and 100 0 C allowed it to be classified as a pseudoplastic non-Newtonian fluid. NCAW1:1 at 25 and 100 0 C displayed properties of a yield-pseudoplastic non-Newtonian fluid. The classical non-Newtonian models for pseudoplastic and yield-pseudoplastic fluids were used with the laboratory data to predict the full-scale pump-pipe network parameters

  10. Rheological characteristics of flours milled from different wheat varieties (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Ladislav Haris

    2010-01-01

    Full Text Available Technological quality was studied of wheat flours from three varieties of Triticum aestivum L. (Arida, Meritto, Verita delivered to the mill for three years (2007–2009. Physico-chemical parameters observed during the purchase of grain (STN 461100-2 were not significantly different. Also milled flours from tested varieties have by processors required ash content, gluten, acceptable Zeleny index, α-amylase activity (falling number, but as the rheological properties of dough from these flours show, these parameters are unsuited enough (unsuitability of material for efficient processing of flour. Rheological evaluation showed that each variety is suitable for different processing direction. Therefore, if we deliberately separate lots of purchased grain, not only by basic physico-che­mi­cal properties listed in the current standards (CSN and STN, but also by their rheological properties, which are important and reliable indicator of the direction of the end-use processing of wheat flours, the flours will be more likely to succeed in specific cereal technology. For the production of bread was satisfactory rheological properties of dough from variety Arida. Verita variety is suitable for processing into wafers, and a variety Meritto for producing biscuits and crackers. Verita and Me­rit­to varieties so do not achieved the expected values of the rheological optimum for „classic“ bread processing (bakery products despite satisfactory gluten content and falling number to use this processing direction. Reported results show us the possibilities of more efficient selection of varieties or lots purchased grain of wheat for use in baking and buscuit industry by using rheological evaluation methods. Results were evaluated by analysis of data exploration (Boxplot, scattering graphs, classical nonparametric testing of hypotheses and the distribution of the data (Wilcoxon test, Kruskal-Wallis, Friedman, rates central tendency and dispersion.

  11. Reorganization of lipid nanocapsules at air-water interface: Part 2. Properties of the formed surface film.

    Science.gov (United States)

    Minkov, I; Ivanova, Tz; Panaiotov, I; Proust, J; Saulnier, P

    2005-09-01

    The state, electrical and dilatational rheological properties of surface films formed at air-water interface from lipid nanocapsules (LNC) with various compositions as well as model monolayers formed by the LNC constituents-Labrafac, Solutol and Lipoid are investigated. These nanocapsules constitute potential drug delivery systems where lypophilic drug will be loaded in their core. The study of the model Labrafac/Solutol (Lab/Sol) mixed monolayers shows behavior close to the ideal. Small negative deviations in the mean molecular areas a and dipole moments mu are observed. All studied monolayers have elastic behavior during the small continuous compressions. The comparison between the properties of surface films formed from LNC with those of the model monolayers confirms the idea developed in the kinetic study that the surface films formed after a rapid disaggregation of the unstable nanocapsule fraction (LNC I) contains mainly Labrafac and Solutol. The Labrafac molar part (xLab) in the formed Lab/Sol mixed layer is established.

  12. Is the Linné impact crater morphology influenced by the rheological layering on the Moon's surface? Insights from numerical modeling

    Science.gov (United States)

    Martellato, Elena; Vivaldi, Valerio; Massironi, Matteo; Cremonese, Gabriele; Marzari, Francesco; Ninfo, Andrea; Haruyama, Junichi

    2017-07-01

    Linné is a simple crater, with a diameter of 2.23 km and a depth of 0.52 km, located in northwestern Mare Serenitatis. Recent high-resolution data acquired by the Lunar Reconnaissance Orbiter Camera revealed that the shape of this impact structure is best described by an inverted truncated-cone. We perform morphometric measurements, including slope and profile curvature, on the Digital Terrain Model of Linné, finding the possible presence of three subtle topographic steps, at the elevation of +20, -100, and -200 m relative to the target surface. The kink at -100 m might be related to the interface between two different rheological layers. Using the iSALE shock physics code, we numerically model the formation of Linné crater to derive hints on the possible impact conditions and target physical properties. In the initial setup, we adopt a basaltic projectile impacting the Moon with a speed of 18 km s-1. For the local surface, we consider either one or two layers, in order to test the influence of material properties or composite rheologies on the final crater morphology. The one-layer model shows that the largest variations in the crater shape take place when either the cohesion or the friction coefficient is varied. In particular, a cohesion of 10 kPa marks the threshold between conical- and parabolic-shaped craters. The two-layer model shows that the interface between the two layers would be exposed at the observed depth of 100 m when an intermediate value ( 200 m) for the upper fractured layer is set. We have also found that the truncated-cone morphology of Linné might originate from an incomplete collapse of the crater wall, as the breccia lens remains clustered along the crater walls, while the high-albedo deposit on the crater floor can be interpreted as a very shallow lens of fallout breccia. The modeling analysis allows us to derive important clues on the impactor size (under the assumption of a vertical impact and collision velocity equal to the mean

  13. Self-Supporting Nanodiamond Gels: Elucidating Colloidal Interactions Through Rheology_

    Science.gov (United States)

    Adhikari, Prajesh; Tripathi, Anurodh; Vogel, Nancy A.; Rojas, Orlando J.; Raghavan, Sriunivasa R.; Khan, Saad A.

    This work investigates the colloidal interactions and rheological behavior of nanodiamond (ND) dispersions. While ND represents a promising class of nanofiller due to its high surface area, superior mechanical strength, tailorable surface functionality and biocompatibility, much remains unknown about the behavior of ND dispersions. We hypothesize that controlling interactions in ND dispersions will lead to highly functional systems with tunable modulus and shear response. Steady and dynamic rheology techniques are thus employed to systematically investigate nanodiamonds dispersed in model polar and non-polar media. We find that low concentrations of ND form gels almost instantaneously in a non-polar media. In contrast, ND's in polar media show a time-dependent behavior with the modulus increasing with time. We attribute the difference in behavior to variations in inter-particle interactions as well as the interaction of the ND with the media. Large steady and oscillatory strains are applied to ND colloidal gels to investigate the role of shear in gel microstructure breakdown and recovery. For colloidal gels in non-polar medium, the incomplete recovery of elastic modulus at high strain amplitudes indicates dominance of particle-particle interactions; however, in polar media the complete recovery of elastic modulus even at high strain amplitudes indicates dominance of particle-solvent interactions. These results taken together provide a platform to develop self-supporting gels with tunable properties in terms of ND concentration, and solvent type.

  14. Effect of carbon black on electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butyl acrylate composites

    Directory of Open Access Journals (Sweden)

    H. Oxfall

    2015-01-01

    Full Text Available The effect of adding carbon black on the electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butyl acrylate copolymer composites produced via melt or solution mixing was studied. By adding a small amount of low- or high-structured carbon black to the nanocomposite, the electrical percolation threshold decreased and the final conductivity (at higher filler contents increased. The effect on the percolation threshold was significantly stronger in case of the high-structured carbon black where replacing 10 wt% of the total filler content with carbon black instead of graphite nanoplatelets reduced the electrical percolation threshold from 6.9 to 4.6 vol%. Finally, the solution mixing process was found to be more efficient leading to a lower percolation threshold. For the composites containing high-structured carbon black, graphite nanoplatelets and their hybrids there was a quite reasonable correlation between the electrical and rheological percolation thresholds.

  15. Sensitivity of Clay Suspension Rheological Properties to pH, Temperature, Salinity, and Smectite-Quartz Ratio

    Science.gov (United States)

    Kameda, Jun; Morisaki, Tomonori

    2017-10-01

    Understanding the rheological properties of clay suspensions is critical to assessing the behavior of sediment gravity flows such as debris flow or turbidity current. We conducted rheological measurements of composite smectite-quartz suspensions at a temperature of 7°C and a salt concentration of 0.6 M. This is representative of smectite-bearing sediments under conditions on the seafloor. The flow curves obtained were fitted by the Bingham fluid model, from which we determined the Bingham yield stress and dynamic viscosity of each suspension. At a constant smectite-quartz mixing ratio, the yield stress and the dynamic viscosity tend to increase as the solid/water ratio of the suspension is increased. In the case of a constant solid/water ratio, these values increase with increasing smectite content in the smectite-quartz mixture. Additional experiments exploring differing physicochemical conditions (pH 1.0-9.0; temperature 2-30°C; and electrolyte (NaCl) concentration 0.2-0.6 M) revealed that the influence of temperature is negligible, while pH moderately affects the rheology of the suspension. More significantly, the electrolyte concentration greatly affects the flow behavior. These variations can be explained by direct and/or indirect (double-layer) interactions between smectite-smectite particles as well as between smectite-quartz particles in the suspension. Although smectite is known as a frictionally weak material, our experimental results suggest that its occurrence can reduce the likelihood that slope failure initiates. Furthermore, smectite can effectively suppress the spreading distance once the slope has failed.

  16. Turkish Tombul hazelnut (Corylus avellana L.) protein concentrates: functional and rheological properties.

    Science.gov (United States)

    Tatar, F; Tunç, M T; Kahyaoglu, T

    2015-02-01

    Turkish Tombul hazelnut consumed as natural or processed forms were evaluated to obtain protein concentrate. Defatted hazelnut flour protein (DHFP) and defatted hazelnut cake protein (DHCP) were produced from defatted hazelnut flour (DHF) and defatted hazelnut cake (DHC), respectively. The functional properties (protein solubility, emulsifying properties, foaming capacity, and colour), and dynamic rheological characteristics of protein concentrates were measured. The protein contents of samples varied in the range of 35-48 % (w/w, db) and 91-92 % (w/w, db) for DHF/DHC and DHFP/DHCP samples, respectively. The significant difference for water/fat absorption capacity, emulsion stability between DHF and DHC were determined. On the other hand, the solubility and emulsion activity of DHF and DHC were not significantly different (p > 0.05). Emulsion stability of DHFP (%46) was higher than that of DHCP (%35) but other functional properties were found similar. According to these results, the DHCP could be used as DHFP in food product formulations. The DHFP and DHCP samples showed different apparent viscosity at the same temperature and concentration, the elastic modulus (G' value) of DHPC was also found higher than that of DHFP samples.

  17. Rheological Investigation on the Effect of Shear and Time Dependent Behavior of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Japper-Jaafar A.

    2014-07-01

    Full Text Available Rheological measurements are essential in transporting crude oil, especially for waxy crude oil. Several rheological measurements have been conducted to determine various rheological properties of waxy crude oil including the viscosity, yield strength, wax appearance temperature (WAT, wax disappearance temperature (WDT, storage modulus and loss modulus, amongst others, by using controlled stress rheometers. However, a procedure to determine the correct parameters for rheological measurements is still unavailable in the literature. The paper aims to investigate the effect of shear and time dependent behaviours of waxy crude oil during rheological measurements. It is expected that the preliminary work could lead toward a proper rheological measurement guideline for reliable rheological measurement of waxy crude oil.

  18. RHEOLOGY OF CHICKPEA PROTEIN CONCENTRATE DISPERSIONS

    Directory of Open Access Journals (Sweden)

    Aurelia Ionescu

    2011-12-01

    Full Text Available Chickpea proteins are used as ingredients in comminuted sausage products and many oriental textured foods. Rheological behaviour of chickpea protein concentrate was studied using a controlled stress rheometer. The protein dispersion prepared with phosphate buffer at pH 7.0 presented non-Newtonian shear thinning behaviour and rheological data well fitted to the Sisko, Carreau and Cross models. The viscoelastic properties of the chickpea protein suspensions were estimated by measuring the storage and loss moduli in oscillatory frequency conditions (0.1-10 Hz at 20°C. Moreover, thermally induced gelation of the chickpea proteins (16, 24 and 36% was studied at pH 7.0 and 4.5 in the temperature range 50 to 100oC and salt concentration ranging from 0 to 1 M. Gelling behaviour was quantified by means of dynamic rheological measurements. Gels formation was preceded by the decrease of storage modulus and loss moduli, coupled with the increase of the phase angle (delta. The beginning of thermal gelation was influenced by protein concentration, pH and salt level. In all studied cases, storage modulus increased rapidly in the temperature range 70-90°C. All rheological parameters measured at 90°C were significantly higher at pH 4.5 compared to pH 7.0.

  19. Improvement of physicochemical and rheological properties of kombucha fermented milk products by addition of transglutaminase and whey protein concentrate

    Directory of Open Access Journals (Sweden)

    Iličić Mirela D.

    2016-01-01

    Full Text Available The objective of this work was to investigate the effect of addition of transglutaminase (TG-0.02%, w/w and whey protein concentrate (WPC-0.03%, w/w, on quality of kombucha fermented milk product. Samples were prepared from pasteurized semi-skim milk (0.9%, w/w fat and kombucha inoculum (10%, v/v. The pH values were measured during the fermentation of milk (lasted until reached 4.5. Syneresis, water holding capacity and the product texture (firmness and consistency, were assessed after production. Rheological properties of kombucha fermented milk samples were measured during ten days of storage. The sample containing TG had the lowest syneresis (21 ml, the highest water holding capacity (62% and the highest textural characteristics (firmness - 23.99g, consistency - 626.54gs after production. The addition of WPC to milk improved the rheological properties, while the addition of TG improved it even to a significantly greater extent after the production and during 10 days of the storage. [Projekat Ministarstva nauke Republike Srbije, br. 46009

  20. The Field-Dependent Rheological Properties of Magnetorheological Grease Based on Carbonyl-Iron-Particles

    Science.gov (United States)

    Mohamad, N.; Mazlan, S. A.; Ubaidillah; Choi, Seung-Bok; Nordin, M. F. M.

    2016-09-01

    This paper presents dynamic viscoelastic properties of magnetorheological (MR) grease under variation of magnetic fields and magnetic particle fractions. The tests to discern the field-dependent properties are undertaken using both rotational and oscillatory shear rheometers. As a first step, the MR grease is developed by dispersing the carbonyl iron (CI) particles into grease medium with a mechanical stirrer. Experimental data are obtained by changing the magnetic field from 0 to 0.7 T at room temperature of 25 °C. It is found that a strong Payne effect limits the linear viscoelastic region of MR grease at strains above 0.1%. The results exhibit a high dynamic yield stress which is equivalent to Bingham plastic rheological model, and show relatively good MR effect at high shear rate of 2000 s-1. In addition, high dispersion of the magnetic particles and good thermal properties are proven. The results presented in this work directly indicate that MR grease is a smart material candidate that could be widely applicable to various fields including vibration control.

  1. RHEOLOGICAL PROPERTIES OF BLOOD AT PATIENTS WITH BOWEL OBSTRUCTION OF TUMORAL GENESIS IN THE EARLY POSTOPERATIVE PERIOD

    Directory of Open Access Journals (Sweden)

    V. V. Maslyakov

    2014-01-01

    Full Text Available Introduction. Microcirculation plays an important role in early postoperative period in colorectal cancer patients. At the same time the question connected with studying of rheological properties of blood as one of microcirculation indicators in literature it studied insufficiently.Materials and methods. We studied rheological properties of blood in 30 patients operated for bowel obstruction caused by right colon cancer. 17 (56,7 % patients were male, 13 (43,3 % – female. Average age was 57 ± 3 years. Time from the moment of manifestation of the first clinical signs before admission to a hospital and the beginnings of carrying out medical and diagnostic actions was 12 ± 0,5 h. The stage of a disease was T3N0–1M0. The group of comparison consisted of 20 healthy volunteers of the same age. Changes of a rheology of blood were measured by means of the accounting of viscosity of blood, change of an index of deformation and aggregation of erythrocytes. Studying of viscosity of blood was carried out by means of the rotational viscometer at shift speeds: 200; 100; 150; 50 and 20 MPas. Measures were conducted at the time of receipt, on the first, third, fifth, seventh and tenth postoperative day.Results. In patients with bowel impassability at the time of receipt the increase in indicators of viscosity of blood is noted at all speeds of the shift, analyzed indicators increase by the third postoperative day, decrease on the seventh and are partially restored for the tenth postoperative days. Complications developed in 16,6 % of cases, in all cases – pneumonia. By comparison of the obtained laboratory data to a clinical picture it is established that complications developed on 3–5th postoperative days.

  2. The effect of gum tragacanth on the rheological properties of salep based ice cream mix.

    Science.gov (United States)

    Kurt, Abdullah; Cengiz, Alime; Kahyaoglu, Talip

    2016-06-05

    The influence of concentration (0-0.5%, w/w) of gum tragacanth (GT) on thixotropy, dynamic, and creep-recovery rheological properties of ice cream mixes prepared with milk or water based were investigated. These properties were used to evaluate the viscoelastic behavior and internal structure of ice cream network. The textural properties of ice cream were also evaluated. Thixotropy values of samples were reduced by increasing GT concentration. The dynamic and creep-recovery analyses exhibited that GT addition increased both ice cream elastic and viscous behaviors. The increasing of Burger's model parameters with GT concentration indicated higher resistance network to the stress and more elastic behavior of samples. The applying of Cox-Merz rule is possible by using shift factor (α). GT also led to an increase in Young's modulus and the stickiness of ice creams. The obtained results highlighted the possible application of GT as a valuable member to promote structural properties of ice cream. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Comparison of chemical, rheological and sensory properties of kefir produced by kefir grains and commercial kefir starter

    Directory of Open Access Journals (Sweden)

    Irena Barukčić

    2017-01-01

    Full Text Available The main objective of this study was to compare chemical, rheological and sensory characteristics of kefir produced by using kefir grains and kefir starter. The intent was also to investigate whether it is plausible to use a combined inoculum (kefir grains and starter in order to obtain a kefir with improved characteristics in terms of sensory and rheological characteristics. Kefir samples were produced at 25 °C and 35 °C by using starter culture XPL-1, kefir grains and their combinations. All of the produced kefir samples were analysed for acidity, total dry matter, ethanol content, syneresis, viscosity and were sensory evaluated by a specially trained panel. There were no significant differences considering the total dry matter, syneresis, ethanol content and acidity. Excess viscosity was observed in samples produced by starter culture at 35 °C, which was described as untypical, yoghurt like and unsatisfactory by a sensory panel. The sample produced at 25 °C by equal amounts of kefir grains and starter culture received the highest scores at sensory evaluation and showed the best potential for optimizing the further use. Further investigations need to focus on examining kefir properties during the storage period, especially regarding microbiological and sensory properties, ethanol content and texture profile.

  4. Influence of liquid smoke flavoring on the rheological characteristics of minced fish

    Directory of Open Access Journals (Sweden)

    I. S. Drozdetskaya

    2018-01-01

    Full Text Available Organoleptic properties of the finished products from minced fish of centralized production does not always meet the specified quality requirements. In this regard, the use of a liquid smoke flavoring will allow to give the products new attractive taste properties, to expand the range of commonly eaten food, to improve the oxidative stability and microbial spoilage during storage, to essentially simplify the technological process, as compared to traditional smoking, and above all to get safe products. The influence of the addition of the liquid smoke flavoring on functional and technological, physico-chemical and rheological properties of products is known. The parameters of ultimate shear stress (USS, effective viscosity and adhesion of mince of industrial production and those produced of raw materials are defined. The influence of the chemical composition and the type of raw material on these indicators is shown. The influence of water binding and water-holding capacity of mince of industrial production and those produced of raw materials on rheology indicators is defined and confirmed by significant correlation calculations. It was determined that the addition of liquid smoke flavoring "liquid smoke" reduced effective viscosity, adhesion properties of minced fish both of industrial production and that produced of raw materials. The nature of the rheological parameters change was the same for all kinds of mince. The study of water binding and water-holding capacity, shear stress limits, effective viscosity suggests that the minced fish products where liquid smoke flavoring is added will have good formability and rheological properties. The studies have shown that the rheological parameters of the studied minced fish were within normal limits, which allows their use in the centralized production of semi-finished goods and products.

  5. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites.

    Science.gov (United States)

    Khoshkava, Vahid; Kamal, Musa R

    2014-06-11

    Polypropylene (PP) nanocomposites containing spray-dried cellulose nanocrystals (CNC), freeze-dried CNC, and spray-freeze-dried CNC (CNCSFD) were prepared via melt mixing in an internal batch mixer. Polarized light, scanning electron, and atomic force microscopy showed significantly better dispersion of CNCSFD in PP/CNC nanocomposites compared with the spray-dried and freeze-dried CNCs. Rheological measurements, including linear and nonlinear viscoelastic tests, were performed on PP/CNC samples. The microscopy results were supported by small-amplitude oscillatory shear tests, which showed substantial rises in the magnitudes of key rheological parameters of PP samples containing CNCSFD. Steady-shear results revealed a strong shear thinning behavior of PP samples containing CNCSFD. Moreover, PP melts containing CNCSFD exhibited a yield stress. The magnitude of the yield stress and the degree of shear thinning behavior increased with CNCSFD concentration. It was found that CNCSFD agglomerates with a weblike structure were more effective in modifying the rheological properties. This effect was attributed to better dispersion of the agglomerates with the weblike structure. Dynamic mechanical analysis showed considerable improvement in the modulus of samples containing CNCSFD agglomerates. The percolation mechanical model with modified volume percolation threshold and filler network strength values and the Halpin-Kardos model were used to fit the experimental results.

  6. Dumbbell shaped polystyrene : synthesis and solution rheology

    NARCIS (Netherlands)

    Rajan, M.

    2006-01-01

    Polymeric additives profoundly influence fluid rheological properties; hence finding applications in fuels, lubricants, coatings, sprays, enhanced oil recovery, turbulent drag reduction etc. Several of these applications are based on the coil-stretch transition and subsequent stretching of polymer

  7. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines

    International Nuclear Information System (INIS)

    Coughlin, Mark F; Fredberg, Jeffrey J

    2013-01-01

    Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion. (paper)

  8. Rheological evaluation of simulated neutralized current acid waste - transuranics

    International Nuclear Information System (INIS)

    Fow, C.L.; McCarthy, D.; Thornton, G.T.; Scott, P.A.; Bray, L.A.

    1986-09-01

    At the Hanford Plutonium and Uranium Extraction Plant (PUREX), in Richland, Washington, plutonium and uranium products are recovered from irradiated fuel by a solvent extraction process. A byproduct of this process is an aqueous waste stream that contains fission products. This waste stream, called current acid waste (CAW), is chemically neutralized and stored in double shell tanks (DSTs) on the Hanford Site. This neutralized current acid waste (NCAW) will be transported by pipe to B-Plant, a processing plant located nearby. In B-Plant, the transuranic (TRU) elements in NCAW are separated from the non-TRU elements. The majority of the TRU elements in NCAW are in the solids. Therefore, the primary processing operation is to separate the NCAW solids (NCAW-TRU) from the NCAW liquid. These two waste streams will be pumped to suitable holding tanks before being further processed for permanent disposal. To ensure that the retrieval and transportation of NCAW and NCAW-TRU are successful, researchers at Pacific Northwest Laboratory (PNL) evaluated the rheological and transport properties of the slurries. This evaluation had two phases. First, researchers conducted laboratory rheological evaluations of simulated NCAW and NCAW-TRU. The results of these evaluations were then correlated with classical rheological models and scaled up to predict the performance that is likely to occur in the full-scale system. This scale-up procedure has already been successfully used to predict the critical transport properties of a slurry (Neutralized Cladding Removal Waste) with rheological properties similar to those displayed by NCAW and NCAW-TRU

  9. Physical, Rheological, Functional, and Film Properties of a Novel Emulsifier: Frost Grape Polysaccharide from Vitis riparia Michx.

    Science.gov (United States)

    Hay, William T; Vaughn, Steven F; Byars, Jeffrey A; Selling, Gordon W; Holthaus, Derek M; Price, Neil P J

    2017-10-04

    A novel emulsifier, Frost grape polysaccharide (FGP), isolated from natural exudate of the species Vitis riparia Michx, was physically and rheologically characterized. The determination of the physical, structural, thermodynamic, emulsification, film, and rheological properties of FGP provide essential details for the commercial adoption of this novel plant polysaccharide. FGP is capable of producing exceptionally stable emulsions when compared with the industrially ubiquitous gum arabic (GA). The FGP isolate contained a negligible amount of nitrogen (0.03%), indicating that it does not contain an associated glycoprotein, unlike GA. Solutions of FGP have a high degree of thermostability, displaying no loss in viscosity with temperature cycling and no thermal degradation when held at 90 °C. FGP is an excellent film former, producing high tensile strength films which remain intact at temperatures up to 200 °C. This work identified a number of potential food and pharmaceutical applications where FGP is significantly superior to GA.

  10. Rheological properties of oil-in-water emulsions prepared with oil and protein isolates from sesame (Sesamum Indicum

    Directory of Open Access Journals (Sweden)

    David Ramirez BREWER

    2016-01-01

    Full Text Available In this study, food emulsions of oil in water from sesame (Sesamum indicum protein isolates and their oil were formulated and standardised. The effect of the concentrations of sesame (Sesamum indicum protein isolates and base oil and the speed of the emulsification process for the food emulsion stability was studied. The protein isolates were achieved from the defatted sesame flour (DSF, obtaining a percentage of 80% ± 0.05% of protein. Emulsions were formulated through a factorial design 23. The rheological behaviour of sesame (Sesamum indicum protein isolates-stabilised emulsions and microstructural composition were investigated. Stable emulsions with suitable rheological properties and microstructure were formulated at a concentration of 10% sesame oil and different concentrations of protein isolates, between 1.5% and 2.5%, with the best droplet distribution characteristics being shown for the 2.5% sesame protein isolates. The emulsions showed a non-Newtonian fluid behaviour, adjusting the Sisko model.

  11. EFFECT OF OZONATION PROCESS ON PHYSICOCHEMICAL AND RHEOLOGICAL PROPERTIES OF κ-CARRAGEENAN

    Directory of Open Access Journals (Sweden)

    AJI PRASETYANINGRUM

    2017-03-01

    Full Text Available κ-Carrageenan is a sulfated galactan extracted from red algae (Rhodophyceae which has many functions. However, nonfood applications of κ-carrageenan have been limited by its superior gelling and viscosity properties. The effect of ozonation on physicochemical and rheological properties of κ-carrageenan solution at different pH was investigated. κ-Carrageenan solution was prepared in the ratio of 1:100 (w/v and was treated with dissolved ozone with concentration of 80±2 ppm. This ozonation was conducted at different times and pH. The viscosity of ozone-treated κ-carrageenan solution was analyzed using Brookfield viscometer and the sulfate content was determined using FT-IR spectra and barium chloride-gelatin method. The results show that the viscosity of ozone-treated κ-carrageenan decreases appreciably with time. The highest percentage reduction in viscosity occurs at pH 3, followed by pH 7 and 10. The FT-IR spectra reveals that the chemical structure of degraded κ-carrageenan, in term of sulfate content, is only slightly affected by the ozone treatment.

  12. Synthesis and rheological properties of poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Lee, Jung Kyung; Lee, Hyang Aee; Kim, Keyng Yi

    2001-01-01

    Vinyl acetate usually used in PVA resin preparation was converted to PVAc by bulk poly-merization using AIBN as a initiator and PVA was synthesized by changing the concentration of NaOH added for saponification subsequently. As a result of estimating molecular weight using GPC, molecular weight increased as the NaOH concentration increased to 2.5 N, 5.0 N, 7.5 N and 10.0 N and polydispersity had similar values of 2.1∼2.3, however, showed slightly decreasing tendency. In addition, PVA saponificated by 10.0 N-NaOH showed high syndiotacticity in observation of tacticity using NMR spectroscopy. From this fact, the degree of tacticity was predicted to be high and it was in good agreement with the tendency of polydisperisity by GPC. Also, from the result of FT-IR spectroscopy, it might be known that hydrolysis was more promoted in the PVA with 10.0 N-NaOH than other NaOH concentration. Intrinsic viscosity measured using Ubbelohde viscometer, which increased as the concentration of NaOH added for saponification increased. The change of shear strength with the change of shear rate was investigated using Brookfield viscometer, in consequence, viscosity of PVA synthesized decreased as shear rate increased. PVA solution confirmed to show the shear thinning behavior by Casson plot and PVA with 10.0 N-NaOH had the largest yield value. DSC measurement was performed to know the thermal properties of PVA. Tp had nearly constant value of 214 .deg. C in all cases except for adding 2.5 N-NaOH and ΔH was increased as the concentration of NaOH increased. From this properties, it was concluded that the degree of hydrogen bonding was proportional to the added concentration of NaOH and the increase of the degree of hydrogen bonding and hydrophobic interaction could affect the rheological and thermal properties of title compound

  13. Microstructural evolution and rheological properties of AA6063 alloy produced by semisolid processing (SIMA and MHD)

    International Nuclear Information System (INIS)

    Bustos, O.; Leiva, R.; Sanchez, C.; Ordonez, S.; Carvajal, L.; Mannheim, R.

    2007-01-01

    In this work the rheological behaviour and the microstructural evolution of alloy AA6063 submitted to two different processing routes were studied: cold deformation and partial fusion (SIMA process) and magneto hydrodynamic stirring during its solidification (MHD process). The microstructural evolution during the isothermal holding was studied to verify if the Ost wald ripening mechanisms, classic growth and coalescence, are applicable to alloys made by these processing routes. The rheological properties were evaluated using a compression rheometer with parallel plates and digital capture of position and time data. Compression tests were made in short cylinders extracted from ingots that showed: a dendritic microstructure typical of as cast material, a typical microstructure of cold deformed material and a microstructure of materials obtained by MHD process. It was found that a globular microstructure has a typical behaviour of a fluid when being formed in semisolid state, contrary to the behaviour of the as cast dendritic microstructure. In addition, the mechanisms that operate in the microstructural evolution during the isothermal holdings were verified, through metallographic analysis. (Author) 29 refs

  14. Effect of pH adjustment, homogenization and diafiltration on physicochemical, reconstitution, functional and rheological properties of medium protein milk protein concentrates (MPC70).

    Science.gov (United States)

    Meena, Ganga Sahay; Singh, Ashish Kumar; Gupta, Vijay Kumar; Borad, Sanket; Arora, Sumit; Tomar, Sudhir Kumar

    2018-04-01

    Poor solubility is the major limiting factor in commercial applications of milk protein concentrates (MPC) powders. Retentate treatments such as pH adjustment using disodium phosphate (Na 2 HPO 4 ), also responsible for calcium chelation with homogenization and; its diafiltration with 150 mM NaCl solution were hypothesized to improve the functional properties of treated MPC70 powders. These treatments significantly improved the solubility, heat stability, water binding, dispersibility, bulk density, flowability, buffer index, foaming and emulsifying capacity of treated powders over control. Rheological behaviour of reconstituted MPC solutions was best explained by Herschel Bulkley model. Compared to rough, large globular structures with dents in control; majorly intact, separate, smaller particles of smooth surface, without any aggregation were observed in SEM micrograph of treated powders. Applied treatments are easy, cost-effective and capable to improve functional properties of treated powders that could replace control MPC70 powder in various food applications where protein functionality is of prime importance.

  15. Investigation of Rheological Properties of Blended Cement Pastes Using Rotational Viscometer and Dynamic Shear Rheometer

    Directory of Open Access Journals (Sweden)

    Yoo Jae Kim

    2018-01-01

    Full Text Available To successfully process concrete, it is necessary to predict and control its flow behavior. However, the workability of concrete is not completely measured or specified by current standard tests. Furthermore, it is only with a clear picture of cement hydration and setting that full prediction and control of concrete performance can be generalized. In order to investigate the rheological properties of blended cement pastes, a rotational viscometer (RV was used to determine the flow characteristics of ordinary and blended pastes to provide assurance that it can be pumped and handled. Additionally, a dynamic shear rheometer (DSR was used to characterize both the viscous and elastic components of pastes. Ordinary Portland cement paste and blended pastes (slag, fly ash, and silica fume were investigated in this study. The stress and strain of the blended specimens were measured by the DSR, which characterizes both viscous and elastic behaviors by measuring the complex shear modulus (the ratio of total shear stress to total shear strain and phase angle (an indicator of the relative amounts of recoverable and nonrecoverable deformation of materials. Cement pastes generally exhibit different rheological behaviors with respect to age, mineral admixture type, and cement replacement level.

  16. Design of a dual nanostructured lipid carrier formulation based on physicochemical, rheological, and mechanical properties

    International Nuclear Information System (INIS)

    Vitorino, Carla; Alves, Luís; Antunes, Filipe E.; Sousa, João J.; Pais, Alberto A. C. C.

    2013-01-01

    The synergy between nanostructured lipid carriers (NLC) and chemical penetration enhancers provides the basis for a promising strategy to effectively deliver drugs through the skin. In the present work, focus is given to the study of the interaction of limonene, ethanol, and Carbopol Ultrez ® 10NF, as the gelling agent, with a co-encapsulating NLC dispersion, containing both olanzapine and simvastatin. The analysis is based on rheological, mechanical, and physicochemical properties. The nanoparticle size ranged from 130 to 400 nm, depending on the system considered. The inclusion of carbopol resulted in a considerable increase in the NLC particle size, which was attributed to carbomer bridging nanoparticles, resulting in some particle aggregation. Rheological measurements indicated that the viscosity of the neat carbopol hydrogel was reduced by the enhancers and to a higher extent by the presence of NLC. A more apolar medium can be pointed out as a general explanation, while a polymer/nanoparticle hydrophobic interaction coupled with surfactant/polymer H-bonding provides the rationale for the NLC effect. The inclusion of enhancers and a carbomer largely contributed to the physicochemical stability of the NLC formulation, as revealed by the low transmission profiles and more negative zeta potential values

  17. Effect of cellulose nanocrystals (CNCs) on crystallinity, mechanical and rheological properties of polypropylene/CNCs nanocomposites

    Science.gov (United States)

    Bagheriasl, D.; Carreau, P. J.; Dubois, C.; Riedl, B.

    2015-05-01

    Rheological and mechanical properties of polypropylene (PP)/CNCs nanocomposites were compared with those of nanocomposites containing poly(ethylene-co-vinyl alcohol) as a compatibilizer. The nanocomposites were prepared by a Brabender internal mixer at CNC contents of 5 wt%. The compression molded nanocomposite dog-bones and disks were characterized regarding their tensile and dynamic rheological behavior, respectively. The complex viscosity of the nanocomposites samples containing the compatibilizer were increased, slightly, compared to the non-compatibilized nanocomposite samples. Moreover, an overshoot in the transient start-up viscosity of the compatibilized nanocomposite was observed. The Young modulus of the nanocomposite samples containing the compatibilizer were increased up to ca. 37% compared to the neat PP. The elongation at break was decreased in all PP/CNC nanocomposite samples, but less for the nanocomposite samples containing the compatibilizer. The crystalline content of the PP in the nanocomposites and also the crystallization temperature were increased after compatibilization. These results could be ascribed to the efficiency of the poly(ethylene-co-vinyl alcohol) as a compatibilizer that favors a better dispersion and wetting of the hydrophilic CNCs within the hydrophobic PP.

  18. Rheological Behavior of Dense Assemblies of Granular Materials

    International Nuclear Information System (INIS)

    Sundaresan, Sankaran; Tardos, Gabriel I.; Subramaniam, Shankar

    2011-01-01

    Assemblies of granular materials behave differently when they are owing rapidly, from when they are slowly deforming. The behavior of rapidly owing granular materials, where the particle-particle interactions occur largely through binary collisions, is commonly related to the properties of the constituent particles through the kinetic theory of granular materials. The same cannot be said for slowly moving or static assemblies of granular materials, where enduring contacts between particles are prevalent. For instance, a continuum description of the yield characteristics of dense assemblies of particles in the quasistatic ow regime cannot be written explicitly on the basis of particle properties, even for cohesionless particles. Continuum models for this regime have been proposed and applied, but these models typically assume that the assembly is at incipient yield and they are expressed in terms of the yield function, which we do not yet know how to express in terms of particle-level properties. The description of the continuum rheology in the intermediate regime is even less understood. Yet, many practically important flows in nature and in a wide range of technological applications occur in the dense flow regime and at the transition between dilute and dense regimes; the lack of validated continuum rheological models for particle assemblies in these regimes limits predictive modeling of such flows. This research project is aimed at developing such rheological models.

  19. Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia.

    Science.gov (United States)

    Moretto, Cristiane; Castellane, Tereza Cristina Luque; Lopes, Erica Mendes; Omori, Wellington Pine; Sacco, Laís Postai; Lemos, Eliana Gertrudes de Macedo

    2015-11-01

    The rheological, physicochemical properties, emulsification and stability of exopolysaccharides (EPSs) from four rhizobia isolates (LBMP-C01, LBMP-C02, LBMP-C03 and LBMP-C04) were studied. The EPS yields of isolates under these experimental conditions were in the range of 1.5-6.63gL(-1). The LBMP-C04 isolate, which presented the highest EPS production (6.63gL(-1)), was isolated from Arachis pintoi and was identified as a Rhizobium sp. strain that could be explored as a possible potential source for the production of extracellular heteropolysaccharides. All polymers showed a pseudoplastic non-Newtonian fluid behavior or shear thinning property in aqueous solutions. Among the four EPS tested against hydrocarbons, EPS LBMP-C01 was found to be more effective against hexane, olive and soybean oils (89.94%, 82.75% and 81.15%, respectively). Importantly, we found that changes in pH (2-11) and salinity (0-30%) influenced the emulsification of diesel oil by the EPSs. EPSLBMP-C04 presented optimal emulsification capacity at pH 10 (E24=53%) and 30% salinity (E24=27%). These findings contribute to the understanding of the influence of the chemical composition, physical properties and biotechnology applications of rhizobial EPS solutions their bioemulsifying properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of Temperature on Time Dependent Rheological Characteristics of Koumiss

    Directory of Open Access Journals (Sweden)

    Serdal Sabancı

    2016-04-01

    Full Text Available The rheological properties of koumiss were investigated at different temperatures (4, 10, and 20°C. Experimental shear stress–shear rate data were fitted to different rheological models. The consistency of koumiss was predicted by using the power-law model since it described the consistency of koumiss best with highest regression coefficient and lowest errors (root mean square error and chi-square. Koumiss exhibited shear thinning behavior (n

  1. State of the art of medical devices featuring smart electro-rheological and magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    Jong-Seok Oh

    2017-10-01

    Full Text Available Recently, smart fluids have drawn significant attention and growing a great interest in a broad range of engineering applications such as automotive and medical areas. In this article, two smart fluids called electro-rheological (ER fluid and magneto-rheological (MR fluid are reviewed in terms of medical applications. Especially, this article describes the attributes and inherent properties of individual medical and rehabilitation devices. The devices surveyed in this article include multi-degree-of-freedom haptic masters for robot surgery, thin membrane touch panels for braille readers, sponge-like tactile sensors to feel human tissues such as liver, rehabilitation systems such as prosthetic leg, and haptic interfaces for dental implant surgery. The operating principle, inherent characteristics and practical feasibility of each medical device or system are fully discussed in details.

  2. Study of cement pastes rheological behavior using dynamic shear rheometer

    Directory of Open Access Journals (Sweden)

    J. E. S. L. Teixeira

    Full Text Available Concrete, in its fresh state, has flow characteristics that are crucial to its proper launch and densification. These characteristics are usually measured through empirical testing as the slump test, but this test does not quantify completely the material behavior. Since this material is characterized as a Bingham fluid, it is essential the study of its rheological behavior to verify its properties even in fresh state. The use of classical rheology has been employed by the scientific community to obtain rheological parameters determinants to characterize this material, such as yield stress, plastic viscosity and evolution of shear stress to shear rate. Thus, this present study aims to determine the rheological behavior of different cement pastes produced with cement CP III 40 RS, varying between them the hydration periods (20 and 60 min, the water-cement ratio (0.40, 0.45 and 0.50 and the use or not of additive. Samples were assayed by flow test to determine the rheological parameters showing the effect of the variables mentioned above in these parameters.

  3. Rheological Characterization of Green Sand Flow

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hovad, Emil

    2016-01-01

    The main aim of this paper is to characterize experimentally the flow behaviour of the green sand that is used for casting of sand moulds. After the sand casting process is performed, the sand moulds are used for metal castings. The rheological properties of the green sand is important to quantif...

  4. Estimation of semolina dough rheological parameters by inversion of a finite elements model

    Directory of Open Access Journals (Sweden)

    Angelo Fabbri

    2015-10-01

    Full Text Available The description of the rheological properties of food material plays an important role in food engineering. Particularly for the optimisation of pasta manufacturing process (extrusion is needful to know the rheological properties of semolina dough. Unfortunately characterisation of non-Newtonian fluids, such as food doughs, requires a notable time effort, especially in terms of number of tests to be carried out. The present work proposes an alternative method, based on the combination of laboratory measurement, made with a simplified tool, with the inversion of a finite elements numerical model. To determine the rheological parameters, an objective function, defined as the distance between simulation and experimental data, was considered and the well-known Levenberg-Marqard optimisation algorithm was used. In order to verify the feasibility of the method, the rheological characterisation of the dough was carried also by a traditional procedure. Results shown that the difference between measurements of rheological parameters of the semolina dough made with traditional procedure and inverse methods are very small (maximum percentage error equal to 3.6%. This agreement supports the coherence of the inverse method that, in general, may be used to characterise many non-Newtonian materials.

  5. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1993-01-01

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries

  6. Study of the rheological properties of water and Martian soil simulant mixtures for engineering applications on the red planet

    Science.gov (United States)

    Taylor, Lewis; Alberini, Federico; Sullo, Antonio; Meyer, Marit E.; Alexiadis, Alessio

    2018-03-01

    The rheological properties of mixtures of water and the Martian soil simulant JSC-Mars-1A are investigated by preparing and testing samples at various solids concentrations. The results indicate that the dispersion is viscoelastic and, at small timescales (∼0.1 s), reacts to sudden strain as an elastic solid. At longer timescales the dispersion behaves like a Bingham fluid and exhibits a yield stress. Hysteresis loops show that rapid step-changes (2 s duration) of shear-rate result in thixotropic behaviour, but slower changes (>10 s duration) can result in rheopexy. These observations are explained with the breakdown and recovery of the packing structure under stress. The rheological information is used to generate practical tools, such as the system curve and the Moody chart that can be used for designing piping systems, and calculating pump sizes and pressure requirements.

  7. Effects of the size and content of protein aggregates on the rheological and structural properties of soy protein isolate emulsion gels induced by CaSO4.

    Science.gov (United States)

    Wang, Xufeng; He, Zhiyong; Zeng, Maomao; Qin, Fang; Adhikari, Benu; Chen, Jie

    2017-04-15

    The effects of the size and content of soy protein isolate (SPI) aggregates on the rheological and textural properties of CaSO 4 -induced SPI emulsion gels were investigated. Considerable differences in the rheological, water-holding, and micro-structural properties were observed. The gels with larger and/or more SPI aggregates showed substantial increase in the elastic modulus and had lower gelation temperatures. Creep data suggested that the size of the SPI aggregates contributed more to the elastic modulus, whereas the increase of aggregate content enhanced the elastic modulus and viscous component of the gels. The water-holding capacity was markedly enhanced (pemulsions and emulsion gels. Copyright © 2016. Published by Elsevier Ltd.

  8. Rheology of Savannah River Site Tank 42 radioactive sludges. Revision 1

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1995-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site (SRS), Tank 42 sludge represents one of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility (DWPF). The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer. Rheological properties of Tank 42 radioactive sludge were measured as a function of weight percent total solids to ensure that the first DWPF radioactive sludge batch can be pumped and processed in the DWPF with the current design bases. The yield stress and consistency of the sludge slurries were determined by assuming a Bingham plastic fluid model

  9. Structure, Ion Transport, and Rheology of Nanoparticle Salts

    KAUST Repository

    Wen, Yu Ho; Lu, Yingying; Dobosz, Kerianne M.; Archer, Lynden A.

    2014-01-01

    particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through

  10. 5th European Rheology Conference

    CERN Document Server

    1998-01-01

    Global sustainable development of the world economy requires better understanding and utilization of natural recourses. In this endeavor rheology has an indispensable role. The Rheology Conferences are therefore always an important event for science and technology. The Fifth European Rheology Conference, held from September 6 to 11 in the Portoro-z, Slovenia, will be the first AlI-European rheology meeting after the formal constitution of the European Society ofRheology. As such it will be a special historical event. At this meeting the European Society of Rheology will introduce the Weissenberg Medal, to be bestowed every four years to an individual for hislhers contribution to the field of Rheology. The recipient ofthe first award will be professor G. Marrucci ofthe Universita degli Studi di Napoli, Italy. Two mini Symposia will be part of the Conference. The first, on Industrial Rheology, will commemorate the late professor G. Astarita. The second will honor the eightieth birthday of professor N.W. Tschoeg...

  11. 2nd International Conference on Rheology and Modeling of Materials (IC-RMM2)

    International Nuclear Information System (INIS)

    2017-01-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2 nd International Conference on Rheology and Modeling of Materials (ic-rmm2) and the parallel organized symposiums of the 1 st International Symposium on Powder Injection Molding (is-pim1) and the 1 st International Symposium on Rheology and Fracture of Solids (is-rfs1) are the followings: Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication and collaboration between the scientists, researchers and engineers of different disciplines, different nations, countries and continents. The international conference ic-rmm2 and symposiums of is-pim1 and is-rfs1 provide a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among thr major fields of interest are the influence of materials structures, mechanical stresses, temperatures, deformation speeds and shear rates on rheological and physical properties, phase transformation of foams, foods, polymers, plastics and other competitive materials like ceramics

  12. 2nd International Conference on Rheology and Modeling of Materials (IC-RMM2)

    Science.gov (United States)

    2017-01-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2nd International Conference on Rheology and Modeling of Materials (ic-rmm2) and the parallel organized symposiums of the 1st International Symposium on Powder Injection Molding (is-pim1) and the 1st International Symposium on Rheology and Fracture of Solids (is-rfs1) are the followings: Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication and collaboration between the scientists, researchers and engineers of different disciplines, different nations, countries and continents. The international conference ic-rmm2 and symposiums of is-pim1 and is-rfs1 provide a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among thr major fields of interest are the influence of materials structures, mechanical stresses, temperatures, deformation speeds and shear rates on rheological and physical properties, phase transformation of foams, foods, polymers, plastics and other competitive materials like ceramics

  13. An In-Depth Investigation into the Physicochemical, Thermal, Microstructural, and Rheological Properties of Petroleum and Natural Asphalts

    Directory of Open Access Journals (Sweden)

    Nader Nciri

    2016-10-01

    Full Text Available Over the last decade, unexpected and sudden pavement failures have occurred in several provinces in South Korea. Some of these failures remain unexplained, further illustrating the gaps in our knowledge about binder chemistry. To prevent premature pavement distress and enhance road performance, it is imperative to provide an adequate characterization of asphalt. For this purpose, the current research aims at inspecting the chemistry, microstructure, thermal, and physico-rheological properties of two types of asphalt, namely petroleum asphalt (PA and natural asphalt (NA. The binders were extensively investigated by using elemental analysis, thin-layer chromatography with flame ionization detection (TLC-FID, matrix-assisted laser desorption ionization time-of-fight mass spectroscopy (MALDI-TOF-MS, Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy (RS, Nuclear magnetic resonance spectroscopy (1H-NMR, ultraviolet and visible spectroscopy (UV-VIS, X-ray diffraction (XRD, scanning electron microscopy (SEM, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, penetration, softening point, ductility, and viscosity tests. The findings of this research have revealed the distinct variations between the chemical compositions, microstructures, and thermo-rheological properties of the two asphalts and provided valuable knowledge into the characteristics of the binders. Such insight has been effective in predicting the performance or distress of road pavement. This paper will, therefore, be of immediate interest to materials engineers in state highway agencies and asphalt industries.

  14. Influence of rheology on the pumpability of mortar : P 2 Improved construction technology SP 2.4 Workability

    OpenAIRE

    Vikan, Hedda Vestøl; Jacobsen, Stefan

    2010-01-01

    The rheological and material parameters determining the pumpability of fresh self-compacting mortar have been studied in full-scale (70 m Ø 50 mm rubber hose and screw pump with max capacity 7 m3/h). Concrete pressure gradient over the hose length (dp/dx) and flow rate were measured to quantify pumpability. The rheological properties of the pumped mortars were measured with a ConTec BML viscometer. Finally, the rheological properties of the slip layer that occurs in vicinity of the wall of th...

  15. Linear rheology as a potential monitoring tool for sputum in patients with Chronic Obstructive Pulmonary Disease (COPD).

    Science.gov (United States)

    Nettle, C J; Jenkins, L; Curtis, D; Badiei, N; Lewis, K; Williams, P R; Daniels, D R

    2018-01-01

    The rheological properties of sputum may influence lung function and become modified in disease. This study aimed to correlate the viscoelastic properties of sputum with clinical data on the severity of disease in patients with chronic obstructive pulmonary disease (COPD). Sputum samples from COPD patients were investigated using rheology, simple mathematical modelling and Scanning Electron Microscopy (SEM). The samples were all collected from patients within two days of their admission to Prince Philip Hospital due to an exacerbation of their COPD. Oscillatory and creep rheological techniques were used to measure changes in viscoelastic properties at different frequencies over time. COPD sputum was observed to behave as a viscoelastic solid at all frequencies studied. Comparing the rheology of exacerbated COPD sputum with healthy sputum (not diagnosed with a respiratory disease) revealed significant differences in response to oscillatory shear and creep-recovery experiments, which highlights the potential clinical benefits of better understanding sputum viscoelasticity. A common power law model G(t)=G0(tτ0)-m was successfully fitted to experimental rheology data over the range of frequencies studied. A comparison between clinical data and the power law index m obtained from rheology, suggested that an important possible future application of this parameter is as a potential biomarker for COPD severity.

  16. Synthesis and Rheological Properties of an Associative Star Polymer in Aqueous Solutions

    DEFF Research Database (Denmark)

    Hietala, Sami; Mononen, Pekka; Strandman, Satu

    2007-01-01

    synthesised by atom transfer radical. polymerization (ATRP) was found to fonn hydrogels at room temperature at polymer concentrations. Cp, over 22 gIL due to the interpolymer drophobic association of the PS blocks. Increasing Cp leads to stronger elastic networks at room temperature that show a gel......Rheological properties of aqueous solutions and hydrogels fonned by an amphiphiIic star block copolymer poly(acrylic acid)-blockpolystyrene (PAAS4-b-PS6)4. were investigated as a function of the polymer concentration (Cp), temperature, and added saIt concentration. The water-soluble polymer......-to-solution transition with increasing temperature. Increase of ionic strength decreases the moduli compared with the pure hydrogel but did not affect the gel-sol transition temperature significantly. Small-angle X-ray experiments showed two distinct scattering correlation peaks for samples above the gelling Cp, which...

  17. Rheological and microbiological study of flour treated by irradiation

    International Nuclear Information System (INIS)

    Laabidi, Othmen

    2007-01-01

    the aim this work is to study the effectiveness of radio treatment and its effect on the conservation of flour and their various parameters (physico-chemical and rheological). The flour has been treated with different doses (0, 0.75, 1.5 and 3 kGy), physico-chemical, rheological, microbiological and sensory analyses were made.The results show that the irradiation as a treatment for decontamination gave a highly effective. Indeed, a dose of 1.5 kGy allows a total destruction of yeasts and molds. Thus, from the point of view physico-chemical, increasing the dose of radiation causes a change in physical and chemical properties and rheological of flour. for the characteristics of bread, increasing the dose of radiation affects the quality of bread. (Author). 38 refs

  18. Rheology in Pharmaceutical Sciences

    DEFF Research Database (Denmark)

    Aho, Johanna; Hvidt, Søren; Baldursdottir, Stefania

    2016-01-01

    Rheology is the science of flow and deformation of matter. Particularly gels and non-Newtonian fluids, which exhibit complex flow behavior, are frequently encountered in pharmaceutical engineering and manufacturing, or when dealing with various in vivo fluids. Therefore understanding rheology......, together with the common measurement techniques and their practical applications. Examples of the use of rheological techniques in the pharmaceutical field, as well as other closely related fields such as food and polymer science, are also given....... is important, and the ability to use rheological characterization tools is of great importance for any pharmaceutical scientist involved in the field. Flow can be generated by shear or extensional deformations, or a combination of both. This chapter introduces the basics of both shear and extensional rheology...

  19. Simultaneous Effects of Total Solids Content, Milk Base, Heat Treatment Temperature and Sample Temperature on the Rheological Properties of Plain Stirred Yogurt

    Directory of Open Access Journals (Sweden)

    Attilio Converti

    2006-01-01

    Full Text Available Response surface methodology was used to establish a relationship between total solids content, milk base, heat treatment temperature, and sample temperature, and consistency index, flow behaviour index, and apparent viscosity of plain stirred yogurts. Statistical treatments resulted in developments of mathematical models. All samples presented shear thinning fluid behaviour. The increase of the content of total solids (9.3–22.7 % and milk base heat treatment temperature (81.6–98.4 °C resulted in a significant increase in consistency index and a decrease in flow behaviour index. Increase in the sample temperature (1.6–18.4 °C caused a decrease in consistency index and increase in flow behaviour index. Apparent viscosity was directly related to the content of total solids. Rheological properties of yogurt were highly dependent on the content of total solids in milk.

  20. Design of a dual nanostructured lipid carrier formulation based on physicochemical, rheological, and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Vitorino, Carla [University of Coimbra, Centro de Estudos Farmaceuticos (CEF), Faculty of Pharmacy (Portugal); Alves, Luis; Antunes, Filipe E. [University of Coimbra, Department of Chemistry (Portugal); Sousa, Joao J. [University of Coimbra, Centro de Estudos Farmaceuticos (CEF), Faculty of Pharmacy (Portugal); Pais, Alberto A. C. C., E-mail: pais@qui.uc.pt [University of Coimbra, Department of Chemistry (Portugal)

    2013-10-15

    The synergy between nanostructured lipid carriers (NLC) and chemical penetration enhancers provides the basis for a promising strategy to effectively deliver drugs through the skin. In the present work, focus is given to the study of the interaction of limonene, ethanol, and Carbopol Ultrez{sup Registered-Sign} 10NF, as the gelling agent, with a co-encapsulating NLC dispersion, containing both olanzapine and simvastatin. The analysis is based on rheological, mechanical, and physicochemical properties. The nanoparticle size ranged from 130 to 400 nm, depending on the system considered. The inclusion of carbopol resulted in a considerable increase in the NLC particle size, which was attributed to carbomer bridging nanoparticles, resulting in some particle aggregation. Rheological measurements indicated that the viscosity of the neat carbopol hydrogel was reduced by the enhancers and to a higher extent by the presence of NLC. A more apolar medium can be pointed out as a general explanation, while a polymer/nanoparticle hydrophobic interaction coupled with surfactant/polymer H-bonding provides the rationale for the NLC effect. The inclusion of enhancers and a carbomer largely contributed to the physicochemical stability of the NLC formulation, as revealed by the low transmission profiles and more negative zeta potential values.

  1. Comparison of the rheological properties of ready-to-serve and powdered instant food-thickened beverages at different temperatures for dysphagic patients.

    Science.gov (United States)

    Adeleye, Bernice; Rachal, Corryn

    2007-07-01

    Dysphagia, or difficulty swallowing, affects an estimated 15 million Americans. Its management may include use of instant food thickener (IFT) to modify beverage consistency to minimize the risk of aspiration and prevent dehydration. However, inconsistencies with the desired viscosity of these thickened liquids occur both within and across product lines for both ready-to-serve commercially packaged prethickened (CPPT) and IFT-thickened beverages. To examine the rheological property differences between CPPT and similar IFT-thickened beverages, and to assess the stability of these products at two temperature ranges using three viscosity measurement techniques. The rheological properties of five CPPT and IFT-thickened beverages at both nectar- and honey-like consistencies were evaluated at 10 degrees C (50 degrees F) and 20 degrees C (68 degrees F) using the line spread, funnel, and viscometry methods. One-way analysis of variance was used for data analysis. When a significant difference was observed, Tukey's test was used to separate the means. Each viscosity measurement technique showed the CPPT nectar- and honey-like consistency beverages were significantly more viscous (Pbeverages at nectar and honey consistencies were almost always more viscous than the National Dysphagia Diet Task Force-defined standards, whereas the IFT-thickened beverages were more frequently within those standards. A reevaluation of the viscosity of CPPT beverages with reference to the National Dysphagia Diet Task Force set standard ranges needs to be considered. A strong need also exists for development of a standard protocol on product labels that includes the expected rheological properties of CPPT and IFT-thickened beverages. To the clinicians, especially registered dietitians, it is an important clinical consideration to recognize that CPPT products may be thicker than IFT-thickened products and also may be more viscous than the National Dysphagia Diet Task Force-defined standards.

  2. Thermal, tensile and rheological properties of low density polyethylene (LDPE) processed irradiated by gamma-ray

    International Nuclear Information System (INIS)

    Ferreto, Helio F.R.; Oliveira, Ana C.F. de; Parra, Duclerc F.; Lugao, Ademar B.

    2013-01-01

    The aim of this paper is to investigate structural changes of low density polyethylene (LDPE) modified by ionizing radiation (gamma rays). The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. The samples were prepare in hydraulic press in temperature 180 deg C after was irradiated with gamma source of 60 Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h in inert atmosphere. The changes in molecular structure of LDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere. (author)

  3. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH.

    Science.gov (United States)

    Diamantides, Nicole; Wang, Louis; Pruiksma, Tylar; Siemiatkoski, Joseph; Dugopolski, Caroline; Shortkroff, Sonya; Kennedy, Stephen; Bonassar, Lawrence J

    2017-07-05

    Collagen has shown promise as a bioink for extrusion-based bioprinting, but further development of new collagen bioink formulations is necessary to improve their printability. Screening these formulations by measuring print accuracy is a costly and time consuming process. We hypothesized that rheological properties of the bioink before, during, and/or after gelation can be used to predict printability. In this study, we investigated the effects of riboflavin photocrosslinking and pH on type I collagen bioink rheology before, during, and after gelation and directly correlated these findings to the printability of each bioink formulation. From the riboflavin crosslinking study, results showed that riboflavin crosslinking increased the storage moduli of collagen bioinks, but the degree of improvement was less pronounced at higher collagen concentrations. Dots printed with collagen bioinks with riboflavin crosslinking exhibited smaller dot footprint areas than those printed with collagen bioinks without riboflavin crosslinking. From the pH study, results showed that gelation kinetics and final gel moduli were highly pH dependent and both exhibited maxima around pH 8. The shape fidelity of printed lines was highest at pH 8-9.5. The effect of riboflavin crosslinking and pH on cell viability was assessed using bovine chondrocytes. Cell viability in collagen gels was found to decrease after blue light activated riboflavin crosslinking but was not affected by pH. Correlations between rheological parameters and printability showed that the modulus associated with the bioink immediately after extrusion and before deposition was the best predictor of bioink printability. These findings will allow for the more rapid screening of collagen bioink formulations.

  4. Microstructural and rheological properties of irradiated rice Propriedades microestrutural e reológica de arroz irradiado

    Directory of Open Access Journals (Sweden)

    Ívina Catarina de Oliveira Guimarães

    2013-06-01

    Full Text Available The culinary quality of rice directly results in its market value and consumer acceptance. Thus, the present study evaluated the effect of gamma irradiation on the properties of the polished white rice starch, as well as their characteristic pulp. Doses of 6.5 kGy and 7.5 kGy did not alter the microstructure of rice starch granules, but interfered with rheological properties when compared to the control treatment, resulting in a reduction of the maximum and final viscosity and retrogradation. Since the microstructural and rheological properties within the values associated with rice quality, it was inferred that gamma irradiation did not alter the decisive characteristics for the acceptability of this cereal.A qualidade culinária do arroz resulta diretamente em seu valor de mercado e aceitação do consumidor. Assim, no presente estudo, avaliou-se o efeito da irradiação gama sobre as propriedades do amido do arroz branco polido, bem como na sua característica de pasta. Doses de 6,5 kGy e 7,5 kGy não alteraram a microestrutura dos grânulos de amido de arroz, mas interferiram nas propriedades reológicas quando comparado ao tratamento controle, resultando na redução da viscosidade máxima e final; e retrogradação. Esse resultado pode estar correlacionado à presença de radicais livres no arroz branco polido recém-irradiado, os quais se estabilizaram ao passar quatro meses. Desde que as propriedades microestruturais e reológicas se encontrem dentro dos valores associados à qualidade do arroz, a irradiação gama não altera as características determinantes para a aceitação do cereal.

  5. Influence of nepheline syenite and milling time on the rheological properties of a porcelain stoneware tile slip

    Directory of Open Access Journals (Sweden)

    Jazayeri, S. H.

    2003-08-01

    Full Text Available The rheological properties of porcelain stoneware tile slips were investigated using a rotational rheometer. The first step in the study was to evaluate the rheological behaviour of a reference slip at different particle size distributions to determine the optimum conditions at which to carry out the investigation of the influence of nepheline syenite in the mix. In the second step part of the K-feldspar in the reference mix was replaced with nepheline syenite such that the mix composition contained 10 % nepheline syenite. The flow curve, yield stress and thixotropy of the slips were evaluated at different milling times in order to study the effect of particle size on the rheological behaviour. The milling times for the reference mix and for the mix with nepheline syenite which resulted in the best rheological parameters were found.

    Se han investigado las propiedades reológicas de barbotinas de porcelana dura para pavimentos usando un reómetro rotacional. El primer paso del estudio fue evaluar el comportamiento reológico de una barbotina de referencia con diferentes distribuciones de tamaño de partícula con el fin de determinar las condiciones óptimas bajo las cuales estudiar la influencia de nefelina sienita en la mezcla. En la segunda etapa, parte del feldespato potásico de la mezcla de referencia se substituyó por nefelina sienita de forma que la composición de la mezcla tuviera un 10% de neflina sienita. Se evaluaron las curvas de flujo, los puntos de fluidez y la tixotropía de las barbotinas tras diferentes tiempos de molienda con el fin de estudiar el efecto del tamaño de partícula en el comportamiento reológico. Se determinaron los tiempos de molienda en los que se alcanzaban los mejores parámetros reológicos para la mezcla de referencia y la de nefelina sienita.

  6. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown

  7. Rheological behaviour, sensory properties and syneresis of probiotic yoghurt supplemented with various prebiotics

    DEFF Research Database (Denmark)

    Heydari, Somayeh; Amiri-Rigi, Atefeh; Ehsani, Mohammad Reza

    2018-01-01

    The main aim of this study was to investigate the effects of addition of six different prebiotic compounds (inulin, lactulose, lactitol, Hi-maize, maltodextrin and β-glucan) on syneresis, sensory attributes and rheological characteristics (elastic modulus, viscous modulus, loss tangent, complex...... modules) of probiotic yoghurt. The results revealed that the inclusion of the prebiotic compounds into the probiotic yoghurt profoundly affected the products' syneresis, as well as the sensory and rheological characteristics of the probiotic yoghurts compared with control samples. On the whole, production...

  8. Physicochemical and Rheological Properties of a Dairy Dessert, Enriched with Chickpea Flour

    Directory of Open Access Journals (Sweden)

    Victoria Guadalupe Aguilar-Raymundo

    2018-02-01

    Full Text Available Dairy desserts are complex mixtures and matrices including main components such as milk, sugar, starch, hydrocolloids, colorants and flavors, with a proteinaceous structure; they are widely consumed and present a semisolid consistency. In this work, the physicochemical and rheological properties of a dairy dessert with the addition of chickpea flour (raw and cooked, at four concentrations were studied to determine the effect of the flour. The results indicated that luminosity (L*: 62.75–83.29, pH (6.35–7.11 and acidity (1.56–3.56 changed with the type of flour. The flow properties of the custards exhibited a non-Newtonian behavior that was well fitted by three flow models. The studied custard systems were stored for twelve days at 4 °C. The physicochemical and flow properties of the custards changed notably as a function of flour addition and storage time. From all samples, only four were analyzed with oscillatory tests, showing their mechanical spectra with elastic behavior. The dessert texture was also measured, founding that those formulated with Blanco Noroeste chickpea flour exhibited the highest values of hardness (0.356–0.391 N through the twelve days. It can be concluded that those custard systems with the highest content of flour presented a very good response as a potential new dairy product.

  9. Physicochemical and Rheological Properties of a Dairy Dessert, Enriched with Chickpea Flour

    Science.gov (United States)

    Aguilar-Raymundo, Victoria Guadalupe; Vélez-Ruiz, Jorge Fernando

    2018-01-01

    Dairy desserts are complex mixtures and matrices including main components such as milk, sugar, starch, hydrocolloids, colorants and flavors, with a proteinaceous structure; they are widely consumed and present a semisolid consistency. In this work, the physicochemical and rheological properties of a dairy dessert with the addition of chickpea flour (raw and cooked, at four concentrations) were studied to determine the effect of the flour. The results indicated that luminosity (L*: 62.75–83.29), pH (6.35–7.11) and acidity (1.56–3.56) changed with the type of flour. The flow properties of the custards exhibited a non-Newtonian behavior that was well fitted by three flow models. The studied custard systems were stored for twelve days at 4 °C. The physicochemical and flow properties of the custards changed notably as a function of flour addition and storage time. From all samples, only four were analyzed with oscillatory tests, showing their mechanical spectra with elastic behavior. The dessert texture was also measured, founding that those formulated with Blanco Noroeste chickpea flour exhibited the highest values of hardness (0.356–0.391 N) through the twelve days. It can be concluded that those custard systems with the highest content of flour presented a very good response as a potential new dairy product. PMID:29463036

  10. Silk Fibroin Degradation Related to Rheological and Mechanical Properties.

    Science.gov (United States)

    Partlow, Benjamin P; Tabatabai, A Pasha; Leisk, Gary G; Cebe, Peggy; Blair, Daniel L; Kaplan, David L

    2016-05-01

    Regenerated silk fibroin has been proposed as a material substrate for biomedical, optical, and electronic applications. Preparation of the silk fibroin solution requires extraction (degumming) to remove contaminants, but results in the degradation of the fibroin protein. Here, a mechanism of fibroin degradation is proposed and the molecular weight and polydispersity is characterized as a function of extraction time. Rheological analysis reveals significant changes in the viscosity of samples while mechanical characterization of cast and drawn films shows increased moduli, extensibility, and strength upon drawing. Fifteen minutes extraction time results in degraded fibroin that generates the strongest films. Structural analysis by wide angle X-ray scattering (WAXS) and Fourier transform infrared spectroscopy (FTIR) indicates molecular alignment in the drawn films and shows that the drawing process converts amorphous films into the crystalline, β-sheet, secondary structure. Most interesting, by using selected extraction times, films with near-native crystallinity, alignment, and molecular weight can be achieved; yet maximal mechanical properties for the films from regenerated silk fibroin solutions are found with solutions subjected to some degree of degradation. These results suggest that the regenerated solutions and the film casting and drawing processes introduce more complexity than native spinning processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rheology and Microbiology of Sludge from a Thermophilic Aerobic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Alessandro Abbà

    2017-01-01

    Full Text Available A thermophilic aerobic membrane reactor (TAMR treating high-strength COD liquid wastes was submitted to an integrated investigation, with the aim of characterizing the biomass and its rheological behaviour. These processes are still scarcely adopted, also because the knowledge of their biology as well as of the physical-chemical properties of the sludge needs to be improved. In this paper, samples of mixed liquor were taken from a TAMR and submitted to fluorescent in situ hybridization for the identification and quantification of main bacterial groups. Measurements were also targeted at flocs features, filamentous bacteria, and microfauna, in order to characterize the sludge. The studied rheological properties were selected as they influence significantly the performances of membrane bioreactors (MBR and, in particular, of the TAMR systems that operate under thermophilic conditions (i.e., around 50°C with high MLSS concentrations (up to 200 gTS L−1. The proper description of the rheological behaviour of sludge represents a useful and fundamental aspect that allows characterizing the hydrodynamics of sludge suspension devoted to the optimization of the related processes. Therefore, in this study, the effects on the sludge rheology produced by the biomass concentration, pH, temperature, and aeration were analysed.

  12. Universal timescales in the rheology of spheroid cell aggregates

    Science.gov (United States)

    Yu, Miao; Mahtabfar, Aria; Beleen, Paul; Foty, Ramsey; Zahn, Jeffrey; Shreiber, David; Liu, Liping; Lin, Hao

    2017-11-01

    The rheological properties of tissue play important roles in key biological processes including embryogenesis, cancer metastasis, and wound healing. Spheroid cell aggregate is a particularly interesting model system for the study of these phenomena. In the long time, they behave like drops with a surface tension. In the short, viscoelasticity also needs to be considered. In this work, we discover two coupled and universal timescales for spheroid aggregates. A total of 12 aggregate types (total aggregate number n =290) derived from L and GBM (glioblastoma multiforme) cells are studied with microtensiometer to obtain their surface tension. They are also allowed to relax upon release of the compression forces. The two timescales are observed during the relaxation process; their values do not depend on compression time nor the degree of deformation, and are consistent among all 12 types. Following prior work (Yu et al., Phys. Rev. Lett., 115:128303; Liu et al., J. Mech. Phys. Solids, 98:309-329) we use a rigorous mathematical theory to interpret the results, which reveals intriguing properties of the aggregates on both tissue and cellular levels. The mechanics of multicellular organization reflects both complexity and regularity due to strong active regulation.

  13. A Study on the Rheological and Mechanical Properties of Photo-Curable Ceramic/Polymer Composites with Different Silane Coupling Agents for SLA 3D Printing Technology.

    Science.gov (United States)

    Song, Se Yeon; Park, Min Soo; Lee, Jung Woo; Yun, Ji Sun

    2018-02-07

    Silane coupling agents (SCAs) with different organofunctional groups were coated on the surfaces of Al₂O₃ ceramic particles through hydrolysis and condensation reactions, and the SCA-coated Al₂O₃ ceramic particles were dispersed in a commercial photopolymer based on interpenetrating networks (IPNs). The organofunctional groups that have high radical reactivity and are more effective in UV curing systems are usually functional groups based on acryl, such as acryloxy groups, methacrloxy groups, and acrylamide groups, and these silane coupling agents seem to improve interfacial adhesion and dispersion stability. The coating morphology and the coating thickness distribution of SCA-coated Al₂O₃ ceramic particles according to the different organofunctional groups were observed by FE-TEM. The initial dispersibility and dispersion stability of the SCA-coated Al₂O₃/High-temp composite solutions were investigated by relaxation NMR and Turbiscan. The rheological properties of the composite solutions were investigated by viscoelastic analysis and the mechanical properties of 3D-printed objects were observed with a nanoindenter.

  14. Rheological study of feed stock for NiTi alloy molded parts

    International Nuclear Information System (INIS)

    Subuki, I; Abdullah, Z; Razali, R; Ismail, M H

    2015-01-01

    A rheological behaviour of the powder-binder mixture is one of essential analysis upon to success of Metal Injection Moulding (MIM) process. The purpose of this experimental work is to investigate the rheological behavior of feedstock containing mixtures of elemental Ni and Ti powders mixed with composite binder of palm stearin (PS) and polyethylene (PE) binder system. An equiatomic Ni-Ti (50-50) ratio was used in the present work for all formulations owing to excellent shape memory behaviour. The experimental rheological result indicated that all the feedstocks exhibited pseudo plastic flow behaviour; viscosity decreasing with temperature and shear rate. Increasing the powder loading resulted in higher viscosity, particularly at the low-range of shear rate. Owing to pseudo-plastic flow, it was found that the feedstock prepared exhibit promising rheological properties, thus resulting successfully injection moulding at an optimum temperature of 130°C. (paper)

  15. A comparative study on the rheology and wave dissipation of kaolinite and natural Hendijan Coast mud, the Persian Gulf

    Science.gov (United States)

    Soltanpour, Mohsen; Samsami, Farzin

    2011-03-01

    The objective of this paper is to investigate the rheological behavior of kaolinite and Hendijan mud, located at the northwest part of the Persian Gulf, and the dissipative role of this muddy bed on surface water waves. A series of laboratory rheological tests was conducted to investigate the rheological response of mud to rotary and cyclic shear rates. While a viscoplastic Bingham model can successfully be applied for continuous controlled shear-stress tests, the rheology of fluid mud displays complex viscoelastic behavior in time-periodic motion. The comparisons of the behavior of natural Hendijan mud with commercial kaolinite show rheological similarities. A large number of laboratory wave-flume experiments were carried out with a focus on the dissipative role of the fluid mud. Assuming four rheological models of viscous, Kelvin-Voigt viscoelastic, Bingham viscoplastic, and viscoelastic-plastic for fluid mud layer, a numerical multi-layered model was applied to analyze the effects of different parameters of surface wave and muddy bed on wave attenuation. The predicted results based on different rheological models generally agree with the obtained wave-flume data implying that the adopted rheological model does not play an important role in the accuracy of prediction.

  16. Structure, Ion Transport, and Rheology of Nanoparticle Salts

    KAUST Repository

    Wen, Yu Ho

    2014-07-08

    Above a critical surface chemistry-dependent particle loading associated with nanoscale interparticle spacing, ligand-ligand interactions-both electrostatic and steric-come into play and govern the structure and dynamics of charged oligomer-functionalized nanoparticle suspensions. We report in particular on the structure, ion transport, and rheology of suspensions of nanoparticle salts created by cofunctionalization of silica particles with tethered sulfonate salts and oligomers. Dispersion of the hairy ionic particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through counterion size (i.e., Li+, Na+, and K+) and dielectric properties of the dispersing medium. Analysis of small-angle X-ray scattering (SAXS) structure factors and the mechanical modulus shows that when the interparticle spacing approaches nanometer dimensions, weakly entangled anchored ligands experience strong and long-lived topological constraints analogous to those normally found in well-entangled polymeric fluids. This finding provides insight into the molecular origins of the surprisingly similar rubbery plateau moduli observed in hairy nanoparticle suspensions and entangled polymers of the same chemistry as the tethered ligands. Additionally, we find that a time-composition superposition (TCS) principle exists for the suspensions, which can be used to substantially extend the observation time over which dynamics are observed in jammed, soft glassy suspensions. Application of TCS reveals dynamical similarities between the suspensions and entangled solutions of linear polymer chains; i.e., a hairy particle trapped in a cage appears to exhibit analogous dynamics to a long polymer chain confined to a tube. © 2014 American Chemical Society.

  17. Using Micromechanical Resonators to Measure Rheological Properties and Alcohol Content of Model Solutions and Commercial Beverages

    Directory of Open Access Journals (Sweden)

    Bart W. Hoogenboom

    2012-05-01

    Full Text Available Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.

  18. Molecularly thin fluoro-polymeric nanolubricant films: tribology, rheology, morphology, and applications.

    Science.gov (United States)

    Chung, Pil Seung; Jhon, Myung S; Choi, Hyoung Jin

    2016-03-21

    Molecularly thin perfluoropolyether (PFPE) has been used extensively as a high-performance lubricant in various applications and, more importantly, on carbon overcoats to enhance the reliability and lubrication of micro-/nanoelectro-mechanical systems, where the tribological performance caused by its molecular architecture is a critical issue, as are its physical properties and rheological characteristics. This Highlight addresses recent trends in the development of fluoro-polymeric lubricant films with regard to their tribology, rheology, and physio-chemical properties as they relate to heat-assisted magnetic recording. Nanorheology has been employed to examine the dynamic response of nonfunctional and functional PFPEs, while the viscoelastic properties of nanoscale PFPE films and the relaxation processes as a function of molecular structure and end-group functionality were analyzed experimentally; furthermore, the characteristics of binary blends were reported.

  19. Morphology, microstructure and rheological properties of SAN (styrene-acrylonitrile)/EPDM (ethylene-propylene-diene monomer) nanocomposites: Investigating the role of organoclay type and order of mixing

    Energy Technology Data Exchange (ETDEWEB)

    Jeddi, Javad; Yousefzade, Omid [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, 15875-4413 (Iran, Islamic Republic of); Babaei, Amir, E-mail: a.babaei@gu.ac.ir [Polymer Engineering Department, Faculty of Engineering, Golestan University, 4918888369, Gorgan (Iran, Islamic Republic of); Ghanbar, Sadegh; Rostami, Amir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Mahshahr Campus, Mahshahr, 6351716178 (Iran, Islamic Republic of)

    2017-02-01

    The object of this work was to investigate the preferential localization of nanoclay platelets in SAN/EPDM (80/20) blend in terms of thermodynamic and kinetic considerations. In this way, effects of two organoclay types and mixing sequences on the morphology, microstructure and rheological properties of prepared blends were studied. Calculations based on the thermodynamic point of view suggested both nanoclay types should be localized in the SAN phase. The XRD results demonstrated that SAN phase as a matrix played a more significant role in the intercalation/exfoliation of organoclays rather than dispersed EPDM phase. Linear viscoelastic studies showed a high tendency for both of organoclays to be localized in the SAN component as well as better dispersion state of cloisite 30B organoclay. The results of creep and creep-recovery experiments revealed the reversible deformation of nanocomposites decreased with increasing degree of organoclay dispersion. The calculated retardation spectrums indicated the dominant role of filler – filler interaction on the melt viscoelastic response of ternary nanocomposites. In addition, scanning electron microscopy (SEM) was employed to study the correlation between the rheological properties, and microstructure and morphological features of blends. - Highlights: • SAN/EPDM/organoclay nanocomposite was prepared with different mixing sequences. • The location of organoclay in SAN/EPDM blend controlled by thermodynamic parameters. • The dispersed phase size decreased in presence of organoclay. • Correlation between rheological properties and microstructure has been established.

  20. Capillary rheological studies of 17-4 PH MIM feedstocks prepared using a custom CSIR binder system

    CSIR Research Space (South Africa)

    Machaka, Ronald

    2018-02-01

    Full Text Available This paper reports on an attempt to establish the rheological properties of 17-4 PH stainless steel MIM feedstocks prepared using a proprietary CSIR wax-based binder system. The influence of powder and feedstock characteristics on the rheological...

  1. The rheology of cryovolcanic slurries: Motivation and phenomenology of methanol-water slurries with implications for Titan

    Science.gov (United States)

    Zhong, Fang; Mitchell, Karl L.; Hays, Charles C.; Choukroun, Mathieu; Barmatz, Martin; Kargel, Jeffrey S.

    2009-08-01

    The Cassini spacecraft has revealed landforms on the surface of Titan suggested to be viscous cryovolcanic flows and possibly eruptive domes. In order to relate those surface features to the processes and chemistries that produced them, it is necessary to construct flow models, which rely on characterization of the rheological properties of the eruptants. This paper describes our initial exploratory attempts to understand the rheological characteristics of cryogenic slurries, using a 40% methanol-water mixture, as a precursor to more detailed experiments. We have devised a new automated cryogenic rotational viscometer system to more fully characterize cryovolcanic slurry rheologies. A series of measurements were performed, varying first temperature, and then strain rate, which revealed development of yield stress-like behaviors, shear-rate dependence, and thixotropic behavior, even at relatively low crystal fractions, not previously reported. At fixed shear rate our data are fit well by the Andrade equation, with the activation energy modified by a solid volume fraction. At fixed temperature, depending on shearing history, a Cross model could describe our data over a wide shear rate range. A Bingham plastic model appears to be a good constitutive model for the data measured at high shear rates when the shear was global. The yield stress like behavior implies that levee formation on cryolava flows is more likely than would be inferred from the previous studies, and may provide a partial explanation for features interpreted as steep-sided volcanic constructs on Titan.

  2. Influence of hydroxyl content of binders on rheological properties of cerium-gadolinium oxide (CGO) screen printing inks

    DEFF Research Database (Denmark)

    Marani, Debora; Gadea, Christophe; Hjelm, Johan

    2015-01-01

    vinyl resins) were selected and characterized in solution via viscosimetry method. A high degree of hyper-entanglement was observed for ethyl cellulose polymers, whereas a mitigated effect characterized the two vinyl resins. Cerium-gadolinium oxides (CGO)-based inks, prepared using the selected binders......The influence of hydroxyl content of binders on rheological properties of screen printing inks is investigated. The actual amount of hydroxyl groups is correlated to the level of hyper-entanglement that characterizes the binders in solution. Three of the most used binders (ethyl cellulose, and two...

  3. Effect of different hardness nanoparticles on friction properties of magnetorheological fluids

    Science.gov (United States)

    Zhao, Mingmei; Zhang, Jinqiu; Yao, Jun

    2017-10-01

    Magnetorheological fluids (MRFs) exhibit different wear performance when nanoparticles with different hardness are added. In this study, three solid particles with different hardness are considered to study the variation in MRF performance. The friction and wear properties of the MRF are measured by using a four-ball friction and wear tester, and the surface of the steel ball was observed using a three-dimensional white light interferometer. Also, the rheological properties of MRF are tested by using an Anton-Paar rheometer. The results show that the addition of graphite yields a stable friction process and does not degrade the rheological properties of MRF. Nano-diamond increases the shear yield strength and reduces the wall slip to a greater extent. However, the wear is more serious in this case. Copper particles are unstable, and their surface activity is too high to get adsorbed on the surface of iron powder aggravating the settlement rate. The above three MRFs with different kinds of nano-particles present a more regular grinding spot, and the nano-particles have a certain repair function to the surface.

  4. Microstructural Dynamics and Rheology of Suspensions of Rigid Fibers

    Science.gov (United States)

    Butler, Jason E.; Snook, Braden

    2018-01-01

    The dynamics and rheology of suspensions of rigid, non-Brownian fibers in Newtonian fluids are reviewed. Experiments, theories, and computer simulations are considered, with an emphasis on suspensions at semidilute and concentrated conditions. In these suspensions, interactions between the particles strongly influence the microstructure and rheological properties of the suspension. The interactions can arise from hydrodynamic disturbances, giving multibody interactions at long ranges and pairwise lubrication forces over short distances. For concentrated suspensions, additional interactions due to excluded volume (contacts) and adhesive forces are addressed. The relative importance of the various interactions as a function of fiber concentration is assessed.

  5. Rheology and TIC/TOC results of ORNL tank samples

    International Nuclear Information System (INIS)

    Pareizs, J. M.; Hansen, E. K.

    2013-01-01

    The Savannah River National Laboratory (SRNL)) was requested by Oak Ridge National Laboratory (ORNL) to perform total inorganic carbon (TIC), total organic carbon (TOC), and rheological measurements for several Oak Ridge tank samples. As received slurry samples were diluted and submitted to SRNL-Analytical for TIC and TOC analyses. Settled solids yield stress (also known as settled shear strength) of the as received settled sludge samples were determined using the vane method and these measurements were obtained 24 hours after the samples were allowed to settled undisturbed. Rheological or flow properties (Bingham Plastic viscosity and Bingham Plastic yield stress) were determined from flow curves of the homogenized or well mixed samples. Other targeted total suspended solids (TSS) concentrations samples were also analyzed for flow properties and these samples were obtained by diluting the as-received sample with de-ionized (DI) water

  6. Investigation into the Microstructure, Texture and Rheological Properties of Chocolate Ganache.

    Science.gov (United States)

    McGill, Jade; Hartel, Rich W

    2018-03-01

    Ganache is a mixture of chocolate and dairy. Although a popular confection, little is known about how it functions as a system. Objectives were to (1) determine if dairy fats and cocoa butter mix in ganache, (2) characterize ganache microstructure, and how structure affects texture and rheology, and (3) identify how changes in chocolate composition alter ganache. Textural analysis, differential scanning calorimetry, stress sweep tests, and microscopy were used to examine ganache formulations that varied in dairy source (cream or butter) or in solid fat content (SFC), composition or type of chocolate. Melting temperatures for all ganache formulations were lower than for chocolate, indicating that cream milk fat globules rupture during processing, and mix with cocoa butter. Altering the SFC of chocolate affected ganache hardness, spreadability, melting enthalpy, and resistance to deformation. Chocolate systems made with constant fat content and greater amounts of defatted cocoa powder relative to sugar or nonfat milk powder yielded ganache that was harder, less spreadable, and more resistant to deformation. Ganache made with commercially produced dark, milk, and white chocolates behaved similarly to model chocolate systems. Ganache attributes are affected by chocolate crystalline fat content in addition to particle phase volume-greater levels of cocoa powder, which is mostly insoluble, strengthens ganache structure, producing a firmer product, whereas greater levels of milk powder and sugar, which dissolve in the aqueous cream component, produce a softer ganache. Understanding how ganache functions as a system and how differences in chocolate composition affect its textural and rheological properties may allow for greater control over the desired characteristics of the final product. For example, this research shows how changing cocoa content of the chocolate affects ganache, which is useful when developing formulations involving chocolates with different cocoa

  7. Pasting, rheological, and retrogradation properties of low-amylose rice starch with date syrup.

    Science.gov (United States)

    Mohamed, Ibrahim O; Babucurr, Jobe

    2017-09-01

    Effects of date syrup on pasting, rheological, and retrogradation properties of low-amylose rice starch were investigated using three levels of date syrup (starch:syrup 1:1, 1:2, or 1:3). Measurements were carried out using HR-2 Discovery Rheometer equipped with a pasting cell and parallel plate geometry. The pasting measurements showed that the peak viscosity of the control is significantly higher than the samples with date syrup (p date syrup levels. Addition of date syrup increases the solid-like behavior of the gel in reverse order with increased date syrup levels. Low-amylose starch gel used in this study showed minor changes in elastic modulus (G') during one week cold storage indicting that low-amylose rice starch is resistant to retrogradation. Addition of date syrup slightly resulted in increased retrogradation compared to the control.

  8. Rheological studies of creams. I. Rheological functions and structure of creams.

    Science.gov (United States)

    Erös, I; Thaleb, A

    1994-05-01

    Large number of washable (o/w type) creams were prepared for rheological investigation. The rheological functions known from the literature were determined in our studies. Rheological constants were determined by measurements and calculations. From these, we selected those ones which were applicable to characterize the energy status of the coherent structure and which gave the most information for practical work, elaboration of composition and evaluation of stability. These functions and parameters are the following: flow curves, viscosity vs shear time and viscosity vs temperature functions, Bingham-type yield value, plastic viscosity, structure breakdown rate constant, activation energy.

  9. Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition

    Science.gov (United States)

    Asghar, Z.; Ali, N.; Anwar Bég, O.; Javed, T.

    2018-06-01

    Gliding bacteria are virtually everywhere. These organisms are phylogenetically diverse with their hundreds of types, different shapes and several modes of motility. One possible mode of gliding motility in the rod shaped bacteria is that they propel themselves by producing undulating waves in their body. Few bacteria glides near the solid surface over the slime without any aid of flagella so the classical Navier-Stokes equations are incapable of explaining the slime rheology at the microscopic level. Micropolar fluid dynamics however provides a solid framework for mimicking bacterial physical phenomena at both micro and nano-scales, and therefore we use the micropolar fluid to characterize the rheology of a thin layer of slime and its dominant microrotation effects. It is also assumed that there is a certain degree of slip between slime and bacterial undulating surface and also between slime and solid substrate. The flow equations are formulated under long wavelength and low Reynolds number assumptions. Exact expressions for stream function and pressure gradient are obtained. The speed of the gliding bacteria is numerically calculated by using a modified Newton-Raphson method. Slip effects and effects of non-Newtonian slime parameters on bacterial speed and power are also quantified. In addition, when the glider is fixed, the effects of slip and rheological properties of micropolar slime parameters on the velocity, micro-rotation (angular velocity) of spherical slime particles, pressure rise per wavelength, pumping and trapping phenomena are also shown graphically and discussed in detail. The study is relevant to emerging biofuel cell technologies and also bacterial biophysics.

  10. Correlation between rheological and mechanical properties of black PE100 compounds – Effect of carbon black masterbatch

    Directory of Open Access Journals (Sweden)

    G. Pircheraghi

    2017-08-01

    Full Text Available Black PE100 compounds were prepared using a co-rotating twin screw extruder by addition of carbon black masterbatches containing 35–40 wt% carbon black and different polymer carriers to a pipe grade PE100 material with bimodal molecular weight distribution. Different properties of carbon black masterbatches and PE100 black compounds were evaluated using thermal, rheological and mechanical tests. Rheological results indicated an inverse correlation between melt flow index (MFI of masterbatch samples and storage modulus, complex viscosity and shear viscosity of black compounds, while flow instabilities of compounds were also postponed to higher shear rates. TGA indicated that masterbatch with highest value of MFI contained highest amount of low molecular weight lubricants which resulted in inhibition of strain hardening behavior in tensile test of its respective black compound unlike all other samples, reflecting possible suppressing of its long term resistance to slow crack growth. This behavior is attributable to facilitated crystallization and chain folding of longer chains in the presence of low molecular weight lubricants in this sample and consequently formation of thicker lamellas as confirmed by DSC, hence lowering density of entanglements in amorphous area and inhibition of strain hardening.

  11. Rheological properties of the soft-disk model of two-dimensional foams

    DEFF Research Database (Denmark)

    Langlois, Vincent; Hutzler, Stefan; Weaire, Denis

    2008-01-01

    The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel-Bulkley re......The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel......-Bulkley relation, normal stress effects (dilatancy), and localization in the presence of wall drag. We show that even a model that incorporates only linear viscous effects at the local level gives rise to nonlinear (power-law) dependence of the limit stress on strain rate. With wall drag, shear localization...

  12. Rheology of Savannah River site tank 42 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1997-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site, Tank 42 sludge represents on of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility. The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center using a modified Haake Rotovisco viscometer

  13. Evaluation of the rheological behavior of asphaltic binder modified with zeolite material

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, E.M. da; Sant' ana, Hosiberto B.; Soares, Sandra A.; Soares, Jorge B. [Federal University of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    Several new processes have been developed to reduce mixing and compaction temperatures of hot mix asphalt without sacrificing the quality of the resulting pavement. One of these processes utilizes the zeolite, a crystalline hydrated aluminum silicate. A laboratory study was conducted to determine the applicability of zeolite to improve the rheological and chemical behavior of an asphaltic binder. The synthetic asphaltic binder was produced with different zeolite contents (0,1; 0.3; and 0.5% w/w) by wet process. The rheological and chemical behavior was verified by Dynamic Shear Rheometer and Infrared Spectroscopy, respectively. The zeolite's chemical composition and morphology was studied by Dispersive X-ray Spectroscopy (EDX). Additionally, the scanning electron microscope (SEM) was utilized to establish the zeolite elemental composition. The results showed that investigated zeolite was classified as a sodium aluminum silicate and it was able to modify the rheological properties of the neat asphalt binder. The G*/sin{delta} parameter was affected by the zeolite presence, indicating better performance for the binders with zeolite. The results show that synthetic binders can partly replicate the rheological properties of conventional AB. Comparable complex modulus values was obtained. No significant difference was found in viscoelastic response, given by the phase angles as a function of both temperature and frequency. (author)

  14. Effect of Alumina Nanoparticles on the Rheological Behavior of Aluminum-Binder Mixtures for Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Hassan Abdoos

    2014-10-01

    Full Text Available Preparation of appropriate powder-binder mixtures is the crucial step of powder injection molding process. Hence, the rheological properties of powder-binder mixture are important factors in production of sound parts using powder injection molding. Nowadays, the use of nanoparticles in powder injection molding is increasing due to the improved properties and dimensional precision of the final parts. On the other hand, nanoparticles can initiate problems such as agglomeration and loss of rheological properties and homogeneity. In the present study, the rheological behavior of aluminum mixtures containing nanoalumina particles was investigated. Two powder loadings of aluminum powder (54 vol% and 60 vol%, in which 0, 3, 6 and 9 wt% of aluminum was replaced with nanoalumina, were used. The powder systems were blended with the molten binder system in a banbury internal mixer and the rheological properties of the resulting mixtures were evaluated. All feedstocks showed pseudo-plastic behavior. The presence of nanoparticles increased the viscosity of feedstocks. Due to overwhelming particles cohesion by hydrodynamic forces, the viscosity of the mixtures decreased at high shear rates. Tap density results confirmed an improvement in packing compressibility of the mentioned powders. Shear rate sensitivity decreased with incorporation of nanoparticles into the mixtures. This phenomenon improved the injection capability through further reduction in viscosity.

  15. Rheology of Colombian coal-water slurry fuels: Effect of particle-size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Pulido, J E; Rojas, C P; Acero, G [Universidad Industrial de Santander, Bucaramanga (Colombia)

    1996-12-31

    Coal-water slurry fuels (CWSF`s) have been prepared and characterized in a research project in Colombia, sponsored by Colciencias and Ecocarbon, in order to evaluate the effects of the different composition variables on the behavior during preparation and pipe line transportation. The authors have previously presented details describing the characteristics of the slurry fuels prepared with five types of Colombian thermal coals and the influence of their chemical composition on the optimum particle-size distribution (PSD) required to prepare highly loaded and workable CWSF`s. The formulation and design of flow systems of suspensions with high solids content, such as the CWSF`s, require a detailed rheological knowledge of the suspension in terms of the governing parameters related to PSD, coal content, surface chemistry of the particles and dispersants used to stabilize the slurries. Important studies on these aspects have been reviewed and carried out experimentally by other authors specially devoted to the correlations between apparent viscosity, solids content and average coal particle-size. One of the targets to obtain an optimum control on the viscosity and flow properties of the CWSF`s must be based in correlating the Theological constants for the prevailing model of viscosity law to the characteristic parameters of the particle-size distribution and to the coal content in the slurry. In spite of the effect of PSD on the rheology of highly-loaded coal slurries have been long recognized as significant, the specific influence of the various PSD`s on the parameters of the Theological model continues to receive attention to further understanding in order to improve the slurry formulations for a specified purpose on preparation and hydraulic handling. This paper reports the results of an experimental technique of examining the various PSD`s on coal slurry fuel rheology, taking special attention for the effect on the parameters of the rheological model.

  16. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures.

    Science.gov (United States)

    Majidi, Behzad; Taghavi, Seyed Mohammad; Fafard, Mario; Ziegler, Donald P; Alamdari, Houshang

    2016-05-04

    Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger's model is developed using the discrete element method (DEM) on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR) is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger's model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297-0.595 mm (-30 + 50 mesh) to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch.

  17. Rheology of High-Melt-Strength Polypropylene for Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Kamleitner, Florian; Jagenteufel, Ralf

    Acrylonitrile butadiene styrene (ABS) is a widely used material for additive manufacturing (AM) fused deposition modeling (FDM). The rheological properties of high-melt-strength polypropylene (HMS-PP) were compared to commercially available ABS 250 filament to study the possibility of using...

  18. Recent advances in extensional rheology: controlled flows and fracture

    DEFF Research Database (Denmark)

    Hassager, Ole; Huang, Qian

    Extensional deformation and flow occur in a number of polymer processing operations such as fiber spinning and film blowing. To understand and analyze material behavior in such operations, accurate and quantitative measurements of the rheological properties in well-defined extensional deformation...

  19. Test Method for Rheological Behavior of Mortar for Building Work

    Directory of Open Access Journals (Sweden)

    Korobko Bogdan

    2017-09-01

    Full Text Available This paper offers a test method for rheological behavior of mortars with different mobility and different composition, which are used for execution of construction work. This method is based on investigation of the interaction between the valve ball and the mortar under study and allows quick defining of experimental variables for any composition of building mortars. Certain rheological behavior will permit to calculate the design parameters of machines for specific conditions of work performance – mixing (pre-operation, pressure generation, pumping to the work site, workpiece surfacing.

  20. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization

    Science.gov (United States)

    Stoleru, Elena; Dumitriu, Raluca Petronela; Munteanu, Bogdanel Silvestru; Zaharescu, Traian; Tănase, Elisabeta Elena; Mitelut, Amalia; Ailiesei, Gabriela-Liliana; Vasile, Cornelia

    2016-03-01

    A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by ;grafting to; of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.

  1. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete

    International Nuclear Information System (INIS)

    Beigi, Morteza H.; Berenjian, Javad; Lotfi Omran, Omid; Sadeghi Nik, Aref; Nikbin, Iman M.

    2013-01-01

    Highlights: • We investigate combine effects of fibers and nanosilica on SCC. • The mechanical, rheological, and durability properties were tested and compared. • Microstructural properties of concrete were assessed using AFM and XRD techniques. • Nanosilica and fibers can improve the mechanical properties and durability of SCC. - Graphical abstract: - Abstract: Previous studies have shown that application of fibers in concrete enhances scratching, flexural and tensile strength. Self-Compacting Concrete (SCC) is a highly flowable and coherent concrete able to self-compact under its own weight. On the other hand, nanosilica particles and artificial pozzolans possessing high efficiency in concrete technology can improve structural properties of cement-based materials. Previous studies have suggested self-compacting and fiber-reinforced concretes for more stable and efficient buildings. Therefore, the present study aimed to evaluate the effects of nanosilica and different concrete reinforcing fibers including steel, polypropylene and glass on the performance of concrete. In this study mechanical (compressive, splitting tensile and flexural strength, toughness and modulus of elasticity), rheological (L-Box, slump flow, T50) and durability (resist chloride ion penetration (RCPT) and water absorption) properties are assessed. In addition, microstructural properties of concrete were assessed using Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) techniques. Totally, 40 concrete mixes , labeled as A, B, C and D, with nanosilica contents of 0, 2, 4 and 6 weight percent (wt.%) of cement, respectively and three types of reinforcing fibers (steel: 0.2, 0.3 and 0.5 volume percent (v%) and polypropylene: 0.1, 0.15 and 0.2 v% and glass: 0.15, 0.2 and 0.3 v%) were evaluated. The results of the study showed that the presence of both nanosilica and reinforcing fibers in optimal percentages, can improve the mechanical properties and durability of self

  2. Characterization of fasted human gastric fluid for relevant rheological parameters and gastric lipase activities

    DEFF Research Database (Denmark)

    Pedersen, Pernille Barbre; Vilmann, Peter; Bar-Shalom, Daniel

    2013-01-01

    be considered important during development of gastric simulated media. Further, the activity of the HGL is active even under fasted gastric conditions and might contribute to the digestion and emulsification of lipid-based drug delivery systems in the entire gastrointestinal tract. HGL should therefore......PURPOSE: To characterize human gastric fluid with regard to rheological properties and gastric lipase activity. In addition, traditional physicochemical properties were determined. METHODS: Fasted HGA were collected from 19 healthy volunteers during a gastroscopic examination. Rheological...... be considered in gastric evaluation of lipid-based drug delivery systems....

  3. Dissipative particle dynamics simulations for biological tissues: rheology and competition

    International Nuclear Information System (INIS)

    Basan, Markus; Prost, Jacques; Joanny, Jean-François; Elgeti, Jens

    2011-01-01

    In this work, we model biological tissues using a simple, mechanistic simulation based on dissipative particle dynamics. We investigate the continuum behavior of the simulated tissue and determine its dependence on the properties of the individual cell. Cells in our simulation adhere to each other, expand in volume, divide after reaching a specific size checkpoint and undergo apoptosis at a constant rate, leading to a steady-state homeostatic pressure in the tissue. We measure the dependence of the homeostatic state on the microscopic parameters of our model and show that homeostatic pressure, rather than the unconfined rate of cell division, determines the outcome of tissue competitions. Simulated cell aggregates are cohesive and round up due to the effect of tissue surface tension, which we measure for different tissues. Furthermore, mixtures of different cells unmix according to their adhesive properties. Using a variety of shear and creep simulations, we study tissue rheology by measuring yield stresses, shear viscosities, complex viscosities as well as the loss tangents as a function of model parameters. We find that cell division and apoptosis lead to a vanishing yield stress and fluid-like tissues. The effects of different adhesion strengths and levels of noise on the rheology of the tissue are also measured. In addition, we find that the level of cell division and apoptosis drives the diffusion of cells in the tissue. Finally, we present a method for measuring the compressibility of the tissue and its response to external stress via cell division and apoptosis

  4. Transient rheology of stimuli responsive hydrogels: Integrating microrheology and microfluidics

    Science.gov (United States)

    Sato, Jun

    Stimuli-responsive hydrogels have diverse potential applications in the field of drug delivery, tissue engineering, agriculture, cosmetics, gene therapy, and as sensors and actuators due to their unique responsiveness to external signals, such as pH, temperature, and ionic strength. Understanding the responsiveness of hydrogel structure and rheology to these stimuli is essential for designing materials with desirable performance. However, no instrumentation and well-defined methodology are available to characterize the structural and rheological responses to rapid solvent changes. In this thesis, a new microrheology set-up is described, which allows us to quantitatively measure the transient rheological properties and microstructure of a variety of solvent-responsive complex fluids. The device was constructed by integrating particle tracking microrheology and microfluidics and offers unique experimental capabilities for performing solvent-reponse measurements on soft fragile materials without applying external shear forces. Transient analysis methods to quantitatively obtain rheological properties were also constructed, and guidelines for the trade-off between statistical validity and temporal resolution were developed to accurately capture physical transitions. Employing the new device and methodology, we successfully quantified the transient rheological and microstructural responses during gel formation and break-up, and viscosity changes of solvent-responsive complex fluids. The analysis method was expanded for heterogeneous samples, incorporating methods to quantify the microrheology of samples with broad distributions of individual particle dynamics. Transient microrheology measurements of fragile, heterogeneous, self-assembled block copolypeptide hydrogels revealed that solvent exchange via convective mixing and dialysis can lead to significantly different gel properties and that commonly applied sample preparation protocols for the characterization of soft

  5. Polylactic Acid Improves the Rheological Properties, and Promotes the Degradation of Sodium Carboxymethyl Cellulose-Modified Alkali-Activated Cement

    Directory of Open Access Journals (Sweden)

    Huijing Tan

    2016-10-01

    Full Text Available In consideration of the insolubility in water, sensitivity to heat and wide application in the oil and gas industry as a degradable additive, this paper introduces polylactic acid (PLA to a self-degradable temporary sealing material (SDTSM to investigate its effect on the SDTSM performance and evaluate its potential to improve the rheological properties and further promote the self-degradation of the material. The thermal degradation of PLA, the rheological properties, compressive strength, hydrated products and water absorption of SDTSMs with different PLA dosages were tested. The analysis showed that the addition of 2% PLA increased the fluidity by 13.18% and reduced the plastic viscosity by 38.04%, when compared to those of the SDTSM without PLA. PLA increased the water absorption of 200 °C-heated SDTSM and had small effect on the types but decreased the hydrate products of 85 °C-cured SDTSM, and created plenty of pores in 200 °C-heated SDTSM. PLA enhanced the self-degradation level of SDTSM by generating a large amount of pores in cement. These pores worked in two ways: one was such a large amount of pores led to a looser microstructure; the other was these pores made the water impregnate the cement more easily, and then made the dissolution of substances in the 200 °C-heated SDTSM progress faster to generate heat and to destruct the microstructure.

  6. Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples

    Science.gov (United States)

    Ranalli, G.; Rybach, L.

    2005-10-01

    Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m - 2 , in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal areas show various signs of subsurface fluid movement, depending on position in the active system. The heat transfer regime is dominated by heat advection (mainly free convection). The onset of free convection depends on various factors, such as permeability, temperature gradient and fluid properties. The features of heat transfer are different for single or two-phase flow. Characteristic heat flow and heat transfer features in active geothermal systems are demonstrated by examples from Iceland, Italy, New Zealand and the USA. Two main factors affect the rheology of the lithosphere in active geothermal areas: steep temperature gradients and high pore fluid pressures. Combined with lithology and structure, these factors result in a rheological zonation with important consequences both for geodynamic processes and for the exploitation of geothermal energy. As a consequence of anomalously high temperature, the mechanical lithosphere is thin and its total strength can be reduced by almost one order of magnitude with respect to the average strength of continental lithosphere of comparable age and thickness. The top of the brittle/ductile transition is located within the upper crust at depths less than 10 km, acts as the root zone of listric normal faults in extensional environments and, at least in some cases, is visible on seismic reflection lines. These structural and rheological features are well illustrated in the Larderello geothermal field in Tuscany.

  7. Effect of Pre-gelatinized Wheat Starch on Physical and Rheological Properties of Shortened Cake Batter and Cake Texture

    Directory of Open Access Journals (Sweden)

    F. Ebrahimi

    2016-10-01

    Full Text Available The focus of this study was the effect of 1.5%, 3% and 4.5% pre-gelatinized wheat starch (based on the total weight of cake batter on improving the qualitative properties of shortened cake batter. Specific volume and viscosity of the shortened cake batter were measured for controls, 1.5%, 3% and 4.5% gelatinized starch; some important properties such as texture and sensory evaluation were examined. By increasing pre-gelatinized wheat starch used in the batter, a significant difference was observed in the rheological properties of the batter. Cake batter properties were found improved compared to the control samples. The sample with 3% pre-gelatinized starch had a lower viscosity than other treatments. The treatment with 4.5% pre-gelatinized starch had the lowest specific volume compared to other treatments. The overall results showed that the shortened cake with 3% pre-gelatinized starch was the best treatment in terms of texture and sensory evaluation factors.

  8. Effect of Water on the Rheology of Clinopyroxene at High Temperature and Pressure

    Science.gov (United States)

    Wang, Z.; Zhang, J.

    2017-12-01

    Clinopyroxene is one of the most important constituent minerals in the lower crust and the upper mantle, and its rheological properties may determine the strength and seismic properties of the lower crust. Previous studies have shown that water content in clinopyroxene of lower crust and upper mantle varies significantly by tectonic backgrounds ranging from 50-700 ppm. However quantitative experimental investigations on the effect of water on the rheological properties of clinopyroxene have been sparse and controversy. We report here experimental deformation on synthesized clinopyroxene aggregates of varying amounts of water using a 5 GPa modified Griggs-type apparatus. Clinopyroxene aggregates of different water contents are prepared by dehydration of a water-rich natural clinopyroxene aggregates at room pressure in a mixed gaseous CO/CO2 flow buffered oven. The water contents are measured by FTIR before and after each experiment. Our results show that the strength of clinopyroxene aggregates decreases exponentially with the increase of water content. The rheological strength of clinopyroxene aggregates is reduced by about 4 times when the water content increases from 84 ppm to 662 ppm (the span of major water contents reported for clinopyroxene of lower crust and upper mantle), corresponding to a water fugacity exponent (r) value of 1.77. It is between the r values previously reported for clinopyroxene (r = 3.0, Chen et al., 2006; r = 1.4±0.2, Hier-Majunder et al., 2005). This r value is less than that reported for garnet (r = 2.4, Katayama and Karato, 2008), but larger than those reported for olivine (r = 0.7-1.25, Karato and Jung, 2003, Mei and Kohlstedt, 2000; r = 1/3, Fei et al., 2013) and plagioclase (r = 1.0±0.3, Rybacki et al., 2006). The effect of water on the rheological strength of clinopyroxene might be more significant than those for olivine and plagioclase but less significant than that for garnet. These results provide important constraints on the

  9. Some physicochemical and rheological properties of starch isolated from avocado seeds.

    Science.gov (United States)

    Chel-Guerrero, Luis; Barbosa-Martín, Enrique; Martínez-Antonio, Agustino; González-Mondragón, Edith; Betancur-Ancona, David

    2016-05-01

    Seeds from avocado (Persea americana Miller) fruit are a waste byproduct of fruit processing. Starch from avocado seed is a potential alternative starch source. Two different extraction solvents were used to isolate starch from avocado seeds, functional and rheological characteristics measured for these starches, and comparisons made to maize starch. Avocado seed powder was suspended in a solution containing 2 mM Tris, 7.5 mM NaCl and 80 mM NaHSO3 (solvent A) or sodium bisulphite solution (1500 ppm SO2, solvent B). Solvent type had no influence (p>0.05) on starch properties. Amylose content was 15-16%. Gelatinization temperature range was 56-74 °C, peak temperature was 65.7 °C, and transition enthalpy was 11.4-11.6J/g. At 90 °C, solubility was 19-20%, swelling power 28-30 g water/g starch, and water absorption capacity was 22-24 g water/g starch. Pasting properties were initial temperature 72 °C; maximum viscosity 380-390 BU; breakdown -2 BU; consistency 200 BU; and setback 198 BU. Avocado seed starch dispersions (5% w/v) were characterized as viscoelastic systems, with G'>G″. Avocado seed starch has potential applications as a thickening and gelling agent in food systems, as a vehicle in pharmaceutical systems and an ingredient in biodegradable polymers for food packaging. Copyright © 2016. Published by Elsevier B.V.

  10. A model for cytoplasmic rheology consistent with magnetic twisting cytometry.

    Science.gov (United States)

    Butler, J P; Kelly, S M

    1998-01-01

    Magnetic twisting cytometry is gaining wide applicability as a tool for the investigation of the rheological properties of cells and the mechanical properties of receptor-cytoskeletal interactions. Current technology involves the application and release of magnetically induced torques on small magnetic particles bound to or inside cells, with measurements of the resulting angular rotation of the particles. The properties of purely elastic or purely viscous materials can be determined by the angular strain and strain rate, respectively. However, the cytoskeleton and its linkage to cell surface receptors display elastic, viscous, and even plastic deformation, and the simultaneous characterization of these properties using only elastic or viscous models is internally inconsistent. Data interpretation is complicated by the fact that in current technology, the applied torques are not constant in time, but decrease as the particles rotate. This paper describes an internally consistent model consisting of a parallel viscoelastic element in series with a parallel viscoelastic element, and one approach to quantitative parameter evaluation. The unified model reproduces all essential features seen in data obtained from a wide variety of cell populations, and contains the pure elastic, viscoelastic, and viscous cases as subsets.

  11. Effect of Some Extrusion Variables on Rheological Properties and Physicochemical Changes of Cornmeal Extruded by Twin Screw Extruder

    OpenAIRE

    Chang Y.K.; Martínez-Bustos f.; Lara h.

    1998-01-01

    The effect of extrusion variables, such as barrel temperature (100 to 170ºC), feed rate (100 to 500 g/min), feed moisture (20 to 40 g/100 g wet basis), screw speed rate (from 100 to 500 rpm), and slit die rheometer configuration (0.15 and 0.30 cm height) were studied using a co-rotating intermeshing twin-screw extruder coupled to a slit die rheometer on the rheological properties of yellow cornmeal. An increase in feed rate decreased WAI and WSI, but increased the viscosity values. The temper...

  12. Genetic control of wheat quality: interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties.

    Science.gov (United States)

    Mann, Gulay; Diffey, Simon; Cullis, Brian; Azanza, Fermin; Martin, David; Kelly, Alison; McIntyre, Lynne; Schmidt, Adele; Ma, Wujun; Nath, Zena; Kutty, Ibrahim; Leyne, P Emmett; Rampling, Lynette; Quail, Ken J; Morell, Matthew K

    2009-05-01

    While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.

  13. Dark chocolate’s compositional effects revealed by oscillatory rheology

    NARCIS (Netherlands)

    van der Vaart, K.; Depypere, F.; De Graef, V.; Schall, P.; Fall, A.; Bonn, D.; Dewettinck, K.

    2013-01-01

    In this study, two types of oscillatory shear rheology are applied on dark chocolate with varying volume fraction, particle size distribution, and soy lecithin concentration. The first, a conventional strain sweep, allows for the separation of the elastic and viscous properties during the yielding.

  14. Rheological considerations for the modelling of submarine sliding at Rockall Bank, NE Atlantic Ocean

    Science.gov (United States)

    Salmanidou, D. M.; Georgiopoulou, A.; Guillas, S.; Dias, F.

    2018-03-01

    Recent scientific research indicates that the Rockall Bank Slide Complex in the NE Atlantic Ocean has formed as the result of repetitive slope failures that can be distinguished in at least three major phases. These sliding episodes took place during and before the Last Glacial Maximum. This work attempts the modelling of each sliding episode with the incorporation of the landslide's rheological properties. The objective is to study the landslide kinematics and final deposition of each episode under a rheological framework that comes in agreement with the field observations. To do so in the present work, we use different types of rheological models to compute the total retarding stress and simulate submarine failure. The Bingham rheology and the frictional rheology are used to model the flow behavior. The scope of this approach is to understand the effect of the two classical laws in landslide kinematics. A rheological model that combines the two regimes is also used. To account for the hydrodynamic drag, the Voellmy model is employed. The results are validated against the field observations on the seabed of the Rockall Trough. The simulations show that for this particular case the Bingham rheology with a small or negligible basal friction produces the best results. The tsunamigenic potential of the episodes is also briefly examined.

  15. Experimental analysis of an effect of the nutrient type and its concentration on the rheological properties of the baker’s yeast suspensions

    Directory of Open Access Journals (Sweden)

    Major-Godlewska Marta

    2015-09-01

    Full Text Available The aim of the study presented was to experimentally analyze an effect of the nutrient type and its concentration on the variability of rheological properties of the baker’s yeast suspensions for different time periods. Aqueous suspensions of the baker’s yeast of various concentration (solution I, without nutrient and yeasts suspended in aqueous solution of sucrose or honey as nutrients with different concentration (solution II or solution III were tested. Experiments were carried out using rotational rheoviscometer of type RT10 by a company HAAKE. The measurements were conducted for different time periods (from 1 h up to 144 h at given fluid temperature. On the basis of the obtained data, rheological characteristics of the aqueous solution of baker’s yeast suspensions without and with nutrients of different sucrose or honey concentration were identified and mathematically described.

  16. Rheological and Thermal Behavior of Polypropylene-Kaolin Composites

    International Nuclear Information System (INIS)

    Teng, S.T.; Nor Azura Abdul Rahim; Lan, D.N.U

    2014-01-01

    Kaolins effect on rheological behaviour of polypropylene-kaolin composites was investigated. The research found that not only the kaolin content influence the rheological behaviour but also the compounding using internal mixer and twin screw extruder. In details, viscosity and shear stress increased with addition of kaolin content. These characteristics also exhibited higher in polypropylene-kaolin composite suspensions compounded using twin screw extruder than using internal mixer. Chain scission was assumed to occur and affect the melt properties. Further justification characterized by Differential Scanning Calorimeter (DSC) showed that the effect of kaolin and loading content were more evident on the onset melting temperature and crystallinity. Besides, due to the different cooling operation in both processes, the effect of compounding on melting characteristic was conspicuous. (author)

  17. A Study on the Rheological and Mechanical Properties of Photo-Curable Ceramic/Polymer Composites with Different Silane Coupling Agents for SLA 3D Printing Technology

    Directory of Open Access Journals (Sweden)

    Se Yeon Song

    2018-02-01

    Full Text Available Silane coupling agents (SCAs with different organofunctional groups were coated on the surfaces of Al2O3 ceramic particles through hydrolysis and condensation reactions, and the SCA-coated Al2O3 ceramic particles were dispersed in a commercial photopolymer based on interpenetrating networks (IPNs. The organofunctional groups that have high radical reactivity and are more effective in UV curing systems are usually functional groups based on acryl, such as acryloxy groups, methacrloxy groups, and acrylamide groups, and these silane coupling agents seem to improve interfacial adhesion and dispersion stability. The coating morphology and the coating thickness distribution of SCA-coated Al2O3 ceramic particles according to the different organofunctional groups were observed by FE-TEM. The initial dispersibility and dispersion stability of the SCA-coated Al2O3/High-temp composite solutions were investigated by relaxation NMR and Turbiscan. The rheological properties of the composite solutions were investigated by viscoelastic analysis and the mechanical properties of 3D-printed objects were observed with a nanoindenter.

  18. Rheology of StelliteTM 21 Alloy in Semi-Solid State

    Directory of Open Access Journals (Sweden)

    Sołek K.

    2016-12-01

    Full Text Available The main objective of this study was to conduct an analysis of the rheological properties of StelliteTM 21 alloy in the semi-solid state, as the results could be used for identifying the appropriate temperature range for thixoforming of this alloy, and a secondary objective of the experimental work was the development of mathematical model of the alloy’s apparent viscosity. Such viscosity models are necessary for numerical simulations of the thixoforming processes. The StelliteTM 21 alloy exhibits high hardness and thus shaping in the semi-solid state is promising route of production of parts from this alloy. Within the confines of experimental work the measurement methods of the rheological properties at high temperatures was developed. They are based on the use of specially designed viscometer equipped with high temperature furnace.

  19. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Science.gov (United States)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  20. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  1. Rheological properties of emulsions stabilized by green banana (Musa cavendishii pulp fitted by power law model

    Directory of Open Access Journals (Sweden)

    Dayane Rosalyn Izidoro

    2009-12-01

    Full Text Available In this work, the rheological behaviour of emulsions (mayonnaises stabilized by green banana pulp using the response surface methodology was studied. In addition, the emulsions stability was investigated. Five formulations were developed, according to design for constrained surfaces and mixtures, with the proportion, respectively: water/soy oil/green banana pulp: F1 (0.10/0.20/0.70, F2 (0.20/0.20/0.60, F3 (0.10/0.25/0.65, F4 (0.20/0.25/0.55 and F5 (0.15/0.225/0.625 .Emulsions rheological properties were performed with a rotational Haake Rheostress 600 rheometer and a cone and plate geometry sensor (60-mm diameter, 2º cone angle, using a gap distance of 1mm. The emulsions showed pseudoplastic behaviour and were adequately described by the Power Law model. The rheological responses were influenced by the difference in green banana pulp proportions and also by the temperatures (10 and 25ºC. The formulations with high pulp content (F1 and F3 presented higher shear stress and apparent viscosity. Response surface methodology, described by the quadratic model,showed that the consistency coefficient (K increased with the interaction between green banana pulp and soy oil concentration and the water fraction contributed to the flow behaviour index increase for all emulsions samples. Analysis of variance showed that the second-order model had not significant lack-of-fit and a significant F-value, indicating that quadratic model fitted well into the experimental data. The emulsions that presented better stability were the formulations F4 (0.20/0.25/0.55 and F5 (0.15/0.225/0.625.No presente trabalho, foi estudado o comportamento reológico de emulsões adicionadas de polpa de banana verde utilizando a metodologia de superfície de resposta e também foram investigadas a estabilidade das emulsões. Foram desenvolvidas cinco formulações, de acordo com o delineamento para superfícies limitadas e misturas, com as proporções respectivamente: água/óleo de

  2. Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2012-09-01

    Depolymerization of guar gum using enzymatic hydrolysis was performed to obtain depolymerized guar gum having functional application as soluble dietary fiber. Enzymatic hydrolysis of guar gum significantly affected the physicochemical and rheological characteristics of guar gum. The depolymerized guar gum showed a significant increase in crystallinity index from 3.86% to 13.2% and flow behavior index from 0.31 to 1.7 as compared to native guar gum. Remarkable decrease in intrinsic viscosity and consistency index was also observed from 9 to 0.28 and 4.04 to 0.07, respectively. Results revealed that enzymatic hydrolysis of guar gum resulted in a polysaccharide with low degree of polymerization, viscosity and consistency which could make it useful for incorporation in food products as dietary fiber without affecting the rheology, consistency and texture of the products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Morphological and Rheological Characterization of Gold Nanoparticles Synthesized Using Pluronic P103 as Soft Template

    Directory of Open Access Journals (Sweden)

    Nancy Tepale

    2016-01-01

    Full Text Available The synthesis of gold nanoparticles (Au-NPs, using Pluronic® P103 as soft template to design tuned hybrid gold/P103 nanomaterials, is reported here. The effect of the concentration of P103 and the synthesis temperature on the growth, size, and morphology of Au-NPs were studied. The rheological properties of these hybrid nanomaterials at different measured temperatures were studied as well. By increasing the concentration of P103, the micelles progressively grew due to an increase in the number of surface cavities. These cavities came together causing large nucleation centers and developing larger Au-NPs. The synthesis temperature was varied to induce significant dehydration of the P103 micelles. Below the cloud point temperature micelles underwent distinct changes related to spherical-to-polymer-like micelles transitions. Two nanostructures were formed: (1 small Au-NPs arranged on the surface of micelles, which acted as soft templates, and (2 large and independent Au-NPs. Above the cloud point temperature, Au-NPs were related to the shape and size of the P103 micellar aggregates. Rheological measurements showed that viscosity was sensitive to the concentration of P103. Also, it was demonstrated that synthesis temperature had a considerable influence on viscosity of the produced nanomaterials.

  4. Chemical Composition and Rheological Properties of Set Yoghurt Prepared from Skimmed Milk Treated with Horseradish Peroxidase

    Directory of Open Access Journals (Sweden)

    Yan Wen

    2012-01-01

    Full Text Available The aim of this work is to determine the impact of an enzymatic treatment on the fermentation and rheological properties of set yoghurt prepared from skimmed milk. Skimmed bovine milk was treated with horseradish peroxidase added at the level of 645 U per g of proteins in the presence (addition level of 7.8 mmol per L of milk or absence of ferulic acid as a cross-linking agent, and used to prepare set yoghurt with commercial direct vat set starter culture. The evaluation showed that the treatment of skimmed milk with horseradish peroxidase enhanced its apparent viscosity, and storage and loss moduli. The prepared yoghurt contained protein, fat and total solids at 3.49–3.59, 0.46–0.52 and 15.23–15.43 %, respectively, had titratable acidity of 0.83–0.88 %, and no significant difference in the composition was found among the yoghurt samples (p>0.05. Compared to the control yoghurt, the yoghurt prepared from the milk treated with horseradish peroxidase had a higher apparent viscosity, storage and loss moduli and flow behavior indices, especially when ferulic acid was added. Yoghurt samples from the skimmed milk treated either with horseradish peroxidase only or with the additional ferulic acid treatment had better structural reversibility, because their hysteresis loop area during rheological analysis was larger (p<0.05.

  5. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures

    Directory of Open Access Journals (Sweden)

    Behzad Majidi

    2016-05-01

    Full Text Available Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger’s model is developed using the discrete element method (DEM on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger’s model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297–0.595 mm (−30 + 50 mesh to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch.

  6. The effects of heating and dilution on the rheological and physical properties of Tank 241-SY-101 waste

    International Nuclear Information System (INIS)

    Tingey, J.M.; Bredt, P.R.; Shade, E.H.

    1994-10-01

    Of the 177 high-level waste underground storage tanks at the Hanford Site, 25 have been identified as being potentially capable of generating and releasing flammable gas. Tank 241-SY-101 has exhibited periodic releases of gas, and in some cases the gas released has exceeded the lower flammable gas limit. The components of the released gas from Tank 241-SY-101 are hydrogen, nitrous oxide, nitrogen, ammonia, carbon monoxide, and methane. A mitigation strategy that may effectively reduce the retention and release of these gases and the release of flammable gases is dilution coupled with eating of the tank wastes. The purpose of this work was to determine changes in rheological and physical properties caused by heating and dilution of actual 241-SY-101 waste. In May and December 1991, following periodic gas releases, samples of the waste in Tank 241-SY-101 were obtained. Current work quantified the effects of heating coupled with NaOH dilution of a combination of waste samples from Tank 241-SY-101 characteristic of a non-convective layer. The experimental approach and results of this heating and dilution study on Tank 241-SY-101 waste samples are described in Sections 2 and 3, respectively. In Section 3.1, a discussion of the rheological properties of the waste as a function of shearing forces, volume percent dilution, and temperature is presented. In Section 3.2, the physical properties of the waste dilutions are described, including the densities of the slurry, filtered solids, and filtrate; the settling behavior; and the percent filtered solids in the composite sample and each of the composite dilutions. A brief discussion of the results and uncertainties is given is Section 3.3. The conclusions of this investigation are reported in Section 4

  7. Synthesis of novel high-voltage cathode material LiCoPO4 via rheological phase method

    International Nuclear Information System (INIS)

    Tan, Long; Luo, Zhimei; Liu, Haowen; Yu, Ying

    2010-01-01

    For the first time, rheological phase method, a simple and effective route, is applied to synthesize novel cathode material LiCoPO 4 . X-ray diffraction spectrometer (XRD), X-ray photoelectron spectrometer (XPS), transmission electron microscope (TEM) and electrochemical impedance spectroscopy (EIS) are taken to investigate this material, respectively. XRD figure shows that the rheological sample is better crystallized than the solid-state one. XPS result of the rheological sample exhibits that the valence of Co is 2+. TEM images show that better dispersed particles with smaller size can be formed by rheological method comparing to the solid-state route. Charge-discharge test is carried out in the range of 3.0-5.0 V at 0.2 mA cm -2 . The initial discharge capacity for rheological phase and solid-state powder is 71.5 and 30.9 mAh g -1 , respectively. The better electrochemical property should be ascribed to the better crystallized rheological phase production with better dispersed and smaller particles, which can greatly facilitate the diffusion of Li + .

  8. Multivariate models for prediction of rheological characteristics of filamentous fermentation broth from the size distribution

    DEFF Research Database (Denmark)

    Petersen, Nanna; Stocks, S.; Gernaey, Krist

    2008-01-01

    fermentations conducted in 550 L pilot scale tanks were characterized with respect to particle size distribution, biomass concentration, and rheological properties. The rheological properties were described using the Herschel-Bulkley model. Estimation of all three parameters in the Herschel-Bulkley model (yield...... in filamentous fermentations. It was therefore chosen to fix this parameter to the average value thereby decreasing the standard deviation of the estimates of the remaining theological parameters significantly. Using a PLSR model, a reasonable prediction of apparent viscosity (mu(app)), yield stress (tau......(y)), and consistency index (K), could be made from the size distributions, biomass concentration, and process information. This provides a predictive method with a high predictive power for the rheology of fermentation broth, and with the advantages over previous models that tau(y) and K can be predicted as well as mu...

  9. Rheological Properties and Electrospinnability of High-Amylose Starch in Formic Acid.

    Science.gov (United States)

    Lancuški, Anica; Vasilyev, Gleb; Putaux, Jean-Luc; Zussman, Eyal

    2015-08-10

    Starch derivatives, such as starch-esters, are commonly used as alternatives to pure starch due to their enhanced mechanical properties. However, simple and efficient processing routes are still being sought out. In the present article, we report on a straightforward method for electrospinning high-amylose starch-formate nanofibers from 17 wt % aqueous formic acid (FA) dispersions. The diameter of the electrospun starch-formate fibers ranged from 80 to 300 nm. The electrospinnability window between starch gelatinization and phase separation was determined using optical microscopy and rheological studies. This window was shown to strongly depend on the water content in the FA dispersions. While pure FA rapidly gelatinized starch, yielding solutions suitable for electrospinning within a few hours at room temperature, the presence of water (80 and 90 vol % FA) significantly delayed gelatinization and dissolution, which deteriorated fiber quality. A complete destabilization of the electrospinning process was observed in 70 vol % FA dispersions. Optical micrographs showed that FA induced a disruption of starch granule with a loss of crystallinity confirmed by X-ray diffraction. As a result, starch fiber mats exhibited a higher elongation at break when compared to brittle starch films.

  10. Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles

    Science.gov (United States)

    Wan, Qingming; Jin, Yi; Sun, Pengcheng; Ding, Yulong

    2014-05-01

    This work concerns rheological and frictional behaviour of lubricating oils containing platelet molybdenum disulfide (MoS2) nanoparticles (average diameter 50 nm; single layer thickness 3 nm). Stable nano-MoS2 lubricants were formulated and measured for their rheological behaviour and tribological performance. Rheological experiments showed that the nano-MoS2 oils were non-Newtonian following the Bingham plastic fluid model. The viscosity data fitted the classic Hinch-Leal (H-L) model if an agglomeration factor of 1.72 was introduced. Tribological experiments indicated that the use of MoS2 nanoparticles could enhance significantly the tribological performance of the base lubricating oil (reduced frictional coefficient, reduced surface wear and increased stability). Scanning electron microscopy, laser confocal microscope and x-ray energy dispersive spectroscopy analyses suggested that the reduced frictional coefficient and surface wear be associated with surface patching effects. Such patching effects were shown to depend on the concentration of MoS2 nanoparticles, and an effective patching required a concentration over approximately 1 wt%. The increased stability could be attributed to the enhanced heat transfer and lubricating oil film strength due to the presence of nanoparticles.

  11. Vibration Control of Sandwich Beams Using Electro-Rheological Fluids

    Science.gov (United States)

    Srikantha Phani, A.; Venkatraman, K.

    2003-09-01

    Electro-rheological (ER) fluids are a class of smart materials exhibiting significant reversible changes in their rheological and hence mechanical properties under the influence of an applied electric field. Efforts are in progress to embed ER fluids in various structural elements to mitigate vibration problems. The present work is an experimental investigation of the behaviour of a sandwich beam with ER fluid acting as the core material. A starch-silicone-oil-based ER fluid is used in the present study. Significant improvements in the damping properties are achieved in experiments and the damping contributions by viscous and non-viscous forces are estimated by force-state mapping (FSM) technique. With the increase in electric field across the ER fluid from 0 to 2 kV, an increase of 25-50% in equivalent viscous damping is observed. It is observed that as concentration of starch is increased, the ER effect grows stronger but eventually is overcome by applied stresses.

  12. Influence of gamma radiation on the physicochemical and rheological properties of sterculia gum polysaccharides

    Science.gov (United States)

    Singh, Baljit; Sharma, Vikrant

    2013-11-01

    Keeping in view the influence of gamma radiation on the physiochemical properties of the polysaccharides and their importance in the food and pharmaceutical industry, in the present study attempt has been made to investigate the effects of absorbed dose on FTIR, XRD, SEMs, absorbance, pH, solubility, water absorption capacity, emulsion stability and rheology of sterculia gum. Increase in solubility and decrease in swellability of gum has been observed on increasing the absorbed dose. The emulsion stability has improved for the gum sample irradiated with total dose of 8.1±0.2 kGy. Apparent viscosity of gum solution first increased with increase in dose from 0 to 8.1±0.2 kGy than decreased with regular trends with further increase in total absorbed dose. Flow behavior of gum solution shifted to Newtonian from non-Newtonian with increasing the dose.

  13. Mineralogy and rheology of raw and activated Turonian to Coniacian clays from Benue Trough, northeastern Nigeria

    Directory of Open Access Journals (Sweden)

    A.S. Arabi

    2018-03-01

    Full Text Available Since the discovery of oil and gas in Oloibiri, an onshore oilfield located in Oloibiri in Ogbia Local Government Area of Bayelsa State, Nigeria on Sunday 15th January 1956 by Shell Darcy, hundreds of oil wells have been drilled and not a single of these oil wells was drilled without the use of bentonite. This work is aimed at evaluating the rheological properties of raw and beneficiated Nigerian clays to ascertain their worth for use as drilling mud in oil and gas well drilling. This will save foreign earnings used in the importation of bentonite by the oil and gas development companies, create employment opportunity and open a new frontier for solid mineral development. Five clay samples from Pindiga Formation in Benue Trough, northeastern Nigeria were collected and subjected to elemental, rheological and other physical properties tests and analysis, while another portion of same samples were beneficiated using sodium carbonate, gum Arabic and poly-anionic cellulose for rheological enhancement then subjected to same cycle of tests and analysis above. Results obtained indicates that wet beneficiation as adopted in this study has proved to be more effective in Ca and Na ionic exchange. The rheological and other physical properties of the clays attained the standard that is required for use in oil and gas well drilling after addition of 12% sodium carbonate and 1.5 g poly-anionic cellulose. It was also discovered that when the formulation was allow to age (stay for 24 h, it attained optimum rheological requirement with 12% sodium carbonate and just 0.8 g poly-anionic cellulose. The clays studies do not require addition of weighing additive such as barite because of their high iron content which made their density attain the require standard even without additives. Keywords: Bentonitic clay, Beneficiation, Nigeria, Pindiga, Rheology, Mineralogy

  14. Aging and nonlinear rheology of thermoreversible colloidal gels

    Science.gov (United States)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    Colloidal dispersions are found in a wide variety of consumer products such as paint, food and pharmaceuticals. We investigate gel formation and aging in a thermoreverible gel consisting of octadecyl-coated silica nanoparticles suspended in n-tetradecane. In this system, the octadecyl brush can undergo a phase change allowing the attractions between particles to be tuned by temperature (1,2). By probing the system with steady shear and large amplitude oscillatory shear, we have studied the effect of thermal history and shear history on gel formation and gel mechanical properties during aging. Gels were formed by approaching a common temperature from above and below to determine a reference state from which creep tests were conducted. Creep ringing was observed as expected for the viscoelastic gel. The rheological aging is interpreted in terms of the gel microstructure formed with differing thermal and shear histories to determine how processing affects structure. Recently proposed scaling laws for the rheology and structure under flow are explored within the context of gel aging (3). Through rheological and microstructural measurements, we will further the understanding of gel formation and aging in this model system which may be applied to processing conditions in an industrial setting.

  15. Multiscale Modeling of the Effects of Salt and Perfume Raw Materials on the Rheological Properties of Commercial Threadlike Micellar Solutions.

    Science.gov (United States)

    Tang, Xueming; Zou, Weizhong; Koenig, Peter H; McConaughy, Shawn D; Weaver, Mike R; Eike, David M; Schmidt, Michael J; Larson, Ronald G

    2017-03-23

    We link micellar structures to their rheological properties for two surfactant body-wash formulations at various concentrations of salts and perfume raw materials (PRMs) using molecular simulations and micellar-scale modeling, as well as traditional surfactant packing arguments. The two body washes, namely, BW-1EO and BW-3EO, are composed of sodium lauryl ethylene glycol ether sulfate (SLEnS, where n is the average number of ethylene glycol repeat units), cocamidopropyl betaine (CAPB), ACCORD (which is a mixture of six PRMs), and NaCl salt. BW-3EO is an SLE3S-based body wash, whereas BW-1EO is an SLE1S-based body wash. Additional PRMs are also added into the body washes. The effects of temperature, salt, and added PRMs on micellar lengths, breakage times, end-cap free energies, and other properties are obtained from fits of the rheological data to predictions of the "Pointer Algorithm" [ Zou , W. ; Larson , R.G. J. Rheol. 2014 , 58 , 1 - 41 ], which is a simulation method based on the Cates model of micellar dynamics. Changes in these micellar properties are interpreted using the Israelachvili surfactant packing argument. From coarse-grained molecular simulations, we infer how salt modifies the micellar properties by changing the packing between the surfactant head groups, with the micellar radius remaining nearly constant. PRMs do so by partitioning to different locations within the micelles according to their octanol/water partition coefficient P OW and chemical structures, adjusting the packing of the head and/or tail groups, and by changing the micelle radius, in the case of a large hydrophobic PRM. We find that relatively hydrophilic PRMs with log P OW 4, are isolated deep inside the micelle, separating from the tails and swelling the radius of the micelle, leading to shorter micelles and much lower viscosities, leading eventually to swollen-droplet micelles.

  16. Avaliação das propriedades reológicas do trigo armazenado Rheological properties evaluation of stored wheat

    Directory of Open Access Journals (Sweden)

    Aparecido Nivaldo Módenes

    2009-09-01

    Full Text Available Neste trabalho foi realizada uma avaliação das propriedades reológicas de trigo armazenado no período de 5 meses, objetivando dar subsídios para que as aquisições ou o uso do trigo possam ser feitos na colheita ou se necessitam de um tempo de repouso, para evolução das propriedades reológicas. Foram realizadas análises com 4 variedades de trigo Coodetec CD 104, CD 112, CD 200133 e CD 200213. O intervalo entre as análises foi de 30 dias, iniciando na colheita até 150 dias de armazenamento. Foram analisados a Alveografia (força geral do glúten, tenacidade e extensibilidade da massa, o Teor de Glúten (Glúten úmido e seco e o Número de Queda. Os resultados obtidos mostraram que, no período, não houve evolução na força do glúten e no número de queda. Pequenas variações que ocorreram nas outras análises, como tenacidade e extensibilidade, não são significativas do ponto de vista da indústria moageira. Desta forma, os resultados obtidos mostram que não existe a necessidade de retardar a aquisição e o uso do trigo na colheita em relação às propriedades reológicas, reduzindo desta forma o tempo e o custo de armazenamento.The objective of this work was to evaluate the rheological properties of 5 months of storage of wheat and investigate how the method of storage influences the use of wheat and its rheological properties. The assays were conducted with 4 variations of wheat: CoodeteC - CD 104, CD 112, CD 200133 and CD 200213. The time interval between the assays was 30 days and the storage time was up to 150 days after harvest. Alveogram parameters (general gluten force, tenacity, and extensibility of mass, the humid and dried gluten, and falling number were evaluated. The obtained results indicated that during the chosen storage period the gluten force and falling number did not change. The other assays showed small variations, for example on tenacity and extensibility, but this fact is not significant from the

  17. The effect of nanoclay on the rheology and dynamics of polychlorinated biphenyl.

    Science.gov (United States)

    Roy, D; Casalini, R; Roland, C M

    2015-12-28

    The thermal, rheological, and mechanical and dielectric relaxation properties of exfoliated dispersions of montmorillonite clay in a molecular liquid, polychlorobiphenyl (PCB), were studied. The viscosity enhancement at low concentrations of clay (≤5%) exceeded by a factor of 50 the increase obtainable with conventional fillers. However, the effect of the nanoclay on the local dynamics, including the glass transition temperature, was quite small. All materials herein conformed to density-scaling of the reorientation relaxation time of the PCB for a common value of the scaling exponent. A new relaxation process was observed in the mixtures, associated with PCB molecules in proximity to the clay surface. This process has an anomalously high dielectric strength, suggesting a means to exploit nanoparticles to achieve large electrical energy absorption. This lower frequency dispersion has a weaker dependence on pressure and density, consistent with dynamics constrained by interactions with the particle surface.

  18. Rheology and scaling behavior of swelling clay dispersions | Chaoui ...

    African Journals Online (AJOL)

    The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions ...

  19. Effect of drying methods on the rheological characteristics and ...

    African Journals Online (AJOL)

    The effect of drying methods (sun and oven-drying) on the rheological properties and colour of amala, a thick paste from yam flour, was investigated using two varieties of yam (Dioscorea rotundata and. Dioscorea alata). The yam flour produced was later reconstituted to produce amala of different pasting characteristics, ...

  20. Rheology and extrusion of low-grade paper and sludge

    Science.gov (United States)

    C. Tim Scott; Stefan Zauscher; Daniel J. Klingenberg

    1999-01-01

    This paper discusses efforts to characterize the rheological properties of pulps that include low-grade wastepapers and papermill sludges to determine their potential for extrusion and conversion into useful products. We investigated apparent changes in viscosity associated with the addition of typical inorganic paper fillers (calcium carbonate, kaolin clay, and...

  1. Rheology of transgenic switchgrass reveals practical aspects of biomass processing.

    Science.gov (United States)

    Wan, Guigui; Frazier, Taylor; Jorgensen, Julianne; Zhao, Bingyu; Frazier, Charles E

    2018-01-01

    Mechanical properties of transgenic switchgrass have practical implications for biorefinery technologies. Presented are fundamentals for simple (thermo)mechanical measurements of genetically transformed switchgrass. Experimental basics are provided for the novice, where the intention is to promote collaboration between plant biologists and materials scientists. Stem sections were subjected to two stress modes: (1) torsional oscillation in the linear response region, and (2) unidirectional torsion to failure. Specimens were analyzed while submerged/saturated in ethylene glycol, simulating natural hydration and allowing experimental temperatures above 100 °C for an improved view of the lignin glass transition. Down-regulation of the 4-Coumarate:coenzyme A ligase gene (reduced lignin content and altered monomer composition) generally resulted in less stiff and weaker stems. These observations were associated with a reduction in the temperature and activation energy of the lignin glass transition, but surprisingly with no difference in the breadth and intensity of the tan  δ signal. The results showed promise in further investigations of how rheological methods relate to stem lignin content, composition, and functional properties in the field and in bioprocessing. Measurements such as these are complicated by small specimen size; however, torsional rheometers (relatively common in polymer laboratories) are well suited for this task. As opposed to the expense and complication of relative humidity control, solvent-submersion rheological methods effectively reveal fundamental structure/property relationships in plant tissues. Demonstrated are low-strain linear methods, and also nonlinear yield and failure analysis; the latter is very uncommon for typical rheological equipment.

  2. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours.

    Science.gov (United States)

    Bucsella, Blanka; Takács, Ágnes; Vizer, Viktoria; Schwendener, Urs; Tömösközi, Sándor

    2016-01-01

    Dry and hydrothermal heat treatments are efficient for modifying the technological-functional and shelf-life properties of wheat milling products. Dry heat treatment process is commonly used to enhance the volume of cakes. Hydrothermal heat treatment makes wheat flours suitable as thickener agents. In this study, cake and bread wheat flours that differed in baking properties were exposed to dry (100 °C, 12 min) and hydrothermal (95 °C, 5 min, 5-20 l/h water) heat treatments. Rheological differences caused by the treatments were investigated in a diluted slurry and in a dough matrix. Dry heat treatment resulted in enhanced dough stability. This effect was significantly higher in the cake flour than the bread flour. Altered viscosity properties of the bread flour in the slurry matrix were also observed. The characteristics of hydrothermally treated samples showed matrix dependency: their viscosity increases in the slurry and decreases in the dough matrix. These results can support us to produce flour products with specific techno-functional properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Rheology v.3 theory and applications

    CERN Document Server

    Eirich, Frederick

    1960-01-01

    Rheology: Theory and Applications, Volume 3 is a collection of articles contributed by experts in the field of rheology - the science of deformation and flow. This volume is composed of specialized chapters on the application of normal coordinate analysis to the theory of high polymers; principles of rheometry; and the rheology of cross-linked plastics, poly electrolytes, latexes, inks, pastes, and clay. Also included are a series of technological articles on lubrication, spinning, molding, extrusion, and adhesion and a survey of the general features of industrial rheology. Materials scientist

  4. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Stoleru, Elena; Dumitriu, Raluca Petronela [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania); Munteanu, Bogdanel Silvestru [“Al. I. Cuza” University, Faculty of Physics, 11 Carol I Blvd., 700506 Iasi (Romania); Zaharescu, Traian [INCDIE ICPE CA, Bucharest (Romania); Tănase, Elisabeta Elena; Mitelut, Amalia [Industrial Biotechnology Department, Faculty of Biotechnology – USAMV Bucharest (Romania); Ailiesei, Gabriela-Liliana [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania); Vasile, Cornelia, E-mail: cvasile@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania)

    2016-03-30

    Graphical abstract: - Highlights: • PLA requires functionalization prior to surface attaching chitosan. • Chitosan with different molecular weights was grafted onto PLA surface. • Antibacterial, antifungal, antioxidant PLA-based materials are obtained. • Nano-fibers coatings obtained by electrospinning of high molecular weight chitosan. - Abstract: A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by “grafting to” of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.

  5. Modelling of the isothermal replication of surface microstructures in polymer melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Eriksson, Torbjörn Gerhard

    2005-01-01

    boundary condition. This allows an investigation of the effect of the rheological properties of the polymer melt on the ability of the material to fill small structures in a mould surface. Series of isothermal compression moulding experiments were performed with a polycarbonate (PC) and a polystyrene (PS...

  6. Mathematical models to predict rheological parameters of lateritic hydromixtures

    Directory of Open Access Journals (Sweden)

    Gabriel Hernández-Ramírez

    2017-10-01

    Full Text Available The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to the Herschel-Bulkley model for real plastics. In addition, they show that for current operating conditions, even for new situations, UPD mathematical models have a greater ability to predict rheological parameters than least squares mathematical models.

  7. Design and analysis of a magneto-rheological damper for an all terrain vehicle

    Science.gov (United States)

    Krishnan Unni, R.; Tamilarasan, N.

    2018-02-01

    A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.

  8. Protein conformational transitions at the liquid-gas interface as studied by dilational surface rheology.

    Science.gov (United States)

    Noskov, Boris A

    2014-04-01

    Experimental results on the dynamic dilational surface elasticity of protein solutions are analyzed and compared. Short reviews of the protein behavior at the liquid-gas interface and the dilational surface rheology precede the main sections of this work. The kinetic dependencies of the surface elasticity differ strongly for the solutions of globular and non-globular proteins. In the latter case these dependencies are similar to those for solutions of non-ionic amphiphilic polymers and have local maxima corresponding to the formation of the distal region of the surface layer (type I). In the former case the dynamic surface elasticity is much higher (>60 mN/m) and the kinetic dependencies are monotonical and similar to the data for aqueous dispersions of solid nanoparticles (type II). The addition of strong denaturants to solutions of bovine serum albumin and β-lactoglobulin results in an abrupt transition from the type II to type I dependencies if the denaturant concentration exceeds a certain critical value. These results give a strong argument in favor of the preservation of the protein globular structure in the course of adsorption without any denaturants. The addition of cationic surfactants also can lead to the non-monotonical kinetic dependencies of the dynamic surface elasticity indicating destruction of the protein tertiary and secondary structures. The addition of anionic surfactants gives similar results only for the protein solutions of high ionic strength. The influence of cationic surfactants on the local maxima of the kinetic dependencies of the dynamic surface elasticity for solutions of a non-globular protein (β-casein) differs from the influence of anionic surfactants due to the heterogeneity of the charge distribution along the protein chain. In this case one can use small admixtures of ionic surfactants as probes of the adsorption mechanism. The effect of polyelectrolytes on the kinetic dependencies of the dynamic surface elasticity of protein

  9. Effects of rheology, composition and surface erosion during collision of India and Eurasia

    Science.gov (United States)

    Tympel, Jens; Schröder, Sarah; Sobolev, Stephan

    2013-04-01

    The collision of northward moving Indian and relatively stationary Eurasian tectonic plate, ongoing since around 55Ma, has created the Himalayan orogen. Lying on the western syntaxis of Himalaya, the Pamir-Hindu Kush is well known for being the locus of enigmatic intermediate depth seismicity and large Gneiss domes. Although the Pamirs and Tibet are belonging to the same collision zone, the former one has been subjected to extreme Cenozoic shortening, with the strains by more than 2 times higher than in Tibet. As members of the TIen Shan - PAmir GEodynamic program (TIPAGE), our aim is to find lithospheric scale models and controlling factors consistent with all major geodynamic observations, e.g. timing of uplift events of the Tien Shan and the occurrence of anomalous high temperatures below the Pamirs. Furthermore the amount of northward Indian unterthrusting, as well the existence of southward dipping Tadjik-micro-plate below the Pamirs needed to be explained. Since lithosphere exhibits elastic, brittle and viscous properties, highly sophisticated numerical tools are necessary to explain these diverse effects. For this purpose we employ the Finite Element code SLIM3D/2D developed in our group in Potsdam, additionally equipped by routines modeling phase transformations in the crustal rocks and surface erosion and sedimentation routines. We run several N-S oriented 2D cross section models, studying the influence of rheological and compositional parameters, e.g. friction of the Indian/Eurasian plate interface, the Eurasian lithospheric strength south of Tadjik and the thickness of Tadjik strong lithosphere inclusion. Our models are starting at 60 Ma and incorporate part of Neo-Thetys, cratonic India and Greater India extension as well as Eurasia. Inside Eurasia we place a single heterogeneity, the Tadjik-micro-plate. Our model reproduce well present day lithospheric structure, high surface heat flow and surface topography as well as timing of deformation if the

  10. Effect of liposomes on rheological and syringeability properties of hyaluronic acid hydrogels intended for local injection of drugs.

    Science.gov (United States)

    El Kechai, Naila; Bochot, Amélie; Huang, Nicolas; Nguyen, Yann; Ferrary, Evelyne; Agnely, Florence

    2015-06-20

    The aim of this work was to thoroughly study the effect of liposomes on the rheological and the syringeability properties of hyaluronic acid (HA) hydrogels intended for the local administration of drugs by injection. Whatever the characteristics of the liposomes added (neutral, positively or negatively charged, with a corona of polyethylene glycol chains, size), the viscosity and the elasticity of HA gels increased in a lipid concentration-dependent manner. Indeed, liposomes strengthened the network formed by HA chains due to their interactions with this polymer. The nature and the resulting effects of these interactions depended on liposome composition and concentration. The highest viscosity and elasticity were observed with liposomes covered by polyethylene glycol chains while neutral liposomes displayed the lowest effect. Despite their high viscosity at rest, all the formulations remained easily injectable through needles commonly used for local injections thanks to the shear-thinning behavior of HA gels. The present study demonstrates that rheological and syringeability tests are both necessary to elucidate the behavior of such systems during and post injection. In conclusion, HA liposomal gels appear to be a promising and versatile formulation platform for a wide range of applications in local drug delivery when an injection is required. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Multivariate models for prediction of rheological characteristics of filamentous fermentation broth from the size distribution.

    Science.gov (United States)

    Petersen, Nanna; Stocks, Stuart; Gernaey, Krist V

    2008-05-01

    The main purpose of this article is to demonstrate that principal component analysis (PCA) and partial least squares regression (PLSR) can be used to extract information from particle size distribution data and predict rheological properties. Samples from commercially relevant Aspergillus oryzae fermentations conducted in 550 L pilot scale tanks were characterized with respect to particle size distribution, biomass concentration, and rheological properties. The rheological properties were described using the Herschel-Bulkley model. Estimation of all three parameters in the Herschel-Bulkley model (yield stress (tau(y)), consistency index (K), and flow behavior index (n)) resulted in a large standard deviation of the parameter estimates. The flow behavior index was not found to be correlated with any of the other measured variables and previous studies have suggested a constant value of the flow behavior index in filamentous fermentations. It was therefore chosen to fix this parameter to the average value thereby decreasing the standard deviation of the estimates of the remaining rheological parameters significantly. Using a PLSR model, a reasonable prediction of apparent viscosity (micro(app)), yield stress (tau(y)), and consistency index (K), could be made from the size distributions, biomass concentration, and process information. This provides a predictive method with a high predictive power for the rheology of fermentation broth, and with the advantages over previous models that tau(y) and K can be predicted as well as micro(app). Validation on an independent test set yielded a root mean square error of 1.21 Pa for tau(y), 0.209 Pa s(n) for K, and 0.0288 Pa s for micro(app), corresponding to R(2) = 0.95, R(2) = 0.94, and R(2) = 0.95 respectively. Copyright 2007 Wiley Periodicals, Inc.

  12. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Directory of Open Access Journals (Sweden)

    Landrou Gnanli

    2017-01-01

    Full Text Available In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  13. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ferreto, H. F. R., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Parra, D. F., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br; Lugão, A. B., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br [Center of Chemistry and Environment, Institute of Energy and Nuclear Research - IPEN (Brazil); Gaia, R., E-mail: renan-gaia7@hotmail.com [Faculdades Oswaldo Cruz (Brazil)

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  14. To Evaluate the Effect of Solvents and Different Relative Humidity Conditions on Thermal and Rheological Properties of Microcrystalline Cellulose 101 Using METHOCEL™ E15LV as a Binder.

    Science.gov (United States)

    Jagia, Moksh; Trivedi, Maitri; Dave, Rutesh H

    2016-08-01

    The solvent used for preparing the binder solution in wet granulation can affect the granulation end point and also impact the thermal, rheological, and flow properties of the granules. The present study investigates the effect of solvents and percentage relative humidity (RH) on the granules of microcrystalline cellulose (MCC) with hydroxypropyl methyl cellulose (HPMC) as the binder. MCC was granulated using 2.5% w/w binder solution in water and ethanol/water mixture (80:20 v/v). Prepared granules were dried until constant percentage loss on drying, sieved, and further analyzed. Dried granules were exposed to different percentage RH for 48 h at room temperature. Powder rheometer was used for the rheological and flow characterization, while thermal effusivity and differential scanning calorimeter were used for thermal analysis. The thermal effusivity values for the wet granules showed a sharp increase beginning 50% w/w binder solution in both cases, which reflected the over-wetting of granules. Ethanol/water solvent batches showed greater resistance to flow as compared to the water solvent batches in the wet granule stage, while the reverse was true for the dried granule stage, as evident from the basic flowability energy values. Although the solvents used affected the equilibration kinetics of moisture content, the RH-exposed granules remained unaffected in their flow properties in both cases. This study indicates that the solvents play a vital role on the rheology and flow properties of MCC granules, while the different RH conditions have little or no effect on them for the above combination of solvent and binder.

  15. Effect of size reduction on colour, hydration and rheological properties of wheat bran

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Oladayo ONIPE

    Full Text Available Abstract The aim of this study was to determine the effect of size reduction of wheat bran (WB on water holding capacity (WHC, water retention capacity (WRC, swelling capacity (SC; rheological and colour properties. Coarse WB exhibited the highest mean values for WHC (6.49 g/g, WRC (5.76 g/g, SC (7.67 g/g and OHC (4.23 g/g, while these values were significantly reduced in fine WB. Size reduction increased lightness of WB as indicated by high L* values (62.65 to 75.80, Hue angle of 74.63 and whiteness index value of 81.42. Increasing WB additions increased water absorption of dough from 63 to 70.2%, while dough stability decreased from 12.5 min to 6.80 min. As coarse WB addition increased from 1 to 15 g extensibility decreased from 419 BU to 283 BU (highest level of addition. A negative correlation (r2 = –0.992 was found between farinograph water absorption and all extensograph indices measured; implying that an increase in water absorption of dough led to a significant decrease in extensibility, maximum resistance and energy recorded for the dough. WB can be used as potential additive in foods like bread/ doughnut with the aim of optimizing their quality parameters such as nutritional and textural properties.

  16. Rheology of Indian Honey: Effect of Temperature and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Sudhanshu Saxena

    2014-01-01

    Full Text Available Honey brands commonly available in Indian market were characterized for their rheological and thermal properties. Viscosity of all the honey samples belonging to different commercial brands was found to decrease with increase in temperature (5–40°C and their sensitivity towards temperature varied significantly as explained by calculating activation energy based on Arrhenius model and ranged from 54.0 to 89.0 kJ/mol. However, shear rate was not found to alter the viscosity of honey indicating their Newtonian character and the shear stress varied linearly with shear rate for all honey samples. Honey is known to contain pathogenic microbial spores and in our earlier study gamma radiation was found to be effective in achieving microbial decontamination of honey. The effect of gamma radiation (5–15 kGy on rheological properties of honey was assessed, and it was found to remain unchanged upon radiation treatment. The glass transition temperatures (Tg of these honey analyzed by differential scanning calorimetry varied from −44.1 to −54.1°C and remained unchanged upon gamma radiation treatment. The results provide information about some key physical properties of commercial Indian honey. Radiation treatment which is useful for ensuring microbial safety of honey does not alter these properties.

  17. Effect of cement fineness and polycarboxylate dosage on the rheological and mechanical behavior of a mortar

    Directory of Open Access Journals (Sweden)

    Zahia Didouche

    2018-01-01

    Full Text Available The use of certain organic additives in the production of mortar and concrete influences the workability and the hydration kinetic of mortar. This results in a modification of some properties, namely rheological behavior and mechanical strength. The objective of this work is to evaluate the rheological and mechanical behavior of a mortar by varying the fineness of the cement and using the superplasticizer Polycarboxylate.

  18. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    Energy Technology Data Exchange (ETDEWEB)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A., E-mail: ferelenakq@gmail.co [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Inst. de Investigaciones para la Industria Quimica; Pita, Victor J.R.R.; Dias, Marcos L. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2009-07-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  19. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    International Nuclear Information System (INIS)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A.; Pita, Victor J.R.R.; Dias, Marcos L.

    2009-01-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  20. Study and rheological characterization of various bone ash porcelain formulations

    International Nuclear Information System (INIS)

    Carus, L.A.; Bento, L.; Braganca, S.R.

    2012-01-01

    The bone ash porcelain is a widely accepted product on the market because their qualities such as high strength and whiteness, to differ from common table porcelains. Its traditional formulation comes from an English recipe, consisting of 25% of kaolin, 25% of feldspar and 50% of bovine bone ash. In some studies, this proportion is adapted to regional conditions, optimizing the formulation according to the raw materials available. In this study, the rheological behavior of bone porcelain suspensions, in which the flux feldspar is partially substituted by an alternative flux (espudomenio, wollastonite and glass). The results show that the rheological behavior of porcelain is affected by the size, shape, surface area and particle size distribution of particles in suspension

  1. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  2. Supramolecular structure, phase behavior and thermo-rheological properties of a poly (L-lactide-co-ε-caprolactone) statistical copolymer.

    Science.gov (United States)

    Ugartemendia, Jone M; Muñoz, M E; Santamaria, A; Sarasua, J R

    2015-08-01

    PLAcoCL samples, both unaged, termed PLAcoCLu, and aged over time, PLAcoCLa, were prepared and analyzed to study the phase structure, morphology, and their evolution under non-quiescent conditions. X- ray diffraction, Differential Scanning Calorimetry and Atomic Force Microscopy were complemented with thermo-rheological measurements to reveal that PLAcoCL evolves over time from a single amorphous metastable state to a 3 phase system, made up of two compositionally different amorphous phases and a crystalline phase. The supramolecular arrangements developed during aging lead to a rheological complex behavior in the PLAcoCLa copolymer: Around Tt=131 °C thermo-rheological complexity and a peculiar chain mobility reduction were observed, but at T>Tt the thermo-rheological response of a homogeneous system was recorded. In comparison with the latter, the PLLA/PCL 70:30 physical blend counterpart showed double amorphous phase behavior at all temperatures, supporting the hypothesis that phase separation in the PLAcoCLa copolymer is caused by the crystallization of polylactide segment blocks during aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Rheological and phase behaviour of amphiphilic lipids

    Directory of Open Access Journals (Sweden)

    Alfaro, M. C.

    2000-04-01

    Full Text Available This chapter reviews the different association structures which are likely to be formed by amphiphilic lipids in the liquid-crystalline state and their corresponding shear flow properties. The structure and rheological behaviour of thermotropic liquid crystals, emphasizing the properties of smectic mesophases, and those of lyotropic liquid crystals such as: nematic, lamellar, diluted lamellar, lamellar dispersions, hexagonal and cubic mesophases are described. The importance of a comprehensive rheological characterisation, including rheo-optical techniques, is pointed out for their practical applications, development of formulations and as a useful technique to assist in the determination of phase diagrams. A historical approach has been used to discuss the evolving field of the rheology and structure identification of liquid crystals formed by amphiphilic lipids and surfactants. Non-Newtonian viscous shear flow, thixotropic and antithixotropic phenomena, linear viscoelastic properties -described by dynamic and creep compliance experiments- and non-linear viscoelastic properties - described by the difference of normal stresses and stress relaxation tests are interpreted on the basis of a microstructure-rheology relationship. The polycrystalline nature of liquid crystals turns out to be rather sensitive to shear due to the change of both size and orientation of the liquid-crystalline monodomains under flow.En este capítulo se realiza una revisión de las distintas estructuras coloidales de asociación que pueden formar los lípidos anfifílicos en estado líquido-cristalino y de sus correspondientes propiedades de flujo en cizalla. Se describe la estructura y comportamiento reológico de cristales líquidos termotrópicos, con énfasis en los de tipo esméctico, fases gel, y cristales líquidos liotrópicos: nemáticos, laminares, laminares diluidos, dispersiones de laminares, hexagonales y cúbicos. Se hace hincapié en la importancia de una

  4. INVESTIGATION OF EFFECTS TO THE RHEOLOGICAL PROPERTIES OF ADDITIVE MATERIALS WHICH ARE USED ON CEMENT ENJECTIONS

    Directory of Open Access Journals (Sweden)

    Özcan TAN

    2004-02-01

    Full Text Available In this study the rheological properties of the injection mixtures containing various proportions of bentonite (B, fly ash (UK and silica fume (SD were investigated. L16 orthogonal array with three parameters and four levels was selected using Taguchi Design of Experiment Method. In the preparation of the injection mixtures the percentages of bentonite, fly ash and silica fume (by weight of solid used were 0 %, 0.5 %, 1 %, 3 %, 10 %, 20 %, 30 %, 40 %, and 0 %, 5 %, 10 %, 20 %, respectively. For the prepared injection mixtures the sedimentation and Marsh funnel experiments were performed. The experiments were carried out water to solid ratios (W/S of 1.25 and the experimental results were evaluated separately using Taguchi method. As a result of the evaluations; the most effective parameter on the flowing time (viscosity and the amount of sedimentation was determined as the silica fume. For the investigated properties of the injection mixtures the optimum mixing ratios were determined with the Taguchi method and for these ratios the confirmation experiments were performed.

  5. Experimental study and modeling of the rheology and hydraulics in the foam drilling; Estudos experimentais e modelagem da reologia e da hidraulica na perfuracao com espuma

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Andre L.; Sa, Carlos H.M. de; Lourenco, Affonso M.F.; S. Junior, Valter [PETROBRAS, S.A, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: aleibsohn@cenpes.petrobras.com.br; chsa@cenpes.petrobras.com.br; affonso-lourenco@utulsa.edu; vsj@cenpes.petrobras.com.br

    2000-07-01

    This article describes the extense experimental effort for analyzing the foam stability and rheological properties for application as light drilling fluid. The study considered the influence of the foaming and concentration on the foam rheology and the gas volumetric fraction on the foam rheological properties. Simple correlations were proposed for quantification of the experimental behaviour. Field tests were performed to evaluate one of the foaming agents analyzed in laboratory by using 16 combinations of the gas-fluid flow.

  6. Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes

    International Nuclear Information System (INIS)

    El Achaby, M.; Qaiss, A.

    2013-01-01

    Highlights: ► HDPE/graphene and HDPE/carbon nanotubes–nanocomposites were prepared by extrusion. ► Graphene and CNT were homogeneously dispersed and distributed within HDPE matrix. ► Mechanical properties of HDPE nanocomposites were significantly improved. -- Abstract: High density polyethylene (HDPE)/graphene nanosheets (GNs) and HDPE/Multi-Walled Carbon Nanotubes (MWCNTs) nanocomposites with 0.5%, 1% and 3% nanofiller contents were prepared using the melt mixing method. The dispersion of the nanofillers in the polymer was monitored by scanning electron microscopy and melt rheology studies. Morphological, rheological, thermal and tensile properties of nanocomposites were comparatively studied. The results were discussed in terms of the geometries of GNs and MWCNTs. It was found that the HDPE/GNs nanocomposites show better properties than HDPE/MWCNTs nanocomposites at identical filler content. The superiority of HDPE/GNs nanocomposites may be due to high specific surface area and nanoscale 2-D flat surface of GNs which result in an enhanced mechanical interlocking with the polymer chains and enlarged interphase zone at filler–polymer interface. This effect is less pronounced in MWCNTs based nanocomposites because the MWCNTs have a reduced surface area and can interact with the polymer only at 1-D linear contact.

  7. Microfibrillated cellulose from bamboo pulp and its properties

    International Nuclear Information System (INIS)

    Zhang, Junhua; Song, Hainong; Lin, Lu; Zhuang, Junping; Pang, Chunsheng; Liu, Shijie

    2012-01-01

    Microfibrillated cellulose (MFC) was obtained by disintegrating bleached kraft bamboo (Phyllostachys pubescens) pulp with a procedure of chemical pretreatment and high-pressure homogenization. The influences of sodium hydroxide dosage and homogenization times were evaluated by water retention value (WRV) of MFC. The properties, such as the surface morphology, rheological property and carboxyl acid content of MFC were also characterized using scanning electron microscope (SEM), rheometer and headspace gas chromatography (HS-GC) separately.

  8. Branched polyacrylamides : Synthesis and effect of molecular architecture on solution rheology

    NARCIS (Netherlands)

    Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A.

    2013-01-01

    Linear, star and comb-like polyacrylamides (PAM) have been prepared by atomic transfer radical polymerization (ATRP) in aqueous media at room temperature. The influence of the molecular architecture of PAM on the rheological properties in aqueous solution has been investigated. The well-known theory

  9. Rheological behavior of water-ash mixtures from Sakurajima and Ontake volcanoes: implications for lahar flow dynamics

    Science.gov (United States)

    Kurokawa, Aika K.; Ishibashi, Hidemi; Miwa, Takahiro; Nanayama, Futoshi

    2018-06-01

    Lahars represent one of the most serious volcanic hazards, potentially causing severe damage to the surrounding environment, not only immediately after eruption but also later due to rainfall or snowfall. The flow of a lahar is governed by volcanic topography and its rheological behavior, which is controlled by its volume, microscale properties, and the concentration of particles. However, the effects of particle properties on the rheology of lahars are poorly understood. In this study, viscosity measurements were performed on water-ash mixtures from Sakurajima and Ontake volcanoes. Samples from Sakurajima show strong and simple shear thinning, whereas those from Ontake show viscosity fluctuations and a transition between shear thinning and shear thickening. Particle analysis of the volcanic ash together with a theoretical analysis suggests that the rheological difference between the two types of suspension can be explained by variations in particle size distribution and shape. In particular, to induce the complex rheology of the Ontake samples, coexistence of two particle size groups may be required since two independent behaviors, one of which follows the streamline (Stokes number St << 1, inertial number I < 0.001) and the other shows a complicated motion ( St 1, I 0.001), compete against each other. The variations in the spatial distribution of polydisperse particles, and the time dependence of this feature which generates apparent rheological changes, indicate that processes related to microscale particle heterogeneities are important in understanding the flow dynamics of lahars and natural polydisperse granular-fluid mixtures in general.

  10. Rheological properties and mineral content of buckwheat enriched wholegrain wheat pasta

    Directory of Open Access Journals (Sweden)

    Nedeljković Nataša

    2014-01-01

    Full Text Available Light buckwheat flour (LBF was used to substitute 20% of whole wheat flour (WWF in the formulation of wholegrain wheat pasta. Wholegrain wheat pasta (WWP and buckwheat enriched wholegrain wheat pasta (BWWP were produced on an industrial scale. Substitution level of buckwheat flour (20% was based on previously conducted rheological tests on LBF/WWF blends which were performed using 10, 20 and 30% of LBF. The obtained Mixolab profiles have indicated that wheat blend containing 20% LBF expressed the most similar rheological parameters to WWF. Proximate composition, cooking quality and mineral content of BWWP were analyzed and compared with those of WWP. The substitution of WWF with LBF in the pasta formulation resulted in significantly increased (P < 0.05 contents of P, Mg, K and Zn compared to WWP in dry pasta. The reduction in mineral content of BWWP during cooking was significantly higher (P < 0.05 compared to WWP. The content of P, Mg and K were at same level in both type of pasta after cooking. The obtained results suggest that enrichment of WWP with LBF at the level of 20% did not improve the mineral content of cooked pasta, although increase in minerals was observed in dry pasta. [Projekat Ministarstva nauke Republike Srbije, br. TR31029

  11. Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions

    Science.gov (United States)

    Thijssen, J. H. J.; Vermant, J.

    2018-01-01

    Interface-dominated materials are commonly encountered in both science and technology, and typical examples include foams and emulsions. Conventionally stabilised by surfactants, emulsions can also be stabilised by micron-sized particles. These so-called Pickering-Ramsden (PR) emulsions have received substantial interest, as they are model arrested systems, rather ubiquitous in industry and promising templates for advanced materials. The mechanical properties of the particle-laden liquid-liquid interface, probed via interfacial rheology, have been shown to play an important role in the formation and stability of PR emulsions. However, the morphological processes which control the formation of emulsions and foams in mixing devices, such as deformation, break-up, and coalescence, are complex and diverse, making it difficult to identify the precise role of the interfacial rheological properties. Interestingly, the role of interfacial rheology in the stability of bicontinuous PR emulsions (bijels) has been virtually unexplored, even though the phase separation process which leads to the formation of these systems is relatively simple and the interfacial deformation processes can be better conceptualised. Hence, the aims of this topical review are twofold. First, we review the existing literature on the interfacial rheology of particle-laden liquid interfaces in rheometrical flows, focussing mainly on model latex suspensions consisting of polystyrene particles carrying sulfate groups, which have been most extensively studied to date. The goal of this part of the review is to identify the generic features of the rheology of such systems. Secondly, we will discuss the relevance of these results to the formation and stability of PR emulsions and bijels.

  12. An Analysis of Rheological Properties of Inconel 625 Superalloy Feedstocks Formulated with Backbone Binder Polypropylene System for Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Gökmen U.

    2017-12-01

    Full Text Available Binder formula is one of the most significant factors which has a considerable influence on powder injection molding (PIM processes. In the study, rheological behaviors and properties of different binder systems containing PIM feedstocks, Inconel 625 powder commonly used in space industry, were investigated. The feedstocks were prepared 59%-69% (volume powder loading ratios with three diversified binder systems by use of Polypropylene as backbone binder. The average particle size of the Inconel 625 powder used was 12.86 microns. Components used in the binder were mixed for 30 minutes as dry in three dimensional mixing to prepare binder systems. Rheological features of the feedstock were characterized by using a capillary rheometer. Viscosities of the feedstocks were calculated within the range of 37.996-1900 Pa.s based on the shear rate, shear stress, binder formula and temperature. “n” parameters for PIM feedstocks were determined to be less than 1. Influences of temperature on the viscosities of the feedstocks were also studied and “Ea” under various shear stresses were determined within the range of 24.41-70.89 kJ/mol.

  13. The Influence of Chemically Modified Potato Maltodextrins on Stability and Rheological Properties of Model Oil-in-Water Emulsions

    Directory of Open Access Journals (Sweden)

    Karolina Pycia

    2018-01-01

    Full Text Available The aim of this study was to determine the effect of the maltodextrins prepared from chemically modified starches (crosslinked, stabilized, crosslinked and stabilized on the stability and rheological properties of model oil-in-water (o/w emulsions. Based on the obtained results, it was concluded that emulsion stability depended on hydrolysates dextrose equivalent (DE value. Maltodextrin with the lowest degree of depolymerization effectively stabilized the dispersed system, and the effectiveness of this action depended on the maltodextrin type and concentration. Addition of distarch phosphate-based maltodextrin stabilized emulsion at the lowest applied concentration, and the least effective was maltodextrin prepared from acetylated starch. Emulsions stabilized by maltodextrins (DE 6 prepared from distarch phosphate and acetylated distarch adipate showed the predominance of the elastic properties over the viscous ones. Only emulsion stabilized by maltodextrin prepared from distarch phosphate (E1412 revealed the properties of strong gel. Additionally, the decrease in emulsions G′ and G″ moduli values, combined with an increase in the value of DE maltodextrins, was observed.

  14. Rheological studies of aqueous stabilised nano-zirconia particle suspensions

    Directory of Open Access Journals (Sweden)

    Asad Ullah Khan

    2012-02-01

    Full Text Available In the present investigation aqueous suspensions of nano- and colloidal range particles are stabilised by changing the ambient pH. Rheology is used to establish the stability of the suspensions and it is found that the rheology of the suspensions is strongly dependent on the pH values. The viscosity is highest close to the iso-electric point of the powders. At the iso-electric point the net surface charge on the powder particles is zero and is the cause of the high viscosity. Away from the iso-electric point, the particles are charged, giving rise to a double layer phenomenon and causing the reduction in viscosity. It is also found that increasing the solid contents of the suspensions reduces the pH region of low viscosity.

  15. Rheology of unstable mineral emulsions

    Directory of Open Access Journals (Sweden)

    Sokolović Dunja S.

    2013-01-01

    Full Text Available In this paper, the rheology of mineral oils and their unstable water emulsion were investigated. The oil samples were domestic crude oil UA, its fractions UA1, UA4 and blend semi-product UP1, while the concentration of oil in water emulsions was in the range from 1 up to 30%. The results were analyzed based on shear stress. The oil samples UA, UA1 and UP1 are Newtonian fluids, while UA4 is pseudoplastic fluid. The samples UA and UA4 show higher value of shear stress (83.75 Pa, 297 Pa, then other two samples UA1 and UP1 (18.41 Pa, 17.52 Pa. Rheology of investigated oils due to its complex chemical composition should be analyzed as a simultaneous effect of all their components. Therefore, structural composition of the oils was determined, namely content of paraffins, naphthenes, aromatics and asphaltenes. All samples contain paraffins, naphthenes and aromatics but only oils UA and UA4 contain asphaltenes as well. All investigated emulsions except 30% EUA4 are Newtonian fluids. The EUA4 30% emulsion shows pseudoplastic behaviour, and it is the only 30% emulsion among investigated ones that achieves lower shear stress then its oil. The characteristics of oil samples that could have an influence on their properties and their emulsion rheology, were determined. These characteristics are: neutralization number, interfacial tension, dielectric constant, and emulsivity. Oil samples UA and UA4 have significantly higher values of neutralization number, dielectric constants, and emulsivity. The sample UA has the lowest value of interface tension and the greatest emulsivity, indicating that this oil, among all investigated, has the highest preference for building emulsion. This could be the reason why 20% and 30% emulsions of the oil UA achieve the highest shear stress among all investigated emulsions.

  16. Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge.

    Science.gov (United States)

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-01-01

    The effect of ultrasonication and Fenton oxidation as physico-chemical pre-treatment processes on the change of rheology of wastewater sludge was investigated in this study. Pre-treated and raw sludges displayed non-Newtonian rheological behaviour with shear thinning as well as thixotropic properties for total solids ranging from 10 g/L to 40 g/L. The rheological models, namely, Bingham plastic, Casson law, NCA/CMA Casson, IPC Paste, and power law were also studied to characterize flow of raw and pre-treated sludges. Among all rheological models, the power law was more prominent in describing the rheology of the sludges. Pre-treatment processes resulted in a decrease in pseudoplasticity of sludge due to the decrease in consistency index K varying from 42.4 to 1188, 25.6 to 620.4 and 52.5 to 317.9; and increase in flow behaviour index n changing from 0.5 to 0.35, 0.62 to 0.55 and 0.63 to 0.58, for RS, UlS and FS, respectively at solids concentration 10-40 g/L. The correlation between improvement of biodegradability and dewaterability, decrease in viscosity, and change in particle size as a function of sludge pre-treatment process was also investigated. Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. Biodegradability was also enhanced by the pre-treatment processes and the maximum value was obtained (64%, 77% and 73% for raw, ultrasonicated and Fenton oxidized sludges, respectively) at total solids concentration of 25 g/L. Hence, pre-treatment of wastewater sludge modified the rheological properties so that: (1) the flowability of sludge was improved for transport through the treatment train (via pipes and pumps); (2) the dewaterability of wastewater sludge was enhanced for eventual disposal and; (3) the assimilation of nutrients by microorganisms for further value-addition was increased.

  17. The influence of thickeners on the rheological and sensory properties of cosmetic lotions

    Czech Academy of Sciences Publication Activity Database

    Morávková, Tereza; Filip, Petr

    2014-01-01

    Roč. 11, č. 6 (2014), s. 173-186 ISSN 1785-8860 R&D Projects: GA ČR GA103/09/2066 Institutional support: RVO:67985874 Keywords : cosmetic lotion * eye cream * empirical rheological modelling * sensory analysis Subject RIV: BK - Fluid Dynamics Impact factor: 0.471, year: 2013

  18. Solid state characterization and rheological properties of native and modified Bambara groundnut (Vigna subterranean starches

    Directory of Open Access Journals (Sweden)

    Michael Odeniyi

    2017-09-01

    Full Text Available This study was designed to determine the suitability of native, pregelatinized and carboxymethylated Vigna subterranean (Bambara nut starches for pharmaceutical applications, through their characterization by means of physicochemical, rheological, thermal, morphological and instrumental spectroscopic methods. The native starch was extracted from Bambara nut, after which it was used to prepare both pregelatinized and carboxymethylated forms. Microscopy revealed increased in granular size on modification. Both pregelatinized and carboxymethylated Bambara starches had better flow properties and swellability compared to the native starch. Native Bambara starch had greater tendency to retrogradation, was more sensitive to heat and heat change, these were alleviated by both pregelatinization and carboxymethylation. DSC confirmed that carboxymethylated Bambara starch was the most thermally stable starch. Presence of functional groups and crystallinity were established by FTIR and XRD, respectively. Native and modified Bambara starches can be used as locally and readily available alternative excipients in pharmaceutical formulations.

  19. Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites

    KAUST Repository

    Amr, Issam Thaher

    2011-09-01

    In this work, multiwall carbon nanotubes (CNT) were functionalized by acid treatment and characterized using Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). Polystyrene/CNT composites of both the untreated and acid treated carbon nanotubes were prepared by thermal bulk polymerization without any initiator at different loadings of CNT. The tensile tests showed that the addition of 0.5 wt.% of acid treated CNT results in 22% increase in Young\\'s modulus. The DSC measurements showed a decrease in glass transition temperature (Tg) of PS in the composites. The rheological studies at 190 °C showed that the addition of untreated CNT increases the viscoelastic behavior of the PS matrix, while the acid treated CNT acts as plasticizer. Thermogravimetric analysis indicated that the incorporation of CNT into PS enhanced the thermal properties of the matrix polymer. © 2011 Elsevier Ltd. All rights reserved.

  20. The many ways sputum flows - Dealing with high within-subject variability in cystic fibrosis sputum rheology.

    Science.gov (United States)

    Radtke, Thomas; Böni, Lukas; Bohnacker, Peter; Fischer, Peter; Benden, Christian; Dressel, Holger

    2018-08-01

    We evaluated test-retest reliability of sputum viscoelastic properties in clinically stable patients with cystic fibrosis (CF). Data from a prospective, randomized crossover study was used to determine within-subject variability of sputum viscoelasticity (G', storage modulus and G", loss modulus at 1 and 10 rad s -1 ) and solids content over three consecutive visits. Precision of sputum properties was quantified by within-subject standard deviation (SD ws ), coefficient of variation (CV) and intraclass correlation coefficients (ICC). Fifteen clinically stable adults with CF (FEV 1 range 24-94% predicted) were included. No differences between study visits (mean ± SD 8 ± 2 days) were observed for any sputum rheology measure. CV's for G', G" and solids content ranged between 40.3-45.3% and ICC's between 0.21-0.42 indicating poor to fair test-retest reliability. Short-term within-subject variability of sputum properties is high in clinically stable adults with CF. Investigators applying shear rheology experiments in future prospective studies should consider using multiple measurements aiming to increase precision of sputum rheological outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Gum tragacanth dispersions: Particle size and rheological properties affected by high-shear homogenization.

    Science.gov (United States)

    Farzi, Mina; Yarmand, Mohammad Saeed; Safari, Mohammad; Emam-Djomeh, Zahra; Mohammadifar, Mohammad Amin

    2015-08-01

    The effect of high-shear homogenization on the rheological and particle size characteristics of three species of gum tragacanth (GT) was detected. Dispersions were subjected to 0-20 min treatment. Static light scattering techniques and rheological tests were used to study the effect of treatment. The results showed that the process caused a decrease in particle size parameters for all three species, but interestingly, the apparent viscosities increased. The highest increase of apparent viscosity was found for solutions containing Astragalus gossypinus, which possessed the highest insoluble fraction. The viscoelastic behaviors of dispersions were also significantly influenced by the process. Homogenization caused an increase in both G' and G″, in all three species. The alterations seem to be highly dependent on GT species and structure. The results could be of high importance in the industry, since the process will lead to textural modifications of food products containing GT. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Rheological Variations in Lahars Expected to Flow Along the Sides of Sakurajima and Ontake Volcanoes, Japan

    Science.gov (United States)

    Kurokawa, A. K.; Ishibashi, H.

    2016-12-01

    Volcanic ash is known to accumulate on the ground surface around volcano after eruptions. Once the ash gains weight and mixes with water to a critical point, the mixture of volcanic ash and water runs down a side of volcano causing severe damage to the ambient environment. The flow is referred to as lahar that is widely observed all over the world and it occasionally generates seismic signals [Walsh et al., 2016; Ogiso and Yomogida, 2015]. Sometimes it happens just after an eruption [Nakayama and Kuroda, 2003] whereas a large debris flow, which occurred about 30 years after the latest eruption due to heavy rainfall is also reported [Ogiso and Yomogida, 2015]. Thus when the lahar starts flowing is a key. In order to understand flow characteristics of lahar, it is important to focus on the rheology. However, little is known about the rheological property although the experimental condition can be controlled at atmospheric pressure and ambient temperature. This is an advantage when compared with magma and rock, which need to reach high-pressure and/or high-temperature conditions to be measured. Based on the background, we have performed basic rheological measurements using mixtures of water and volcanic ashes collected at Sakurajima and Ontake volcanoes in Japan. The first important point of our findings is that the two types of mixtures show non-linear characteristics differently. For instance, the viscosity variation strongly depends on the water content in the case of Sakurajima sample while the viscosity fluctuates within a certain definite range of shear rate using Ontake sample. Since these non-linear characteristics are related to structural changes in the flow, our results indicate that the flow of lahar is time-variable and complicated. In this presentation, we report the non-linear rheology in detail and go into the relation to temporal changes in the flow.

  3. Effect of Exfoliated Graphene Nanoplatelets on Rheological, Morphological, Mechanical and Thermal Properties of Immiscible Polypropylene/Polystyrene (PP/PS Blends

    Directory of Open Access Journals (Sweden)

    Fatemeh Abbasi

    2016-11-01

    Full Text Available Polyolefin/polystyrene blends, prepared by mechanical mixing, were immiscible blends having two-phase structure with weak interface. An improvement in compatibility of PP and PS led to their enhanced blend properties and applications. The aim of this study was to investigate the effect of exfoliated graphene nanoplatelets (xGnP on the compatibility of PP/PS (80:20 blend by their rheological and mechanical behaviors. Samples of the blends were prepared using an internal mixer through simultaneous feeding of the components into the mixing chamber. The properties of blends were evaluated by rheometry, scanning electron microscopy (SEM, thermal gravimetric analysis (TGA, differential scanning calorimetry (DSC and mechanical tests. Rheological results showed that addition of xGnP, led to an increase in storage modulus and complex viscosity, especially at low frequencies, probably due to the confinement of polymer chain motions. SEM observations on the morphology of blends revealed that increasing the xGnP content obviously reduced the domain diameter of the dispersed PS phase, indicating a good compatibilizing effect for xGnP. The addition of xGnP into the PP/PS blend increased the tensile modulus and decreased the elongation-at-break, resulting from the rigidity and intrinsic mechanical characteristics of the grapheme nanoplatelets. Crystallinity of the samples also increased with higher xGnP content, which could be assigned to the nucleating effect of graphene platelets. Moreover, thermal stability of the blends were improved by increasing the xGnP level because xGnP as an efficient compatibilizing agent with high thermal conductivity provided a more uniform heat distribution profile.

  4. Surface properties of beached plastics.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  5. The influence of thickeners on the rheological and sensory properties of cosmetic lotions

    Czech Academy of Sciences Publication Activity Database

    Morávková, Tereza; Filip, Petr

    2014-01-01

    Roč. 11, č. 6 (2014), s. 173-186 ISSN 1785-8860 R&D Projects: GA ČR GA103/09/2066 Institutional support: RVO:67985874 Keywords : cosmetic lotion * eye cream * empirical rheological model ling * sensory analysis Subject RIV: BK - Fluid Dynamics Impact factor: 0.471, year: 2013

  6. Mechanical and rheological properties of the bionanocomposites of biope/organoclay vermiculite; Propriedades mecanicas e reologicas de bionanocompositos de biope/vermiculita organofilica

    Energy Technology Data Exchange (ETDEWEB)

    Hanken, R.B.L.; Agrawal, P.; Oliveira, A.D.B.; Melo, T. J. A., E-mail: ruthmateriais@hotmail.com [Universidade Federal de Campina Grande (PPG/CEMat/UFCG), Bodocongo, PB (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2014-07-01

    Bionanocomposites of green polyethylene with organic vermiculite were prepared by melt intercalation method. Rheological and mechanical properties of these bionanocomposites were studied. The clay was treated with a quaternary ammonium salt, characterized by infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results showed the incorporation of salt in clay. The bionanocomposites were then prepared by extrusion followed by injection, in amounts of 0.5 to 5 phr of clay in the final compound. Subsequently, the samples were characterized by: capillary rheometer and mechanical tests (tensile and impact). Capillary rheometer results showed that the presence of organic vermiculite in the green polyethylene decreased viscosity of the systems. The mechanical properties of bionanocomposites showed an increased elastic modulus and reduced impact resistance. (author)

  7. Dynamic rheological, microstructural and physicochemical properties of blend fish protein recovered from kilka (Clupeonella cultriventris) and silver carp (Hypophthalmichthys molitrix) by the pH-shift process or washing-based technology.

    Science.gov (United States)

    Abdollahi, Mehdi; Rezaei, Masoud; Jafarpour, Ali; Undeland, Ingrid

    2017-08-15

    This study aimed to evaluate how blending pH-shift produced protein isolates from gutted kilka (Clupeonella cultriventris) and silver carp (Hypophthalmichthys molitrix) affected dynamic rheological and chemical properties of the proteins as well as microstructural and physico-mechanical properties of produced gels. Studied variables were protein solubilization pH (acid vs. alkaline) and blending step (before or after protein precipitation). Comparisons were made with conventionally washed minces from kilka and silver carp fillets; either alone or after blending. Rheological studies revealed that blending alkali-produced protein isolates before precipitation resulted in rapid increase of G' reflecting the formation of intermolecular protein-protein interactions with higher rate. Furthermore, blending of alkali-produced protein isolates and washed minces, respectively, of kilka and silver carp improved physico-mechanical properties of the resultant gels compared to pure kilka proteins. However, the pH-shift method showed higher efficacy in development of blend surimi at the same blending ratio compared to the conventional washing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Investigating the rheological properties of crumb rubber modified bitumen and its correlation with temperature susceptibility

    Directory of Open Access Journals (Sweden)

    Nuha Salim Mashaan

    2013-02-01

    Full Text Available There is substantial evidence on the advantages of using crumb rubber in enhancing conventional bitumen properties, gaining environmental protection and boosting industrial-economical benefits. Thus, the use of this ingenious additive in bitumen modification through sustainable technology is highly advocated.The main objective of this research is to investigate the effects of different blending conditions (of time and temperature and various crumb rubber contents on the properties of bitumen binders. Testing was conducted using the Dynamic shear rheometer (DSR test and softening point test. The results showed that differing crumb rubber contents and blending temperature have significant effects on modified binder properties whereas the blending time showed an insignificant effect. Higher blending temperature and crumb rubber content were found to influence the interaction of bitumen-rubber blends and also increased the swelling rate of rubber particles, resulting in an increase in complex shear modulus (G*, storage modulus (G', loss modulus (G" and softening point as well as a decrease in phase angle (δ. Thus, the modified bitumen became less susceptible to deformation after stress removals. The study also presented a considerable relationship between rheological parameters (G*, G', G' and δ and softening point in terms of predicting physical-mechanical properties regardless of blending conditions. Thus, in terms of elasticity for the softening point data, the storage modulus and phase angle were found to be good indicators of binder elasticity. When softening point is made available, a prediction about binder ability to recover its original shape after stress removals can be done.

  9. Investigating the rheological properties of crumb rubber modified bitumen and its correlation with temperature susceptibility

    Directory of Open Access Journals (Sweden)

    Nuha Salim Mashaan

    2012-01-01

    Full Text Available There is substantial evidence on the advantages of using crumb rubber in enhancing conventional bitumen properties, gaining environmental protection and boosting industrial-economical benefits. Thus, the use of this ingenious additive in bitumen modification through sustainable technology is highly advocated.The main objective of this research is to investigate the effects of different blending conditions (of time and temperature and various crumb rubber contents on the properties of bitumen binders. Testing was conducted using the Dynamic shear rheometer (DSR test and softening point test. The results showed that differing crumb rubber contents and blending temperature have significant effects on modified binder properties whereas the blending time showed an insignificant effect. Higher blending temperature and crumb rubber content were found to influence the interaction of bitumen-rubber blends and also increased the swelling rate of rubber particles, resulting in an increase in complex shear modulus (G*, storage modulus (G', loss modulus (G" and softening point as well as a decrease in phase angle (δ. Thus, the modified bitumen became less susceptible to deformation after stress removals. The study also presented a considerable relationship between rheological parameters (G*, G', G' and δ and softening point in terms of predicting physical-mechanical properties regardless of blending conditions. Thus, in terms of elasticity for the softening point data, the storage modulus and phase angle were found to be good indicators of binder elasticity. When softening point is made available, a prediction about binder ability to recover its original shape after stress removals can be done.

  10. Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials

    Directory of Open Access Journals (Sweden)

    Ivana M. Geremias-Andrade

    2016-08-01

    Full Text Available Emulsion-filled gels are classified as soft solid materials and are complex colloids formed by matrices of polymeric gels into which emulsion droplets are incorporated. Several structural aspects of these gels have been studied in the past few years, including their applications in food, which is the focus of this review. Knowledge of the rheological behavior of emulsion-filled gels is extremely important because it can measure interferences promoted by droplets or particle inclusion on the textural properties of the gelled systems. Dynamic oscillatory tests, more specifically, small amplitude oscillatory shear, creep-recovery tests, and large deformation experiments, are discussed in this review as techniques present in the literature to characterize rheological behavior of emulsion-filled gels. Moreover, the correlation of mechanical properties with sensory aspects of emulsion-filled gels appearing in recent studies is discussed, demonstrating the applicability of these parameters in understanding mastication processes.

  11. Evaluation of rheological properties of cement slurries doped with fiber of glass wool; Avaliacao das propriedades reologicas e mecanicas de pastas de cimento aditivadas com fibra de la de vidro

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Luanna Carla Matias; Barros, Marcus Vinicius Cavalcanti; Martinelli, Antonio E.; Freitas, Julio Cezar Oliveira [Universidade Federal do Rio Grande do Norte (LABCIM/UFRN), RN (Brazil). Lab. de Cimentos; Lima, Cicero S.; Barroso, Carlos Andre Marques; Oliveira, Theogenes S. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil); Bezerra, Ulisses Targino [Instituto Federal de Educacao, Ciencia e Tecnologia da Paraiba (LABEME/IFPB), Joao Pessoa, PB (Brazil). Lab. de Ensaio de Materiais e Estruturas

    2012-07-01

    This paper describes the results of cement slurry systems using silica-based glass wool fiber as admixture after grinding during 90 s, 180 s, 300 s and 600 s. Scanning electron microscopy images of the fiber depicted the changes in the material as a result of milling. Slurries were formulated with specific mass 15.6 ppg using 2% (BWOC) of the wool fibers. Rheological and mechanical tests were performed. Increasing in milling time improved both the rheological properties and compressive strength of the slurries. Preliminary tests obtained with the fibers revealed the potential application of the material in cement slurries for oil wells. (author)

  12. Evaluation of solution and rheological properties for hydrophobically associated polyacrylamide copolymer as a promised enhanced oil recovery candidate

    Directory of Open Access Journals (Sweden)

    A.N. El-hoshoudy

    2017-09-01

    Full Text Available Crude oil is the most critical energy source in the world, especially for transportation, provision of heat and light as there has not been a sufficient energy source to replace crude oil has broadly integrated, so there is an urgent need to maximize the extraction of the original oil in-place for every reservoir, and accelerating the development of enhanced oil recovery (EOR technologies. Polymer flooding by hydrophobically associated polyacrylamides (HAPAM is a widely used technique through EOR technology. For successful application of these polymers, one should evaluate rheological and solution properties at simulated reservoir conditions as a function of polymer concentration, salinity, temperature and shear rate. The results showed that these copolymers exhibit favorable salt tolerance, temperature resistance, and recoverable viscosity after shearing, reasonable thickening behavior and improved viscosity enhancement properties due to presence of hydrophobic association in the copolymer main chains. Moreover, its capacity for oil production improvement was evaluated during flooding experiments through one dimensional sandstone model at simulated reservoir conditions.

  13. Bambara-wheat composite flour: rheological behavior of dough and functionality in bread.

    Science.gov (United States)

    Erukainure, Ochuko L; Okafor, Jane N C; Ogunji, Akinyele; Ukazu, Happiness; Okafor, Ebele N; Eboagwu, Ijeoma L

    2016-11-01

    The rheological behavior and functional properties of doughs from bambara-wheat composite flour was investigated. Bambara-wheat composite flour was prepared by substituting wheat with 0%, 10%, 15%, and 20% of bambara flour. The rheological behavior of their dough was analyzed with Mixolab. Breads produced from the flour were analyzed for physical characteristics. Organoleptic analysis was carried out by 20 panelists. Mixolab analysis revealed, except for stability time, depreciating values for dough consistency (C1), protein weakening (C2), starch gelatinization (C3), amylase activity (C4), and retrogradation (C5) as the inclusion of bambara flour increased. Physical characteristics of the loaves revealed significant ( P  baking characteristics.

  14. The effect of pineapple core fiber on dough rheology and the quality of mantou

    Directory of Open Access Journals (Sweden)

    Sy-Yu Shiau

    2015-09-01

    Full Text Available The consumption of dietary fiber offers the health benefit of lowering the risk of many chronic diseases. Pineapple core fiber (PCF in this study was extracted and incorporated into dough and mantou (i.e., steamed bread. The effects of PCF substitution and fiber size on textural and rheological properties of dough and mantou were evaluated by a texture analyzer. The substitution of wheat flour by PCF resulted in a stiffer and less extensible dough with or without fermentation. The hardness and gumminess of mantou significantly increased as the PCF substitution increased from 0% to 15%, but the cohesiveness, specific volume, and elasticity significantly decreased with the fiber substitution. Ten percent PCF-enriched dough and mantou with various fiber sizes had similar rheological and textural properties, except for the k1 and k2 values. By sensory evaluation, 5% PCF-enriched mantou and the control bread had better acceptability in texture, color, odor, and overall acceptability, compared to mantous enriched with 10% or 15% PCF. Significant correlations existed between the rheological properties of dough and textural parameters of mantou and between the sensory quality and textural parameters of mantou. Therefore, we suggest that fiber-enriched mantou can be prepared with 5% PCF substitution to increase the intake of dietary fiber and maintain the quality of mantou.

  15. A Novel Method of Mechanical Oxidation of CNT for Polymer Nanocomposite Application: Evaluation of Mechanical, Dynamic Mechanical, and Rheological Properties

    Directory of Open Access Journals (Sweden)

    Priyanka Pandey

    2014-01-01

    Full Text Available A new approach of oxidation of carbon nanotubes has been used to oxidize the CNTs. A comparative aspect of the mechanical oxidation and acid oxidation process has been established. FTIR analysis and titration method have shown the higher feasibility of the mechanical oxidation method to oxidize the CNTs. Comparatively less damage to the CNTs has been observed in case of mechanically oxidized as compared to acid oxidized CNTs. The mechanical properties of the nanocomposites reinforced with the acid oxidized CNT (ACNT and mechanically oxidized CNTs (McCNT were analyzed and relatively higher properties in the nanocomposites reinforced with McCNT were noticed. The less degree of entanglement in the McCNTs was noticed as compared to ACNTs. The dynamic mechanical analysis of the nanocomposites revealed much improved load transfer capability in the McCNT reinforced composites. Further, the rheological properties of the nanocomposites revealed the higher performance of McCNT reinforced composites.

  16. Rheological characterisation of biologically treated and non-treated putrescible food waste.

    Science.gov (United States)

    Baroutian, Saeid; Munir, M T; Sun, Jiyang; Eshtiaghi, Nicky; Young, Brent R

    2018-01-01

    Food waste is gaining increasing attention worldwide due to growing concerns over its environmental and economic costs. Understanding the rheological behaviour of food waste is critical for effective processing so rheological measurements were carried out for different food waste compositions at 25, 35 and 45 °C. Food waste samples of various origins (carbohydrates, vegetables & fruits, and meat), anaerobically digested and diluted samples were used in this study. The results showed that food waste exhibits shear-thinning flow behaviour and viscosity of food waste is a function of temperature and composition. The composition of food waste affected the flow properties. Viscosity decreased at a given temperature as the proportion of carbohydrate increased. This may be due to the high water content of vegetable & fruits as the total solids fraction is likely to be a key controlling factor of the rheology. The Herschel-Bulkley model was used successfully to model food waste flow behaviour. Also, a higher strain was needed to break down the structure of the food waste as digestion time increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Rheological characterization of nuclear waste using falling-ball rheometry

    International Nuclear Information System (INIS)

    Abbott, J.R.; Unal, C.; Stephens, T.; Pasamehmetoglu, K.O.; Graham, A.L.; Edwards, J.N.

    1994-01-01

    Knowledge of the rheological properties of saturated solutions containing solid particles is very important in nuclear waste management technology. For example, the nuclear waste in the Hanford Site high-level radioactive waste tanks contains strong electrolyte solutions with a high concentration of solids. Previous attempt using rotational viscometers to determine the rheology has shown unusual thixotropic and shear thinning behaviors with a lack of reproducibility. Using falling-ball rheometry, the rheology of the undisturbed simulant may be determined with much better reproducibility. In this study, a well-mixed simulant which has similar chemical composition to the actual waste will be tested. Falling-ball size and density will be varied to get data in a wide range of shear rates. To determine the rheogram, several methods will be tried to match the observed data. Based on these tests, a rheogram can be determined from the model and its best-fit parameters. The simulant shows shear-thinning behavior and a yield stress. This would suggest a H-B model. But when fitting to one of the simulants which showed a very low yield stress, the predictions assuming no yield and assuming yield resulted in no improvement in the fit when assuming yield

  18. Rheological properties of ceramic nanopowders in aqueous and nonaqueous suspensions

    International Nuclear Information System (INIS)

    Tomaszewski, H.; Loiko, E.M.

    2003-01-01

    The potential for ceramic nanocomposites to offer significantly enhanced mechanical properties is generally known since the first work of Niihara published in 1991. However achieving these properties needs carefully done colloidal processing, because ceramic nanopowders are naturally prone to agglomeration. The work presented here is concerned with the processing of zirconia/alumina nanocomposites via aqueous and alumina silicon carbide nanocomposites via nonaqueous colloidal route. The effect of pH of aqueous alumina and zirconia suspensions on properties of suspension and centrifuged green bodies was studied. A correlation between surface electric charge of grains (zeta potential)and agglomerate size, viscosity of suspension and porosity of green compacts was found. In the case of nonaqueous route alumina and silicon carbide suspensions in iso-propanol were investigated. Electrostatic surface charge of grains was changed by addition of chloroacetic acid and determined indirectly by the mass of powder deposited on electrode during electrophoresis. Different behaviour of SiC nanopowder than of alumina was observed and mechanism of charge creation is proposed on the base of DLVO theory. The effect of grain charge on preventing agglomeration on the silicon carbide powder is presented on micrographs of sintered nanocomposites. (author)

  19. Rheology and microstructure of kefiran and whey protein mixed gels.

    Science.gov (United States)

    Kazazi, Hosayn; Khodaiyan, Faramarz; Rezaei, Karamatollah; Pishvaei, Malihe; Mohammadifar, Mohammad Amin; Moieni, Sohrab

    2017-04-01

    The effect of kefiran on cold-set gelation of whey protein isolate (WPI) at 25 °C was studied using rheological measurements and environmental scanning electron microscopy (ESEM). The gelation of samples was induced by the addition of glucono-δ-lactone to the dispersions. WPI concentration was maintained at 8% (w/v) and the concentration of kefiran varied from 0 to 0.08% (w/v). According to rheological measurements, the addition of kefiran into WPI dispersions resulted in a significant increase in the gel strength, the yield stress, and the shear stress values at the flowing point. The gelling point and gelation pH of samples decreased significantly with an increase in kefiran concentration. ESEM micrographs showed that the presence of kefiran played an important role in the microstructure formation of gels. The microstructure of kefiran-WPI mixed gels was more compact and dense, compared to the WPI gel. Depletion interactions between kefiran and whey protein aggregates can be regarded as the chief factor which was responsible for these effects. The present work demonstrated that rheological and microstructural properties of acid-induced whey protein gels were improved by the addition of kefiran.

  20. Rheology v.2 theory and applications

    CERN Document Server

    Eirich, Frederick

    1958-01-01

    Rheology: Theory and Applications, Volume II deals with the specific rheological subjects, such as deformational behavior in relation to the classic subjects and topics of rheology. This volume is divided into 13 chapters. Considerable chapters are devoted to the theory and aspects of viscoelastic and relaxation phenomena, as well as the applied theory concerning substances related to these phenomena, including elastomers, gelatins, and fibers. Other chapters cover the general principles of geological deformations derived from the study of less """"immobile"""" objects. The remaining chapt